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Abstract

We explore the potential for correlated equilibrium to capture con-
formity to norms and the coordination of behavior within social groups.
Given a partition of players into social groups we propose three proper-
ties one may expect of a correlated equilibrium: within-group anonymity,
group independence and stereotyped beliefs. Within-group anonymity
requires that players within the same social group have equal opportu-
nities and equal payoffs. Group independence requires that there be no
correlation of behavior between groups. If beliefs are stereotyped then
any two members of a social group are expected to behave identically.

∗This paper is a revision of Cartwright and Wooders (2003a). The main results of that
paper were presented at the the 2002 General Equilibrium Conference held in Athens in
May 2002, at Northwestern University in August 2002, at the Purdue Economic Theory
conference in honor of C.D. Aliprantis and at Hebrew University in 2006. We thank the
participants for their interest and comments.
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We demonstrate that there are subjective correlated equilibrium satis-
fying within-group anonymity, group independence and stereotyping.
These results apply when players within social groups are ‘similar’, and
not necessarily identical. A number of related issues, such as fairness,
are also discussed.

1 Introduction

It is well documented that individuals can coordinate their behavior to mu-
tual advantage even if doing so requires different individuals to perform
different actions and receive inequitable rewards (e.g. Schelling 1960, Hayek
1982, Sugden 1989, Friedman 1996, Van Huyck et al. 1997, Rapoport et. al.
2001, Hargreaves-Heap and Varoufakis 2002). Interaction in social groups
(whether groups be teenager, heavy metal fan, football supporter, econo-
mist, Harvard professor, Christian, etc.) occupies much of our everyday life
and facilitates such coordination (Johnson and Johnson 1987). In particular,
individuals, often subconsciously, conform to established rules and norms of
behavior of the groups to which they belong, resulting in coordination of
behavior (Hayek 1960, 1982, Akerlof and Kranton 2000).1 Memberships in
social groups also determine a person’s social identity, framing how he is ex-
pected to behave by others (Sherif 1966, Tajfel 1978, Brown 2000). Indeed,
different norms may or may not emerge in different social contexts (Roth
et. al.1991, Brandts, Saijo and Schram 2004).

In situations that require individuals to perform different but coordi-
nated actions, coordination can be achieved through the conditioning of
actions on signals or roles (Johnson and Johnson 1977, Selten 1980, Sugden
1989, Hogg et al. 1995). For example, as cars meet on a narrow road, roles
may be “first to arrive,” “second to arrive,” and so forth, and actions can
be conditioned on these roles, with the first to arrive taking the action “do
not give way” and the second to arrive taking the action “give way” etc.
A more complex example is the organization of an academic department.
There are a variety of roles to be filled within the department — some explic-
itly recognized, such as chair, director of graduate studies, and chair of the
recruitment committee, while others are implicitly desired, such as people
willing to attend seminars and contribute to the discussion. A successful de-
partment is one in which these roles are advantageously allocated amongst

1The economic literature on conformity includes Akerlof (1980), Elster (1989) and
Bernheim (1994).
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faculty members.2

The starting point for the present paper is that the coordination of in-
dividual actions can be nicely captured by the concept of correlated equi-
librium (Aumann 1974, 1987). In contrast to Nash equilibrium, correlated
equilibrium allows player actions to be statistically dependent on some ran-
dom event external to the model. This could be, for example, whether it
rains or whether the player is male or female. More generally, imagine a
mediator (or some device) that instructs players to take actions according
to some commonly known probability distribution. In this paper we think
of the mediator as distributing roles. If it is in the interests of each player
to assume the role assigned to him by the mediator’s instructions, then
the probability distribution over roles is a correlated equilibrium (cf., Au-
mann 1987, Forges 1986, Dhillon and Mertens 1996). Note that a correlated
equilibrium will induce a probability distribution over actions. If roles are
distributed independently across players, then a correlated equilibrium is
equivalent to a Nash equilibrium of the original game. Given that roles may
be correlated across individuals, the set of correlated equilibria is generally
larger than the set of Nash equilibria.3

Correlated equilibrium has the potential to capture the coordination
of behavior through the observance of rules and conformity to norms. In
particular, each player can be thought of as having a pure strategy that
maps instructions into actions of the form “if told to play action x then play
action x”; in a correlated equilibrium, all players use the same pure strategy
of conforming to the instructions they are given.

A motivation for the current paper is that additional insights are possi-
ble when one considers how the concept of correlated equilibrium fits into a
system of social identity. In particular, social groups may serve as a medium
through which roles are distributed. This suggests that certain properties
are to be expected of an equilibrium. We will consider three properties:
within-group anonymity and group independence, both properties of the
correlated equilibrium, and stereotyping, a property of beliefs. These prop-

2Hayek (1960, 1982) distinguishes between organization that results from “purposeful
construction” and organization that result from“self-generating” spontaneous order. We
shall treat these as equivalent. Importantly, however, we do model order as arising through
free choice: i.e., whether an individual is told to do something (become chair of graduate
studies) or feels he should do something (attend seminars), he is free to make his own
decisions.

3The set of correlated equilibria has many appealing properties, for example, it is
nonempty, compact, convex and easy to describe (Aumann 1974, 1987). See also Hart
(2005) for a discussion of recent work (in collaboration with Mas-Colell) on how adaptive
learning leads to correlated equilibrium play.
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erties imply that the resulting probability distribution over roles appears
‘simple’ (and therefore one that could potentially emerge) in the sense that
roles are distributed ‘anonymously’ within social groups. Also, the proba-
bility distribution is one that most players would not find objectionable.4

Note that the three properties act as a form of equilibrium selection device
on the set of correlated equilibria.

The property of within-group anonymity concerns fairness or equity
within groups and is motivated by evidence that ‘fairness’ is important
within social groups. Any individual who perceives group opportunities
and outcomes as biased against himself is likely to become disillusioned and
leave the group. Similarly anyone perceived as doing better than everyone
else may be forced out of the group or aspire to a group that is a better fit
(Brown 2000). Either way, the success of social groups depends, in part, on
perceptions of within-group equity (Johnson and Johnson 1987, Tajfel 1978,
Rabin 1993 and Fehr and Schmidt 1999). For example, a second driver to
arrive at an intersection may be happy to conform to the “second driver
gives way norm” because he expects that over time he will be first to arrive
as often as he is second to arrive. Similarly, faculty members may be willing
to do more than their fair share in the expectation that others will take
over in due course or that eventually their efforts will be rewarded. The
within-group anonymity property requires that any two individuals within
the same group have the same probability of being allocated roles. This
results in equity of opportunity, whereby the distribution of roles within a
group can be seen as fair, and equity of expected payoff, whereby outcomes
can be seen as fair. Within-group anonymity also eliminates the necessity
for the correlating device to be able to identify players within groups and
thus greatly simplifies the allocation of roles.

The property of group independence concerns correlation between groups.
That social group membership binds players together, creating a “them-and-
us” attitude, is well known (Tajfel 1978, Hogg and Vaughan 2005). In this
context the correlation of actions between players in different groups is un-
likely or at least questionable.5 The group independence property requires
that the distribution of roles is statistically independent between different
groups. This rules out the correlation of roles across groups. Group in-
dependence also, like within-group anonymity, simplifies the allocation of

4 It could be argued that, because a correlated equilibrium is individually rational, play-
ers would behave according to a correlated equilibrium whether they find it objectionable
or not. But, as we discuss in the conclusion, the device that decides how roles are allocated
is ultimately endogenous and so should be one to which most players ‘have no objections’.

