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CHAPTER 1: BACKGROUND 

One perspective of the goal of neuroscience is to unite the understanding of 

biology and psychology; to understand how the physical world underlies the mental 

world. Such an appreciation of a link between these two realms was noted as early as 

1865 when Ernst Mach wrote, “To every psychical there corresponds a physical, and 

conversely.  Like psychical processes correspond to like physical, unlike to unlike.  If a 

psychical process can be resolved, in a purely psychological manner, into a multiplicity 

of qualities, a, b, c, then to these there correspond an equal number of different physical 

processes, α, β, γ.  Particulars of the physical correspond to all the particulars of the 

psychic.” (Boring, 1942). We now aim to identify psychical and physical processes 

involved in cognition by recording neural activity during behavior. Ultimately, the goal is 

to explain the psychical processes by way of understanding the physical processes. 

 The central theme of my dissertation is one specific slice of this question: what 

are the physical entities that instantiate the psychological phenomena observed in 

visual search? For reasons that will become clear, these studies will be targeted at the 

frontal eye field (FEF), an area of the brain intimately involved in the control of eye 

movements in both humans (Tehovnik et al., 2000; Vernet et al., 2014) and monkeys 

(Bisley, 2011; Schall, 2015; Tehovnik et al., 2000; Thompson & Bichot, 2005; Wardak et 

al., 2011). As progress is made, more sophisticated mechanisms of understanding both 

types of processes become available, at the expense of revealing additional 

complexities. Below, I will outline the approach I have taken to address additional 

complexities revealed by previous work by making this goal experimentally tangible. But 

first, I address the current status of the components of this approach.  
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Below, I will discuss the psychological foundations of this work by exploring the 

history of the study of stages of processing and response times. I will also briefly 

discuss the origins of psychology as a tangible science partially motivated by the 

appreciation of the link between neurophysiology and mental phenomena and partially 

by the discovery of mathematical regularities in subjective experience. Next, I will 

discuss several examples of neurophysiological breakthroughs motivated by 

psychological constructs. Then, I will discuss the necessity of appreciating neural 

diversity for understanding the mechanistic basis of cognition, and how a lack of such 

appreciation leads to shortcomings in current models. Finally, I will provide an overview 

of the experiments contained in the body of this dissertation. 

 

1.1 Stages of Processing 

Behavior occurs through time. More difficult behaviors take longer amounts of time to 

perform. These two ideas were essential to an early instance of studying the speed of 

mental processes: Donders first attempted to identify the time needed to make a 

perceptual choice by comparing response times (RTs) for a simple detection task to the 

RTs for a choice task (Donders, 1868). As expected, the choice task took longer. The 

extra time was taken to be the time needed to make a decision. Further, a 

discrimination task was performed in which responses should be made to only some 

stimuli, and this task also took longer. This additional time was taken to be the time 

necessary to form a conception, or idea of the world. This sparked the field of mental 

chronometry, or the study of the timing of mental events. In addition to demonstrating 

the utility of RTs for studying the mind, this study makes the explicit assumption of the 
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presence of processing stages. Processing stages are, in essence, conceptualized as 

the units or modules of mental function.  

One central assumption of Donders’ RT work is the presence of such discrete 

stages or operations. This has been highly contested throughout the years. The 

presence of discrete operations and approaches to identifying them were addressed by 

Sternberg’s selective influence or additive factors method (Sternberg, 1969, 2001). The 

technique posits that discrete operations can be identified if independent manipulations 

selectively influence RTs in a task. That is, assuming operations A and B are 

independently influenced by factors F and G, then the RTs and RT variance of factors F 

and G in tandem are the arithmetic sum of the durations of operations A and B when F 

and G are manipulated in isolation. This allows the reverse inference whereby additive 

influence of F and G implies the existence of independent operations A and B. 

Shortly thereafter, Eriksen provided evidence for continuous flow (Eriksen & 

Eriksen, 1974; Eriksen & Schultz, 1979). In this conception, rather than information 

being processed first by operation A and then by operation B, information flow through 

the system is continuous and is not limited by discrete operations. More complex 

models containing elements of both discrete operations and continuous flow arose from 

these ideas, e.g. cascade, in which operations are arranged serially with continuous 

information transfer between them (McClelland, 1979), and asynchronous discrete flow, 

in which components of information processing are accomplished discretely and in 

parallel but with different finishing times (Miller, 1982, 1988). Importantly, Miller (1988) 

detailed the distinction between information representation, transformation, and 
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transmission (i.e., encoding, 

processing, and output) and noted 

that discrete or continuous 

information processing relies on 

the packet size, or unit of 

processing, and can differ 

between the three types.  

As with much of this 

research, behavioral models of 

these phenomena are prone to 

model mimicry, in which multiple 

models can produce identical 

behaviors. Sternberg’s additive 

factor method is a concrete way of resolving this mimicry by identifying potential 

independent operations. However, this method is severely limited by its assumption of a 

serial architecture with an exhaustive stopping rule. It is certainly possible that 

independent operations, when arranged in parallel, do not produce additivity (Fig. 1.1). 

As can be seen, the presence or absence of discrete operations and the manner in 

which these operations are organized is critical for full understanding of cognition. That 

is, one must understand the cognitive architecture.  

 

1.2 Response Times and Cognitive Architectures.  

In the nearly two centuries since Donders’ study, RTs have proven to be indispensable 

in cognitive psychology literature. However, as studies become more powerful the 

Figure 1.1: Non-additive influence of independent manipulations.  
(A) In a serial exhaustive architecture, if two processes A and B are 
independently influenced by factors F and G, the resulting response 
time when both factors are manipulated is the sum of the durations of 
A and B when factors F and G are manipulated in isolation. (B) In a 
parallel exhaustive architecture, independence of manipulations 
results in under-additive response times even though the factors are 
fully isolated to separate discrete stages. From Lowe et al., 2019. 
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questions that are raised become more complex. Specifically, by making the 

assumption that the time required to make a decision is a simple subtraction of RTs 

between choice and detection conditions, he demonstrated the assumption that such 

processes are serial, or taking place in an orderly, non-simultaneous fashion. This is in 

contrast with parallel processing, in which mental sub-processes have some 

simultaneity in their execution. Because the word “stage” may suggest a serial temporal 

ordering, I will use the term operation to refer to the same concept but without assuming 

the organization of multiple operations. 

 In visual search, whether processing multiple stimuli occurs in a serial or parallel 

manner is a crucial but heretofore unanswered question. In a seminal 1980 study, 

Treisman & Gelade proposed that visual search can be performed in either a serial or 

parallel manner depending on the nature of the stimuli (Fig. 1.2A). If the search target 

can be identified by a single, salient feature, then search can be performed in parallel. If 

the search target cannot be identified by a single, salient feature, then the search must 

be performed serially. The diagnostic criterion for serial or parallel processing, here, 

was the set-size curve, or the change in RTs for different numbers of stimuli in the 

array, or set size. If this curve is flat, or RT does not depend on the size of the array, 

then all items must have been processed in parallel because additional stimuli do not 

interfere with processing. However, if the set size curve was not flat, then the items 

must have been processed in serial because each additional stimulus affected RT.  

  This perspective of the distinction between serial and parallel search is certainly 

elegant and was supported by the empirical results of the time, but it quickly faced 

challenges. Most specifically, parallel processing can mimic serial set size curves 
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(Moran et al., 2016; Townsend, 1972, 1990; Fig. 1.2B,C). Other models that can explain 

A B

C

Figure 1.2: Set size curves from different models. (A) Feature search produces response times that are 
invariant with respect to set size whereas searches for conjunctions produce response times with positive 
slopes with respect to set size. These set size curves were taken to indicate parallel and serial processing, 
respectively. From Treisman & Gelade, 1980. (B) Feature search and conjunction search set size curves are 
recapitulated using a mixed serial and parallel model, Guided Search, mimicking the results from strictly 
serial and parallel conceptions in (A). From Wolfe, 2007. (C) Positive slopes in set size curves were 
accomplished with a model assuming strictly parallel processing (red crosses), matching both the data (blue 
crosses) and serial-only (CGS, blue diamonds) models. From Moran et al., 2016. These three subplots 
highlight the problem of model micry, where different models produce indistinguishable behavioral results. 
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set size curves include both serial and parallel components, where an initial parallel 

search is performed followed by a serial search if a target is not initially identified (Wolfe 

et al., 2015; Wolfe 1994, 2007). Again we see the problem of model mimicry. Thus, 

behavioral research is often limited by model mimicry as identical behaviors cannot 

resolve the different architectures. Of course, much research since has been performed 

to resolve these issues, but at present it is sufficient to note that this is far from a solved 

problem.  

 It is also important to note that the understanding of visual search has been 

sought in a variety of ways, such as by adding a conspicuous non-target item (Bacon & 

Egeth, 1994; Theeuwes, 1994), repeating target locations (Klein, 2000; Posner & 

Cohen, 1984) or target feature (Maljkovic & Nakayama, 1994), or adding arbitrary 

stimulus-response mappings (Katnani & Gandhi, 2013; Sato & Schall, 2003). These 

manipulations are effective in manipulating search and have continued to be used for 

psychological research. It should be noted that the efficacy of these manipulations is 

defined by changes in RT. This further indicates that RTs and visual search are prime 

candidates for studying the neurobiological underpinnings of mental chronometry.  

 

1.3 Psychology as a Tangible Science 

While many of the above studies take the quantitative study of psychological 

phenomena as a given, this was not always the case. For some time, philosophers 

considered the study of the mind to be intangible. For example, Kant argued that 

because psychological phenomena are not mathematically expressible, psychology 

cannot be an exact science, and that the mind cannot be studied because it is not 



8 

possible to isolate different thoughts (Kitcher, 1990). However, with the benefit of 

hindsight we see that neither of these preclusions hold.  

 First, the argument that psychological phenomena are not mathematically 

expressible has been shown to be incorrect. As described above and elaborated in the 

next section, current cognitive models of RTs are frequently and most impactfully 

quantitative; they are expressed as sets of mathematical expressions. And this is not a 

contemporary phenomenon; an early example from the work of Weber and Fechner 

shows that the intensity of a perception is proportional to the intensity of a stimulus but, 

importantly, this relationship is non-linear with a constant ratio between stimulus 

strength and the additional stimulus strength necessary to change perception (Fechner, 

1860). The notion that the mapping of experienced intensity and physical intensity is 

exponential is Weber’s Law, and it is indeed a mathematical expression in terms of 

stimulus strength.  

Second, the argument that it is not possible to isolate different thoughts remains 

potentially valid. However, as the lasting influence of Wundt shows, experimental rigor 

and the presentation of stimuli such that a repeatable perception is achieved allows one 

to study a single thought, defined by that repeated perception. More broadly, Sternberg 

articulates the method of selective influence and additive factors; now, his equations 

serve as a set of test statistics by which selective influence can be evaluated, but his 

identification of behavioral tasks exhibiting selective influence demonstrate that 

thoughts, operationalized as cognitive operations, can be isolated by virtue of their 

behavioral additivity (Sternberg, 1969, 2001). 
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 While the appreciation of cognitive phenomena as studiable emerged through 

their mathematical descriptions, their relationship to the physical needed definition. In 

order to do so, the philosophy of science needed to shift away from Kantian ideas. This 

occurred briefly in German philosophy when Naturphilosophie, the philosophy of nature, 

became a prominent movement. Whereas its origins were Kantian in essence with 

respect to the necessity of experimentally validating conjectures about the world, it 

disagreed with Kant’s limited scope and posited a unity of natural forces, including the 

spiritual (e.g., Shanahan, 1989; Stauffer, 1953). Naturphilosophie was quickly rejected 

again due to its perceived lack of experimental rigor, but nevertheless its ideas inspired 

scientists to look more broadly at the implications and scope of their findings. For 

example, Øersted discovered electromagnetism through seeking unity of chemical and 

electrical forces (Dibner, 1963). This discovery has been alternately attributed to 

Naturphilosophie (Friedman, 2007; Stauffer, 1953; Williams, 1980) or as a rejection of it 

(Shanahan, 1989), but the idea of seeking unity of natural forces is distinctly reminiscent 

of Naturphilosophie. 

  In the realm of physiology, Johannes Müller was similarly inspired by 

Naturphilosophie (Müller, 1824), though he took a data-driven approach to it (Finger & 

Wade, 2002; Rheinberger, 1998). The notion of unity found in Naturphilosophie echoes 

in Müller’s law of specific nerve energies, which suggests that perception is governed by 

the qualities of the signals in nerves as opposed to being governed directly by the 

qualities of external stimuli (Müller, 1835). The electrical nature of these signals in 

nerves, or nerve impulses, was discovered by Galvani (McComas, 2011). Müller neither 

accepted nor denied this electrical nature due to insensitivity of instruments at the time 
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(Finger & Wade, 2002; Müller, 1840). However, his student Emil du Bois-Reymond 

measured the nerve current (Finkelstein, 2015) and another student Hermann von 

Helmholtz developed more precise instruments and measured the conduction velocity 

of the nerve impulse (Helmholtz, 1850). As this velocity is finite, and not instantaneous, 

this conduction of the nerve impulse has been used to explain RT differences (De 

Jaager, 1865; Donders, 1868). Notably, even in describing his detection task Donders 

includes the conduction delay as one of many stages between stimulus and response. 

Thus, even in 19th century conceptualizations of behavior one can appreciate the 

contribution of physical sciences. This contribution was further strengthened when 

nerve impulses generating movements were demonstrated to be reliant on the ionic 

nature of neural signals (Huxley & Stämpfli, 1949), and that the frequency of nerve 

impulses in sensory neurons encode stimulus strength via a rate code (Adrian & 

Zotterman, 1926).  

Interestingly, the ionic nature of neural signals is reminiscent of Øersted’s 

demonstration of the unity of chemical and electrical forces. Further, the demonstration 

that light is electromagnetic by Faraday, Maxwell, Hertz, and others relies on the 

discovery of electromagnetism motivated in part by Naturphilosophie. Thus, vision 

science’s pursuit of the mental interpretation of light owes itself largely to such 

philosophical advances (and as an additional historical connection, the first to use c to 

represent the speed of light and the namesake of the unit of magnetic flux, Wilhelm 

Edouard Weber, was the brother of Ernst Heinrich Weber, the namesake of Weber’s 

law described above). To the German Naturphilosph, if Denken (thought) and Sein 

(being) are the same, then the same laws governing the physical world govern the 
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spiritual as well (Shanahan, 1989). To the French rationalist, this idea is familiar, 

formulated as Descartes’ famous statement “je pense, donc je suis.” This identity of the 

psychical and physical, allowed by philosophical advancements, now allows us to 

appreciate the tangibility of psychological research. 

 

1.4 Application of Psychological Constructs to Neuroscience 

As much as an appreciation of psychology was motivated by the ability to map the 

nerve impulse to behavior, the influence has now become bidirectional. Next, I discuss 

a number of constructs defined in the psychology literature that have extended our 

understanding of the underlying neurobiology.  

 

1.4.1 Choice Theory 

One early set of mathematical relationship concerning behavior was Luce’s Choice 

axioms (Luce, 1959). In short, these axioms describe the probability of selecting some 

response as a function of the strength of a stimulus that cues that response and a 

stimulus-independent response bias for that response, normalized by identical 

calculations for all options in a response set. That is, the probability of a response is the 

product of stimulus strength and response bias divisively normalized by the sum of such 

products for all responses. This concept has been applied broadly in the psychological 

literature (Luce & Marley, 1997). One specific application is in the context of attentional 

selection, Bundesen’s theory of visual attention (TVA; Bundesen, 1990). In this 

framework, responses are selected as a two stage process, each incorporating choice 

probabilities; response probabilities are a function of responses biases and attentional 
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weights of objects, and those attentional weights of objects are a function of feature 

priorities and stimulus strength of those feature dimensions. 

 These concepts have also been incorporated into the neuroscientific literature. 

For example, the neural theory of visual attention relates known neurophysiological 

findings to the equations proposed in TVA and find that TVA can account for a variety of 

attentional effects observed in single neuron recordings (Bundesen et al., 2005). 

Further, the concept of biases for certain responses or stimulus features is fundamental 

to the biased competition theory of attentional selection (Desimone & Duncan, 1995), 

and the concept of divisive normalization to generate a response probability is readily 

seen in the normalization model of attention (Reynolds & Heeger, 2009). Finally, while 

TVA is generally concerned with choice probability and thereby response accuracy, it 

has recently been expanded to account for RTs (Blurton et al., 2020). This expansion 

rests on a framework of sequential sampling models, specifically random walks, which I 

discuss next. 

 

1.4.2 Sequential Sampling Models 

Naturally, given Donders’ interest in decision tasks compared to detection tasks, most 

computational models which seek neurobiological counterparts involve decision tasks. 

These generally invoke a family of models for decision tasks known as sequential 

sampling models. These include ballistic accumulator models formulated from counter 

models (Audley & Pike, 1965; Vickers, 1970) and drift diffusion models developed from 

Brownian motion models and random walks (Ratcliff, 1978; Ratcliff & McKoon, 2008; 

Stone, 1960; Fig. 1.3).  
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 The latter models are most 

prominent in the work of Shadlen and 

colleagues which seeks to identify 

neurobiological counterparts to the 

computational models. A particularly 

striking example of such a link is work 

in the middle temporal area MT and 

the lateral intraparietal area LIP. Neurons in LIP had response dynamics that ramped in 

a manner that matched computational models of drift diffusion and peaked at a common 

threshold, at which point a response was generated (Shadlen & Newsome, 1996, 2001). 

The interpretations of these studies were that LIP was instantiating drift diffusion, being 

supplied evidence by MT (see below, section 1.4.4). These findings have come under 

scrutiny (e.g., Latimer et al., 2015; Law & Gold, 2008), but still they provide strong 

evidence that (1) computational models used in cognitive psychology research can be 

mapped to neural responses and (2) accuracy and RTs can be dictated by 

neurobiological processes. However, the random dot motion task is a simple decision, 

in that the response is based only on one feature dimension, and the drift diffusion 

model makes assumptions regarding cognitive operations and their cognitive 

architectures that may not apply to more complex decisions. These considerations will 

be described in more detail in section 1.6.  

 Accumulator models have enjoyed similar success in generating linking 

propositions between neurobiology and behavior. Hanes & Schall (1995, 1996) 

recorded neural activity from FEF during the countermanding or stop-signal task. This 

Figure 1.3: Drift Diffusion Parameterization. Three trials of a 
diffusion model are depicted as the jagged lines. Correct 
reaction time distributions are shown above the top line and 
error reaction times are shown below the bottom line. 
Parameters that define the model are shown as starting point 
(z), boundary separation (a), and drift rate (v). Non-decision 
time is not depicted but corresponds to the constant time added 
to the RT distributions. From Ratcliff and McKoon, 2008. 
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task, a GO signal is delivered instructing a response toward some stimulus. On some 

trials, a STOP signal instructs the withholding of the programmed response (Logan & 

Cowan, 1984). This again shares similarity with Donders’ method, in that he assessed 

in the difference in time necessary to make a response and to decide whether a 

response should be made as opposed to being withheld. The behavior of this task has 

proven amenable to accumulator models. This is true in monkeys as demonstrated by 

Boucher and colleagues (2007), and the responses of FEF mirror the accumulator 

dynamics. This includes a ramping of response toward a fixed threshold at which point a 

response is made (Hanes & Schall, 1996). Here, we see that FEF instantiates cognitive 

models of behavioral tasks. However, it shares the pitfalls of the drift diffusion model for 

random dot motion tasks by assuming a particular cognitive architecture. 

 FEF responses have also been explored in visual search, and these responses 

also closely mirror the dynamics of an accumulator model (Purcell et al., 2010, 2012b; 

Fig. 1.4). In the gated accumulator model, responses of FEF visual neurons are used as 

input to an accumulator framework and precisely reproduce the activity of FEF motor 

neurons. These two subtypes of neurons have repeatedly been found within FEF (Bruce 

& Goldberg, 1985; Lowe & Schall, 2018; Schall, 1991) and are considered to be distinct 

subpopulations with different patterns of connectivity to other brain regions (Segraves & 

Goldberg, 1987; c.f., Sommer & Wurtz, 2000). This model explicitly assumes the 

transfer of information between neuron types, which can be identified as separate 

operations, which will be discussed in sections 1.5 and 1.6 (see also Scerra et al., 2019, 

Costello et al., 2013). Further, it explicitly compared multiple models that predicted 

identical behavior, thus resolving model mimicry by identifying the one model consistent 
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with the underlying neurobiology. However, it still is limited to a relatively simple 

singleton search paradigm and doesn’t necessarily extend to more complex behavior. 

