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Abstract

An outcome of a game is partnered if there are no asymmetric depen-
dencies between any two players. For a cooperative game, a payoff is in
the partnered core of the game if it is partnered, feasible and cannot be
improved upon by any coalition of players. We show that the relative inte-
rior of the core of a game with side payments is contained in the partnered
core. For quasi-strictly convex games the partnered core coincides with the
relative interior of the core. When there are no more than three partner-
ships, the sums of the payoffs to partnerships are constant across all core
payoffs. When there are no more than three players, the partnered core
satisfies additional properties.
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1. The Partnership Property

An intuitively appealing property of a solution for a game-theoretic model is sym-
metry of dependencies. If one player needs the cooperation of a second player to
achieve his payoff but the second player has alternative coalitions not including
the first player then the second player is in an apparently stronger position. This
is an asymmetric dependency. In such a case we may expect the stronger player
to attempt to use this dependency to increase his own payoff at the expense of the
more dependent player. A solution is said to have the partnership property if there
are no asymmetric dependencies. The partnership property has a long history in
cooperative game theory. It appeared in Maschler and Peleg (1966,1967), Peleg
(1968) and Maschler, Peleg, and Shapley (1972) in their impressive study of the
kernel and separating (partnered) collections of coalitions. The partnership prop-
erty on the domain of undominated payoffs was introduced in Albers (1974,1979),
and further studied in Selten (1981), Bennett (1980,1983), Bennett and Zame
(1988), Winter (1989) and Moldovanu and Winter (1994). More recently, the
partnership property on the set of undominated payoffs was studied in Reny and
Wooders (1996). Partnership has also been used to characterize price-taking eco-
nomic equilibrium in Bennett and Zame (1998) and no-arbitrage equilibrium in
Page and Wooders (1996) and in a study of commonwealths in Reny and Wooders
(1996).1 In the current paper we study the partnered core of a game with side
payments. This framework has the advantage of tractability and allows additional
results not obtainable in the case of games without side payments.
Two familiar examples illustrate the appeal of the partnership property. First,

consider a two-person bargaining problem of dividing a dollar. Any division of
the total payoff between the two players is in the core. To achieve the payoff
($.50,$.50), each player must have the cooperation of the other player; thus the
players are partnered. By contrast, the payoff ($1.00,$.00) is not partnered and
the coalition consisting of the two players is not compelled to form. One player
has an alternative coalition — himself alone— in which he can realize his part of
the payoff; the other player does not have such an option. In other situations, no
payoff in the core exhibits the instability demonstrated by the payoff ($1.00,$.00)
for the divide-the-dollar game. For example, in a game with one seller who owns
one indivisible unit of a good and two potential buyers, each of whom is willing
to pay a dollar for the good, the only payoff in the core is $1.00 to the seller

1The partnership property also is related to the KKMS Theorem; see Reny and Wooders
(1998) and Kannai and Wooders (2000).
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and $0.00 to each of the two buyers. If the player who actually buys the good
attempts to obtain a larger share of the surplus, the seller has the possibility of
approaching the other potential buyer and coming to some new agreement with
that buyer. The seller is not dependant on either buyer, and each buyer receives
only his individually rational payoff. Thus, there are no asymmetric dependences
between any pair of players.
Following Maschler and Peleg (1966,1967) we formulate the partnership prop-

erty directly on collections of coalitions. A collection of coalitions has the part-
nership property if for each player i, whenever j is a member of all the coalitions
containing player i, i is a member of all the coalitions containing player j. A
largest set of players whose members are in all the same coalitions in the collec-
tion is called a partnership and the players in the partnership are called partners.
A collection is minimally partnered if the only partner of a player is the player
himself. It is maximally partnered if the partners of each player include all other
players.
A payoff for a game is partnered if the collection of coalitions that can afford

that payoff for their members has the partnership property. We define the part-
nered core as the set of payoffs that are partnered, feasible, and undominated.
We show that the partnered core contains the relative interior of the core and
present an example in which the containment is strict. Thus, whenever the core
is nonempty, almost all, but not necessarily all, core payoffs are partnered. For
quasi-strictly convex games, however, we prove that the set of undominated pay-
offs with the partnership property coincides with the interior of the core of the
game.
For games with no more than three partnerships, we provide additional results

on the partnership property of the core. In particular, the collection of partner-
ships as well as the payoff to any particular partnership is constant across all
payoffs in the relative interior of the core. Also, when the total number of players
is less than or equal to three, we show that the partnered core coincides with the
core’s relative interior and that all core payoffs are minimally partnered — no one
is dependent on anyone — if and only if the core is a singleton set.
We employ the framework of a game in characteristic form with side payments.

This framework does not directly treat negotiations between players. Partnered
payoffs, however, have been shown to arise as outcomes of bargaining. In a non-
cooperative setting, Selten (1981) shows that the subgame perfect equilibrium
payoffs of a coalitional bargaining game are partnered. We discuss the relationship
of our framework and results to games with coalition structures in Section 6. We
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argue that partnerships are game-theoretically important components of coalition
structure games, as in Aumann and Dreze (1974). In particular, we emphasize
the distinction between partnerships and coalition structures required to achieve
gains to the collective activities described by the characteristic function. We
discuss related literature more generally in Section 7.

