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Abstract

Both subgame-perfect equilibrium and weak-perfect Bayesian equilibrium impose rationality
at information sets that are irrelevant for a sequentially rational outcome. In this paper, for
each of these equilibrium concepts, I characterize the maximal set of such information sets.
These information sets can be trimmed (or removed) from strategy sets without affecting
the equilibrium outcome. A trimmed equilibrium is an equilibrium for the game where the
irrelevant information sets have been ignored. It is shown that the trimmed version of an
equilibrium concept, either subgame-perfect or weak perfect Bayesian equilibrium, is just
sufficiently restrictive to ensure that equilibrium outcomes are consistent with the original
concept, i.e., ignoring any additional information sets could change the equilibrium outcome.
An example demonstrates that trimming irrelevant information sets can lead to existence of
an outcome consistent with subgame-perfect rationality in cases where a subgame perfect
equilibrium does not exist.

JEL Classification Number: C72 (Noncooperative Games)
Keywords: Nonexistence of equilibrium, partially specified games, subgame-perfect

Nash equilibrium, weak-perfect Bayesian equilibrium



1 Introduction

Many refinements of Nash equilibrium (NE) incorporate some notion of sequential rational-
ity. Such refinements serve to rule out outcomes sustained by irrational play, in particular by
noncredible threats. For example, a subgame-perfect equilibrium (SPE) incorporates sequen-
tial rationality by requiring NE in each subgame, and a weak perfect Bayesian equilibrium
(WPBE) incorporates sequential rationality by requiring best responses at each information
set given the (Bayesian) belief at this information set, and given future play. This paper
establishes that both the SPE and the WPBE can be more restrictive than necessary to
ensure outcomes which are consistent with their particular notion of sequential rationality.
More precisely, given an extensive form game and given a SPE (a WPBE), this paper char-
acterizes the set of information sets off the equilibrium path which is maximal with respect
to the property that choices within this set never affect the sequential rationality as imposed
by a SPE (a WPBE) outside of the set.1 A collection of information sets W 0 satisfies this
property if for any pair of information sets w,w0 with w0 ∈ W 0 and w /∈ W 0, whether the
choice specified at w is sequentially rational does not depend on the payoff following w0.
Hence, it is possible to relax the definitions of SPE and WPBE by dropping the requirement
of sequential rationality in the maximally irrelevant set without losing the equilibrium prop-
erty that the outcome is never sustained by sequentially irrational play. A "relaxed" SPE
andWPBE, respectively, will be called trimmed SPE and trimmedWPBE. This terminology
is chosen to emphasize that strategies in a trimmed equilibrium can be seen as "smaller"
strategies, because the play at irrelevant sets does not even need to be specified. In that
sense, in a trimmed equilibrium, players are not required to make complete contingent plans.
It will be shown that a trimmed SPE (WPBE) can not be relaxed further. Its conditions
are necessary and sufficient to ensure outcomes are not sustained by the respective notion
of sequentially irrational play.
Knowing which parts of a game are irrelevant for a particular equilibrium proves helpful

in cases when there is nonexistence of equilibrium in the whole game due to nonexistence
of equilibria in a subset of subgames. How, in such cases, the results of this paper can help
finding an outcome that is nonetheless consistent with sequential rationality is demonstrated
in an example (Section 4). Theorems 6 and 13 and their corollaries show that a trimmed
equilibrium, even though less restrictive than its original concept, does not give up on the
degree of rationality imposed: provided the original equilibrium exists, the sets of outcome
paths for the original concept and for its trimmed version are the same.2

For motivation, consider the classical Hotelling game. In the first stage, two sellers of
a homogenous good simultaneously choose a location on an interval. In the second stage,
they simultaneously set a price for their goods, which at that time are differentiated by
location. Consumers, who demand a single unit of the good, are uniformly distributed over

1In principle the characterization of inessential game parts could be done for other equilibrium concepts
as well, but is not examined here further.

2Beside the potential usefulness of the results in this paper, one can also interpret them as calling into
question whether individuals actually always make "complete contingent plans", as standard game theory
assumes they do. To be clear, this is different from bounded rationality. The point is not that the degree of
computational difficulty might lead an individual to be unable to determine the best response, but to able
to do so only at a high cost. Intuitively, one can think of a player asking himself "why bother about this
problem right now? It is not going to happen if we all stick to our plans. If it arises there is still time to
worry.



the interval and incur a cost of visiting a particular seller. This cost is linearly increasing in
the distance to the seller. As d’Aspremont et al. (1979) show, pure strategy price equilibria
in the second stage exist only for a subset of the sellers’ location pairs (each location pair
represents a subgame of the second stage).3 Therefore, a SPE in pure strategies fails to exist.
A trimmed SPE, as it will be defined in this paper, requires existence of equilibrium

only for a subset of subgames. Figure 1 illustrates how this set of relevant subgames could
look like. Suppose we could find pure strategy pricing equilibria for the location pair (l∗1, l

∗
2),

and for all subgames in G(l∗1, l
∗
2) = {(l1, l2) ∈ [0, 1]2 ⊂ R2 : l1 = l∗1 or l2 = l∗2}. Suppose

further that, given that player j chooses location l∗j , player i’s payoff across all pricing
equilibria of subgames in {(l1, l2) ∈ [0, 1]2 ⊂ R2 : lj = l∗j} is maximized at l∗i . Then, let
each player’s strategy be to choose, respectively, l∗1 and l∗2 in the first stage and to play the
pricing equilibria in subgames in G(l∗1, l

∗
2) in the second stage and to set an arbitrary price

in all other subgames. Such a strategy profile would constitute a trimmed equilibrium.
Note the following two features of this strategy profile. First, assuming that neither

of the players makes mistakes, there is no reason for any of them to deviate from their
strategy. Albeit the play in some of the subgames might be noncredible (not a NE of the
subgame), the play cannot be a noncredible threat : suppose firm 1 would like to avoid
subgame (l1, l2) /∈ G(l∗1, l

∗
2). Given that firm 1 itself chooses l∗1 in the first stage, it would

require a deviation by both firms to reach (l1, l2), i.e., firm 2 cannot reach (l1, l2) and therefore
it is not possible that some announcement by firm 1 keeps it from deviating to there. Second,
if along with these strategies we were able to specify pricing equilibria for all irrelevant
subgames in [0, 1]2ÂG(l∗1, l

∗
2), the resulting strategy profile would constitute a SPE (Corollary

7 proves this claim). Thus, an equilibrium as described above is as reasonable as a SPE,
ruling out all Nash equilibria that are possibly sustained by noncredible threats ("if you
choose location xy, I am going to set my price equal to zero").
While in the Hotelling game determining the set that is maximally irrelevant with respect

to SPE might be relatively straightforward, the task of characterizing maximally irrelevant
sets for general games is not trivial. In the example, a subgame belonged to the maximally
irrelevant set if it could only be reached by a deviation of both players in the first stage.
What is the equivalence to this in games with multiple stages, or dynamic games, which
cannot be divided into several "stages"? The answer requires a partitioning of information
sets into equivalence classes so that two information sets belong to the same class if and only
if the minimal subgame containing them is the same. Then an information set is irrelevant
if any deviation leading to the information set requires, in at least one of the equivalence
classes, the deviation of at least two players.

