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Abstract

Existing empirical evidence suggests that the effects of Vietnam veteran status on

earnings in the decade-and-a-half following service may be concentrated in the lower tail

of the earnings distribution. Motivated by this evidence, we develop a formal statistical

procedure which is specifically designed to test for lower tail dominance in the distributions

of earnings. When applied to the same data as in previous studies, the test reveals that the

distribution of earnings for veterans is indeed dominated by the distribution of earnings

for non-veterans up to $12,610 (in 1978 dollars), thereby indicating that there was higher

social welfare and lower poverty experienced by non-veterans in the decade-and-a-half

following military service.
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1 Introduction

Measuring and analyzing the effects of participation and treatments play important roles

in evaluating the impact of various programs and policies, particularly in the health and

social sciences (Heckman and Vytlacil, 2007; Morgan and Winship, 2007).

The social and economic costs of military service, for example, has drawn considerable

attention from researchers and policy makers, in part due to continuing military engage-

ments and questions surrounding adequate compensation of veterans (e.g., Angrist and

Chen, 2008; Chaudhuri and Rose; 2009; and references therein). Indeed, a key policy-

related question is whether military service tends to reduce earnings over the life-cycle.

In this paper, we focus specifically on the effect that military service in Vietnam

had on subsequent earnings. Existing empirical evidence (Angrist, 1990; Abadie, 2002),

for example, suggests that the effects of veteran status on earnings following service in

Vietnam may have been concentrated in the lower tail of the earnings distribution. Aided

with a new statistical inferential technique developed in this paper, we examine the effect

of military service on the overall distribution of earnings and on the lower tail in particular,

in the decade-and-a-half following the end of war in Vietnam.

Historically, the non-random selection for military service has posed a significant chal-

lenge for those researching and analyzing causal effects of service. To overcome the se-

lection problem, Angrist (1990) has exploited the exogenous variation in the draft lottery

to instrument for veteran status, thereby allowing for unbiased estimation of the average

causal effect of service on earnings. Angrist (1990) has found, for example, that white

male veterans experienced roughly a 15% average loss in earnings in the early 1980s. More

recently, Angrist and Chen (2008) have reported that these losses in earnings dissipated

over time and appear to be close to zero by the year 2000.

Abadie (2002) has also exploited the variation in the draft lottery to identify the

causal effect of service on earnings, focusing on examining the effects of Vietnam veteran

status over the entire distribution of earnings. Abadie (2002) has reported no statistically

significant difference between the distributions of earnings for non-veterans and veterans.

However, Abadie’s (2002) empirical analysis suggests that the effects on earnings appear

to be isolated to the lower quantiles of the earnings distributions.

Influenced by these findings, here we give a further look at the problem and investigate,

roughly speaking, the range of income levels over which there are statistically significant
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differences in the distributions of potential earnings. A rigorous formulation of the new

test, the corresponding statistical inferential theory, and subsequent empirical findings

make up the main body of the present paper.

To give an indication of our findings, we note at the outset that the empirical evidence

points to a distribution of earnings for non-veterans which stochastically dominates the

corresponding distribution of earnings for veterans for all income levels up to $12,610. This

finding lends support to the aforementioned observation of Abadie (2002) concerning the

isolated effects on the distribution of earnings. Furthermore, our findings suggest that,

for any poverty line up to $12,610 (in 1978 dollars), there was statistically greater poverty

among Vietnam veterans in the early 1980s.

The rest of the paper is organized as follows. In Section 2, we briefly review the

literature on testing functional hypotheses, and also introduce a new test and explain

the intuition behind it. In Section 3, we apply the new test to re-examine the distribu-

tional effects of military service on civilian earnings. Section 4 contains concluding notes.

Large-sample results supporting the new test are relegated to Appendix A. Monte Carlo

simulations of a more detailed nature are given in Appendix B.

2 A test of initial dominance

As we have noted in the introduction, uncovering relationships between distributions of

potential earnings for non-veterans (F ) and veterans (G) is of considerable interest. For

example, if F ≤ G on [0,∞), then rather powerful statements can be made concerning

the comparative levels of poverty and social welfare among the groups. Specifically, if

the aforementioned relationship between the cumulative distribution functions (cdf’s) F

and G were to hold, then income poverty would be greater for veterans according to any

poverty index which is symmetric and monotonically decreasing in incomes. Similarly,

social welfare as measured by any social welfare function that is symmetric and increasing

in incomes would be greater for non-veterans than for veterans.

Such interest in relationships between cdf’s has given rise to a large literature on

statistical testing procedures. We next briefly review a few of the classical tests, which

we shall in turn contrast with the test developed in the present paper. This will help us

to shed light on the meaning and the novelty of the latter test.

To begin, consider a test of the null F = G against the alternative F 6= G, both
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relationships on [0,∞). Such a test, which is often referred to as a test for homogeneity,

is typically used to infer whether two distributions are equal or not; that is, a rejection

of the null hypothesis would enable one to infer only that a difference exists between the

cdf’s under consideration, but not the location or the nature of this difference. Classical

approaches to this testing problem include the use of supx≥0 |G(x) − F (x)|, ∫∞
0
|G(x) −

F (x)|dx, more general Lp-versions of the latter integral, and generalizations thereof that

include the use of weight functions (e.g., Csörgő and Horváth, 1993). The tests which

emerge from such constructions are usually associated with the names of Kolmogorov,

Smirnov, Cramér, Anderson, and Darling, in various combinations.

Intimately related to testing for homogeneity of two distributions is the so-called one-

sided problem, that of testing the null F ≤ G against the alternative F � G on [0,∞), for

which we may rely on one-sided variants of the aforementioned supremums and integrals:

supx≥0(G(x)−F (x))+ and
∫∞

0
(G(x)−F (x))+dx. Because the null hypothesis corresponds

to the first-order stochastic dominance, the one-sided formulations give rise to statistical

tests of whether F dominates G over the entire support [0,∞). For recent contributions

to the one-sided testing problem, we refer to Linton, Song, and Whang (2010), as well as

to the list of references therein.

