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1 Introduction

A group of players jointly produce a private good and decide how much everyone consumes

and how much everyone pays. Examples include farmers sharing an irrigation system, office

workers splitting a secretary’s time, and divisions of a corporation using the same advertis-

ing department or training facility. In many respects, a cost-sharing problem is similar to

a typical auction situation, where quantity is allocated among players who have different

valuations. Unlike an auction, however, in a cost-sharing problem there is no opposing seller

to allocate the goods and collect the payments: the players themselves design or choose a

cost-sharing mechanism to accomplish these tasks.

In this paper, we study cost-sharing problems with independent private values. In this

setting, many existing cost-sharing mechanisms–including the average, marginal, and serial

mechanisms–are not allocatively efficient because the goods are not always allocated to the

players who value them the most. Furthermore, many of these existing cost-sharing mech-

anisms do not induce players to truthfully reveal their values as dominant strategies. The

question is then why not adopt the Vickrey (1961) auction to deal with cost-sharing prob-

lems since it induces truthful bidding as a dominant strategy and the resulting equilibrium

is allocatively efficient. In an auction of goods by a seller, the Vickrey auction generates a

profit for the seller because the buyers pay more than the production cost. In a cost-sharing

problem, the Vickrey auction generates the same “profit.” But with no opposing seller to

collect this overpayment, the players have the thorny issue of what to do with this overpay-

ment. Redistribution of the overpayment among the players could upset their incentives to

bid truthfully and hence upset the allocative efficiency. And as we show with an example, if

this overpayment is simply destroyed, then the Vickrey auction may give the players lower

payoffs than they would get with other existing cost-sharing mechanisms.

There are mechanisms such as those studied by Arrow (1979), d’Aspremont and Gerard-

Varet (1979a, 1979b) that forgo dominant strategies in order to achieve allocative efficiency
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and budget-balancedness; see Krishna (2002) for more on these mechanisms. However, if

the players deem these mechanisms too difficult to implement, players may instead pursue

ways to reduce the overpayment generated by the Vickrey auction while maintaining truthful

bidding as a dominant strategy. Referring to modifications to his auction, Vickrey (1961,

page 13) stated “However, it seems that all modifications that do diminish the [imbalance]

of the scheme ... reintroduce a direct incentive for misrepresentation of the marginal value

curves.” One aim of our paper is to isolate those components of the Vickrey auction that

ensure players do have the incentive to truthfully report their marginal values as dominant

strategies. We find that allocative efficiency–though certainly a desirable property–is not

among these components.

We introduce perfect price discriminating (PPD) mechanisms that operate as follows.

Each player reports his marginal value curve or equivalently his piece of information which

pins down his marginal value curve. The mechanism then generates a player specific supply

curve for each player. A player receives the quantity where his reported marginal value

curve intersects the supply curve generated for him, and he pays the area under the supply

curve up to the quantity he wins. This payment rule is the analog of a perfectly price

discriminating monopsonist buying an input. As we show in Proposition 1 if the supply

curve generated for a player is independent of his reported marginal value curve, then it will

be a dominant strategy for the player to report his true marginal value curve. We show that

the conventional Vickrey (1961) auction can be reformulated as a PPD mechanism where

the supply curve a player faces is the residual supply curve left over after the other players

demands are satisfied. Since the residual supply curve faced by a player is independent of

his own reported marginal value curve, the player has a dominant strategy to report his true

marginal value curve, a well-known property of the Vickrey auction.

We then introduce a new PPD mechanism for cost-sharing, a mechanism we call the

subsidized Vickrey auction. In the subsidized Vickrey auction, a player’s supply curve is

constructed independently of his reported marginal value curve in such a way that some of
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the overpayment he generates by displacing other players’ bids is used to subsidize addi-

tional production. We show that when players have constant marginal values, the subsidized

Vickrey auction always balances the budget and induces truthful bidding as a dominant

strategy. Unlike the conventional Vickrey auction, this subsidized Vickrey auction is not

allocatively efficient since the marginal cost will exceed everyone’s marginal value. Although

each individual player can be over-subsidized in the sense that the true marginal cost could

be higher than his marginal value, the mechanism itself is feasible, always collecting enough

payments to cover production costs. Even though the subsidized Vickrey auction is generally

allocatively inefficient, we show that it Pareto dominates the conventional Vickrey auction.

In some situations, it also Pareto dominates the average, marginal, and serial cost-sharing

mechanisms.

Moulin and Shenker (1999) and Friedman and Moulin (1999) characterize the average,

marginal, Aumann-Shapley, serial, and other cost-sharing mechanisms by some desirable

properties in a cooperative framework. One such property, for example, is the demand-

monotonicity property which says that the more quantity a player consumes the more he

must pay, holding fixed the quantity consumed by the other players. Although many of

the properties they consider certainly have strategic implications for the players, the focus

of these papers is not on strategic behavior or equilibrium in noncooperative games. For a

more recent paper in this cooperative vein, see Koster (2006) which has a more complete

set of references to this literature. Moulin and Shenker (1992) consider some of these cost

sharing mechanisms in a noncooperative game, and show that the serial cost sharing mech-

anism is dominance solvable. Their paper differs from ours in that their game has complete

information, and the strategy space limits each player to choose a fixed quantity regardless

of price. Our paper, on the other hand, considers players with private information and also

admits players a richer strategy space, where players submit what amount to demand curves,

being able to condition the quantity they want on the price. Moulin and Shenker (2001)

consider a Clarke-Groves mechanism, and like what we do in this paper, wrestle with the
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tension between efficiency, budget-balance, and dominant strategies. But in their paper, con-

sumption is binary: either a player consumes or does not. Furthermore, the cost function in

Moulin and Shenker (2001) differs substantially from ours–their cost depends on the actual

subset of players who consume–so that a direct comparison of their results to ours is not

possible. Chen (2003), Chen and Razzolini (2005), and Razzolini, Reksulak, Dorsey (2004)

run experiments on the average or serial cost sharing mechanisms in environments similar to

the example we use in our paper where players have constant marginal values and costs are

quadratic. However, the games they considered have either complete information or “limited

information” in which the lab subjects know their own values, but the subjects are not told

the distributions from which their opponents draw their values. We are not aware of research

on cost sharing in which players have private information and play a noncooperative game.