3Non-existence is due to the discontinuity of the payoff functions over the price space. Intuitively the
discontinuity arises because, given a location pair and a price set by its competitior, for prices below a certain
threshold the firm will be able to attract all consumers, while at and above the threshold, each firm attracts
a positive share of consumers.
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Figure 1: Set of subgames in the Hotelling game

Even if existence of equilibrium in subgames is not an issue, a trimmed equilibrium can
be a useful tool for the analysis of a game. An indication of the extent to which such a
technique can potentially simplify an analysis are the papers by Osborne and Pitchik (1987)
and Kreps and Scheinkman (1983). Both papers deal with similar setups as in the Hotelling
game described above. Pure strategy SPE do not exist, but mixed strategy SPE are known
to exist due to a result in Dasgupta and Maskin (1982). At the cost of an intricate analysis,
Kreps and Scheinkman derive the mixed strategy equilibrium, while Osborne and Pitchik
derive approximations of an equilibrium, unable to provide a complete characterization.4 The
example provided in Section 4 takes up the game in Kreps and Scheinkman and demonstrates
how the outcome they derive can be obtained in a greatly simplified way. In this connection,
one drawback of a trimmed equilibrium should be pointed out. While a trimmed equilibrium,
potentially, needs a significantly reduced amount of computations, the actual practicability
of the concept relies on having a method of solving for a trimmed equilibrium that also uses
fewer computations. I have not been able to find such a method. Until now, an application
essentially relies on having an initial guess about the equilibrium outcome.
While there is no directly related prior literature, a somewhat related strand of prior re-

search is concerned with the robustness of an equilibrium towards the game’s specifications
(such as number of players, or order of moves). Because often strategic situations are not
completely specified, it is of interest to know which properties of an equilibrium guaran-
tee its robustness towards the game’s specifications. One part of the literature deals with
robust equilibria in large games, where the number of (identical) players is uncertain (see
for example Kalai 2004, 2005). Games with uncertain features are usually called "partially
specified". Instead of determining equilibrium properties that guarantee robustness of equi-
librium towards the specifics of a game, the present paper determines entire parts of a game
that are irrelevant for the equilibrium path.
In another paper, Kalai and Neme (1992) introduce the concept of a p-subgame perfect

equilibrium, which requires subgame perfection after histories with no more than p deviations
from the equilibrium path. At first sight this concept appears to be similar to the approach
in the present paper. However, their motivation is to rationalize behavior other than the
one resulting from SPE play. They do so, arguing that after a certain number of deviations
it is rational for players not to expect ’rational’ behavior by other players. Accordingly, a

4The complete characeterization fails due to the computational complexity of the task. The authors
proceed by identifying eight subgame subsets across which the kinds of mixed strategy equilibria vary. They
compute equilibria for a grid of subgames, and use approximations for others.



p-subgame perfect equilibrium can result into outcomes not sustainable by a SPE.5 This
difference to a trimmed SPE also shows that the maximally irrelevant set of a game cannot
be characterized by numbers of deviations.
Recently, and independently from my work, Briata, Garcia-Jurado, Gonzalez-Diaz, and

Patrone have addressed similar questions. They identify what they call the "essential" col-
lection of information sets - information sets that are sufficient for a particular equilibrium.
However, our concepts do not coincide. In particular the complement of an "essential collec-
tion" is not equivalent to a maximally irrelevant set.6 Also, while they focus on providing
a general and unified framework for what they call essentializing equilibria, I focus on two
widely used equilibrium concepts, for which irrelevant sets can be particularly large. I also
provide results for infinite games and demonstrate the potential usefullness of the concept
with an example.
To summarize, the main contributions of the paper are: (a) to demonstrate that SPE and

WPBE can be unnecessarily restrictive; (b) to characterize maximally irrelevant sets; and (c)
to provide modified definitions, shown to be just sufficiently restrictive to capture the original
notion of sequential rationality, and (d) to demonstrate how these modified definitions can
be useful in determining sequentially rational equilibrium outcomes. In addition, the last
section of the paper briefly introduces the concept of a dominated subform, which can be
seen as an alternative, though weaker, approach to eliminate unreasonable NE.
The rest of the paper is organized as follows. Section 2 introduces basic notation and

informally discusses the reasoning behind the concepts to follow. Section 3 deals with the
maximally irrelevant set for SPE and the trimmed SPE. Section 4 provides a detailed ex-
ample. Section 5 parallels Section 3, but applies to WPBE. An additional tool to analyze
games with uncertainties in subparts is introduced in Section 6. Section 7 concludes.

2 Preliminaries

This section introduces notation and provides a more informal discussion about the reasoning
behind the results to follow. Because the information structure of a game will be important
for all definitions and results the analysis is performed for extensive form games. Two
simplifications should be pointed out: while games can be infinite, whenever a player has to
move his choices are finite, and players have complete information. Intuitively, the concept
should generally apply and the results established in the following sections should remain
valid when these two assumptions are relaxed.7 I also assume perfect recall. All terminology
not introduced explicitly (for example, a path, a rooted tree etc.) is used in the standard
game theoretic or graph theoretic sense.8

2.1 Notation

A reference for all notation used in this paper can also be found in Table 1 in the appendix.
5As long as p is not larger than the largest possible number of deviations in the game.
6Basically, this is because they require essential collections to be closed under ≤ (roughly meaning that if

an information set is in the essential collection, so are all its predecessors). Another difference originates in
their definition of essential collections for belief-based concepts. An information set belongs to the essential
collection if it is relevant under some belief, while here irrelevant sets depend on a specific belief.

7Briata, Garcia-Jurado, Gonzalez-Diaz, and Patrone (2007) apply their concept to incomplete information
games.

8The description of an extensive form game follows Selten (1975) and van Damme (1981).



