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Abstract

This paper considers the general problem of testing multiple inequality moment restrictions

against an unrestricted alternative. We first introduce a test based on a maximum statis-

tic and show how, via a partially recentered bootstrap scheme, we may obtain a testing

procedure that delivers, at least asymptotically, an exact α-level test for any configuration

of the parameters on the boundary of the null hypothesis. We prove that this bootstrap

test is asymptotically unbiased and that it weakly dominates analogous testing procedures

based on the canonical (fully centered) bootstrap. Building on these results we introduce a

computationally inexpensive minimum p-value test. The minimum p-value test enjoys the

asymptotic unbiasedness property of the underlying partially recentered bootstrap test. Ad-

ditionally, the minimum p-value test delivers balance of power among the individual moment

inequalities under test without studentization, and also allows users to gauge the strength

of the evidence against the individual moment inequalities. To illustrate the use of our pro-

posed testing procedure we examine the distributional effects of Vietnam veteran status on

earnings. In particular, the results from our procedure when applied to testing for stochastic

dominance and normalized stochastic dominance demonstrate that there is unambiguously

greater poverty and greater relative inequality in earnings for veterans.
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1. INTRODUCTION

In this paper we propose a new minimum p-value (MinP) test for testing multiple inequality

moment restrictions against an unrestricted alternative. Our proposed testing procedure is

endowed with a number of attractive properties which, when taken together, are not pos-

sessed by either minimum distance or existing MinP testing procedures. First, under mild

regularity conditions our test is shown to be asymptotically valid uniformly on the boundary

of the null and to be asymptotically unbiased. These properties are associated with the

enhanced ability of our testing procedure to detect violations of the moment inequalities, es-

pecially when the number of moment inequalities under test is large. Second, our procedure

delivers a balanced test without the need for studentizing the individual moment restric-

tions. Third, our testing procedure yields multiplicity-adjusted p-values which allow users

to gauge the strength of the evidence against individual moment restrictions without having

to pre-specify a target Type I error rate α. Lastly, and perhaps most importantly from a

practical standpoint, our testing procedure is far less computationally demanding than the

conventional bootstrap implementation of MinP-type tests in which a double bootstrap is

generally required.

The large class of the problems to which our proposed testing procedure applies can be

described as follows: Given a measurable r× 1 vector valued function ψ : Rm×Θ → Rr, the

hypothesis to be tested takes the form1

H0 : EP [ψ(i)(X, θ)] ≤ 0 for all 1 ≤ j ≤ r

against

H1 : EP [ψ(i)(X, θ)] > 0 for some 1 ≤ j ≤ r,

(1)

where X denotes a m-dimensional random vector generated according to the true probability

mechanism P , and the true value of the parameter θ(P ) ∈ Θ ⊂ Rk is unknown but may be

1Our focus here is on multiple one-sided tests, however the MinP procedure generalizes in a straightforward
manner to accommodate both one-sided and two-sided tests.
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consistently estimated. Since our interest centers on tests of the moment conditions and not

θ per se, our testing problem differs from the recent literature on inferential procedures for θ

when θ is point or partially identified by inequality moment conditions; see, for example, An-

drews and Soares (2007), Andrews and Jia (2008), Chernozhukov, Hong and Tamer (2007),

and references therein. As the following examples are intended to illustrate, the class of

testing problems under consideration is nevertheless general and encompasses a wide range

of potential applications in econometrics.

Example 1 (Moon and Schorfheide (2008)). Economic theory may suggest a number of

overidentifying moment inequality restrictions. A test of EP [ψ(X, θ)] ≤ 0, where θ is replaced

by θ̂—an estimator of θ that does not impose the inequality restrictions—may be viewed as

an LM-type test of the moment inequality restrictions.

Example 2 (Zheng, Formby, Smith and Chow (2000)). Let P denote the probability measure

associated with X = (Y, Z). Also, assume that Y and Z have marginals F and G with

common support [0,∞), and let θ = (µ(F ), µ(G)). The system of inequalities

EP [ψi(X, θ)] =

∫ ti

0

[F (µF t)−G(µGt)] dt ≤ 0

for a fixed grid (t1, . . . , tr) constitute a set of necessary conditions for (weak) second-order

normalized stochastic dominance (SND) of F over G.2

Example 3 (Dufour (1989)). Consider the translog production function

Yi = θ0 +
2∑

j=1

θjZij + θ3Z
2
i1 + θ4(2Zi1Zi2) + θ5Z

2
i2 + Ui (i = 1, . . . , n)

Testing for concavity of the production function amounts to testing

H0 : θ3 ≤ 0, θ5 ≤ 0, and θ2
4 − θ3θ5 ≤ 0

2Second-order normalized stochastic dominance is Lorenz consistent in that it yields the same partial
ordering on the space of distributions; see, e.g., Foster and Sen (1999, pp. 142-148) for further details.
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against an unrestricted alternative. In this case we may define

ψ(X, θ) =




θ3

θ5

θ2
4 − θ3θ5




.

Example 4 (White (2000)). Let f0(X, θ) denote a benchmark model and fi(X, θ) for 1 ≤
i ≤ r denote competing model specifications. For a given loss function L(·) a test of superior

performance of a competitor to the benchmark may be framed as

H0 : EP [L(f0(X, θ))− L(fi(X, θ))] ≤ 0

for 1 ≤ i ≤ r. In this case by defining

ψi(X, θ) = L(f0(X, θ))− L(fi(X, θ))

we see that testing for model superiority with respect to L(·) can also be treated within our

setup.

Variants of the testing problem defined in (1) have received significant attention in the

literature. Wolak (1987) proposes a test in the context of a linear regression model with lin-

ear equality and inequality constraints on the model parameters. Kodde and Palm (1986),

Wolak (1989), and Wolak (1991), treat the more general case of testing nonlinear inequal-

ity restrictions in nonlinear models. In each of these cases, the tests are based on (or are

asymptotically equivalent to) a statistic which is computed as the minimum distance be-

tween the estimated parameter and the set containing parameter configurations satisfying

the null hypothesis. Generally the asymptotic null distributions are a complex mixture of

χ2 distributions for any parameter configuration on the boundary of the null; see Perlman

(1969) for a development of the underlying theory. Due to the composite nature of the tests,
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the critical values are determined by the asymptotic distribution under the least favourable

configuration (LFC). In the linear model, the derivation of the LFC asymptotic null distri-

bution and the computation of the relevant critical value is, at least in principle, feasible.3

However, more serious complications can arise whenever nonlinearities are present in either

the inequalities or the model. In particular, unlike the linear case where the LFC is uniquely

defined by the configuration in which all of the inequalities are binding, the nonlinear cases

are plagued by situations in which the binding of inequalities does uniquely identify a pa-

rameter configuration, and in which the LFC may occur on the boundary of the null at a

point where one or more inequalities do not bind. These complications, among others, and

their consequences for the practical implementation of minimum distance tests are discussed

in detail in Wolak (1991) and Silvapulle and Sen (2004).

An obvious alternative to the minimum distance tests is the application of multiple

testing procedures; see, e.g., Savin (1984). Since H0 is true if and only if all of the individual

inequality restrictions are true, the hypothesis in (1) is equivalent to

H0 : max
1≤i≤r

Ψ(i) ≤ 0 against H1 : max
1≤i≤r

Ψ(i) > 0, (2)

where Ψ(i) denotes the ith element EP [ψ(X, θ)]. Formulated in this way it is a simple exercise

to obtain bounds on the p-value for an asymptotic test. For example, letting ti denote a stu-

dentized version of Φn,(i)—the empirical counterpart of Φ(i)—we have, under mild regularity

conditions and via the Bonferonni inequality, that

lim
n→∞

P

(
max
1≤i≤r

ti ≤ zδ

)
≥ 1− δr

where zδ is the (1− δ) quantile of the standard normal distribution. Then choosing δ = α/r

3See Wolak (1989) p. 215 for a discussion of the computational difficulties associated with computing the
covariance-dependent weights of the Chi-bar distribution. Note that Dufour (1989) provides a bounds test
that allows one to avoid explicit calculation of the probabilities.
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implies that the asymptotic familywise error rate is bounded by α, i.e.