5Ruling out correlation between groups does not rule out coordination between groups.
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roles.
An important point to bear in mind, particularly with regard to within-

group equity, is that perceptions and not necessarily reality matter (Hogg
and Vaughan 2005). If an outcome is perceived as equitable, it may not
matter whether it is in fact equitable. For example, one faculty member may
take on more responsibility than any other but all may perceive this as fair.
The distinction between perception and reality led us to look at subjective
correlated equilibrium. A subjective correlated equilibrium differs from a
correlated equilibrium in that in a subjective equilibrium players may have
differing beliefs about the probability with which roles are distributed. We
say beliefs are stereotyped if a player believes that players in the same social
group have the same probability of being allocated each role. Thus, players
expect within-group anonymity, whether or not it actually happens. That
stereotyping exists is widely acknowledged (Hogg and Vaughan 2005).6

Underlying our approach is the assumption that groups are composed
of similar individuals. An expectation of homogeneity within groups follows
from the social identity and social categorization derived from group mem-
bership. If an individual orients himself in society through group member-
ship, judging himself and being judged by others according to the group(s)
he belongs to, then an individual aims to belong to the group that he best
fits. This leads to like-minded people grouping together (Akerlof and Kran-
ton 2000, Brown 2000, Hogg and Vaughan 2005). In practice players in
the same group can be expected to be similar but not necessarily identical.
To capture this phenomenon we introduce a concept of approximate player
substitutability. This concept provides a metric that can be used to measure
differences between players both in how they are affected by the actions of
others and in how the actions of others affect them.

Given that this paper is motivated by a belief that correlated equilib-
rium can be used to capture conformity to norms and the coordination of
behavior with groups we have two objectives. First, to show that correlated
equilibrium can capture conformity and norms within groups, and second,
to show that doing so provides useful insights. With the first objective in
mind we shall demonstrate the existence of a correlated equilibrium satisfy-
ing within group anonymity and group independence. Specifically, if players
are approximate substitutes, then we obtain an approximate correlated equi-
librium satisfying within group anonymity and group independence. Given
that any two players are approximate substitutes for some level of approxi-

6We do not regard either individual rationality or stereotyping as necessarily desirable
characterisics of members of a society.
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mation our results apply to any (finite) game and any set of social groups.
With the second objective in mind we shall look at four issues, stereotyp-
ing, fairness, optimal group size and semi-anonymity. We demonstrate, for
example, that stereotyping can be consistent with individual rationality.

We proceed as follows: Section 2 introduces the model, Section 3 dis-
cusses properties of social groups and Section 4 provides the main results.
In Section 5 we address the further issues of stereotyping, fairness, optimal
group size and semi-anonymity. Section 6 concludes the paper and indicates
directions for further research. An appendix contains additional proofs.

2 A game with roles

A game Γ is given by a triple (N,A, {ui}i∈N ) consisting of a finite player
set N = {1, .., n}, a finite set of actions A = {1, ...,K}, and a set of payoff
functions {ui}i∈N . An action profile consists of a vector a = (a1, ..., an)
where ai ∈ A denotes the action of player i. For each i ∈ N the payoff
function ui maps AN into the real line R.

Given game Γ = (N,A, {ui}i∈N ) we think of a correlating device p that
sends a private signal to each player. The signal suggests to each player
an action. Once a player receives his signal, but does not observe those of
others, he chooses an action.7 To distinguish suggested action from actual
behavior we equate the signal with an assignment to a role. Thus, the
correlating device p assigns each player a role from set A and the player
then chooses an action that may or may not equate with his assigned role.

Given that the correlating device assigns a role to each player we can
formally think of the correlating device as being given by a probability distri-
bution p over action profiles where p(a) denotes the probability that players
will be assigned roles consistent with action profile a. We shall denote by
pi the marginal distribution of p, where pi(k) denotes the probability that
player i is assigned role k.8 Let P := ∆(RN ) denote the set of possible
correlating devices.

Given game Γ and correlating device p ∈ P we refer to the game with
roles Γp. Given that action choice can be made conditional on assigned role a
strategy for a player i, in game Γp, is a function si mapping the set of signals
A to the set of actions A. In interpretation, si(k) is the action performed
by player i if he is assigned role k. Of primary interest is the strategy profile
s∗ ∈ SN where s∗i (k) = k for all k and i. That is, the strategy profile where

7 In this sense signal can be equated to Harsanyi type.
8Formally, pi(k) = a:ai=k

p(a)
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each player plays the action consistent with their assigned role. Let S denote
the set of strategies.

Note that a player’s payoff does not depend directly on his role or the
roles of other players although it may depend on roles indirectly through
the choice of action that a distribution of roles induces. We shall assume for
the present that correlating device p is common knowledge and players have
consistent beliefs with respect to p. We relax this assumption in Section 4.
Given this we can define a payoff function Ui : P → R for each player i ∈ N ,
where

Ui(p) :=
X
a∈AN

p(a)ui(a).

It can be observed that Ui(p) denotes the expected payoff of player i if roles
are assigned according to distribution p and players behave according to s∗.

For any ε ≥ 0 we say that p is a correlated ε-equilibrium of game Γ if
and only if

Ui(p) ≥
X
a∈AN

p(a)ui(si(ai), a−i)− ε (1)

for all si ∈ S.9 Thus, no player would wish to deviate from playing the action
corresponding to his allocated role. We refer to a correlated 0-equilibrium as
a correlated equilibrium. If p is a correlated ε-equilibrium of game Γ, then
we can equivalently say that s∗ is a Nash ε-equilibrium of game Γp (where
Nash ε-equilibrium is defined in the standard way).

2.1 Two simple examples

To illustrate the ideas as we proceed through the remainder of the paper
consider the following simple example.

Example 1: There are three players N = {1, 2, 3} and two possible actions
A = {E,Z}. We shall think of members of an economics department having
to teach intermediate microeconomics with actions “put in effort” (E) or
“be lazy” (Z). Players 1 and 2 constitute one social group and player 3
constitutes a second social group. For example, players 1 and 2 might be
teaching assistants (TAs) and player 3 might be a professor.

A player’s payoff is equal to a bonus minus an effort cost. The bonus, the
same for all players, depends on effort and is non-zero if and only if player 3

9This definition equates to a natural approximation to the standard definition of cor-
related equilibrium, although ‘role’ is often termed ‘signal’ (Fudenberg and Tirole 1998).
Note, however, that the use of the term ε-correlated equilibrium by Myerson (1986) has a
different meaning to the one here.
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and at least one of players 1 and 2 choose E. If players 1 and 3 choose E the
bonus is 10; if instead players 2 and 3 choose E the bonus is b ≤ 10 for some
real number b; if players 1, 2 and 3 all choose E the bonus is 13. Basically,
the success of intermediate micro depends on the effort put in and requires
a professor plus at least one TA to put in effort. If the course is a success
then all receive a bonus. Effort does, however, come at a cost. If players 1
or 2 choose action E then they pay effort cost e1 and e2 respectively (and if
they choose Z they pay effort cost 0). We shall fix values for b, e1 and e2 as
we proceed. Payoffs can be summarized:

Payoff of player
Set of players who play E Bonus 1 2 3
∅, {1} , {2} , {3} , {1, 2} 0 0 or −e1 0 or −e2 0
{1, 3} , 10 10− e1 10 10
{2, 3} b b b− e2 b
{1, 2, 3} 13 13− e1 13− e2 13

A correlating device suggests to each player what action to take, either
E or Z, and is a correlated equilibrium if each player does best to play
the suggested action. That is, each player performs his assigned role. To
illustrate, the concept of correlated equilibrium suppose that it is efficient
for one, and only one, of the TAs to put in effort. Further, suppose that
the correlating device consists of a signal sent to each of the TAs indicating
whether he is the more intelligent of the two. The TA who thinks that he
is the most intelligent puts in effort. We can then contrast three different
types of correlating device all of which may be correlated equilibria. (1)
With some positive probability, each TA independently thinks that he is the
most intelligent. This means that the two TAs will independently decide
whether to put in effort and results in no correlation of actions. (2) The TA
with the best exam performance is considered by both as the most intelligent
and therefore puts in effort while the other does not. Note that which TA
will have the best exam performance may be a random event but both TAs
know for certain, ex-post, who has the best exam performance. Thus, one
and only one randomly selected TA will put in effort. (3) The TAs receive a
correlated signal of relative intelligence. For example, the TAs may believe
the outcome of an exam is in part random, in a way that means that at
least one of the TAs and potentially both of them believe that they are the
most intelligent. This guarantees that one TA will put in effort and means
that with positive probability both will put in effort. We shall see this type
of correlating device in Sections 5.1 and 5.3.
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Example 1 will prove sufficient for most that we wish to illustrate but a
slight extension will prove useful on occasions.