Extensive form games
The following description of an extensive form game is only introduced to have a clearly
defined notation for information sets, choices, and strategies. Other details of the de-
scription will not be used later on in the paper. An extensive form game is a quintuple
Γ = (T,P,W, C, u), where

1. T = (X,E) is a rooted tree with X being the set of vertices and E being a set of
(unordered) pairs fromX. The origin (root) of the tree is denoted by x0. Furthermore,
for every vertex x, its immediate predecessors and the set of its immediate successors
is denoted by succ(x) and pre(x), respectively.9 The set Z contains terminal nodes of
T , i.e. nodes x with succ(x) = ∅.

2. P = (P1, ..., Pn) is a partition of the set X rZ into n sets, one for each player i ∈ I =
{1, ..., n}.

3. W = (W1, ...,Wn) is an information partition, where Wi is a partition of Pi into
information sets of player i, so that

(a) every path from the origin intersects the information set at most once, and

(b) nodes in the same information sets have the same number of immediate successors.

Let W = ∪Wi.

4. C = {Cw}w∈W is a collection of partitions. Partition Cw divides nodes in ∪x∈wsucc(x)
into the choices available at information set w (which will be assumed to be finite), so
that every choice contains exactly one element of succ (x) for every x ∈ w. A generic
choice at w (a member of the partition Cw) is denoted by cw and the set of choices at
w is denoted by Cw.

5. u = (u1, ..., un) are n real-valued payoff functions, one for each player i, with domain
H̄, the set of terminal histories. The payoff functions are assumed to be von Neumann-
Morgenstern expected utility functions.

Behavior strategies
Let fw denote a probability distribution over the members of the partition Cw, let Fw be the
set of all probability distributions over choices in w, and let fw (cw) denote the probability
that probability distribution fw assigns to choice cw. A (behavior) strategy for player i is a
mapping si : {w}w∈Wi

−→ ∪w∈WiFw such that si (w) ∈ Fw. A profile of strategies is denoted
by s. As system of beliefs is denoted by μ. Also, sg is the strategy profile for subgame g
induced by strategy profile s. It will also be useful to let s(x, x0) denote the probability that
s attaches to a choice leading from x to x0. Given a set of information sets Ŵ ⊂ W , and
two strategy profiles s0 and s00,

³
s0
Ŵ
, s00

W\Ŵ

´
is the profile obtained by playing s0 on Ŵ , and

s00 on W\Ŵ .

Notation concerning the structure of a game tree
ι(w) is the player who "owns" information set w, i.e., the player i such that w ⊂ Pi.
h is a history in Γ, i.e., h is a path of T starting at xo.

9The order is naturally given by the distance to the origin.



H is the set of all histories in T .
H̄ ⊂ H is the set of terminal histories in T . A history h is terminal if there is no other
history h0 ∈ H such that h ⊂ h0.
H (w) is the set of histories ending at some x ∈ w.
g (Γ) is a subgame of Γ.
G (Γ) is the set of subgames of Γ (Γ will be omitted most of the times).
gu is an "uncertain" subgame.
h|x is the subhistory of h starting at x ∈ h.
≤ is an order, defined for both X andW , where (1) x ≤ x0 if and only if x0 is accessible from
x meaning that there exists a history h such that x, x0 ∈ h and x0 ∈ h|x, and (2) w ≤ w0 if
and only if there exists a pair (x, x0) with x ∈ w, and x0 ∈ w0 such that x ≤ x0.
w(x) is the information set to which x belongs.
A(s) is the set of information sets that have positive probability to occur under s.
B(s) is the set of information sets that have zero probability to occur under s (i.e., A(s) and
B(s) partition W for all s).
o(s) is an outcome path corresponding to a strategy profile s (a probability distribution over
W induced by s)

2.2 Discussion

For any game Γ, given an equilibrium concept and a strategy profile s, the goal is to charac-
terize a set of contingencies that are irrelevant with respect to a specific notion of sequential
rationality. Irrelevance of an information set w shall mean that for any set of terminal nodes
Z 0 with w ≤ z for all z ∈ Z 0, whatever payoffs follow at Z 0 it does not change whether or
not s is sequentially rational at a relevant set. Thus the choice at the irrelevant set must be
irrelevant. The notion of sequential rationality will depend on the equilibrium concept con-
sidered and be made precise later. Obviously, contingencies on the equilibrium path cannot
be irrelevant.
The two equilibrium concepts I consider both incorporate some kind of sequential ra-

tionality. Furthermore, they require their particular notion of sequential rationality to be
satisfied throughout the game. However, if one succeeds in finding a non-empty set of ir-
relevant contingencies, one has also shown that those concepts are overly restrictive. At
some contingencies, requiring rational moves apparently "has no bite". In contrast, Nash
equilibrium is an example for a concept that is not overly restrictive. Because it imposes
rationality only on the equilibrium path, it cannot be more restrictive than necessary, even
though its irrelevant set can be nonempty. For that reason, the focus of this paper is not on
Nash equilibrium. Nevertheless, NE will be used for a first illustration of the concept.
Given a strategy profile, which contingencies need to be examined to determine whether

the strategy profile is a Nash equilibrium? A strategy profile is a Nash equilibrium if no
player can gain from a, unilateral, deviation. Hence, to calculate whether no such deviation
exists one needs to know all choices at information sets that are reached by a unilateral
deviation. Clearly, there is a possibility that not all information sets need to be considered,
namely all information sets that only have a positive probability to be reached if at least two
players deviate from their strategies. As an example, verify that in Figure 2 player 3’s second
choice from the left is irrelevant for the question whether the indicated strategy profile is a
NE. Moreover, whatever payoff follows these information sets, s remains a NE.10

10In a sense, a NE is not restrictive enough, because it does not impose any rationality on information
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Figure 2: Irrelevant contingencies for NE

When conducting a similar thought experiment for equilibrium concepts which refine
NE by incorporating some kind of sequential rationality, the reasoning is different. Instead
of asking whether any player can gain from a deviation, one asks whether any player can
gain from a deviation expecting sequentially rational play at future contingencies. With this
kind of reasoning which contingencies might be irrelevant? Fix a strategy profile and answer
the following question for each player using forward induction: Can player i gain from a
deviation expecting sequentially rational play at all information sets reached by the devia-
tion? Different from the NE-case, to answer this question, it is NOT sufficient to know the
choices at all information sets reached by the deviation. One needs to know the sequentially
rational choices at these information sets. But to know these choices information about the
sequentially rational choices at further information sets is needed, which in turn requires
more information and so forth. This higher order of reasoning is illustrated in Figure 3. The
only sequentially irrational play occurs at player 3’s middle information set, which cannot
be reached by a unilateral deviation. However, player 2’s play at his right information set is
only sustained by 3 choosing this irrational move. If player 3 chose a0 instead of b0, player 2’s
sequentially rational choice would be B, in which case player 1’s sequentially rational move
was b. Hence, the outcome path indicated in Figure 3 is sustained by sequentially irrational
play.
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Figure 3: Not being reachable by a unilateral deviation is not sufficient to be irrelevant for
a SPE

sets that matter for the decisions at information sets on the equilibrium path. However, I do not pursue this
line of thinking here.