Pr(Reject as least one Hi| all Hi are true) ≤ α.

Although the use of probability inequalities is simple, the resulting tests are conservative.

Moreover, in the presence of inequality constraints, the extent of under-rejection under the

null increases with the number of non-binding constraints. To see this, suppose that H0 is

true but q of the r inequalities do not bind. In this case

lim
n→∞

P

(
max
1≤i≤r

ti ≤ zδ

)
≥ 1− δ(r − q)

= 1− α
(r − q)

r

and it becomes clear that the degree of conservatism is increasing in q.4

To avoid the use of probability inequalities, bootstrap methods can be used to deliver, at

least asymptotically, an exact α-level test in the LFC. This approach is taken, for instance,

by White (2000) in the context of testing for superior performance of a given model relative

to a set of benchmark models. The basic idea when applied in our context entails obtaining

the bootstrap p-value from

P ∗(T ∗
n > Tn)

where Tn =
√

n max1≤r Ψn,(i) , T ∗
n denotes a bootstrap version of Tn, i.e.

T ∗
n =

√
n max

1≤i≤r
(Ψ∗

n,(i) −Ψn,(i)),

and P ∗ denotes the probability distribution associated with T ∗
n . Hereafter, we refer to such

tests as full recentered bootstrap tests, or (FRB) for short.

4This problem is well documented and has motivated the development of alternative multiplicity tests
in which the familywise error rate is relaxed in favour of controlling other false discovery rates; see e.g.
Romano, Shaikh and Wolf (2007) and references therein.
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All of the aforementioned tests can be characterized as LFC-tests in that they attempt to

bound the probability of a Type I error for all configurations under the null. A consequence

is that each of the LFC-tests is conservative if any of the inequalities are non-binding.

Additionally, each of these tests is biased, i.e. each will exhibit power less than size for

some sequence of Pitman alternatives approaching the boundary of the null. The issue of

unbiasedness of composite tests is the focus of the recent paper by Hansen (2003), where

he shows, among other things, that contrary to popular belief the LFC approach is not

necessary in order to construct asymptotically exact tests.

In this paper we extend the work of Bennett (2009) by introducing a new MinP-type test

for jointly testing multiple moment inequalities. Our testing procedure makes novel use of

the bootstrap distribution in order to dramatically reduce the computational burden which

is typically associated with MinP tests. Moreover, we modify the typical fully recentered

bootstrap by recentering only those inequality restrictions which are estimated to be in the

alternative and those strictly in the null but within a small neighbourhood of the boundary.

This subtle innovation applied to the resampling procedure has a dramatic impact on the

resampling distribution; namely, the distribution mimics the asymptotic null distribution

for any parameter configuration on the boundary of the null. Consequently, we are able

to establish that our test delivers asymptotic sizes that are valid uniformly over the null

hypothesis, and that our test delivers asymptotic sizes equal to the nominal level uniformly

over the boundary of the null hypothesis. As is demonstrated by Andrews and Guggenberger

(2007) and Mikusheva (2007), for example, uniformity is required for good finite sample

approximations whenever a test statistic has a discontinuity in its limit distribution, as is

the case here when testing multiple moment inequalities.

The related literature on inference with moment inequalities is large and growing rapidly.

Examples of recent contributions in this area include Linton, Song and Whang (2008),

Hansen (2005), Moon and Schorfheide (2008), Chernozhukov et al. (2007), Andrews and

Soares (2007), Andrews and Guggenberger (2007), Rosen (2006), Fan and Park (2007). And
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indeed other procedures exist that may be adapted to our environment. For example the

methods prescribed by Andrews and Jia (2008) can be adapted and applied in the context

considered herein. However, our MinP procedure is the only testing procedure which is

(i) consistent; (ii) balanced; (iii) invariant to studentization; (iv) asymptotically unbiased;

and (v) yields multiplicity-adjusted p-values that enable the user to gauge the strength of

the evidence against the individual moment inequalities. Users thus are not only able to

identify which moment inequalities which are responsible for rejection of the null but also

to validly infer their sign. Furthermore, in situations where hypotheses are not considered

equally important users may introduce weight functions to be applied directly to the adjusted

p-values—as opposed to the test statistics—thus enabling application of a transparent re-

weighting of the statistical evidence.

The remainder of the paper is organized as follows. Section 2 describes the estimation

of the moment inequalities and develops the associated asymptotics. Section 3 develops the

background for the the minimum p-value test which is introduced in Section 4. In Section

5 we discuss the asymptotic power of our test against fixed and local alternatives, and then

we illustrate the finite sample performance via simulation in Section 6. Section 7 presents

an empirical analysis of the distributional effects of Vietnam veteran status on earnings.

Section 8 contains concluding remarks.

2. ESTIMATION AND ASYMPTOTIC THEORY

Central to the testing procedures discussed below is the estimation of Ψ(P ) = EP [ψ(Xi, θ(P ))].

Implicit in our assumptions will be the availability of a consistent estimator θn := θ(Pn) of

θ(P ) which is used to obtain the “plug-in” estimator Ψn(Pn) = Pn[ψ(Xi, θ(Pn)] of Ψ(P ).

Formally, let X denote a random vector with support X and let Θ0 denote a bounded subset

of Rk. Given a measurable function ψ : X ×Θ0 → Rr let F denote the class of functions

{〈ψ(·; θ), h〉 : θ ∈ Rdim(Θ0), h ∈ Rk, ‖h‖ ≤ 1} (3)
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where 〈·, ·〉 denotes the standard inner product on Rn. Notice that in all of the examples in

the previous section, the centered random vectors

√
n (Pnψ(Xi, θ(Pn))− Pψ(Xi, θ(P ))) (4)

may be recovered from an empirical process of the form

√
n(Pnfθ1(Pn),h1 − Pfθ1(P ),h1)−

√
n(Pnfθ2(Pn),h2 − Pfθ2(P ),h2), (5)

where fθ,h ∈ F , either by setting h1 = h2 equal to the standard basis vectors in Rr, or by

setting h1 equal to the standard basis vectors in Rr and setting h2 = 0r×1.

In this section we outline a set of primitive conditions on the data generating process and

the map ψ and show that these assumptions are sufficient for establishing that the empirical

process defined in (5) is Donsker uniformly in a class of measures which we will denote by P .

We will then obtain as a corollary the convergence of (4) to a multivariate normal random

vector Z ∼ N(0, Ω(P )) uniformly in P ∈ P .

We begin by providing a formal statement of our assumptions.5 In particular, denote by P
the collection of of all potential distributions of X that satisfy the conditions of Assumption

1 below.

Assumption 1.

i. X1, . . . , Xn are i.i.d. copies of a vector random variable X with distribution P ∈ P

ii. supP∈P supθ∈Θ0
P [‖ψθ‖2]

2+δ < ∞ for some δ > 0

iii. ‖ψθ1 − ψθ2‖ ≤ ‖θ1 − θ2‖L(x) for all x ∈ X .

iv. supP∈P PL2+δ < ∞ for some δ > 0

5In our discussion we make frequent use of operator notation, i.e. Pf :=
∫

fdP .
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v. For some δ > 0, there exists a function DP (θ − θ0) such that

|Pfθ,h − Pfθ0,h − h ·DP (θ − θ0)| ≤ C‖θ − θ0‖

for θ ∈ Bδ(θ0), where C is a constant that does not depend on P .

vi. For each ε > 0

lim sup
n→∞

sup
P∈P

PP

{∣∣∣∣∣
√

nDP (θ − θ(P ))−M(θ(P ))
1√
n

n∑
i=1

S(Xi, θ(P ))

∣∣∣∣∣ > ε

}
= 0

where EP [S(Xi, θ(P ))] = 0 and supP∈P P [‖M(θ(P ))S(·, θ(P ))‖2]
2+δ for some δ > 0.