2. Games

A game (in characteristic form) is a pair (N, v) where N = {1, ..., n} is a finite set
of players and v is a function from 2N to R+ with v(∅) = 0. A nonempty subset
S of N is called a coalition.
A payoff for a game (N, v) is a vector x in RN . Let S ⊆ N and define

x(S) =
P

i∈S xi. A payoff x is feasible if x(N) = v(N). A payoff x is undominated
if x(S) ≥ v(S) for all coalitions S ⊂ N . The coalitions S with v(S) ≥ x(S),
denoted by S(x), are said to support the payoff x. The coalitions in S(x) that
contain the ith player are denoted by Si(x) = {S ∈ S(x) : i ∈ S}. The core of a
game (N, v) is denoted by C(N, v) and defined by

C(N, v) = {x ∈ RN : x is a feasible and undominated payoff for (N, v)}.

We denote the relative interior of the core by riC(N, v).

3. Partnership

Let N be a finite set of players and let P be a collection of subsets of N . For each
i in N let

Pi = {S ∈ P : i ∈ S}.
We say that P has the partnership property (for N) if for each i in N the set Pi

is nonempty and for each pair of players i and j in N the following requirement
is satisfied:

if Pi ⊂ Pj then Pj ⊂ Pi.

That is, if all the coalitions in P that contain player i also contain player j then
all the coalitions that contain j also contain i.2 We say that players i and j

2For the reader familiar with these works, we note here that partnered collections of coalitions
are called “separating collections” in Maschler and Peleg (1966,1967), and Maschler, Peleg, and
Shapley (1971). See Section 7 for further discussion.
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are partners (or that i is partnered with j) if Pi = Pj. Clearly, the relation “is
partnered with” is an equivalence relation. Consequently, let P[i] denote the
equivalence class containing i0s partners, and call P[i] a partnership. For any
collection P with the partnership property we say that P isminimally (maximally)
partnered if P[i] = {i} for each player i (P[i] = N). While our results will focus
on feasible payoffs, the partnership property is a property of collections of sets
and does not involve any feasibility requirements.
Let (N, v) be a game and let x be a payoff for (N, v). The payoff x is called

a partnered payoff if the collection of coalitions that support x, S(x), has the
partnership property. In this case we denote the partnership containing player
i by Px[i] and the collection of partnerships induced by x by Px. The payoff x
is minimally partnered (maximally partnered) if it is partnered and if the set of
supporting coalitions S(x) is minimally (maximally) partnered. Note that it is
not required that partnered payoffs be feasible.
The partnered core is denoted by C∗(N, v) and is defined by

C∗(N, v) = {x ∈ C(N, v) : x is a partnered payoff}.

Our first Theorem establishes the close connection between the core and the part-
nered core for games with side payments; the relative interior of the core is con-
tained in the partnered core. The Theorem also states that the set of partners of
a player (and hence the partition of N into partnerships) is unchanged over all
points in the relative interior of the core.

Theorem 1. Let (N, v) be a game. Then

riC(N, v) ⊆ C∗(N, v)

and for all x, y in riC(N, v),
Px[i] = Py[i].

Note that since riC(N, v) ⊆ C∗(N, v) the partnerships Px[i] and Py[i] are well-
defined. The result that Px[i] is equal to Py[i] is a consequence of the fact that
the set of supporting coalitions is constant over all points in the relative interior
of the core. The proof of Theorem 1 requires some linear programming results.
These, and the proof of the Theorem, are contained in the next section.3

3The first part of our Theorem is also proved by Albers (1979, Lemma 3.3 ). Both proofs
follow the same line of argument; ours, however, provides more detail — specifically, Lemmas
1 to 3. It follows from Albers’ Lemma that the set of undominated and partnered payoffs is
nonempty. The latter result is also proved in Bennett (1983).
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Combining Theorem 1 with the Bondareva (1963) and Shapley (1967) Theorem
that a game with side payments has a nonempty core if and only if it is balanced
leads to the Corollary below. We refer the reader unfamiliar with the concept to
Section 4 for the definition of a balanced game.

Corollary 1. The partnered core of a balanced game is nonempty.

The following example shows that the containment expressed in Theorem 1
may be strict.

Example 14 : Let (N, v) be a game where N = {1, 2, 3, 4},

v(N) = 4,

v({1, 3}) = 2,
v(1, 4}) = 2,
v({2, 3}) = 2,

v({2, 4}) = 2, and
v(S) = 0 for all other coalitions S ⊂ N.

The core consists of the set

{x : x1 = 2− x4, x2 = 2− x3, x3 = x4, x4 ∈ [0, 2]}.

Note that for all points in the core the constraints associated with the coalitions

{1, 3}, {1, 4}, {2, 3}, and {2, 4}

are binding. Consequently (see Lemma 3 in the next section), the solution to
the equations associated with these coalitions characterizes the relative interior
of the core. Thus, every payoff in the relative interior is minimally partnered.
This implies every core payoff is minimally partnered. Therefore (0,0,2,2), in the
boundary of the core and not in riC(N, v), is partnered.

Although all core payoffs may be minimally partnered, as in the above example,
our next Theorem shows that not all core payoffs can be maximally partnered.
Indeed the Theorem provides a somewhat more general result on the partnership
property of the core.

