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Abstract

Syphilis has re-emerged as a global public health issue. In lesser developed countries, millions
of people are contracting the disease, which can be fatal without access to proper treatment.
In developed countries, prevalence is on the rise and has cycled around endemic levels for
decades. We investigate syphilis dynamics by extending the classic SIRS epidemiological model
to incorporate forward-looking, rational individuals and the AIDS epidemic. The integrated
economic-epidemiological model shows that human preferences over health and sexual activity
are central to the nature of syphilis cycles. We �nd that low-activity individuals will behave
in a manner that signi�cantly dampen the cycles, while high-activity individuals will tend to
exacerbate the cycles, a phenomenon we refer to as rational dynamic resonance. The model also
provides insights into two failed attempts by the U.S. government to eradicate syphilis from the
U.S. population.
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1 Introduction

Syphilis is back on center stage as a global health issue. In the 1930s and 1940s, syphilis was

perhaps the most prominent public health issue in the U.S., with more federal dollars spent on

syphilis than any other infectious disease (Brown (1971)).1 In 1937, Surgeon General Thomas

Parran estimated that 10 percent of all adults in the U.S. would be infected with syphilis during

their lifetimes (Parran (1937)). However, with the introduction of antibiotics and the beginning

of the AIDS epidemic, syphilis largely disappeared from the public�s eye. Figure 1 shows the

dramatic fall in U.S. infection rates for primary and secondary syphilis during the 1940s and the

subsequent oscillations around a much lower rate of incidence. Despite the successful reduction

in syphilis in the U.S. and other developed countries over the last half century, the trend appears

to have reversed. Infection rates for syphilis are rising in North America, Western Europe and

Australia (Fenton et al. (2008)).

Syphilis also remains a persistent health threat in lesser developed countries. The World Health

Organization (WHO) estimates that approximately 12 million new worldwide syphilis infections

occur each year, many of which go untreated (WHO (2004)). Congenital syphilis, in particular,

is estimated to in�ict over 1.5 million pregnant women in Sub-Saharan Africa with approximately

60% of the acute cases leading to fetal death. This amounts to nearly 500,000 infant deaths

from syphilis in sub-Saharan Africa alone, rivaling those due to HIV and AIDS (Schmid (2004)).

Rapidly developing countries have also seen increases in the incidence of syphilis. Syphilis rates in

China, for instance, have skyrocketed 25 fold since the early 1990s (Chen et al. (2007)).

In the face of these concerns, the WHO and the U.S. Center for Disease Control and Prevention

(CDC) have been actively publicizing plans to eliminate syphilis. The WHO recently introduced

its global initiative to eliminate congenital syphilis (WHO (2007)). Their plan advocates improved

antenatal care, universal testing for pregnant women and partners, rapid treatment, promotion of

condom use, and enhanced synergies with HIV prevention programs. The CDC�s National Plan

1Syphilis is remembered by many for the infamous Tuskagee experiments where poor, Southern black men were
misleadingly infected with the disease and studied by the U.S. Public Health Service over a period of 40 years starting
in 1932 (Nakashima et al. (1996)). In 1997, the U.S. government formally apologized for the incident.
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to Eradicate Syphilis, �rst introduced in 1999, is an attempt to capitalize on historically low levels

of prevalence and �nally rid the U.S. of the disease (CDC (1999)). The plan emphasizes improved

reporting and data gathering, rapid diagnosis and treatment of outbreaks, and a concerted e¤ort

to increase awareness of the health consequences of sexual activity.

But the U.S. plan has not worked. The incidence of syphilis in the U.S. has nearly doubled

since 2000, with similar increases occurring in parts of Europe and Asia (Nicoll and Hamers (2002);

Fenton and Lowndes (2004); Renton et al. (2006); Reynolds et al. (2006)). These increases are

alarming because all sexually transmitted diseases (STDs) are driven by the same risky behavior.

If the increases in the prevalence of syphilis indicate greater sexual promiscuity and reduced use

of safe-sex practices, they could warn of a future rise in other STDs including HIV. Figure 1

demonstrates the similarity between the pattern of AIDS incidence and that of syphilis.

It is precisely these reasons (epidemic cycling; widespread public health concern, and transmis-

sion risks inseparable from other STDs) that syphilis is a pertinent and interesting research topic.

There has also been a recent high pro�le debate over the determinants of the oscillations. At its

core, the debate has revolved around whether the origins lie with the biology of the disease (Grassly,

Fraser and Garnett (2005)) or with changes in societal behavior and treatment intensities (Breban

et al. (2008)). Both sides of the debate use mathematical epidemiological (ME) models that �x

human responses to disease risk. This runs counter to the �ndings of economists who have demon-

strated the importance of individuals�ability to respond to changes in risk (Ehrlich and Becker

(1972); Peltzman (1975); Rosen (1981); Viscusi (1990); Shogren and Crocker (1991)). Building on

the principle that individuals respond to risk, we specify an integrated economic-epidemiological

(EE) model where humans and disease biology work together to determine disease dynamics. Fol-

lowing the research of Geo¤ard and Philipson (1996), Kremer (1996), Auld (2003), and Gersovitz

and Hammer (2004), we consider an explicit role for optimizing human behavior within a joint

model of syphilis and AIDS dynamics.2 To the best of our knowledge, we are the �rst to model

2This integrated model is derived directly from the behavior of rational individuals. The resulting dynamic system
closely resembles classic epidemiological models (Murray (2002)) with one major di¤erence. In the integrated model,
the traditional infection parameters are not �xed but vary over time and depend on the optimally chosen number
of sexual partners, the number of sex acts with each partner, the overall infection rate in the population, and the
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more than one infectious disease within an optimization framework.

We highlight two �ndings from our research: (1) the existence and nature of syphilis cycles

depend critically on human preferences over sexual activity and health and (2) policies designed to

eradicate syphilis are likely to fall short of their objective. First, depending on individual partner

elasticities with respect to prevalence, syphilis cycles can be signi�cantly dampened or accentuated

by the collective actions of rational individuals. For individuals who take a modest number of

sexual partners, the incentives are to choose fewer partners when infection rates rise and more

partners when infection rates fall as noted by Geo¤ard and Philipson (1996). As a consequence,

peaks in aggregate infections are lower, troughs are shallower, and cycles die out more rapidly.

The response of low-activity individuals serves to dampen the cyclical �uctuations of the disease.

For individuals who take a high number of partners, the probability of infection is su¢ ciently high

that additional partners have a negligible impact on the probability of infection. Under these

circumstances an increase in prevalence causes a decrease in the marginal probability of infection,

leading a rational individual to choose more partners. This type of rational fatalism was �rst

demonstrated by Kremer (1996). Here, we examine the conditions under which fatalism extends

to a dynamic setting and to more than one disease. The potential of fatalism in a dynamic context

is shown to contribute to syphilis cycles by causing them to be exacerbated in their amplitude and

persistence, a phenomenon we refer to as rational dynamic resonance.3

In our second �nding, we o¤er new insights into two failed campaigns by the U.S. government to

eradicate syphilis: the 1964 campaign headed by William Brown, past director of the VD division of

the CDC (Brown (1971)), and the more recent 1999 National Plan to Eradicate Syphilis. Assuming

reasonable rates of transmission and rational, self-interested individuals, our model predicts that

programs aimed at eradication are likely to fall short of the desired objective. The intuition is

natural rates of infection. Consequently, predictions of individuals� collective responses to changes in the risk of
disease transmission (e.g., through education campaigns emphasizing prevention and treatment) will be more robust
than predictions from traditional models with �xed parameters and no behavioral responses. For instance, policies
designed to reduce the transmission of the disease may fail if individuals choose to o¤set reductions in the risk of
infection by engaging in increased amounts of sexual activity.

3This e¤ect is in contrast to the e¤ect of coherence resonance (see for example, Dusho¤ et al. (2004)). Coherence
resonance can amplify cycles and is derived from the interaction of the mean infection period and the average duration
of immunity. In the modeling of the e¤ect, the contact rate is speci�ed a priori by a sinusoidal function with no
behavioral basis.
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straightforward: when prevalence of the disease is low and nearing eradication, this is precisely

when sexually-active, rational individuals will choose to increase their number of partners and

perpetuate the disease. Successful eradication is theoretically possible but it requires implausibly

high degrees of altruism for those infected with syphilis and AIDS.

Of course, eradication policies can still have a positive impact. Our model predicts that policies

aimed at reducing the risk of infection for high-activity individuals, either through reductions in

the number of partners or through increased protection, can lower long-run endemic equilibria and

stabilize cycles. To some degree, the 1999 syphilis eradication plan had a greater chance of success

due to the prominence of AIDS risk among sexually active individuals. However, the window of

opportunity to eradicate syphilis may be closing due to the discovery of new drug therapies that

lower the health risks of AIDS and encourage more risky sexual behavior. This likely explains the

recent rise in the prevalence of syphilis.

2 Syphilis Epidemiology

Syphilis is an STD caused by the spiral microorganism Treponema pallidum. The disease is unique

in its slow tempo of progression through infected individuals, but if left untreated may eventually

cripple or kill one in four of those infected. The point of infection eventually becomes characterized

by an ulceratic chancre signalling the beginning of what is known as the primary stage of the

disease. Without treatment the disease progresses to a secondary stage observed by a skin rash and

mucous membrane lesions. Following secondary symptoms the disease moves to the latent stage,

and although inapparent, the infection remains within the body and can reappear or eventually

damage internal organs with crippling e¤ects and possible mortality (CDC (2006)). Individuals are

infectious whenever surface lesions are present, in both primary and secondary stages of the disease.

In the early latent stage individuals may return to the infectious stages, whereas in the late latent

stage there are three potential outcomes for the infection. In the �rst, the infection is biologically

eradicated within the body over a number of years. The second outcome �nds the infection

remaining within the individual over the course of their lifetime, but the internal damage is slight
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enough to be imperceptible. The �nal outcome is where the infection progresses slowly to cause

organ damage and can be fatal (Cecil (1948)). While there is no vaccine for syphilis, treatment in its

early stages (through an intramuscular injection of penicillin) will cure the individual, and repeated

treatments will eliminate the infection in late stages. Following treatment and recovery from

the infection, individuals may develop transitory immunity to reinfection before again becoming

susceptible. This progression from susceptible to infected to recovered (and immune) to susceptible

�ts the general form of the classic SIRS model and is outlined in Figure 2.

The de�ning feature of aggregate syphilis dynamics is the regular cycle in disease prevalence

(see Figure 1). As argued by Grassly et al. (2005), cycles occur as synchronized waves of recovered

individuals lose their temporary host immunity and re-enter the susceptible population. The ebb

and �ow of susceptible (S), infected (I) and immune/recovered (R) populations also cause cycles

to persist well past any initial driving impulse. AIDS and gonorrhea, for example, share the same

method of contraction as syphilis but lack transitory host immunity and do not oscillate. Using

gonorrhea as a comparison, Grassly et al. (2005) draw the conclusion that syphilis cycles during the

three-decade period following 1960 must be due to disease biology rather than popular explanations

involving the sexual liberation of the 1960s and the crack cocaine epidemic of the mid-to-late 1980s.