The use of the above tests presupposes that a restriction on the nature of the difference

(or lack of difference) between the cdf’s must hold over their entire supports [0,∞), or at

least over a pre-specified subset of the supports. In other words, the classical formulations

impose global restrictions on the nature of the difference between the two cdf’s.

In many contexts, however, it is useful to learn both if and where a restriction holds,

particularly when the restriction may hold only over some (unknown) subset of the sup-

ports. For example, suppose that we are interested in comparing poverty across two

income distributions using the headcount ratio, which is the proportion of the population

with incomes at or below a given poverty line. Because it is often difficult to reach a con-

sensus on a specific value which will be used to demarcate the poverty line, an attractive

procedure would be the one that would identify the maximal income level x1 and hence

the interval [0, x1] over which the poverty ranking implied by the headcount ranking is

consistent. If, for example, x1 is found to be sufficiently large by such a procedure, say so

large as to constitute an upper bound for any reasonable choice of poverty line, then pol-

icymakers may reach a consensus as to the poverty ranking even without having reached
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a consensus on the poverty line.

Coming now back to our underlying example of Vietnam veterans, in the context

of comparing earnings distributions for the veterans and non-veterans, one distribution

may not dominate another over the entire support (Figure 2.1) and yet the relations that

hold between these two cdf’s may still be sufficient for establishing similarly powerful

statements about poverty and social welfare rankings. For example, little if anything is
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Figure 2.1: Plots of the empirical cdf’s (top panel) and their difference (bottom panel) of

potential earnings of veterans and non-veterans , who are compliers. (Definitions of the

corresponding population cdf’s FC
1 and FC

0 are given by equation (3.1) below.)

lost in the context of poverty analysis if the ordering of the distributions is violated only

for “high” levels of income. Concretely, suppose that F (x) ≤ G(x) for all x ∈ [0, x1).

Then for any poverty line up to x1 (e.g., $12,610) we have that income poverty is greater

in G according to any poverty index which is symmetric and monotonically decreasing in

incomes (Foster and Shorrocks, 1988). Similarly, Foster and Shorrocks (1988) have shown

that when the cdf’s satisfy such a relation, a ‘poor focused’ social welfare evaluation in

which F and G are censored at x1 suggests that social welfare is greater in F than in

G for any symmetric social welfare function which is increasing in incomes. We note in

this regard that the ‘poor focused’ evaluation is based on computing the social welfare of
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the censored distributions F̃ and G̃, where these censored distributions are generated by

replacing all incomes above x1 in F and G by x1 itself.

To tackle such empirical questions, in the next section we develop a statistical proce-

dure which will enable us to infer the range over which a set of dominance restrictions

between two cdf’s is satisfied. The approach will allow us to (i) infer dominance with

probability tending to 1 as the sample size tends to infinity whenever dominance is in-

deed present in the population, and (ii) consistently estimate the range over which this

dominance holds. Thus, our testing procedure will help us to identify situations in which

F dominates G, and to also differentiate between situations in which this dominance holds

over the entire support or only over some initial range.

2.1 Hypotheses

Let F and G be two cdf’s, both continuous and with supports on [0,∞). Of course, we

have in mind the cdf’s of potential earnings for non-veterans (F ) and veterans (G), but

the discussion that follows is for generic F and G, unless specifically noted otherwise.

We are interested in testing the null hypothesis H0 of F ≥ G at least initially against

the alternative H1 of F ≤ G initially with possibly crossing later on. Rigorously, these

hypotheses are defined as follows:

H0 : Given a pair (F, G) of cdf’s, let x0 ∈ [0,∞] denote the maximal point such that

F (x) ≥ G(x) for all x ∈ [0, x0). By definition, this null hypothesis consists of those

pairs (F,G) for which either

(i0) x0 = ∞

or

(ii0) x0 < ∞ and there is x∗0 ∈ (0, x0) such that F (x∗0) > G(x∗0).

H1 : By definition, this alternative hypothesis consists of those pairs (F, G) for which

there exist x1 ∈ (0,∞) and ε > 0, depending on the pair (F, G), such that

(i1) F (x) ≤ G(x) for all x ∈ [0, x1) with some x∗ ∈ (0, x1) such that F (x∗) < G(x∗),

and

(ii1) F (x) > G(x) for all x ∈ (x1, x1 + ε).
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To facilitate a greater clarity of the definitions of H0 and H1, as well as the distinction

between them, we have depicted a few scenarios in Figure 2.2.
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Figure 2.2: Illustrations of the null H0 and the alternative H1.

Note that the null hypothesis H0 includes the following sub-hypothesis

H∗
0 : F (x) = G(x) for all x ∈ [0,∞),

which is a special case of part (i0). In fact, it is this (null) sub-hypothesis that we are

particularly interested in testing against the alternative H1, because retaining H∗
0 would

mean no statistical evidence for the claim that the veteran status affects incomes, whereas

rejecting the sub-hypothesis in favour of H1 would suggest the opposite, and perhaps even

trigger certain policy decisions. From the technical point of view, the case F = G on
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[0,∞), which is at the ‘boundary’ between the null H0 and the alternative H1, will play

a pivotal role when calculating critical values of the new test.

Notably, our specification of the alternative is consistent with any situation in which

F dominates G on some interval [0, x1). The location of x1, which is generally unknown,

may be anywhere to the right of zero. Consequently, the alternative is consistent with

strict dominance holding only over a subset of the supports of the two cdf’s as well as

strict dominance holding over the entire supports. When x1 happens to be finite, so that

a crossing of the two cdf’s does occur, the point x1 is just the left-most crossing point: it

may or may not be the only crossing point.