4This example is based on an observation due to Preston McAfee
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Theorem 2: Let (N, v) be a balanced game. Then there is a payoff in C(N, v)
that is either minimally partnered or not partnered.

Proof of Theorem 2: Let x∗ be any extreme point of the core. If x∗ is not
partnered, we’re done. So, suppose x∗ is partnered and not minimally partnered.
Then there is a pair of distinct players i and j who are partners. Consequently,
Si(x∗) = Sj(x∗), so that we can slightly increase the payoff to i (or j) and corre-
spondingly decrease the payoff to j (or i) while not violating any of the constraints
given by S(x∗). Thus, there is more than one solution to the equations given by

x(S) = v(S) for all S in S(x∗).

But this contradicts the extremal property of x∗, (i.e., x∗, being extreme, must
be the unique solution to the set of binding constraints).

Remark: The conclusion of Theorem 2 is tight. In Example 1 all payoffs (and
therefore all extreme payoffs) in the core are minimally partnered. An example of
a game in which no extreme payoff in the core is partnered and no payoff in the
core is minimally partnered is a two-person bargaining game.

The following Corollary is immediate from Theorems 1 and 2.

Corollary 2: C(N, v) = {x} implies x is minimally partnered.
For games with empty cores there exist undominated partnered payoffs. For

example, all payoffs in the relative interior of the core of the balanced cover game
are both undominated and partnered. These payoffs however are not necessarily
feasible, as illustrated by the following example.

Example 2: A three-person simple majority game. Let N = {1, 2, 3} and let

v(N) = 1,

v({i, j}) = 1 for each pair of distinct players i and j,

and
v({i}) = 0 for all i.

The payoff x = (1
2
, 1
2
, 1
2
) is clearly undominated and it is also partnered since the

collection of supporting sets {{1, 2}, {2, 3}, {1, 3}} is partnered. It is not, however,
feasible.
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For a class of convex games the set of undominated and partnered payoffs
coincides with the relative interior of the core. Let (N, v) be a game. The game
is quasi-strictly convex if for any pair of non-nested sets S and T contained in N,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T )

with strict inequality if S ∪ T = N. Thus, the game is convex and the gains to
forming the grand coalition are strictly positive. Note that all strictly convex
games are quasi-strictly convex, but the converse is not true. An example of a
quasi-strictly convex game which is not strictly convex is a pure bargaining game,
where v(S) = 0 for all S 6= N and v(N) = 1.

Theorem 3: Suppose that (N, v) is a quasi-strictly convex game. Then a payoff
x is undominated and partnered if and only if x is in riC(N, v).

Proof of Theorem 3: From Theorem 1 it follows that if a payoff x is in riC(N, v)
then x is partnered. To prove the Theorem it now suffices to show that if a
payoff x is partnered and undominated then it is in riC(N, v). And to show that
x ∈ riC(N, v) it suffices to show that (i) x(N) = v(N) and (ii) x(S) > v(S) for
all coalitions S 6= N . Since x is partnered, (ii) implies (i). (Partnership of the
payoff x implies that for each player i there is at least one coalition containing
player i supporting the payoff x. Since (ii) implies that no coalition smaller than
N supports x, N must support x. Finally, since x is undominated we must then
have x(N) = v(N).) Hence it suffices to show (ii). So, proceed by assuming that
(ii) is false. In particular, assume that there is some coalition S 6= N such that
x(S) = v(S). (Recall that x(S) < v(S) is impossible since x is undominated.)
Choose i ∈ S and j /∈ S. Since x is partnered, there exists T ⊂ N with j ∈ T ,
i /∈ T , and x(T ) = v(T ). Since S and T are non-nested we then have by quasi-
strict convexity that

x(S ∪ T ) + x(S ∩ T )

= x(S) + x(T ) = v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

Hence, x(S ∪ T ) = v(S ∪ T ) and x(S ∩ T ) = v(S ∩ T ). We have therefore shown
the following: for each strict subset S of N satisfying x(S) = v(S) there is a
non-nested strict subset T of N satisfying x(T ) = v(T ), x(S ∪ T ) = v(S ∪ T ) and
x(S ∩ T ) = v(S ∩ T ). Let S denote the non-empty, finite set of all such (S, T )
pairs. Choose (S∗, T ∗) ∈ S such that S∗ ∪ T ∗ is maximal with respect to set
inclusion.
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Now since x(S∗) = v(S∗), x(T ∗) = v(T ∗), x(S∗ ∪ T ∗) = v(S∗ ∪ T ∗), and
x(S∗ ∩ T ∗) = v(S∗ ∩ T ∗), it follows that v(S∗) + v(T ∗) = v(S∗ ∪ T ∗) + v(S∗ ∩ T ∗).
Consequently by the quasi-strict convexity of (N, v) it must be the case that
S∗ ∪ T ∗ ⊂ N , and S∗ ∪ T ∗ 6= N .
Let Q = S∗ ∪ T ∗. Since x(Q) = v(Q) there is a non-nested subset R of N

satisfying x(R) = v(R) and x(R ∪ Q) = v(R ∪ Q). Hence, (Q,R) ∈ S. But this
contradicts the maximality of S∗ ∪ T ∗ = Q ⊂ Q ∪R and Q 6= Q ∪R.
Corollary 3: If (N, v) is a quasi-strictly convex game then the interior of the
core, intC(N, v), is nonempty and x is partnered if and only if x is maximally
partnered.5

Proof of Corollary 3: Choose x0 ∈ riC(N, v). Then by the proof of Theorem
3, x0(N) = v(N) and x0(S) > v(S) for all proper subsets S of N (since x0 is
partnered). Hence x0 ∈ intC(N, v), and the first part is proven. The second part
follows since the fact that x0 is partnered means that (as before) the only binding
constraint is x0(N) = v(N). Consequently, x0 is maximally partnered.