To the casual observer, syphilis is a benign social problem in developed countries. Syphilis

can be rapidly and e¤ectively treated with penicillin. Furthermore, the reported cases of syphilis

have fallen dramatically in the developed world during the past century (Green, Talbot and Morton

(2001)). For example, there were only 7,980 cases of primary and secondary syphilis reported in

the U.S. in 2004, representing 2.7 cases per 100,000 population (CDC (2006)). By contrast, there

were nearly �ve times as many newly reported cases of AIDS in the U.S. in 2004. Yet, these

numbers mask serious policy issues.

First, syphilis strikes the population in a disproportionate manner, with substantially higher

prevalence in urban areas, blacks and gay men. The CDC estimates that over 50% of all recent

infections occurred in just 16 counties and 1 city, African Americans are �ve times more likely

to contract syphilis than Caucasians, and nearly 65% of all primary and secondary syphilis cases
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arise with gay men (CDC (2006)). Second, statistics in the underdeveloped world are grim. As

mentioned in the Introduction, there are approximately 12 million new worldwide syphilis infections

per year and over 1.5 million cases of congenital syphilis in Sub-Saharan Africa alone. Finally,

lesions caused by syphilis act as a conduit for other STDs and has been shown to signi�cantly

increase the chance of acquiring HIV (Chesson and Pinkerton (2000)).4

Syphilis remains a threat to public health in the U.S. and societies across the globe. In order

to provide policy makers with better insight into its control, we undertake a careful mathematical

characterization of the disease�s dynamics and the associated behavioral implications.

3 Integrated General Equilibrium Model

Following work by Philipson and Posner (1993), we specify an integrated epidemiological and

economic model to describe syphilis dynamics. Sexual activity brings multiple risks that the

individual cannot choose between, with AIDS being the most serious. Therefore to understand

syphilis dynamics over the past three decades, we specify a joint SIRS/SI epidemiological model of

syphilis and AIDS dynamics. The model is set in discrete time with t indexing annual decision

intervals.5 There is a constant population of N individuals, which are all identical except for their

state of the disease.

3.1 Epidemiology

The epidemiological portion of the model describes the evolution of six mutually exclusive disease

categories: susceptible to both diseases (s), infected with syphilis only (inS), infected with AIDS

only (inA), infected with syphilis and AIDS (inSA), immune to syphilis (r), and immune to syphilis

while infected with AIDS (rA). Each disease category is measured as a proportion of the overall

4Chesson, Dee and Aral (2003) argue that the causality may also run in the other direction. They show that
high rates of AIDS mortality in high-risk men were responsible, at least in part, for the decline in the prevalence of
syphilis in the U.S. during the 1990s.

5The SIRS and SI models are traditionally modeled in continuous time, but the discrete time version is more con-
venient for specifying lead and lag relationships, selecting the timing of driving shocks, and for contrasting predictions
of the model with the annually observed U.S. syphilis data.
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population with the sum of the categories equal to one. The model collapses to a traditional SIRS

model when inAt = in
SA
t = rAt = 0 and to a traditional SI model when in

S
t = in

SA
t = rt = r

A
t = 0.

Individual behavior and the population disease dynamics depend on the transition probabilities.

Assuming that individuals independently choose xt partners and engage in a �xed number of sexual

acts (a) with each partner, the probability that susceptible individuals become infected with syphilis

or AIDS is

pSt = Pr(contract syphilis) = 1� [1� �Sp (inSt + inSAt )]xt (1)

pAt = Pr(contract AIDS) = 1� [1� �Ap (inAt + inSAt + rAt )]
xt , (2)

where �jp = 1 � (1 � �ja)a is the probability of contracting disease j 2 fS;Ag from a single in-

fected partner, and �ja is the probability of contracting the disease from a single sexual act. The

conditional probabilities for those infected with one disease are:

p
SjA
t = Pr(contract syphilis j infected with AIDS) = 1� [1� �SjAp (inSt + in

SA
t )]x

A
t (3)

p
AjS
t = Pr(contract AIDS j infected with syphilis) = 1� [1� �AjSp (inAt + in

SA
t + rAt )]

xSt ; (4)

where xSt (x
A
t ) is the number of partners chosen by those infected with syphilis (AIDS). Individuals

infected with syphilis or AIDS are allowed to have a di¤erent natural probability of infection, �SjAp

and �AjSp , than those without a disease. As mentioned above, those with primary or secondary

syphilis have an elevated probability of acquiring HIV (i.e., �AjSp > �Ap ). The dependence on the

chosen number of partners distinguishes the analysis from standard mathematical epidemiology.

The complete epidemiological model is represented by the following six equations:
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st+1 = �+ [(1� pSt )(1� pAt )� �]st + 
(1� p
AjS
t )rt (5)

inSt+1 = ��inSt + pSt (1� pAt )st (6)

inAt+1 = (1� �� pSjAt )inAt + p
A
t (1� pSt )st + 
p

AjS
t rt + 
r

A
t (7)

inSAt+1 = ��inSAt + p
SjA
t inAt + p

S
t p
A
t st (8)

rt+1 = [(1� pAjSt )(1� 
)� �]rt + (1� pAjSt )inSt (9)

rAt+1 = (1� �� 
)rAt + (1� 
)p
AjS
t rt + p

AjS
t inSt + in

SA
t ; (10)

where � is the common birth/death rate, 1=
 is the average duration of syphilis immunity, and

the treatment rate for syphilis is 100%. The transition matrix between disease categories used to

derive the epidemiological model is shown in the Appendix.

We now turn our attention to the economic analysis and the optimal choice of partners.

3.2 Economics

Representative individual i maximizes expected lifetime utility by choosing the number of sexual

partners, xi;t. The objective function is

E
X1

j=0
�t+j [ln(xi;t+j) + hi;t+j ] (11)

where 0 � � � 1 is the discount factor, E represents an individual�s expectation of future outcomes

and �x is the maximum number of partners in a single period. The parameter hi;t captures the

individual�s health status with infected individuals experiencing lower values of h. The core tradeo¤

in the model is that additional sexual partners bring immediate satisfaction but also the risk of

future infection. Infection in turn causes a deterioration of health.6

6The risk of contracting an STD can be manipulated by varying the level of protection or the number of partners.
Geo¤ard and Philipson (1996) and Toxvaerd (2010) are examples of studies where the control variable is costly
prevention, such as using prophylaxis. Kremer (1996) and Auld (2003) are examples where the control variable is
the number of partners. Both methods capture the essential tradeo¤ that risk of infection can be reduced by costly
behavior, either increased protection or taking fewer partners.
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In any period t, individual i must be in one of the six epidemiological states: susceptible

(si;t), infected with syphilis (inSi;t), infected with AIDS (in
A
i;t), infected with syphilis and AIDS

(inSAi;t ), recovered and immune from syphilis (ri;t) or recovered and immune from syphilis with

AIDS (rAi;t). For example, if an individual is susceptible to both diseases then si;t = 1 and

inSi;t = in
A
i;t = in

SA
i;t = ri;t = r

A
i;t = 0. Because an individual can only be in one state at any time,

si;t + in
S
i;t + in

A
i;t + in

SA
i;t + ri;t + r

A
i;t = 1 for all i and t. The proportions of susceptible, infected

and recovered individuals in the entire population are given by averaging over all i. Because all

individuals are identical other than disease state, we drop the i subscript and consider a single

representative individual in each disease category.

The biology of syphilis immunity in humans is complicated and di¢ cult for individuals to

detect (Garnett et al. (1997); LaFond and Lukehart (2006)). Therefore, although there are six

epidemiological categories, the two recovered states are not relevant for decision making because

individuals are unable to identify whether they are immune to syphilis. The value functions

evaluated at the optimal number of partners for each of the four remaining categories �susceptible

(Vt), infected with syphilis (V St ), infected with AIDS (V
A
t ), and infected with syphilis and AIDS

(V SAt ) �are given by

Vt = ln(xt) + h+

�[pSt (1� pAt )V St+1 + pAt (1� pSt )V At+1 + pSt pAt V SAt+1 + (1� pSt )(1� pAt )Vt+1] (12)

V St = ln(xSt ) + h
S + �[p

AjS
t V At+1 + (1� p

AjS
t )V St+1] (13)

V At = ln(xAt ) + h
A + �[p

SjA
t V SAt+1 + (1� p

SjA
t )V At+1] (14)

V SAt = ln(�x) + �V At+1; (15)

where the health parameters for susceptible (h), infected with syphilis (hS) and infected with AIDS

(hA) individuals satisfy h � hS � hA � 0. The health parameter for individuals infected with

both syphilis and AIDS is normalized to zero.

In our baseline model, all individuals regardless of infection status are self-interested and max-
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imize (11) without concern for the welfare of the general population. Rational, self-interested

individuals infected with syphilis and AIDS will therefore choose the maximum number of partner,

�x, because they face no risk of immediate infection (Geo¤ard and Philipson (1996)). The choice

to engage in the maximum amount of risky behavior while infected imposes a negative externality

on the rest of the population because it propagates the disease through the population and causes

susceptible individuals to choose a suboptimal number of sexual partners.7 Conversely, an altruis-

tic population of infected individuals (or a benevolent social planner guiding the actions of infected

individuals) would sharply decrease the number of sexual encounters so the disease could quickly

be eradicated. We allow for possible altruism by infected individuals (Philipson and Posner (1993);

Gersovitz (2004)) by considering a range of values for �x.

Individuals are forward looking and concerned about future bene�ts and risks. We consider

two types of expectation mechanisms in assessing these future bene�ts and risks. First, we assume

individuals form naïve expectations where all future risks and bene�ts are expected to remain at

their current values. This simpli�cation seems reasonable given the many layers of incomplete

information individuals face when attempting to forecast future disease risk. Survey and exper-

imental evidence also shows that individuals often use simpler heuristics or "rules of thumb" to

forecast uncertain future variables (Conlisk (1996)). Second, we consider a rational expectations

forecast of future variables, whereby individuals have complete knowledge of the laws of motion for

disease states and understand the risk-bene�t tradeo¤s faced by other individuals. Under rational

expectations individuals make forecast errors, but they are unrelated to any available current in-

formation. Below, we focus on the results for naïve individuals because the role of economic choice

on disease dynamics is more transparent. However, we solve for the equilibrium paths under both

types of expectations and present the rational expectations results in the Appendix. The main

qualitative �ndings of the paper hold under either expectations mechanism.

Assuming an interior solution, the Euler equations for the number of partners (xt, xSt and x
A
t )

7The consequences and policies associated with the externalities imposed by infected individuals have been studied
in depth for the SIS epidemiological model by Goldman and Lightwood (2002), Gersovitz and Hammer (2004) and
Gersovitz and Hammer (2005). Their work focuses on the design of optimal tax policies to encourage e¤ective
treatment and prevention of the disease.
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are

x�1t = �pSx;t[(1� pAt )Vt+1 � (1� pAt )V St+1 + pAt V At+1 � pAt V SAt+1 ] +

�pAx;t[(1� pSt )Vt+1 � (1� pSt )V At+1 + pSt V St+1 � pSt V SAt+1 ] (16)

(xSt )
�1 = �p

AjS
x;t [Vt+1 � V At+1] (17)

(xAt )
�1 = �p

SjA
x;t [V

A
t+1 � V SAt+1 ]: (18)

where the partial derivative for the probability of infection with respect to the number of partners

is of the form px;t = � ln(1� pt)(1� pt)=xt.8

To better understand the Euler equations, consider an individual who is infected with syphilis

but is susceptible to AIDS. The basic problem facing the individual is how many partners to

choose under the risk of future AIDS infection. Equation (17) represents a standard solution

for dynamic expected-utility maximization problems of this type: continue to add partners (xS)

until the marginal bene�ts from an additional partner just o¤set the discounted expected disutility

of contracting the disease in the future (hereafter, marginal cost). However, unlike standard

expected utility maximization problems (von Neumann and Morgenstern (1944)), here the future

risk is endogenous (Ehrlich and Becker (1972)). The more partners are chosen, the greater the

probability of infection. Yet, the probability of infection is also bounded above by one. This implies

that although additional partners will increase the risk of infection, they do so at a decreasing rate

and cause the incremental costs of sexual activity to fall as more partners are added.