Nevertheless, it further demonstrates the ability of neurobiology to explain cognitive 

psychological constructs.  

 

1.4.3 Differentiating Neural Responses Through Memory Tasks.  

In some cases, psychological constructs have been used to differentiate between 

responses of neurons that seem superficially similar. For example, the inactivation of 

Figure 1.4: Gated Accumulator Model. (A) The gated accumulator model accurately reproduces behavior in four monkeys, 
including set size curves and full response time distributions. (B) Alternative models produce qualitatively, but not quantitatively, 
similar behavioral patterns. (C) The gated accumulator model outputs, generated from visual neuron inputs, accurately reproduce 
movement neuron responses in FEF. All subplots reproduced from and details are available in Purcell et al., 2012b. 
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both prefrontal cortex and inferotemporal cortex cause deficits in working memory tasks 

(Bauer & Fuster, 1976; Fuster et al., 1981). Neurons in both areas are selective for 

specific complex images (Fuster et al., 1982; Fuster & Jervey, 1981). On the surface, 

these two areas seem to perform the same function with respect to object identification. 

However, by looking more closely at the activity of these neurons during the delay 

period of the memory task, Miller, Desimone and colleagues demonstrated an important 

functional difference. They found that while neurons in IT were selective for particular 

stimuli and were modulated dependent on whether a stimulus matched or did not match 

a sample stimulus, they did not maintain information about the sample during the delay 

period (Miller et al., 1991, 1993). Neurons in prefrontal cortex, on the other hand, did 

maintain such representations through the delay (Miller et al., 1996).  

These studies were inspired by Baddeley’s model of working memory (Miller & 

Desimone, 1994), which contains multiple components as opposed to one single 

construct (Baddeley, 1986). These separate components that pass information between 

themselves can explain the high similarity of neural activity in the two brain areas, with 

the prefrontal cortex resembling Baddeley’s central executive and inferotemporal cortex 

resembling his visuo-spatial sketchpad. Without this psychological grounding, the 

phenomena would likely have been observed but may have missed strong theoretical 

implications. 

This is not, of course, to say that the neural basis of memory is fully understood. 

In the above physiological studies, neural responses were averaged over trials and 

demonstrated sustained delay period activity. However, averaging across trials can be 

misleading and demonstrate dynamics that are not present at the individual trial level, 
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such as ramping or stepping dynamics in accumulator models (Latimer et al., 2015). In 

working memory tasks, both individual neuron spiking activity (Shafi et al., 2007) and 

activity pooled across multiple neurons, the local field potential, LFP, (Lundqvist et al., 

2016), demonstrate delay period dynamics inconsistent with persistent elevation in 

activity. This has been taken as evidence that it is not single neurons maintaining 

elevated activity that hold information in memory, but instead the dynamics among 

pools of neurons during the delay (Lundqvist et al., 2018). Others maintain that memory 

is best understood through single neuron activity (Constantinidis et al., 2018; Riley & 

Constantinidis, 2016), and that non-spiking influences such as potentiation explain the 

apparent dynamics (Murray et al., 2017; Wimmer et al., 2014). Thus, the precise 

mechanisms of memory maintenance are still debated. 

The debate between persistent or dynamic activity underlying working memory 

demonstrates that the neural mechanisms of memory are still not understood. However, 

the granularity of these differences reinforces the utility of psychology for motivating 

neuroscientific research; specifically that there are levels of explanation for 

psychological phenomena. I discuss this in more detail in Chapter 8, but a summary is 

warranted here. David Marr defines three levels of analysis: the computational, the 

algorithmic, and the implementational (Marr & Poggio, 1976; Marr, 1982). These levels 

correspond to what computations are performed, which algorithms are used to perform 

them, and the physical manifestation of the algorithms. It seems here that the persistent 

or dynamic activity debate is concerned with the physical manifestation of working 

memory, the implementational level. However, there seems to be less disagreement 

regarding the computations that are being performed; that is, the computational level is 
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settled (to a degree sufficient for the present discussion). Baddeley’s models formed a 

basis for understanding what is being done by the brain, and current research is 

concerned with how these functions are carried out by neural activity. Thus, psychology 

is able to constrain physical models by identifying the computational level of analysis.  

 

1.4.4 Signal Detection Theory  

I have described the connections between psychology and biology as critical to the 

goals of neuroscience, and this is certainly the case. However, it is similarly important to 

acknowledge the impact of disparate fields and the tools that may be applicable across 

disciplines. One such example that has greatly impacted psychology, and thus, as we 

will see, neuroscience, is the formulation of signal detection theory (Green & Swets, 

Figure 1.5: Signal Detection Theory. (A) Two 
distributions are shown, one representing signal strength 
when no true signal is present (black), and one 
representing signal strength when a stimulus is present 
(red). The separation between the centers of these 
distributions is the sensitivity of the system. The criterion, 
shown as a vertical line, sets the threshold for responding 
that a signal is present. The area under the signal 
distribution to the right of the criterion represents the hit 
rate. The area under the noise distribution to the left of 
the criterion represents the correct rejection rate. Errors 
can be misses, signals that were present but reported 
absent, the area under the signal distribution to the left of 
the criterion, and false alarms, erroneous reports that a 
signal was present when it was not. The position of the 
criterion represents the bias toward responding one way 
or the other. (B) Receiver operating characteristic curve. 
By changing the criterion, false alarm rates and hit rates 
for different levels of bias can be obtained. Plotting these 
against one another demonstrates the sensitivity of the 
system. The diagonal, where hit rate and false alarm rate 
are equal, represents inseparable distributions. (C) The 
use of receiver operating characteristic curves to identify 
target selection time in an example FEF neuron. From 
Thompson et al., 1996. 
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1966; Marcum, 1947). Originally, signal detection theory was developed to address the 

problems faced by radar technicians: Is this a real incoming missile, or is this a goose? 

This is a hypothetical example, here, but the concept is: is the incoming radar signal 

indicative of a real threat, or is it incidental? Consider being a radar technician tasked 

with reporting some incident to a workplace superior. Reporting that there is a 

disturbance may result in the elimination of a flock of geese, but the failure to report a 

serious threat may miss incoming missiles that would cost thousands of lives. In this 

case, one might have a low bias, in that any potential signal, regardless of mitigating 

factors, should be reported to the superior. On the other hand, consider that you are 

that superior. In this case, failure to launch a counterattack may maintain international 

relations, because some geese are simply trying to migrate, but a counterattack may 

initiate an international incident by sparking the powder keg. Though the same signal is 

received by both the worker and the superior, the consequences are pertinent.  

 Ultimately, as inaccessible as the phrase signal detection theory may seem on 

the surface, within psychological literature it has condensed to the two more basic 

concepts of sensitivity and bias. In simple terms, sensitivity is just how discriminable two 

signals are, or how discriminable a signal is from background noise. Bias is just a 

representation of how willing one is to respond positively or negatively (Fig. 1.5). If the 

consequences of missing some signal are severe but the consequences of falsely 

identifying that signal are mild, then one may have a bias toward responding that a 

signal is present. Conversely, when the consequences for falsely identifying a signal are 

severe, one may have a bias toward responding that the signal is absent. For example, 

if a doctor suspects that a patient may have a brain tumor they may have a bias for 
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recommending a follow up screening or MRI as those procedures are minimally 

burdensome, but may also be hesitant to recommend a highly invasive brain surgery. 

But independent of the bias, if the symptoms are severe or the tumor is large, or if the 

doctor or equipment are highly sensitive to such changes, even a high-stakes choice 

can be made confidently. Interestingly, an alternate but mathematically equivalent 

approach can be formulated using Choice theory (Luce, 1959; Treisman & Faulkner, 

1985). As discussed above, the probability of choosing that a tumor is present is 

proportional to a response bias for its presence and the strength of the evidence that it 

is present (normalized by identical calculations for all response options).  

 Within neuroscience, signal detection theory has been used to characterize 

neuronal responses. For example, signal detection theory has been used in the study of 

area MT to determine the reliability of motion signals. In a random dot motion task, one 

in which a patch of moving dots of varying coherence (0% coherence being when each 

dot moved in a random direction, 100% coherence being when all dots moved in 

identical directions), monkeys were required to report the overall direction of motion in 

the display. Neurons in area MT, known to respond to motion in a particular direction 

(Dubner & Zeki, 1971), were found to discriminate the motion of the dot patch with 

accuracy that matched the behavior (Britten et al., 1992, 1993; Shadlen et al., 1996). 

These inferences were made by constructing receiver operating characteristic curves, 

which are fundamentally intertwined with signal detection theory, and determined the 

sensitivity of neural activity irrespective of behavioral choice.  

Similar analyses have been performed in MST (Celebrini & Newsome, 1994), 

superior colliculus (Kim & Basso, 2008), prefrontal cortex (Lennert & Martinez-Trujillo, 
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2013; Wimmer et al., 2016), and other areas (see Crapse & Basso, 2015 for review). 

Even within FEF physiology research, early reports of target selection, or responses of 

neurons when a search target is within as compared to outside that neuron’s receptive 

field, have been fundamentally driven by signal detection theory (Thompson et al., 

1996; Fig. 1.5), using receiver operating characteristics to identify the time at which the 

signal emerges.  

So, we now see that signal detection theory is a term that, to the unfamiliar, may 

sound imposing and inaccessible. But this is not the case. Instead, the concepts 

underlying and applications of signal detection theory are quite approachable. The 

relatively simple notions of sensitivity and bias have been used by psychology and 

neuroscience researchers for some time now and have been fruitful in understanding 

neural signaling. 

 

1.5 The Importance of Accounting for Neural Diversity 

The above section describes the applications of psychological constructs to advancing 

understanding in neuroscience. It is notable, though, that many of the studies different 

tasks were used and different brain regions were studied. Thus, there was an implicit 

assumption in the above section, which I will now make explicit: that different brain 

regions have different functions. The history of localization of function within the brain is 

long and complicated, but the existence of localization of function is an intrinsic 

assumption of contemporary neuroscience (for a relevant early example in the eye 

movement domain, in which stimulating different parts of the cerebral cortex resulted in 

different types of movements see Ferrier, 1875). In general, brain regions, or sets of 

brain regions, are considered as separate neurobiological systems. 
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 While the localization of function among brain regions is assumed, one must also 

understand the heterogeneity of function within a brain region. That is, in order to 

identify how a system works, it is necessary to first identify the components of that 

system. Take three examples from neurobiology: First, how does the brain convert light 

from the world into an interpretable image? This is, initially at least, solved by the retina. 

The retina contains photosensitive neurons, rods and cones, whose signaling states are 

dependent on the location and chromaticity of light entering the pupil. These neurons 

send signals to bipolar cells, which in turn send signals to retinal ganglion cells. These 

synapses are modulated by horizontal cells and amacrine cells. The organization of 

these different neuron types has been used to explain phenomena like center-surround 

receptive field organization and color opponency (see Demb & Singer, 2015 for review). 

Critically, this mechanistic understanding of the retina would be impossible without 

accounting for the variety of neuron types comprising it.  

Second: how does the brainstem initiate saccades? This behavior has been 

explained at a fine level of mechanistic detail through the study of the brainstem 

saccade generator (e.g., Scudder et al., 2002; Fig. 1.6). Long lead burst neurons begin 

increasing their activity some considerable time before the saccade. Omnipause 

neurons tonically fire to maintain fixation. The long lead burst neurons latch the 

omnipause neurons, inhibiting them when a saccade is eminent. Short lead burst 

neurons rapidly increase their activity just before the saccade. The details of this 

circuitry can be found elsewhere, and are shown in Fig. 1.6, but nonetheless the 

understanding of this circuit is only accomplishable by understanding the functional 

diversity of saccade related neurons in the oculomotor brainstem.  
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Third, studies in primary visual cortex by Hubel and Wiesel serve such a 

cataloguing of functional neuron types in the cat (Hubel & Wiesel, 1959, 1962) and 

monkey (Hubel & Wiesel, 1968). Individual neurons were reported to have orientation 

selectivity, or a preference for a line at a particular angle, and a preferred eye, or 

preference for a signal coming from either the left or right eye. Later, they characterized 

simple, complex, and hypercomplex cells based on the spatial characteristics of their 

receptive fields. Together, these findings have been integrated into the concept of a 

hypercolumn, or a set of neurons with members responding to all orientations and both 

Figure 1.6: Oculomotor saccade generator circuitry. Midbrain circuitry for saccade generation comprises multiple 
distinct neuron types whose circuitry (right) and response profiles (left) have been used to mechanistically describe the 
generation of saccades. Of note is the variety of functional neuron types (left) which illustrate the importance of 
understanding response diversity for a mechanistic understanding of eye movement behavior. From Scudder et al., 2002. 
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eyes, which constitutes a complete representation of an area of the visual field (Hubel & 

Wiesel, 1974). These ideas have had a profound effect on the understanding of cortical 

structure, refined models of columnar structure (e.g., Douglas & Martin, 1991), 

increased understanding of cortical processing, and have even earned a Nobel prize.  

These three examples demonstrate that a powerful and detailed mechanistic 

understanding of neural functions and their relation to phenomenology and behaviors is 

accomplishable, but only when the component neurons are identified and individually 

understood. 

Additional studies of the cerebral cortex have taken a similar, though less 

complete, approach to understanding neuronal diversity and the way this diversity 

contributes to cortical function. Most approaches to cortical function rely on the idea of 

segregation of function, or the idea that different parts of the brain serve different 

functions. Of course, that sensory cortices are spatially distinct and preferentially 

respond to one modality (i.e., visual cortex responds to light, auditory cortex responds to 

sounds, etc.) is taken as given. But this train of thought can be and has been extended. 

Early lesion studies in macaque monkeys selectively ablated areas in either the 

temporal or parietal lobes, and found deficits in object identification or location, 

respectively (Mishkin et al., 1983; Ungerleider & Mishkin, 1982). They coined the 

phrases ventral stream and dorsal stream to identify streams of information related to 

these two functions, respectively, or rather the what and where pathways. This 

perspective was reimagined as a distinction between perception and action (Goodale & 

Milner, 1992), but nevertheless the critical assignment of different brain areas to 

different functions holds and motivates particular tasks for particular areas since. 
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In FEF, the appreciation of the diversity of neural responses has been apparent 

for decades. In 1970, Bizzi and Schiller described two types of neurons, those that 

responded during saccadic eye movements and those that responded during smooth 

pursuit. In 1985, Bruce and Goldberg reported a variety of neuron types, including 

visually responsive, movement-related, and visuomovement neurons. Schall (1991) also 

identified visually responsive, movement-related, and visuomovement neurons. Among 

the diversity of neurons reported from both studies, these three categories have 

become a canonical tripartite division guiding much FEF research since. However, such 

a classification has been shown to be insufficient for fully describing or predicting neural 

responses in more complex tasks (e.g. Type I and Type II neurons of Sato & Schall, 

2003). Clearly, respecting the heterogeneity of functional properties of neurons is crucial 

for a mechanistic understanding of mental function. But equally clearly, there is still 

much work to be done to fully catalogue the sets of neuron types in a way that allows 

such an understanding. 

 

1.6 Shortcomings in Current Models 

Now that the importance of appreciating neural diversity, and the applications of 

psychological constructs in neuroscience, including the importance and utility of RTs 

and approaches toward identifying the presence and architecture of cognitive 

operations, have been described, we can now turn to the shortcomings of current 

neurobiological models. Specifically, that these models limit themselves to single 

operations, or at least single operations relevant to RT variability. 

 Take for example the prominence of the drift diffusion model in the modeling of 

responses of LIP. This approach to LIP function was introduced above, but also 
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includes more recent work with similar approaches (for review, see Shadlen & Kiani, 

2013). While this work has come under scrutiny from a neurobiological perspective, e.g. 

that the apparent ramping of activity in LIP on average may be the result of state 

changes that occur at different points in time (Latimer et al., 2015), there have been 

fewer if any criticisms of the assumption that the RT variability in the random dot motion 

task used comes from a single decision encoding process. In fact, the drift diffusion 

model used as a mathematical basis for the linking proposition that LIP encodes the 

decision has frequently been used to study the Eriksen flanker task (e.g., White et al., 

2011) which mirrors Eriksen’s viewpoint that information is processed in a continuous 

flow. Additional complexity has since been superimposed upon the flanker task, as well 

as the related Simon task, but modeling has still been restricted largely to drift diffusion 

based frameworks (e.g., White et al., 2018). It should be noted that whereas these 

frameworks may recognize distinct operations, only the decision formation operation is 

seen as relevant to RT differences, not stimulus encoding or response preparation. 

Instead, the stages of visual encoding and response preparation and execution are 

lumped together as a single non-decision time parameter. Thus, even though additional 

complexity may be introduced, the mechanisms by which information sources are 

combined are ignored and are thus unable to address the issue of model mimicry.  

 The gated accumulator model assesses different issues, but is similar in that its 

output is an accumulation of evidence toward a decision threshold. It makes a stark 

improvement by separating input from visual neurons and output from movement 

neurons, explicitly acknowledging the difference in functional neuron types and at least 

implicitly acknowledging the difference between a stimulus encoding operation and a 
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decision output operation. The distinction between visual and motor activity in FEF 

neurons has been shown in several previous studies of FEF function that differentiate 

visual and motor stages by either requiring stimulus-response rule mapping (Lowe & 

Schall, 2019; Sato & Schall, 2003)  or compelling responses with incomplete stimulus 

information (Costello et al., 2013; Scerra et al., 2019; Stanford et al., 2010). However, 

the gated accumulator model has not yet been tested when additional levels of 

complexity, e.g. a mapping of stimulus-response rules or temporally offsetting streams 

of information. Thus, to achieve full generalizability it requires additional refinement by 

adding modules that correspond to rules in a different dimension than what the search 

per se requires. 

 

1.7 Overview of Experiments 

So far, I have demonstrated that (1) RTs are critical for understanding both behavior 

and the neurobiological control of such behavior, particularly for visual search 

paradigms, (2) understanding neural diversity is critical for a mechanistic understanding 

of a neural system, (3) current RT models of behavior, while elegant for the particular 

problems they aim to solve, are insufficient or not yet generalizable for explaining more 

complex rules, and (4) such shortcomings are due, in no small part, to explicit and 

implicit assumptions regarding cognitive architectures and the existence, or lack thereof, 

of distinct processing operations. To that end, the next generation of models must 

include an account of heterogeneity of neural responses as well as some index of the 

cognitive architecture involved in any task. Further, to fully understand the performance 

of any task, multidimensional tasks must be used to aid in the expansion and 

generalization of current models. 



28 

In Chapter 2, I develop a method for categorizing functional response properties 

in FEF neurons in a manner beyond the traditional visual, motor, and visuomotor 

tripartite division. Importantly, such a technique should be developed such that it can 

identify functional response variability in tasks more complicated than traditional 

memory-guided saccades. In Chapter 3, I extend this method to allow for additional task 

conditions to contribute to categorization and to allow comparisons of functional 

categories across brain regions. 

In Chapter 4, I introduce a specifically designed 2x2 factorial visual search task, 

the GO/NO-GO search task. This task involves the manipulation of the ease of 

performing the search per se and importantly, it imposes a stimulus-response rule 

association to that search. These two factors, ease of search and stimulus-response 

rule, satisfy the multidimensional nature of tasks needed for more general models. 

Further, this factorial design allows the application of systems factorial technology 

(SFT), an approach developed by Townsend and colleagues (Townsend & Nozawa, 

1995), to identify cognitive architecture. As imposing a phrase as systems factorial 

technology (SFT) is, we find considerable parallels with signal detection theory. Neither 

is necessarily organized for use in neuroscientific research, but the latter has enjoyed 

considerable success, as described above. With SFT, cognitive architectures can be 

identified. Cognitive architectures, as a phrase, can itself be seen as unnecessarily 

complex. However, similarly to signal detection theory, it can provide tangible, 

accessible metrics relevant to neuroscience. Put simply, cognitive architectures that can 

be differentiated by SFT imply whether one or two operations are occurring, whether 

they occur simultaneously, and whether behavior is initiated when one or both 
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operations are completed. Taken this way, SFT can provide interpretable information 

that can guide hypotheses regarding neural function, just as signal detection theory has. 