4. Some Results on the Core and Linear Programming

To prove Theorem 1 and the results in the following section, we require some
linear programming results. First, for the convenience of the reader, we present
the well-known (c.f., [17] p. 154) linear programming characterization of the core.
A game (N, v) has a nonempty core if and only if the following linear program

minimize
nX
i=1

xi = z

subject to
X
i∈S

xi ≥ v(S) for all S ⊆ N
(4.1)

has a minimum z∗ ≤ v(N). Any minimizing x lies in the core. Conversely, if x ∈
C(N, v) then x(S) ≥ v(S) for all coalitions S; moreover,

Pn
i=1 xi = v(N). Thus,

the minimum z∗must satisfy z∗ ≤ v(N).

5Because every core payoff must be feasible, we view the core as a subset of Rn−1. Conse-
quently, the interior of the core is nonempty if and only if the core has full dimension, n− 1.
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Consider the dual program to (4.1):

maximize
nX
i=1

ωSv(S) = q,

subject to
X
S

i∈S⊆N

ωS = 1 for all i ∈ N, and

ωS ≥ 0 for all S ⊆ N.

(4.2)

Program (4.1) is feasible if and only if (4.2) is feasible and, in this case, the
minimum z∗ equals the maximum q∗. Thus, C(N, v) 6= ∅ if and only if q∗ ≤ v(N).
The above is the proof of the Bondareva (1963) and Shapley (1967) Theorem

that a game with side payments has a nonempty core if and only if the game
is balanced. Let β be a collection of nonempty subsets of N. We say that β
is balanced if there exist positive real numbers, called balancing weights, ωS for
S ∈ β such that X

S∈β
i∈S

ωS = 1 for all i ∈ N. (4.3)

A game (N, v) is balanced if for every balanced collection β with balancing weights
ωS for S ∈ β, X

S∈β
ωSv(S) ≤ v(N). (4.4)

The balancedness condition (4.4) characterizing games with nonempty cores will
be used in the proof of Lemma 3 below.
Throughout the remainder of this section A and B denote m×n matrices and

b, c, ... denote vectors in Rn.

Lemma 1: Let C be the convex subset of Rn defined by

C = {x ∈ Rn : A x ≥ b, B x ≥ c}.

Further, assume that A x0 = b and B x0 > c for some x0 ∈ riC, the relative
interior of C. Then

riC = {x ∈ Rn : A x = b, B x > c}.

Proof of Lemma 1: Let X = {x ∈ Rn : A x = b, B x > c}.
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Part 1: To show that riC ⊂ X we first show that for all z ∈ C, A z = b. So,
choose any z ∈ C. Since x0 ∈ riC, there exists α ∈ (0, 1] and y ∈ C such that
x0 = α z+(1−α)y. But A z ≥ b, A y ≥ b, and α ∈ (0, 1], together with A x0 = b,
imply that A z = b.
Now choose any x∗ ∈ riC. Then there exist α ∈ (0, 1] and y ∈ C such that

x∗ = α x0 + (1− α)y. Hence, A x∗ = b and B x∗ > c.
Part 2: To show that X ⊂ riC let L∗ be the smallest linear subspace such that

C ⊂ L∗+x0. Recall that x ∈ riC if (and indeed only if) for all y ∈ L∗, x+α y ∈ C
for all α sufficiently small (Rockafellar (1970), p. 44). Consequently, it is enough
to show that L∗ ⊂ {x : A x = 0}.
So, let L̃ = {x : A x = 0}. Since L̃ is a linear subspace, it suffices, by the

definition of L∗ to show that C ⊂ L̃+x0. So, choose x ∈ C. Then as shown in the
first part of the proof, A x = b. Since A x0 = b, we have y = x− x0 ∈ L̃, that is,
x = y + x0 ∈ L̃+ x0.

Remark: Consider the system of linear inequalities A x ≤ b, and denote its
(convex) set of solutions by C. Suppose C 6= ∅ and choose x0 ∈ riC. Let E = {i :
Aix

0 = bi}, where Ai denotes the i
th row of A. Then by Part 1 of the proof above,

for every i in E, Aix ≤ bi is binding in every solution x ∈ C. Moreover, because
these are the only inequalities binding for x0, these are precisely the inequalities
that must be binding in every solution. Hence, by Lemma 1, x∗ is in riC if and
only if those constraints binding for x∗ are binding in every solution.

The next Lemma relates constraints that are binding in every solution in a lin-
ear programming problem to positive values of solutions to the corresponding dual
variables. The Lemma is the converse to the complementary slackness Theorem.