Example 2: The action E is decomposed into E1 and E2 where we could
interpret E1 as “to put in effort using textbook 1” and E2 as “to put in
effort using textbook 2”. We assume that the payoffs of players 1 and 2 are
not effected by the choice of E1 or E2 and so still think of the two TAs as
choosing E or Z. Player 3 may, however, get a higher payoff if he plays E1
when player 1 plays E and plays E2 when player 2 plays E. That is, the
professor may do better to match his choice of textbook with the TA who
puts in effort. To return to the earlier interpretation of a correlating device,
the professor can also receive a signal indicating which of the two TAs is
most intelligent. This allows him to form expectations over who will put in
effort and may allow him to coordinate his choice of textbook with the TA
or TAs likely to put in effort.

3 Social groups

As discussed in the introduction, we wish to study correlated equilibrium
relative to a set of social groups. Formally, a partition Π = {N1, ..., NG} of
the player set into G subsets is taken as given. We refer to Π as a partition
into social groups and refer to eachNg as a social group. In the examples it is
natural to think of the two TAs as constituting one social group N1 = {1, 2}
and the professor as a second social group N2 = {3}.

An important part of our analysis is the effects of interchanging actions
of members of the same social group. This leads us to the formalism of a
permutation of an action profile. One action profile a0 is a permutation of
another action profile a if the number of players in each social group playing
each action (or assigned each role) is the same.10 Thus, in Example 1 the
action profile (E,Z,E) is a permutation of action profile (Z,E,E) because,
in both cases, one TA puts in effort while the other is lazy. Given action
profile a let PΠ(a) denote the set of action profiles that are permutations of
a.

Taking a game Γ and a partition into social groups Π as given, two
properties of a correlating device, motivated in the introduction, are within-
group anonymity and group independence.

10More precisely, given a game Γ, a partition into groups Π = {N1, ..., NG} and an
action profile a, let hΠ(a, k, g) = |{i ∈ Ng : ai = k}| denote the number of players in
group Ng who play action k. We say that action profile a0 is a permutation of a if
hΠ(a, k, g) = hΠ(a0, k, g) for all k and Ng.
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Within-group anonymity: Correlating device p satisfies within-group
anonymity (WGA) if the distribution p treats players from the same social
group identically. Formally, given any two action profiles a and a0, if a0 ∈
PΠ(a) then:

p(a) = p(a0).

WGA captures two important aspects of group behavior that we wish to
model: equity and conformity. A probability distribution satisfying WGA
provides equality of opportunity within groups because any two players be-
longing to the same social group have the same probability of being allocated
each role within the group.11 In our example, if exam scores of the TAs are
the correlating device, and the TA with the highest exam score puts in ef-
fort while the other TA is lazy, then there is within group anonymity if each
has an equal chance of the highest exam score. As we shall see in Section
5.2, this equality of opportunity results in an equality of expected payoff.
WGA also implies conformity within social groups is observed in a corre-
lated equilibrium satisfying WGA because any two players belonging to the
same social group are, ex-ante, expected to behave identically: they have
the same probability of being allocated each role and behave in identical
ways once allocated a role. Further, it is individually rational for players to
conform to the behaviors expected of their assigned roles.

We now turn to the group independence property.

Group independence: Let i and j be any two players belonging to dif-
ferent social groups. If player j is assigned role aj , let pi(k|aj) denote the
probability that player i has role k. Correlating device p satisfies group inde-
pendence (GI) if there is no correlation of actions between groups. Formally,
it requires that pi(k) = pi(k|aj) for all k, aj ∈ R.

If social groups are distinct then correlation of actions between groups may
be unlikely. This reflects how correlating actions between groups may be
difficult because players in different social groups do not as easily identify
or communicate with each other. The professor, for instance, may not be
‘familiar enough’ with the two TAs to correlate his actions with their actions.
Specifically, in Example 2, GI would not permit the professor to correlate
his actions with the TAs by for example using textbook 1 if player 1 puts
in effort and textbook 2 if player 2 puts in effort. Note, however, that
GI does not stop coordination between groups. For instance, the professor

11For instance, if i, j ∈ Ng, then pi(k) = pj(k) for all k ∈ A.
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could coordinate his actions with the TAs by choosing textbook 2 in the
knowledge that player 2 will put in effort.

4 Equilibrium

In this section we demonstrate the existence of a correlated equilibrium
satisfying WGA and GI. We begin by describing a special case in which
players in social groups are exact substitutes. We then generalize to the case
of approximate substitutes before generalizing further to permit subjective
beliefs. Our main result, Theorem 1, is obtained for the most general case
(and stated in Section 4.5).

4.1 Exact substitute players

Take as given a game Γ = (N,A, {ui}i∈N ). We say that two players i and
j are exact substitutes if they have the same payoff function and influence
other players identically. Thus, whenever i and j exchange strategies they
also exchange payoffs while any third player l is indifferent. Formally, if
players i and j are exact substitutes then ui(a) = uj(a

0) and ul(a) = ul(a
0)

for all l 6= i, j and any two action profiles a, a0 ∈ AN , where (1) al = a0l for
all l 6= i, j, (2) ai = a0j and (3) aj = a0i. A partition of the player set into
social groups Π = {N1, ..., NG} is an exact substitute partition if, for any
social group Ng, any two players i, j ∈ Ng are exact substitutes.

Returning to the example, it may be that players 1 and 2, the TAs, are
equally skillful and thus player 3, the professor’s, payoff is unaffected when
the two TAs exchange actions. This would require that b = 10. For players
1 and 2 to be exact substitutes, we also require that e1 = e2, implying that
both TAs have the same effort cost. In this case when 1 and 2 exchange
strategies they also exchange payoffs. In particular, if 1 and 3 teach then the
payoffs for players 1 and 2 are 10− e1 and 10 respectively while if, instead,
2 and 3 teach the payoffs are 10 and 10− e2. Note that the professor is not
an exact substitute for a TA because if the professor and a TA exchange the
strategies of “put in effort” for “be lazy” then all payoffs will change.

The following two results are derived from our main result, Theorem 1,
and proved in the Appendix.12 The first result states that if the player set
is partitioned into social groups, each consisting of exact substitutes, then
for any correlated equilibrium p∗ there is a correlated equilibrium p0 that

12These corollaries could also be obtained as a consequence of the well-known fact that
the set of correlated equilibria is convex.
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satisfies WGA and where all players in the same social group receive the
same payoff, equal to the average within-group payoff from equilibrium p∗.

Corollary 1: Given a game Γ, an exact substitute partition into social
groups Π = {N1, ..., NG} and a correlated equilibrium p∗, there exists a
correlated equilibrium p0 satisfying WGA, where

1

|Ng|
X
j∈Ng

Uj(p
∗) = Ui(p

0) (2)

for all i ∈ Ng and all Ng ∈ Π.13

In terms of the example, (if e1, e2 ≤ 10) the p∗ could be p∗(E,Z,E) = 1.
Thus, the first TA, player 1, and the professor, player 3, will have assigned
role “put in effort”. This does not satisfy WGA because the two TAs, players
1 and 2, have an unequal chance of being assigned role E and therefore
of putting in effort. [Note that this results in player 2 getting a higher
payoff than player 1.] There does exist a correlated equilibrium p0 where
p0(E,Z,E) = p0(Z,E,E) = 0.5. That is, one of the TAs is randomly selected
to put in effort. This does satisfy WGA and both players 1 and 2 have the
same expected payoff.