2.2 Statistics and a test procedure

To construct a test for H0 against H1, we shall employ a one-dimensional parameter θ

such that the hypotheses could be reformulated as follows:

H0 : θ = 0

H1 : θ > 0
(2.1)

For this, we first define an auxiliary function:

H(y) =

∫ y

0

(
F (x)−G(x)

)
+
dx,

where z+ = 0 when z ≤ 0 and z+ = z when z ≥ 0. The function H(y) is non-negative

and non-decreasing. Define its generalized inverse by the formula

H−1(t) = inf{y ≥ 0 : H(y) ≥ t},

and then define the point

x1 = lim
t↓0

H−1(t). (2.2)

We see that under the null H0, the point x1 is equal to 0, whereas under the alternative

H1, the point coincides with x1 specified in the definition of the alternative H1; hence, our

use of the same notation. Since x1 = 0 under H0, the parameter θ defined by

θ =

∫ x1

0

(
G(x)− F (x)

)
+
dx

is equal to 0. Under the alternative H1, however, the parameter θ is (strictly) positive.

This is precisely as stated in (2.1). Note that the integrand in the definition of θ is the
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positive part of G(x)− F (x), unlike the integrand in the definition of H(y), which is the

positive part of F (x)−G(x).

We next construct an estimator for θ. To begin with, let X1, . . . , Xn be independent

random variables from F , and let Y1, . . . , Ym be independent random variables from G.

These random variables are also assumed to be independent between the samples. Denote

the corresponding empirical cdf’s by Fn and Gm, and then define an estimator of H(y)

by the formula

Hm,n(y) =

∫ y

0

(
Fn(x)−Gm(x)

)
+
dx.

The corresponding generalized inverse is

H−1
m,n(t) = inf{y ≥ 0 : Hm,n(y) ≥ t}.

We are now in the position to define an estimator xm,n ≡ xm,n(δm,n) of the point x1, which

is given by the formula

xm,n = H−1
m,n(δm,n),

where δm,n > 0 is a ‘tuning’ parameter such that

δm,n ↓ 0 and

√
nm

n + m
δm,n →∞ (2.3)

when min{m,n} → ∞. That is, the tuning parameter δm,n cannot be large nor too small.

The reason why we cannot set δm,n to zero is because the function Fn − Gm is ‘rough’

even when the population cdf’s F and G are identical on [0,∞). In practice, since the

sample sizes m and n are finite, the parameter δm,n > 0 will be set to a small constant,

but certainly not to zero. Lastly, we define an estimator θm,n of θ by the formula

θm,n =

∫ xm,n

0

(
Gm(x)− Fn(x)

)
+
dx.

Because the task requires some tedious mathematics, we shall develop a large-sample

asymptotic theory for the above constructed estimators xm,n and θm,n in Appendix A.

Here we only note that we retain the null H0 when the value of
√

mn/(m + n) θm,n is

small and reject when it is large, with ‘small’ and ‘large’ determined by a critical value

calculated using the following bootstrap algorithm (cf., e.g., Horváth et al., 2006):

i) Form the pooled distribution Lm,n(x) = (mGm(x) + nFn(x))/(m + n).
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ii) Generate mutually independent i.i.d. samples X∗
1 , . . . , X

∗
n and Y ∗

1 , . . . , Y ∗
m from the

cdf Lm,n, assuming that the values X1, . . . , Xn and Y1, . . . , Ym are fixed, as is the

case in practice, given data.

iii) Compute x∗m,n and θ∗m,n, which are the bootstrap analogues of xm,n and θm,n based

on the bootstrap samples generated in step ii).

iv) Repeat steps ii)–iii) B times and record {θ∗m,n,b, 1 ≤ b ≤ B}.

The nominal α level critical value, which we denote by cm,n(α), is then computed as the

(1− α) quantile of the distribution of bootstrap estimates θ∗m,n,1, . . . , θ
∗
m,n,B:

cm,n(α) = inf

{
c :

1

B

B∑

b=1

1

{√
mn

m + n
θ∗m,n,b ≤ c

}
≥ 1− α

}
.

With this critical value cm,n(α), the decision rule at the nominal level α is to reject H0

and thus infer that there is (strict) dominance over the interval [0, xm,n) whenever
√

mn

m + n
θm,n > cm,n(α).

We next illustrate the performance of the proposed testing procedure, with more de-

tailed simulation results relegated to Appendix B. For this, we generate independent

log-normal samples X1, . . . , Xn and Y1, . . . , Ym according to Xi = exp(σ1Z1i + µ1) and

Yi = exp(σ2Z2i + µ2), where the Zki’s are independent standard normal random vari-

ables. Various choices of the parameter-pairs (µi, σi) are explored in the simulation study,

and they are specified in the left-hand panels of Figure 2.3. The figure illustrates the

performance of the test under three different scenarios:

Panels (a)–(b): F = G.

Panels (c)–(d): F lies below G up to a point and crosses above thereafter.

Panels (e)–(f): F lies above G initially and crosses below at some later point.

Panels (a)–(b) and (c)–(d) are in the null H0 with the panels (a)–(b) reflecting the ‘bound-

ary’ of the null. Panels (c)–(d), on the other hand, reflect a configuration of F and G in

the alternative H1. The three left-hand panels (a), (c), and (e) illustrate the relationships

between the cdf’s under consideration, and the right-hand panels (b), (d), and (f) illus-

trate the densities of the estimated crossing points for different sample sizes, along with

the corresponding empirical rejection probabilities (EPR’s).
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Figure 2.3: Monte Carlo illustrations based on parent cdf’s (left-hand panels) with the

corresponding density plots (right-hand panels) of estimated crossing points along with

ERPs at the 5% nominal level.
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We have conducted 1,000 bootstrap resamples in each of the 5,000 Monte Carlo repli-

cations, setting δm,n = κ((m + n)/(mn))1/2−ε with κ = 10−6 and ε = 0.01. The following

information can be gleaned from the three sets of plots. First, the empirical rejection

probabilities in the ‘boundary’ case F = G are consistently close to the nominal size

of 5% in samples ranging from n = m = 100 observations through 5, 000 observations,

suggesting that the test maintains the desired control over the Type I error rate. The

corresponding density plots demonstrate that the estimated crossing point in this case is

generally close to zero, indicating that an erroneous inference of strict dominance may be

coupled with an estimated interval of dominance, which is rather small. Interestingly, one

might view a small interval estimate in such a case as mitigating the cost associated with

the erroneous inference of strict dominance.