Outside of the literature on cost sharing, McAfee (1992) has some similar themes as our

paper. In his paper, McAfee introduces an auction which maintains the dominant strategies

of the Vickrey auction, and like our paper it deals with the budget imbalance problem by

sacrificing some efficiency. Nevertheless, the model and application of his auction is much

different from ours: his is a double auction with both strategic buyers and sellers, and each

of his players demand or supply only a single-unit.

The next section specifies the cost-sharing game. Section 3 contains a simple example to

illustrate the average, marginal, and serial cost mechanisms and the conventional Vickrey

auction. In Section 4, we introduce PPDmechanisms for cost-sharing problems and represent

the conventional Vickrey auction as a PPD mechanism. In Section 5, we reformulate a PPD

mechanism as a subsidized Vickrey auction and investigate its properties. Section 6 contains

our conclusions.

2 The Cost-Sharing Game

A set of n ≥ 2 players, denoted as N = {1, . . . , n}, jointly produce a private good and
decide how much each player consumes and pays. The cost function C(·) : R+ → R+ is
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assumed to be strictly convex and twice continuously differentiable, and C(0) = 0 (so that

only variable costs are considered, as typical in the literature). Let c(·) = C 0(·) denote
the marginal cost function. An outcome (q, t) = (q1, . . . , qn, t1, . . . , tn) ∈ Rn

+ × Rn specifies

player i’s quantity qi and player i’s payment ti for all i ∈ N . Outcome (q, t) is feasible if

t1 + . . .+ tn ≥ C (q1 + . . .+ qn), and budget-balanced if t1 + . . .+ tn = C (q1 + . . .+ qn).

We consider an incomplete information game with independent private values. Player

i’s type θi is a random variable with support Θi. Types are private information but the

continuous distributions of types are common knowledge. Player i has a quasilinear utility

that depends only on his type θi and his part of the outcome (q, t):

ui(qi, ti|θi) = Vi(qi|θi)− ti.

For all θi ∈ Θi, player i’s value function Vi(·|θi) : R+ → R+ is assumed to be concave, strictly

increasing, and twice continuously differentiable, with Vi(0|θi) = 0. Let vi(·|θi) = V 0
i (·|θi)

denote player i’s marginal value function. A simplifying assumption made throughout the

paper is that vi(0|θi) ≥ c(0) for all i ∈ N and all θi ∈ Θi. This assumption is harmless,

serving only to eliminate some extraneous cases when the optimal production is zero.

A feasible outcome (q, t) is Pareto efficient if there does not exist another feasible out-

come (q0, t0) such that ui(q0i, t
0
i|θi) ≥ ui(qi, ti|θi) for all i ∈ N , and ui(q

0
i, t

0
i|θi) > ui(qi, ti|θi)

for at least one player i ∈ N . Outcome (q, t) is allocatively efficient if q maximizes the

aggregate surplus:

q ∈ argmax
q0

X
i∈N

Vi(q
0
i|θi)− C

ÃX
i∈N

q0i

!
.

Observe that Pareto efficiency depends on both q and t, but allocative efficiency depends

only on q.

A cost-sharing mechanism specifies a set of permissible bids Bi for each player i ∈ N ,

a quantity rule q(·) : ×i∈NBi → Rn
+, and a payment rule t(·) : ×i∈NBi → Rn. For each

bid profile b = (b1, . . . , bn) ∈ ×i∈NBi, the mechanism selects the outcome (q(b), t(b)). A
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cost-sharing mechanism is feasible or budget-balanced if (q(b), t(b)) is feasible or budget-

balanced, respectively, for all b ∈ ×i∈NBi. Let b−i denote the bid profile of player i’s

opponents. A bid bi is weakly dominant for player i of type θi if for all b−i ∈ ×j 6=iBj,

bi ∈ argmax
b0i∈Bi

ui(qi(b
0
i,b−i), ti(b

0
i,b−i)|θi).

A cost-sharing mechanism induces a non-cooperative cost-sharing game of incomplete

information, where players simultaneously choose their bids and then obtain the payoffs that

result from the outcome the mechanism selects. For all i ∈ N , player i’s strategy is a function

that maps his types Θi into bids Bi. Player i’s strategy is weakly dominant if it maps to

a weakly dominant bid for all θi ∈ Θi.1 In this paper, we sometimes consider a class of

cost-sharing games where each Bi is the set of all possible marginal value functions: Bi =

{vi(·|θi) : θi ∈ Θi}. In such a cost-sharing game, player i is said to bid truthfully if for each
θi ∈ Θi, his bid is vi(·|θi). For the conventional Vickrey auction and the subsidized Vickrey
auction that we introduce in this paper, each player will have a weakly dominant strategy to

bid truthfully. Consequently, bidding truthfully forms a Bayesian Nash equilibrium. Such

an equilibrium is attractive because it does not depend on the distributions of players’ types

and requires only elementary equilibrium calculations.