Our second result states that if the player set is partitioned into social
groups consisting of exact substitutes then there exists a correlated equilib-
rium satisfying WGA and GI.

Corollary 2: Given a game Γ and an exact substitute partition into so-
cial groups Π = {N1, ..., NG}, there exists a correlated equilibrium p∗ of Γ
satisfying WGA and GI, where Uj(p

∗) = Ui(p
∗) for all i, j ∈ Ng and all Ng.

The equilibrium p0 described above, for Example 1, satisfies both WGA and
GI.

4.2 Approximate substitute players

While players within social groups may be similar, in general one would not
expect them to be identical. For example, two TAs are likely to be different,
even if only slightly. This leads us to introduce a notion of approximate
substitutes that will allow us to apply our results to any game and to any

13 The set of correlated equilibria satisfying WGA is convex. Also note that p0 preserves
the properties of p∗, so, for example, if p∗ is an acceptable correlated equilibrium (as
defined by Myerson 1986), then p0 is an acceptable correlated equilibrium.
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partition of the player set into social groups, irrespective of within-group
player heterogeneity.

Players i and j are δ-substitutes (or, informally, approximate substitutes)
if they are both δ-interaction substitutes and δ-individual substitutes. In-
formally, we say that two players i and j are interaction substitutes if i and
j are seen as similar by those with whom they interact. If the actions of i
and j are interchanged, then the payoffs to other players are only slightly
affected. In our example, if b is near to 10, then, since the TAs have similar
abilities, the professor is relatively indifferent to which TA puts in effort.
Players i and j are individual substitutes if they have similar payoff func-
tions. In our example, this would require that e1 is close to e2 and so the
two TAs have similar effort costs. Combining both measures, we refer to
players i and j as substitutes if they are both interaction substitutes and
individual substitutes.

Approximate substitutes: Let i, j ∈ N be any two players and let a, a0 ∈
AN be any two action profiles, where (1) al = a0l for all l 6= i, j, (2) ai = a0j
and (3) aj = a0i. Players i and j are δ-interaction substitutes if¯̄

ul(a)− ul(a
0)
¯̄
≤ δ

n
(3)

for any player l ∈ N , l 6= i, j. Players i and j are δ-individual substitutes if¯̄
ui(a)− uj(a

0)
¯̄
≤ δ. (4)

Players i and j are δ-substitutes (or informally approximate substitutes) if
they are both δ-interaction substitutes and δ-individual substitutes. Note
that, for some δ, any two players are δ substitutes; thus, δ substitutability
provides a metric on the player set N .

Returning to the example the two TAs are 3(10− b)-interaction substi-
tutes. The closer therefore is b to 10 the closer the approximation. The two
TAs are also 10− b+ e2− e1 individual substitutes. So, the closer is b to 10
and e1 to e2 the closer the approximation.

A δ-substitute partition into social groups Π = {N1, ..., NG} is a partition of
player set N with the property that any two players belonging to the same
social group are δ-substitutes; i.e., if i, j ∈ Ng for some Ng ∈ Π, then i and
j are δ-substitutes. Note that the partition into singletons {{1}, ..., {n}} is
a 0-substitute partition. Also, for any game Γ and any partition Π of N ,
for some finite δ ≥ 0 the partition Π is a δ-substitute partition into social
groups. See Section 5.3 for more discussion.
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Corollaries 1 and 2 can be extended to treat the more general case of
approximate substitutes.14

Corollary 3: Consider game Γ, a δ-substitute partition into social groups
Π = {N1, ..., NG} and a correlated equilibrium p∗. For some ε ≤ 4δ there
exists a correlated ε-equilibrium p0 satisfying WGA where¯̄̄̄

¯̄ 1|Ng|
X
j∈Ng

Uj(p
∗)− Ui(p

0)

¯̄̄̄
¯̄ ≤ 2δ (5)

for all i ∈ Ng and all Ng ∈ Π.

Thus, given any correlated equilibrium p∗ there exists an approximate cor-
related equilibrium p0 satisfying WGA and where the average payoff in each
social group remains approximately the same. Recall that, for some δ, any
partition into groups is a δ-substitute partition; thus Corollary 3 provides a
lower bound on the size of ε required to ensure that there exists a correlated
ε-equilibrium satisfying WGA.

Corollary 3 only shows the existence of an approximate correlated equi-
librium. There need not exist a correlated equilibrium satisfying WGA. For
example, suppose that b = 10, e1 = 9.5 and e2 = 10.5. In this case there
exists a unique correlated equilibrium p∗ = (E,Z,E) in which players 1 and
3 are assigned role E. As already discussed this does not satisfy WGA. The
distribution over roles p0 where p0(E,Z,E) = p0(Z,E,E) = 0.5 does satisfy
WGA but is not a correlated equilibrium because when allocated role E
player 2 would do better to play Z (and get 0 rather than −0.5 = 10−10.5).
Distribution p0 is a correlated 0.5-equilibrium. The equilibrium p0 thus re-
quires player 2 to ‘sacrifice 0.5’ in order that the outcome satisfies WGA.

Corollary 4: Consider game Γ and a δ-substitute partition into social
groups Π = {N1, ..., NG}. For some ε ≤ 4δ, there exists a correlated ε-
equilibrium p0 of Γ satisfying WGA and GI.

Note that Corollary 4 only provides for the existence of an approximate
correlated equilibrium. There may be a correlated equilibrium for which
there is no nearby approximate correlated equilibrium satisfying WGA and
GI. In Example 2 when there are actions E1 and E2 there may be a correlated
equilibrium requiring the professor to use action E1 if player 1 plays E and

14Note that Corollaries 3 and 4, unlike Corollaries 1 and 2, cannot be obtained from
convexity of the set of correlated equilibria.
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action E2 if player 2 plays E. That is, it requires the textbook used to match
the TA who will teach on the course. It may be that such an equilibrium
could not be equated with a ‘nearby equilibrium’ that satisfies GI because
it requires the professor to correlate his action with the TAs.

4.3 Subjective Beliefs

The assumption that players know the probability distribution p shall now be
relaxed. Instead, players are modelled as having subjective beliefs about the
correlating device. Specifically, there exists a set of beliefs {βi}i∈N , where
βi ∈ P denotes the beliefs of player i. Thus, βi(a) denotes the probability
that player i places on roles being assigned according to action profile a.
We say that the set of beliefs {βi}i∈N constitutes a subjective correlated
ε-equilibrium ifX

a∈AN

βi(a)ui(a) ≥
X
a∈AN

βi(a)ui(si(ai), a−i)− ε

for each i ∈ N and si ∈ S. This revises the definition of a correlated
equilibrium (as given by (1)) in the natural way by requiring no individual
i to expect a payoff gain from changing strategy given his beliefs, βi.

It is well known that once subjective beliefs are allowed, it becomes
difficult to tie down the set of correlated equilibria (Aumann 1974, 1987,
Brandenburger and Dekel 1987). A framework of social identity, however,
suggests certain properties, including stereotyping, that one might expect
beliefs to satisfy. We propose a definition of stereotyped beliefs. Given game
Γ, a δ-substitute partition into social groups Π and set of correlating devices
B = {pi}i∈N , we say that beliefs are stereotyped and determined by B if

βi(a) =
1

|PΠ(a)|
X

a0∈PΠ(a)

pi(a0) (6)

for all i and a. Thus, each player expects the correlating device to satisfy
WGA; this suggests stereotyping because players in the same social group
are expected to behave identically (whether they actually do so or not). So,
the professor may expect the two TAs to behave in the same way.