Assumption 1(i) is rather straightforward. Assumption 1(ii) requires the moments of

the map ψ to be uniformly bounded up to order 2 + δ. Parts (iii) and (iv) require ψ to

be Lipschitz continuous with Lipschitz function having bounded moments up to order 2+δ.

Parts (v) and (vi) of Assumption 1 together require EP [fθ,h − fθ0,h] to admit an asymptotic

linear representation uniformly in P . Note that many common estimators of θ0, including

GMM, OLS, and IV estimators will satisfy this condition under appropriate differentiability

conditions on EP [fθ,h] at θ = θ0.

For the statement of our main result of this section we introduce the following additional

notation. Define G = {〈h,M(θ(P ))S(·, θ(P ))〉 : h ∈ Rr, ‖h‖2 ≤ 1}, and denote by Φ the

class of functions

{(fθ1,h1 − fθ2,h2) + (gθ1,h1 − gθ2,h2) : (fθ1,h1 , fθ2,h2 , gθ1,h1 , gθ2,h2) ∈ F2 × G2}.

Theorem 1. Suppose the conditions of Assumption 1 are satisfied. Then

√
n(Pnfθ1(Pn),h1−Pfθ1(P ),h1)−

√
n(Pnfθ2(Pn),h2 − Pfθ2(P ),h2) =

Gn,P [(fθ1(P ),h1 − fθ2(P ),h2) + (gθ1(P ),h1 − gθ2(P ),h2)] + oP (1)
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uniformly in P ∈ P and

Gn,P Ã GP

in `∞(Φ) uniformly in P ∈ P, where GP denotes a mean-zero Gaussian process.

Theorem 1 implies that for any finite set {φ1, . . . , φr, φi ∈ Φ}

(Gn,P φ1, . . . ,Gn,P φr)

converges in distribution to a multivariate normal distribution uniformly in P ∈ P . The

connection to our testing problem is made upon setting hi equal to a standard basis vector

in Rr. We therefore obtain the desired convergence result as an immediate corollary to

Theorem 1.

Corollary 1. Suppose the conditions of Assumption 1 are satisfied. Then,

√
n(Pnψ(Xi, θ(Pn))− Pψ(Xi, θ(P )) ⇒ ZP

uniformly in P ∈ P where ZP denotes a r × 1 Gaussian random variable with covariance

matrix Ω(P )

3. MODIFIED MAXT TEST

The hypothesis in (1) is formulated as a joint hypothesis, the intersection of r hypotheses.

A straightforward statistic for this testing problem is given by

Tn =
√

n max
1≤i≤r

Ψn,(i)(Pn) (6)

where the subscript “i” denotes the ith element of the r × 1 vector Ψn(Pn).6

6Presumably due to the shape of the acceptance boundaries, (Goldberger 1992) refers to a test that rejects
when the maximum of two normalized sample means exceeds a suitably chosen critical value as a BOX test.
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Notice that we have chosen to define Tn without studentizing the component statistics

Ψn,(i). In general we might expect tests based on the studentized versions to perform better

in finite samples—the studentized Ψn,(i) would then be asymptotically pivotal and invariant

to scalar transformations.7 Our choice to work here with the basic statistics is merely for

notational convenience. Since the minimum p-value test that we introduce is invariant to

studentization of the component statistics, focusing here on the basic statistics will allow us

to maintain consistent notation throughout the paper.

Before presenting the asymptotic distribution of Tn we first introduce some additional

notation. Let P0 ⊂ P denote the collection of probability measures for which Ψ(i)(P ) ≤ 0

for 1 ≤ i ≤ r, and P00 ⊂ P denote the collection of probability measures for which the

inequality is strict for every i. Additionally, denote by I(P ) and I1(P ) the set of indices

i ∈ {1, . . . , r} for which Ψ(i)(P ) = 0 and Ψ(i)(P ) ≥ 0 under P . The asymptotic distribution

of Tn may now be stated as follows:

Theorem 2. Suppose that Assumption 1 is satisfied. Then,

Tn →d





maxi∈I(P)ZP,(i) if P ∈ P0\P00

−∞ if P ∈ P00

∞ if P ∈ P\P0

(7)

uniformly in P ∈ P where ZP is the k× 1 Gaussian random variable defined in Corollary 1.

The nature of the asymptotic distribution outlined in Proposition 2 suggests that a

procedure for estimating an α-level critical value that exploits the information content in a

given sample concerning the set I(P ) may be used to obtain smaller asymptotically valid

critical values, and hence more powerful tests than those based on the least favourable

configuration. This is the basic intuition behind the testing procedures of Hansen (2003),

7Note that irrespective of whether Ψn,(i) or a studentized version enters Tn, Tn is not asymptotically
pivotal.
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Hansen (2005), Linton et al. (2008), and also our work herein.8 By adopting such a strategy

we seek to develop tests which satisfy both

lim
n→∞

sup
P∈P0\P00

PP (Tn ≤ τ̂n) = 1− α (8)

and

lim
n→∞

inf
P∈P0\P00

PP (Tn ≤ τ̂n) = 1− α. (9)

Tests that satisfy (9) are said to be asymptotically valid uniformly on the boundary of the

null hypothesis. A test satisfying condition (9) is said to be asymptotically similar on the

boundary of the null hypothesis. Note that the latter condition is necessary for asymptotic

unbiasedness, and also that these conditions are considerably stronger than the requirement

that τ̂n satisfy

sup
P∈P0

lim
n→∞

PP (Tn ≤ τ̂n) = 1− α;

i.e. the least favourable configuration α-level critical value.

3.1 Bootstrap Critical Values

Standard implementations of the MaxT test employ critical values obtained in the least

favourable case where all of the inequalities bind. As was pointed out in the previous

section, this approach leads to conservative testing procedures. In this section we describe

a bootstrap procedure involving the basic statistics that delivers τ̂n satisfying both (8) and

(9).

Let Ψ∗
n,(i) denote a bootstrap version of Ψn,(i)(Pn). Typically bootstrap critical values are

obtained from the recentered bootstrap distribution, i.e.

Ψ∗FC

n,(i) = Ψ∗
n,(i) −Ψn,(i)(Pn).

8Similar tools are also employed in the literature on partial identification.
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In this paper we consider a slight modification of the fully recentered bootstrap. Specifically,

we define the partially recentered bootstrap statistics that enter the scaled max function by

Ψ∗PC

n,(i) = Ψ∗
n,(i) −max{Ψn,(i)(Pn),−δn} (10)

for 1 ≤ i ≤ r, where δn is sequence satisfying both δn → 0 and
√

nδn → ∞. Notice that

the recentering in (10) differs from the standard implementation of the bootstrap; namely

only those inequality restriction estimates which fall in the alternative or are in the null but

within δn of equality are recentered. As is demonstrated Theorem 3 below, this modification

enables the bootstrap distribution to mimic the asymptotic distribution for any parameter

configuration under the null.

Theorem 3. Suppose that the conditions of Assumption 1 are satisfied. Then, for any

positive sequence δn such that δn → 0 and
√

nδn →∞, we have

T ∗
n :=

√
n max

1≤i≤r
Ψ∗PC

n,(i) →d





maxi∈I(P )ZP,(i) if P ∈ P0\P00

−∞ if P ∈ P00

maxi∈I1(P )ZP,(i) if P ∈ P\P0

(11)

and the convergence is uniform over P ∈ P, .

Theorem 3 above demonstrates that the partially recentered bootstrap, with an appropri-

ately chosen sequence δn, is indeed sufficient to obtain consistency. Moreover, the theorem

establishes that consistency holds for any configuration of the parameters under the null

hypothesis. Theorem 3 also provides the justification for the using the partially recentered

bootstrap distribution to approximate the sampling distribution of Tn and in turn using this

approximation to estimate asymptotically valid critical values. A formal statement of the
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decision rule associated with the modified MaxT test is given by

Reject H0 if Tn > max{0, τ̂n(α)},

where

τ̂n(α) = inf{τ : P ∗(T ∗
n ≤ τ) ≤ 1− α}.