3 A Motivating Example

In this section, we present an example to motivate our subsidized Vickrey auction for cost

sharing. We first examine three prominent cost-sharing mechanisms and then show how

the Vickrey auction works in this context. In the example, there are n = 2 players with

independent private values. For i ∈ {1, 2}, player i draws his type θi from the uniform

distribution on [0, 1], and θi is player i’s constant marginal value:

ui(qi, ti|θi) = θiqi − ti.

1For expositional simplicity, we do not distinguish between always optimal and weakly dominant strategies
as does Milgrom (2004), who further requires that weakly dominant strategies be unique.
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The cost function is C(q) = q2/2 with linear marginal costs c(q) = q. We first analyze

three cost-sharing games induced respectively by the average, marginal, and serial cost-

sharing mechanisms. In the case of a homogenous good, the Aumann-Shapley cost-sharing

mechanism is identical to the average cost-sharing mechanism; see Moulin and Shenker

(1992). See the same article and the references therein for more details about average, serial,

and marginal cost-sharing mechanisms. In each of these three mechanisms, player i bids a

quantity bi ≥ 0 and obtains the quantity he bid; i.e, Bi = R+ and

qi(b) = bi for i ∈ {1, 2}.

The average, serial, and marginal cost-sharing mechanisms differ in their payment rules:

tAi (b) = qi(b) · C (Q(b))
Q(b)

= qi(b) · Q(b)
2

,

tSi (b) =


1
2
C(2qi(b)) if bi ≤ bj

1
2
C(2qj(b)) + C(Q(b))− C(2qj(b)) otherwise

=

 qi(b)
2 if bi ≤ bj

1
2
Q(b)2 − qj(b)

2 otherwise,

tMi (b) = qi(b)c(Q(b))− 1
2
[Q(b) · c(Q(b))− C(Q(b))]

= qi(b)Q(b)− 1
4
Q(b)2,

where Q(b) = q1(b)+q2(b) = b1+b2 is the aggregate quantity awarded. It is straightforward

to verify that each of these mechanisms is budget-balanced.

In the corresponding cost-sharing games, player i’s strategy maps his type θi to a bid

bi(θi) ≥ 0. For each cost-sharing mechanism, Table 1 gives the symmetric Bayesian Nash
equilibrium that we have calculated and each player’s ex ante payoff:Z 1

0

·
θib(θi)−

Z 1

0

ti (b(θi), b(θj)) dθj

¸
dθi,
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where b(·) is the symmetric Bayesian Nash equilibrium and ti(·, ·) is the payment rule asso-
ciated with the mechanism.

Mechanism Equilibrium Bidding Function b(θi) ex ante Payoff
Average max

©
2
√
2− 3 + θi, 0

ª
0.094757

Serial ln 2− ln(2− θi). 0.096574

Marginal max
©
2
3

√
15− 8

3
+ 2

3
θi, 0

ª
0.098563

Table 1: Equilibrium bids and payoffs.

In the cost-sharing games induced by these three mechanisms, the equilibria do not

involve weakly dominant strategies, and equilibrium outcomes are almost never allocatively

efficient. To see that it is not weakly dominant for player i to bid as given in Table 1,

suppose that player j bids 0 no matter what his type is. Then player i could improve his

payoff by bidding the quantity where his marginal value equals marginal cost, noting player

i will pay all of the costs. Allocative efficiency in this example requires that the player with

the lower marginal value always wins zero quantity and the player with the higher value win

the quantity where the marginal cost equals his marginal value, which in turn requires that

bi(θi) = θi and bj(θj) = 0 whenever θi > θj. However, these bids occur with zero probability

in the equilibria.

The idea of the Vickrey (1961) auction, which we call the conventional Vickrey auction in

order to distinguish it from our subsidized Vickrey auction, is that players bid their marginal

value curves, and then by construction, quantity is awarded to guarantee allocative efficiency

presuming the players bid truthfully. Due to his ingenious payment rule, players do indeed

have an incentive to bid truthfully, as Vickrey showed. Details specific to our example follow.

Each player i bids bi ∈ [0, 1] so that his reported marginal value curve is vi(q) = bi for all

q ≥ 0. To guarantee allocative efficiency (and to settle the pesky matter of ties should both
players report the same value), the quantity rule in the conventional Vickrey auction is:

qVi (b) =


c−1i (bi) if bi > bj

1
2
c−1i (bi) if bi = bj

0 otherwise.
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In other words, the conventional Vickrey auction assigns all production to the player with

the higher bid up to where the marginal cost is equal to his bid. The payment rule for player

i in the conventional Vickrey auction involves an ingenious idea. First, find the efficient

assignment of quantity in the absence of player i (or more precisely in this example, if player

i reported his value at 0). Then, when quantity is awarded efficiently including player i, the

conventional Vickrey auction has player i pay player j’s marginal value for any quantity that

j is displaced from and pay any costs of additional quantity produced. In particular, for this

example,

tVi (b) =


R qVi (b)
0

max{bj, c(z)}dz if bi ≥ bj

0 otherwise.

Figure 1 below illustrates the winning player i’s quantity and payment (qVi (b), t
V
i (b)) in the

conventional Vickrey auction.