So, "where" might information sets be that are never considered under such a reasoning?
Instead of getting to the answer to this question iteratively, let us approach the problem by
requiring the set to satisfy a consistency property. Consider a game Γ and a strategy profile
s for Γ. Fix an equilibrium concept and a corresponding notion of sequential rationality, call
this notion ρ. LetWirr(s, ρ) denote a subset of B(s) such that play at w ∈Wirr(s, ρ) does not
affect the play outside of Wirr(s, ρ). Hence, whenever w ∈Wirr(s, ρ) and w0 ∈W\Wirr(s, ρ)
the choice at w does not affect the sequential rationality ρ at w0. CallWirr(s, ρ) an irrelevant
set. Let Wirr(s, ρ) be the set of all irrelevant sets. Wirr(s, ρ) is a partially ordered set
(under inclusion). Notice that it follows directly from the definition thatWirr(s, ρ) is closed
under union. Hence, every chain in Wirr(s, ρ) has an upper bound, namely the union of all
members of the chain. It follows from Zorn’s Lemma that there exists a unique (possibly
empty) maximally irrelevant set, which will be denoted by Ŵirr(s, ρ). I will consider SPE
and WPBE separately and characterize Ŵirr(s, ρ) for both concepts. Then, irrelevant sets
are examined more closely. In both cases the main result is whenever a strategy profile
satisfies sequential rationality at all relevant information sets (whenever the profile is a
trimmed equilibrium), one can find an equilibrium of the original concept that has the same
equilibrium path, provided that equilibrium exists for the game.

3 Trimmed SPE

I will show that SPE-irrelevant contingencies are those that can only be reached from the
equilibrium path if at least two players deviate in the "first stage" of some subgame (the
emphasis on "only" is made because a non-singleton information set can be reached by several
different deviations). The proof of this result proceeds by showing that the set containing all
such contingencies is the maximally irrelevant set for a SPE. Returning to the reasoning in
the discussion, these are the contingencies that do not play any role when a player considers
a deviation while expecting NE in future subgames.
First, a precise definition for the "first stage" of a subgame is needed. For that purpose,

partition the set of information sets W so that each member of the partition corresponds to
one subgame of the game. Let the partitioning function be π : W → G where π(w) = g is
the minimal subgame containing w.11 The resulting partition of information sets is denoted
Π = {Wg}g∈G where w ∈Wg if and only if π(w) = g. Also, let sWg be the strategy s induces
on the information sets in Wg.

Definition 1 (information sets on and off the (unilateral) deviation path).
Fix an extensive form game Γ and a strategy profile s. The set of information sets on the
unilateral deviation path of s is denoted by B1(s). Information set w ∈ B1(s) if and only if
1. w ∈ B(s), and
2. there exists s0 such that
(a) w ∈ A(s0), and
(b) for each Wg, for at most one player i, s

Wg

i 6= s
0Wg

i (i.e. sWg

j = s
0Wg

j for all j 6= i).
The complement of B1(s) in B(s), B2(s) ≡ B(s)\B1(s) is the set of information sets off the
unilateral deviation path of s.

11That is, no subgame strictly contained in π(w) contains w.



Furthermore, define WSPE(s) = A(s) ∪ B1(s) (so, W\WSPE(s) = B2(s)). This set will
be shown to contain all information sets that are possibly relevant for s being consistent
with subgame-perfect rationality. The sets A(s) and B(s) partition W into information sets
on the outcome path of s, and information sets off the outcome path of s. The criterion of
a unilateral deviation path leads to a further partition of B (s) into two sets, information
sets on the unilateral deviation path, B1(s), and information sets off the unilateral deviation
path, B2(s).
Let ρSPE stand for "sequential rationality, as required by SPE" and say that s satisfies

ρSPE on Ŵ ⊆ W if it induces NE in all subgames with origin in Ŵ . To economize on
notation, I will omit the subscript SPE, and in this section ρ shall always mean ρSPE. I
want to show that play at information sets in B2(s) does not affect whether s satisfies ρ
on WSPE(s), and that B2(s) is the maximal set with this property. Notice the dependency
of this statement on the strategy profile s. While a particular equilibrium might not be
sensitive to specifics in certain parts of a game, the set of equilibria consistent with a certain
concept, of course, might be sensitive to these specifics. If the Nash equilibrium of subgame
(l1, l2) = (0, 1) in the Hotelling game yielded a higher payoff than possible in any other
subgame equilibrium, clearly there would exist a subgame perfect Nash equilibrium ending
at this subgame.

Theorem 2 For any s, Ŵirr(s, ρ) = B2(s) (the set of information sets off the unilateral
deviation path of s is the maximally irrelevant set for (s, ρ)).

Proof.
1. Ŵirr (s, ρ) ⊆ B2(s).
I will prove the contrapositive of the statement. Suppose that w0 ∈ WSPE(s) = W\B2(s).
Let xog0 be the origin of g0, the minimal subgame containing w0. The contrapositive is proven
by showing that (1) xog0 ∈WSPE(s) and (2) the play at w0 matters for ρ at xog0. Suppose that
xog0 is not in WSPE(s). Then xog0 can only be reached if at least two players deviate from
their strategies in the same first stage of some subgame. Because g0 is the minimal subgame
containing w0, every history in H(w0) has to "pass through" xog0. Hence, to reach w0 from s,
first xog0 has to be reached, implying that w0 can also only be reached if at least two players
deviate in the same first stage of some subgame, contradicting w0 ∈WSPE(s). The fact that
w0 ∈ WSPE(s) also implies that can be reached from xog0 by at most a unilateral deviation
from sg. Thus, w0 is relevant for sg

0
being a NE or not.

2. B2(s) ⊆ Ŵirr (s, ρ)
Let w0 ∈ B2(s). I will show that w0 is irrelevant for ρ in any subgame with origin inWSPE (s) .
Let g be such a subgame.
Case 1) w0 /∈ g. In this case the irrelevance of w0 is obvious.
Case 2) w0 ∈ g.
First prove the following lemma.