These characteristics create an interesting optimization problem. Because individuals exhibit

diminishing marginal utility in x, marginal bene�ts decline over all x. For a given disease preva-

lence, marginal costs also decline with x as the marginal probability of infection falls with additional

partners. If individuals�relative concern for their health is low, marginal bene�ts will exceed mar-

ginal costs for all choices of x and individuals will choose the maximum number of sexual partners,

8The second-order su¢ cient conditions are presented in the Appendix. The su¢ ciency conditions shows that
either the marginal cost curve must slope up or if it slopes down, it must be locally �atter than the marginal bene�t
curve.
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�x. If individuals�concern for their health is high, marginal costs will exceed marginal bene�ts for

all choices of x and the individual will instead abstain from sexual activity. But, if individuals

have an intermediate concern for their health and su¢ cient curvature in utility, the marginal bene�t

and cost curves intersect twice (once for a low number of partners and once for a high number of

partners). While both intersections satisfy the necessary condition for an optimal choice, only the

low-partner intersection satis�es the su¢ cient condition and is the optimal choice (see the Appendix

for more details on the second-order conditions).

3.3 Equilibria

An equilibrium for the economic epidemiological system is characterized by a sequence of values

fxt; xAt ; xSt ; st; inAt ; inAt ; inSAt ; rt; r
A
t g1t=0 that solve the individual�s optimization problem and satisfy

(5 - 10) for all t, subject to the initial values s0; inA0 ; in
A
0 ; in

SA
0 ; r0 and rA0 . Given the complexity

of the system, an analytical solution for the optimal path is not possible. Instead, we solve the

steady-state conditions numerically and use standard linearization methods to evaluate the stability

and transition dynamics around each steady state. We �rst examine the long-run equilibrium and

then turn our attention to the transition path and short-run equilibrium. For clarity, we only

present the equilibrium prior to the AIDS epidemic (the analysis of the system after the AIDS

epidemic is presented in the Appendix). Since syphilis is the sole disease of interest, we omit the

disease superscripts.

3.3.1 Long-run Equilibria

The long-run equilibrium is obtained when there are no disturbances and the system is allowed

to gravitate to its steady state. In general, there are two possible steady states: an endemic

equilibrium characterized by low prevalence of syphilis and an eradication equilibrium where syphilis

has been eliminated from the population. The steady-state endemic equilibrium is represented by
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the following four equations:

s = R�10 (19)

in =
(1� s)(�+ 
)
1 + �+ 


(20)

r =
(1� s)
1 + �+ 


(21)

x�1 = �px(V � V S) (22)

where R0 = p[in(1 + �)]�1 is the basic reproductive number. R0 measures the number of suscep-

tible individuals who contract the disease from a single infected person in an otherwise uninfected

population (Anderson and May (1991)). In the classic SIRS model (i.e., h = 0;x = 1), R0 is

an exogenous constant and the key parameter for determining stability of the eradication steady

state. R0 is also key to the stability of the EE steady state but is endogenous and depends on

individual choices. As a result, the dynamics around the EE steady states are linked to individuals�

underlying preferences for sexual activity and health.
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The baseline values for the parameters and the implied steady states are shown in Table 19:

Table 1. Baseline Parameters and Steady-State Values

Parameters

� 
 � a �a h �x �p

0:96 0:2 0:05 40 0:023 8:1 10 0:60

Endemic Steady-State Values

x in s r p R0

3:642 0:096 0:519 0:385 0:195 1:927

Eradication Steady-State Values

x in s r p R0

10 0:000 1:000 0:000 0:000 5:714

In the endemic steady state, approximately 10% of the sexually active population are infected with

syphilis and 38.5% are recovered and immune. The probability of infection with a single partner

is nearly 20%. In the eradication steady state, individuals take the maximum number of partners,

�x = 10, because there is no risk of infection (p = 0). The basic reproductive number, R0, is greater

than one indicating that eradication is locally unstable.

3.3.2 Short-Run Equilibrium and Transition Dynamics

An analytical solution for the transition path of the economic epidemiological system is not avail-

able. Therefore, we investigate the stability of the system by taking a �rst-order Taylor series

9The calibration exercise is described in the Appendix.
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approximation of the system around each steady state. The pre-AIDS EE system collapses to

st+1 = �+ (1� pt � �)st + 
rt (23)

int+1 = ��int + ptst (24)

rt+1 = (1� 
 � �)rt + int (25)

1

px;txt
= �E

�
ln(xt+1=�x) + (h� hS)�

pt+1
xt+1px;t+1

�
; (26)

where E is the expectations operator and the value functions have been substituted out of the Euler

equation. After linearizing the EE system and imposing naïve expectations, the system reduces to

x̂t = [�x=in] bint (27)

bint+1 = (spin � �) bint + spxx̂t + pŝt (28)

r̂t+1 = (1� 
 � �)r̂t + bint; (29)

where carets (^) over variables indicate deviations from their steady-state values, � is the elasticity

of partner change (x) with respect to syphilis prevalence (in), and pin = x�p(1� �pin)
x�1 is the

partial derivative of p with respect to in. After substituting out the control variable x̂t and using

the restriction ŝt + bint + r̂t = 0, the system can be reduced to the following bivariate dynamic

system: 264 bint+1
r̂t+1

375 =
264�� (�+ p) �p

1 1� 
 � �

375
264 bint
r̂t

375 ; (30)

where � = s(pin + px�x=in) is the sum of two e¤ects on syphilis prevalence. The �rst e¤ect

is standard in mathematical epidemiology and measures how a change in prevalence impacts the

probability of infection, holding the number of partners �xed. The second, an economic e¤ect,

measures how a change in prevalence impacts the probability of infection through a change in

the optimal number of partners. These two e¤ects can work together or in opposite directions

depending on individuals�preferences for sexual activity and health.

The equations in (30) determine the transition dynamics around the steady state and the local
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stability of the system. Local stability is determined by the magnitude of the following two

eigenvalues:

��+ 0:5
h
1 + (�� 
 � p)�

p
1 + (p� 
 � �)2 � 2(p+ 
 + �)

i
: (31)

If both eigenvalues are inside the unit circle then the system is locally stable, returning to the steady

state for small perturbations. If the eigenvalues also have an imaginary part, then the system will

exhibit stable cycles. Using equation (31), we see that the system displays stable cycles if the

eigenvalues have modulus less than one and 2(p+
+�) > 1+(p�
��)2.10 Using the parameter

values in Table 1, the eigenvalues are 0:474� 0:344i, showing that the baseline EE system exhibits

stable cycles with a ten-year period.

Figure 3 presents a numerically derived phase diagram for the EE system. The "Epidemiology"

locus represents combinations of xt and int that produce time-invariant values for int from the

pre-AIDS SIRS equations. The "Economics" locus represents combination of xt and int that

produce time-invariant values for xt from the Euler equation (26). The intersection of the two loci

determines the long-run equilibrium of the EE system, one that exhibits stable cycles for the given

parameter values.

3.3.3 Contrasting Economic and Mathematical Epidemiological Models

The primary distinction between the mathematical and economic epidemiological models is the

ability to react to changes in the risk of infection. If individuals ignore the health consequences of

risky behavior (i.e., h = 0), thus choosing the maximum number of partners each period, the EE

model collapses to the ME model with infection probability

pt = 1� (1� �pint)�x: (32)

10 If the eigenvalues have an imaginary part, then they come in complex conjugates a � ci with period equal to
(Hamilton (1994))

2�

cos�1
�
a=
p
a2 + c2

�
and persistence equal to

R =Mod[ 1;2] =
p
a2 + c2:
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The only di¤erence between the traditional ME model and the EE model with h = 0 is that the

former has a constant infection parameter while the latter has the parameter varying with int. If

the additional restriction �x = 1 is imposed, the model collapses to the traditional SIRS model with

a time-invariant infection parameter, �p.

The linearized dynamic SIRS system is

264 bint+1
r̂t+1

375 =
264spin � (�+ p) �p

1 1� 
 � �

375
264 bint
r̂t

375 : (33)

SIRS individuals will not alter the number of partners they choose, even in response to signi�cant

variation in disease prevalence. In the EE model, however, individuals vary the number of partners

whenever the risk of infection deviates from normal levels.

The di¤erence in dynamics between the two models can be seen by contrasting the transition

matrices in (30) and (33). The two matrices di¤er by the spx�x=in term in the (1,1) position.

This term captures the e¤ect of changes in current infection rates on the probability of infection

through the choice of partners. The key parameter is �, the elasticity of partner change (x) with

respect to aggregate infections (in), which is the dynamic counterpart to the behavioral elasticity

discussed by Kremer (1996) and the behavioral response demonstrated in Geo¤ard and Philipson

(1996). In the ME model, � = 0 because susceptible individuals do not respond to changes in the

risk of infection, resulting in transition dynamics given by (33). In the EE model, � can take on

a range of values depending on the biological parameters and individual preferences over x and h.

Following the linearization of (26), this elasticity can be expressed as

� =
@x

@in

in

x
=

�pinx

(1� �pin)

�
1

ln(1� p) +
1

1 + ln(1� p)
1 + �

1 + �p

�
: (34)

The partner elasticity � is the sum of two parts. The �rst part relates to the probability of

infection, while the second part relates to expected changes in lifetime utility. Together, they

capture the in�uence of human responses on the dynamics of the system and may cause cycles to

either be dampened or accentuated.
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3.3.4 Rational Dynamic Dampening

Consider an exogenous increase in prevalence. When � < 0, the increased risk of infection causes

susceptible individuals to choose fewer partners. The reduction in partners in turn lowers the

prevalence of the disease and the risk of infection.11 As a result, the original increase in the

infection rate is tempered, a phenomenon we refer to as rational dynamic dampening.

Panel A of Figure 4 illustrates how an individual with dynamic dampening will respond to

an exogenous increase in disease prevalence. The upper graph shows the probability of infection

facing an individual while the lower graph shows the marginal bene�ts and costs of sexual activity.

Marginal costs are drawn for a high value of h such that there is a relatively high concern for

health. The optimal choice of partners corresponds to point A where the marginal bene�t curve

MB �rst crosses the marginal cost curveMC0. In response to an exogenous increase in prevalence

the probability curve shifts up from p0 to p1. The marginal cost curve both pivots clockwise due

to px;t and shifts down due to (Vt+1 � V St+1).

The marginal cost curve pivots clockwise at the point xc, the critical or threshold number of

partners at which an increase in prevalence leaves the slope of the probability curve unchanged.