In Chapter 5, I identify several neurometric indices of cognitive processing in a 

related visual search task. Specifically, I identify distinctions between stimulus-related 

and saccade endpoint-related selection operations. We have reported that, given 

particular stimulus array configurations and stimulus-response rule combinations, FEF 

neurons both select salient objects in a search array, then select a saccade endpoint at 

a later time (Lowe & Schall, 2019). We take this as clear evidence that search is 

comprised of multiple distinct operations and that visually responsive FEF neurons 

represent both. Finally, in Chapter 6 I use these neurometric indices and cognitive 

architectures to assess the neural substrates of the cognitive architectures involved 

during the GO/NO-GO search task. 

 

1.8 Summary 

 The aim of the dissertation, at large, is as follows: given that (A) a task must be 

solved by some cognitive architecture, (B) a multitude of functional neuron types exist in 

the brain, (C) cognitive architectures can be identified, and (D) neurobiology must 

underlie behavior, then it must be the case that if the cognitive architecture and 

responses of the underlying neurons are known, then the architectures by which certain 

behaviors are performed must be explainable by the responses of the various 

underlying functional neuron types. I seek to identify those cognitive architectures, 

identify the functional neuron types in FEF, and explain visual search behavior by 

mapping neuron types to the processes enabling the cognitive strategies. 
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CHAPTER 2: FUNCTIONAL CATEGORIES OF VISUOMOTOR NEURONS IN 

MACAQUE FRONTAL EYE FIELD 

2.0 SUMMARY 

In the Introduction, section 1.5, I described the utility of appreciating diversity in 

anatomical and functional neuron types, and how understanding the set of functional 

neuron types in an area or task allows for a detailed mechanistic understanding of 

neural information processing. The examples in which this understanding has allowed 

the most complete characterizations are in relatively low-level processes such as retinal 

processing, saccade generation, and ocular and orientation preferences in primary 

visual cortex.  

The set of neural responses contributing to complex cognitive behaviors are far 

less well understood. Thus, to understand the neural instantiation of cognitive 

architectures, one must understand both the architecture itself as well as the 

characteristics of the neurons contributing to the behavior. To address this problem of 

categorizing possible neural responses, I developed a method by which functional 

categories are defined from a population of neurons. This method of consensus 

clustering improves traditional categorization by minimizing assumptions used in the 

categorization and using several different clustering methods to enforce consistency of 

categorization across sets of assumptions that cannot be avoided.  

In the remainder of this chapter, I describe this method as applied to neurons 

recorded from FEF during a memory-guided saccade task which has traditionally been 

used to categorize these neurons. I show that there are sub-categories of neurons that 

are not detected by traditional categorization schemes that could reflect important 
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differences regarding their contribution to the underlying neural circuitry. This chapter 

has been published as Lowe & Schall (2018).  

In Chapter 3, I apply this method to an additional dataset that includes an 

additional, more complex task and includes neurons from the dorsal premotor cortex. 

This extension of the consensus clustering method demonstrates its utility in complex 

tasks and with additional trial conditions, as well as an approach by which the diversity 

of responses in multiple brain regions can be compared. Chapter 3 is in preparation for 

submission. 

 

2.1 INTRODUCTION 

Like all cortical areas, frontal eye field (FEF) is comprised of neurons 

distinguished by morphology, neurochemistry, biophysics, layer, and connectivity. 

Biophysical distinctions can be made via action potential waveforms (Cohen et al., 

2009d; Ding & Gold, 2012; McCormick et al., 1985; Mitchell et al., 2007; Thiele et al., 

2016), calcium binding proteins (Pouget et al., 2009), and neuromodulatory receptors 

(Noudoost & Moore, 2011; Soltani et al., 2013). Neurons with distinct biophysical 

characteristics must play different roles in the cortical microcircuit (DeFelipe, 1997; Lund 

& Lewis, 1993; Pouget et al., 2009; Zaitsev et al., 2012). Connectivity studies find FEF 

connected with at least 80 cortical areas (e.g., Huerta et al., 1986, 1987; Markov et al., 

2014; Schall et al., 1993, 1995a; Stanton et al., 1993, 1995), and most pyramidal 

neurons do not project to more than one cortical area (Markov et al., 2014; Ninomiya et 

al., 2012; Pouget et al., 2009). Numerous functional distinctions among FEF neurons 

have been reported, beginning with the traditional sorting into visual, visuomovement, 

and movement plus fixation and postsaccadic categories (e.g., Bruce & Goldberg, 1985; 
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Schall, 1991). Subsequently, FEF neurons have been implicated in numerous functions 

including visual search (Costello et al., 2016; Fernandes et al., 2014; Lee & Keller, 

2008; Purcell et al., 2012b; Schall et al., 1995a; Thompson et al., 1996; Zhou & 

Desimone, 2011), saccade preparation and inhibition (Boucher et al., 2007; Hanes et 

al., 1998; Ray et al., 2009), perceptual choice (Ding & Gold, 2012), visual attention 

(Bichot et al., 1996; Bichot & Schall, 2002; Gregoriou et al., 2009; Khayat et al., 2009; 

Noudoost et al., 2014; Schafer & Moore, 2011; Thiele et al., 2016; Zhou & Desimone, 

2011), visual working memory (Clark et al., 2012; Reinhart et al., 2012),  transsaccadic 

stability (Chen et al., 2018; Crapse & Sommer, 2008, 2012; Joiner et al., 2013; Shin & 

Sommer, 2012), planning saccade sequences (Phillips & Segraves, 2010), eye-head 

coordination (Elsley et al., 2007; Izawa & Suzuki, 2018; Knight, 2012; Sajad et al., 

2015), and anticipating reward (Glaser et al., 2016; Roesch & Olson, 2003). Can so 

many functions be accomplished by so few neuron categories? 

The problem of classification is neither new to science nor unique to 

neurophysiology. Cluster analysis is a powerful statistical tool, developed to find self-

segregating categories in gene expression (Sharp et al., 1986), psychiatric diagnostics 

(Lochner et al., 2005), linguistics (Gries & Stefanowitsch, 2010), and Scotch whisky 

(Lapointe & Legendre, 1994). It has also been used to describe the biophysical diversity 

of cortical neurons (Ardid et al., 2015; Druckmann et al., 2013; Nowak et al., 2003), 

expanding the in vivo description of putative excitatory and inhibitory cells. Cluster 

analysis should be similarly powerful for assessing the functional diversity that must 

parallel anatomical diversity and should reproduce the functional categories known to 

exist in FEF. 
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Cluster analysis requires strategic decisions about the method of grouping 

observations and how to calculate pair-wise distance, which lacks rigorous specification 

for clustering functional characteristics of neurons. Therefore, we applied multiple pre-

processing pipelines to a large sample of FEF neurons then applied an agglomerative 

clustering algorithm to discover functional categories. Because a priori endorsement of 

any particular pre-processing pipeline is impossible, and each result is unique, the 

results of an individual clustering procedure are difficult to interpret. However, second-

order clustering procedures known as consensus clustering combine outcomes from 

different pipelines (Strehl & Ghosh, 2003). Distinct consensus clustering procedures use 

different theoretical motivations and computational efficiencies (Goder & Filkov, 2008). 

We applied a procedure that operates on the median pairwise similarity across all pre-

processing pipelines because it is tractable and efficient. This consensus clustering 

procedure identified ten robust functional categories of FEF neurons, which elaborate 

conventional functional classifications.  

 

2.2 METHODS 

2.2.1 Subjects and Behavioral Task 

Three male macaque monkeys (M. radiata) participated in this study. All 

procedures were in accordance with the National Institutes of Health Guide for the Care 

and Use of Laboratory Animals and approved by the Vanderbilt Institutional Animal 

Care and Use Committee. Monkeys were trained to perform a memory guided saccade 

task (C. J. Bruce & Goldberg, 1985). Trials began when a central fixation point 

appeared. After fixating this point for 500 ms, a peripheral target was presented for one 

screen refresh (16.7 ms at 60 Hz refresh rate) at 8° eccentricity at one of 8 locations 
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separated by 45°. After a variable delay between 300 and 800 ms the fixation point was 

extinguished, and the monkey was required to shift gaze to and maintain fixation on the 

location of the peripheral stimulus. The peripheral stimulus was re-illuminated after the 

saccade to provide a fixation stimulus. Fluid reward was delivered if the monkey 

maintained fixation on the peripheral, now reilluminated, stimulus for 500 ms. If the 

monkey broke fixation, made a saccade to an incorrect location, or made a saccade 

before the fixation point was extinguished, a 5,000 ms time-out delay occurred. 

 

2.2.2 Recording Techniques 

MRI compatible headposts and recording chambers were placed over the arcuate 

sulcus. Surgery was conducted under aseptic conditions with animals under isoflurane 

anesthesia. Antibiotics and analgesics were administered postoperatively. Details have 

been described previously (Cohen et al., 2009b; Sato et al., 2001; Schall et al., 1995a). 

Data were streamed to a data acquisition system: MNAP (40 kHz, Plexon, Dallas, TX - 

monkeys Da, Ga, and He) or TDT System 3 (25 kHz, Tucker Davis Technologies – 

monkey Da; Fig. 2.1a). Eye position was collected using EyeLink 1000 (SR Research). 

Eye position was calibrated daily and streamed to the data acquisition system and 

stored at 1 kHz. Electrophysiological data was obtained from linear electrode arrays, 

either a 24-channel Plexon Uprobe (monkeys Ga, He) or a 32-channel Neuronexus 

Vector Array (monkey Da). Both probes had a 150 μm recording contact spacing. Single 

units were identified online using a window discriminator (Plexon) or principal 

component analysis (TDT). Units recorded from the TDT system were sorted offline 

using Kilosort (Pachitariu et al., 2016).  
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Unit isolation was assessed by measuring waveform signal-to-noise ratio, 

interspike interval distributions, and baseline firing rate. Signal to noise ratio (SNR) was 

calculated by dividing the voltage difference between the peak and trough of the mean 

action potential waveform by the standard deviation of concatenated waveform 

residuals (Joshua et al., 2007). A minimum SNR criterion was set for each recording 

system. Units with more than 10% of interspike intervals less than 2 ms were excluded. 

Units with a mean baseline discharge rate of less than five spikes per second were 

excluded. Of 1864 potential single units, 963 were excluded based on SNR; 22 were 

excluded based on interspike interval distribution, and 439 were excluded based on 

baseline firing rate. All together, these criteria excluded 1383 potential units, leaving 481 

for analysis. An additional 15 units were excluded for lacking non-zero values in either 

the visual or perisaccadic epochs of their spike density function (SDF). These very 

conservative criteria resulted in only 25% of potential units being included in the 

categorization, which indicates that they were well-isolated single units (Fig. 2.1b).  

 

2.2.3 Neuron Classification 

SDFs were calculated by convolving the spike trains with a function that 

resembles the postsynaptic influence of each spike (Thompson et al., 1996). SDFs were 

calculated only for correct trials on which the visual stimulus was presented in the visual 

receptive field and the saccade was made into the movement field. The number of trials 

contributing to characterizing each neuron ranged from as few as four to as many as 

317 (median 34), with trials with fewer than five spikes excluded. If the spike density 

function was not a stable estimate, we did not include the neuron. A sequence of 

classification procedures was employed. The first was based on the traditional criteria of 
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Bruce & Goldberg (1985). A unit was considered to have visual activity if the firing rate 

between 50 and 150 ms after stimulus presentation was elevated more than six 

standard deviations above the baseline mean. A unit was considered to have movement 

activity if the firing rate in the 100 ms preceding the saccade was more than six 

standard deviations above the baseline mean and the SDF showed a positive 

correlation over time in the 20 ms preceding saccade. This prevents elevated delay 

activity with no pre-saccadic ramping from being considered movement-related activity. 

Visual units had visual responses with no movement activity, movement units had 

movement activity with no visual responses, and visuomovement units had both. Other 

units were considered uncategorized; we did not test for fixation or postsaccadic activity 

in this categorization.  

Units were categorized via agglomerative hierarchical cluster analyses (Everitt et 

al., 2011; Sokal & Michener, 1958). These analyses iteratively combine units, or groups 

of units, based on the weighted average similarity of units. In each case the analysis 

algorithm was identical, though the method for determining similarity differed due to the 

scaling of discharge rates across units (Fig. 2.1c), measurement of the units’ response 

(Fig. 2.1d), or the similarity metric (Fig. 2.1e). The agglomerative cluster analysis was 

performed as follows: First, the sample was considered as n groups, each with one 

member. Then, the two groups with the smallest pairwise distance were combined into 

one group, leaving (n-1) groups, one of which with two members. The distances of this 

group to the other groups were determined by the weighted mean of the distances of 

the individuals in each group: 

𝐷′(𝐼, 𝐽)  =  
∑ ∑ 𝐷(𝑥, 𝑦)  + 𝑦∈𝐽𝑥∈𝐼 ∑ ∑ 𝐷(𝑥, 𝑦)𝑥∈𝐼𝑦∈𝐽

2 ∗ (𝑛𝐼 + 𝑛𝐽)
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where I is the first group in consideration and J is the second, x are the members of 

group I, y are the members of group J, and nI and nJ are the number of members in 

groups I and J, respectively. The value of 2 in the denominator is required because the 

distances are symmetrical and thus represented twice in the numerator of the equation. 

More simply, this averages the pairwise distances of the members of I and J such that 

the similarity of two groups will not be skewed by uneven group sizes. 

This procedure was repeated until all observations were agglomerated into a 

single group. Then, category identifications were made for a range of number of 

categories, k, by finding the most recent step in the algorithm at which k categories with 

a minimum of x members were present. For example, for a k of five, the most recent set 

with five categories of at least x members was assigned as the final classification. 

Category membership for k was assessed between 1 and 20. The value of x was set to 

10; only categories with 10 or more members were considered to assure robust results. 

Category membership was assessed for six scaling procedures, four 

measurements of the response, and two similarity metrics (Fig. 2.1c-e). The mean 

skewness across time points was used to assess the quality of scaling for cross-unit 

comparisons. We refer to each combination of scaling procedure, SDF measurement, 

and similarity metric as a pre-processing pipeline. We evaluated categories derived 

from each pipeline but will show outcomes for only three.  
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 Modulation of discharge rates was measured according to the following 

approaches. Three (mean, slope, mean and slope) account for the firing rates during 

epochs: -200 to -100 ms before stimulus onset, 50 to 100 ms post-stimulus, 100 to 150 

ms post-stimulus, -100 to -50ms before saccade, -50 to 0ms before saccade, and 50-

Figure 2.1. Analysis pipeline. a, Potential neurons were recorded from FEF using multicontact electrode arrays. These recordings 
were performed either in the Plexon MNAP or the Tucker-Davis Technologies System 3. Potential units from the Plexon MNAP 
were sorted on-line with a window discriminator, whereas potential units from TDT Sys3 were sorted off-line using KiloSort 
(Pachitariu et al., 2016). A total of 1884 potential units were recorded. b, The 1884 potential units were subjected to several criteria 
to ensure that only single units were analyzed further. These criteria include interspike interval distributions, a minimum baseline 
firing rate, and a signal-tonoise ratio of sorted action potential waveforms. The quality of isolation is illustrated, where the PCA 
space of off-line sorting is shown for the units with the best, median, and worst signal-to-noise ratio that still meet the criterion. c, 
Six methods of scaling spike density functions were applied for normalization. Four units were selected to illustrate the effects of 
these different scaling methods. The colors of each unit were assigned arbitrarily. The equations for each scaling method are 
shown on the ordinates. Zero points in scaling and time are shown in light gray. d, After each scaling method, features for inclusion 
in the clustering algorithm are measured. Four ways of measurement were used and are demonstrated on one of the example units 
from above: the full SDF (blue), the mean of the SDF during epochs of interest (orange), the slope of the SDF during epochs of 
interest (purple), and the combination of mean and slope. Each of these four measurements, for each of the six scaling methods, 
were clustered individually. e, Clustering on the feature vectors generated from the scaling and measurement techniques can be 
performed using either Euclidean or correlation distance. Euclidean distance measures whether pairs of units have similar values 
of the measurements, regardless of the patterns of modulation, whereas correlation distance measures the similarity of modulation 
patterns regardless of absolute similarity. An example clustering dendrogram and distance matrix for each distance metric is shown 
as applied to the four example units, and it can be seen that these two clustering methods produce different categorizations. f, 
Because there is no a priori way to select which scaling method, measurement, or distance metric is most appropriate, and each 
may produce different categorizations, the final categorization was selected by applying consensus clustering. The distance 
matrices for each scaling method, measurement, and distance metric (48 total combinations) were normalized and combined to 
create a consensus distance matrix. The same clustering algorithm was applied to this consensus distance matrix. The consensus 
distance matrix and corresponding final dendrogram for the four example units is shown. Final categories were determined by 
applying additional criteria (minimum category membership and maximum number of uncategorized neurons). 
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100 ms post-saccade. “Mean” measurement was based on the mean firing rates in 

these epochs, “slope” measurement was based on the slope of the firing rate changes 

in these epochs (i.e., the difference in mean firing rate at the beginning and end of the 

epoch), and “mean and slopes” were based on the concatenation of mean firing rate 

and slope. “SDF” measurement did not parse the responses into epochs, and was 

instead based on the values of the SDF aligned on stimulus onset (-200 to 300 ms) or 

saccade (-300 to 200 ms) at each time point to millisecond resolution. To emphasize 

equally all epochs, means, and slopes, each measurement value was individually 

converted to a z-score across the sample.  

Pairwise distance was measured two ways: Euclidean distance and correlation. 

Euclidean distance can be conceptualized as the physical distance between two points 

in multidimensional space while disregarding which dimensions contribute to this 

distance. Correlation assesses the relationships between the dimensions while 

disregarding the particular values of those dimensions. The different emphases of these 

two distance metrics can and often does assign two units to the same category via one 

metric but not the other. 

 Euclidean distance. Based on the firing rate each unit was placed in a multi-

dimensional space. This multi-dimensional space had either 6 (for mean measurement 

and slope measurement), 12 (for mean and slope measurement), or 1002 (for SDF 

measurement). The Euclidean distance between the units in this space: 

𝐷(𝑥, 𝑦)  =  √∑(𝑥𝑖 − 𝑦𝑖)2

𝑒

𝑖

 

defines a pairwise distance matrix, where e is the number of epochs (or milliseconds). 
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Correlation.  Based on the firing rate each unit was defined a 6-, 12-, or 1002-

element vector, depending on measurement method, and the correlation between two 

vectors: 

𝐷(𝑥, 𝑦)  =  1 − 𝜌(𝑥, 𝑦) 

measures the similarity of the modulation patterns of two units while disregarding 

absolute differences in firing rates. 

All of these pre-processing pipelines were tested, and all produced unique 

results. Some pipelines produced categories that were subjectively easy to endorse, 

while others produced subjectively poor categories. The results of three representative 

pipelines are presented, two that produced poor categorizations, for different reasons, 

and one that produced good categorizations. The first combination scales by z-scoring 

relative to baseline, mean measurement, and uses Euclidean distance. The second 

does not scale the data before measurement, uses mean measurement, and uses 

correlation distance. The third scales by z-scoring relative to the whole trial, and mean 

and slope measurement. 

 

2.2.4 Consensus Clustering 

No a priori reason endorses the categories yielded by a particular SDF scaling 

procedure, summary of response modulation, or distance measurement. Therefore, we 

employed a novel strategy of combining the results of multiple clustering pipelines. This 

algorithm considers the pairwise distance between units for each individual pre-

processing pipeline tested by creating a composite distance matrix. Each individual 

distance matrix was z-scored internally to correct for the absolute scale differences 

between different scaling procedures and distance measurements. Then, the median for 
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each pair was selected to prevent skewing by non-optimal pipelines. Thus, if the 

pairwise distance between two units was consistently small, then this composite 

measure was also small, whereas if the pairwise distance between two units was small 

in some parameter sets but was generally larger, then the composite distance metric 

reflected the trend toward differences but accounted for the isolated cases of similarity. 

After creating this composite distance matrix, the same agglomerative algorithm used 

for each individual pipeline was applied to identify categories (Fig. 2.1f). Intuitively, this 

method was intended to distinguish units that were clustered together regardless of pre-

processing pipeline from units that were members of different clusters regardless of pre-

processing pipeline. 