The validity of the testing procedure is the content of Theorem 4:

Theorem 4. Suppose conditions of Theorem 3 are satisfied. Then, for any positive sequence

δn such that δn → 0 and
√

nδn →∞, we have for α < 1/2

(i) Uniformly over P ∈ P0

lim
n→∞

PP (Tn ≤ τ̂n(α)) ≤ 1− α;

and

(ii) Uniformly over P ∈ P00\P0

lim
n→∞

PP (Tn ≤ τ̂n(α)) = 1− α.

Part (i) of the theorem states that the bootstrap test is asymptotically valid uniformly

over P ∈ P0. Part (ii) of the theorem demonstrates that the test delivers exact size uniformly

over the boundary of the null hypothesis. It is precisely this latter property of asymptotic

similarity that will enable the test to maintain greater power against alternatives in which

the number of inequality restrictions is large and a portion of the inequality restrictions are

strictly in the null. Notably, none of the LFC tests—this includes the minimum distance

tests—share this property and as a result will generally have low power in such situations.

These issues are discussed in further detail in Section 5.

An attractive feature of the bootstrap test proposed herein that is also not shared by
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the minimum distance tests is that conclusive statements may be made about the sign of

individual restrictions when the null is rejected. Specifically, for all c > 0 we have

lim
n→∞

sup
P∈P

PP

(√
nΨn,(i) ≤ c

) ≥ lim
n→∞

sup
P∈P

PP (Tn ≤ c) (12)

Combining (12) with, say, Theorem 4(i) implies that the confidence set

Cn(1− α) = (−∞, τ̂n(α)]

has asymptotic coverage probability at least 1− α for all Ψ(i), 1 ≤ i ≤ r.

4. MINIMUM P -VALUE TEST

The component statistics entering the maximum in Tn will generally have different distri-

butions. Consequently, it may be desirable to reformulate the tests so as to eliminate the

potentially excessive influence of any single component on Tn. In principle this can be ac-

complished by resampling the p-values of the individuals statistics and then basing our test

on the minimum of these p-values. In this section we show how the partially recentered

resampling schemes which were discussed previously can used to develop computationally

efficient minimum p-value tests that preserve the desirable properties of consistency and

asymptotic similarity.

The minimum p-value approach to multiple testing problems has recently been applied

in Godfrey (2005) in the context of controlling the overall significance level of a battery

of least squares diagnostic tests; see also MacKinnon (2007) and references therein for a

general discussion of this approach. In contrast to previous approaches which require a

double bootstrap, we propose a novel bootstrap procedure that requires only two individual

bootstrap procedures. Denoting the number of bootstrap replications as B1 and B2 in

the first and second stages, our procedure requires only B1 + B2 bootstrap replications in
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contrast to B1 + B1B2 replications required of the standard double bootstrap.9 A second

computational advantage of our procedure is that the bootstrap procedure in the second-

stage does not involve re-estimation but instead involves only resampling with replacement

from the bootstrap distribution obtained in the first-stage. Avoiding re-estimation can result

in significant computational savings, especially in nonlinear environments. Remarkably, our

procedure retains the attractive features of consistency, and asymptotic similarity on the

boundary of the null.

In our description of the minimum p-value tests we make use of the following notation.

First, we denote the jth of B1 resampled vectors by

Ψ∗
j = (Ψ∗

j,(i), . . . , Ψ
∗
j,(r)),

where the Ψ∗
j,(i), 1 ≤ i ≤ r denote the uncentered bootstrap statistics corresponding to

the jth bootstrap sample (to ease the notational burden we have dropped the subscript

corresponding to the sample size). For 1 ≤ j ≤ B1 we record both the fully recentered and

partially recentered bootstrap statistics Ψ∗PC
j and Ψ∗FC

j , and denote by H∗FC and H∗PC the

respective samples. We also define the ith marginal empirical distribution associated with

H∗FC by

H∗
(i)(x(1), . . . , x(r)) = B−1

1

∑B1

j=1 1{n1/2Ψ∗FC

j,(i) ≤ x(i)}, 1 ≤ i ≤ r .

Finally by defining the function ρ : Rr → [0, 1] by

ρ(x) = min
1≤i≤r

{(
1−H∗

(i)(x)
)}

9There are several papers which seek to minimize the computational burden of the double bootstrap. See,
for example, MacKinnon (2007) for a discussion of the “fast double bootstrap,” and Nankervis (2005) for
the use of various stopping rules. It is also worth noting that our bootstrap procedure is valid under weaker
conditions than those required by the “fast double bootstrap.”
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we may write the minimum p-value test statistic for testing (2) concisely as

p̂min = ρ(
√

nΨn).

The limiting null distribution of p̂min is the content of Proposition 1 below:

Proposition 1. Suppose that the conditions of Assumption 1 are satisfied, and let U denote

a r × 1 random vector with uniform marginals. Then,

p̂min →d





mini∈I(P ) U(i) if P ∈ P0\P00

1 if P ∈ P00

0 if P ∈ P\P0

(13)

uniformly in P ∈ P

Small p-values are associated with estimated values in the upper tail of the marginal

distributions, and hence rejection of the null should occur for p̂min sufficiently small, i.e. for

for p̂min < pcrit. Estimating pcrit so as to obtain an asymptotic α-level test requires estimating

the sampling distribution of p̂min. We now describe a second-stage sampling procedure

for estimating the sampling distribution p̂min that delivers an exact α-level test uniformly

over the boundary of the null hypothesis. Specifically, letting {Ψ∗∗
1 , . . . , Ψ∗∗

B2
} denote B2

randomly sampled observations from H∗PC , an asymptotically exact α-level critical value for

the minimum MinP test may be estimated from

p̂crit(α) = inf

{
t : B2

B2∑
j=1

1
{
ρ(Ψ∗∗

j ) ≤ t
} ≥ α

}

Notice that for each term in the sum the minimum is evaluated at a randomly sampled

vector from the joint (resampled) distribution of the statistics. This is necessary in order

to capture the dependence between the individual statistics. Theorem 5 below summarizes
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several basic asymptotic properties of the MinP value tests.

Theorem 5. Suppose that the conditions of Assumption 1 are satisfied. Then, for any

positive sequence δn such that δn → 0 and
√

nδn →∞, we have for α < 1/2

(i) Uniformly over P ∈ P0

lim
n→∞

PP (p̂min ≤ p̂crit(α)) ≤ 1− α;

and

(ii) Uniformly over P ∈ P00\P0

lim
n→∞

PP (p̂min ≤ p̂crit(α)) = 1− α.

Theorem 5 reveals that the MinP tests is uniformly asymptotically valid, and delivers

asymptotic size equal to the nominal size uniformly on the boundary of the null hypothesis.

Similar to the MaxT test, the MinP test enjoys the desirable property that a rejection

of the null hypothesis permits inferences to be made about the signs of a subset of the

inequality restrictions being tested. In particular, when the null is rejected we may infer the

sign of the ith moment to be equal to the sign of the estimate of restriction i for any i such

that

1−H∗
i (n1/2Ψn) < p̂crit(α)

The validity of this procedure follows from the fact that

lim
n→∞

PP

(
1−H∗

i (n1/2Ψn) < p̂crit(α)
) ≤ α

for 1 ≤ i ≤ r and all P ∈ P .
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5. POWER

In this section we study the power of our proposed tests against both fixed and
√

n-Pitman

alternatives. One of the more noteworthy findings that emerges from this analysis is the

asymptotic unbiasedness of both the MaxT and MinP tests. In addition, we establish the

weak dominance of these testing procedures over their analogues based on the canonical fully

recentered bootstrap.

We begin this section by studying the power of our proposed tests against a fixed al-

ternative. Letting P ∈ P\P0, we have, by definition, Ψ(i) > 0 for some 1 ≤ i ≤ r.

Since T PC
n = OP (1), whereas Tn → ∞ in this case, it should not be surprising that

PP (Tn > τ̂PC
n ) → 1 as n → ∞. Similarly, p̂min → 0, whereas p̂crit(α) converges to the

αth percentile of a continuous distribution with support on the unit interval. Under a fixed

alternative, it follows that PP (p̂min > p̂crit(α)) → 1 as n → ∞. These heuristic arguments,

which are developed more formally in the proof of Theorem 6 below, establish consistency

of both testing procedures.