-
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Figure 1: Winning player’s outcome in the conventional Vickrey auction

We define ai(q) = max{bj, c(q)} as the ask curve that player i faces. Observe that the ask
curve player i faces in no way depends on his own bid bi, but rather on the bid of his opponent

and the exogenously given marginal cost curve. As Figure 1 shows, the winning player i wins

the quantity qVi where his reported marginal value curve intersects the ask curve, and pays

the area under the ask curve for the quantity he wins. For the qth marginal unit, player i

will have to pay ai(q). With this interpretation, player i is just like a monopsonist who can
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perfectly price discriminate when buying his input in a market with (inverse) supply curve

ai(·). The best player i can do is to purchase the quantity where his marginal value curve
intersects ai(·), and this is guaranteed when player i bids truthfully. In other words, bidding
truthfully is weakly dominant for player i. To put it another way, it is weakly dominant for

player i to bid truthfully because by doing so, he wins all of the quantity that costs him

less than his value and avoids winning any quantity that costs more than his value. This

intuition is formalized in the proof of Proposition 1, given in the next section. Consequently,

there is a symmetric Bayesian Nash equilibrium where each player i bids bi(θi) = θi. The

resulting ex ante payoff to each player is:Z 1

0

Z θi

0

"
θ2i − θ2j −

Z θi

θj

q dq

#
dθjdθi =

1

12
= 0.083333,

which is lower than that from any of the three cost-sharing mechanisms considered in Table

1. Observe that the winner’s payment exceeds the production cost, and this overpayment is

not accounted for in the players’ utilities. In this truthful bidding equilibrium, the expected

overpayment isZ 1

0

·Z θi

0

1

2
θ2jdθj +

Z 1

θi

1

2
θ2idθj

¸
dθi =

1

12
= 0.083333,

which is equivalent to 0.041667 per player, or 50% of each player’s ex ante payoff. In cost-

sharing situations, players jointly produce the good: there is no opposing seller producing

the good and pocketing this overpayment. One possible option for the players is to sell the

rights for any overpayment to an outside party, which induces a budget-balanced mechanism.

However, this option may not be practical in reality, which may be the reason that the Vickrey

auction has not been considered much for cost-sharing problems.

The question that motivates this paper is whether the overpayment generated in the con-

ventional Vickrey auction can be used to improve players’ welfare without destroying their

incentives to bid truthfully. Since direct refunds do not work, in section 5, we will modify

the Vickrey auction in such a way that the overpayment subsidizes additional production,
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but without upsetting the players’ incentives to bid truthfully. As we will show, this sub-

sidized Vickrey auction performs quite well in this example: a player’s ex ante payoff in

the equilibrium is 0.104167, substantially higher than that from any of the prominent cost-

sharing games considered in Table 1. Moreover, outside of this example, we will show that

the subsidized Vickrey auction always outperforms the conventional Vickrey auction. Before

introducing this subsidized Vickrey auction, in the next section we distill from the conven-

tional Vickrey auction the key elements that ensure truthful bidding is a weakly dominant

strategy.

4 Perfect Price Discrimination Mechanisms

In this section, we first describe a class of mechanisms, called perfect price discrimination

(PPD) mechanisms, in which truthful bidding is a weakly dominant strategy. We then show

that the conventional Vickrey auction is a PPD mechanism.

In a PPD mechanism, players bid or report their marginal value functions; i.e, Bi =

{vi(·|θi) : θi ∈ Θi} is the set of allowable bids to player i ∈ N . From any bidding profile

b = (b1(·), . . . , bn(·)), a non-decreasing ask curve ai(·) : R+ → R+ is constructed for each

player i ∈ N . Player i’s part of the outcome is then determined as:

qi(b) ∈ argmax
qi

Z qi

0

[bi(z)− ai(z)] dz, (1)

ti(b) =

Z qi(b)

0

ai(z)dz. (2)

At this point, we stay agnostic about how these ask curves are constructed. Different ask

curves induce different PPD mechanisms. Assume that qi(b) from (1) is well-defined. Then

by (1), player i wins the quantity at which his bid curve and ask curve intersect, and by (2),

player i pays the area under his ask curve up to the quantity he wins. We may interpret

the ask curve as the inverse supply curve faced by a monopsonist who can perfectly price

discriminate. Accordingly, we refer to such a mechanisms as perfect price discrimination

(PPD) mechanisms. Figure 2 illustrates player i’s outcome (qi, ti) in a PPD mechanism and
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Proposition 1 gives a sufficient condition that ensures truthful bidding is a weakly dominant

strategy.

-

6

q

p

0 qi

bi(·)

ai(·)

ti

Figure 2: Player i’s outcome in a PPD mechanism

Proposition 1 In a PPD mechanism, if ai(·) is independent of bi(·), then bidding truthfully
is a weakly dominant strategy for every player i ∈ N .

Proof. Given that ai(·) is independent of bi(·), (2) implies that player i’s bid can only
affect his payment insofar as it affects the quantity he wins. This means that player i’s payoff

is bounded from above by

max
qi

Vi(qi|θi)−
Z qi

0

ai(z)dz = max
qi

Z qi

0

[vi(z|θi)− ai(z)] dz,

which is achieved if player i bids truthfully due to (1). Since this is true for any ai(·) that is

independent of bi(·), it is weakly dominant for player i to bid truthfully.
In the remainder of this section, we reformulate the conventional Vickrey (1961) auction

as a PPD mechanism. To simplify the exposition, we separate the case when players have

constant marginal values from the case when players have diminishing marginal values.