Lemma. Let s be a strategy profile for game Γ. For any pair (w, g) such that w ∈ B2(s),
g contains w, and xog ∈ WSPE(s), w ∈ Bg

2(s
g), i.e. w is off the (unilateral) deviation path

that sg induces on g.
Proof
Because xog ∈WSPE(s) it can be reached through a sequence of unilateral deviations from s.
Because w ∈ B2(s), it can only be reached from s if there are at least two players deviating



at information sets in the same equivalence class. Because xog is a singleton and w belongs
to g, (a) only one history leads to xog and (b) any history leading to w must contain xog.
Hence, w ∈ Bg

2(s
g) for otherwise, the concatenation of the unilateral deviation path leading

to xog and the unilateral deviation path leading from xog to w, is a unilateral deviation path
as well, contradicting that w ∈ B2(s).¥
Hence, we have w0 ∈ Bg

2(s
g), implying that w0 /∈ WNE(s

g). Whether or not sg is a NE of g
does not depend on the play at w0.

With this result we are ready to define a trimmed SPE.

Definition 3 (trimmed SPE). Strategy profile s∗ is a trimmed SPE in extensive form game
Γ, if it induces a NE in all subgames g with origin {x0g} ∈WSPE(s

∗).

The following result relates trimmed SPE to SPE.

Theorem 4 (1) Every SPE is a trimmed SPE, but the converse does not hold. (2) In a
game of perfect information, B2(s) = ∅ for all s.

Proof.
(1) That a SPE is a trimmed SPE trivially from the definitions.
Figure 4 shows an example of a trimmed SPE that is not a SPE.
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Figure 4: Trimmed equilibrium in a once repeated prisoner’s dilemma

(2) Because every x ∈ X is the origin of some subgame, the partition Π consists of sin-
gletons only, implying that every w can be reached by a sequence of unilateral deviations.

Corollary 5 In a game of perfect information, every trimmed SPE is a SPE.

Because in perfect information games every move is the first move of some subgame, every
information set can be reached from an initial strategy profile through a sequence of unilateral



deviations, at most one per "stage". And because a trimmed SPE requires optimal decisions
at each such information set, subgame perfect play results.
The following theorem proves the claim made in the introduction. A trimmed SPE, while

by definition less restrictive than a SPE, is just as "strong" as a SPE in the sense that it does
not allow for any equilibrium outcome paths which cannot be supported by a SPE - provided
NE exists for all subgames. Together with Theorem 2, this is the main result concerning
SPE.

Theorem 6 Assume that for the game Γ the set of subgame perfect equilibria Sspe 6= ∅.
Let St.spe be the set of trimmed subgame perfect Nash equilibria. Then the set of outcome
paths induced by SPE denoted O(Sspe), and the set of outcome paths induced by trimmed
SPE, denoted O(St.spe), are the same.

Proof.
1. O(Sspe) ⊆ O(St.spe)
This follows from the fact that Sspe ⊆ St.spe.
2. O(St.spe) ⊆ O(Sspe)
Pick any o ∈ O(St.spe) and s∗ ∈ St.spe such that s∗ induces o. If s∗ happens to specify NE
play in all subgames g with origin wg ∈ B2(s

∗), then it is a SPE and s∗ ∈ Sspe, which shows
the result. If not, choose any equilibrium in Sspe, say sspe, and consider the strategy profile

s∗spe =
³
s∗WSPE(s∗)

, sspeB2(s∗)

´
. Notice that s∗spe and s∗ induce the same outcome paths because

they only differ at information sets with zero probability to occur under s∗. Next, I will show
that s∗spe is a subgame perfect equilibrium. First, consider subgame g with xog ∈WSPE(s

∗).
By Lemma 1, all changes made in subgame g when moving from s∗ to s∗spe were made at
information sets w ∈ Bg

2(s
g∗). Hence these changes do not affect play on the (unilateral)

deviation path of sg∗ in g, and so sgspe∗ is a NE of g. Second, consider any subgame g with
xog ∈ B2(s

∗). Then, all information sets in g belong to B2 (s∗) because they all follow xog.
Hence s∗speg = sspeg and so s∗spe induces a NE in this subgame. Thus s∗spne induces NE in all
subgames and therefore s∗spe ∈ Sspe, showing that the outcome path induced by s∗ is also
an outcome path of some subgame perfect equilibrium.

Corollary 7 For any trimmed SPE s0 and s =
³
s
0
WSPE(s0)

, s00B2(s0)

´
, if s00B2(s0) induces Nash

equilibrium in all subgames g with origin in B2(s
0), then s is a SPE.

4 An Example

The following example demonstrates the usefulness of a trimmed SPE. Suppose two firms, i
and j, produce the same homogenous good and compete against each other in a Bertrand-
Edgeworth world: First they simultaneously build capacity, xi and xj, at a cost of K dollars
per unit. Second, they simultaneously announce prices, pi and pj, and demand is realized.
Market demand is given by D = 20 − P . Due to the limited capacity, it might be that a
firm cannot serve everyone who demands to buy at the price it charges. Hence, a rationing
rule is needed. With a surplus maximizing rationing rule (Levitan and Shubik (1972) and
Shubik (1955)) the lower price firm serves the high demand consumers.12 That is, if pi < pj,

12Suppose there is a mass of consumers of measure one, who all demand one unit of the good and whose
willingness to pay is uniformly distributed on the interval [0, 20].



demand for firm i is 20− pi. For simplicity, assume variable production costs are zero. Firm
i then produces Min{20− pi, xi}. If the constraint binds for firm i, firm j might serve some
consumers as well, but only up to its capacity, i.e. it producesMin{Max{20−pj−xi, 0}, xj}.
If pi = pj = p, firm i’s demand is given byMin{xi, D(p)2 +Max{0, D(p)

2
−xj}}, and similarly for

firm j, which means that if p is such that D(p) = xi+xj, firms simply produce respectively,
xi and xj.
Suppose we allow only for pure strategies, and we are interested in the SPE of this

game. Each capacity pair chosen in the first stage induces a pricing subgame in the second
stage. As Kreps and Scheinkman (1983) show, pure strategy equilibria exist only for a
subset of these subgames. More specifically, letting r(q) be the best reply correspondence of
the Cournot game with zero unit costs, pure strategy price equilibria exist only for the set
M = {x ∈ R2+ : xi ≤ r(xj) and xj ≤ r(xi), or xi = xj = 20}.13 Hence, any attempt to specify
a pure strategy SPE must fail. Allowing for mixed strategies, Kreps and Scheinkman derive
an equilibrium, which leads to a complicated analysis due to the continuous strategy set. In
the SPE they define, firms choose capacities equal to those of the Cournot equilibrium of a
game when firms have unit costs of K, i.e. xCEi = xCEj = 20−K