The associated critical probability is pc = 1 � (1=e) � 0:63.12 This pivot is represented by the

lighter, dashed line. The increase in prevalence also shifts the marginal cost curve. Together, the

pivot and shift lead to a movement from MC0 to MC1. The individual then chooses to take fewer

partners, moving to point B where the MB curve intersects the MC1 curve.

To compare the dynamics of the ME and EE models under dynamic dampening, each model

is subjected to a one-time, �ve percentage point increase in prevalence. The top panels of Figure

5 show the dynamic responses of prevalence to the unanticipated perturbation. The di¤erence

in the persistence is clear when comparing the models. In the ME model, the system produces

11This is similar to the behavioral response cited in Geo¤ard and Philipson (1996) where the hazard rate (probability
of infection) decreases as prevalence increases. The implication of � < 0 is not that the probability of infection must
fall with an increase in prevalence, rather that the change in probability of infection is smaller than if individuals did
not alter their choice of partners.
12The critical probability, pc, is found by taking the cross partial derivative of p with respect to x and in, setting

the expression equal to zero, and solving for p (Kremer (1996)). The relevant equation is @pin=@x = pin=x+pin ln(1�
p)=x = 0, which reduces to ln(1� p) = �1 or pc = 1� (1=e).
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cyclical responses with period equal to 11:7 years and persistence equal to 0:86; the cyclical response

continues well past the forcing shock. The EE cycles have a slightly reduced ten-year periodicity

but are signi�cantly dampened with persistence of 0:59. Cycles are nearly imperceptible ten years

after the driving shock.

The di¤erences in ME and EE cycles re�ect the number of chosen partners, shown in the

bottom panels of Figure 5. In the ME model, the number of sexual partners is �xed implying

that syphilis cycles are exclusively due to biological dynamics.13 However, when individuals are

free to choose their number of partners and � < 0, cycles are signi�cantly dampened.14 With the

initial increase in prevalence, the risk to each susceptible individual rises causing them to rationally

scale back their number of partners. This in turn places downward pressure on rising prevalence.

As the newly infected individuals get treated and transition to recovery, prevalence falls and the

risk of infection wanes. Susceptible individuals then rationally increase their number of partners,

preventing infections from falling as sharply. The result of this interplay between human responses

and biological dynamics causes cycles to be smaller and less persistent than if they were driven

solely by biology.

3.3.5 Rational Dynamic Resonance

The opposite occurs when � > 0 and the responses of humans and disease biology are in sync.

Individuals become fatalistic and increase the number of partners in response to an increase in the

prevalence of the disease. This behavior is not driven by emotions, but rather by rational decision

making. For these individuals, the increased prevalence causes a decrease in the marginal cost of

infection, leading a rational individual to choose more partners. In the context of a dynamic SIRS

model, this behavior ampli�es cycles �a phenomenon we refer to as rational dynamic resonance.

This is a formalization of Kremer�s (1996) rational fatalism applied to a dynamic setting and an

13For purposes of comparison, we set x in the ME model equal to the endogenous solution for x from the EE model.
This also implies that p and in will be equal across the two models.
14For the baseline parameter values, the elasticity of partner change with respect to prevalence is � = �0:56.

Furthermore, if we hold x �xed at its steady-state value, the probability of infection at the steady state is 0:19,
increasing to 0:28 with the �ve percentage point increase in prevalence.
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SIRS disease.

Panel B of Figure 4 illustrates the problem facing an individual with rational fatalism. The

parameter values in Panels A and B are precisely the same, except for the lower value of h in Panel

B. The increase in prevalence leads to a reduction in the expected marginal cost of infection and

an increase in the number of partners from point A to point B.

Figure 6 contrasts the dynamic responses of the ME and EE models to a one-time, �ve per-

centage point increase in prevalence. The parameter values in Figures 5 and 6 are identical except

for the health parameter h, which is decreased about 38% from 8:1 to 5:0. The new steady-state

implies an increase in partners from 3:6 to 5:8, causing fatalism to set in. When prevalence is

rising, individuals choose more partners forcing prevalence even higher; when prevalence is falling,

individuals choose fewer partners forcing prevalence even lower. This resonance between the ini-

tial change in infection rates and optimal partner choice causes cycles to be ampli�ed and drawn

out.15

Are fatalism and rational dynamic resonance simply a theoretical curiosity? The answer appears

to be no. There is some evidence that fatalism and rational dynamic resonance may exist. Kremer

(1996) cites anecdotal evidence that individuals have displayed fatalism with respect to AIDS in

high prevalence regions of Uganda. In the developed world, syphilis prevalence is likely too low

to induce fatalism. However, that has not always been the case. In the late 15th century, a

syphilis epidemic spread throughout Europe leading to millions of deaths (Hayden (2003)). Into

the 20th century syphilis continued to be one of society�s primary health concerns, accounting for

�10% of public health expenditures in the U.S., 1 in 14 of all mental hospital admissions and 20,000

annual deaths� in 1936 (Green et al. (2001)). Brown (1971) also estimated that because many

cases of syphilis escape detection, the actual number of cases may be more than �ve times higher

than reported numbers. Furthermore, when you factor in the probability of contracting the suite

of other STDs such as gonorrhea, chlamydia and HIV, high-risk individuals may become resigned

15For the baseline parameter values, the elasticity of partner change with respect to prevalence is � = 0:25.
Furthermore, if we hold x �xed at its steady-state value, the probability of infection at the steady state is 0:37,
increasing to 0:48 with the �ve percentage point increase in prevalence.
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to the idea of contracting an STD and take additional partners in response to increases in disease

prevalence.

The �nal piece of evidence for rational dynamic resonance comes from the EE model and surveys

of the sexual behavior for high-risk individuals. Using the baseline parameter values, the EE model

predicts that the threshold number of partners required to induce rational fatalism and dynamic

resonance is approximately �ve partners per year. Several studies indicate that the rate of partner

change among high-risk individuals exceeds this number. For example, McKusick et al. (1985)

report that from a sample of 454 high-risk homosexual men, over 50% have had more than 24

partners in a year, with an average exceeding 40. Koblin et al. (2003), based on a non-HIV sample

of approximately 4,300 homosexual men across 6 major U.S. cities, �nd that over half the sample

report having more than 15 partners per year; nearly half report more than 20 partners per year.16

The rational response for these individuals is to resign themselves to the likelihood of contracting

the disease and behave in a fatalistic manner. That is, individuals will take on additional partners

when prevalence rises and take on fewer partners when prevalence falls, amplifying syphilis cycles.

3.3.6 Dampening, Resonance and Syphilis Cycles in the Post-AIDS Era

The beginning of the AIDS epidemic in the early 1980s drastically changed the risks of sexual

activity. Sexually active individuals are now primarily concerned with AIDS, rather than syphilis

or other STDs. Annual deaths due to AIDS in the U.S. jumped from 135 individuals in 1981 to a

peak of over 48,000 in 1995 (CDC (2007)). The annual mortality rate for AIDS has since declined to

under 15,000 due to the introduction and widespread availability of e¤ective antiretroviral therapies

(Boily et al. (2005)). The e¤ect of AIDS on the dynamics of syphilis prevalence in the U.S. can

be seen in Figure 1. Starting in 1990, the overall number of primary and secondary syphilis

infections in the U.S. gradually fell over the decade and has been gradually rising since 2000. The

nearly two decade U-shaped pattern in syphilis prevalence is signi�cantly di¤erent than the ten-

16 In their ME model, Grassly et al. (2005) implicitly chose the number of partners per year to be 14.5. (Breban
et al. (2008)) found that cycles only occur if individuals take more than 9.8 new partners per year. We �nd a much
lower threshold in the EE model due to the behavioral responses.
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year oscillations marking the period between the introduction of penicillin and the beginning of the

AIDS epidemic. To better understand the changing dynamics in syphilis prevalence, we explore

the predictions of the EE model after the introduction of AIDS.

For brevity, we outline our main �ndings here, leaving the details of the steady state and

transition dynamics for the post-AIDS EE model in the Appendix. In a setting with a relatively

high health parameter so that individuals choose fewer sexual partners, a one-time increase in

syphilis prevalence has little impact on the optimal number of partners or the dynamics of syphilis

prevalence because AIDS, not syphilis, is the primary health concern. The primary impact of

higher syphilis prevalence is to increase the risk of AIDS through the higher natural probability of

infection (�AjSp > �Ap ). A one-time increase in AIDS prevalence leads to a greater initial reduction

in the number of partners but monotonically returns to the steady state. The dynamics of syphilis

infections are similar to those from the ME model. This similarity occurs because individuals are

responding to a portfolio of risks, which is dominated by the lifetime consequences of contracting

AIDS.

Repeating the exercise for a low health parameter causes individuals to choose a higher number

of partners and fatalism sets in. With an increase in either syphilis or AIDS prevalence, individuals

choose a higher number of partners, as the marginal probability of AIDS infection declines. The

higher number of partners exacerbates the initial increase in syphilis or AIDS prevalence. This

interplay between the marginal probability of contracting AIDS and the chosen number of partners

continues over time, amplifying and stretching out syphilis cycles. The cycles in syphilis prevalence

spillover into AIDS dynamics through the higher natural probability of AIDS infection. This is

rational dynamic resonance in the post-AIDS era and it occurs in both SIRS and SI diseases.

We now turn our attention to the eradication of syphilis.

4 Syphilis Eradication

Encouraged by historically low prevalence in the late 1950s and in the late 1990s, the CDC has

twice unveiled formal plans to eradicate syphilis from the general population (U.S. Department of
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Health and Welfare (1963); CDC (1999)). Both plans emphasized improved reporting and data

gathering, rapid diagnosis and treatment of outbreaks, and a concerted e¤ort to increase individuals

awareness of the health consequences of sexual activity. It is easy to understand the motivation for

the eradication plans. For example, in 1956 the reported number of primary and secondary syphilis

cases had fallen to 6,392 or approximately one infection for every 26,000 persons (see Figure 1).

Similarly, in 1999 the reported number of cases was 5,797 or approximately one infection for every

45,000 persons. With proper education regarding prevention and treatment, it seems plausible

that policy makers at the CDC could continue the downward trend and eventually eliminate the

disease altogether. Yet syphilis rates did not fall. In fact, after the 1999 Eradication Plan, rates

of primary and secondary syphilis incidence rose and are 81% higher in 2007 than in 2000. Why

did these plans fall short of their desired objectives? To answer this question, we investigate the

dynamics of the EE system near eradication.

4.1 Pre-AIDS

Begin with the pre-AIDS eradication plan. To analyze the plan, we investigate the stability

properties of the eradication equilibrium. The transition matrix around the eradication steady

state simpli�es to 264�x�p � � 0

1 1� 
 � �

375 (35)

with eigenvalues (�x�p� �) and (1� 
 � �).17 These two roots are always real so when the system

is stable, it converges monotonically to the eradication steady state. The stability frontier is found

by setting the �rst eigenvalue, �x�p � �, equal to one.18 Any value greater than one will cause

eradication to be unstable. The critical number of partners that makes eradication stable is

�x� =
1 + �

�p
: (36)

17To derive the transition matrix around the eradication steady state, evaluate (33) at the eradication steady state.
The Euler equation for x is not relevant because when the system is near the eradication boundary, individuals will
optimally choose xt = �x for all t.
18The other eigenvalue will be less than one in magnitude because our calibrations always satisfy 
 + � < 1.
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Using the baseline parameters from Table 1 (� = 0:05 and �p = 0:60), the stability threshold

implies that individuals must average less than 1:75 partners per year for eradication to be locally

stable. Even two partners per person will cause eradication to become unstable and the EE system

to gravitate toward an endemic equilibrium.19

Alternatively, the stability threshold (36) for eradication can be interpreted in terms of the basic

reproduction number R0 = p[(1+�)in]�1, which using L�Hôpital�s rule reduces to R0 = �p�x=(1+�).