In essence, this procedure performs a clustering that operates on a distance 

matrix whose entries represent robustness of categorization across a number of 

individual procedures, or a “consensus clustering” problem (Goder & Filkov, 2008). 

Indeed, consensus clustering has been used to identify biophysical classes of neurons 

(Ardid et al., 2015). However, while conceptually similar, the previous “meta-clustering” 

and the present consensus clustering differ operationally in both the algorithm used for 

performing clustering and the pre-processing of input data. Ardid and colleagues 

performed K-means clustering, which does not provide a unique clustering solution and 

is highly sensitive to starting points (Bradley & Fayyad, 1998; Celebi et al., 2013; Peña 

et al., 1999), so their meta-clustering involved multiple iterations of the K-means 

procedure using the same input data and then assigning clusters via robust co-

membership across each iteration. Unlike Ardid and colleagues, we used agglomerative 

clustering, which delivers unique solutions because no optimization steps are involved. 
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However, we found that clustering outcomes were sensitive to the pre-processing 

pipeline, varying with discharge rate scaling procedure, measurement, and distance 

metric. Hence, our consensus clustering approach was conceived to assess cluster 

assignment consistency over pre-processing steps, not local solutions to clustering one 

set of pre-processed data.  

 

2.2.5 Assessing Number of Categories 

The number of categories in individual clustering procedures was selected using 

a lenient version of Tibshirani’s gap procedure (Tibshirani et al., 2001), which assesses 

the reduction in intra-cluster distance with respect to randomized null sets created with 

no intrinsic clustering. Valid splitting of clusters should have a greater than chance 

reduction in intra-cluster distance, assessed by the standard deviations of the intra-

cluster distance in the null sets, whereas excessive splitting should have a reduction in 

intra-cluster distance within the standard deviation of the null set. The strict version 

selects k categories as the first number of categories meeting this criterion. In the 

lenient version of this test, each occasion on which the above criterion is met was 

treated as potentially valid, and visual inspection was used to determine whether 

categorizations were either insufficient or excessive. In some cases, due to the difficulty 

in creating a reasonable null-set from physiological data, categories were selected 

based on the properties of the gap curve. When a reasonable null-set could not be 

determined, an inflection in the gap-curve was identified. This inflection identified the 

number of categories at which the reduction of intra-cluster distance was markedly less 

than that of the previous sequence of clusters.   
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For consensus categories and the composite distance matrix, the means of 

creating a null set in order to use Tibshirani’s gap procedure is unclear. Therefore, in 

such cases a pair of criteria for determining the maximum number of categories was 

set: no more than 10% of units were allowed to remain un-categorized, and each 

category required at least 10 members. The maximum number of categories that met 

both criteria was selected.  

 

2.2.6 Comparing Categorization Schemes 

The quality of alternative categorization schemes was assessed by calculating an 

index of member variability through the ratio of variances of the spike density values. 

Specifically, for each time point in the spike density functions, the within-category 

variance at that time point was divided by the variance of the category mean across 

time points. For each category, the average ratio was calculated, and then the grand 

average was taken. Because this ratio will decrease by definition as more categories 

are formed, a penalty for over-splitting was imposed by multiplying the grand average 

ratio by the square root of the number of categories. That is, for a given category the 

modulation strength was calculated as: 

𝑀𝑆𝑐 =
∑ (𝑋𝑐,𝑡 − 𝑋𝑐,.)

2
𝑡

𝑁𝑡
 

where c indexes category and t, time. Then, for each time point a ratio of variances 

(RoV) was calculated: 

𝑅𝑜𝑉𝑐,𝑡  =  

∑ (𝑋𝑖,𝑡 − 𝑋𝑐,𝑡)2
𝑖∊𝑐

𝑁𝑖
⁄

𝑀𝑆𝑐
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These are then combined by averaging the values for each category over time, then 

across categories, then applying a penalty for over-clustering proportional to the square 

root of the number of categories identified: 

𝑅𝑜𝑉 =  √𝑁𝑐

∑
∑ 𝑅𝑜𝑉𝑐,𝑡𝑡

𝑁𝑡
𝑐

𝑁𝑐
 

Small RoV values can be obtained either through large group-wise modulations over 

time or a lack of variability among the categories’ constituent members, whereas large 

RoV values are obtained through weak category-wise modulations or large variability. 

That is, smaller RoV values indicate better categorization, and vice versa. No 

benchmarks have been established for this index, so we interpret relative values in 

comparing the quality of two categorization schemes.  

The similarity of two categorization schemes was assessed by the Adjusted 

Rand Index (ARI) (Hubert and Arabie, 1985): 

𝐴𝑅𝐼 =  
∑ ∑ (𝑛𝑖𝑗

2
)𝑗𝑖 − [∑ (𝑎𝑖

2
)𝑖 ∑ (𝑏𝑗

2
)𝑗 ]/(𝑛

2
)

1
2 [∑ (𝑎𝑖

2
) + ∑ (𝑏𝑗

2
)𝑗𝑖 ] − [∑ (𝑎𝑖

2
) ∑ (𝑏𝑗

2
)𝑗𝑖 ]/(𝑛

2
)
 

Where ai and bj are the counts of category i or j in categorization procedure a or b, 

respectively, and ni,j is the number of observations in both category i in categorization 

scheme a and in category j in categorization scheme b. This quantity measures 

similarity of two data categorizations and is adjusted by chance co-categorization 

produced through the two schemes. To assess significance, each categorization was 

randomly shuffled separately, destroying internal structure between the two schemes, 

and ARI was recalculated. This was repeated 1000 times and p was the proportion of 

shuffled ARI that exceeded the non-shuffled ARI.  
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 To visualize the overlap, for each pairwise categorization combination a signed 

χ2 was calculated: 

𝑆𝑖𝑔𝑛𝑒𝑑 𝜒2
𝑖,𝑗

=
𝑛𝑖𝑗 − 𝑛(

𝑛𝑖

𝑛 ∗
𝑛𝑗

𝑛 )

𝑛(
𝑛𝑖

𝑛 ∗
𝑛𝑗

𝑛 )
 

That is, the difference between the observed pairwise count and the count expected by 

the marginal probabilities of each individual categorization scheme was calculated, then 

normalized by that expected value. Each category assignment was shuffled separately 

1000 times and the signed χ2 was recomputed for each combination and iteration. A 

bootstrapped z-score was then calculated for each category combination.  

 

2.2.7 Biophysical Characteristics  

Several biophysical characteristics were calculated for each neuron to assess the 

identification of consensus categories with measurements that were not included in the 

clustering process. Spike width of the average waveform of each neuron was calculated 

as the time between the initial trough of the action potential and the following peak, or 

the time between the initial peak and following trough for spikes with positive 

deflections. Coefficient of variation (Cv), which measures firing rate variability, and local 

coefficient of variation (Cv2), which measures Cv across smaller time periods, were 

calculated as described previously (Holt et al., 1996). Local variation (Lv), which is 

another metric of local firing rate variability, and revised local variation (LvR), which 

accounts for a 5 ms refractory period, were also calculated as previously (Shinomoto et 

al., 2003, 2009). Fano factor was calculated by computing spike counts in 100 ms bins, 

then dividing the spike count variance by the mean spike count (Purcell et al., 2012a). 
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Response field characteristics (maximum response, preferred location, and tuning 

width) were calculated by fitting a unimodal Gaussian function to the mean responses to 

the eight target locations. Response field characteristics were calculated separately for 

visual (50-150 ms after target presentation) and movement epochs (50 ms preceding 

saccade initiation). Response field values were excluded from analysis if the Gaussian 

tuning function wIas unable to fit well (r2 < 0.5). 

 

2.2.8 Cross Validation  

To verify the accuracy of the consensus clustering algorithm, a leave-one-out 

classification procedure was used. An SVD classifier with a linear kernel was trained. To 

preserve the consensus metrics, the basis for the classifier training set was the 

composite pairwise distance matrix. However, this matrix was under-specified, so 

principal components of the pairwise distance matrix were calculated. The classifier was 

trained for the first principal component, the first and second components, the first 

through third components, etc. for the first 100 principal components. The cumulative 

variance explained ranged from 43.4% to 93.4%. Due to the possible presence of 

groups with few members, this classifier was trained on all units but one, and the 

remaining unit was tested. No explicit regularization was performed when training the 

classifier. Only units that were assigned a category by the consensus clustering 

algorithm were included (n = 422/466, 90.6%). 

 

2.3 RESULTS 

This analysis is based on 466 units sampled in FEF from three macaque 

monkeys performing memory guided saccades in pursuit of other research aims. 
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2.3.1 Traditional Response Categorization 

First, units were categorized based on traditional criteria (Bruce & Goldberg, 

1985; Schall, 1991) and the canonical visual, movement, and visuomovement units 

were identified (Fig. 2.2). Of 466 neurons sampled, 210 (45.1% of sampled neurons, 

70.2% of presaccadic modulated neurons) were identified as visual, 16 (5.4%, 5.4%) 

were movement related, and 73 (15.7%, 24.4%) were visuomovement. The remainder 

exhibited other patterns of modulation. Earlier studies using different tasks than we 

used here reported more diversity among the three major groups. We will consider this 

in the Discussion. For now, this simpler 

categorization facilitates the motivation of this 

approach. 

While the average discharge rates of 

these categories were as expected, the SDF of 

the individual units categorized into each type 

exhibited considerable variation. For reference 

with subsequent analyses, the RoV value was 

50.89. Thus, while the traditional categorization 

methods captured general trends in the 

modulation patterns of FEF neurons, additional 

variation was present but unaccounted for. 

 

Figure 2.2. Traditional classification. The current 
sample was classified according to traditional 
criteria. a, Group mean SDFs for visual, 
visuomovement, movement, and unclassified 
neurons are depicted from top to bottom, with left 
panels aligned on stimulus onset and right panels 
aligned on saccade. Here and in subsequent 
figures, the categories of neurons are arranged on 
a visual-to-motor axis, and colors are assigned 
such that red indicates visual activity and no 
movement activity, green indicates both visual and 
movement activity, and blue indicates movement 
activity without visual activity. Black indicates 
unclassified neurons. Scale bars for response 
magnitude and time are shown at the bottom left. b, 
Individual spike density functions comprising each 
category. Scale bars for response magnitude and 
time are shown at the bottom left. 
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2.3.2 Cluster Pipeline 1: Z-Score Relative to Baseline, Mean Measurement, Euclidean 
Distance 

 To begin accounting for this excessive variability, a cluster analysis was 

performed on the SDFs that were z-scored based on the mean and standard deviation 

of the baseline firing rate. This captured the definition of visual and movement activity 

used above. However, the data-driven clustering procedure revealed functional 

categories that are similar in their firing rate modulations in more than just two epochs. 

Based on the mean firing rate in the six specific task epochs described in Methods, 

each unit was represented as a six-element vector. Based on Euclidean distance 

measures of pairwise distances eight categories of units, numbered 1a-8a to distinguish 

this set of results, were found (Fig. 2.3). Unlike the traditional categorization scheme, 

two categories of visual units were identified, identified as categories 1a and 4a (17/466 

(3.7%) and 11/466 (2.4%) respectively). Both categories had modest visual responses 

and no perisaccadic activity. They were differentiated by the presence or absence of 

anticipatory activity before the target appeared and by delay period activity. An 

additional category, category 5a (37/466 (7.9%)), had a robust visual response with 

weak presaccadic ramping. Four categories of units had both visual and presaccadic 

responses. Two of these categories had robust visual responses and intermediate 

presaccadic ramping: categories 2a and 7a (40/466 (5.2%) and 112/466 (24.0%) 

respectively). These categories were differentiated by the return to baseline after the 

saccade: category 7a had a typical slow return to baseline whereas category 2a returned 

to baseline almost immediately. The other two categories, 6a and 8a (135/466 (29.0%) 

and 16/466 (3.4%) respectively), had only modest firing rate modulation in both epochs 

and were distinguished by the presence (8a) or absence (6a) of anticipatory activity. The 
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final category, 3a (24/466 (5.2 %)), did not show 

firing rate modulation during the trial. This 

demonstrates that additional diversity is present 

in FEF firing patterns that has been unaccounted 

for in the traditional scheme. However, this 

clustering approach failed to identify purely 

movement neurons or post-saccadic neurons.  

The eight categories did not match the 

three traditional categories in FEF that should 

have been recovered through cluster analysis. 

However, similar to the traditional categorization 

scheme, these category means captured some 

general trends of the individual units comprising 

the categories. Variation was reduced (RoV = 

18.36 relative to 50.89 for the traditional classification), but considerable variation was 

still evident. This was particularly pronounced in categories 4a and 8a which were also 

much larger categories than the other six. Thus, these categories seem to be “catch-all” 

categories. Other categories seem to be nearly identical, though are clearly seen as 

different groups in the dendrogram (e.g., 2a and 5a). The dendrogram in Fig. 2.3a also 

shows that units did not exhibit clear clustering. Instead, it appears as though small 

groups or individual units are progressively grouped together such that, at the clustering 

step when eight categories meet the membership criterion, 74 of 466 (16%) of units 

were still uncategorized. That is, for the number of categories identified via Tibshirani’s 

Figure 2.3. Cluster pipeline 1. Neurons were 
categorized via cluster analysis scaling by the z 
score relative to the baseline, mean measurement, 
and Euclidean distance. a, The dendrogram 
resulting from cluster pipeline 1 shows the eight 
identified categories. Horizontal distance indicates 
pairwise similarity, with individual neurons on the 
right and full agglomeration on the left. Colors 
indicate categories and are arbitrarily assigned on a 
visual-to-motor axis as in Figure 3. The break at the 
top left indicates that the final agglomeration takes 
place at a point that prevents the visibility of 
categories. b, Category means are plotted aligned 
on stimulus onset and saccade. Each category was 
given an arbitrary numerical identifier for 
convenience and are ordered according to their 
position in the dendrogram. Scale bars are shown 
at the lower left. c, Individual neurons comprising 
each category aligned on stimulus and saccade. 
Scale bars are shown at the lower left. 
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gap procedure, 16% of neurons were so dissimilar to each other and the eight 

categories that they could not be placed in any of the eight categories, or form a ninth 

separately. This may be so because the variation of the SDF of the identified units was 

high (mean skewness = 1.35). Taken together, these considerations indicate that this 

clustering procedure is insufficient.  

 

2.3.3 Cluster Pipeline 2: Non-scaled SDF, Mean Measurement, Correlation Distance 

To account for more of the excessive variability, a cluster analysis using a 

correlation distance measurement was performed on the non-normalized data. This 

approach captures relative rather than absolute changes in firing rate. That is, if two 

units were similarly modulated but have different firing rates, this procedure treated 

them as members of the same category. In other words, this approach emphasized the 

pattern of modulation of FEF neurons rather than the absolute discharge rate.  

This procedure identified six categories, 1b-6b (Fig. 2.4). These categories did not 

match the three traditional categories; movement neurons are missing. Instead, each of 

the six identified categories demonstrated modulation following visual stimulation to 

different degrees. Two of these categories, 1b 

(123/466) and 6b (122/466), showed visual 

modulation only, and were differentiated by the 

baseline firing rate and degree of visual 

modulation. Three categories had both visual 

and movement-related activity: 2b (28/466), 4b 

(44/466), and 5b (24/466). Category 2b had 

modest visual modulation and no delay activity; 

Figure 2.4. Cluster pipeline 2. Neurons were 
categorized via cluster pipeline using no scaling 
procedure, mean measurement, and correlation 
distance. Conventions for a through c are as in 
Figure 2.3. 
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category 4b had modest visual activity and some delay activity, and category 5b had 

robust visual modulation, prominent delay activity and presaccadic ramping, but its 

activity fell off dramatically at the time of the saccade.  The final category, 3b (121/466), 

had modest visual modulation and a sharp post-saccadic transient. Four of 466 neurons 

were placed in no category. 

Considerable variability within categories remained and in fact increased relative 

to cluster analysis 1 (RoV = 29.70 as opposed to 18.36), though the category means did 

capture category trends. This variability may be due to the skewed firing rates (mean 

skewness: 2.09), which allowed few units in one category to drive the modulations 

apparent in the category means. For example, the inclusion of some units with large 

visual responses and high firing rates in category 2b was a driving factor in the modest 

visual activity seen in the category mean. Thus, both the z-score relative to baseline 

and un-scaled firing rates may be ineffective for comparing across units, even though 

they are useful for assessing within-unit modulation. However, the appearance of the 

dendrogram for this clustering outcome should be noted (Fig. 2.4a). Unlike that from 

pipeline 1, a more sensible structure is apparent when this combination of clustering 

parameters was used; fewer neurons are non-classified and the categories visibly self-

segregate. 

 

2.3.4 Cluster Pipeline 3:  Z-Score Relative to Whole Trial, Mean and Slope 
Measurement, Correlation Distance 

To account for more of the variability in modulation patterns, a different scaling 

procedure was used: Z-scoring across the entire trial and measuring the SDF with both 

the means of the SDF and the slopes during the relevant epochs were considered. The 
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agglomerative clustering algorithm identified 

five categories, 1c-5c (Fig. 2.5). Three of these 

categories had visual activity only: 1c 

(110/466), 2c (124/466), and 4c (124/466). 

Category 4c had pronounced delay activity. 

The other two were distinguished by the time 

of peak visual response, with the visual 

activity of category 1c peaking earlier and that 

of category 2c, later. Category 3c (50/466) had robust visual and presaccadic modulation 

but did not have delay activity. The final category 5c (58/466) showed robust 

presaccadic ramping and only modest, if any, visual activity. It should be noted that the 

presaccadic ramping activity in category 5c peaked after the saccade and showed a 

slow reduction of firing rate back to baseline, whereas the category with both visual and 

saccadic responses had a peak perisaccadic activity at the time of the saccade followed 

by a sharp return to baseline, but this sharp return is not as pronounced as the “clipped” 

movement neurons in category 5b. This indicates that the additional diversity evident in 

visual inspection of discharge rate modulation patterns is tangible and identifiable. 

Further, of the three cluster pipelines, pipeline 3 produced the classification most similar 

to the traditional. Visual and visuomovement categories were identified as well as a 

putative pure movement group (category 5c).  

The range of values through this scaling was smaller and is less skewed (mean 

skewness: 0.73), suggesting that this scaling method provided a more equitable cross-

unit comparison. As with analysis 2, these categories are apparent in the dendrogram 

Figure 2.5. Cluster pipeline 3. Neurons were categorized 
via cluster analysis scaling by the z score relative to the 
whole trial, mean and slope measurement, and correlation 
distance.  Conventions for a through c as in Figure 2.3. 
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structure, though some additional heterogeneity can be observed, particularly among 

categories 1c and 2c. This may explain, in their particular cases, the seeming similarity 

between the two; it could be that splitting further would reveal additional heterogeneity, 

and in the case of the category 3c, further splitting could reveal a second 

visuomovement group without “clipped” activity as well as a pure movement category. 

However it should be noted that unlike cluster analyses 1 and 2, the category means 

were much more representative of the members (RoV = 5.19 as opposed to 18.36 and 

29.70 for cluster pipelines 1 and 2, respectively). 

 

2.3.5 Consensus Clustering 

We now address the problem of individual units being members of different 

categories following different analysis paths (Fig. 2.6). This occurs because different 

pre-processing pipelines resulted in different distance matrices upon which the 

agglomerative clustering algorithm operates. Consequently, a given pair of units could 

be members of the same category following one pipeline but members of different 

categories following another pipeline. For example, all four individual units shown in Fig. 

2.6 belong to category 2c, but only three belong to category 6b; the unit on the top-right 

belongs instead to category 1b. With no cluster pipeline being more confidently 

motivated or more certainly correct than another, should all four units be considered 

members of the same category or not? Nevertheless, assuming the existence of 

ground-truth categories, consistent with anatomical constraints, units that are actually 

members of the same ground-truth category should have small pair-wise distances 

regardless of scaling or clustering procedure. Likewise, units that are members of 
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different ground-truth categories would have small pair-wise distances only as an 

artifact of particular measurement parameters and clustering algorithm.   