When every player has a constant marginal value, as in our example of section 3, every

player submits a bid bi ∈ R+ (his reported marginal value). Given a bid profile b = (bi,b−i),
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the quantity and payment rules are:

qVi (b) =


c−1i (bi) if bi > maxj 6=i bj

1
M
c−1i (bi) if bi = maxj 6=i bj

0 otherwise,

(3)

tVi (b) =


R qVi (b)
0

max {c(z),maxj 6=i bj} dz if bi ≥ maxj 6=i bj
0 if bi < maxj 6=i bj.

(4)

where M is the number of players tied with the highest bid. The tie breaking rule can be

arbitrary since ties occur with zero probability in equilibrium. It follows immediately that

the conventional Vickrey auction is a PPD mechanism with the following ask functions:

aVi (q) = max

½
c(q),max

j 6=i
bj

¾
. (5)

Since player i’s ask function is independent of his own bid bi, Proposition 1 applies, and

truthful bidding is weakly dominant for every player. Therefore, there is an equilibriumwhere

every player bids his true marginal value. The conventional Vickrey auction is feasible but

not budget-balanced, since (4) implies that the winning player pays more than the production

cost. On the other hand, the Vickrey auction is allocatively efficient since all production

is awarded to the player with the highest marginal value at exactly the quantity where the

marginal cost equals his marginal value.

When every player has a decreasing marginal value curve, formulating the conventional

Vickrey auction as a PPD mechanism is slightly more complicated. In this case, every

player i ∈ N is allowed to submit a differentiable and strictly decreasing bid function:

bi(·) : R+ → R+. This bid is interpreted as a reported marginal value curve. Let di(·) be
the demand curve associated with bi(·):

di(p) =

 b−1i (p) if p ≤ bi(0)

0 otherwise.

Given the bid profile b = (b1 (·) , . . . , bn (·)), denote the corresponding demand profile by
d = (d1 (·) , . . . , dn (·)). The aggregate demand is then the horizontal sum of individual

demand curves: d(p) = d1 (p) + . . .+ dn (p) .
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Vickrey (1961) sets up a double auction with strategic buyers and sellers, and generates

the market supply curve by aggregating the sellers’ reports of their marginal costs. Ac-

cordingly, for a cost-sharing problem, we take the market supply curve to be the exogenous

(inverse) marginal cost curve

s(p) =

 c−1(p) if p ≥ c(0)

0 otherwise.

Assume that there is a unique market equilibrium (p∗, q∗) where s(p∗) = d(p∗) = q∗. Likewise,

assume for all i ∈ N that there is a unique equilibrium (p∗−i, q
∗
−i) in the market without

player i, such that s(p∗−i) = d−i(p∗−i) = q∗−i where d−i(·) is the aggregate demand by player
i’s opponents. The outcome in the conventional Vickrey auction is

qVi (b) = s(p∗)− d−i(p∗) ≡ di(p
∗), (6)

tVi (b) =

Z s(p∗)

d−i(p∗)
max {b−i (z) , c (z)} dz, (7)

where b−i (·) gives the height of d−i(·). The left panel of Figure 3 illustrates player i’s outcome
in the conventional Vickrey auction, as defined by (6) and (7).
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Figure 3: Player i’s outcome in the conventional Vickrey auction

The left panel of Figure 3 closely resembles the scheme described by Vickrey (1961,

pages 9-14), except that the supply curve in our paper is given by the marginal cost curve
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of production. We next reformulate the conventional Vickrey auction as a PPD mechanism.

For any bid profile, the residual supply curve to player i is given by

rVi (p) =

 s(p)− d−i(p) if p ≥ p∗−i

0 otherwise.

Our next proposition shows that the conventional Vickrey auction is a PPD mechanism with

the inverse of ri(·) as the ask function to player i in the PPD mechanism, establishing that
the right panel of Figure 3 is equivalent to the left panel.2

Proposition 2 For the case of v0i(·|θi), the conventional Vickrey auction is a PPD mecha-
nism where for all i ∈ N , Bi = {vi(·|θi) : θi ∈ Θi}, and ai(·) is the inverse of rVi (p).

Proof. When bi(0) ≤ p∗−i this means that p
∗
−i = p∗ and so qVi (b) = 0 and tVi (b) = 0 by

(6) and (7). When bi(0) > p∗−i, due to the monotonicity and continuity of bi(·) and ri(·), the
unique solution to (1) where ai(·) is the inverse of rVi (·) is the unique intersection of bi(·)
and ai(·). But because

d(p∗) = s(p∗)⇔ di(p
∗) + d−i(p∗) = s(p∗)⇔ di(p

∗) = s(p∗)− d−i(p∗) = rVi (p
∗),

player i’s demand and ask curves intersect at di(p∗). The payment in the conventional

Vickrey auction can be expressed as:Z q∗

q∗−qVi
max {b−i (q) , c (q)} dq = p∗qVi −

Z p∗

p∗−i

[si(p)− d−i(p)] dp =
Z qVi

0

ai(z)dz,

as illustrated in Figure 3. This concludes the proof (illustrated in Figure 3).

Since player i’s ask curve is independent of player i’s bid, Proposition 1 implies that in

the conventional Vickrey auction, bidding truthfully is a weakly dominant strategy, a well-

known feature of the conventional Vickrey auction. To conclude this section, we collect the

well-known properties of the conventional Vickrey auction in the following proposition.