Different players may have different beliefs over the correlating device.
We can imagine an objective device actually distributing roles according to a
probability distribution p ∈ P . If βi = p, then player i has beliefs consistent
with the objective device. If pi = p, then i’s beliefs will not be consistent
with distribution p if pj(k) 6= pl(k) for some j, l ∈ Ng and some social group
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Ng. The beliefs of i are, however, related to the distribution p but subject
to stereotyping. For instance, in Example 1 it may be that player 1 will put
in effort and player 2 will be lazy so that p(E,Z,E) = 1. If player 3’s beliefs
are stereotyped then he may set p(E,Z,E) = p(Z,E,E) = 1

2 and so expect
one of the TAs to put in effort but does not know which one. If pi 6= p,
then i’s beliefs are potentially far from consistent with the given allocation
of roles. We discuss stereotyping in more detail in Section 5.1.

Given game Γ, let CEΓ denote the set of correlated equilibria of game Γ.
The following result demonstrates that if B ⊂ CEΓ and beliefs are determined
by B, then the result is an approximate correlated equilibrium of game Γ.
Thus, it is an equilibrium for players to expect players in the same social
group to behave in an identical fashion whether or not they actually do so
in reality.

Theorem 1: Consider game Γ, a δ-substitute partition into social groups
Π = {N1, ...,NG} and set of correlating devices B = {pi}i∈N . If B is a subset
of CEΓ and beliefs are stereotyped and determined by B, then {βi}i∈N is a
subjective correlated ε-equilibrium where ε ≤ 4δ.

Informally, this result implies that for every correlated equilibrium there
exists a corresponding approximate subjective correlated equilibrium with
stereotyped beliefs. From this result it is simple to derive Corollaries 1 to 4
(see the Appendix). Note that pi and βi can differ across agents. If pi = p
for all i and some p then βi = β for all i and some β. This may seem like
a natural case and merely generalizes the previous analysis (Corollaries 1
to 4) to one with stereotyping. By contrast, if pi 6= pj for some i and j
then βi 6= βj and so i and j not only have stereotyped beliefs but also have
different beliefs. This may be appropriate if i and j belong to different social
groups and have, say, different beliefs about the distribution over types in
their own social group. So, for instance the two TAs and the professor may
have different beliefs.

5 Further Discussion

In this section we discuss four issues, using the framework introduced in the
previous two sections, to demonstrate the insights that are possible from the
framework. These issues are stereotyping, fairness, optimal group size and
semi-anonymity.
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5.1 Stereotyping

An interesting issue is whether stereotyping is costly to players. It can be
costly for players to stereotype within their own social group as we can
illustrate by setting b = 10 and e1 = e2 = 6 in Example 1. If we set player 3
as choosing E players 1 and 2 (the two TAs) play the following matrix game

E Z
E 7, 7, 13 4, 10, 10
Z 10, 4, 10 0, 0, 0.

Consider correlating device p where p(E,E,E) = 1
3 and p(E,Z,E) = 2

3 .
The device p is not a correlated equilibrium. To see why, note that player 2
knows that player 1 has probability one of being assigned role E. If player
1 behaves according to his assigned role then it is therefore better for player
2 to choose Z than E. So, if player 2 is assigned role E he should choose
Z. Basically, if player 2 knows that player 1 will consider himself the most
intelligent TA then player 2 does better to be lazy.

Suppose now that B = {p, p, p} and beliefs are stereotyped and deter-
mined by B. This implies that, β2(E,E,E) = 1

3 , β
2(E,Z,E) = 1

3 and
β2(Z,E,E) = 1

3 (with the same for players 1 and 3). If player 2 is assigned
role E then he expects that player 1 is assigned role E with probability 0.5
and role Z with probability 0.5. This implies that player 2’s expected payoffs
from E and Z are 5.5 and 5 respectively and so it is individually rational
for player 2 to choose E if assigned role E. Basically, if player 2 believes
that he is the most intelligent TA then he expects that player 1 will not
consider himself the most intelligent TA with probability one half. Given
device p this is actually an erroneous belief. The set {β1, β2, β3} is, however,
a subjective correlated equilibrium. The ‘cost’ to player 2 of stereotyping in
this example is 1 because with probability 1

3 he will be assigned role E and
would earn 3 more by choosing Z.

Stereotyping proves costly or distortionary in this example because a
player stereotypes behavior within his own social group. Player 2, because
of stereotyping, has incorrect beliefs about the probability that player 1
is allocated to each role. This has the consequence that, depending on
whether or not he stereotypes, a player can have different beliefs about his
own probability of being allocated each role. In the example, when beliefs
are stereotyped, player 2 expects to have role E with probability 2

3 . When
beliefs are not stereotyped, he expects to have role E with probability 1

3 .
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It is natural to think of stereotyping in terms of a player forming be-
liefs on how players outside of his social group will behave. It is not so
clear whether stereotyping should influence a player’s belief about his own
(marginal) probability distribution of being assigned each role. If stereotyp-
ing does not influence a player’s belief about his own probability of being
assigned each role then we find that stereotyping is less distortionary or
costly. To formalize this consider permutations of an action profile a for
which player i’s action does not change. More precisely, given action profile
a and player i (and the set PΠ(a) of action profiles that are permutations
of a) let PΠ

i (a) denote the subset of PΠ(a) where a0i = ai. Given game Γ,
a δ-substitute partition into social groups Π and set of correlating devices
B = {pi}i∈N , we say that beliefs are other-stereotyped and determined by B
if

βi(a) =
1¯̄

PΠ
i (a)

¯̄ X
a0∈PΠ

i (a)

pi(a0) (7)

for all i and a. This revises the definition of stereotyped and determined by
B in the sense that player i only stereotypes the behavior of players other
than himself. Beliefs about his own probability of being assigned each role,
given by βi, are the same as those given by pi. In Example 1, if B = {p, p, p}
and beliefs are other-stereotyped and determined by B then βi is the same
as p for all i and so beliefs are the same as the objective correlating device.
Note that this implies WGA does not hold. Players essentially expect WGA
to hold for everyone but themselves.

If beliefs are stereotyped then we have seen above that the expected
payoff can be significantly different to the payoff that would be expected
if beliefs were consistent with the correlating device. The following result
shows that this does not hold if beliefs are other stereotyped.

Proposition 1: Consider game Γ, a δ-substitute partition into social groups
Π = {N1, ...,NG} and a set of correlating devices B = {pi}i∈N . If beliefs are
other-stereotyped and determined by B, then,¯̄

Ui(p
i)− Ui(β

i)
¯̄
≤ δ

for all i and all si ∈ S.15

15One could imagine a device signalling a set of roles for the entire player set, or alterna-
tively, devices signalling roles for all the players in each social group. Players in one group
may not be able (or willing) to differentiate between people in some other group (possibly
with some distinguishing characteristic such as gender) and thus assign the average role
distribution to members of the other group.
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If Π is an exact substitute partition and so δ = 0 then Proposition 1 suggests
that there are no costs or distortions from a player stereotyping the behavior
of others. In particular, his expected payoff is the same whether or not his
beliefs are stereotyped. If players within social groups are only approximate
substitutes, then there may be potential costs to stereotyping, depending on
the amount of heterogeneity.

To illustrate, consider again Example 2 with actions E1 and E2. If player
3 plays action E1 suppose that he gets bonus 10 if player 1 or player 2 choose
E. If he chooses E2 then he gets bonus 9.9 if player 1 chooses E and bonus
10.3 if player 2 chooses E. So, if the professor knows that player 1 will
put in effort he is better using textbook 1 instead of 2. Correlating device
p(E,Z,E2) = 1 is not therefore a correlated equilibrium because player 3
would do better to play E1 if assigned role E2. Suppose, however, that player
3 has stereotyped beliefs β3, where β3(Z,E,E2) = β3(E,Z,E2) = 0.5. It is
now individually rational for player 3 to play E2 because his expected payoff
from doing so is 10.1. Basically, if player 3 does not know which TA will put
in effort then he does better by choosing textbook 2. We see, therefore, that
β3 is a correlated equilibrium. If player 3 did not have stereotyped beliefs
but actually knew the correlating device then he would do better by 0.1.