3
. Except if xi = xj = 20, all

pricing equilibria in M are such that both firms charge D−1(xi + xj). If xi = xj = 20, both
firms charge zero.
Now, suppose that, in addition, the cost of capacity is discontinuous and capacity higher

than some x̄ is prohibitively expensive. Let x̄ satisfy 20−K
3

< x̄ ≤ 20
3
+ K

6
. Still, there remains

a subset of subgames for which pure strategy equilibria do not exist (see Figure 5). However,
given that firm j builds a capacity of 20−K

3
, all feasible capacity levels for firm i are in the

set M . Hence, for all subgames reachable for firm i, conditional on firm j producing 20−K
3
,

the expected pricing equilibrium will have both firms charging P (xi + xj), and serving half
of 20 − P (xi + xj). It is easy to verify that then a deviation for firm i is not worthwhile.
Simply solve

max
xi≤x̄

xi(20−
20

3
+

K

3
− xi −K)

which yields x∗i =
20−K
3
. By symmetry the same holds true for firm j.

Without having specified Nash equilibria for all subgames, we have found a reasonable
prediction in form of a trimmed SPE, which rules out noncredible threats. However, while
using a trimmed SPE to verify whether the above strategy is consistent with a SPE allows
for a substantially simpler analysis than the one in Kreps and Scheinkman, their analysis
also demonstrates the uniqueness of the derived equilibrium.

13For simplicity, assume that firms never build capacity beyond 20.
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5 Trimmed WPBE

The task remains in principle the same as before. Given a strategy profile s and now also
a system of beliefs μ, we are looking for the maximal subset of B(s) such that the play
inside this set does not affect the sequential rationality outside of the set. Here, sequential
rationality means sequential rationality as required by a WPBE, which is denoted by ρWPBE.
The pair (s, μ) is said to satisfy ρWPBE at w

0 if the play s specifies at w0 is optimal given μ
and future play induced by s. In addition, μ should satisfy Bayes’ rule whenever possible.
In this section, ρ stands for ρWPBE. Analogously to Section 3, Ŵirr(s, μ, ρ) is defined to be
the maximal subset of B(s) such that if w ∈ W\Ŵirr(s, μ, ρ) and w0 ∈ Ŵirr(s, μ, ρ), then,
given μ, ρ at w does not depend on the play at w0.
How can the set Ŵirr(s, μ, ρ) be characterized? I suggest the notion of information sets

"off the believed (unilateral) deviation path". The idea is that for any w /∈ Ŵirr(s, μ, ρ) and
any history leading from w to Ŵirr(s, μ, ρ), the player whose move it is does not believe that
Ŵirr(s, μ, ρ) can be reached - either due to his belief about past play or because s attaches
zero probability to another player’s future move in the history. In other words, players do
not believe that Wirr(s, μ, ρ) can be reached by a unilateral deviation, but this belief does
not need to be correct.

Definition 8 (information sets on and off the believed (unilateral) deviation path). Given
extensive form game Γ, strategy profile s, and system of beliefs μ, the set of information sets
off the believed (unilateral) deviation path is denoted B2(s, μ). Information set w ∈ B2(s, μ)
if and only if
(i) w ∈ B(s), and
(ii) h = (xo, x1, ..., xK) ∈ H(w) implies, for each xk ∈ h
(a) w(xk) ∈ B2(s, μ) or
(b) μ(xk) = 0 or
(c) ∃xk0 ∈ h with k < k0 < K, w(xk0) /∈ B2(s, μ), and ι(xk0) 6= ι(xk) such that s(xk0 , xk0+1) =
0.
Also, define B1(s, μ) = B(s)\B2(s, μ) and WWPBE(s, μ) = A(s) ∪B1(s, μ).



The first result in this section parallels Theorem 2. It states that the set of information sets
off the believed (unilateral) deviation path is indeed the maximally irrelevant set.

Theorem 9 Fix (s, μ) and let ρ be sequential rationality as required by WPBE. Then,
Ŵirr(s, μ, ρ) = B2(s, μ) (the set of information sets off the believed unilateral deviation path
of (s, μ) is the maximally irrelevant set for (s, μ, ρ)).

Proof.
1. Ŵirr (s, μ, ρ) ⊆ B2(s, μ).
To the contrary, suppose that M ≡ Ŵirr(s, μ, ρ) ∩ WWPBE(s, μ) 6= ∅. Because M ⊆
Ŵirr(s, μ, ρ) ⊆ B2(s), we can pick ŵ ∈ M such that for all w ≤ ŵ, we have that w(x) /∈ M
(because, surely, {xo} /∈ M). Because M ⊆ WWPBE(s, μ) = W\B2(s, μ), the information
set ŵ /∈ B2(s, μ). However ŵ ∈ B2(s) and so there exists ĥ ∈ H(ŵ) for which none of the
conditions in part (ii) of the definition of B2(s, μ) holds. Write ĥ = (x0, x1, ..., xK) with
x0 = xo and xK ∈ ŵ. By failure of (a), (b), and (c) there exists a node xk0 ∈ h such
that w(xk0) /∈ B2(s, μ), μ(xk0) > 0 and s(xk00 , xk00+1) > 0 for all (xk00 , xk00+1) ⊆ h for which
k00 > k0 and ι(k00) 6= ι(k0). Therefore, the play at ŵ matters at xk0 (given the other players’
strategies, ι(xk0) believes that he can choose a strategy so that ŵ is reached). However,
w(xk0) /∈ B2(s, μ) and w(xk0) /∈ M implies that w(xk0) /∈ Ŵirr(s, μ, ρ), contradicting that
ŵ ∈ Ŵirr(s, μ, ρ).

2. B2(s, μ) ⊆ Ŵirr(s, μ, ρ)
I will show this by showing that B2(s, μ) is an irrelevant set. Pick w00 ∈ B2(s, μ), and
w0 /∈ B2(s, μ).
Case 1) not(w0 ≤ w00).
At no node in w0 there is a choice that leads to w00. Then, given μ, the choice at w00 does
not matter for the sequential rationality at w0.
Case 2) w0 ≤ w00. Let L ⊆ H(w00) such that h ∈ L implies h ∩ w0 6= ∅, i.e. L contains the
histories that can access w00 from w0. Pick any xk0 ∈ w0 ∩ L. Because w0 /∈ B2(s, μ), either
(b) or (c) in part (ii) of the above definition must hold. Therefore, either ι(w0) does not
believe to be at xk0 or believes that w00 cannot be reached from xk0 because of the future play
of other players. Therefore the play at w00 does not matter for the sequential rationality of
play at w0, showing that B2(s, μ) is an irrelevant set.