We see from panel (b) that the crossing-point estimator appears to be biased downward

in small samples, albeit with the degree of bias dissipating in larger samples. The bias,

in fact, is largely a reflection of the choice of δm,n. Recall that δm,n is a parameter which,

roughly speaking, controls the number of times Fn is permitted to cross above Gm before

a crossing point is declared. When δm,n is large, then a substantial amount of in-sample

crossing is permitted before a true crossing is declared. In contrast, when δm,n is small,

then typically the first crossing in-sample also corresponds to the estimated point of

crossing. In the simulations used to generate the results depicted in panel (b), the value

of κ in δm,n is set to 10−6, thus generating an estimator which is quite sensitive to crossings

in-sample and therefore biased downward. Because this bias tends to have little impact on

power (Appendix B), one may interpret the effect of the bias as producing a conservative

estimate on the range over which strict dominance holds. In our view it is perhaps better

to adopt such a conservative approach, particularly in small sample situations.

When there is an initial region of dominance as in panel (c) of Figure 2.3, it is desirable

that our test procedure have appreciable power to detect the presence of dominance and

to also return a reliable estimate of the region over which dominance holds. Panel (d)

of Figure 2.3 reports that the test has considerable power to detect the initial region of

dominance even in samples consisting of only 100 observations. As expected, the density

plots show that in such small samples there is a great deal of variation in the estimated

crossing point about the true value, and we also see that the densities of the estimated

crossing point become increasingly concentrated around the true value as the sample sizes
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are increased.

The bottom pair of panels (e) and (f) correspond to the null configuration in which F

is strictly dominated by G, at least initially. In this case, we see from the concentration

of the density plots about the origin that the initial dominance of G over F is detected

in virtually all of the Monte Carlo trials. More importantly, there is not a single instance

in which the null is erroneously rejected.

3 Vietnam veteran data re-examined

Here we apply the new test to re-examine distributional effects of Vietnam veteran sta-

tus on labour earnings. Abadie (2002) shows that the potential distributions for veter-

ans and non-veterans can be estimated for the sub-population of compliers, and he uses

Kolmogorov-Smirnov type tests to empirically examine whether the earnings distribution

of non-veterans stochastically dominates that of veterans. Using the same data set, we

shall see below that the new test allows us to make statistically-significant statements

concerning the effect of veteran status on poverty.

3.1 The potential-outcomes model

Let Z be a binary instrument, taking on the values 1 (draft eligible) and 0 (not draft

eligible) with some positive probabilities, and let D(1) and D(0) denote the values of the

treatment indicator D that would be obtained given Z = 1 and Z = 0, respectively. Both

D(1) and D(0) are random, taking on the values 1 (serve in the military) and 0 (do not

serve in the military) with some positive probabilities. The binary nature of both the

instrument and the treatment variables gives rise to four possible types of individuals in

the population:

• Compliers when D(1) = 1 and D(0) = 0

• Always-takers when D(1) = 1 and D(0) = 1

• Never-takers when D(1) = 0 and D(0) = 0

• Defiers when D(1) = 0 and D(0) = 1

Because our interest centers on the causal effect of military service on earnings, let

Y (1) denote the potential incomes for individuals if they served (D = 1) and Y (0) denote

12



the potential incomes for the same individuals had they not served (D = 0). In practice,

the analyst observes the realized outcomes

Y = Y (1)D + Y (0)(1−D),

where D = D(1)Z + D(0)(1 − Z). Within this framework of potential incomes, the

distributional effect of military service in the general population is captured by the differ-

ence between the cdf’s of Y (1) and Y (0). However, neither of the two cdf’s is identified

because, among other things, the data are (i) uninformative about Y (1) for the sub-

population of never-takers, and also (ii) uninformative about Y (0) in the sub-population

of always-takers. Because of this identification problem, it is common in the treatment ef-

fects literature to focus the analysis on the sub-population of compliers. In the context of

examining for distributional treatment effects, this amounts to comparing the conditional

cdf’s FC
1 and FC

0 defined by

FC
k (y) = P

[
Y (k) ≤ y| D(1) = 1, D(0) = 0

]
, (3.1)

where, naturally, we assume that P[D(1) = 1, D(0) = 0
]

> 0, which means that compliers

are present in the general population.

3.2 An underlying theory

When comparing FC
1 and FC

0 , we are particularly interested in establishing whether there

exists a level of income y1 such that FC
0 (y) ≤ FC

1 (y) for all y ∈ [0, y1) with the inequality

being strict over some subset of [0, y1). Inferring the existence of such an income level

would allow us to make statistically significant statements concerning poverty and social

welfare orderings of the two distributions.

We note in this regard that any member of the popular FGT (Foster, Greer, and

Thorbecke, 1984) class of poverty measures would indicate that poverty is at least as great

or greater among those in the sub-population of compliers who served in the military for

any poverty line in the interval [0, y1). Similarly, any monotonic utilitarian social welfare

function when applied to the censored distributions generated by replacing incomes above

y∗ by y∗ itself would rank the social welfare of non-veterans equal to or higher than

veterans for any y∗ ∈ [0, y1). We refer to, e.g., Foster and Shorrocks (1988) for details.

The task of testing for an initial region of dominance among the sub-population of

compliers can be simplified by the fact that we do not actually need to estimate the two
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complier cdf’s but rather examine the sign of the difference between these cdf’s. This

appears to be possible even under somewhat weaker assumptions than those noted by

Abadie (2002, p. 285).

To substantiate the latter statement, we next show that the relationship of dominance,

or lack thereof, between FC
1 and FC

0 can be investigated in terms of two other cdf’s, namely

F1 and F0 defined by

Fk(y) = P
[
Y ≤ y| Z = k

]
. (3.2)

In particular, while maintaining the standard assumption of no defiers, we show that

the cdf’s F1 and F0 can be used to investigate dominance under only Condition 1(i)

of Imbens and Angrist (1994), without imposing any restriction on the relative sizes

of the complier and non-complier sub-populations. Specifically, we do not require that

P[D(1) = 1] > P[D(0) = 1].