More generally, it follows from Proposition 1, that for any player i whose
beliefs βi are other stereotyped and determined by pi, that if it is individually
rational for player i to play k when assigned role k then player i could gain
by at most 2δ by deviating from k when assigned role k if he has non-
stereotyped beliefs pi. The definition of other stereotyped could be relaxed
further so that a player only stereotypes players in certain groups. For
instance, he may not stereotype those in his own group. This would lead to
the same conclusions.

A further thing to note from the previous example is how the two TAs
may receive a lower or higher payoff if player 3 stereotypes. In particular,
that player 3 stereotypes results in him using E2 rather than E1. The two
TAs may or may not prefer this and indeed the amount of payoff difference
could be arbitrarily large or small. Thus, while stereotyping may have little
impact on the player with stereotyped beliefs (player 3 in this example) it
can have a large impact on those who are being stereotyped (players 1 and
2 in this example).

5.2 Fairness and social contract

One motivation for WGA is to have equality of opportunity within groups.
This also implies approximate equality of expected payoff. In particular,
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Corollary 3 implies that players in the same social group should get approx-
imately the same payoff given a correlated equilibrium p0 satisfying WGA.
Specifically, it implies that |Ui(p

0)− Uj(p
0)| ≤ 4δ for all i, j belonging to the

same social group. We can, however, do better than this.

Proposition 2: Consider game Γ, a δ-substitute partition into social groups
Π = {N1, ...,NG} and a correlating device p satisfying WGA. Then

|Ui(p)− Uj(p)| ≤ δ

for all i, j ∈ Ng, and all Ng.

Proposition 2 suggests that if a correlating device satisfies WGA, then ex-
pected payoffs are fair. Ex-post payoffs may, however, neither be fair or
individually rational. We can see this from the example of Section 5.1
where b = 10 and e1 = e2 = 6. There exists correlated equilibrium p0

where p0(E,E,E) = p0(E,Z,E) = p0(Z,E,E) = 1
3 . With probability two

thirds the outcome is unfair with one of the TAs having an effort cost and
the other not. With probability one third the outcome is not individually
rational with both TAs having an incentive to choose Z because the other
is choosing E.

To use a Rawlsian thought experiment one could suppose that all players
(in the same social group) are identical or, in other words, exact substitutes.
A correlated equilibrium p∗ that satisfies WGA would have the property
that all players expect to get the same payoff. This would be an acceptable
social contract under Rawls’s reasoning (Rawls 1972). The criticism often
made, however, of the Rawls notion of social contract (e.g., Binmore 1989) is
that ex-post outcomes need be neither fair nor individually rational, leading
to questions of whether such a notion represents an appropriate form of
social contract. In particular, given the lack of individual rationality, it is
questionable whether commitments could be enforced. The following result
is, however, easily obtained.

Corollary 5: Consider game Γ and a δ-substitute partition into social
groups Π = {N1, ...,NG}. If Γ has a pure-strategy Nash equilibrium, then
there exists a correlated 4δ-equilibrium p0 satisfyingWGA and GI and where,
if p0(a) > 0, then a is a Nash 4δ-equilibrium of game Γ.

This result does not solve the problem of ex-post fairness but does at least
solve the problem of ex-post individual rationality. For instance, in Example
1 there exists a correlated equilibrium p0 where p0(E,Z,E) = p0(Z,E,E) =
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1
2 . Ex-post the outcome is not fair as payoffs differ by 6 but the outcome is
self-enforcing given that both potential outcomes are individually rational.

5.3 Group size

If players within social groups are not exact substitutes, within-group anonymity
can lead to costs, as illustrated by the fact that only approximate correlated
equilibria satisfying WGA may exist. Thus, if correlation between social
groups is possible, the optimal group size would be one. The larger and
more heterogeneous is a group, then the larger are the potential costs of
within-group anonymity. If, however, group independence is assumed, then
there are countervailing gains to larger groups because the larger is the so-
cial group, then the greater is the scope for mutually beneficial correlation
of actions.16 These trade-offs suggest an optimal group size determined by
the heterogeneity of players and the potential gains from correlating actions.
17

To illustrate we can again return to the example of Section 5.1 where
b = 10 and e1 = e2 = 6. If we think of all three players as constituting a
social group (i.e. we do not group the two TAs together) then the best we
can do if we impose GI is correlated equilibrium p1 where p1(E,Z,E) = 1.
This gives payoffs, 4, 10 and 7 and an average payoff of 8. Grouping players
1 and 2 into a social group means that correlated equilibrium p0 where
p0(E,E,E) = p0(E,Z,E) = p0(Z,E,E) = 1

3 now satisfies GI and WGA.
This gives expected payoffs of 7, 7 and 11 with an average payoff of 813 . Thus,
grouping players 1 and 2 together potentially increases the average payoff.
Finally we can consider grouping all three players together. This results in
there being no correlated equilibrium that satisfies WGA [except (Z,Z,Z).
The best we can do is correlated 3-equilibrium p2 where p2(E,E,E) = 1
giving payoffs of 7. The optimal partition into groups in this example clearly
groups players 1 and 2 together.

More formally, consider a game Γ, let CE ⊂ P denote the set of correlated
equilibrium of Γ and let U ⊂ Rn denote the set of expected payoff vectors
attainable through a correlated equilibrium. That is, if {U1, ..., Un} ∈ U ,
then there exists some p ∈ CE such that U i = Ui(p) for all i. Now, consider

16 If WGA is not required, the optimal group size is n.
17Related is the issue of the number of nations as modeled, for example, by Alesina and

Spolaore (1997); larger countries imply benefits from greater internal efficiencies, security
and ability to cope with external shocks but also imply greater heterogeneity and thus
a problem in ‘keeping everyone happy’. Similar conditions arise in economies with clubs
and/or local public goods; see, for example, the survey articles Conley and Smith (2005),
Demange (2005) and Le Breton and Weber (2005).
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a partition of N into social groups Π = {N1, ..., NG}. Denote by CEΠWGA

the set of correlated equilibria that satisfy WGA and let UΠ
WGA denote the

corresponding set of payoffs. Clearly, if G = n (implying that groups are
singletons), then UΠ

WGA = U . If, however, at least some social groups are
non-singleton, then it is to be expected that UΠ

WGA is a strict subset of U .
More precisely, if a partition of N into social groups Π0 = {N10 , ..., NG0} has
the property that Ng ⊂ Ng0 for every Ng ∈ Π and some Ng0 ∈ Π0, then
UΠ0
WGA ⊂ UΠ

WGA. Informally, the set of payoff vectors realizable through a
correlated equilibrium satisfying WGA is decreasing in the size of groups.
Denote by CEΠGI the set of correlated equilibria that satisfy GI (and not
necessarily WGA) and denote by UΠ

GI the corresponding set of payoffs. Now,
if G = 1, then UΠ

GI = U . If, however, the player set is partitioned into
smaller groups, it is to be expected that UΠ

GI is a strict subset of U . To
re-use the notation above it is the case that UΠ0

GI ⊃ UΠ
GI . Informally, the set

of payoff vectors realizable through a correlated equilibrium satisfying GI is
increasing in the size of groups.

The issues of optimal group size appears to be interesting but compli-
cated. For example, the issue of what constitutes an optimal group must
first be addressed. One way to proceed (which could be done in the example
above) is to use a Pareto criterion to rank outcomes. Another way would
be to look at coalition formation with, for instance, players 1 and 2 in the
above example having incentives to group together. A second issue is to
what extent individual rationality can be traded for ‘better outcomes’ in
the sense that players would be willing to sacrifice individual rationality for
an equilibrium that satisfies both WGA and GI. Finally, one could question
whether partitioning players into social groups always leads to social strat-
ification where similar people group together (Gravel and Thoron 2007, for
example). A full investigation of these issues is beyond the scope of this
paper.