The standard result in the epidemiological literature is that eradication is locally stable if R0 is

less than one (Anderson and May (1991)). The intuition is straightforward �for eradication to be

stable, the rate at which people are entering the infection pool (�p�x) must be less than the rate at

which people are leaving the infected pool (1 + �).

4.2 Post-AIDS

Now consider the stability of eradication after the onset of AIDS. Here, the chance of syphilis

eradication is improved because susceptible individuals will take fewer partners due to the fear of

AIDS. To examine the stability of syphilis eradication, we calculate the basic reproductive number

for syphilis around the eradication steady state. The basic reproductive number is given by

R0 =
s�Spx+ in

A�
SjA
p xA

1 + �
: (37)

Note the similarities of R0 to the pre-AIDS period. The �rst term in the numerator measures the

rate at which individuals from the susceptible pool are becoming infected. This term is weighted by

s, the proportion of the susceptible syphilis population without AIDS, and involves x rather than

�x because susceptible individuals will not take the maximum number of partners due to the risk of

AIDS. The second term involves the proportion of individuals that are susceptible to syphilis but

have AIDS, inA. These individuals will choose more partners because they are already infected

19The eradication stability frontier is independent of h implying that changes in the relative concern for health
do not impact the local stability of eradication. This occurs because h a¤ects the transition dynamics exclusively
through its impact on in (see matrix system (30)). When stability is evaluated at the eradication steady state
(implying that in = 0), h has no role in the transition dynamics and local stability.
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with AIDS and the health risks of syphilis are relatively low. As in the pre-AIDS period, the

denominator (1 + �) captures the rate at which individuals are leaving the infected pool, either

through treatment (100%) or death (�).

One way to contrast syphilis eradication pre- and post-AIDS is to calculate the necessary degree

of altruism (maximum number of allowable partners) for successful eradication. Table 2 shows the

degree of altruism needed for syphilis eradication to be locally stable.

Table 2. Altruism and Stability of Syphilis Eradication

Number of Partners

Period Type Fraction of Population Self-Interested Choice Required Altruism

Before AIDS s 100% �x = 10 1:75

After AIDS s 85% 1:87 1:87

After AIDS inA 15% �x = 10 0:95

Before the AIDS epidemic, the EE model shows that a high degree of altruism is necessary

for eradication to be stable and keep the system from gravitating toward an endemic equilibrium:

the susceptible population must reduce their number of partners by 83% (from �x = 10 to less

than two partners per year). For the sexually active population under consideration, this is an

extreme degree of altruism (Andrus et al. (1990)). After the AIDS epidemic, individuals are

primarily concerned with the risk of contracting AIDS, not syphilis. Those susceptible to AIDS

will voluntarily take fewer partners, x = 1:87 for our calibration, not out of concern for the general

population but rather out of self-interest. The remaining portion of the population (those with

AIDS) will need to reduce their number of partners to less than one partner per year (xA � 0:95)

for syphilis eradication to be successful. Overall, this is a much smaller degree of required altruism

because the majority of the population voluntarily reduced the number of partners due to the risk
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of AIDS. Yet, those with AIDS are still required to take no more than one partner per year and

display a high level of altruism for syphilis to be eradicated.

4.3 Policy Evaluation

Why have the eradication plans failed to reach their objectives? The answer lies not with the

biology of the disease but rather with economic principles. In the late 1950s, when U.S. syphilis

rates were very low, susceptible individuals realized that they faced a relatively low risk of matching

with an infected partner and contracting the disease. Economic theory predicts that self-interested,

rational individuals will react to this reduced risk by increasing the number of sexual partners until

the bene�ts of additional partners are balanced by the additional risks of infection. The surprising

result from the stability analysis is that for reasonable values of the transmission and population

growth parameters, anything more than two partners per year will make eradication infeasible.

This number is well below commonly accepted estimates of partner frequency per year for those

who have an elevated risk of syphilis (Andrus et al. (1990)). The goal of eradicating syphilis in

the late 1950s predictably failed.

After the introduction of AIDS, syphilis was no longer a primary concern of sexually active indi-

viduals. Prior to 1999, syphilis rates in the U.S. were dropping because sexually active individuals

were reacting to the risk of AIDS by using protection or taking fewer partners. However, as drug

therapies were discovered that lengthened and improved the quality of life for those infected with

AIDS, the incentive to protect or take fewer partners diminished. Individuals began to take more

risk and o¤set the e¤orts of the 1999 syphilis eradication campaign (Boily et al. (2005)).

The primary lesson here is that when infection rates are near eradication and the health risks of

other sexually transmitted diseases are limited �as was the case in the U.S. in 1956 and 2000 �is

precisely the time when individuals will choose the highest number of partners and take the most

risks. As a result, the disease remains within the general population and continues to �uctuate

around its endemic long-run rate.
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5 Conclusion

Our research has both methodological and policy signi�cance. Methodologically, we develop an

integrated economic-ecological model of infectious disease dynamics in the spirit of Philipson (1995),

Gersovitz and Hammer (2004), Geo¤ard and Philipson (1996) and Kremer (1996). The model is

unique in focusing on an SIRS disease �syphilis �and developing a joint model with AIDS. To the

best of our knowledge, this is the �rst attempt to model two sexually transmitted diseases within

a single optimization framework. In the process, we extend Kremer�s (1996) fatalism result to

a dynamic setting and demonstrate how human responses may either dampen or exacerbate the

magnitude and duration of infectious disease cycles.

The implications from the model can also inform policy. A key part of designing and imple-

menting e¤ective public health policy for infectious diseases is understanding the role of human

behavior. For syphilis, Grassly et al. (2005) argue convincingly that social and behavioral re-

sponses play a secondary role in the evolution of the disease. This implies that strategies directed

towards changing sexual practices may be of limited use in controlling the disease. In contrast, our

analysis shows that behavioral responses are central to the nature of syphilis dynamics. This gives

credence to public health policies that aim to change sexual practices in an attempt to control the

disease.

Perhaps the most striking implication of the integrated EE framework is that eradication is

nearly impossible. When the disease is near eradication, this is precisely the time when a rational

susceptible individual will choose to take more partners because the chance of matching up with an

infected individual is very low. Prior to the AIDS epidemic, our model predicts that the sexually

active population under consideration would need to scale back their number of partners to less

than two per year �an extreme degree of altruism for the relevant population �for eradication to

be successful. After the introduction of AIDS, syphilis eradication is more plausible as susceptible

individuals will rationally reduce their number of partners in response to AIDS risk. However, this

window of opportunity to eradicate syphilis may have closed. The discovery of new drug therapies

have drastically improved the quality of life for those infected with AIDS but has the unintended
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consequence of making syphilis eradication much more di¢ cult. As a result, public health o¢ cials

may be better served by directing their e¤orts away from eradication and toward �nding the best

mix of education, prevention and treatment policies to reach a more desirable endemic equilibrium.
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Figure 1.  U.S. Cases of (Primary & Secondary) Syphilis and AIDS 
 

 
 

Source:  Center for Disease Control and Prevention (www.cdc.gov/std/). 
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Figure 2. Flow Chart for Syphilis Dynamics 

 
Reproduced from Garnett et al. (1997). 
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Figure 3. Phase Diagram for the EE System 

 
Notes.  The parameter values are set at β = 0.96, γ = 0.2, λa = 0.023, a = 40, μ = 0.05, h = 8.1 and ݔҧ ൌ 10.  
The steady state of the EE model, (in*, x*), is found at the intersection of the time invariant loci for in and 
x.   
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Figure 4.  Individual Optimal Choice and the Probability of Infection:  Exogenous Increase in Prevalence 
     
  Panel A. Rational Dynamic Dampening (high h) Panel B. Rational Dynamic Resonance (low h)   

 
 

 

x 

x 

B

A

MC1 
MB
MC0

pc 

1 

p

MB, MC 

xc

p0 

p1 

MC pivot due to px 

x 

x 

B

A 

MC1 
MB

MC0

pc 

1 

p 

MB, MC 

xc

p0 

p1 

MC pivot due to px 



Figure 5.  Impulse Response Functions for the ME and EE Systems – Rational Dynamic Dampening 
 

 
 
Notes.  The fundamental parameters in the EE system are set at β = 0.96, μ = 0.05, γ = 0.2, h = 8.1, λa = 0.023, a = 40 and 
ҧݔ ൌ 10.  For comparison purposes, we set the steady-state number of partners (x) in the ME model equal to the endogenously 
solved for number of partners in the EE model.  As a result, the steady-state prevalence is also equal in the ME and EE models. 



Figure 6.  Impulse Response Functions for the ME and EE Systems – Rational Dynamic Resonance 
 

 
 
Notes.  The fundamental parameters in the EE system are set at β = 0.96, μ = 0.05, γ = 0.2, h = 5.4, λa = 0.023, a = 40, and ݔҧ ൌ 10.  For 
comparison purposes, we set the steady-state number of partners (x) in the ME model equal to the endogenously solved for number of 
partners in the EE model.  As a result, the steady-state prevalence is also equal in the ME and EE models. 
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In this appendix, we present the technical details of the integrated economic-epidemiological (EE) model in the pre- and

post-AIDS eras. We start by presenting the joint syphilis-AIDS model after the introduction of AIDS and then present the

details of the model prior to the introduction of AIDS.