2Indeed, the right panel of Figure 3 is just how Ausubel (2004) interprets the quantity and payment rule
in the Vickrey auction: see his Figure 1.
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Proposition 3 The conventional Vickrey auction is feasible, but not budget balanced in

general. It is weakly dominant to bid truthfully, and the resulting equilibrium outcome is

allocatively efficient.

5 A Subsidized Vickrey Auction

We now introduce the subsidized Vickrey auction for cost-sharing problems. For expositional

convenience, we will consider separately the cases of constant and decreasing marginal values.

To keep the notation from sprawling, we will use the same notation for these two cases.

5.1 Constant Marginal Values

Consider the case that for all i ∈ N , vi(qi|θi) = θi, where θi ≥ 0 is player i’s constant

marginal value. As in the conventional Vickrey auction, player i reports his marginal value:

Bi = {vi(·|θi) : θi ∈ Θi} = R+. Given a bid profile b, let bj = maxk 6=i bk. Like in the

conventional Vickrey auction, for player i to win any quantity he will have to bid at least

bj and by so doing will pay at least the unit price of bj for any quantity he receives. But

unlike the conventional Vickrey auction, the unit price will remain bj beyond q = c−1(bj)

up until all of the overpayment that player i will generate by displacing bid bj is exhausted.

Specifically, define the quantity xi implicitly by the following equation:Z c−1(bj)

0

[bj − c(z)] dz| {z }
Ωi

+

Z xi

c−1(bj)
[bj − c(z)] dz| {z }
−Ψi

= 0, (8)

where Ωi and Ψi represent player i’s overpayment and underpayment, respectively, should

player i bid higher than bj. We can then define the subsidized ask function faced by player

i as:

aSVi (q) =

 bj if qi ≤ xi

c(q) otherwise,

as illustrated in Figure 4 (where the diagonal represents the marginal cost c(·)).
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Figure 4: Player i’s subsidized ask curve (Ωi = Ψi)

The subsidized Vickrey auction is then the PPD mechanism where for all i ∈ N , player

i bids a marginal value and faces the subsidized ask function aSVi (·). Player i’s outcome
is given by (1) and (2) with his subsidized ask function aSVi (·). In the case of a tie for
the highest bid, those submitting the highest bid will split xi equally. Figure 5 illustrates

two possibilities in determining player i’s outcome, and the following proposition gives the

properties of the subsidized Vickrey auction.
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Figure 5: Player i’s outcome in the subsidized Vickrey auction

Proposition 4 In the case of constant marginal values, the subsidized Vickrey auction: (i)

is budget-balanced, (ii) gives every player a weakly dominant strategy to bid truthfully, and

(iii) in the truthful bidding equilibrium, Pareto dominates the conventional Vickrey auction.
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Proof. (i) Consider any bidding profile b = (b1, . . . , bn), and denote by i the player with

the highest bid. If bi = bj ≡ maxk 6=i bk, then the total quantity produced is equal to xi and
the winning players pay bj per unit, so that by equation (8) the total payments collected are

xibj =

Z xi

0

c(z)dz = C(xi),

thereby balancing the budget. If bi > bj, then

either qSVi (b) = xi ⇔ tSVi (b) = xibj =
R xi
0
c(z) dz,

or qSVi (b) > xi ⇔ tSVi (b) = xibj +
R qSVi
xi

c(z) dz =
R qSVi
0

c(z) dz,

again applying equation (8). Either way, player i pays exactly the cost for the quantity

he wins, so that the subsidized Vickrey auction is budget-balanced. (ii) By construction,

the subsidized Vickrey auction is a PPD mechanism where every player’s ask function is

independent of this player’s bid, so that Proposition 1 applies. (iii) Just as in the Vickrey

auction, players who do not have the highest value win 0 and pay 0. The player with the

highest value, however, faces an ask curve in the subsidized Vickrey auction that is below

the ask curve he faces in the conventional Vickrey auction, either winning the same amount

but paying less (as in the left panel of Figure 5) or winning more quantity at a cost below his

value (as in the right panel of Figure 5). These events occur with probability one, thereby

establishing the desired result.

Unlike the conventional Vickrey auction, the subsidized Vickrey auction is not allocatively

efficient. In the equilibrium where every player bids truthfully, when the winner’s value θi <

c(xi), as in the right panel of Figure 5, player i inefficiently wins xi, instead of the efficient

quantity c−1(θi). Although the subsidized Vickrey auction may award too much to the

winning player(s), in the equilibrium, quantity is never awarded to a player if he does not

have the highest value.

We now return to the example considered in section 3. With the subsidized Vickrey

auction described above, a player’s ex ante payoff in the truthful bidding equilibrium isZ 1

0

"Z θ1/2

0

Ã
θ1 (2θ2)− (2θ2)

2

2

!
dθ2 +

Z θ1

θ1/2

µ
θ1θ1 − θ21

2

¶
dθ2

#
dθ1 =

5

48
= 0.104167,
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which is higher than a player’s ex ante payoff from the conventional Vickrey auction, and

all three cost-sharing mechanisms we considered in Section 3.