Having shown that B2(s, μ) is the maximally irrelevant set, a trimmed WPBE can be
defined as follows.

Definition 10 The pair {s, μ} is a trimmed WPBE if s satisfies ρ at all information sets
w ∈WWPBE(s, μ).

The following result compares trimmed WPBE to WPBE, and parallels Theorem 4.

Theorem 11 (1) Every WPBE is a trimmed WPBE, but the converse does not hold. (2)
In a game of perfect information, B2(s, μ) = ∅ for all (s, μ).



Proof.
(1) That a WPBE is a trimmed WPBE follows trivially from the definitions.
Figure 6 shows an example of a trimmed WPBE that is not a WPBE.
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Figure 6: A trimmed WPBE that is not a WPBE

(2) Fix some (s, μ). Suppose B2(s, μ) 6= ∅. Pick w0 ∈ B2(s, μ) with w ≤ w0 implying
that w /∈ B2(s, μ). Let x ∈ pre(w0), so w(x) /∈ B2(s, μ), so (a) does not hold. By perfect
information, μ(x) = 1, so (b) does not hold. However, because x is an immediate predecessor
of w0 (c) cannot hold either, a contradiction.

Corollary 12 In a game of perfect information, any trimmed WPBE is a WPBE.

Paralleling Theorem 6, the next result establishs that, if a WPBE exists, every trimmed
WPBE can be matched with a WPBE that has the same outcome path.

Theorem 13 Assume that for Γ the set of weak perfect Bayesian equilibria Swpbe 6= ∅ (the
features of the game are such that a WPBE exists). Let St.wpbe be the set of trimmed weak
perfect Bayesian equilibria. Then the set of outcome paths induced by s ∈ Swpbe, denoted
O(Swpbe), and the set of outcome paths induced by s ∈ St.wpbe, denoted O(St.wpbe), are the
same.

Proof.
1. O(Swpbe) ⊆ O(St.wpbe).
This follows from the fact that Swpbe ⊆ St.wpbe as shown in Theorem 11.

2. O(St.wpbe) ⊆ O(Swpbe)
Consider any trimmed WPBE, (st.wpbe, μt.wpbe). Construct a new strategy profile s

0 as fol-
lows.
(a) For each w ∈WWPBE

¡
st.wpbe, μt.wpbe

¢
, let s0(w) = st.wpbe(w) and let μ0(w) = μt.wpbe (w).

(b) For B2
¡
st.wpbe, μt.wpbe

¢
construct a reduced game from Γ and

¡
st.wpbe, μt.wpbe

¢
as fol-

lows. Let XWPBE and XB2 denote the sets of nodes such that w(x) is an element of
WWPBE

¡
st.wpbe, μt.wpbe

¢
and B2

¡
st.wpbe, μt.wpbe

¢
, respectively.

Step 1
Remove all x ∈ XWPBE such that x0 ≤ x implies x0 ∈ XWPBE.



Step 2
For all x ∈ XWPBE such that x ≤ x0 implies x0 ∈ XWPBE, if pre(x) ∈ XB2 replace x by the
expected payoff induced by st.wpbe, and if pre(x) ∈ XWPBE delete x.

Step 3
For the remaining x ∈ XWPBE, if pre(x) ∈ XB2 , replace x by a move by nature as follows.
All paths, which lead to final histories passing only through XWPBE, are replaced by one
final node with the expected payoff as induced by st.wpbe. Nature’s probability to choose this
final node is the probability that any of these terminal histories is reached conditional on
x being reached. For each x0 ≥ x such that x0 ∈ XB2 and for which x0 ≥ x00 ≥ x implies
x00 ∈ XWPBE, replace the path leading to x0 by a move by nature leading directly to x0 with
the probability as induced by st.wpbe (which is well defined because all nodes on this path
belong to XWPBE).
It is not hard to verify that, after performing these three steps, all nodes in XWPBE were
either deleted, replaced by a final node, or replaced by a move by nature. Note that the
resulting graph does not need to be connected and that there might be several initial nodes.
Add an initial move by nature that attaches some positive probability to each initial node
of the components obtained. Call the new game Γ∗. It is easy to verify that - apart from
nature’s moves -, the set of information sets for Γ∗ is B2

¡
st.wpbe, μt.wpbe

¢
. Now, find a weak

perfect equilibrium for Γ∗, denoted
¡
s∗wpbe, μ

∗
wpbe

¢
and complete the specification of s0 by let-

ting s0(w) = s∗wpbe(w) and μ0(w) = μ∗wpbe(w) for all w ∈ B2
¡
st.wpbe, μt.wpbe

¢
.

It remains to verify that (s0, μ0) is a weak perfect Bayesian equilibrium. For any w ∈
WWPBE

¡
st.wpbe, μt.wpbe

¢
we know that st.wpbe(w) was sequentially rational given st.wpbe and

μt.wpbe(w). Because we only changed strategies and beliefs at information sets inB2
¡
st.wpbe, μt.wpbe

¢
,

those changes could not affect the sequential rationality at w.
For any w ∈ B2

¡
st.wpbe, μt.wpbe

¢
, sequential rationality follows from the fact that

¡
s∗wpbe, μ

∗
wpbe

¢
is a weak perfect Bayesian equilibrium and that for each x ∈ w and each choice at x, the
expected payoff from that choice given s∗wpbe is the same as the expected payoff given s

0. No-
tice that, because B2

¡
st.wpbe, μt.wpbe

¢
⊆ B (st.wpbe), Bayes’ rule does not need to be satisfied

on B2
¡
st.wpbe, μt.wpbe

¢
.

Corollary 14 For any trimmed WPBE (s0, μ0), s =
³
s
0
WWPBE(s0,μ0)

, s00B2(s0,μ0)

´
, and μ =³

μ0WWPBE(s0,μ0)
, μ00B2(s0,μ0)

´
, if s00B2(s0,μ0) is sequentially rational at all w ∈ B2(s

0, μ0), given s

and μ00B2(s0,μ0), then (s, μ) is a WPBE.