1 POST-AIDS ERA

1.1 SYPHILIS-AIDS EPIDEMIOLOGICAL MODEL

The joint syphilis-AIDS (SIRS-SI) population model contains six mutually exclusive categories: susceptible to both diseases

(s), infected with syphilis only (inS), infected with AIDS only (inA), infected with syphilis and AIDS (inSA), immune to

syphilis (r), and immune to syphilis while infected with AIDS (rA). We start by presenting the transition matrix between

these categories in Table A1:

Table A1. Transition Matrix for Disease Categories

st+1 inSt+1 inAt+1 inSAt+1 rt+1 rAt+1

st (1� pSt )(1� pAt ) pSt (1� pAt ) pAt (1� pSt ) pSt p
A
t 0 0

inSt 0 0 0 0 1� pAjSt p
AjS
t

inAt 0 0 1� pSjAt p
SjA
t 0 0

inSAt 0 0 0 0 0 1

rt 
(1� pAjSt ) 0 
p
AjS
t 0 (1� pAjSt )(1� 
) (1� 
)pAjSt

rAt 0 0 
 0 0 1� 


Using the transition probabilities and a 100% syphilis treatment rate, the equations of motion for the disease categories are

st+1 = �+ [(1� pSt )(1� pAt )� �]st + 
(1� p
AjS
t )rt

inSt+1 = ��inSt + pSt (1� pAt )st

inAt+1 = (1� �� pSjAt )inAt + p
A
t (1� pSt )st + 
p

AjS
t rt + 
r

A
t

inSAt+1 = ��inSAt + p
SjA
t inAt + p

S
t p

A
t st

rt+1 = [(1� pAjSt )(1� 
)� �]rt + (1� pAjSt )inSt

rAt+1 = (1� �� 
)rAt + (1� 
)p
AjS
t rt + p

AjS
t inSt + in

SA
t ;
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where the marginal and conditional probabilities of contracting syphilis or AIDS are

pSt = Pr(contract syphilis) = 1� [1� �Sp (inSt + inSAt )]xt

pAt = Pr(contract AIDS) = 1� [1� �Ap (inAt + inSAt + rAt )]
xt

p
SjA
t = Pr(contract syphilis j infected with AIDS) = 1� [1� �SjAp (inSt + in

SA
t )]x

A
t

p
AjS
t = Pr(contract AIDS j infected with syphilis) = 1� [1� �AjSp (inAt + in

SA
t + rAt )]

xSt :

1.2 VALUE FUNCTIONS

The four value functions apply to individuals: (1) susceptible to both diseases, Vt = V (zt); (2) infected with syphilis only,

V St = V S(zt); (3) infected with AIDS only, V At = V A(zt); and (4) infected with syphilis and AIDS, V SAt = V SA(zt), where

zt � (st; in
S
t ; in

A
t ; in

SA
t ; rt; r

A
t )

0 is the vector of states. There are no value functions for those recovered (and immune) to

syphilis because we assume the recovered stage cannot be observed by individuals. The value functions are

Vt = max
xt
fu(xt; h) + �[pSt (1� pAt )V St+1 + pAt (1� pSt )V At+1 + pSt pAt V SAt+1 + (1� pSt )(1� pAt )Vt+1]g (1)

V St = max
xSt

fu(xSt ; hS) + �[p
AjS
t V At+1 + (1� p

AjS
t )Vt+1]g (2)

V At = max
xAt

fu(xAt ; hA) + �[p
SjA
t V SAt+1 + (1� p

SjA
t )V At+1]g (3)

V SAt = u(�x; hSA) + �V At+1: (4)

1.3 EULER EQUATIONS

The necessary �rst-order conditions for s, inS , and inA individuals are:

x�1t = �pSx;t[(1� pAt )Vt+1 � (1� pAt )V St+1 + pAt V At+1 � pAt V SAt+1 ] +

�pAx;t[(1� pSt )Vt+1 � (1� pSt )V At+1 + pSt V St+1 � pSt V SAt+1 ] (5)

(xSt )
�1 = �p

AjS
x;t (V

S
t+1 � V At+1) (6)

(xAt )
�1 = �p

SjA
x;t (V

A
t+1 � V SAt+1); (7)

where the x subscript on the probabilities refers to the partial derivatives with respect to the appropriate x. The left side

of the Euler equations is the marginal utility or bene�t (MB) and the right side is the marginal disutility or cost (MC)

associated with the chosen number of partners. Using (1) through (4) to substitute out the optimized value functions, the
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Euler equations become

1

p
SjA
x;t x

A
t

+
1

p
AjS
x;t x

S
t

= �E

 
ut+1 � uSAt+1 + pSt+1(1� pAt+1)�1;t+1�2;t+1 �

pSt+1p
A
t+1

xAt+1p
SjA
x;t+1

+
1� pAt+1
xSt+1p

AjS
x;t+1

!
(8)

1

p
SjA
x;t x

A
t

+
1

p
AjS
x;t x

S
t

= ��1;t�2;t + �E
 
uSt+1 � uSAt+1 +

1� pAjSt+1

xSt+1p
AjS
x;t+1

!
(9)

1

p
SjA
x;t x

A
t

= �E

 
uAt+1 � uSAt+1 �

p
SjA
t+1

xAt+1p
SjA
x;t+1

!
; (10)

where

�1;t =

 
pSx;tp

A
t + p

A
x;tp

S
t

xAt p
SjA
x;t

+
pAx;t

xSt p
AjS
x;t

� 1

xt

!
and

�2;t =
1

pSx;t(1� pAt )� pSt pAx;t
:

The second-order conditions for an optimal program require

@MB

@x
� @MC

@x
< 0;

for equations (5), (6) and (7). Since the marginal bene�ts decline with x, an optimal program requires an upward sloping

marginal cost curve (i.e., @MC
@x > 0), or if it slopes down, it must be locally �atter than the MB curve (i.e.,

��@MB
@x

�� > ��@MC
@x

��).
1.4 EXPECTATIONS

We consider two types of expectations by individuals: naïve and rational. Under naïve expectations, the expectation

of all future variables is set equal to the associated current value. Under rational expectations, E is the mathematical

expectations operator conditional on all information dated time t and earlier. With rational expectations, individuals have

complete information on the laws of motion for the aggregate disease variables and the optimal choices of other individuals.
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1.5 STEADY STATE

The endemic steady-state solves for nine variables, fs; inS ; inA; inSA; r; rA; x; xS ; xAg, from the following nine equations:

s =
�+ 
(1� pAjS)r
�+ pS + pA � pSpA

inS =
pS(1� pA)s
1 + �

inA =
pA(1� pS)s+ 
(pAjSr + rA)

�+ pSjA

inSA =
pSjAinA + pSpAs

1 + �

r =
(1� pAjS)inS

�+ 
(1� pAjS) + pAjS

rA =
(1� 
)pAjSr + pAjSinS + inSA

�+ 


x�1 = �pSx [(1� pA)V � (1� pAt )V S + pAV A � pAV SA] +

�pAx [(1� pS)V � (1� pS)V A + pSV S � pSV SA]

(xS)�1 = �pAjSx (V S � V A)

(xA)�1 = �pSjAx (V A � V SA):

1.6 LINEARIZATION

We start by linearizing the SIRS and SI epidemiological equations around the endemic steady state. Variables with hats

refer to deviations from the steady state (e.g., ŝt = st � s):

ŝt+1 = [��+ (1� pS)(1� pA)]ŝt + 
(1� pAjS)r̂t � s(1� pA)p̂St � s(1� pS)p̂At � 
rp̂
AjS
t

binSt+1 = �� binSt + pS(1� pA)ŝt + (1� pA)sp̂St � pSsp̂At
binAt+1 = (1� �� pSjA) binAt � inAp̂SjAt + pA(1� pS)ŝt � spAp̂St + s(1� pS)p̂At + 
pAjS r̂t + 
rp̂

AjS
t + 
r̂At

binSAt+1 = �� binSAt + pSA binAt + inAp̂SjAt + pSpAŝt + p
Ssp̂At + p

Asp̂St

r̂t+1 = [1� �� 
(1� pAjS)� pAjS ]r̂t � [r(1� 
) + inS ]p̂AjSt + (1� pAjS) binSt
r̂At+1 = (1� �� 
)r̂At + (1� 
)pAjS r̂t + [inS + (1� 
)r]p̂

AjS
t + pAjS binSt + binSAt :
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The linearized equations for the probabilities (and the derivatives of the probabilities with respect to partners) are given by:

p̂St = pSin binSt + pSin binSAt + pSx x̂t

p̂At = pAin binAt + pAin binSAt + pAinr̂
A
t + p

A
x x̂t

p̂
SjA
t = p

SjA
in

binSt + pSjAin binSAt + pSjAx x̂At

p̂
AjS
t = p

AjS
in

binAt + pAjSin
binSAt + p

AjS
in r̂At + p

AjS
x x̂St

p̂Sx;t = [(1 + ln[1� pS ])=x]p̂St � (pSx=x)x̂t

p̂Ax;t = [(1 + ln[1� pA])=x]p̂At � (pAx =x)x̂t

p̂
SjA
x;t = [(1 + ln[1� pSjA])=xA]p̂SjAt � (pSjAx =xA)x̂At

p̂
AjS
x;t = [(1 + ln[1� pAjS ])=xS ]p̂AjSt � (pAjSx =xS)x̂St

where

pSin = pSinS = p
S
inSA = x�

S
p (1� �Sp (inS + inSA))x�1

pAin = pAinA = p
A
inSA = p

A
rA = x�

A
p (1� �Ap (inA + inSA + rA))x�1

p
SjA
in = p

SjA
inS

= p
SjA
inSA

= xA�SjAp (1� �SjAp (inS + inSA))x
A�1

p
AjS
in = p

AjS
inA

= p
AjS
inSA

= p
AjS
rA

= xS�AjSp (1� �AjSp (inA + inSA + rA))x
S�1

pSx = � ln[1� pS ](1� pS)=x

pAx = � ln[1� pA](1� pA)=x

pSjAx = � ln[1� pSjA](1� pSjA)=xA

pAjSx = � ln[1� pAjS ](1� pAjS)=xS :
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Summarizing, the linearized EE system is

SIRS/SI System

ŝt+1 = a1ŝt + a2r̂t + a3p̂
S
t + a4p̂

A
t + a5p̂

AjS
t

binSt+1 = a6 binSt + a7ŝt + a8p̂St + a9p̂At
binAt+1 = a10 binAt + a11p̂SjAt + a12ŝt + a13p̂

S
t + a14p̂

A
t + a15r̂t + a16p̂

AjS
t + a17r̂

A
t

binSAt+1 = a18 binSAt + a19 binAt + a20p̂SjAt + a21ŝt + a22p̂
A
t + a23p̂

S
t

r̂t+1 = a24r̂t + a25p̂
AjS
t + a26 binSt

r̂At+1 = a27r̂
A
t + a28r̂t + a29p̂

AjS
t + pAjS binSt + binSAt

Probabilities

p̂St = pSin binSt + pSin binSAt + pSx x̂t

p̂At = pAin binAt + pAin binSAt + pAinr̂
A
t + p

A
x x̂t

p̂
SjA
t = p

SjA
in

binSt + pSjAin binSAt + pSjAx x̂At

p̂
AjS
t = p

AjS
in

binAt + pAjSin
binSAt + p

AjS
in r̂At + p

AjS
x x̂St

p̂Sx;t = a30p̂
S
t + a31x̂t

p̂Ax;t = a32p̂
A
t + a33x̂t

p̂
SjA
x;t = a34p̂

SjA
t + a35x̂

A
t

p̂
AjS
x;t = a36p̂

AjS
t + a37x̂

S
t

Euler Equations

a38p̂
SjA
x;t + a39x̂

A
t + a40p̂

AjS
x;t + a41x̂

S
t = a42Ex̂t+1 + a43Ep̂

S
t+1 + a44Ep̂

A
t+1 + a45Ep̂

S
x;t+1 +

a46Ep̂
A
x;t+1 + a47Ex̂

A
t+1 + a48Ep̂

SjA
x;t+1 + a49Ex̂

S
t+1 + a50Ep̂

AjS
x;t+1

a51p̂
SjA
x;t + a52x̂

A
t + a53p̂

AjS
x;t + a54x̂

S
t = �a55p̂Sx;t � a56p̂At � a57p̂St � a58p̂Ax;t � a59x̂t +

a60Ex̂
S
t+1 + a61Ep̂

AjS
t+1 + a62Ep̂

AjS
x;t+1

a63x̂
A
t = a64Ex̂

A
t+1 + a65Ep̂

SjA
t+1 + a66Ep̂

SjA
x;t+1
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with coe¢ cients

a1 = 1� �� pS � pA + pSpA; a2 = 
(1� pAjS); a3 = �s(1� pA); a4 = �s(1� pS); a5 = �
r; a6 = ��;