To address this fundamental problem, we employed a second-order clustering 

procedure known as “consensus clustering” (Goder & Filkov, 2008; Strehl & Ghosh, 

2003). We created a composite distance matrix by z-scoring individual distance 

matrices from all of the pre-processing pipelines (Fig. 2.1f) and then calculated the 

median distance across all pre-processing pipelines. This composite distance metric 

was used to identify units that were consistently similar to one another across pre-

processing pipelines and clustering algorithms. The agglomerative clustering algorithm 

Figure 2.6. Comparison of analysis pipelines. Left: Dendrograms from cluster pipelines 2 (right) and 3 (left). They are shown 
side-by-side to highlight the similarities and differences in the respect categories. The dendrogram for cluster pipeline 3 is identical 
to the dendrogram in this figure. The dendrogram for cluster pipeline 2 shows the same results as in Figure 5; however, the vertical 
arrangement was reordered so that common units are horizontally aligned in both dendrograms. Where common colors are 
horizontally aligned, units were assigned to the same category. Where different colors are horizontally aligned, units were assigned 
to different categories. Although horizontal alignment of some dendrogram elements is evident, the disagreement between the two 
dendrograms is more prominent. The extent and nature of this disagreement is illustrated in the expanded view of the dendrogram 
on the right. SDFs of four representative units are shown. Through analysis of pipeline 3, all four units were placed in category 2c, 
which characterized by a pronounced visual response and weak perisaccadic suppression (left dendrogram). Through analysis of 
pipeline 2, three of the units were placed in category 6b, which is characterized by a pronounced visual response and weak 
perisaccadic suppression (red, right dendrogram), whereas the unit shown at the upper right was placed in category 1b, which is 
characterized by a weak visual response and no perisaccadic modulation (blue, right dendrogram). Thus, the two analysis pipelines 
provide overlapping, but far from identical, categorizations. Which categorization is correct is uncertain. 
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was applied to this distance matrix to identify robust categories of units superordinate to 

any individual cluster analysis. Clusters were continually split until either of two 

membership criteria were no longer satisfied: (1) minimum number of units per cluster 

and (2) maximum proportion of unclustered units.  

 Consensus clustering identified 10 categories, clearly distinguished in the 

dendrogram and evident in the distance matrix (Fig. 2.7). Of 466 neurons 43 (9.2%) 

were not placed in any category. These categories were robust and consistent (RoV: 

3.91). Even with the penalty for over-clustering in the RoV metric, consensus clusters 

account for more of the variability in the neural data than the classification produced by 

the best individual classification. 

 Categories with visual responses only. We identified two categories of 

neurons that had visual, but not saccade-related, activity. These categories, 1con 

(74/466) and 2con (105/466), showed flat baseline activity and a sharp visual transient. 

The time of peak firing rate differentiated these two categories, with mean peak 

latencies of 74 ms (1con) and 136 ms (2con). Also, category 2con had persistent delay 

activity until the saccade. 

Categories with visual and saccade-related facilitation. We identified five 

categories of neurons with both visual and pre-saccadic increases in firing rate. Two of 

these categories, 3con (21/466) and 4con (25/466), showed marked increases in firing 

rates following visual stimulation and were distinguished by the time of peak visual 

activity (mean values of 70 ms and 161 ms respectively). They were also distinguished 

by the time and character of the pre-saccadic ramping. The firing rate of category 3con 

neurons peaked at the time of the saccade and quickly returned to baseline, whereas 
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the firing rate of category 4con peaked after the saccade and returned to baseline more 

slowly. Two of the three remaining categories, 6con (35/466) and 7con (64/466), also had 

clipped movement activity with late, weak visual responses. These two categories are 

Figure 2.7. Consensus clusters. Consensus clusters were identified by creating a composite distance matrix and applying 
the agglomerative clustering procedure to this matrix. a, The resulting dendrogram is shown abutting the composite 
distance matrix. Colors in the dendrogram are assigned as in Figures 3–6. Color in the distance matrix is indicative of 
composite similarity. Warm colors (low composite z score) indicate consistently similar units, whereas cool colors indicate 
consistently different units (high composite z score). b, The category mean SDFs (columns 1 and 3) and the individual 
SDFs (columns 2 and 4)  comprising them are shown aligned on stimulus onset (left) and saccade (right). Scale bars are 
shown at the lower left of each column. Arbitrary category labels were assigned for convenience. 
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differentiated by the absence (6con) or presence (7con) of delay period activity. The final 

category, having both visual and movement activity, 8con (33/466), showed only modest 

visual activity and may be more accurately described as a pure movement category. In 

either case, the movement-related activity peaked just after the saccade but returned 

slowly to baseline. An additional category, 5con (23/466), was not movement-related per 

se, but exhibited a strong post-saccadic transient with a modest, early visual response.  

 Categories with response attenuation. Two categories of units showed distinct 

decreases in firing rate. The first of these, 9con (11/466), was unique in having an “off” 

response to visual stimulation, but it also showed clipped presaccadic ramping that 

peaked just before the saccade. This provides a fruitful contrast with the final 

visuomovement category, 8con, which showed only a modest increase in firing rate but 

robust, un-clipped perisaccadic ramping. This distinction may be a useful criterion in 

future studies examining the differences in stimulus-driven or goal-directed saccades. 

The second category with an off response, 10con (31/466), showed little or no visual 

modulation, but was sharply inhibited around the time of the saccade, characteristic of 

fixation neurons.  

Relation to other functional characteristics. To preclude that these categories 

are accidental and arbitrary, we quantified several other characteristics of each neuron. 

These included typical measures such as response field size and center location, 

baseline discharge rate, and maximal response for both the visual and motor periods of 

modulation. These were supplemented by the following discharge variability metrics: 

Fano factor, coefficient of variation (CV), local coefficient of variation (CV2), local 
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variation (LV), and revised local variation accounting for a 5 ms refractory period (LVR). 

Finally, spike width was also measured.  

First, omnibus Kruskal-Wallis tests were performed for each of these factors. 

Factors with significant differences include visual response field width (χ2(9,274) = 

18.300; p = 0.032), maximum visual response (χ2(9,267) = 20.881; p = 0.013), and 

baseline firing rate (χ2(9,401) = 28.600; p = 0.001).  

Second, to take a more targeted approach, categories 1con and 2con were 

considered visual; categories 3con, 4con, 6con, and 7con were considered visuomovement; 

and categories 8con and 9con were considered movement-related. The analyses were 

repeated separately for these sets of consensus categories. Among the visual 

categories, receptive field width was significantly larger for category 2con (60.6º ± 31) 

than for category 1con (52.4º ± 34.8) (χ2(1,136) = 4.568; p = 0.033). For movement-

related categories, category 8con had a significantly wider spikes (266.0 μs ± 122.5) than 

category 9con (173.6 μs ± 67.2) (χ2(1,42) = 5.625; p = 0.018). No significant differences 

or trends were identified among the visuomotor categories. Thus, these consensus 

clusters identify differences in neuron types, even when the factors for which differences 

were identified were not included as parameters for clustering.  

 

2.3.6 Cross-validation Analysis 

Clustering analyses can be problematic because the algorithms involved will 

yield as many categories as are requested from any data sample, regardless of the 

underlying category structure. The use of a minimum membership criterion and a 

maximum uncategorized percentage criterion aim to mitigate this, but the contribution of 

these criteria to eliminating the problem of over-splitting the categories cannot be 
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directly quantified. Instead, to 

quantitatively assess the quality of 

the categorization, a classification 

analysis was used. This analysis 

uses a leave-one-out cross-

validation approach in which a 

classifier is trained on the 

consensus category membership 

of all recorded units except one, 

then assigns that remaining unit to 

one of the consensus categories. 

To prevent under-specifying the 

classifier, principal components of 

the composite consensus matrix 

were used (see Methods). 

Classification accuracy is assessed 

by the percentage of units that, 

when left out of the training set, are 

assigned to the same category as 

that specified by the full consensus 

clustering algorithm. 

Peak accuracy was 86.7%, 

which was achieved when the 

Figure 2.8. Cross-validation analysis. Leave-one-out cross-
validation was performed separately for 1 through 100 principal 
components of the composite distance matrix. A singular value 
decomposition classifier (SVD) classifier with a linear kernel was 
trained on the principal components of all but one neuron, and that 
remaining neuron was categorized. a, Classifier accuracy as a 
function of cumulative principal components, plotted up to 100 
principal components (main plot) and for first 10 (inset). Peak 
accuracy (86.7%; chance accuracy was 10%) was achieved using 
eight principal components, which corresponds to a plateau of 
variance explained by additional components. b, Superimposed 
mean SDFs for pairs of categories that were most frequently 
misclassified, labeled as (classifier category, consensus category). 
Although the category SDFs clearly differ, the source of 
misclassification is apparent through particular common features 
between pairs. c, Matrix showing the incidence and nature of 
misclassifications. Matrix rows distinguish the consensus algorithm 
categories; numbers correspond to consensus cluster spike density 
functions. Matrix columns distinguish the classifier categories. If the 
classifier were perfectly accurate, then the matrix would be entirely 
black, indicating no misclassification. The black cells along the unity 
diagonal (classifier column C _ consensus category row R, indicated 
by dashed line) are the 86.7% of neurons for which the classifier 
correctly identified the consensus algorithm category; they are not 
misclassified. Black cells off of the unity diagonal (C _ R) indicate 
that the classifier did not misclassify neurons in row R as belonging 
to column C. Colored cells off of the unity diagonal indicate that the 
classifier misclassified neurons in row R as belonging to column C. 
The color map shows percentages of misclassified neurons relative 
to the count of consensus category R. Misclassified neurons can be 
identified, for example, as an adjacent category (C_ R _ 1) or two 
categories away (C _ R _ 2). The percentage of total 
misclassifications that were assigned to C _ R _ n are shown to the 
lower right.  Misclassifications are most common for adjacent 
categories (C _ R _ 1) and are generally progressively less common 
with greater category separation. 
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classifier was trained with eight principal components after which cumulative variance 

explained remained on a plateau (Fig. 2.8a). The units misclassified by the classifier 

were identified. The percentage of units from each consensus category (Fig. 2.8b) 

misclassified in each classifier category is depicted as a matrix of consensus categories 

rows and classifier prediction columns (Fig. 2.8c). Generally, mis-classified units were 

found in adjacent categories, with misclassifications becoming less frequent as the 

categories become further apart. Given the purposeful ordering of these units on a 

visual-motor spectrum, this is not surprising. The highest percentage of mis-classified 

units (9.1%) was in category 9con, which also has the fewest members according to the 

consensus clustering algorithm.  

Category pairs with frequent misclassifications are superimposed in Fig. 2.8e. 

Categories 6con and 7con both show robust movement activity and similar visual activity. 

Categories 7con and 8con both have weak visual activity as well as robust movement 

activity, although with different timing. Categories 4con and 8con have nearly identical 

late-peaking movement activity. Categories 7con and 9con also have highly similar 

movement-related activity. Categories 8con and 9con are the two categories of nearly 

pure movement activity. Finally, categories 2con and 10con both have suppressed 

responses at the time of saccade. Overall, though there are differences between these 

pairs of categories, there are features that explain why misclassifications could be made 

between these pairs.  

To confirm that the peak classification accuracy was indeed greater than the 

nominal chance value of 10%, the above procedure was used with the category 

assignments randomly shuffled. For these shuffled assignments, the first eight principal 
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components were used to train the classifier because this corresponds to the peak in 

classifier accuracy. Including additional components decreases accuracy, most likely 

due to over-fitting. Shuffling was performed 1000 times. No randomized classification 

accuracy exceeded the empirical classification accuracy (mean = 8.2%, SD = 3.7%, 

range = 1.0% - 21.6%). This indicates that the consensus clustering algorithm 

categorizes neurons in a highly internally-consistent manner. The robust re-

classification of the original set also allows for new data to be categorized according to 

the present consensus categories. 

 

2.4 DISCUSSION 

We applied a consensus clustering technique and identified ten robust functional 

categories in FEF based on modulation of discharge rates alone. This categorization 

includes but exceeds the traditional categories. We will discuss the relationship of the 

new functional categories to the traditional categorization and possible functional and 

anatomical implications of these consensus clusters. We will conclude by considering 

the limitations and extensions of these consensus clustering techniques. 

 

2.4.1 Correspondence with Traditional Functional Categories 

 To compare the traditional and this new categorization, we assessed their 

overlap by calculating the proportion of consensus clusters identified as visual, 

movement, visuomovement, or unclassified. The traditional scheme and our new 

consensus clustering procedure show significant overlap (Fig. 2.9; ARI = 0.0931, p < 

0.001). Thus, our procedure complements the traditional categorization. In fact, 

although not sought specifically, both post-saccadic and fixation neurons were identified 
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via consensus clustering. This unsupervised discovery increases confidence that 

consensus clustering identifies natural neural categories. 

We now compare the proportions of different categories to previous surveys. 

Bruce and Goldberg (1985) identified 40% of their sample as visually related, 40% 

visuomovement, and 20% movement only, not including post-saccadic and fixation 

neurons. Post-saccadic and fixation neurons account for 17% and 7% of their total 

sample, respectively. Schall (1991) identified 17% of the sample as visual, 41% as 

visuomovement, 22% movement, and 13% post-saccadic. When using the traditional 

categorization, 45% of the current sample were visual, 16% were visuomovement, and 

only 3% were movement. This proportion of visual neurons with respect to the whole 

sample is consistent with Bruce and Goldberg (1985) but not with Schall (1991). The 

proportions of neurons are more similar to earlier descriptions when consensus 

categories are considered with 38% visual, 31% visuomovement, 9% movement, 7% 

fixation, and 5% post-saccadic. Still, visuomovement, movement, and post-saccadic 

Figure 2.9. Relation to traditional 
classification. The consensus cluster 
assignments were compared with traditional 
classifications. The consensus clusters are 
depicted on the vertical axis, and traditional 
classification is depicted on the horizontal axis. 
The color in the heat map indicates the 
prevalence of neurons being classified in a 
given combination. For a given cell in the 
matrix, a warm color indicates that more 
neurons were assigned to both that consensus 
cluster and that traditional classification than 
expected by chance, green indicates that the 
expected number of neurons were assigned to 
both categories, and a cool color indicates that 
fewer than expected neurons were assigned to 
both categories. Cluster 1con and 2 con neurons 
were more often identified as visual cells and 
were rarely uncategorized. Cluster 3 con, 4 con, 
and 7 con neurons were often identified as 
visuomovement cells. Cluster 8 con neurons 
were more often identified as movement cells 
and not visual cells. Cluster 9 con and 10 con 

neurons were generally not categorized, but 
when they were they were not classified as 
visual cells. 
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neurons are still underrepresented in the current relative to previous studies. This 

under-representation of movement-related neurons seems curious, for these are 

thought to be large pyramidal neurons in layer 5 (Fries, 1984; Segraves & Goldberg, 

1987; Sommer & Wurtz, 2000), which should be easier to isolate. Similarly, fixation 

neurons are also layer 5 pyramidal cells (Izawa & Suzuki, 2014), but are instead found 

in the same proportion as Bruce and Goldberg (1985). Perhaps the linear electrode 

array failed to sample layer 5 neurons. Future reconstructions of the recording sites will 

determine whether laminar differences can explain the differences in proportions of 

neurons. 

 Another possible explanation for differences in category proportions concerns the 

nature of the electrodes. The neural spiking analyzed for this study was obtained with 

linear electrode arrays (Plexon U-probe and Neuronexus vector probe). The studies 

cited above sampled neurons with a variety of sharp electrodes including glass-coated 

platinum-iridium and tungsten. The differential sampling characteristics of various 

electrodes in FEF requires further investigation. 

A third possibility involves the eccentricity represented by the neuron samples 

across studies. The central visual field is represented laterally and peripheral field 

medially in FEF and rostrally adjacent cortex (Suzuki & Azuma, 1983), and RF size 

increases with eccentricity (Mayo et al., 2015). Lateral and medial FEF have 

qualitatively and quantitatively different patterns of connectivity (Babapoor-Farrokhran et 

al., 2013; Markov et al., 2014; Schall et al., 1995b). Convergence from the dorsal and 

ventral processing streams occurs in lateral but not in medial FEF. Lateral FEF, which is 

responsible for generating short saccades, receives visual afferents from the foveal 
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representation in retinotopically organized areas, from areas that represent central 

vision in inferotemporal cortex and from other areas having no retinotopic order. In 

contrast, medial FEF, which is responsible for generating longer saccades, is innervated 

by the peripheral representation of retinotopically organized areas, from areas that 

emphasize peripheral vision or are multimodal and from other areas that have no 

retinotopic order or are auditory. Hence, neural spiking samples from lateral and medial 

FEF are likely to differ in a variety of as yet uncertain ways. Here, all stimuli were placed 

at 8º eccentricity, whereas Bruce and Goldberg (1985) tested locations ranging from 5º 

and 45º, and Schall (1991) used 15º horizontal and 8º vertical. Systematic mapping 

across eccentricities is needed to resolve this question. 

A fourth possibility involves the nature of tasks and reward contingencies. As 

noted above, the particular memory-guided saccade task used here is not identical to 

tasks used in previous studies. Factors like stimulus luminance, chromaticity and 

contrast will need to be explored systematically (Krock & Moore, 2016). Moreover, FEF 

neurons are sensitive to reward contingency (Roesch & Olson, 2003) and other 

cognitive processes (Ferrera et al., 2009; Middlebrooks & Sommer, 2012; Teichert et 

al., 2014). 

Functional differences can arise from structural differences in connectivity 

(Markov et al., 2014; Schall et al., 1995b), in morphology (e.g., Lund & Lewis, 1993), 

and in biophysical properties (e.g., Casale et al., 2015; Connors & Gutnick, 1990; 

Krimer et al., 2005; McCormick et al., 1985; Rocco et al., 2016; Vigneswaran et al., 

2011), although the relative contributions of these factors are unknown in FEF. Indeed, 

using a related consensus clustering approach on physiological measures from monkey 
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prefrontal cortex, Ardid et al. (2015) reported four broad spiking, putative pyramidal cell 

classes and three narrow spiking, putative inhibitory cell classes, which were 

distinguished by sparse, bursting, or regular spike trains. Using a related agglomerative 

clustering approach, Zaitsev et al. (2012) also reported four classes of neurons visually 

identified as pyramidal cells in vitro that were also distinguished by sparse, bursting, or 

regular spike trains. These authors also identified three classes of inhibitory 

interneurons identified morphologically in vitro that were distinguished by firing rate 

variability measures, and these classes were each associated with calcium binding 

proteins parvalbumin, calbindin, or calretinin. 

In this sample we found no significant differences in measures of firing rate 

variability across the consensus categories. However, spike width differed between the 

two movement-related categories, indicating some differences in biophysical 

characteristics. Curiously, spike width did not differ between consensus clusters 

identified as visual, movement-related, and visuomovement, which is at odds with 

previous studies (e.g., Cohen et al., 2009d; Ding & Gold, 2012; Thiele et al., 2016). 

Further investigation is necessary to determine the reason for this difference. To that 

end, the consensus clustering method can be extended to incorporate biophysical 

characteristics such as spike polarity and phase (Gold et al., 2009), spike width (Cohen 

et al., 2009d; Vigneswaran et al., 2011), spike timing patterns (Cohen et al., 2009b; Holt 

et al., 1996; Nawrot et al., 2008; Shinomoto et al., 2009), and Fano factor (Purcell, 

Heitz, et al., 2012b). 
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2.4.2 Possible Functional Implications 

Most of the consensus categories where characterized by pronounced peri-

saccadic activity. Many such neurons also had pronounced visual responses (3con, 4con, 

5con, 6con, 7con) and will be discussed below. Categories 8con and 9con were distinguished 

by (a) weaker modulation of opposite signs after the target appeared, (b) time of peak 

saccade-related activity, (c) duration of activity after the saccade, and (d) spike width. 