The following theorem formalizes the above statements.

Theorem 3.1 Assume that, for z = 0 and also for z = 1, the triplet {Y (1), Y (0), D(z)}
is independent of Z. If there are no defiers, then for every y we have that

F1(y)− F0(y) =
(
FC

1 (y)− FC
0 (y)

)
P

[
D(1) = 1, D(0) = 0

]
. (3.3)

Hence, in particular, F1(y) ≥ F0(y) if and only if FC
1 (y) ≥ FC

0 (y).

Proof. We start with a string of elementary equations:

F1(y)− F0(y) = E
[
1{Y ≤ y}|Z = 1

]− E
[
1{Y ≤ y}|Z = 0

]

=
(
E

[
1{Y ≤ y}D|Z = 1

]− E
[
1{Y ≤ y}D|Z = 0

])

+
(
E

[
1{Y ≤ y}(1−D)|Z = 1

]− E
[
1{Y ≤ y}(1−D)|Z = 0

])

=
(
E

[
1{Y (1)D(1) + Y (0)(1−D(1)) ≤ y}D(1)|Z = 1

]

− E
[
1{Y (1)D(0) + Y (0)(1−D(0)) ≤ y}D(0)|Z = 0

])

+
(
E

[
1{Y (1)D(1) + Y (0)(1−D(1)) ≤ y}(1−D(1))|Z = 1

]

− E
[
1{Y (1)D(0) + Y (0)(1−D(0)) ≤ y}(1−D(0))|Z = 0

])
. (3.4)

Now we use the assumption that, for z = 0 and also for z = 1, the triplet {Y (1), Y (0), D(z)}
is independent of Z. We thus have from equation (3.4) that

F1(y)− F0(y) = A(y) + B(y), (3.5)
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where

A(y) = E
[
1{Y (1)D(1) + Y (0)(1−D(1)) ≤ y}D(1)

]

− E
[
1{Y (1)D(0) + Y (0)(1−D(0)) ≤ y}D(0)

]

and

B(y) = E
[
1{Y (1)D(1) + Y (0)(1−D(1)) ≤ y}(1−D(1))

]

− E
[
1{Y (1)D(0) + Y (0)(1−D(0)) ≤ y}(1−D(0))

]
.

We proceed working with the expectations making up the definitions of A(y) and B(y)

by splitting each of the expectations into four parts according to the subdivision of the

sample space of all individuals into four groups, as mentioned at the beginning of this

section. Then we observe that some of the resulting expectations are equal to 0 and some

of them cancel out. Note in this regard that the assumption that there are no defiers in

the population means that P[D(1) = 0, D(0) = 1] = 0. In summary, we have arrived at

the following equations:

A(y) = P
[
Y (1) ≤ y| D(1) = 1, D(0) = 0

]
P

[
D(1) = 1, D(0) = 0

]

−P
[
Y (1) ≤ y| D(1) = 0, D(0) = 1

]
P

[
D(1) = 0, D(0) = 1

]

and

B(y) = P
[
Y (0) ≤ y| D(1) = 0, D(0) = 1

]
P

[
D(1) = 0, D(0) = 1

]

−P
[
Y (0) ≤ y| D(1) = 1, D(0) = 0

]
P

[
D(1) = 1, D(0) = 0

]
.

Plugging in these expressions for A(y) and B(y) on the right-hand side of equation (3.5),

and also recalling the definitions of FC
1 and FC

0 , we obtain equation (3.3). This concludes

the proof of Theorem 3.1.

Hence, indeed, Theorem 3.1 says that the difference F1 − F0 is proportional to the

difference FC
1 − FC

0 , and the proportionality coefficient is the population proportion of

compliers.

3.3 The veteran data and test results

In our empirical analysis we use the CPS extract (see Angrist, 2011) that was especially

prepared for Angrist and Krueger (1992). This same data set has also been used by Abadie
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(2002). As described in the latter paper, the data consist of 11,637 white men, born in

1950–1953, from the March Current Population Surveys of 1979 and 1981–1985. For

each individual in the sample, annual labor earnings (in 1978 dollars), Vietnam veteran

status, and an indicator of draft eligibility based on the Vietnam-era draft lottery outcome

are provided. Following Angrist (1990) and Abadie (2002), we use draft-eligibility as

an instrument for veteran status. The construction of the draft eligibility variable is

described in Appendix C of Abadie (2002). Additionally, a discussion of the validity of

draft eligibility as an instrument for veteran status may be found in Angrist (1990).

The empirical counterparts of F1 and F0 are simpler to work with, given the data set

that we are exploring, and are thus adopted in our test of initial stochastic dominance.

Figure 3.1 displays the empirical distributions F1,n1 and F0,n0 . (Compare this figure with
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Figure 3.1: Plots of the empirical cdf’s (top panel) and their difference (bottom panel) of

actual earnings of draft-eligible and non-draft-eligible, who may or may not be compliers.

(Definitions of the corresponding population cdf’s F1 and F0 are in equation (3.2) above.)

Figure 2.1, where the latter depicts the empirical distributions FC
1,n1

and FC
0,n0

.) Applying

this new test procedure, the estimated maximal point of dominance is $12,610 with a

corresponding bootstrap p-value of 0.068. Thus, for example, adopting a significance

level α > 0.068 would lead one to reject the null hypothesis and conclude that there

is statistically greater poverty in the earnings distribution of Vietnam veterans for any
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poverty line up to $12,610.

4 Concluding remarks

In many practical situations, it is unlikely that a dominance relation holds over the entire

support of the distributions under consideration. However, a number of results in the

literature (e.g., Foster and Shorrocks, 1988) demonstrate that even when the dominance

relation holds only on a subset of the support we may still obtain powerful orderings in

terms of poverty or social welfare. With this in mind, we have developed a statistical test

that enables one to infer whether there exists an initial region of stochastic dominance,

and also to infer the range over which dominance holds. Notably, the test can also be

used to establish dominance over the entire support. This occurs whenever dominance is

indicated by our procedure and there is an absence of crossing in-sample.