Theorem 6. Let P ∈ P\P0 and suppose Assumption 1 holds. Then,

(i)

lim
n→∞

PP (Tn > τ̂PC
n (α)) = 1;

and

(ii)

lim
n→∞

PP (p̂min < p̂crit(α)) = 1.

Consistency against fixed alternatives is a minimal requirement for any testing procedure.

We now explore the power of our tests against
√

n-Pitman alternatives. Following Linton

et al. (2008) we restrict attention to {Pn} such that Pn ∈ P\P0 for all n and

Ψ(Pn) = Ψ(P ) + n−1/2ξ (14)
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where ξ ∈ Rr and P ∈ P0. Thus, in a slight abuse of notation, Ψ(P ) is used here to denote

a configuration on the boundary of the null hypothesis, and Φ(Pn) denotes a configuration

in which Ψ(i)(Pn) is strictly positive for some i ∈ {1, . . . , r}.

Theorem 7. Suppose Assumption 1 is satisfied. Additionally, assume Ψ(Pn) is a sequence

of alternatives satisfying (14). Then,

(i)

lim
n→∞

PPn(Tn > τPC
n ) ≥ α

and

(ii)

lim
n→∞

PPn(p̂min < p̂crit(α)) ≥ α

Parts (i) and (ii) of Theorem 7 establish that both testing procedures are asymptotically

unbiased; i.e. both procedures have power at least as great as the nominal size of the test

for any sequence of
√

n-Pitman alternatives. On the other hand, it is well known that the

classical minimum distance tests are biased see e.g. Wolak (1991) p. 220. That these

procedures weakly dominate analogous tests based on the fully recentered bootstrap follow

immediately from the fact that τPC
n ≤ τFC

n and p̂crit ≥ p̂FC
crit, where the superscript “FC”

denotes the critical value obtained via a full recentering scheme.

6. SIMULATION EXPERIMENTS

Here we present simulation evidence concerning the size and power properties of our proposed

tests. We have chosen to conduct our simulation experiment in the context of testing for

normalized stochastic dominance (NSD). The development of powerful testing procedures

in this context is a nontrivial extension of testing for stochastic dominance and also has

important implications. For example, establishing NSD at second order is equivalent to

establishing a Lorenz ordering, whereas NSD at third-order is consistent with the inequality

ordering implied by any Lorenz consistent inequality measure that satisfies the transfer
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sensitivity axiom of Shorrocks and Foster (1987); see Foster and Sen (1999) for further

discussion. We point out that an alternative test for normalized stochastic dominance already

exists and may be found in Zheng et al. (2000); however, by construction their testing

procedure is conservative. Additionally, their test is designed to test the null of equality

against the alternatives of crossing, or dominance in either direction.10 A direct comparison

of power of the two tests in the context of testing one-sided dominance is therefore not

presented here.11

In our analysis we consider dominance comparisons among various parametrizations of

two hypothetical income distributions: the lognormal distribution, and the Singh-Maddala

distribution.12 For ease of reference the parametrizations as well as the specific pairwise

comparisons are described in Table 1 below.

[Table 1 about here.]

In each of the experimental designs described in Table 1 pseudo random samples of size

n = 500, 1000, 1500, and 2000 are generated from the respective distributions and used to

test the hypothesis

H0 : F (s)(x) ≤ G(s)(x) for all x ∈ X

against

H1 : F (s)(x) > G(s)(x) for some x ∈ X

for s = 2, 3, 4, where F (2)(x) =
∫ x

0
F (µF y)dy and F (s)(x) =

∫ x

0
F (s−1)(y)dy for s > 2, with

10We note that our test may be easily adapted to testing the null of equality against multiple alternatives,
though a formal discussion of such a procedure is beyond the scope of the current paper.

11Our original intention was to adopt the experimental designs of Zheng et al. (2000) and offer a direct
comparison. However, while we have, for instance, maintained Case I from their simulations of power
against crossings, we do not report the results corresponding to Case II and III since we found our test to
have empirical rejection probabilities of 1 for samples as small as 100. In contrast, the test of Zheng et al.
(2000) rejects at most 16% of the 1000 null case simulations with a sample size of 1000.

12The three parameter Singh-Maddala distribution, denoted SM(a,b,q), is given by

F (x) = 1−
[
1 +

(x

b

)a]−q

with a, b, q ≥ 0.
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G(s) defined analogously. In each case X consists of 10 equally spaced points between the

the 5th and 95th percentiles of F , and the results for both the fully-recentered and partially

recentered bootstrap MinP tests are reported. The value of δn we use in the simulations is

specific to each hypothesis under test and is determined by δn = 0.1σ̂(i)

√
log(log(n))/

√
n,

where σ̂(i) is the standard deviation of the ith statistic as estimated from the first-stage

bootstrap.

Experiments (a) and (b) are designed to illustrate the empirical size of the test. The

simulation results are reported in Table 2. For all samples sizes and both experiments we

see that the MinP test delivers rejection probabilities close to the nominal size of 5%. This

is true irrespective of whether the fully-recentered or partially-recentered test is employed.

There is, however, some evidence in design (b) of a slight decline in the size of the tests as

the order of dominance increases, though this decline is less pronounced as the sample size

is increased.13

[Table 2 about here.]

Designs (c) and (d) are designed to illustrate the finite sample power of our test against

crossings . In particular, both cases involve relatively minute crossings of the respective pop-

ulation curves with case (d) being the most difficult to detect. It is in these situations that we

should expect to observe the partially-recentered bootstrap test significantly outperforming

the fully-recentered counterpart. Indeed, the partially-recentered bootstrap test dominates

in every case and identifies up to 23% more false hypotheses than the fully-recentered coun-

terpart.

Designs (e) and (f) illustrate the performance of the tests in the case of dominance.

All of the inequalities are in the alternative and hence both implementations of the MinP

test should and do yield similar results. In every case there is little difference between the

rejection probabilities of the two tests and in samples as small as n = 2000 both tests reject

13Qualitatively, this finding is consistent with the simulations of Zheng et al. (2000)
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in a significant proportion of trials.

Before concluding this section we note that further simulation results on the size and

power of the MinP test, albeit in the context of testing the difference between vectors of

simple population means (i.e. when θ is known and thus does not require estimation), can

be found in Bennett (2009). While qualitatively the results reported here are similar, Bennett

(2009) considers a broader range of designs—including varying the number of grid points

(ranging from 10 to 100)—and also reports on the proportion of false hypotheses identified

from the collection of hypotheses under test.

7. EMPIRICAL ILLUSTRATION

In this section we apply our test to expand on the analysis of Abadie (2002) where ran-

domization in the draft lottery is exploited to examine the distributional effects of Vietnam

veteran status on labour earnings. Abadie shows that the potential distributions for vet-

erans and non-veterans can be estimated for the subpopulation of compliers, and uses the

Kolmogorov-Smirnov (KS) type tests of McFadden (1989) and Barrett and Donald (2003) to

empirically examine whether the earnings distribution of non-veterans stochastically dom-

inates that of veterans. Using the exact data employed by Abadie, we apply our testing

procedure to test for both stochastic dominance and normalized stochastic dominance. As

we demonstrate below, our test allows us to make unambiguous statements concerning the

effect of veteran status on both poverty and inequality.

7.1 Preliminaries

Let Zi be a binary instrument. Let the pair Di(0) and Di(1) denote the values of the

treatment for individual i that would be obtained given the instrument Zi = 0 and Zi = 1

respectively. If Di(0) = 0 and Di(1) = 1 individual i is called a complier. Let Yi(0) be the

potential outcome for individual i without treatment and Yi(1) be the potential outcome

for the same individual with treatment. In practice, the analyst observes only the realized
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treatment and realized outcome, i.e.

Di = Di(1)Zi + Di(0)(1− Zi),

and

Yi = Yi(1)Di + Yi(0)(1−Di).