5.2 Decreasing Marginal Values

Consider the case where vi(·|θi) is strictly decreasing for all i ∈ N and all θi ∈ Θi. As in

the conventional Vickrey auction, every player submits a downward sloping marginal value

curve: Bi = {vi(·|θi) : θi ∈ Θi}.
We next show how to construct the ask curves that will be used in the subsidized Vickrey

auction. A subsidized ask curve is constructed so that some of the overpayments inherent

in the conventional Vickrey auction are used to subsidize additional production. As shown

in the left panel of Figure 3, player i’s payment exceeds the marginal cost of production

over the interval of [d−i(p∗), d−i(p∗−i)]. In the conventional Vickrey auction, for player i to

obtain any quantity, he must force the market price above p∗−i, which not only displaces other

players from quantity they would otherwise win, but also expands the production. In the

conventional Vickrey auction, player i must pay the social opportunity cost of the quantity

he obtains. Since the other players value the quantity that player i displaces more than the

production costs, this creates excess revenue over production costs. Specifically, we define

player i’s overpayment function as Ωi(p) = 0 for p < p∗−i and

Ωi(p) =

Z d−i(p∗−i)

d−i(p)
[b−i (z)− c (z)] dz, for p ≥ p∗−i. (9)

The following lemma summarizes some properties of Ωi(·).

Lemma 5 For all i ∈ N , Ωi(·) is continuous and differentiable almost everywhere, and is
strictly increasing over

£
p∗−i, b−i (0)

¢
.

Proof. The continuity and differentiability of b−i(·), d−i (·), and c (·) imply that Ωi(·) is
continuous everywhere and differentiable at all p /∈ ©p∗−iª∪ {bj (0) : j 6= i}, noting that kinks
occur when aggregating the demands of the other players j 6= i. For p ∈ [p∗−i, b−i (0)), (9)
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implies that wherever it exists,

Ω0i(p) = −d0−i(p)[b−i (d−i(p))− c (d−i(p))] = −d0−i(p)[p− c(d−i(p))],

which is strictly positive due to d0−i(p) < 0 and p > c(d−i(p)) for p > p∗−i.

We next show how to use the overpayment Ωi(p) to offset some of the production costs.

Specifically, for each i ∈ N, a subsidized supply function si(p) ≥ s(p) is created as follows

(which is well-defined almost everywhere):

si(p) =


s(p) if p ≥ b−i (0)

solution to s0i(p) · [c(si(p))− p] = Ω0i(p) if p ∈ [p∗−i, b−i (0))

s(p) if p < p∗−i.

(10)

There are three different segments in player i’s subsidized supply function. For p < p∗−i and

p ≥ b−i (0), si(p) coincides with the actual supply curve (or marginal cost of production).

But for p ∈ [p∗−i, b−i (0)), our next lemma shows si(p) lies below and to the right of s(p) far
enough so that Ωi(p) is exhausted (subsidizing production).

Lemma 6 For all i ∈ N , si(·) is strictly increasing and for p ∈ [p∗−i, b−i (0)),Z si(p)

q∗−i

£
c(z)− s−1i (z)

¤
dz = Ωi(p). (11)

Proof. Because s(·) is the inverse of c(·), we have

si(p) = s(p)⇔ c(si(p)) = p,

si(p) > s(p)⇔ c(si(p)) > p.

Because si(p) ≥ s(p) for p ∈ [p∗−i, b−i (0)), Lemma 5 and equation (10) imply that s0i(p) > 0
and si(p) > s(p) for all p where Ω0i(p) exists. For p ∈ [p∗−i, b−i (0)), integrating s0i(p) ·
[c(si(p))− p] = Ω0i(p) from p∗−i up to p yields (11), doing a change of variable p = s−1i (q) on

the left hand side of (11) (Alternatively, differentiate both sides of (11) to get (10)).

The left hand side of (11) represents the underpayment by player i, which we denote by

Ψi(p). Figure 6 below illustrates player i’s subsidized supply function si(p) in the case of

decreasing marginal values.
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Using the subsidized supply function si(p), we define player i’s residual supply function

as

rSVi (p) = max{si(p)− d−i(p), 0}.

Then player i’s subsidized ask function is the inverse of the residual supply player i is facing:

aSVi (q) =

 p∗−i for q = 0

rSV−1i (q) for q > 0.

To summarize, the subsidized Vickrey auction is the PPD mechanism where every player

i submits a downward sloping demand curve bi(·) and player i’s outcome is determined by
bi(·) and aSVi (·) according to (1) and (2). Now define the “market clearing price” p∗∗i such

that d(p∗∗i ) = si(p
∗∗
i ), which will differ across players because the subsidized supply functions

differ across players. Our next lemma provides another way to derive player i’s outcome in

the subsidized Vickrey auction, which we state without proof since it is straightforward and

resembles that for Proposition 2.

Lemma 7 The subsidized Vickrey auction induces the following outcome rule: for all bid

profile b,

qSVi (b) = si(p
∗∗
i )− d−i(p∗∗i ) ≡ di(p

∗∗
i ) (12)
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and

tSVi (b) =

Z d(p∗∗i )

d(p∗∗i )−di(p∗∗i )
c (z) dz. (13)

Observe from equation (13) that in some sense each player pays the production costs for

the quantity he wins. The proof of our next proposition uses this feature to show that the

subsidized Vickrey auction is indeed feasible.

Proposition 8 In the case of decreasing marginal values, the subsidized Vickrey auction:

(i) is feasible, (ii) is weakly dominant for every player to bid truthfully, and (iii) in the

truthful bidding equilibrium, Pareto dominates the conventional Vickrey auction.