5.4 Semi-anonymous games

In this section we connect the concepts of semi-anonymous games (Kalai
2004, Wooders, Cartwright and Selten 2006) with δ-substitutability. This
will provide a class of games where the player set can be partitioned into
social groups of approximate substitutes. Let Ω denote a metric space of
player attributes, let C denote a space of crowding attributes and let T denote
a space of taste attributes, where Ω ≡ C × T . In interpretation, a player’s
attributes detail how he influences others (his crowding attribute) and his
payoff function (his taste attribute). In the example, attributes detail the
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b, e1 and e2. Two players can be seen as exact substitutes if they have the
same attributes. A game is semi-anonymous if a player’s payoff depends on
the number of players of each crowding attribute playing each action.18 For
example, the professor’s payoff depends on the number of TAs who choose
high effort (and not their identities). If a game is semi-anonymous, then two
players of the same crowding attribute are 0-interaction substitutes. More
formally:

Given a finite player setN , an attribute function αmaps N into Ω, where
α(i) ≡ (αC(i), αT (i)) details the attributes of player i. A weight function w
maps C×A (where A, as previously, denotes a finite set of actions) into the

set of non-negative integers Z+ and is said to be relative to action profile a
if

wa(c, a) ≡ |{i ∈ N : αC(i) = c and ai = a}|

for all c ∈C and a ∈ A. The integer wa(c, a) is the number of players with

crowding type c who are assigned the action a by the action profile a. To
an attribute function α we associate a game Γ(N,α) ≡ (N,A, {uαi }i∈N ). If
uαi (a) = uαi (a

0) for any i and any a, a0, where wa = wa0 and ai = a0i, then
game Γ(N,α) is semi-anonymous. Semi-anonymity has bite only if multiple
players have the same or similar crowding attributes. If all players have the
same crowding attribute, then the payoff to a player depends only on his
action and the proportion of players playing each action.

If two players have approximately the same attribute, then we can think
of them as approximate substitutes. Let dist be the metric on the space of
player attributes. We say that a partition Π of the player set N into social
groups is a δ-attribute partition if dist(α(i), α(j)) ≤ δ for any i, j ∈ Ng and
any Ng ∈ Π. Suppose a continuity in attributes assumption holds whereby¯̄̄

uαi (a)− uα
0

i (a)
¯̄̄
≤ 2δ

for all i ∈ N , any δ ≥ 0, any action profile a and any game Γ(N,α0), where
dist(α(i), α0(i)) ≤ δ. Thus, a slight perturbation of attributes only slightly
changes payoffs. In the example, a slight perturbation in b, e1 or e2 would
only change payoffs slightly. We obtain:

Proposition 3: Let Γ(N,α) be any game, let Π be a δ-attribute partition
and let a be an action profile. If a0 ∈ PΠ(a) and a0j = ai, where i, j ∈ Ng

18The term ‘semi-anonymous games’ is from Kalai (2004) while the term ‘crowding
attribute,’ motivated by earlier research of Conley and Wooders (2001), is from Wooders,
Catwright and Selten (2006).
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for some Ng ∈ Π, then ¯̄
uαi (a)− uαj (a

0)
¯̄
≤ 2δ.

A look at Lemma 1 and the proof of Theorem 1 in the Appendix shows
that all, using Proposition 3, our results could be stated for a δ-attribute
partition as opposed to a δ-substitute partition. Indeed, this could be seen
as a generalization because two players belonging to the same social group
in a δ-attribute partition need not be δ-substitutes.

6 Concluding remarks

The concept of correlated equilibrium is a very appealing one. In inter-
pretation, however, one needs to question where the role-allocation device
comes from and how players learn to interpret signals. In the current pa-
per we argue that social identity acts as a form of equilibrium-selection
device whereby only correlated equilibria satisfying certain properties are
likely to emerge — namely, equilibria satisfying within-group anonymity and
group-independence properties. We demonstrate the existence of an approx-
imate correlated equilibrium satisfying these properties. Also, we show that
stereotyping of individuals within social groups is not costly.

One may want the role-allocation device to be endogenous; that is, it
would be desirable to be able to model how players can endogenously de-
velop a coordinated way of recognizing and interpreting random signals from
nature or pre-play communication. An endogenous role-allocation device
would enable one to determine from the model whether or not WGA and GI
can be expected to emerge as properties of the device. The research of Hart
and Mas-Colell (summarized in Hart 2005) demonstrates how naive learning
heuristics such as regret matching can lead to aggregate play correspond-
ing to a correlated equilibrium. The approach of Hart and Mas-Colell is,
however, framed in a myopic setting in which correlation arises without any
social context or social influence. What would happen if an element of social
influence, such as desires for within-group fairness, are added to learning?
More generally, do we observe play converging on correlated equilibria that
exhibit the properties considered in this paper?

One would also like social groups to be endogenous. It may be possi-
ble to address this as a coalition-formation problem either in a noncoop-
erative/cooperative framework such as in Perry and Reny (1996), or more
recent work on economies with local public goods or many-to-any matching
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problems, such as Konishi and Unver (2006), or through a network approach
similar to those described in Jackson (2005). The issue of optimal group size
and composition is also related to the issue of endogeneity of group sizes.

A related issue is to consider communication as opposed to correlated
equilibrium (Forges 1987). Communication equilibrium is the extension of
correlated equilibrium to games in extensive form where communication
and signals are possible during the game and not just prior to play. In
endogenizing the allocating device and social group membership, it would
be natural to model more explicitly the process of communication between
players, not only before the game but during the play of the game (or, if
thinking of repeated plays of a stage game, between plays of the stage game).

7 Appendix

Lemma 1: Given game Γ, a δ-substitute partition into social groups Π
and any action profile a, if a0 ∈ PΠ(a) and a0j = ai, where i and j are
δ-substitutes then ¯̄

ui(a)− uj(a
0)
¯̄
≤ δ +

n− 1
n

δ.

Proof : Given that a0 is a permutation of a, there exists a one-to-one (not
necessarily unique) function γ mapping N to N , where γ(l) ∈ Ng if l ∈ Ng

and a0l = aγ(l) for all l ∈ N . That is, player l plays the action under profile
a0 that γ(l) plays under profile a.

We construct a series of action profiles a1, a2, ..., an and functions γ2, γ3, ..., γn

using the following iterative procedure:

• a11 = aγ(1) and a1γ(1) = a1 while a1z = az for all other z ∈ N

• γ2(γ−1(1)) = γ(1) and γ2(z) = γ(z) for all other z.

• all = al−1
γl(l)

and al
γl(l)

= al−1l while alz = al−1z for all other z.

• γl+1(γl
−1
(l)) = γl(l) and γl+1(z) = γl(z) for all other z.

We shall demonstrate that anl = a0l for all l. To do so we proceed in two
stages, showing that (i) if all = a0l, then anl = a0l and (ii) a

l
l = a0l.
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Stage (i). The value of γ−1(l) = z∗ is unique for all l. So, if γ(l) = l then
by construction γh(l) = l for all h and γh(z) 6= l for all z 6= l. Thus, if
all = a0l, then anl = a0l. Suppose that γ

−1(l) = z∗ 6= l. We need to show
that γh(h) 6= l for all h > l. If z∗ > l then, by construction, γl

−1
(l) = z∗

and γl+1(z∗) = γl(l) 6= l. Thus, there can be no agent h > l such that
γh(h) = l. If z∗ < l then, by construction, γz

∗+1(γz
∗−1
(z)) = γz

∗
(z∗) = l

and γz
∗+1(z) 6= l for all z 6= γz

∗−1
(z). If γz

∗−1
(z) > l then we are done.

Ultimately, γz
∗−1
(z) ≥ l. Thus, if all = a0l, then anl = a0l.