Our work on this statistical inference problem has been inspired by existing empirical

evidence (Angrist,1990; Abadie 2002) suggesting that the effects of Vietnam veteran status

on earnings are concentrated in the lower tail of the earnings distribution. In particular,

the inferential procedure developed in the present paper was specifically designed to test

for the existence of lower tail dominance in the distributions of earnings. When applied to

the same data used in previous studies, our test indicates that the distribution of earnings

for veterans is dominated by the distribution of earnings for non-veterans up to $12,610 (in

1978 dollars), thereby suggesting that there was higher social welfare and lower poverty

experienced by non-veterans in the decade-and-a-half following military service.
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[7] Csörgő, M., Horváth, L., 1993. Weighted Approximations in Probability and Statis-

tics. Chichester: Wiley.

[8] Foster, J., Greer, J., Thorbecke., E., 1984. A Class of Decomposable Poverty Mea-

sures. Econometrica 52: 761-776.

[9] Foster, J.E., Shorrocks, A.F., 1988. Poverty Orderings and Welfare Dominance.

Social Choice and Welfare 5: 179-198.

[10] Heckman, J. J., Vytlacil, E.J., 2007. Econometric Evaluation of Social Programs,

Part I: Causal Models, Structural Models and Econometric Policy Evaluation, in

Handbook of Econometrics Vol. 6, ed. by J.J. Heckman and E.E. Leamer. New York:

Elsevier, 4779-4874
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A Appendix: Large sample properties

We first investigate the consistency of the estimator xm,n when the point x1 is infinite

(Theorem A.1) and when it is finite (Theorem A.2). In the remaining four theorems, A.3–

A.6, we establish the rate of consistency of the estimator θm,n as well as its asymptotic

distribution under the (null) sub-hypothesis H∗
0. Throughout, we use the notation

∆m,n(x) = (Fn(x)− F (x))− (Gn(x)−G(x)).

Theorem A.1 Under H∗
0 (i.e., F = G on [0,∞)) or, more generally, when F ≤ G on

[0,∞), we have that x1 = ∞ and xm,n →P ∞ when min{m,n} → ∞.

Proof. Since F ≤ G on [0,∞) by assumption, the function H is equal to 0 on the

entire half-line [0,∞), and thus x1 = ∞. We shall next show that the estimator xm,n ≡
xm,n(δm,n) converges to ∞ in probability, which means that, for every M > 0,

P[H−1
m,n(δm,n) ≥ M ] → 1. (A.1)

Since H−1
m,n(δm,n) ≥ M is equivalent to δm,n ≥ Hm,n(M), we have that

P[H−1
m,n(δm,n) ≥ M ] = P

[√
nm

n + m
δm,n ≥

√
nm

n + m
Hm,n(M)

]
.

In view of assumption (2.3), statement (A.1) holds provided that

√
nm

n + m
Hm,n(M) = OP(1),

which is a consequence of

√
nm

n + m

∫ M

0

∣∣∆m,n(x)
∣∣dx = OP(1)
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and √
nm

n + m

∫ M

0

(F (x)−G(x))+dx ≤ 0.

This concludes the proof of statement (A.1) as well as that of Theorem A.1.

Theorem A.2 Under the alternative H1, and also under the null H0, with the exception

of the case when F = G on [0,∞) which is covered by Theorem A.1, we have that the

point x1 ≥ 0 is finite and xm,n →P x1 when min{m,n} → ∞.

Proof. Keeping in mind that the cdf’s F and G are not identical throughout this proof,

and irrespectively of whether we are dealing with the null H0 or the alternative H1, we

always have x1 ∈ [0,∞) and ε > 0 such that

1) F (x) ≤ G(x) for all x ∈ (0, x1], and

2) F (x) > G(x) for all x ∈ (x1, x1 + ε).

We want to show that xm,n →P x1, which is equivalent to the statement that P[|H−1
m,n(δm,n)−

x1| > γ] → 0 for every γ > 0. This follows if

P
[
H−1

m,n(δm,n) > x1 + γ
] → 0 (A.2)

and

P
[
H−1

m,n(δm,n) ≤ x1 − γ
] → 0. (A.3)

We first establish statement (A.2):

P[H−1
m,n(δm,n) > x1 + γ]

= P[δm,n > Hm,n(x1 + γ)]

= P

[
δm,n >

∫ x1+γ

0

(
∆m,n(z) + (F (z)−G(z))

)
+
dz

]

≤ P

[
δm,n >

∫ x1+min{γ,ε}

x1

(
∆m,n(z) + (F (z)−G(z))

)
+
dz

]

≤ P

[
δm,n > −

∫ x1+min{γ,ε}

x1

∣∣∆m,n(z)
∣∣dz +

∫ x1+min{γ,ε}

x1

(
F (z)−G(z)

)
+
dz

]
.

The right-hand side converges to 0 because δm,n → 0,

∫ x1+min{γ,ε}

x1

∣∣∆m,n(z)
∣∣dz = oP(1)
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and ∫ x1+min{γ,ε}

x1

(
F (z)−G(z)

)
+
dz > 0.

This concludes the proof of statement (A.2).

To prove statement (A.3), we write:

P[H−1
m,n(δm,n) ≤ x1 − γ]

= P

[√
nm

n + m
δm,n ≤

√
nm

n + m
Hm,n(x1 − γ)

]

= P

[√
nm

n + m
δm,n ≤

√
nm

n + m

∫ x1−γ

0

(
∆m,n(z) + (F (z)−G(z))

)
+
dz

]

≤ P

[√
nm

n + m
δm,n ≤

√
nm

n + m

∫ x1−γ

0

∣∣∆m,n(z)
∣∣dz

]
, (A.4)

where the right-most bound holds because F (z) ≤ G(z) for all z ∈ (0, x1−γ] irrespectively

of the value of γ > 0. The right-hand side of bound (A.4) converges to 0 in probability

because of assumption (2.3) and the fact that
√

nm

n + m

∫ x1−γ

0

∣∣∆m,n(z)
∣∣dz = OP(1).