Lemma 2: If the first constraint is binding in every solution to the primal prob-
lem,

maximize c · x
subject to A · x ≤ b, x ≥ 0,

(4.5)

then there exists a solution to the dual problem,

minimize b · y
subject to ATy ≥ c, y ≥ 0,

(4.6)

in which the first dual variable is strictly positive.

Proof. See Schrijver (1990), p.95.
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Remark: Let C denote the set of solutions to the linear programming problem
(4.5). Our first two Lemmas show that for every point x∗ in riC there is a solution
to the dual problem (4.6) with the property that every dual variable corresponding
to a constraint that is binding at x∗ has a positive weight.

Our next Lemma relates balanced collections of coalitions to the relative inte-
rior of the core.
Let (N, v) be a game. Define the collection of sets B by

B = {S ⊂ N : for every solution x to the program (4.1)
the constraint x(S) ≥ v(S) is binding}.

Lemma 3: Let x∗ ∈ C(N, v). Then {S : x∗(S) = v(S)} is balanced if and only if
x∗ ∈ riC(N, v).

Proof. Let x∗ ∈ C(N, v). Assume S(x∗) = {S : x∗(S) = v(S)} is balanced. Let
(δS)S∈S(x∗) be a collection of balancing weights for S(x∗). Since x∗ ∈ C(N, v),

v(N) = x∗(N) =
X

S∈S(x∗)
δSx

∗(S) =
X

S∈S(x∗)
δSv(S).

Consequently, (δS) is a solution to the dual programming problem (4.2). By the
definition of balancedness, δS > 0 for each S ∈ S(x∗). It follows that S(x∗) ⊆ B.
For suppose not. Then there is a solution x0 to the primal problem and S ∈ S(x∗)
such that x0(S) > v(S). This implies that v(N) = x0(N) =

P
S∈S(x∗) δSx

0(S) >P
S∈S(x∗) δSv(S) = v(N) since x0 ∈ C(N, v) and x0(S) > v(S) for at least one

coalition S in S(x∗), yielding a contradiction. Moreover, x∗ ∈ C(N, v) implies
B ⊆ S(x∗). We conclude that S(x∗) = B and so by the remark following Lemma
2, x∗ ∈ riC(N, v).
Let x∗ be a payoff in riC(N, v). From the remark following Lemma 2 , there

is a solution to the dual problem (4.6) with the property that every dual variable
corresponding to a primal constraint that is binding at x∗ is positive. Thus, the
collection of supporting coalitions S(x∗) = {S ⊂ N : x∗(S) = v(S)} is balanced.
Proof of Theorem 1: Let x be a payoff in riC(N, v). From Lemma 3 the
collection of supporting coalitions S(x) is balanced. Consequently, ΣS∈Si(x)ωS =

1 and ΣS∈Sj(x)ωS = 1 for any set of balancing weights {ωS}S∈S(x). Hence it is
impossible that Si(x) ⊂ Sj(x) and Si(x) 6= Sj(x).We conclude that x is partnered.
The second part of the Theorem follows from the observation (see Lemma 1)

that the set of binding constraints is constant over all points in riC(N, v). Conse-
quently the set of partners of a player is unchanged over all points in riC(N, v).
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The following Lemma will be used in the next section.

Lemma 4. Suppose that A is an m × n matrix consisting entirely of zeros and
ones and that n, the number of columns, is no greater than three. If for any pair
of distinct columns, j and j0 there is a row, i, of A whose jth entry is one and
whose j0thentry is zero, then A has rank n.

Proof: Since there are potentially eight distinct rows, it is straightforward to
simply exhaust all possibilities.

5. Games with Three or Fewer Partnerships

In this Section we obtain some stronger results for games with no more than three
partnerships. This condition is obviously satisfied if there are no more than three
players; our first two results concern such games.

Theorem 4: Let (N, v) be a game with |N | ≤ 3. Then a payoff x ∈ C(N, v) is
minimally partnered if and only if C(N, v) = C∗(N, v) = {x}.
Proof of Theorem 4: In view of Corollary 2, it suffices to show that if a payoff
x ∈ C(N, v) is minimally partnered then x is the unique core payoff. Observe
that if x ∈ C(N, v) is minimally partnered then {S : x(S) ≤ v(S)} has a balanced
subset that is itself minimally partnered (this can be verified by checking all
possible cases). Now, since the subset is balanced the associated constraints in
problem (4.1) must hold with equality in every solution. But by Lemma 4 this
balanced subset then yields a system of equations with x as a unique solution
since it is minimally partnered. Therefore C(N, v) = C∗(N, v) = {x}.
Theorem 5: Let (N, v) be a game with |N | ≤ 3. Then x ∈ C(N, v) is partnered
if and only if x ∈ riC(N, v).

Proof of Theorem 5: In view of Theorem 1, it suffices to show that if x
∈ C(N, v) is partnered then it is in riC(N, v). If x ∈ C(N, v) is minimally
partnered then we’re done by Theorem 4. So suppose that x is partnered but
not minimally partnered. Consequently there are four possibilities for S(x) :
{{1, 2}, {3}}, {{1, 3}, {2}}, {{1}, {2, 3}} and {{1, 2, 3}}. Clearly, each of the four
possible collections of supporting coalitions for x is balanced. Thus, by Lemma 3,
x ∈ riC(N, v).