a7 = pS(1� pA); a8 = (1� pA)s; a9 = �pSs; a10 = 1� �� pSjA; a11 = �inA; a12 = (1� pS)pA;

a13 = �spA; a14 = s(1� pS); a15 = 
pAjS ; a16 = 
r; a17 = 
; a18 = ��; a19 = pSjA; a20 = inA;

a21 = pSpA; a22 = p
Ss; a23 = p

As; a24 = 1� �� 
(1� pAjS)� pAjS ; a25 = �r(1� 
)� inS ;

a26 = 1� pAjS ; a27 = 1� �� 
; a28 = (1� 
)pAjS ; a29 = inS + (1� 
)r; a30 = (1 + ln[1� pS ])=x;

a31 = �pSx=x; a32 = (1 + ln[1� pA])=x; a33 = �pAx =x; a34 = (1 + ln[1� pSjA])=xA; a35 = �pSjAx =xA;

a36 = (1 + ln[1� pAjS ])=xS ; a37 = �pAjSx =xS ; a38 = �(pSjAx )�2(xA)�1; a39 = �(pSjAx )�1(xA)�2;

a40 = �(pAjSx )�2(xS)�1; a41 = �(pAjSx )�1(xS)�2; a42 = �[x
�1 + pS(1� pA)�2x�2];

a43 = �[(1� pA)�1�2 + pS(1� pA)pAx �1�22 + pS(1� pA)pAx �2(xApSjAx )�1 � pA(xApSjAx )�1];

a44 = �[�pS�2�1 + pS(1� pA)�22�1pSx + pS(1� pA)�2pSx (xApSjAx )�1 � pS(xApSjAx )�1 � (xSpAjSx )�1];

a45 = �[�pS(1� pA)2�22�1 + pS(1� pA)�2pA(xApSjAx )�1];

a46 = �[(pS)2(1� pA)�22�1 + (pS)2(1� pA)�2(xApSjAx )�1 + pS(1� pA)�2(xSpAjSx )�1];

a47 = �[�pS(1� pA)�2(pSxpA + pAx pS)(pSjAx )�1(xA)�2 + pSpA(pSjAx )�1(xA)�2];

a48 = �[�pS(1� pA)�2(pSxpA + pAx pS)(pSjAx )�2(xA)�1 + pSpA(pSjAx )�2(xA)�1];

a49 = �[�pS(1� pA)�2pAx (pAjSx )�1(xS)�2 � (1� pA)(pAjSx )�1(xS)�2];

a50 = �[�pS(1� pA)�2pAx (xS)�1(pAjSx )�2 � (1� pA)(pAjSx )�2(xS)�1];

a51 = �(pSjAx )�2(xA)�1 � �2(pSxpA + pAx pS)(pSjAx )�2(xA)�1;

a52 = �(pSjAx )�1(xA)�2 � �2(pSxpA + pAx pS)(pSjAx )�1(xA)�2;

a53 = �(pAjSx )�2(xS)�1 � �2pAx (pAjSx )�2(xS)�1; a54 = �(pAjSx )�1(xS)�2 � �2pAx (pAjSx )�1(xS)�2;

a55 = ��1�22(1� pA) + �2pA(xApSjAx )�1;

a56 = �1�
2
2p
S
x + �2p

S
x (x

ApSjAx )�1; a57 = �1�
2
2p
A
x + �2p

A
x (x

ApSjAx )�1; a58 = �1�
2
2p
S + �2p

S(xApSjAx )�1 + �2(x
SpAjSx )�1;

a59 = �2x
�2; a60 = �[(x

S)�1 � (1� pAjS)(xS)�2(pAjSx )�1]; a61 = �[�(xSpAjSx )�1]; a62 = �[�(1� pAjS)(xS)�1(pAjSx )�2];

a63 = a38; a64 = �[(x
A)�1 + pSjA(pSjAx )�1(xA)�2]; a65 = �[�(xApSjAx )�1]; a66 = �[p

SjA(xA)�1(pSjAx )�2]:
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1.7 LINEARIZED MATRIX SYSTEM

The linearized EE system in matrix form is

266666666666666666666664

a1 0 0 0 a2 0 0 0

a7 a6 0 0 0 0 0 0

a12 0 a10 0 a15 a17 0 0

a21 0 a19 a18 0 0 0 0

0 a26 0 0 a24 0 0 0

1 1 1 1 1 1 0 0

0 0 0 0 0 0 0 a41

0 0 0 0 0 0 a59 a54

377777777777777777777775

266666666666666666666664

ŝtbinStbinAtbinSAt
r̂t

r̂At

x̂t

x̂St

377777777777777777777775
| {z }

Aŷt

+

266666666666666666666664

a3 a4 0 a5 0 0 0 0

a8 a9 0 0 0 0 0 0

a13 a14 a11 a16 0 0 0 0

a23 a22 a20 0 0 0 0 0

0 0 0 a25 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 a38 a40

a57 a56 0 0 a55 a58 a51 a53

377777777777777777777775

266666666666666666666664

p̂St

p̂At

p̂
SjA
t

p̂
AjS
t

p̂Sx;t

p̂Ax;t

p̂
SjA
x;t

p̂
AjS
x;t

377777777777777777777775
| {z }

Bŵt

=

266666666666666666666664

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 a42 a49

0 0 0 0 0 0 0 a60

377777777777777777777775

266666666666666666666664

ŝt+1binSt+1binAt+1binSAt+1
r̂t+1

r̂At+1

Ex̂t+1

Ex̂St+1

377777777777777777777775
| {z }

Cŷt+1

+

266666666666666666666664

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

a43 a44 0 0 a45 a46 a48 a50

0 0 0 a61 0 0 0 a62

377777777777777777777775

266666666666666666666664

Ep̂St+1

Ep̂At+1

Ep̂
SjA
t+1

Ep̂
AjS
t+1

Ep̂Sx;t+1

Ep̂Ax;t+1

Ep̂
SjA
x;t+1

Ep̂
AjS
x;t+1

377777777777777777777775
| {z }

Dŵt+1

9



and

266666666666666666666664

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

�a30 0 0 0 1 0 0 0

0 �a32 0 0 0 1 0 0

0 0 �a34 0 0 0 1 0

0 0 0 �a36 0 0 0 1

377777777777777777777775

266666666666666666666664

p̂St

p̂At

p̂
SjA
t

p̂
AjS
t

p̂Sx;t

p̂Ax;t

p̂
SjA
x;t

p̂
AjS
x;t

377777777777777777777775
| {z }

Fŵt

=

266666666666666666666664

0 pSin 0 pSin 0 0 pSx 0

0 0 pAin pAin 0 pAin pAx 0

0 p
SjA
in 0 p

SjA
in 0 0 0 0

0 0 p
AjS
in p

AjS
in 0 p

AjS
in 0 p

AjS
x

0 0 0 0 0 0 a31 0

0 0 0 0 0 0 a33 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 a37

377777777777777777777775

266666666666666666666664

ŝtbinStbinAtbinSAt
r̂t

r̂At

x̂t

x̂St

377777777777777777777775
| {z }

Gŷt

;

where, for our parameter choices, individuals with only AIDS always choose the maximum number of partners (xAt = �x).

This implies that x̂At = 0 for all t.

Writing the matrix EE system in compact form, we get

Aŷt +Bŵt = Cŷt+1 +Dŵt+1

Fŵt = Gŷt

or

ŷt = Jŷt+1;

where J = (A+BF�1G)�1(C +DF�1G):

1.8 RATIONAL EXPECTATIONS EQUILIBRIUM (REE)

We use the method of Blanchard and Kahn (1980) to solve for the REE. The vector ŷt contains six predetermined and two

jump variables. There are two forward-stable roots of J so the system displays saddle-path stability and a unique endemic

REE. The equilibrium under naïve expectations is calculated by setting Ex̂t+1 = x̂t, Ex̂St+1 = x̂
S
t , and Eŵt+1 = ŵt.
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1.9 PARAMETERS AND STEADY-STATE VALUES

Table A2 shows the baseline parameter values and the implied steady-state values.

Table A2. Baseline Parameters and Steady-State Values

Parameters

� 
 � a hSA hA hS h �x �Sa �Aa �AjSa �SjAa

0:96 0:2 0:05 40 0 0 5 5 10 0:023 0:0008 0:024 0:023

Endemic Steady-State Values

x xS xA s inS inA inSA r rA pS pA pSjA pAjS

1:941 0:116 10 0:562 0:043 0:081 0:028 0:161 0:125 0:082 0:014 0:358 0:018

Syphilis Eradication Steady-State Values

x xS xA s inS inA inSA r rA pS pA pSjA pAjS R0

2:141 � 10 0:745 0 0:255 0 0 0 0 0:017 0 � 2:393

We now justify our choice of parameter values, which can be placed into epidemiological and economic categories.

1.9.1 Epidemiological Parameters

� �Sa = 0:023 (Probability of contracting syphilis with an infected partner, one act)

� �Sp = 0:60 = 1� (1� �Sa )a (Probability of contracting syphilis with an infected partner, all acts)

� �Aa = 0:0008 (Probability of contracting AIDS with an infected partner, one act)

� �AjSa = 0:024 (Probability of contracting AIDS with syphilis and an infected partner, one act)

� v = 1 (Syphilis treatment rate)

� 
 = 0:2 (Syphilis loss of host immunity rate)

� � = 0:05 (Birth/death rate)

For the syphilis parameters, Garnett et al. (1997) suggests that �Sp = 0:6 is a potentially "unbiased estimate" (page 189)

for the partner probability of syphilis transmission. If we assume that a susceptible individual has a = 40 sexual acts with
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each partner, the implied probability of contracting syphilis from a single act is �Sa = 0:023. For the AIDS parameters,

Chesson and Pinkerton (2000) document mean per act probabilities of AIDS transmission to be 0:001 for male-to-female

transmission and 0:0006 for female-to-male transmission. We employ the average of these in our gender-neutral per-act

AIDS transmission probability of �Aa = 0:0008. Chesson and Pinkerton (2000) also provide an estimate of the probability

that an individual who has syphilis will contract AIDS from a single act with an infected partner (�AjSa = 0:024). The

treatment parameter for syphilis v captures both the rate of diagnosis and treatment. The treatment e¤ectiveness for

syphilis appears to be close to 100% (Alexander et al. (1999)) so that v = 1. Following Garnett et al. (1997) we assume an

average duration of host immunity to syphilis of 5 years, implying a value of 
 = 0:2. The population is assumed to have a

birth/death rate of � = 0:05 as in Garnett et al. (1997).

1.9.2 Economic Parameters

� a = 40 (Number of sexual acts per partner)

� hSA = 0 (Health parameter with syphilis and AIDS)

� hA = hSA (Health parameter with AIDS only)

� hS = 5 (Health parameter with syphilis only)

� h = hS (Health parameter without syphilis or AIDS)

� � = 0:96 (Discount factor)

� �x = 10 (Maximum number of partners per period)

Sexual acts per partner is set at a = 40. Chesson and Gift (2000) set the total number of sexual acts per year at 100.