Both patterns of modulation have been reported previously in FEF (e.g., Bruce & 

Goldberg, 1985; Everling & Munoz, 2000; Hanes & Schall, 1996; Lawrence et al., 2005; 

Sommer & Wurtz, 2000). The peak activity of category 9con neurons coincides with 

saccade initiation, and discharge rate is reset by saccade termination. Such clipped 

neurons have been reported in FEF by one study (Hanes et al., 1995) but not another 

(Segraves & Park, 1993). Clipped movement neurons have been associated with 

saccade dynamics in superior colliculus (Waitzman et al., 1991). Confirming the 

presence of clipped movement neurons in FEF would substantiate the hypothesis that 

FEF contributes to the dynamics of saccade production (e.g., Dias & Segraves, 1999; 

Peel et al., 2014; Schiller et al., 1987). The activity of category 8con has a more sluggish 

relationship to saccade timing, peaking after the saccade and resetting well after 

saccade termination. These properties are inconsistent with a direct role in saccade 

production. Further investigation with other task conditions is necessary. For example, 

another approach to determining whether individual neurons are involved in controlling 

saccade initiation involves testing with the saccade countermanding task (Hanes et al., 

1998; cf. Costello et al., 2013; Murthy et al., 2009). Alternatively, distinct functions may 

be revealed when planning of saccade sequences (Phillips & Segraves, 2010). 
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Relative to category 8con, category 9con neurons had significantly narrower spike 

widths. This does not entail, necessarily, that 9con neurons are inhibitory interneurons.  

In primary motor cortex some identified corticospinal pyramidal neurons have narrow 

spike widths (Vigneswaran et al., 2011), presumably because these neurons have a fast 

potassium channel Kv3.1b subunit (Ichinohe et al., 2004). If corticotectal and 

corticopontine neurons are analogous to corticospinal, then spike width may be 

misleading in identification of projection neurons. However, whether layer 5 neurons in 

FEF stain positively for fast potassium channels is unknown. 

The analysis also identified a consensus cluster with characteristics of fixation 

neurons (10con). These neurons seem involved in the active maintenance of fixation and 

may release inhibition on presaccadic movement neurons to produce saccades (Hanes 

et al., 1998; Segraves & Goldberg, 1987). The cluster exhibited a modest visual 

response. If these neurons do indeed inhibit presaccadic movement neurons, then this 

could be the origin of the brief reduction of discharge rate characteristic of the 

movement neuron consensus cluster 9con. Greater diversity of this category may be 

found if tested with pursuit eye movements (Izawa & Suzuki, 2014). 

Most of the consensus categories where characterized by pronounced visual 

responses. This is consistent with previous descriptions of FEF neural properties (e.g., 

Bruce & Goldberg, 1985; Mohler et al., 1973; Schall, 1991). Two consensus clusters 

were distinguished by strong visual responses and no modulation associated with 

saccades (1con and 2con). Category 1con had an earlier peak response and no delay 

activity whereas category 2con had a later peak response and clear activity during the 

memory delay. The receptive fields of Category 1con were narrower than those of 
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category 2con. Diversity of FEF visual responses along multiple dimensions is well 

known in the early visual pathway. For example, the well-known distinction of transient 

and phasic visual responses (Cleland et al., 1971) is evident in FEF (e.g., Sato et al., 

2001). Diversity of visual responses likely arises principally from diversity of 

connectivity. As noted above, FEF is reciprocally connected with an unusually large 

number of extrastriate visual cortical areas, and pronounced differences in connectivity 

distinguish medial and lateral FEF (Babapoor-Farrokhran et al., 2013; Markov et al., 

2014; Schall et al., 1995b). Subcortical afferents can also influence visual responses; 

neurons in FEF that are activated orthodromically by SC stimulation have visual and 

saccade-related responses (Sommer & Wurtz, 1998). The extent to which visual 

response properties vary with cortical and subcortical connectivity is unresolved. The 

diversity of visual responses in FEF also relates to the variety of cortical areas in which 

FEF axons terminate. For example, V4 is influenced by visual neurons in L2/3 of FEF 

(Gregoriou et al., 2012; Noudoost & Moore, 2011; Pouget et al., 2009). However, FEF 

neurons projecting to V4 receive input from area 46, whereas the FEF neurons 

projecting to MT receive input from area 46 plus SEF (Ninomiya et al., 2012). Thus, 

intracortical projections from FEF convey different signals. How much such signals vary 

across cortical targets of FEF efferents is unknown. 

Most of the categories with visual responses were also characterized by 

modulation associated with saccade production. These are typically referred to as 

visuomovement neurons. While these data support no conclusions about the unique 

functional contributions of the four visuomovement categories, several characteristics 

warrant discussion. First, categories 3con and 4con have noticeably stronger visual 
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responses than categories 6con and 7con. Perhaps categories 3con and 4con occupy an 

earlier position in the visuomotor transformation. The saccade-related activity of these 

two categories is similar, so they may contribute equally to the production of saccades. 

However, the timing of the peak visual responses differs in a manner similar to 

categories 1con and 2con. The earlier peak activity of category 3con is consistent with 

receiving magnocellular pathway inputs, perhaps via category 1con neurons. Meanwhile, 

the later peak activity of category 4con is consistent with receiving parvocellular pathway 

inputs directly or via category 2con neurons. 

Categories 6con and 7con have similar visual responses but are distinguished by 

the magnitude of delay activity and the return to baseline following saccade. Category 

6con activity returns to baseline quickly after the saccade, indicating that this category 

may be more intimately involved in saccade dynamics than category 7con. This is 

consistent with the higher delay activity in category 7con, which may indicate that 

category 7con is primarily involved in maintaining the stimulus location in working 

memory and therefore occupies an executive role as opposed to a direct role in 

saccade production. Of course, the lack of corroborating differences in other factors 

including tuning characteristics, spike timing, and spike widths may indicate that these 

categories are an excessive parsing of one continuum or that the measures are 

insensitive, but additional work is warranted to determine whether this is the case. For 

example, during visual search tasks, all visually responsive neurons respond 

equivalently to a target or a distractor in the receptive field (e.g., Schall et al. 1995). 

Visual neurons with transient responses do not contribute to selection of the target from 

distractors, but visually responsive neurons with prolonged activity do select the target 
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of a search array when saccades are accurate (14% transient and 86% sustained; 

Thompson et al. 1996). When arbitrary stimulus-response mapping is required after 

visual search, many visually responsive neurons select the attended stimuli, while other 

select only the endpoint of the saccade (Sato & Schall, 2003). Further research is 

needed with this task and these categorization methods to determine how this 

previously observed distinction maps onto these new functional categories. When 

monkeys perform visual search for a target among distractors of fixed features, 

approximately 50% of visually responsive neurons in FEF exhibit feature selective from 

the initial response (Bichot et al., 1996). The same distinction may also explain feature-

based attention differences identified in FEF neurons in other studies (e.g., Bichot & 

Schall, 2002; Gregoriou et al., 2009; Zhou & Desimone, 2011). Other distinctions 

among FEF neuron categories have been described in perceptual choice (Ding & Gold, 

2012). Finally, the relationship of the dynamics of visuomovement and movement 

neurons to saccade initiation can be distinguished using the saccade countermanding 

task (Ray et al., 2009).  

Further insight may be gained by testing how the different categories contribute 

to eye-head coordination and visual-motor reference frame updating (Sajad et al., 2015, 

2016). FEF neurons have also been implicated in remapping and transsaccadic stability 

(Crapse & Sommer, 2008, 2012; Shin & Sommer, 2012; Umeno & Goldberg, 1997). 

These operations require information about the just-executed saccade. A single 

consensus cluster of post-saccadic neurons was identified (5con). These neurons also 

had visual responses. Previous research has suggested that this type of neuron can 

support remapping and trans-saccadic stability by signaling the vector of the saccade 
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that was just executed (Goldberg & Bruce, 1990). To produce sequences of saccades 

without visual guidance, the vector of the most recent saccade would be subtracted 

from the vector from the initial fixation point to the location of the second stimulus to 

account for the location of the second stimulus relative to the new fixation point rather 

than the point from which the location was initially encoded.  

Antidromic stimulation studies agree that movement and fixation neurons project 

to the SC and brainstem but they disagree about the projection of visual and visuo-

movement neurons (Segraves & Goldberg, 1987; Sommer & Wurtz, 2000). Perhaps the 

disagreement may be resolved by considering more refined categories of neurons. For 

example, perhaps only visuomovement neurons belonging to categories 6con or 7con with 

modest visual response, relative to categories 3con and 4con, project from FEF to SC.  

 

2.4.3 Limitations and Extensions of Clustering Procedures 

 Each of the individual clustering procedures is limited by the distance measure 

used to calculate pairwise similarity, by the measurement of the responses, and by the 

quality of the discharge rate samples. Different distance measures emphasize different 

aspects of the variability across units. Whereas Euclidean distance emphasizes 

similarity in absolute discharge rates, correlation distance emphasizes similarity in the 

pattern of modulation of discharge rates. Different measurements of the variation of 

discharge rate emphasize different aspects of the variability across units. Measuring the 

mean firing rate in different epochs captures absolute discharge rates but ignores 

dynamics. Measuring the slopes of the SDF in different epochs ignores absolute 

discharge rates. However, measuring both the means and slopes across many epochs 
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or, indeed, using the SDF from the entire trial can expose the clustering algorithm to 

excessive incidental variation.  

Different approaches to scaling the SDF across units emphasize different 

aspects of the variability across units. As shown in Figs. 2.3-2.5, different methods of 

scaling the SDF across units can result in category means that do not accurately 

represent the individuals comprising those categories. Naturally, different scaling 

procedures emphasize useful information about the units. For example, z-scoring the 

SDF based on the pre-stimulus baseline activity emphasizes the magnitude of 

modulation relative to the variation in the baseline. On the other hand, z-scoring the 

SDF based on the entire trial reduces the skewed variation of discharge rates. 

Analytical choices must be made, so confidence in the outcome of every particular 

clustering pipeline can be questioned.  

 Consensus clustering increases confidence in distinctions identified across 

measurements and clustering procedures by minimizing spurious classifications arising 

from incidental analysis choices or unreliable data. Moreover, the consensus clustering 

approach affords the opportunity to include as many other measures and clustering 

procedures as desired. In particular, biophysical spiking properties are certainly useful 

for categorizing neurons. The eventual inclusion of such features will surely add 

complexity but should certainly approach an accurate account of the true diversity of 

functional neuron categories in FEF. A correct account of such diversity is necessary to 

support the next generation of microcircuit models (Brown et al., 2004; Hamker, 2006; 

Heinzle et al., 2007; Mitchell & Zipser, 2003). 
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CHAPTER 3: CONTRIBUTIONS OF PREFRONTAL AND PREMOTOR CORTEX TO 

VISUALLY GUIDED SACCADES 

3.1 INTRODUCTION 

For more than a century, an area known as the frontal eye field (FEF) has been 

identified with the guidance and control of eye movements (reviewed by Schall 2015; 

Schall et al. 2017). Although much is known about the properties of FEF neurons and 

connectivity with cortical and subcortical structures, the boundaries of FEF and 

functional transitions with neighboring areas are uncertain. FEF has been defined as the 

subregion of granular area 8 in which low-current microstimulation elicits saccades 

(Bruce et al., 1985; Huerta et al., 1987; Robinson & Fuchs, 1969; Stanton et al., 1988). 

Confusion about the caudal boundary of FEF arises based on reports that 

microstimulation of a region caudal to the arcuate sulcus corresponding 

cytoarchitectonically to agranular area 6 and structurally to premotor cortex (F2 of 

Luppino et al. 2003) also elicits saccadic eye movements (Fujii et al., 2000; Neromyliotis 

& Moschovakis, 2017a) and is interconnected with SEF (Huerta & Kaas, 1990). Though 

premotor cortex is traditionally considered to be involved in guidance of limb 

movements (Cisek & Kalaska, 2005; Kalaska et al., 1998; Kalaska et al., 1997; 

Neromyliotis & Moschovakis, 2018; Neromyliotis & Moschovakis, 2017b; Thura & Cisek, 

2014; Wise, 1985; Wise et al., 1992; Wise et al., 1996), the rostral premotor region also 

shows fMRI activation in saccade tasks (Baker et al., 2006; Koyama et al., 2004) and 

gaze modulation of reach signals (Boussaoud, 1995; Boussaoud et al., 1993a; 

Boussaoud et al., 1998; Cisek & Kalaska, 2002; Mushiake et al., 1997). Single-unit 

recordings in the rostroventral premotor region (F5) have identified neurons with motor 
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responses in both manual and oculomotor tasks (Neromyliotis & Moschovakis, 2018), 

including some neurons modulated regardless of the effector (Neromyliotis & 

Moschovakis, 2017b).  

Based on these motor characteristics, this postarcuate region has been referred 

to as a premotor eye field (Amiez & Petrides, 2009; Neromyliotis & Moschovakis, 

2017b, 2018). However, whether this cortical region contributes to more complex tasks 

and whether it should be considered as a caudal extension of FEF is undecided. Thus, 

we compared and contrasted single neuron discharges sampled in both banks of the 

arcuate sulcus during a memory-guided saccade task and a shape singleton search 

task. Specifically, because of suggested anatomical and physiological distinctions 

between dorsal and ventral premotor (F2 and F5; see Hoshi & Tanji, 2007 for review) 

and a distinction within dorsal 

premotor cortex where cognitive 

functions are represented more 

rostrally and motor functions more 

caudally (Abe & Hanakawa, 2009; 

Nakayama et al., 2016), we targeted 

the rostroventral portion of the dorsal 

premotor cortex (F2vr) in the caudal 

bank. We found the proportions of 

response modulation types differed 

between these two regions, but 

among similar neurons there were 

Figure 3.1. Task diagrams. (A) Memory-guided saccade task. The 
task begins with a fixation spot on. After a 500 ms fixation period, a 
single square target is briefly presented in the periphery. After the target 
disappeared, the monkey maintains fixation on the fixation spot for a 
variable delay period of 300 to 800 ms. After this delay, the fixation spot 
disappears and the monkey makes a saccade to the cued location. 
When the saccade is made to the correct location, the target is 
reappears to provide feeedback for thecorrect location for fixation. If the 
target is successfully fixated for 500 ms, reward is delivered. (B) Shape 
singleton search task. An example search array (top) is shown with a 
singleton T among seven distractor Ls. Trial sequence (below) indicates 
key trial events. The trial begins when a fixation spot is shown. After a 
delay, the fixation spot disappears and a search array is shown. A 
saccade is made to the shape singleton and fixation is maintained on it. 
If the target is successfully fixated for 200 ms, reward is delivered. 
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no consistent, identifiable differences between other properties. A preliminary analysis 

of some of these data have been presented previously in abstract form (Zinke et al., 

2015). 

 

3.2 METHODS 

3.2.1 Subjects 

 Data were collected from three male macaque monkeys (M. radiata) weighing 

approximately 8.0 kg and ranging in age from 7-9 years. All procedures were in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and approved by the Vanderbilt Institutional Animal Care and Use 

Committee.  

 

3.2.2 Behavioral Task 

 Monkeys performed two tasks in this study. One task was a memory-guided 

saccade task (Fig. 3.1A). The details of this task have been described previously (Lowe 

& Schall, 2018). Briefly, after fixating a central point for a period of 500 ms a peripheral 

target stimulus was presented for 16.7 ms while the monkey maintained fixation. After a 

variable delay period (range 300 to 800 ms), the fixation point disappeared and the 

monkey was rewarded for making a saccade to and maintaining fixation on the cued 

location. To provide a fixation stimulus, the peripheral target was reilluminated when the 

monkey attained fixation on the remembered location. A juice reward was delivered if 

the monkey successfully fixated on the remembered location for 500 ms. The trial was 

aborted and a 2000 ms timeout was delivered if the monkey broke central fixation 
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prematurely, made a saccade to an incorrect location, or broke fixation on the peripheral 

target after an initially correct saccade.  

 The second task monkeys  performed was a shape-singleton visual search task 

that has been described previously (Cosman et al., 2018). In short, monkeys were 

presented an array of eight stimuli comprising either gray Ts or Ls (Fig. 3.1B). Within 

one session these stimuli were presented with one of four possible orientations. One 

stimulus was a shape singleton; one T could be presented among seven Ls or one L 

among seven Ts. After a variable fixation period of 300 to 800 ms, the stimulus array 

was presented and the monkey was required to make a saccade to the singleton shape. 

A juice reward was delivered if the monkey successfully fixated the target for 200 ms. 

Trials were aborted if the monkey broke fixation prematurely, made a saccade to an 

incorrect stimulus, or broke fixation from the target prematurely after an initially correct 

saccade. On a subset of trials a color singleton distractor was presented within the 

array; one of the distractors was chromatic. Results with trials using a salient distractor 

were reported elsewhere (Cosman et al. 2018); these trials were excluded from the 

present analysis. 

  

3.2.3 Recording Techniques 

 MRI compatible headposts were placed alongside recording chambers over the 

arcuate sulcus. Surgery was conducted under aseptic conditions with animals under 

isoflurane anesthesia. Antibiotics and analgesics were administered postoperatively. 

Details have been described previously (Schall et al., 1995a; Sato et al., 2001; Cohen et 

al., 2009b). Data were streamed to a data acquisition system: MNAP (40 kHz, Plexon, 

Dallas, TX - monkeys Da, Ga, and He) or a TDT System 3 (25 kHz, Tucker Davis 
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Technologies – monkey Da). Eye position was collected using EyeLink 1000 (SR 

Research). Eye position was calibrated daily and streamed to the data acquisition 

system and stored at 1 kHz. Electrophysiological data was obtained from linear 

electrode arrays, either a 24-channel Plexon Uprobe (monkeys Ga, He) or a 32-channel 

Neuronexus Vector Array (monkey Da). Both probes had a 150 μm recording contact 

spacing. Single units were identified online using a window discriminator (Plexon) or 

principal component analysis (TDT). Units recorded from the TDT system were sorted 

offline using Kilosort (Pachitariu et al., 2016).  

FEF was localized using anatomical MRI reconstructions with a chamber grid 

(Crist instruments) projected onto the reconstructions. We identified grid locations 

whose trajectory pass through the rostral bank anterior to the genu of the arcuate 

sulcus, the anatomical location of the functionally defined FEF (Stanton et al., 1988). 

Neural responses were typical of FEF neurons and microstimulation with low currents 

(<50 µA) elicited saccades. F2vr was identified in a similar manner, but in grid locations 

whose trajectory pass through the caudal bank of the arcuate sulcus. For the two 

animals that expressed a clear spur (Da and Ga), grid locations were chosen with a 

trajectory passing through the dorsal bank of the spur (F2vr), for the animal without a 

spur (He), the locations were chosen in the caudal bank opposite to FEF. 

Microstimulation was not used to elicit saccades in these recording locations. Locations 

of the recording sites for neurons recorded in each task are projected onto each 

subject’s sulcal pattern in Fig. 3.2.   
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3.2.4 Data Analysis 

 Spike density functions (SDFs) were 

calculated by convolving spike trains with a 

kernel that resembles the postsynaptic 

potential elicited by an action potential 

(Thompson et al., 1996). For averaging 

across neurons, SDFs were normalized by 

z-scoring across the full trial and 

performing a baseline subtraction (Lowe & 

Schall, 2018). That is, the mean and 

standard deviation used for z-scoring were 

calculated across the whole trial and an 

additional subtraction of the pre-stimulus 

baseline activity was performed. This method of scaling responses reduces the 

skewness of the SDF across the population and generates a comparable range of 

activity across neurons without erroneously scaling neurons with little modulation (Lowe 

& Schall, 2018). Because these measures are not strictly z-scores, they will be referred 

to as arbitrary units (AU). 

Receptive fields (RFs) were defined as the location in which the visual response 

was greatest for a correct saccade made to that location. For visually responsive 

neurons this is the visual receptive field whereas for movement-related neurons this is 

more comparable to a movement field. Target selection times (TST) were determined 

from the difference of SDFs of trials where the search target was presented within and 

Figure 3.2. Recording sites. Sulcal patterns for each of the 
three monkeys are illustrated. Principal and arcuate sulci are 
labeled for Ga in the top left. Patterns are mirrored for 
monkeys Ga and He such that all three illustrations depict 
anterior to the left, posterior to the right, medial to the top 
and lateral to the bottom. Neuron counts for each location 
are depicted by the size of the circle, with larger circles 
indicating a larger neuron count. FEF recording locations are 
red, premotor cortex recording locations are blue. Neuron 
counts for the memory-guided saccade task are shown on 
the right and for shape singleton search on the right. 
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trials where the target was presented opposite to the RF. For each neuron, we 

calculated a z-scored difference function by subtracting the mean pre-stimulus baseline 

activity (300 ms before the onset of the search array) and dividing by the standard 

deviation of the pre-stimulus baseline activity. TST was defined as the earlier of two 

times (1) the time the z-scored difference function exceeds 2 and continues to exceed 6 

for at least 20 ms continuously or (2) the time the difference function exceeds 2 

standard deviations of the baseline difference for at least 50 ms continuously. Visual 

latency was calculated in a similar fashion but the SDFs themselves aligned on array 

onset were required to meet the above criteria. To assess the onset of presaccadic 

activity, the SDF was smoothed with a 20 ms uniform kernel. Then, starting at the time 

of the saccade, the correlation of the smoothed SDF across time was calculated in a 

100 ms window. This window was moved backward in time until the correlation was no 

longer significant. The end of the window which produced the first non-significant 

correlation was taken as the time of presaccadic activity onset. Peak presaccadic 

activity was defined as the time at which the smoothed SDF reached its highest value. 