Stage (ii). We shall show that al−1
γl(z)

= aγ(z) for all 2 ≤ l ≤ n and all z ≥ l.

If true this would imply that all = al−1
γl(l)

= aγ(l) = a0l and so a
n
l = a0l. We use

proof by induction. Set l = 2. There exists a unique player z∗ = γ−1(1).
For any z 6= γ−1(1) we have γ2(z) = γ(z), and so clearly a1γ2(z) = aγ(z). For

z∗ = γ−1(1) we have γ2(z∗) = γ(1). Thus, a1γ2(z∗) = a1γ(1) = a1 = aγ(z∗).

Now suppose the conjecture holds for l ≥ 2. Thus, al−1
γl(z)

= aγ(z) for all

z ≥ l. There exists a unique player z∗ = γl
−1
(l). For all z 6= z∗ we

have γl+1(z) = γl(z), and so al
γl+1(z)

= al−1
γl(z)

= aγ(z). For z∗ we have

γl+1(z∗) = γl(l), implying al
γl+1(z∗) = al

γl(l)
= al−1l where the last equality

follows by construction. Finally, al−1l = al−1
γl(z∗)

= aγ(z∗).

Now observe that a1 is a permutation of a, and al is a permutation of
al−1. Without loss of generality, let j = 1 or re-index players so that j = 1.
Note that i = γ(j). Given that i and j are δ substitutes, we have¯̄

uj(a
1)− ui(a)

¯̄
≤ δ.

Given that a2j = a1j and players 2 and γ1(2) are δ substitutes, we have

¯̄
uj(a

2)− uj(a
1)
¯̄
≤ δ

n
.

Iterating this argument and using an = a0, we obtain¯̄
uj(a

0)− ui(a)
¯̄
≤ δ +

n− 1
n

δ

completing the proof.¥

Proof of Proposition 1: Given the proof of Lemma 1 and that a0i = ai
for all a0 ∈ PΠ

i (a), we have that,¯̄
ui(a)− ui

¡
a0
¢¯̄
≤ δ
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for any a0 ∈ PΠ
i (a) because players within the same social group are δ-

interaction substitutes. The statement of the Proposition is now clear.¥

Proof of Proposition 2: First note that, given a ∈ PΠ(a) and a0 ∈ PΠ(a),
then PΠ(a0) = PΠ(a) for all a0, a ∈ AN . Thus, the set of action profiles AN

can be partitioned into a finite set of sets of actions profiles Ψ1,Ψ2, ...,ΨL,
where Ψl = PΠ(a) for some a ∈ AN . We refer to a set Ψl as a permutation
class of action profiles. Pick a permutation class Ψl and two players i, j ∈ Ng

for some Ng. For every a ∈ Ψl there exists a0 ∈ Ψl, where ai = a0j , aj =
a0i and al = a0l for all other l ∈ N . Given that i and j are δ-individual
substitutes, ¯̄

ui(a)− uj(a
0)
¯̄
≤ δ.

Finally, given that p satisfies WGA, we know p(a) = p(a0). So, letting
al ∈ Ψl

|Ui(p)− Uj(p)| =

¯̄̄̄
¯̄X
Ψl

X
a∈Ψl

p(a)ui(a)−
X
Ψl

X
a∈Ψl

p(a)uj(a)

¯̄̄̄
¯̄

≤
X
Ψl

p(al)
¯̄̄
Ψl
¯̄̄
δ = δ.

This completes the proof.¥

Proof of Proposition 3: Fix two players i, j ∈ Ng for some Ng and fix two
action profiles a and a0 ∈ PΠ(a) where a0j = ai. There exists a one-to-one
mapping γ from N to N such that a0γ(l) = al and dist(α(γ(l)), α(l)) ≤ δ for
all l ∈ N and γ(i) = j. Define attribute function α0 where α0(l) := α(γ(l))

for all l ∈ N . Clearly, dist(α(l), α0(l)) ≤ δ for all l and so
¯̄̄
uαi (a)− uα

0
i (a)

¯̄̄
≤

2δ for all i by continuity in attributes. Next note that pair (α0(l), al) =

(α(γ(l)), a0γ(l)) for all l ∈ N . Thus, uα
0

i (a) = uαγ(i)(a
0) implying that

¯̄̄
uαi (a)− uαj (a

0)
¯̄̄
≤

2δ.¥

Proof of Theorem 1: We need to show thatX
a∈AN

βi(a)ui(a) ≥
X
a∈AN

βi(a)ui(si(ai), a−i)− 4δ (8)

for all i ∈ N and si ∈ S. We conjecture (*) that¯̄̄̄
¯̄ X
a∈AN

βi(a)ui(s(ai), a−i)−
1

|Ng|
X
j∈Ng

X
a∈AN

pi(a)uj(s(aj), a−j)

¯̄̄̄
¯̄ ≤ 2δ (9)
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for all s ∈ S, all i ∈ Ng and all Ng. Given that pi is a correlated equilibrium,

1

|Ng|
X
j∈Ng

X
a∈AN

pi(a)uj(a) ≥
1

|Ng|
X
j∈Ng

X
a∈AN

pi(a)uj(s(aj), a−j) (10)

for all s ∈ S and all Ng. Using (9) on both sides of the inequality in (10)
gives (8) and the desired result.

It remains to prove the conjecture (*). Let s ∈ S be any strategy, and
let i ∈ Ng be any player. By Lemma 1, for any permutation class Ψl [see
the proof of Proposition 2 for the definition of a permutation class] and any
j ∈ Ng, ¯̄̄̄

¯̄X
a∈Ψl

ui(s(ai), a−i)−
X
a∈Ψl

uj(s(aj), a−j)

¯̄̄̄
¯̄ ≤ 2δ

implying, ¯̄̄̄
¯̄X
a∈Ψl

ui(s(ai), a−i)−
1

|Ng|
X
j∈Ng

X
a∈Ψl

uj(s(aj), a−j)

¯̄̄̄
¯̄ ≤ 2δ.

Letting al ∈ Ψl and be some real number where | | ≤ 2δ and using the
definition of beliefs that are stereotyped and determined by B given by (6)
we can obtainX

a∈Ψl

βi(a)ui(s(ai), a−i) = βi(al)
¯̄̄
Ψl
¯̄̄ X
a∈Ψl

ui(s(ai), a−i)

= βi(al)
¯̄̄
Ψl
¯̄̄⎡⎣ 1

|Ng|
X
j∈Ng

X
a∈Ψl

uj(s(aj), a−j) +

⎤⎦
=
X
a∈Ψl

pi(a)

⎡⎣ 1

|Ng|
X
j∈Ng

X
a∈Ψl

uj(s(aj), a−j) +

⎤⎦
=

1

|Ng|
X
j∈Ng

X
a∈Ψl

pi(a)uj(s(aj), a−j) +
X
a∈Ψl

pi(a).

Summing over all Ψl, we get (9).¥

Proof of Corollaries 1 to 5: To prove Corollary 3 (and therefore Corollary
1) set

p0(a) =
1

|PΠ(a)|
X

a∈PΠ(a)

p∗(a) (11)
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for all a. By construction p0 satisfies WGA and by Theorem 1 p0 is a corre-
lated 4δ-equilibrium. The equation (5) can then be derived from (9).

To prove Corollary 4 (and therefore Corollary 2) note that by stan-
dard Nash existence theorems game Γ has a Nash equilibrium (in mixed
strategies). Thus, there exists a correlated equilibrium p∗, where roles are
stochastically independent across players. Clearly p∗ satisfies GI. Now, set
p0 as in (11). By construction p0 satisfies WGA and GI. By Theorem 1 p0 is a
correlated 4δ-equilibrium.19 To prove Corollary 5 we just note that by pick-
ing the pure strategy Nash equilibrium and applying the above reasoning
we get the desired answer. ¥
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