This concludes the proof of statement (A.3) as well as that of Theorem A.2.

With the above two theorems concerning xm,n, we are now in the position to investigate

the asymptotic behaviour of the estimator θm,n. Denote

Θm,n =

√
nm

n + m
θm,n.

When F ≥ G on [0,∞), and in particular when F = G on [0,∞), then θ = 0 and so

Θm,n is equal to
√

nm/(n + m) (θm,n− θ). We shall use the case F = G on [0,∞), which

defines H∗
0, to calculate critical values of the test.

Theorem A.3 Suppose that X and Y have 2 + κ finite moments for some κ > 0, no

matter how small. Under the (null) sub-hypothesis H∗
0, that is, when F = G on [0,∞),

we have that

Θm,n →d

∫ ∞

0

(B(F (x))
)
+
dx, (A.5)

where B denotes the standard Brownian bridge.

Proof. We know from Theorem A.1 that when F = G on [0,∞), then x1 = ∞ and

xm,n →P ∞. Next we rewrite Θm,n as follows:

Θm,n = −
∫ ∞

xm,n

√
nm

n + m

(
∆m,n(z)

)
+
dz +

∫ ∞

0

√
nm

n + m

(
∆m,n(z)

)
+
dz.
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Choose any (small) ν > 0. We have that

∫ ∞

xm,n

√
nm

n + m

(
∆m,n(z)

)
+
dz

=

∫ ∞

xn

√
nm

n + m

(
(Fn(z)− F (z))

(1− F (z))1/2−ν
− (Gm(z)−G(z))

(1− F (z))1/2−ν

)

+

(1− F (z))1/2−νdx

= OP(1)

∫ ∞

xm,n

(1− F (z))1/2−νdz.

The right-hand side is of the order oP(1) because xm,n →P ∞ and the integral
∫∞
0

(1 −
F (z))1/2−νdz is finite for any sufficiently small ν > 0, due to the assumption that X has

2 + κ finite moments for some κ > 0. Furthermore, since F = G on [0,∞), we have that

∫ ∞

0

√
nm

n + m

(
∆m,n(z)

)
+
dz →d

∫ ∞

0

(B(F (z))
)
+
dz.

This concludes the proof of Theorem A.3.

Theorem A.4 Under the null H0 with the exception of the case F = G on [0,∞) which

has been covered by Theorem A.3, and assuming that m/(n + m) → η ∈ (0,∞) when

min{m,n} → ∞, we have that

Θm,n →d

∫ x1

0

(B(F (z))
)
+
dz, (A.6)

where x1 [calculated using formula (2.2)] is finite. The limiting integral in statement (A.6)

is smaller than that in statement (A.5), which proves the least-favourable nature of the

critical values calculated under the (null) sub-hypothesis H∗
0.

Proof. From the definition of the point x1 given by equation (2.2), we see that under the

null H0, the point x1 is the largest x such that F (x) = G(x). Note that the point x1

is finite under the assumption of the theorem, because if it were infinite, then we would

be under H∗
0, which is excluded. Hence, x1 < ∞, and in this case we also have that

F (x) > G(x) at least for some x to the right of x1. Furthermore, by Theorem A.2 we

have that xm,n →P x1.
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With the above information, we proceed as follows:

Θm,n =

∫ xm,n

0

{√
nm

n + m
∆m,n(z) +

√
nm

n + m

(
G(z)− F (z)

)}

+

dz

= 1{xm,n ≤ x1}
∫ x1

0

{√
nm

n + m
∆m,n(z)

}

+

dz

− 1{xm,n ≤ x1}
∫ x1

xm,n

{√
nm

n + m
∆m,n(z)

}

+

dz

+ 1{xm,n > x1}
∫ x1

0

{√
nm

n + m
∆m,n(z)

}

+

dz

+ 1{xm,n > x1}
∫ xm,n

x1

{√
nm

n + m
∆m,n(z) +

√
nm

n + m

(
G(z)− F (z)

)}

+

dz.

(A.7)

Hence, we have expressed Θm,n as a linear combination of four quantities. The second

one converges to 0 because xm,n →P x1 and

√
nm

n + m
sup

z∈[0,∞)

∣∣∆m,n(z)
∣∣ = OP(1), (A.8)

by the classical Kolmogorov-Smirnov theorem. The fourth quantity converges to 0 because

of the same reasons, plus the fact that G(z) < F (z) for all z ∈ (x1, xm,n) and for all

sufficiently large m and n so that xm,n would be sufficiently close to x1 with as large a

probability as desired. Hence,

Θm,n =

∫ x1

0

{√
nm

n + m
∆m,n(z)

}

+

dz + oP(1)

→d

∫ x1

0

(√
η B1(F (z)) +

√
1− η B2(G(z))

)
+
dz, (A.9)

where B1 and B2 are two independent standard Brownian bridges. But we have F (x) =

G(x) for all x ∈ [0, x1). Hence, the processes {√η B1(F (z))+
√

1− η B2(G(z)), z ∈ [0, x1)}
and {B(F (z)), z ∈ [0, x1)} coincide in distribution. This concludes the proof of Theorem

A.4.

Theorem A.5 Under the alternative H1, we have Θm,n →P ∞ when min{m,n} → ∞.
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Proof. By Theorem A.2, we have that x1 is finite and xm,n →P x1. Next we write the

bounds

Θm,n =

∫ xm,n

0

{√
nm

n + m
∆m,n(z) +

√
nm

n + m

(
G(z)− F (z)

)}

+

dz

≥
∫ xm,n

0

{√
nm

n + m

(
G(z)− F (z)

)}

+

dz −
∫ xm,n

0

√
nm

n + m

∣∣∆m,n(z)
∣∣dz

≥
∫ xm,n

0

{√
nm

n + m

(
G(z)− F (z)

)}

+

dz − xm,n

√
nm

n + m
sup

z∈[0,∞)

∣∣∆m,n(z)
∣∣ (A.10)

that hold for every pair (F,G). By statement (A.8), we are only left to verify that
∫ xm,n

0

{√
nm

n + m

(
G(z)− F (z)

)}

+

dz →P ∞. (A.11)

Recall that, under H1, we have F (x) ≤ G(x) for all x ∈ [0, x1) with some x∗ ∈ (0, x1)

such that F (x∗) < G(x∗). Hence, for a sufficiently small τ > 0, we have that
∫ x1−τ

0

(
G(z)− F (z)

)
+
dz > 0. (A.12)

Since xm,n →P x1, we can restrict ourselves to the case when xm,n > x1 − τ . Hence,

quantity (A.12) when multiplied by
√

nm/(n + m) tends to∞. Statement (A.11) follows.