Neurons for which the algorithm identified time of peak presaccadic activity as 

preceding the presaccadic activity onset by more than 20 ms are excluded from 

analysis. 

For neural classification, the presence or absence of visual activity was 

determined by the visual latency. If the visual latency was less than 200 ms, the neuron 

was considered to have visual activity. Similarly, if the neuron had elevated activity at 

the time of the saccade using an identical algorithm as well as a positive correlation of 
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response across time in the 20 ms before the saccade, the neuron was considered to 

have movement-related activity.  

Subsequent classification was accomplished using a consensus clustering 

algorithm (Lowe & Schall, 2018). First, we applied the algorithm to all neurons in the 

sample regardless of region. For this clustering, we set a minimum cluster size of 20; 

Lowe & Schall set a minimum cluster size of 10 but applied the algorithm to one area, 

so we doubled the minimum cluster size to accommodate the second region. Then, we 

applied the algorithm to each region separately. For this clustering, we kept the 

minimum cluster size as 10. Importantly, we also included responses to stimuli outside 

the neurons’ RFs. Otherwise, the clustering was identical to Lowe & Schall (2018).    

 

3.3 RESULTS 

3.3.1 Neuron Types 

 To compare neuronal modulation in the two eye fields, neurons were classified 

according to canonical FEF criteria observed during memory-guided saccades (Bruce & 

Goldberg, 1985; Schall 1991). Specifically, based on increased activity during the 

visual, presaccadic, both, or neither period of modulation neurons were classified as 

visual, movement, visuomovement, and unclassified. The average SDFs of the neurons 

of each type in each region are shown in Fig. 3.3.  
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In FEF, 32.2% of neurons were classified as visual, 16.9% as purely movement, 

35.0% as visuomovement, and 16.0% were unclassified. In F2vr, 25.4% of neurons 

were classified as visual, 23.0% as purely 

movement, 24.2% as visuomovement, and 

27.5% were unclassified. These proportions 

were significantly different (Contingency test 

Χ2(3) = 21.4, p < 0.001). Relative to FEF, in 

F2vr fewer neurons had visually related 

activity and more neurons had exclusively 

presaccadic activity or were unclassified. 

This was true for monkey Da (X2(3) = 12.9, p 

= 0.005) and Ga (X2(3) = 13.5, p = 0.004), 

but not He (X2(3) = 0.9, p = 0.397). 

 

3.3.2 Neuronal Modulation Timing  

 Given that neurons with visual and presaccadic activity are present in samples 

from both regions, we measured how visual latency, delay period activity, onset of 

presaccadic activity, and time of peak presaccadic activity of neurons in each region 

related to visually guided saccade production. Cumulative distributions of these values 

are shown in Fig. 3.4. Across regions, latencies of visual responses in the memory-

guided saccade task were indistinguishable. In FEF, the median response latency of 

neurons with visual activity was 51 ms. In F2vr, the median response latency of neurons 

with visual activity was 55 ms. The distributions of response latencies were not 

significantly different (Wilcoxon rank-sum Z = -1.29, p = 0.198).  

Figure 3.3. Traditional neuron classes. FEF neurons are 
frequently categorized as visual, visuomovement, or 
movement neurons. The present sample of neurons from 
each area was categorized according to these criteria. The 
mean ± SEM of the normalized SDF aligned on target onset 
(left) and saccade (right) for the neurons are plotted in red 
for FEF and blue for premotor cortex. Visual neurons are in 
the top row, visuomovement neurons in the second row, 
movement neurons in the third row, and uncategorized 
neurons in the bottom row. Number of neurons in each 
category and their proportions are shown. On the right, 
proportions of each neuron type in each area is shown. 
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In contrast, the mean delay period activity in FEF when the singleton was in the 

RF was 0.01 AU, and that in F2vr was -0.02 AU. The distributions were not significantly 

different (Wilcoxon rank-sum Z=1.43, p = 0.153). Similarly, the mean delay period 

activity in FEF when the singleton was not in the RF was -0.18 AU, and that in F2vr was 

-0.37 AU. The distributions were significantly different (Wilcoxon rank-sum Z=2.12, p = 

0.034). Combining these measures, the magnitude of selectivity during the delay period 

in FEF was 0.29 AU, and in F2vr was 0.37 AU. These distributions were not significantly 

different (Wilcoxon rank-sum Z= -0.40, p = 0.689). 

The median onset of presaccadic activity before saccade onset was 88.5 ms in 

FEF and 68.0 ms before saccade onset in F2vr. The distributions were significantly 

different (Wilcoxon rank-sum Z = -5.52, p < 0.001).  However, this was only true for one 

of the monkeys, monkey Ga (Z= -2.22, p = 0.027), but not Da (Z = -1.25, p = 0.213) or 

He (Z = -0.57, p = 0.571), so this finding should be taken with caution. 

The median time when presaccadic activity peaked relative to saccade initiation 

in FEF was -1.0 ms and in F2vr was -5.0 ms. The distributions were not significantly 

different (Wilcoxon rank-sum Z = 1.39, p = 0.166).  

 

3.3.3 Modulation During Visual Search 

 The response modulation of neurons in F2vr during a visual search task that 

frequently is used to characterize FEF neurons was also assessed and compared to 

FEF neurons. Monkeys were required saccade towards and fixate a singleton T among 

Ls or a singleton L among Ts (see Methods). FEF neurons exhibited frequently reported 

target selection; responses initially did not discriminate target from distractors but 

eventually became greater when the singleton shape was in the RF and reduced when 



83 

a distractor was in the RF 

(Fig. 3.5a). Surprisingly, a 

sample of F2vr neurons also 

exhibited target selection 

(Fig. 3.5B). However, fewer 

neurons in F2vr exhibited 

target selection (n = 135, 

51.5%) than in FEF (n = 

218, 70.8%). This difference 

was statistically significant 

(Contingency test Χ2(1) = 

22.3, p < 0.001).  

 Of the neurons that 

did exhibit target selection, 

the timing of selection was indistinguishable between the two regions (Fig. 3.5B). The 

median target selection time in FEF was 155.0 ms (mode = 117.5 ms) and in F2vr was 

144.0 ms (mode = 113.5 ms). The distributions were not significantly different Wilcoxon 

rank-sum Z = 0.35; p = 0.723).  

The interpretation of this observation must be qualified by appreciating how the 

target selection time can vary across sessions in proportion to variation of response 

times or other factors. Hence, we compared the selection time of neurons recorded 

simultaneously in FEF and F2vr. The distribution of differences in target selection times 

in the two regions in these simultaneously recorded sessions are shown in Fig. 3.5C. 

Figure 3.4. Neural characteristics of memory-guided saccades. Cumulative 
distributions for four metrics of neural activity are shown for FEF (red) and 
Premotor cortex (blue). (A) Visual latency distributions for both regions. Medians 
for each measure are shown as vertical lines in the corresponding color, (B) 
Normalized delay activity distributions when the singleton was in the RF. 
Conventions as in (A). (C) Movement activity onset. Conventions as in (A). (D) 
Time of peak movement activity in the bottom right. Conventions as in (A). 
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The mean difference in TST between such FEF-F2vr pairs was 10.0 ms (mode = 13.0). 

This distribution was not significantly different from zero (t(134) = -0.55, p = 0.585). 

Thus, target selection in FEF and in F2vr occur simultaneously.  

 We assessed whether the magnitude of the modulation signaling target selection 

was similar in the two regions. The average neural response 150 to 200 ms after array 

presentation was calculated for each neuron when either a target or distractor was in 

the RF. The modulation index was defined as the difference in the two trial conditions 

divided by the sum, (rin – rout)/(rin + rout). The median selection index for FEF neurons 

was 0.133, whereas the median selection index for F2vr neurons was 0.100. The 

distributions of the selection indices were not significantly different (Wilcoxon rank-sum 

Z = 1.26; p = 0.207).  

 

Figure 3.5. Neural responses during 
search. (A) Mean ± SEM of SDFs of 
target selective neurons during search 
in FEF (red, left) and premotor cortex 
(blue, right). Saturated colors indicate 
trials with the search target in the RF of 
the recorded neurons and desaturated 
colors indicate trials with the search 
target was outside and a distractor 
within the RF. Vertical dashed line 
indicates median TST. Neuron count 
and proportion of neurons within area 
are labeled. (B) Cumulative distributions 
of target selection times in FEF (red) 
and premotor cortex (blue). Target 
selection times were effectively identical 
across areas. (C) Distribution of target 
selection time differences in 
simultaneously recorded pairs of 
neurons in FEF and premotor cortex. By 
convention, when an FEF neuron 
precedes a premotor cortex neuron, the 
difference is negative. The median 
difference is shown as a vertical red 
line. 
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3.3.4 Consensus Clustering 

 To characterize and compare more detailed the diversity of neuron types within 

in FEF and F2vr, we applied a consensus clustering algorithm to the mean SDFs of 

each neuron (Lowe & Schall, 2018). We extended the algorithm for identifying clusters 

by including target out of RF conditions in addition to target in RF. In this first application 

of this method across cortical regions, we will adopt multiple analysis approaches. The 

first approach will determine clusters of units for both regions together. The second 

approach will determine clusters of units for each region separately. The first approach 

demonstrates the similarities of neuron categories across the two regions and assesses 

the relative proportion of neurons attributed to that category. The second approach will 

both refine the categories for each region and assess the presence or absence of these 

clusters in the other. This is done by identifying categories in one region and use a 

classifier to assign units from the other region to these categories. 

 

Clustering the population. 

To identify clusters present across both regions, we first performed the clustering of all 

units for both regions combined. This method allows the assessment of common neural 

response profiles across the two regions. To disambiguate results from different tasks, 

categories are labeled with subscripts for the task used: MG for memory-guided 

saccade task and VS for shape singleton visual search task. During the memory-guided 

saccade task, the algorithm identified six categories (Fig. 3.6). Categories 1MG and 2MG 

demonsrated suppressed responses and are distinguished by the presence (category 

1MG) or absence (category 2MG) of a small initial visual transient. Categories 3MG, 

category 5MG, and category 6MG are characterized by a spatially selective visual 
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response with no presaccadic activity and are differentiated by whether the response to 

the non-preferred location decreases below 0 (category 5MG) or not (categories 3MG, 

6MG), or whether the response to the preferred location remains above 0 during the 

delay (category 6MG) or not (categories 3MG, 5MG).  

The six categories were distributed unequally across regions (Contingency test 

Χ2(5) = 23.7, p < 0.001). Post-hoc contingency tests indicate that categories 1MG, 2MG, 

Figure 3.6. Memory-
guided consensus 
clusters. A consensus 
clustering algorithm was 
applied to identify different 
categories of neurons in 
FEF and premotor cortex 
during the memory-guided 
saccade task. (A) 
Schematic of recording 
and clustering pipeline. 
Recordings were 
performed from both FEF 
(red electrode) and 
premotor cortex (blue 
electrode). Clustering was 
applied to the sample of 
neurons across regions. 
(B) Dendrogram of 
clustering results is shown 
on the left. Black lines 
indicate neurons that were 
not included in any of the 
six identified categories. 
Other colors are arbitrarily 
assigned by category. 
Category numbers are 
assigned from the top of 
the dendrogram to the 
bottom. Mean SDFs for 
target in (thick) and out of 
(thin lines) RF are shown 
on the right for FEF (red) 
and premotor cortex 
(blue). SDFs are aligned 
on target onset (left 
column of each pair) and 
saccade (right column of 
each pair). Number and 
proportion within area are 
labeled for each category 
and area combination. 
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and 6MG. Categories 1MG 

and 2MG were more 

prevalent in F2vr than in 

FEF, and category 6MG was 

more prevalent in FEF than 

in F2vr.  

We also performed 

this analysis for neural 

responses during shape 

singleton search and found 

seven categories of neurons 

(Fig. 3.7). Two categories, 

category 1VS and 2VS, were 

characterized by 

suppressed responses. 

They were differentiated by 

the presence (category 1VS) 

or absence (category 2VS) of 

a visually aligned increase 

in firing rate. Category 3VS 

was characterized by 

exclusively presaccadic 

responses with no visual 

Figure 3.7. Search consensus clusters. A consensus clustering 
algorithm was applied to identify different categories of neurons in FEF 
and premotor cortex during the shape singleton search task. (A) 
Schematic of recording and clustering pipeline. Recordings were 
performed from both FEF (red electrode) and premotor cortex (blue 
electrode). Clustering was applied to the sample of neurons across 
regions. (B) Dendrogram of clustering and mean SDFs for each category. 
Conventions as in Fig. 3.6B. 
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response. Category 4VS was characterized by post-saccadic responses. These 

responses were spatially selective in FEF, but not in F2vr. Categories 5VS-7VS are 

characterized by visual responses. Category 7VS had only a small magnitude of 

response and was not spatially selective. Category 5VS is the most canonical neuron 

type seen in visual search, whose visual response strongly discriminated the target 

location and whose presaccadic response peaked at the time of the saccade. Category 

6VS is strongly visual but has only a small magnitude of spatial selectivity. Insufficient 

data was collected in both memory-guided saccade and visual search tasks to support 

comparison of the categories of neurons across tasks.  

Unexpectedly, the categories were distributed evenly across FEF and F2vr 

(Contingency test Χ2(6) = 10.5, p = 0.106). When individual categories were compared, 

category 6VS neurons were more prevalent in FEF than in F2vr, whereas category 3VS 

neurons were more prevalent in F2vr than in FEF. These differences are consistent with 

the between area differences observed in the memory-guided clusters and the 

traditional categorization. 

 

Clustering within region.  

Next, to identify variation within regions, we separately applied the clustering algorithm 

to units recorded from FEF and to units recorded from F2vr. Then, in order to directly 

compare regions with the same set of clusters, we trained a classifier on the units from 

the clustered region and assigned the units from the unclustered region to these 

categories to identify categories in FEF and use a classifier to assign units from F2vr to 

these categories, and vice versa. This method allows the assessment of specific neural 

response profiles in one region and whether they exist in the other region as well. To 
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disambiguate results from different clustering approaches, categories are labeled with 

subscripts for the region to which clustering was applied and for the task used. Thus, a 

neuron from either region that was categorized as category 1 in a clustering of FEF 

neurons during memory-guided saccades will belong to category 1FEF,MG. A neuron from 

either region that was categorized as category 1 in a clustering of premotor neurons 

during visual search will belong to category 1PM,VS.  

 During memory-guided saccades, six categories were identified in FEF (Fig. 3.8). 

Then, a classifier was used to assign the premotor neurons to these categories. These 

composite categories, formed by the clustering algorithm and classification, were 

distributed unequally across FEF and F2vr (Contingency test Χ2(5) = 25.6, p < 0.001). 

Post-hoc contingency tests indicated that this difference was driven by the distributions 

of categories 2FEF,MG, 3FEF,MG, 4FEF,MG, 5FEF,MG, and 6FEF,MG. Notably, one of the two 

purely visual categories, category 2FEF,MG was more prevalent in FEF than in F2vr, 

whereas the other purely visual category, category 6FEF,MG, was more prevalent in F2vr 

than in FEF. These categories are distinguished by the presence (category 6FEF,MG) or 

absence (category 2FEF,MG) of post-saccadic activity. The purely presaccadic category, 

category 3FEF,MG, and a category with suppressed responses, category 4FEF,MG, were 

more prevalent in F2vr than in FEF. One of the visuomovement categories, category 

5FEF,MG was more prevalent in FEF than in F2vr and is defined by a longer return to 

baseline after the saccade. These results are consistent with the differences between 

neuron types using the traditional classification.   

For the memory-guided saccade task, six categories were identified in F2vr (Fig. 

3.9). Then, a classifier was used to assign the FEF neurons to these categories. These 
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composite categories, formed by the clustering algorithm and classification, were 

distributed unequally across FEF and F2vr (Contingency test Χ2(5) = 25.6, p < 0.001). 

Post-hoc contingency tests indicated that this difference was driven by the distributions 

Figure 3.8. Memory-guided consensus clusters for FEF 
neurons. A consensus clustering algorithm was applied to 
identify different categories of neurons in FEF during 
memory-guided saccades, and a classifier was used to 
assign neurons in premotor cortex to these categories. (A) 
Schematic of recording and clustering pipeline. Recordings 
were performed from both FEF (red electrode) and premotor 
cortex (blue electrode). Clustering was applied to the 
sample of neurons from FEF. The FEF clusters were used 
to train a classifier and premotor neurons were tested by 
this classifier to assign the premotor neurons to the FEF 
clusters. These were used to create a composite set of 
cluster IDs across both regions. (B) Mean SDFs for the nine 
clusters. Conventions as in Fig. 3.6B.  

Figure 3.9. Memory-guided consensus clusters for 
premotor neurons. A consensus clustering algorithm was 
applied to identify different categories of neurons in premotor 
cortex during memory-guided saccades, and a classifier was 
used to assign neurons in FEF to these categories. (A) 
Schematic of recording and clustering pipeline. Recordings 
were performed from both FEF (red electrode) and premotor 
cortex (blue electrode). Clustering was applied to the sample 
of neurons from premotor cortex. The premotor clusters were 
used to train a classifier and FEF neurons were tested by this 
classifier to assign the FEF neurons to the premotor clusters. 
These were used to create a composite set of cluster IDs 
across both regions. (B) Mean SDFs for the eight clusters. 
Conventions as in Fig. 3.6B. 
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of categories 1PM,MG, 5PM,MG, and 6PM,MG. Interestingly, category 1PM,MG is a 

visuomovement category, but more prevalent in F2vr than in FEF. One purely visual 

category, category 5PM,MG was more prevalent in FEF than in F2vr, as was a category 

with pre-saccadic activity. Notably, the members of category 6PM,MG appear different 

between the two areas; FEF members of this category exhibit delay period activity and 

a peak saccade-aligned response at the time of saccade initiation whereas F2vr 

members of this category exhibit suppressed responses aligned on the array and peak 

saccade-aligned response prior to saccade initiation.  

 During visual search, 5 categories were identified in FEF (Fig. 3.10). Then, a 

classifier was used to assign the premotor neurons to these categories. These 

composite categories, formed by the clustering algorithm and classification, were 

distributed unequally across FEF and F2vr (Contingency test Χ2(4) = 90.2, p < 0.001). 

Post-hoc contingency tests indicated that this difference was driven by the distributions 

of categories 1FEF,VS, 2FEF,VS, 3FEF,VS, and 5FEF,VS. Category 1FEF,VS is purely peri-

saccadic, with activity ramping before the saccade but peaking after the saccade, and 

was more prevalent in F2vr than in FEF. Category 2FEF,VS and category 3FEF,VS both 

have visual responses and are more prevalent in FEF than in F2vr. Category 2FEF,VS is 

spatially selective and visuomovement whereas category 3FEF,VS is not spatially 

selective and does not have pre-saccadic activity. Category 5FEF,VS has a suppressed 

response and is more prevalent in F2vr than in FEF.  

 During visual search, seven categories were identified in F2vr (Fig. 3.11). Then, 

a classifier was used to assign the FEF neurons to these categories. These composite 

categories, formed by the clustering algorithm and classification, were distributed 
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unequally across FEF and F2vr (Contingency test Χ2(6) = 18.5, p = 0.005). Post-hoc 

contingency tests indicated that this difference was driven by the distributions of 

categories 2PM,VS, 4PM,VS, and 5 PM,VS. Category 2PM,VS had a suppressed response to the 

Figure 3.10. Search consensus clusters for FEF neurons. 
A consensus clustering algorithm was applied to identify 
different categories of neurons in FEF during the shape 
singleton search task, and a classifier was used to assign 
neurons in premotor cortex to these categories. (A) Schematic 
of recording and clustering pipeline. Recordings were 
performed from both FEF (red electrode) and premotor cortex 
(blue electrode). Clustering was applied to the sample of 
neurons from FEF. The FEF clusters were used to train a 
classifier and premotor neurons were tested by this classifier to 
assign the premotor neurons to the FEF clusters. These were 
used to create a composite set of cluster IDs across both 
regions. (B) Mean SDFs for the 11 clusters. Conventions as in 
Fig. 3.6B. 