Recall that all relative interior core points induce the same partnerships. Our
next result states that if there are no more than three partnerships supporting
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payoffs in the relative interior of the core, then the total payoff to each partnership
is constant across all payoffs in the core’s relative interior.

Theorem 6: Let x and y be payoffs in riC(N, v) and define P[i] = Px[i] (=
Py[i]). Suppose that there are no more than three partnerships in the supporting
collection S(x) (= S(y)). Then for each partnership P[i],X

j∈P[i]
xi =

X
j∈P[i]

yi.

Proof of Theorem 6: Choose x∗ ∈ riC(N, v). Consider the case in which
x∗induces three partnerships which we denote by P[i1], P[i2], P[i3]. (Other cases
can be handled similarly.) Recall then that the set of supporting coalitions for
x∗, S(x∗) = {S : x∗(S) = v(S)} enjoys the following properties: (i) If S ∈ S(x∗)
and S ∩P[ij] 6= ∅ then S ⊇ P[ij]; (ii) If P[ij] 6= P[ik], then there exists S ∈ S(x∗)
such that S ⊇ P[ii] and S ∩ P[ik] = ∅.
Introduce three free variables y1, y2, and y3. Then, by letting yk = x(P[ik]),

for every S ∈ S(x∗) the associated equation x(S) = v(S) can, by (i), be written as
Σyk = v(S), where the sum is taken over those k ∈ {1, 2, 3} such that S ⊇ P[ik].
Taken together, these equations provide a linear system in the three variables
y1, y2, and y3. Write this system as Ay = w and note that A is a matrix with
three columns having, by (ii), the properties listed in the hypotheses of Lemma
4. Consequently, A has rank 3 and the unique solution to the system is, say,
y∗1, y

∗
2, and y∗3. Consequently, x

∗(P[ik]) = y∗k for k = 1, 2, 3. Moreover, since the
system Ay = w is independent of the chosen point in riC(N, v), we must have
x(P[ik]) = y∗k for every x ∈ riC(N, v).

6. A Remark On Coalition Structure Games

In applications of the theory of games in characteristic form it is often assumed
that a part of the problem to be solved is the division of players into groups for
the purposes of joint consumption and/or production within groups, for example,
the collective consumption of public goods (c.f., Wooders (1994, Section 6) for a
survey of some applications). In these problems, a characteristic function, say w,
is derived from the underlying social and economic data. The function w specifies
the payoff to any coalition S when the members of S engage in collective activities.
It is frequently useful to make a distinction between the payoff to a group acting
together and the payoffs realizable by a group when it is permitted to divide into
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subgroups. There may be congestion, for example, in the consumption of public
facilities, so that a number of groups may each have their own facilities. Then a
superadditive characteristic function v, called the superadditive cover of w, can be
derived from the characteristic function w by defining

v(S) = max
{Sk}

X
k

w(Sk), (6.1)

where the maximum is taken over all partitions {Sk} of S, called coalition structures.
Such games (N, v) are known as coalition structure games or partitioning games;
see Aumann and Dreze (1974) where the concept was introduced, Kaneko and
Wooders (1982) for conditions ensuring that collections of coalitions are strongly
balanced (so that any game with those admissible coalitions has a nonempty core)
and le Breton, Owen, and Weber (1992) for a discussion of games satisfying strong
balancedness, and references in these papers.
Since we require feasibility of a payoff for the coalition of the whole, that is, the

condition x(N) = v(N) (see Section 2) our results do not make explicit any effi-
cient underlying coalition structure, i.e., a coalition structure {Sk} of N such that
v(N) = Σk w(Sk). Our results, however, apply immediately to coalition structure
games. The partnership structure associated with a point in the partnered core
of (N, v) informs us of the partnerships induced by the game (N,w).

Proposition 1: Let (N,w) be a game and let (N, v) be the game in which v is
defined by (6.1).
(1.1) A payoff x is a partnered payoff for the game (N,w) if and only if x is

a partnered payoff for the game (N, v).
(1.2) Given a partnered payoff x, let Pw

x denote the partnership structure (i.e.,
the collection of partnerships) induced by x in the game (N,w) and similarly let
Pv
x be the partnership structure induced in (N, v). Then Pw

x = Pv
x .

The proof follows from the fact that for any payoff x the supporting coalitions
induced by the game (N, v) are unions of the supporting coalitions induced by the
game (N,w).
While the characteristic functions v and w induce the same partnerships, there

is, however, a distinct difference between partnerships and coalitions. For exam-
ple, consider a 2-person bargaining game, where there is a dollar to be divided
between the two players 1 and 2. The payoff (.50,.50) is partnered with partner-
ship {{1, 2}}. The coalition {1, 2} can also realize the payoff (1.00,.00), but the
collection of supporting coalitions is not partnered and in this situation we do not
call {1, 2} a partnership.
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To illustrate a further distinction between partnerships and efficient coalitions,
suppose now that there are eight players, {1, 2, ..., 8}. For this example, the eight
players can be partitioned into four pairs, p1 = {1, 2}, p2 = {3, 4}, p3 = {5, 6} and
p4 = {7, 8}, and only distinct pairs of players are productive.6 Formally, define
the characteristic function w by

w(S) = 2 if S = pi ∪ pj for some i 6= j and
w(S) = 0 otherwise.