The proof of Theorem A.5 is finished.

Theorem A.6 Suppose that X and Y have 2 + κ finite moments for some κ > 0,

no matter how small. When F ≤ G but F 6= G on [0,∞), then Θm,n →P ∞ when

min{m,n} → ∞.

Proof. We start with a bound:

Θm,n =

∫ xm,n

0

{√
nm

n + m
∆m,n(z) +

√
nm

n + m

(
G(z)− F (z)

)}

+

dz

≥
∫ xm,n

0

{√
nm

n + m

(
G(z)− F (z)

)}

+

dz −
∫ ∞

0

√
nm

n + m

∣∣∆m,n(z)
∣∣dz, (A.13)

which holds for every pair (F,G). Due to the assumption that X and Y have 2 + κ finite

moments for some κ > 0, we have that
√

nm

n + m

∫ ∞

0

∣∣∆m,n(z)
∣∣dz = OP(1). (A.14)

Since xm,n →P ∞, the first integral on the right-hand side of bound (A.13) tends to ∞
in probability provided that, for a sufficiently large M < ∞,

∫ M

0

{√
nm

n + m

(
G(z)− F (z)

)}

+

dz →∞. (A.15)
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This is true because F ≤ G but not F = G on [0,∞), and so the right-continuity of

the cdf’s implies that
∫ M

0
(G(z) − F (z))+dz > 0 for all sufficiently large M < ∞. This

concludes the proof of Theorem A.6.

B Appendix: Detailed simulation results

Table B.1: Estimated bias and variance of crossing point estimators based on δm,n =

κ((m + n)/(mn))1/2−ε with n = m and ε = 0.1. Estimates correspond to different choices

of the constant κ and are computed using 5,000 Monte Carlo replications with B = 1, 000

bootstrap samples.

n = 100 n = 500 n = 1, 000 n = 5, 000

κ = 10−2

Bias 0.05 0.12 0.08 0.02

Variance 6.21 0.87 0.39 0.07

κ = 10−3

Bias -0.30 -0.09 -0.09 -0.08

Variance 5.01 0.96 0.51 0.08

κ = 10−4

Bias -0.41 -0.14 -0.14 -0.11

Variance 5.19 0.95 0.46 0.09

κ = 10−5

Bias -0.39 -0.19 -0.14 -0.13

Variance 5.05 0.94 0.47 0.10

κ = 10−6

Bias -0.43 -0.18 -0.15 -0.13

Variance 5.14 0.96 0.44 0.10
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Table B.2: Estimated bias and variance of crossing point estimators based on δm,n =

κ((m + n)/(mn))1/2−ε with n = m and ε = 0.01. Estimates correspond to different

choices of the constant κ and are computed from 5,000 Monte Carlo replications with

B = 1, 000 bootstrap samples.

n = 100 n = 500 n = 1, 000 n = 5, 000

κ = 10−2

Bias -0.02 0.15 0.07 0.01

Variance 5.66 0.91 0.37 0.06

κ = 10−3

Bias -0.38 -0.09 -0.07 -0.07

Variance 4.54 0.99 0.42 0.07

κ = 10−4

Bias -0.38 -0.16 -0.14 -0.11

Variance 4.98 1.03 0.46 0.09

κ = 10−5

Bias -0.36 -0.22 -0.16 -0.12

Variance 4.78 0.94 0.50 0.10

κ = 10−6

Bias -0.39 -0.19 -0.15 -0.12

Variance 5.16 0.91 0.45 0.10
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Table B.3: Estimated size of dominance tests at the 5% nominal level when F = G =

LN(0.85, 0.6) based on δm,n = κ((m + n)/(mn))1/2−ε with n = m. Empirical rejection

probabilities are reported for various combinations of κ and ε, and are computed from

5,000 Monte Carlo replications with B = 1, 000 bootstrap samples.

κ n = 100 n = 500 n = 1, 000 n = 5, 000

ε = 0.1

10−2 0.041 0.042 0.047 0.052

10−3 0.044 0.041 0.044 0.049

10−4 0.040 0.043 0.043 0.041

10−5 0.042 0.039 0.042 0.042

10−6 0.039 0.041 0.043 0.041

ε = 0.01

10−2 0.043 0.042 0.043 0.050

10−3 0.042 0.044 0.043 0.043

10−4 0.043 0.042 0.042 0.043

10−5 0.042 0.040 0.042 0.041

10−6 0.041 0.041 0.042 0.042
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Table B.4: Estimated power of dominance tests at the 5% nominal level against F =

LN(0.85, 0.6) and G = LN(0.7, 0.8) based on δm,n = κ((m + n)/(mn))1/2−ε with n = m.

Empirical rejection probabilities are reported for various combinations of κ and ε, and are

computed from 5,000 Monte Carlo replications with B = 1, 000 bootstrap samples.

κ n = 100 n = 500 n = 1, 000 n = 5, 000

ε = 0.1

10−2 0.398 0.978 1.000 1.000

10−3 0.603 0.979 0.993 1.000

10−4 0.634 0.981 0.988 0.998

10−5 0.664 0.981 0.989 0.997

10−6 0.658 0.979 0.989 0.997

ε = 0.01

10−2 0.397 0.984 1.000 1.000

10−3 0.603 0.979 0.993 1.000

10−4 0.657 0.979 0.989 0.998

10−5 0.661 0.977 0.987 0.997

10−6 0.662 0.980 0.989 0.997
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