Proof. Without loss of generality, assume p∗∗1 ≥ . . . ≥ p∗∗n . In the subsidized Vickrey

auction, the total payment is

nX
i=1

tSVi (b) =
n−2X
i=1

Z d(p∗∗i )

d(p∗∗i )−di(p∗∗i )
c (q) dq +

Z d(p∗∗n−1)

d(p∗∗n−1)−qSVn−1
c (q) dq +

Z d(p∗∗n )

d(p∗∗n )−qSVn
c (q) dq (14)

≥
n−2X
i=1

Z d(p∗∗i )

d(p∗∗i )−di(p∗∗i )
c (q) dq +

Z d(p∗∗n )−qSVn

d(p∗∗n )−qSVn −qSVn−1
c (q) dq +

Z d(p∗∗n )

d(p∗∗n )−qSVn
c (q) dq

...

≥
Z d(p∗∗n )−Q+qSV1

d(p∗∗n )−Q
c (q) dq + · · ·+

Z d(p∗∗n )−qSVn

d(p∗∗n )−qSVn −qSVn−1
c (q) dq +

Z d(p∗∗n )

d(p∗∗n )−qSVn
c (q) dq

=

Z d(p∗∗n )

d(p∗∗n )−Q
c (q) dq

≥
Z Q

0

c (q) dq = C(Q).

where Q =
Pn

i=1 q
SV
i is the total amount awarded in the auction. The first equality is due to

(13). The next inequality is the only subtle part of the proof. Observe that for each player

i, by construction, d(p∗∗i ) − qSVi ≤ d(p∗) ≤ d(p∗∗i ) , where p
∗ is the market clearing price in

the conventional Vickrey auction. From this it follows that d(p∗∗n )− qSVn ≤ d(p∗) ≤ d(p∗∗n−1),

showing that the first inequality above results by calculating the second to last integral of

22



the strictly increasing marginal costs over a quantity interval of the same width qSVn−1, but

for an interval closer to the origin (zero quantity). This process is repeated for each integral,

and then the integrals are summed up to get the equality above. The last inequality results

by again evaluating an integral of the same width, but closer to the origin, noting that

d(p∗∗n ) ≡
P

i di(p
∗∗
n ) ≥

P
i di(p

∗∗
i ) ≡ Q. Since the total payment is at least the total cost, the

conventional Vickrey auction is feasible. (ii) By construction, the subsidized Vickrey auction

is a PPD mechanism where every player’s ask function is independent of this player’s bid,

so that Proposition 1 applies. (iii) No player is worse off in the subsidized Vickrey auction

because the ask curve he faces in the subsidized Vickrey auction lies below the ask curve he

faces in the conventional Vickrey auction. Indeed, any player that wins positive quantity in

the Vickrey auction will be made strictly better off in the subsidized Vickrey auction because

of the lower ask curve he faces.

Unlike the case of constant marginal values, in the case of diminishing marginal values the

subsidized Vickrey auction is generally not budget-balanced. The inequalities in equation

(14) are generally strict. In the event that one player, say 1, pushes the price p∗∗1 up so

high that p∗∗1 ≥ bj(0) for players j > 1, similar to what the left panel of Figure 5 shows for

the cases of constant marginal values, the outcome will be budget balanced and allocatively

efficient, and yet still Pareto dominate the outcome of the conventional Vickrey auction since

the winning player will pay only the production costs and no more.

6 Conclusion

In many games of incomplete information, it is generally not possible to simultaneously

achieve truthful bidding as a dominant strategy, budget balance, and allocative efficiency.

Thus, choosing a mechanism to solve an allocation problem will involve tradeoffs. The

Vickrey auction and Vickrey-Clarke-Groves mechanisms achieve allocative efficiency and

dominant strategies, but are often plagued by budget imbalance. In this paper, we have

shown that the budget surplus need not rule out altogether the Vickrey auction from use
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as a cost sharing mechanism. With some modifications, the Vickrey auction can be made

to redistribute back the surplus to players, not in direct monetary rebates, but rather in

terms of additional subsidized production. Although this subsidized Vickrey auction sac-

rifices some allocative efficiency, it still easily Pareto dominates the conventional Vickrey

auction. We have shown in an example in a noncooperative game where players have uni-

formly distributed values, that our subsidized Vickrey auction also outperforms other cost

sharing mechanisms, like the average and serial mechanisms. We do not believe that this

ranking between our subsidized Vickrey auction and the average and serial cost sharing

mechanisms holds universally in noncooperative games with incomplete information because

by construction the subsidized Vickrey auction will grossly overproduce when players’ values

are close together with high probability. Looking at the performance of these cost sharing

mechanisms in noncooperative games of incomplete information is a logical next step.

In the perfect price discriminating mechanisms introduced in this paper, we isolated the

key feature in the conventional Vickrey auction that ensures truthful beating as a dominant

strategy. Efficiency plays no role in whatsoever. Thus, efficiency can be sacrificed to alleviate

budget imbalance while maintaining truthful bidding. In future research, we will explore

whether this idea can help resurrect the Vickrey auction in other situations–like public

goods, bidding rings (McAfee and McMillan, 1992), and partnership dissolutions (Cramton,

Gibbons, and Klemperer, 1987)–where budget imbalance prevents its use.

Although we have limited discussion to environments with independent private values,

it would not be difficult to adapt the subsidized Vickrey auction to the affiliated values of

Milgrom and Weber (1982). Indeed in this setting, our subsidized Vickrey auction could

be implemented with an ascending auction, similar to the Ausubel (2004) auction. Our

subsidized Vickrey auction suffers the same drawbacks as conventional Vickrey auctions:

players may want to merge, or a player may want to submit multiple bids under multiple

identifies. Such behavior can compromise efficiency as described by Milgrom (2004) and

Ausubel and Milgrom (2002).
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