Observe that, using (6.1) to define v, an efficient coalition structure achieving
v(N) = 4 is given by

{{1, 2, 3, 4}, {5, 6, 7, 8}},
or any other partition of the set of players into two coalitions, each consisting of
two distinct pairs, pi and pj. The core is given by

{x ∈ R8 : xk ≥ 0 for each player k and for each pair pi,
x(pi) = 1}.

The partnerships induced by any point in the relative interior of the core are the
pairs p1, p2, p3 and p4 and the partnered core is

{x ∈ R8 : xk > 0 for each player k and for each pair pi,
x(pi) = 1}.

To realize a payoff in the partnered core the players in partnerships are inseparably
united, while a number of different coalition structures (3, to be exact) are con-
sistent with the achievement of any such outcome. This points to the distinction
between partnerships and coalitions.
In the coalition structure literature (even in [1], [5], [6], [25]) no distinction is

made between the concepts of coalitions and partnerships. Partnership refers to
a closer link between players than that of membership in the same coalition.
Minimally partnered collections of coalitions appear to have special signifi-

cance, and enable a strong distinction between models of economies. In terms of
familiar economic examples, an economy with pure public goods has fully part-
nered Pareto-optimal outcomes and this is independent of the size of the economy.

6Vicky Barham suggested that the pairs may be pairs of automobile tires, with each pair a
different size. Automobiles may have different sized tires in the front and in the rear, but the
front wheels are both the same size and the back wheels are both the same size (and perhaps
this is essential).
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Economies with local public goods, where the size of the groups of players required
to achieve all gains to collective consumption and/or production are smaller than
the number of players of each type, have Pareto-optimal outcomes that are min-
imally partnered. The competitive outcome of a replicated exchange economy is
minimally partnered (Reny and Wooders (1996). All three sorts of economies are
coalition structure economies. The feature of the existence of minimally partnered
Pareto-optimal outcomes appears to be an important distinction.

7. Other Literature Relating to the Partnership Property

The partnership property first appeared in Maschler and Peleg (1966,1967) and
Maschler, Peleg, and Shapley (1971) in their study of the kernel of a cooperative
game. We refer the reader to the original articles or to Owen (1982) or other
texts in game theory for a definition of the kernel. Since the concern of Maschler
and Peleg was “separating out” players, Maschler and Peleg call a partnered col-
lection of sets a separating collection. They call two players i and j inseparable
if, in our terminology, they are partners. Maschler and Peleg call a collection of
sets completely separating if it is minimally partnered. Our choice of terminology
follows Bennett (1983) and Bennett and Zame (1988) and is motivated by our
desire to focus on coalition formation rather than the separation of players. The
terms introduced by Maschler and Peleg are also appealing, as, from the view-
point of core solutions, we may think of players who are partners as inseparable.
A number of interesting relationships on balancedness and partnership are estab-
lished in Maschler, Peleg, and Shapley (1971) including that a balanced collection
of coalitions is partnered. This result, along with Lemma 3, lies at the heart of
our proof of Theorem 1. Maschler, Peleg, and Shapley observe, however, that
in general, the partnership property does not imply balancedness and that any
set of six minimal winning coalitions in the 7-person projective game (c.f., von
Neumann and Morgenstern (1953), p. 470) is minimally partnered but not even
weakly balanced (i.e., balanced, but with some balancing weights in (4.3) possibly
equal to zero).
The partnership property on the domain of undominated payoffs appears in

Albers (1974,1979), Selten (1981), Bennett (1980,1983), and Bennett and Zame
(1988). In these papers the authors take the viewpoint that individuals, in bar-
gaining over the distribution of payoff within a coalition, do not take into account
the feasibility of the total demands of all participants in a game. A payoff x for a
game (N, v) is defined as semi-stable (or an aspiration) if for each player i there
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is a coalition S containing i such that x(S) = v(S). The payoff x is stable if
it is semi-stable and partnered. Our definition of a partnered and undominated
payoff implies that such a payoff is semi-stable (and thus, of course, stable). We
note that our results continue to hold when we restrict the domain of payoffs to
semi-stable demands (aspirations).
Besides its intuitive economic and game theoretic appeal and its mathemat-

ically interesting properties, the partnership property has additional motivation
in non-cooperative game theory and in the theory of perfect competition. Selten
(1981) provides an interesting example of the emergence of an undominated and
partnered payoff (not necessarily feasible) in the description of a three person “di-
vide the dollar” game. Bennett and Zame (1988) show that competitive payoffs of
exchange economies with strictly convex and monotone preferences are partnered.
Page and Wooders (1996) demonstrates that the Bennett-Zame result extends to
economies with arbitrary consumption sets and possibly non-monotonicities. Page
and Wooders also provide a Second Welfare Theorem for the partnered competi-
tive equilibrium; every individually rational allocation is a partnered competitive
equilibrium relative to some redistribution of endowments.
Reny and Wooders (1996) show that the partnered core of a balanced game

without side payments is nonempty and thus provide a refinement of Scarf’s The-
orem (1967) on the nonemptiness of the core. Extending Theorem 4 of this paper,
Reny and Wooders (1996) show that for any game with at most a countable
number of points in its core, there is at least one core point which is minimally
partnered. Reny and Wooders also provide an example of a game without side pay-
ments in which the relative interior of the core is nonempty but does not contain
any payoffs with the partnership property. Thus, the character of the partnered
core is quite distinct between games with and without side payments.