Smith (1994) cite a �gure of 62 total sexual acts per year, on average across the adult population. Using our steady state

of approximately two partners per year, the implied total number of sexual acts (40 � 2 = 80) is a midpoint of these two

estimates. We normalize the utility health parameter with syphilis and AIDS (hSA) to zero. The health parameter for

individuals with AIDS but not syphilis is also set at zero. This captures the notion that the health risks of AIDS dominate

those of syphilis. Contracting syphilis is still a concern to susceptible individuals because it signi�cantly increases the risk

of contracting AIDS. The health parameter without AIDS or syphilis (h) or without AIDS but with syphilis (hS) is set at 5.

This value produces dynamic dampening and is chosen to produce syphilis cycles with an approximate ten-year period under

naïve expectations (Grassly, Fraser and Garnett (2005)). A discount factor of � = 0:96 is standard for annual data and is

consistent with a 4% real rate of return. The value of �x = 10 was inferred from a number of sources. Andrus et al. (1990)

reports an average number of partners for those infected with syphilis of 6:3 partners during the infectious period. Koblin
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et al. (2003) found that in a non-HIV sample of approximately 4,300 homosexual men across six major U.S. cities, over half

the sample report having more than 15 partners per year. The value for �x is also varied to capture possible altruism by

infected individuals.

1.10 DYNAMICS AND IMPULSE RESPONSE FUNCTIONS

Figures A1 and A2 show the dynamic responses to a 0:05 increase in the fraction of the population infected with syphilis

only (inS) and a 0:05 increase in the fraction of the population infected with AIDS only (inA). Figure A1 uses the baseline

parameters in Table A2 and displays dynamic dampening for both naïve and rational expectations. Figure A2 uses identical

parameter values except the health parameter, hS = h, is reduced to 1:95. This causes fatalism to set in for naïve individuals,

leading to dynamic resonance. Further reductions in hS = h are necessary for fatalism and dynamic resonance to occur with

rational expectations. The nature of the dynamic responses and the comparison to the pre-AIDS era are discussed in the

main paper.

2 PRE-AIDS ERA

2.1 SYPHILIS EPIDEMIOLOGICAL MODEL

The syphilis (SIRS) population model contains three mutually exclusive categories: susceptible to syphilis (s), infected with

syphilis (in), and immune to syphilis (r). We start by presenting the transition matrix between these categories in Table

A3:

Table A3. Transition Matrix for Disease Categories

st+1 int+1 rt+1

st 1� pt pt 0

int 0 0 1

rt 
 0 1� 


Using the transition probabilities and a 100% syphilis treatment rate, the equations of motion for the disease categories are

st+1 = �+ (1� pt � �)st + 
rt

int+1 = ��int + ptst

rt+1 = (1� 
 � �)rt + int;
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where the probability of contracting syphilis is

pt = Pr(contract syphilis) = 1� (1� �pint)xt :

2.2 VALUE FUNCTIONS

The value functions apply to individuals: (1) susceptible to syphilis, Vt and (2) infected with syphilis, V St . There is no value

function for those recovered (and immune) to syphilis because we assume individuals cannot distinguish the susceptible state

from the recovered and immune state. The value functions are

Vt = max
xt
fu(xt; h) + �[ptV St+1 + (1� pt)Vt+1]g (11)

V St = u(�x; hS) + �Vt+1: (12)

2.3 EULER EQUATIONS

Assuming an interior solution, the necessary �rst-order condition for s individuals is

x�1t = �px;t[Vt+1 � V St+1]

where

px;t =
@pt
@xt

= � ln(1� pt)(1� pt)=xt:

Using (11) and (12) to substitute out the optimized value functions, the Euler equation become

1

px;txt
= �E

�
ut+1 � uSt+1 �

pt+1
xt+1px;t+1

�
: (13)

2.4 STEADY STATE

The endemic steady state solves for four variables, fs; in; r; xg, from the following four equations:

s = in(1 + �)=p (14)

in =
(1� s)(�+ 
)
1 + �+ 


(15)

r =
(1� s)
1 + �+ 


(16)

1 = �[pxx(u� uS)� p]: (17)
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2.5 LINEARIZATION

We start by linearizing the SIRS epidemiological equations around the endemic steady state:

ŝt+1 = (1� p� �)ŝt + 
r̂t � sp̂t

bint+1 = (spin � �) bint + spxx̂t + pŝt
r̂t+1 = (1� 
 � �)r̂t + bint:

Next, linearize the probabilities (and derivative of the probability with respect to the number of partners):

p̂t = pin bint + pxx̂t (18)

p̂x;t = [(1 + ln[1� p])=x]p̂t � (px=x)x̂t (19)

where

pin = x�p(1� �pin)x�1

px = � ln(1� p)(1� p)=x:

The linearized Euler equation is:

x�1x̂t + p
�1
x p̂x;t = ��[px + px�1]Ex̂t+1 + �Ep̂t+1 � �pp�1x Ep̂x;t+1: (20)
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Summarizing, the linearized EE system with (18) and (19) substituted into (20) is

SIRS System

bint+1 = b1 bint + spxx̂t � pr̂t
r̂t+1 = b2r̂t + bint

Probabilities

p̂t = pin bint + pxx̂t
p̂x;t = b3p̂t + b4x̂t

Euler Equation

b5x̂t + b6 bint = b7Ex̂t+1 + b8E bint+1
with coe¢ cients

b1 = spin � �� p; b2 = 1� 
 � �; b3 = [(1 + ln[1� p])=x]; b4 = �px=x;

b5 = x�1 + (b3 + b4p
�1
x ); b6 = p

�1
x b3pin; b7 = ��[px�1 � p(b3 + b4p�1x )];

b8 = �(pin � pp�1x b3pin):

2.6 LINEARIZED MATRIX SYSTEM

The linearized EE system in matrix form is

266664
b1 �p spx

1 b2 0

b6 0 b5

377775
| {z }

~A

266664
bint
r̂t

x̂t

377775 =
266664
1 0 0

0 1 0

b8 0 b7

377775
| {z }

~B

266664
bint+1
r̂t+1

Ex̂t+1

377775 : (21)

The matrix system includes the restriction ŝt = �r̂t� bint and the maximum choice of partners for those with syphilis, xSt = �x.
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2.7 RATIONAL EXPECTATIONS EQUILIBRIUM (REE)

The pre-AIDS EE system also exhibits saddle-path stability with one jump variable, two predetermined variables and one

forward-stable root. Again, using the method of Blanchard and Kahn (1980), we solve for a contemporaneous relationship

between the jump variable and the two state variables:

x̂t = b9 bint + b10r̂t (22)

where

b9 = �Q�131 =Q�133 ;

b10 = �Q�132 =Q�133 ;

Q�1ij refers to the (i; j) element of the inverse of the matrix of stacked eigenvectors for ~A�1 ~B, and the i = 3 eigenvalue of

~A�1 ~B is the forward stable root. Using (22) to solve for the reduced-form representation gives

264 bint+1
r̂t+1

375 =
264b1 + spxb9 �p+ spxb10

1 b2

375
264 bint
r̂t

375 : (23)

2.8 DYNAMICS AND IMPULSE RESPONSE FUNCTIONS

Figures A3, A4 and A5 show the dynamic responses to a 0:05 increase in syphilis prevalence. Figure A3 uses the baseline

parameter values from Table 1 in the main paper; Figure A4 uses identical parameter values except the health parameter, h, is

reduced to 5:4; and Figure A5 further reduces h to 4:54. Figure A3 shows that individuals with naïve or rational expectations

both display dynamic dampening. Figure A4 shows that for naïve individuals the reduction to h = 5:4 decreases the health

bene�t of being disease free, increases the steady-state number of partners, and leads to fatalistic behavior. Individuals with

rational expectations continue to exhibit dampening behavior when h = 5:4. Figure A5 shows that a further reduction to

h = 4:54 induces individuals with rational expectations to be fatalistic and cause dynamic resonance.
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Figure A1.  Impulse Response Functions for the ME and EE Systems in the Post-AIDS Period – Rational Dynamic Dampening 
 
Syphilis Shock:  One-time 0.05 increase in syphilis prevalence (݅݊ௌሻ, (solid = naïve expectations, dashed = rational expectations) 
 

 
 
AIDS Shock:  One-time 0.05 increase in AIDS prevalence (݅݊஺), (solid = naïve expectations, dashed = rational expectations) 
 

 
 
Notes.  EE fundamental parameters: β = 0.96, μ = 0.05, γ = 0.2, hSA = hA = 0, hS  = h = 5, ߣ௔

ௌ ௔ߣ = 
ௌ|஺ = 0.023, ߣ௔

஺ = 0.0008, ߣ௔
஺|ௌ = 0.024, ߣ௔

ௌ  = 0.023, a = 40 and ݔҧ ൌ 10.   



Figure A2.  Impulse Response Functions for the ME and EE Systems in the Post-AIDS Period – Rational Dynamic Resonance 
 
Syphilis Shock:  One-time 0.05 increase in syphilis prevalence (݅݊ௌሻ , (solid = naïve expectations, dashed = rational expectations) 
 

 
 
AIDS Shock:  One-time 0.05 increase in AIDS prevalence (݅݊஺) , (solid = naïve expectations, dashed = rational expectations) 
 

 
 
Notes.  EE fundamental parameters: β = 0.96, μ = 0.05, γ = 0.2, hSA = hA = 0, hS  = h = 1.95, ߣ௔

ௌ ௔ߣ = 
ௌ|஺ = 0.023, ߣ௔

஺ = 0.0008, ߣ௔
஺|ௌ = 0.024, ߣ௔

ௌ  = 0.023, a = 40 and ݔҧ ൌ 10.   



Figure A3. Impulse Response Functions for the ME and EE Systems – Rational Dynamic Dampening 
 (solid = naïve expectations, dashed = rational expectations) 
 

 
 
Notes.  The fundamental parameters in the EE system are set at β = 0.96, μ = 0.05, γ = 0.2, h = 8.1, λa = 0.023, a = 40 and 
ҧݔ ൌ 10.  For comparison purposes, we set the steady-state number of partners (x) in the ME model equal to the endogenously 
solved for number of partners in the EE model.  As a result, the steady-state prevalence is also equal in the ME and EE models. 



Figure A4. Impulse Response Functions for the ME and EE Systems – Rational Dynamic Resonance 
 (solid = naïve expectations, dashed = rational expectations) 
 

 
 
Notes.  The fundamental parameters in the EE system are set at β = 0.96, μ = 0.05, γ = 0.2, h = 5.4, λa = 0.023, a = 40 and 
ҧݔ ൌ 10.  For comparison purposes, we set the steady-state number of partners (x) in the ME model equal to the endogenously 
solved for number of partners in the EE model.  As a result, the steady-state prevalence is also equal in the ME and EE models. 



Figure A5. Impulse Response Functions for the ME and EE Systems – Rational Dynamic Resonance (Rational Expectations) 
  
 

 
 
Notes.  The fundamental parameters in the EE system are set at β = 0.96, μ = 0.05, γ = 0.2, h = 4.54, λa = 0.023, a = 40 and 
ҧݔ ൌ 10.  For comparison purposes, we set the steady-state number of partners (x) in the ME model equal to the endogenously 
solved for number of partners in the EE model.  As a result, the steady-state prevalence is also equal in the ME and EE models. 