Define the cumulative distribution functions (cdfs) of the potential outcomes for compliers

FC
1 (y) = E[1{Yi(1) ≤ y}|Di(1) = 1, Di(0) = 0] (15)

and

FC
0 (y) = E[1{Yi(0) ≤ y}|Di(1) = 1, Di(0) = 0] (16)

Under a given set of assumptions (Abadie 2002, p. 285), Imbens and Rubin (1997) prove

that the potential distributions are identified, and derive estimators for their associated

probability density functions. Extending these results, Abadie (2002) provides a simple

method for estimating the cdfs (15) and (16). In particular, Abadie shows that

FC
1 (y) =

E[1{Yi(1) ≤ y}Di|Zi = 1]− E[1{Yi(1) ≤ y}Di|Zi = 0]

E[Di|Zi = 1]− E[Di|Zi = 0]
, (17)

and

FC
0 (y) =

E[1{Yi(1) ≤ y}(1−Di)|Zi = 1]− E[1{Yi(1) ≤ y}(1−Di)|Zi = 0]

E[(1−Di)|Zi = 1]− E[(1−Di)|Zi = 0]
; (18)

and thus the potential earnings distributions FC
1 and FC

0 in (15) and (16) can be estimated

using empirical counterparts of equations (17) and (18) respectively.
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7.2 Data and Tests

Our interest centers on examining the impact of veteran status on the distribution of earnings

for the subpopulation of compliers. In our study we use the same data set employed by

Abadie (2002). As described in his paper, the data consist of 11,637 white men, born in

1950-1953, form the March Current Population Surveys of 1979 and 1981-1985.14 For each

individual in the sample, annual labor earnings, Vietnam veteran status and an indicator of

draft-eligibility based on the Vietnam draft lottery outcome are provided. Following Abadie

(2002), we use draft-eligibility as an instrument for veteran status.15

[Figure 1 about here.]

Figure 1 plots the potential earnings distributions for veterans and non-veterans as esti-

mated from equations (17) and (18). We see that the empirical earnings distribution for the

veterans lies below the distribution for non-veterans everywhere in the empirical support,

except for a crossing that occurs around the 95th percentile. The descriptive nature of the

empirical distributions is consistent with the claim that Vietnam veteran status was detri-

mental in terms of both inequality and poverty. To formally test the first of these hypotheses

we present results for second- and third-order normalized stochastic dominance using our

proposed minimum p-value test; i.e. we test

H0 : FC
1 NSDj FC

0

H1 : ¬(FC
1 NSDj FC

0 )

where ¬(A) denotes the negation of the statement A, and j denotes the order of dominance,

i.e. j = 2, 3. In the tests we use a grid size of 10 equally spaced points ranging from

14The data set is maintained by Joshua Angrist and available on his webpage; see http://econ-
www.mit.edu/faculty/angrist/data1/data.

15The construction of the draft eligibility variable is described in detail in Appendix C of Abadie (2002).
Additionally, a discussion of the validity of draft eligibility as an instrument for veteran status may be found
in Angrist (1990).
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the lower bound of 1000 to the upper bound of 38,000, which is approximately the 95%

of the empirical support. Additionally, we set the number of bootstrap samples to B1 =

3, 999 and B2 = 2, 999, respectively. The adjusted p-values corresponding to both tests

and at each of the grid points is plotted in Figure 1. Notably, the plot reveals both the

strength of the evidence against the hypothesis as well as the origin of the evidence. For

both second- and third-order normalized dominance, the p-values drop below the 5% nominal

level, with the minimum p-values being 0.049 and 0.036, respectively. Thus at conventional

levels we would reject the null hypothesis and conclude—due to the direct correspondence

between second-order normalized stochastic dominance and the Lorenz ordering—that there

is unambiguously greater relative inequality in the earnings distribution of veterans.

In order to formally test the second claim regarding poverty16, we first define

F1(y) = E[1{Yi ≤ y}|Zi = 1], (19)

and

F0(y) = E[1{Yi ≤ y})|Zi = 0]. (20)

It can be shown that F1 stochastically dominates F0 if and only if FC
1 stochastically dominates

FC
0 ; see Proposition 2.1 of Abadie (2002) for details.17 The empirical counterparts of F1 and

F0 are simpler to work with and are thus adopted in our tests for stochastic dominance.

Figure 2 plots both the estimated distributions along with the p-values corresponding to

tests of first- and second-order stochastic dominance (here we use the same set of grid points

as well as the same number of bootstrap replications). Again, we find that the p-values

drop below the 5% nominal level. More specifically, the exact minimum p-values are 0.023

and 0.044, respectively. The p-values suggest that there is sufficient evidence to reject the

16See also Anderson (1996), Davidson and Duclos (2000), and Barrett and Donald (2003), for example, on
tests for stochastic dominance.

17Due to the lack of continuity, strictly speaking our theoretical analysis requires a slight modification in
order to accommodate tests for first-order dominance. For the sake of expositional simplicity, however, we
have elected not to pursue a separate and formal treatment of such conditions in this paper.
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claim that the distribution of veterans stochastically dominates that of non-veterans. The

rejection of dominance in this direction together with the non-negative individual statistics

allow us to conclude that there is unambiguously greater poverty in the earnings distribution

of Vietnam veterans.

[Figure 2 about here.]

8. CONCLUSIONS

This paper introduces a computationally inexpensive minimum p-value procedure for joint

tests of multiple inequality moment restrictions. Our test is quite generally applicable and is

shown to be asymptotically unbiased and more powerful than tests based on the conventional

(fully recentered) bootstrap or classical minimum distance tests. Our simulation results also

confirm the good finite sample size and power properties of our test.

A key feature of our test is that it provides a more comprehensive picture of the evidence

against the null hypothesis. As we have illustrated in our test of the distributional effects

of Vietnam veteran status, our test yields adjusted p-values corresponding to each of the

inequalities under test. This feature allows users to spot the source(s) of rejection when the

claim under the null hypothesis is rejected. In some cases, users of the test may wish to

place more or less weight on various moment inequalities. For example, when testing for

first-order stochastic dominance users may require, say, “stronger” evidence in the tails due

to the increased prevalence of measurement error. This can be done easily and transparently

with our test since the user may simply apply a differential α-level across the various moment

conditions.

The results of this paper suggest that it may be worth exploring an extension of the MinP

testing procedure to situations in which we wish to test a continuum of moment conditions.

For example, in our empirical application we test only a finite set of necessary conditions

for stochastic dominance. While in our particular application the comparison at a finite

set of grid points appears satisfactory, in general in order to ensure consistency against the
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full set of conditions implied by the null of dominance, a comparison of the distributions

should be made at all points in the support. Extending our test in this direction presents

some interesting theoretical and computational challenges, and research in this direction is

currently underway.
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9. APPENDIX

Lemma 1. Let F denote the collection of real-valued functions defined by

F = {〈ψθ, h〉 : θ ∈ Θ, h ∈ Rr
+, ‖h‖2 ≤ 1},

and let fθ1,h1 and fθ2,h2 denote arbitrary elements in F . Then, under the conditions of

Assumption 1, we have

|fθ1,h1 − fθ2,h2| ≤ K(x)‖(θ1, h1)− (θ2, h2)‖

where K : X → R satisfies supP∈P PK2 < ∞.

Proof of Lemma 1. For a fixed x ∈ X

|fθ1,h1 − fθ2,h2| =

∣∣∣∣∣
n∑

i=1

h(i)1ψ(i)θ1 −
n∑

i=1

h(i)2ψ(i)θ2

∣∣∣∣∣

=

∣∣∣∣∣
n∑

i=1

h(i)1(ψ(i)θ1 − ψ(i)θ2)−
n∑

i=1

(h(i)2 − h(i)1)ψ(i)θ2

∣∣∣∣∣

≤
n∑

i=1

|ψ(i)θ1 − ψ(i)θ2|+ m(x)
n∑

i=1

|h(i)2 − h(i)1|

≤ m(x)‖(ψθ1 , h1)− (ψθ2 , h2)‖1

≤ m(x)C‖(ψθ1 , h1)− (ψθ2 , h2)‖2

where m(x) = maxi supθ∈Θ ψ(i)θ(x) and C is a finite constant. Using the fact that ψ is

Lipschitz then permits us to write

|fθ1,h1 − fθ2,h2| ≤ L(x)K(x)C‖(θ1, h1)− (θ2, h2)‖2

Defining K(x) = CL(x)m(x), and noting that supP∈P PK2 follows from the Cauchy-Schwartz
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inequality together with the uniform in P square integrability assumption for both m(x) and

L(x), completes the proof.