References

[1] Albers, W. (1974) “Zwei Logungskonzepte Fur Kooperative Mehrperson-
spiele, Die Auf Anspruchsniveaus der Spieler Bastiern” OR-Verfahren (meth.
Oper. Res) 21, 1-13.

[2] Albers, W. (1979) “Core and Kernel Variants Based on Imputations and
Demand Profiles” in Game Theory and Related Topics, O. Moeschlin and D.
Pallaschke, eds. North Holland, Amsterdam.

18



[3] Aumann, R.J. and J. Dreze (1974) “Cooperative Games with Coalition Struc-
tures,” International Journal of Game Theory 3, 217-237.

[4] Bennett, E. (1980) “Coalition Formation and Payoff Distribution in Cooper-
ative Games,” Ph. D Dissertation, Northwestern University (1980)”.

[5] Bennett, E., (1983) “The Aspiration Approach to Predicting Coalition For-
mation and Payoff Distribution in Sidepayment Games,” International Jour-
nal of Game Theory 12, 1-28.

[6] Bennett, E. and W.R. Zame (1988) “Bargaining in Cooperative games”, In-
ternational Journal of Game Theory 17, 279-300.

[7] le Breton, M., G. Owen, and S. Weber (1992) “Strongly Balanced Cooperative
Games,” International Journal of Game Theory 20, 419-427.

[8] Bondareva, O., (1963) “Some Applications of Linear Programming Methods
to the Theory of Cooperative Games,” Problemy Kybernetiki 10, 119-139 (in
Russian).

[9] Kaneko, M. and M.H. Wooders (1982) “Cores of Partitioning Games,” Math-
ematical Social Sciences 3, 313-327.

[10] Kannai, Y. and M. Wooders (2000) “A further extension of the KKMS The-
orem,” Mathematics of Operations Research 25, 539-551.

[11] Maschler, M. and B. Peleg (1966) “A Characterization, Existence Proof and
Dimension Bounds for the Kernel of a Game,” Pacific Journal of Mathematics
18, 289-328.

[12] Maschler, M. and B. Peleg (1967) “The structure of the kernel of a cooperative
game,” SIAM Journal of Applied Mathematics 15, 569-604.

[13] Maschler, M., B. Peleg, and L.S. Shapley (1971) “The Kernel and Bargaining
Set for Convex Games,” International Journal of Game Theory 1, 73-93.

[14] Moldovanu, B. and E. Winter (1994) “Consistent Demands for Coalition For-
mation in Games,” in Essays in Game Theory in Honor of Michael Maschler,
ed. Nimrod Megiddo. Springer-Verlag, 129-140.

[15] Page, F.H. Jr. and M. Wooders (1996) “The Partnered Core and the Part-
nered Competitive Equilibrium,” Economics Letters 52 (1996) 143-152.

19



[16] von Neumann, J. and O. Morgenstern (1953) The Theory of Games, Prince-
ton University Press.

[17] Owen, G. (1982) Game Theory , Academic Press, New York.

[18] Peleg, B. (1968) “On Minimal Separating Collections,” Proceedings of the
American Mathematical Society 19, 1-3.

[19] Reny, P.J. and M. Wooders (1996) “The Partnered Core of a Game Without
Side Payments,” Journal of Economic Theory 70, 298-311.

[20] Reny, P.J. and M. Wooders (1998) “An Extension of the KKMS Theorem,”
Journal of Mathematical Economics 29,125-134.

[21] Reny, P.J., E. Winter and M. Wooders (1993) “The Partnered Core of a Game
With Side Payments,” Hebrew University Center for Rationality Working
Paper 33; University of Bonn Sonderforschungsbereich 303, in the German
National Library, OCLC 7551219; 1University of Western Ontario Research
Report ISBN 0771415893;

[22] Rockafellar, R.T. (1970) Convex Analysis, Princeton University Press, Prince-
ton, New Jersey.

[23] Scarf, H.E. (1967) “The Core of an n-person Game,” Econometrica 35, 50-67.

[24] Schrijver, A. (1990) Theory of Linear and Integer Programming, Wiley In-
terscience Series in Discrete Mathematics and Optimization.

[25] Selten, R. (1981) “A Noncooperative Model of Characteristic Function bar-
gaining,” in Essays in Game Theory and Mathematical Economics in Honor
of Oskar Morgenstern, V. Boehm and H. Nacktkamp (eds.), in Gesellschaft,
Recht, Wirtschaft, Band 4, Wissenschaftsverlag Bibliographisches Institute.
Mannheim-Wein-Zurich, 131-151.

[26] Shapley, L.S. (1967) “On Balanced Sets and Cores,” Navel Research Logistics
Quarterly 14, 463-460.

[27] Winter, E. (1989) “An Axiomatization of the Stable and Semistable Demand
Vectors by the Reduced Game Property” Discussion Paper No. A-254, The
University of Bonn.

20



[28] Wooders, M. (1994) “Large Games and Economies with Effective Small
Groups,” in Game-Theoretic Methods in General Equilibrum Analysis,
eds. J-F. Mertens and S. Sorin, Kluwer Academic Publishers Dor-
drecht/Boston/London 145-206.

21