6 Dominated subforms

Even though the concept of a trimmed equilibrium can help in many cases of uncertainty in
some game parts, there might also be games in which it fails to exist. Roughly, this will be
the case if the structure of the game is such that players have incentives to choose a path
"close" to the problematic subgames, where close means it is reached without a deviation, or
can be reached by sequentially unilateral deviations. In this section, I introduce the concept
of a dominated subform (which is, roughly, all parts of a game that follow some information
sets). If one can assert that a subform is dominated, this part of the game can reasonably
be considered as relatively irrelevant for the play of the rest of the game. This can provide
a justification for a Nash equilibrium that is not a trimmed equilibrium. However, there



still remain cases in which neither of the concepts in this paper helps to predict play that is
consistent with sequential rationality.
To see that a trimmed SPE might not exist, consider the example in Figure 7.
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Figure 7: A trimmed SPE might not exist

Assume that a Nash equilibrium cannot be specified for the uncertain subgame. It can be
easily verified that the only candidate for a trimmed SPE would involve the equilibrium path
(a,A). This, however, cannot be part of a Nash equilibrium either because player 1 would
want to deviate to b. All the "forces" in this game pull toward (b, B), which is too close
to the uncertain subgame. Hence, the concept of a trimmed equilibrium does not help in
dealing with this problem. Sometimes, however, one can still make a reasonable prediction.
Suppose one knows that player 2’s payoff y in the uncertain subgame does not exceed 2.
Then, A, in a sense, strictly "dominates" B, and it is not reasonable to expect the uncertain
subgame ever to be reached. Definition 15 makes this idea more precise. Let g̃ denote a
subform of Γ, i.e. g̃ is defined on a set of nodes X̃ satisfying closure under succession and
preservation of information sets, and g̃ =

³
T̃ , P̃ , W̃ , C̃, ũ

´
is derived from Γ by restriction

on X̃ .14 Let X̃o denote the set of initial nodes of g̃. See Figure 8 for an illustration of a
subform. Also, for each g̃, a collection of information sets is called a separating set for g̃,
denoted Wsep(g̃), if W̃ ∩Wsep(g̃) = ∅ and for each h with h ∩ X̃ 6= ∅, there exists x ∈ h
such that w(x) ∈Wsep(g̃).
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1 2 4{ , , }oX x x x=%

Figure 8: A subform

14This definition is taken from Kreps and Wilson (1982), p. 868.



Definition 15 (dominated subform)
The subform g̃ starting at X̃o is ρ−dominated at w0 ∈ W\W̃ with w0 ≤ W̃ in game Γ if
there exists a probability distribution over the choices in w0, fw0, which assigns zero proba-
bility to choices leading to X̃o, and is such that any possible expected payoff for player ι(w0)
resulting from fw0 under the expectation of ρ−play at future information sets, is not worse
and sometimes better than any payoff resulting from any choice possibly leading to g̃, again
under the supposition of any ρ−play, whenever such play exists. Subform g̃ is dominated if
there exists a separating set Wsep(g̃) so that g̃ is dominated at each w ∈Wsep(g̃).

Remark: In contrast to irrelevant sets, domination of a subform does depend on payoffs,
but does not depend on a particular strategy profile.
An example of a ρSPE−dominated game part is given by the game in Figure 9. Subgames,

g1, ..., g5 have been replaced by their possible Nash equilibrium payoffs, and the uncertain
subgames, gu1 and gu2, have been replaced by their possible payoffs. Subform g̃ is dominated
via the separating set containing only player 2’s informations set.
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Figure 9: SPE-dominated game part

Because g̃ is dominated, player 1 should expect player 2 to pick B and therefore choose
B herself. Even though this game does not have a trimmed SPE or WPBE (because it is
not clear what would be a sequentially rational choice at player 1’s information set in g̃), the
uncertainties in subgames gu1 and gu2 still allow for a reasonable prediction of the game’s
outcome. Notice that the definition requires that player 2 prefers A to B and C, no matter
which of the two Nash equilibria in g5 he expects.

7 Conclusion

This paper introduces an equilibrium concept, called trimmed equilibrium, that potentially
provides resolution if some parts of the game are difficult to predict due to non-existence
of equilibrium, uncertainties about the game’s specification in these parts, or computational



difficulties. It is shown that a trimmed equilibrium is sufficiently restrictive to capture
notions of sequential rationality of the original concept. At the same time, however, it is
loose enough to dispose of entire parts of the game. By characterizing maximally irrelevant
sets for both the SPE and WPBE, some insight is gained as to the kinds of sequential
rationalities these concepts place on players. The analysis reveals redundancies in these
concepts’ definitions.
It is pointed out that, while a trimmed equilibrium might be invariant to the specification

in certain parts of a game, the set of trimmed equilibria is not. Because the specification of
the equilibrium remains open in parts of the game, it is not clear how to solve for such an
equilibrium. A process of backward induction does not seem to be suitable if some of the
subgames are uncertain. Of course, it is possible to determine the entire set of Nash equilibria
and then check whether they are trimmed equilibria. This however might not be practical
as the set of Nash equilibria in extensive form games can be very large. Constructing an
algorithm that solves for trimmed equilibria - or which, at least, narrows down the set of
candidates - remains an open task.
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9 Appendix

X set of nodes
succ(x) set of immediate successors of x
pre(x) immediate predecessor of x
W set of information sets
Cw set of choices at w
fw probabiltiy distribution over w
Fw set of probability distributions over w
si(w) ∈ Fw i’s strategy at w
g subgame
g̃ subform
sg strategy for g induced by s
μ system of beliefs
μ(w) belief at w
ι(w) player whose move it is at w
H set of all histories
H(w) ⊂ H set of histories ending at w
h|x ⊂ h truncation of h by all nodes preceding x
x ≤ x0 ∃h such that x0 ∈ h|x
w ≤ w0 ∃x ∈ w and x0 ∈ w0 such that x0 ∈ h|x
w(x) information set to which x belongs
A(s) ⊂W information sets on the outcome path of s
B(s) ⊂W information sets off the outcome path of s
ρ definition of sequential rationality
Wirr(s, ρ) ⊂ B(s) set of information sets not affecting ρ at w ∈W\Wirr(s, ρ)

Ŵirr(s, ρ) maximal Wirr(s, ρ)
WSPE(s) ⊂W information sets relevant for SPE under s
WWPBE(s, μ) ⊂W information sets relevant for WPBE under (s, μ)³
s0
Ŵ
, s00

W\Ŵ

´
strategy profile obtained from playing s0 on Ŵ , and s00 on W\Ŵ