Lemma 2. Let H = {h ∈ Rr : ‖h‖2 ≤ 1}. Under the conditions of Assumption 1 there

exists a constant C, depending on Θ×H and d = dim(Θ×H) only, such that the bracketing

numbers satisfy

N[](ε‖K‖P,2,F , L2(P )) ≤ C

(
diam(Θ×H)

ε

)d

for all 0 < ε < diam(Θ×H).

Proof of Lemma 2. See van der Vaart (1998), p. 271.

Lemma 3. Let H = {h ∈ Rr : ‖h‖2 ≤ 1} and denote by G the class of functions

{h′M(θ(P ))S(·, θ(P )) : h ∈ H}.

Under the conditions of Assumption 1 there exists a constant C, depending on H and d =

dim(H) only, such that the bracketing numbers satisfy

N[](ε‖F‖P,2,F , L2(P )) ≤ C

(
diamH

ε

)d

for all 0 < ε < diamH where F (x) = ‖M(θ(P ))S(x, θ(P ))‖2.

Proof of Lemma 3. The Lipschitz property of g ∈ G is obvious, and so the result can be

proven in an analogous manner to the proof of Lemma 2.

Lemma 4. Suppose the conditions of Assumption 1 are satisfied. Then, for any ε > 0,

lim sup
n→∞

sup
P∈P

PP

(
sup

h
‖Gn,P (θ(Pn), h)−Gn,P (θ(P ), h)‖ > ε

)
= 0,

where Gn,P (θ, h) :=
√

n(Pn − P )fθ,h.
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Proof of Lemma 4. Introduce the events

An = {sup
h
‖Gn,P (θ(Pn), h)−Gn,P (θ(P ), h)‖ > ε}

and

Bn = {‖θ(Pn)− θ(P )‖ < δ}.

We may then write

lim sup
n→∞

sup
P∈P

PP (An) = lim sup
n→∞

sup
P∈P

PP [(An ∩Bn) ∪ (An ∩Bc
n)]

≤ lim sup
n→∞

sup
P∈P

PP (An ∩Bn) + lim sup
n→∞

sup
P∈P

PP (An ∩Bc
n)

(21)

Since (21) holds for all δ > 0 we have

lim sup
n→∞

sup
P∈P

PP (An) ≤ lim
δ↓0

lim sup
n→∞

sup
P∈P

PP (An ∩Bn) + lim
δ↓0

lim sup
n→∞

sup
P∈P

PP (An ∩Bc
n)

≤ lim
δ↓0

lim sup
n→∞

sup
P∈P

PP

(
sup

h,‖θ−θ(P )‖<δ

‖Gn,P (θ)−Gn,P (θ(P ))‖ > ε

)

= 0

(22)

Note that the second inequality follows from the fact that lim supn→∞ supP∈P PP (Bc
n) is

equal to zero for all δ > 0. The third line follows from the uniform in P Donsker property of

F—see Lemma 1 together with Assumption 1(ii) and Theorem 2.8.4 of van der Vaart and

Wellner (1996)—which in turn implies that the sequence Gn,P is asymptotically equicontin-

uous uniformly in P ∈ P .

Lemma 5. Define ∆1 = {f − g : (f, g) ∈ F × F}, ∆2 = {f − g : (f, g) ∈ G × G}, and

Φ = {f + g : (f, g) ∈ ∆1 ×∆2}.
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Also, let e(x) = supφ∈Φ |φ(x)|. Then, If the conditions of Assumption 1 are satisfied,

∫ ∞

0

sup
P∈P

√
log N[](ε‖e‖P,2, Φ, L2(P ))dε < ∞

Proof. By repeated application of Lemma 9.25 of Kosorok (2008) we have

N[](ε‖φ‖P,2, Φ, L2(P )) ≤
[
N[]

( ε

4
‖e‖P,2,F , L2(P )

)]2 [
N[]

( ε

4
‖e‖P,2,G, L2(P )

)]2

and thus

sup
P∈P

log N[](ε‖e‖P,2, Φ, L2(P )) ≤ 2 sup
P∈P

log N[]

( ε

4
‖e‖P,2,F , L2(P )

)

+ 2 sup
P∈P

log N[]

( ε

4
‖e‖P,2,G, L2(P )

) (23)

Since Lemmas 2 and 3 imply that each term on the right is of the order log
(

1
ε

)
the finiteness

of the bracketing integral is established.

Proof of Theorem 1. Following p. 234 of van der Vaart and Wellner (2007) we consider

the decomposition

√
n(Pnfθ1(Pn),h1 − Pfθ1(P ),h1)−

√
n(Pnfθ2(Pn),h2 − Pfθ2(P ),h2)

= Gn,P (fθ1(Pn),h1 − fθ1(P ),h1)−Gn,P (fθ2(Pn),h2 − fθ2(P ),h2)

+
√

nP (fθ1(Pn),h1 − fθ1(P ),h1)−
√

nP (fθ2(Pn),h2 − fθ2(P ),h2)

+Gn,P (fθ1(P ),h1 − fθ2(P ),h2)

(24)

By Lemma 4 the terms in the first line following the equality are oP (1) uniformly in P ∈ P .

Moreover, by v. and vi. of Assumption 1 we have

√
nP (fθ1(Pn),h1 − fθ1(P ),h1)−

√
nP (fθ2(Pn),h2 − fθ2(P ),h2) = Gn,P (gθ1(P ),h1 − gθ2(P ),h2) + oP (1),
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again uniformly in P ∈ P with gθ,h ∈ G as defined in Lemma 3. Collecting together these

results permits us to write

√
n(Pnfθ1(Pn),h1 − Pfθ1(P ),h1)−

√
n(Pnfθ2(Pn),h2 − Pfθ2(P ),h2)

= Gn,P (fθ1(P ),h1 − fθ2(P ),h2) +Gn,P (gθ1(P ),h1 − gθ2(P ),h2) + oP (1)

(25)

Recognizing that

(fθ1,h1 − fθ2,h2) + (gθ1,h1 − gθ2,h2) ∈ Φ

we may obtain the desired result by establishing the uniform in P weak convergence of

{Gn,P φ : φ ∈ Φ}

Since

lim
M→∞

sup
P∈P

Pe2{e > M} = 0

follows from the fact that e(x) ≤ 2 supf∈F |f(x)|+2 supg∈G |g(x)| and the Lindeberg condition

is satisfied by the right-hand-side (by Assumptions 1(ii) and 1(ii)), and Lemma 5 establishes

the finiteness of the bracketing integral, we have established, via Theorem 2.8.4 of van der

Vaart and Wellner (1996), that Gn,P Ã G in `∞(Φ) uniformly in P ∈ P .

Proof of Theorem 2. Writing

Zn =
√

n[Φn(θ(Pn))− Φ(P )] +
√

nΦ(P )

we have

Zn Ã Z + lim
n→∞

n1/2Φ(θ(P ))

uniformly in P ∈ P from Corollary 1. The desired result is then a consequence of the

continuity of the max function.
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Proof of Theorem 3. Writing

Z∗
n =

√
n[Φn(θ(P∗n))− Φn(θ(Pn))] +

√
n[Φn(θ(Pn))−max{Φn(θ(Pn)), δn}]

we have

Z∗
n Ã Z + lim

n→∞
n1/2 min{Φ(θ(P )), 0}

uniformly in P ∈ P . The result follows from Corollary 1 together with the fact that,

max{Φn,(i)(θ(Pn)), δn} → 0

if Φn,(i)(P ) < 0 and

max{Φn,(i)(θ(Pn)), δn} → Φn,(i)(P )

if Φn,(i)(P ) ≥ 0 with probability one uniformly in P ∈ P . The desired result is then a

consequence of the continuity of the max function.

Proof of Theorem 4. Noting that τ̂PC
n ≥ 0 and T PC

n → −∞ uniformly over P ∈ P00,

part (i) will be proved if we can establish the validity of (ii). Part (i) of Proposition 3

establishes the convergence of the partially centered bootstrap version of Tn to the same

limiting distribution as Tn uniformly over P ∈ P0. Letting T denote the limiting random

variable, i.e. Tn →d T , we are required to show that for ∀ε > 0 ∃N such that

sup
P∈P0

|PP (Tn ≤ τ̂n(α))− PP (T ≤ τ(α; P ))| < ε

for all n ≥ N , where τ(α; P ) = inf{t : PP (T ≤ t) = 1 − α}. From Proposition 3 it follows

that, for all ε > 0 there exits an integer N such that

sup
P∈P0

|P∗P (T PC
n ≤ x)− PP (T ≤ x)| < ε
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for all n ≥ N and all continuity points x. Since τ(α; P ) is a continuity point (by Proposition

2 and the assumption that α < 0.5) it must be the case that

sup
P∈P0

|τ̂n(α)− τ(α, P )| → 0. (26)

Fix δ > 0. There exists Nδ such that for all n ≥ Nδ

sup
P∈P0

|PP (Tn ≤ τ̂n(α))− PP (T ≤ τ(α, P ))|

≤ sup
P∈P0

|PP (Tn ≤ τ(α, P ) + δ)− PP (T ≤ τ(α, P ))|

+ sup
P∈P0

|PP (Tn ≤ τ(α, P )− δ)− PP (T ≤ τ(α, P ))|

≤ sup
P∈P0

|PP (Tn ≤ τ(α, P ) + δ)− PP (T ≤ τ(α, P ) + δ)|

+ sup
P∈P0

|PP (T ≤ τ(α, P )− δ)− PP (T ≤ τ(α, P ))|

+ sup
P∈P0

|PP (Tn ≤ τ(α, P ) + δ)− PP (T ≤ τ(α, P ) + δ)|

+ sup
P∈P0

|PP (T ≤ τ(α, P ) + δ)− PP (T ≤ τ(α, P ))|

(27)

For small enough δ, τ(α, P )− δ is a continuity point of the limiting distribution. It follows

that δ can be chosen such that each of the four terms in the sum is less than ε/4.

Proof of Theorem 5. Define

H(i)(x(1), . . . , x(r))

= lim
n→∞

P
(√

n(Φn,(i) − Φ(i)(P )) ≤ x(i)

)
, 1 ≤ i ≤ r

= P
(
Z(i) ≤ x(i)

)
, 1 ≤ i ≤ r

(28)

where the convergence is understood to hold uniformly in P ∈ P . Letting Zn =
√

n(Φn −
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Φ(P )) we have

H∗
(i)(Zn + Φ(P )) = H(i)(Zn + Φ(P )) + H∗

(i)(Zn + Φ(P ))

−H(i)(Zn + Φ(P ))

→d H(i)(Z + lim
n→∞

Φ(P ))

since ρ∞(H∗
(i), H(i)) → 0 in probability conditional on Xn uniformly in P ∈ P (follows from

the pointwise convergence of H∗
(i) to H(i), together with the continuity of H(i) and Pólya’s

Theorem, cf. (Serfling 1981)) . Using the continuity of the minimum, it follows that

p̂min →d min
1≤i≤r

(
1−H(i)(Z + lim

n→∞
Φ(P )

)
(29)

conditional on Xn uniformly in P ∈ P . Using an analogous argument we have that

H∗
(i)(Φ

∗∗) →d H(i)(Z + ∆̃)

where

∆̃(i) =





0, Φ(i)(P ) ≥ 0, 1 ≤ i ≤ r

−∞ Φ(i)(P ) < 0, 1 ≤ i ≤ r

Consequently, we have via the continuity of the minimum that

p̂∗min →d min
1≤i≤r

(
1−H(i)(Z + ∆̃)

)
(30)

uniformly in P ∈ P . The proof is then completed by replicating the proof of Theorem 4

using the results of equations (29) and (30).

Proof of Theorem 6. The proof of (i) is immediate upon noting that τ̂PC
n (α) = Op(1)

whereas Tn diverges to infinity under the alternative. As for (ii) note that p̂min converges
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in probability to zero under the alternative whereas p̂crit converges to the αth quantile from

the continuous distribution in (30) whose support is the interval [0,1].

Proof of Theorem 7. Under the sequence of alternatives

Ψ(Pn) = Ψ(P ) + n−1/2ξ

as defined in (14), we have

Zn Ã Z + ξ,

whereas the bootstrap version Z∗
n under the sequence of local alternative converges to

Z∗
n Ã Z + min{ξ, 0}.

By the continuous mapping theorem we have

Tn Ã max
1≤i≤r

[Z + ξ]

and

T ∗
n Ã max

1≤i≤r
[Z + min{ξ, 0}].

Clearly, for large enough n, Tn is stochastically larger than T ∗
n . Consequently, for n large

enough

PPn(Tn > τPC
n ) ≥ α.

The proof of part (ii) of the theorem is analogous.
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Figure 1: Plots of the empirical distributions of earnings FC
1 and FC

0 together with the
adjusted p-values associated with tests of second- and third-order normalized stochastic
dominance. The horizontal dashed line marks the 5% level of significance.
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Figure 2: Plots of the empirical distributions of earnings F1,n1 and F0,n0 together with the
adjusted p-values associated with tests of first- and second-order stochastic dominance. The
horizontal dashed line marks the 5% level of significance.
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Table 1: Experimental Designs

Distributions NSD
Design F G 2nd 3rd 4th

(a) SM(1.69,1,8.37) SM(1.69,1,8.37) Equal · ·
(b) LN(60,100) LN(60,100) Equal · ·
(c) SM(1.69,1,8.37) SM(2.15,1,1.81) · · Cross
(d) SM(3.11,1,9.30) LN(20,100) · · Cross
(e) LN(70,100) LN(60,100) Dominance · ·
(f) SM(1.69,1,8.37) SM(1.84,1,8.37) Dominance · ·
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Table 2: Empirical Rejection Probabilities

Design n NSD1 NSD1p NSD2 NSD2p NSD3 NSD3p

(a) 500 0.055 0.059 0.042 0.043 0.041 0.042
1000 0.053 0.054 0.044 0.046 0.044 0.045
2000 0.047 0.053 0.050 0.057 0.047 0.050

(b) 500 0.050 0.055 0.040 0.042 0.035 0.035
1000 0.046 0.046 0.051 0.051 0.046 0.047
2000 0.053 0.054 0.050 0.052 0.046 0.046

(c) 500 0.393 0.443 0.427 0.448 0.431 0.441
1000 0.600 0.668 0.668 0.696 0.676 0.688
1500 0.838 0.870 0.860 0.872 0.872 0.880
2000 0.887 0.933 0.907 0.917 0.903 0.920

(d) 500 0.072 0.184 0.140 0.244 0.144 0.216
1000 0.104 0.296 0.344 0.508 0.404 0.520
1500 0.226 0.424 0.560 0.722 0.634 0.780
2000 0.311 0.534 0.726 0.843 0.800 0.877

(e) 500 0.442 0.446 0.414 0.414 0.382 0.382
1000 0.687 0.687 0.695 0.695 0.678 0.678
1500 0.884 0.884 0.892 0.892 0.860 0.860
2000 0.920 0.920 0.921 0.921 0.904 0.904

(f) 500 0.373 0.381 0.410 0.422 0.390 0.399
1000 0.648 0.652 0.668 0.668 0.632 0.640
1500 0.840 0.841 0.846 0.846 0.835 0.835
2000 0.880 0.880 0.886 0.889 0.877 0.877

Table reports the empirical rejection probabilities for the fully re-
centered and partially recentered (subscript “p”) MinP tests at the
nominal %5 level as estimated from 1000 Monte Carlo simulations
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