Figure 3.11. Search consensus clusters for premotor 
neurons. A consensus clustering algorithm was applied to 
identify different categories of neurons in premotor cortex 
during the shape singleton search task, and a classifier 
was used to assign neurons in FEF to these categories. (A) 
Schematic of recording and clustering pipeline. Recordings 
were performed from both FEF (red electrode) and 
premotor cortex (blue electrode). Clustering was applied to 
the sample of neurons from premotor cortex. The premotor 
clusters were used to train a classifier and FEF neurons 
were tested by this classifier to assign the FEF neurons to 
the premotor clusters. These were used to create a 
composite set of cluster IDs across both regions. (B) Mean 
SDFs for the nine clusters. Conventions as in Fig. 3.6B. 
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array followed by a post-saccadic response and was more prevalent in F2vr than in 

FEF. Category 4PM,VS had a gradual non-specific increase in activity that peaked well 

after the saccade and was also more prevalent in F2vr than in FEF. Surprisingly, 

category 5PM,VS, which had sharp, transient increases in response that peaked at the 

time of the saccade, was more prevalent in FEF than in F2vr.  

 In all, the results of the clustering, whether regions were grouped for the 

clustering or separated, were internally consistent and are also consistent with the 

distribution of neuron types assessed by the traditional classification. FEF has higher 

proportions of visually related responses whereas F2vr has higher proportions of purely 

movement-related responses.  

 

3.4 DISCUSSION 

The caudal boundary of frontal eye field, located in area 8 in primates, is ambiguous. 

Neural responses just caudal to frontal eye field in the posterior bank of the arcuate 

sulcus, in area 6 or premotor cortex, specifically F5, are similar to responses in FEF in 

simple oculomotor tasks. Here, we show that these similarities extend to a more 

complex task a singleton shape visual search task in the ventral portion of the dorsal 

premotor cortex (F2vr). However, we did identify several distinguishing characteristics in 

both simple and complex tasks that may reveal the functional distinctions between 

these two regions. Below, we will first discuss the subdivisions of premotor cortex and 

the targeting of F2vr specifically to compare to FEF. Next, we discuss similarities 

between the two cortical regions. Then, we will discuss the differences and their 

potential for distinguishing functional specificity. Finally, we will discuss the relationship 

between these regions and the putative homologues in humans. 
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3.4.1 Subdivisions of Premotor Cortex 

Premotor cortex is an anatomically and functionally diverse area, and its subdivisions 

have important implications for functional relationships to other areas. Primarily, 

premotor cortex can be divided into dorsal (PMd or F2) and ventral (PMv or F5) 

divisions based on cytoarchitecture (Geyer et al., 2000; Luppino et al., 2003) and 

connectivity (Ghosh & Gattera, 1995; Luppino et al., 2003; Tanné-Gariépy et al., 2002). 

These anatomical subdivisions correspond with functional differences in visuomotor 

behavior (see Hoshi & Tanji, 2007 for review). Specifically, PMd seems to be related 

more closely to dynamics and directions of motions as well as stimulus-response rule 

associations (Coallier et al., 2015; Cromer et al., 2011; Riehle & Requin, 1989; Romo et 

al., 2004; Wallis & Miller, 2003; Yamagata et al., 2012) whereas PMv seems to be more 

closely related to the visual information instructing a movement (Boussaoud & Wise, 

1993a, 1993b; Hoshi & Tanji, 2000, 2004). Further, within PMd, visual responses are 

preferentially located in its rostrolateral extent, corresponding to F2vr (Fogassi et al., 

1999), and rostral PMd is associated with more cognitive functions whereas caudal PMd 

is associated with motor funtions (Abe & Hanakawa, 2009; Nakayama et al., 2016).  

Thus, to identify whether the posterior bank of the arcuate sulcus is similar to FEF with 

respect to cognitive and visuomotor functions, we specifically targeted F2vr due to its 

putative cognitive specialization and action selection responses. This targeting was 

possible due to our use of MRI guided electrode penetrations to ensure recordings were 

in this small, specific target region (Fig. 2.2). 
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3.4.2 FEF and F2vr Have Similar General Characteristics 

For the purpose of identifying the cognitive contributions of F2vr to visuomotor behavior, 

we recorded from neurons in this region during a shape singleton search task. In this 

task, we found that neurons in F2vr exhibit target selection, as has been seen 

repeatedly in FEF (e.g., Schall et al., 1995a; see Schall, 2015 for review). As a 

population, we found no differences between target selection time between the two 

regions. While the similarity of movement-related neurons in the FEF and ventral 

premotor cortex (F5) has been demonstrated (Neromyliotis & Moschovakis, 2018; 

Neromyliotis & Moschovakis, 2017b), importantly we now demonstrate that the ventral 

portion of the dorsal premotor cortex (F2vr) has similar visual and movement-related 

responses to FEF.  

Though the target selection times may be similar in the two regions, the speed of 

calculating this discrimination may differ. We found no differences between visual 

latencies of the two regions. Thus, neither the time of target selection per se nor the 

timing of the target selection operation are different between F2vr and FEF. Further, we 

found that the time of onset of presaccadic activity is also not different between the two 

regions in two of the three monkeys. Thus, the visuomotor transformation occurs on 

similar timescales in both regions. This similarity in presaccadic activity onset is at odds 

with the results of Neromyliotis & Moschovakis (2018). However, their recordings were 

preferentially directed toward ventral premotor cortex (F5), whereas the present 

recordings were directed toward dorsal premotor cortex (F2vr). Because a mediolateral 

distinction has been observed in FEF (e.g., Markov et al., 2014; Suzuki & Azuma, 

1983), and premotor cortex (for review, see Hoshi & Tanji, 2007), the regional 



96 

differences may account for the present results. Thus, we here demonstrate visual and 

motor responses in an oculomotor task exist in PMd as well as in PMv.  

Other metrics, specifically delay period activity and the time of the peak 

movement-related response, also did not differ between the areas. Thus, the functional 

properties of the two regions are indistinguishable. 

 

3.4.3 Differences Between FEF and F2vr 

Though several gross metrics of visuomotor function are identical across FEF and F2vr, 

we did identify several key differences between the regions. Most notably, we found a 

difference in the proportion of neuron types across the regions. By classifying neurons 

according to a canonical visual, visuomovement, and movement classification scheme 

(Bruce & Goldberg, 1985), we found that the distribution of these neuron types was 

significantly different between the two regions. Specifically, FEF has more visual and 

visuomovement neurons than F2vr, whereas F2vr has more movement related and 

unclassified neurons. These differences were reinforced by the results of the consensus 

clustering identifying additional nuance in neuronal diversity. The categories identified in 

the memory-guided saccade task, after including responses to stimuli outside the RF, 

were consistent with those previously identified by Lowe & Schall (2018) which used 

only responses to stimuli inside the RF from these neurons, indicating robustness of the 

algorithm with additional conditions included in the clustering as well as the ability of this 

algorithm to differentiate between highly similar brain regions, and increasing 

confidence in this general finding. 

This difference in neuron proportion may explain functional differentiation 

between the regions. Premotor cortex is generally considered to be an area involved in 
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skeletal movements, specifically manual responses (Cisek & Kalaska, 2005; Kalaska et 

al., 1998; Kalaska et al., 1997; Neromyliotis & Moschovakis, 2018; Neromyliotis & 

Moschovakis, 2017b; Thura & Cisek, 2014; Wise, 1985; Wise et al., 1992, 1996) and 

has neurons whose motor responses are modulated by eye position (Boussaoud, 1995; 

Boussaoud et al., 1993a; Boussaoud et al., 1998; Cisek & Kalaska, 2002; Mushiake et 

al., 1997). In contrast, FEF neurons are predominantly involved in eye movements 

(Lawrence & Snyder, 2009), either unresponsive during manual tasks (Thompson et al., 

2005b) or lacking response modulation by arm movements (Mushiake et al., 1996). The 

difference in neuron type proportion may be due to the specialization of effectors.  

Similarly, the proportion of neurons exhibiting target selection was greater in FEF 

than in F2vr. Thus, although both regions are involved in oculomotor search, FEF 

seems more specialized for this function. Interestingly, the proportion of neurons in each 

region with visual responses is almost exactly the proportion of neurons exhibiting target 

selection. While not all visual neurons exhibit target selection (Schall et al., 1995a; 

Thompson et al., 1996), the majority of those that do are more closely related to visual 

processing than saccade planning (Thompson et al., 1996). Thus, the difference in 

proportion of neurons exhibiting target selection between the two regions may be 

related to the proportion of visually responsive neurons and explained by putative 

specificity of effectors. This supposition is further supported by the magnitude of target 

selection; among those neurons in each region that did exhibit significant target 

selection, the magnitude of this selection did not differ between regions. However, FEF 

has been shown to exhibit target selection when no overt response is required 

(Thompson et al., 1997) and even when an arm movement is required in lieu of an eye 
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movement (Thompson et al., 2005b), suggesting that FEF may have a more general 

role in directing covert and overt attention. Further studies with multiple effectors are 

necessary to disambiguate the role of each region in effector-specific and effector-

invariant target selection. 

Because we did not have the monkeys perform any manual task, we could not 

identify neurons that select a response regardless of effector and thus we may be 

collapsing across dissimilar neural categories, and we cannot quantify the timing of 

inter-effector responses. Further, we may have found more similar proportions of 

response types. In FEF, responses to visual stimuli are attenuated if they are not 

potential saccade targets (Goldberg & Bushnell, 1981), and a similar attenuation has 

been observed for stimuli that are not potential reach targets (Wise et al., 1992). Our 

laboratory certainly appreciates the impact of neuronal diversity (Lowe & Schall, 2018), 

thus we realize that further direct comparisons would require tasks with manual 

responses.  

 

3.4.4 Connectivity of Premotor Cortex and FEF 

An important consideration for the differentiation between FEF and premotor cortex is 

the pathways by which the demonstrated visuomotor activity may arrive or be sent to 

different areas. In a seminal study examining the signals sent to the superior colliculus 

from FEF, Segraves & Goldberg (1987) demonstrated an example in which one site in 

the caudal bank of the arcuate was antidromically activated by stimulation in the 

superior colliculus. Thus, premotor cortex can supply visuomotor information to the 

superior colliculus (see also Distler & Hoffmann, 2015), which is one step closer to the 

brainstem saccade generator (e.g., Crapse et al., 2018).  



99 

 FEF and the sulcal region of premotor cortex also share similar afferents. In one 

study, anterograde tracers were injected into parietal area LIP which resulted in labeling 

of the caudal bank of the arcuate sulcus, though these labels were more sparse than in 

the rostral bank (Schall et al., 1995b). Interestingly, anterograde tracers injected into 

temporal area TEO did not show this labeling, but retrograde tracers in both areas 

showed labeling in both FEF and the sulcal region of premotor cortex. This suggests 

that both premotor cortex and FEF are reciprocally connected with the dorsal stream, 

whereas premotor cortex sends but does not receive projections from the ventral 

stream. FEF is reciprocally connected with the ventral stream. These general findings 

were also demonstrated for connections with V4 in the ventral stream (Ungerleider et 

al., 2008) and again for LIP in the dorsal stream (Blatt et al., 1990; Petrides & Pandya, 

1984). This suggests that premotor cortex may be primarily involved in spatial attention 

(e.g., Lebedev & Wise, 2001) but not feature attention, whereas FEF is involved in both 

(Lowe & Schall, 2019; for examples of feature attention, see Bichot et al., 2015, 1996; 

Peng et al., 2008; Xiao et al., 2006). Additional tasks requiring feature information may 

provide additional evidence differentiating these two eye fields. 

 

3.4.5 Relation to Human Literature 

One controversy in assessing the homology of human and macaque FEF has been the 

identification of the actual location of FEF in humans. In humans, FEF is frequently 

localized to area 6 (for review, see Amiez & Petrides, 2009; Paus, 1996; Schall et al., 

2017; Tehovnik et al., 2000), whereas in macaques FEF is localized to area 8 (Huerta et 

al., 1987; Stanton et al., 1988). However, this may be explainable by the methodology; 

the studies in humans that localize FEF to area 6 use neuroimaging (PET and fMRI) 
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whereas the studies in macaques use intracranial microstimulation. In humans, FEF as 

identified by microstimulation is in area 8 (Blanke et al., 2000). If this is the case, and 

the “true human FEF” is in area 8 (Tehovnik et al., 2000), then why is FEF commonly 

found in area 6 of humans? 

 The present results may shed light on this question. Because of the remarkable 

similarity between the two regions as seen in the single neuron responses, both visual 

and motor, these two regions may be confusable in more gross measures such as fMRI. 

Further, the role of human FEF in anti-saccades is unclear (see Neggers et al., 2012; 

Paus, 1996), whereas in macaques area 8, or FEF, is differentially responsive to pro- 

and anti-saccades even in fMRI (Ford et al., 2009). The variability in studies of human 

FEF may be due to the localization of FEF. That is, such a difference between pro- and 

anti-saccades may be found when FEF is defined as in area 8 whereas it may be 

absent when FEF is defined as in area 6.  In the present study, we found that some 

cognitive characteristics are more pronounced in FEF than in F2vr, specifically the delay 

period activity maintaining spatial information during memory-guided saccades. This 

lack of cognitive contributions to oculomotor tasks may extend to anti-saccades in F2vr. 

However, premotor cortex does modulate in anti-reach tasks (Crammond & Kalaska, 

1994), but the generality of the effector is unknown. In any case, the appreciation of the 

distinction between FEF and F2vr presents an avenue by which these questions of 

homology can be addressed. 
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CHAPTER 4: SELECTIVE INFLUENCE AND SEQUENTIAL OPERATIONS: A 

RESEARCH STRATEGY FOR VISUAL SEARCH 

4.0 SUMMARY 

Chapter 3 defined functional categories of neurons that can be identified in search. But 

much as cataloguing these functional neuron types is necessary to understand the 

scope of the neurobiology, understanding the psychology underlying visual search is 

necessary to understand the scope of the behavior. As described in the Introduction, 

this is no trivial goal. Thus, two central questions frame this aim: (1) is visual search 

comprised of multiple distinct processing operations and (2) what is the architecture of 

those operations? Without establishing the existence of processing operations and their 

relationships, the subsequent analyses will lack the essential bridge between 

neurobiology and behavior.  

There is evidence that visual search in a saccadic paradigm can be broken down 

to at least visual and motor operations (Thompson et al., 1996; Woodman et al., 2008), 

satisfying a positive conclusion to question (1). Next, the architecture of processing 

operations has been central to Sternberg’s additive factor method (Sternberg, 1969, 

2001) as well as Townsend’s systems factorial technology (Houpt et al., 2014; 

Townsend & Nozawa, 1995), as well as to visual search research in general. The 

additive factor method can identify separate modifiability of any number of processing 

stages, though only in a serial architecture. SFT is restricted to 2x2 designs but is able 

to differentiate serial from parallel architectures and self-terminating from exhaustive 

stopping rules, while also differentiating between selective and non-selective influence 
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(i.e., coactivity). By designing a 2x2 factorial paradigm amenable to SFT (see Methods, 

Lowe et al., 2019), processing architectures of visual search will be assessed.   

We developed a GO/NO-GO search task in which a search singleton is defined 

by its chromatic uniqueness, and the aspect ratio of this search singleton cues a 

GO/NO-GO rule. A notable foil for this study was performed by Sato and colleagues 

(2001). In this study, singleton identifiability was similarly manipulated by chromatic 

similarity between singleton and distractors, as in the present study. Response 

preparation was manipulated by changing the location of the singleton at some time 

between array onset and response. Conceptually, both this study and the present one 

intend to manipulate search efficiency and response preparation. The study by Sato and 

colleagues found response time differences from both manipulations, as does the 

present study. Two critical differences exist between these studies: (1) in the previous 

study, the response preparation manipulation still involved a saccade, and this saccade 

was directed in a different direction than the original singleton and (2) in the previous 

study the two manipulations were not performed during the same session. The new 

design provides theoretical advantages by (1) assessing the effects of the two 

manipulations when all necessary information is available within a given neuron’s 

response field on every trial and (2) specifically addressing the question of whether the 

same individual neurons (not category of neurons, as per the visual neurons assessed 

by Sato and colleagues) carry information relevant to both manipulations. 

In the remainder of this chapter I apply SFT to the response times in the task to 

characterize the cognitive architecture used to perform the task. This chapter has been 

published as Lowe et al. (2019).  
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4.1 INTRODUCTION 

This introduction surveys the literature on visual search in the context of describing the 

underlying neuro-computational mechanisms and motivating a new experimental 

approach. To understand the neural mechanisms of visual search requires discovering 

the mapping between neural processes and visual, attention, and motor processes. 

Neural processes supporting visual search have been investigated in human studies 

using noninvasive measures of EEG and fMRI and in nonhuman primates using 

invasive sampling of neural discharges. Hence, to understand the neural mechanisms 

of visual search requires building a conceptual and empirical bridge between levels of 

explanation, neural measures, and species. This paper will situate the problem more 

definitely, briefly survey relevant performance and neural data, and introduce a program 

of research that can elucidate more specifically how neural circuits accomplish visual 

search. 

Seeking to understand the relationship between neural and mental processes is 

hardly a new problem. For example, in 1865 Ernst Mach explained, “To every psychical 

there corresponds a physical, and conversely.  Like psychical processes correspond to 

like physical, unlike to unlike.  If a psychical process can be resolved, in a purely 

psychological manner, into a multiplicity of qualities, a, b, c, then to these there 

correspond an equal number of different physical processes, α, β, γ.  Particulars of the 

physical correspond to all the particulars of the psychic.” (Boring, 1942). In 1970 Donald 

Davidson wrote, “… mental characteristics are in some sense dependent, or 

supervenient, on physical characteristics.  Such supervenience might be taken to mean 

that there cannot be two events alike in all physical respects but differing in some 

mental respects, or that an object cannot alter in some mental respect without altering in 
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some physical respect.” (Davidson, 1970). These axioms frame cognitive 

neurophysiology research. 

The relationship between mental and physical descriptions can be articulated 

through linking propositions that specify the nature of the mapping between particular 

behaviors or cognitive states and associated neural states (Brindley, 1970; Teller, 1984; 

Teller & Pugh, 1983). Different kinds of linking propositions can be distinguished, e.g., 

identity, similarity, and analogy (Teller 1984). To illustrate, consider this linking 

proposition: the nerve impulse is an action potential. The nerve impulse is an event that 

caused muscle contraction after nerve irritation that was discovered by Galvani and 

characterized by Swammerdam (McComas, 2011). Its speed was first measured by 

Helmholtz in 1850.  The action potential (or nerve current) was first measured by du 

Bois-Reymond in 1848 and its ionic nature was first described by Bernstein and Lillie 

and elucidated by Hodgkin and Huxley. How do we know that the behavioral nerve 

impulse is the ionic action potential? This may seem obvious today, but it was not 

always. Indeed, the identity was established beyond doubt only by Huxley & Stämpfli 

(1949). They reported, “It was found that the muscle twitched when the nerve was 

stimulated if, but only if, the thread connecting the fluids on the two sides of the gap was 

in place. … This demonstrates that the transmission of the nervous impulse depends on 

currents flowing outside the myelin sheath…”  

What linking propositions are necessary to explain how the brain does visual 

search? How should such linking propositions be articulated and tested? Adopting 

Marr’s hierarchy of computational theory, algorithm, and implementation, it seems clear 

that explaining how the brain does visual search requires translating between these 
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levels of explanation. Several complementary and competing computational theories of 

visual search and attention have been formulated. These include the Theory of Visual 

Attention (Bundesen, 1990), COntour Detector (Logan, 1996), Feature Gate (Cave, 

1999), and Guided Search (Wolfe et al., 2015; Wolfe et al., 1989; Wolfe, 1994, 2007). 

Other computational approaches are designed to solve pragmatic, real-world search 

problems (Bruce et al., 2015; Itti & Koch, 2000). Some of these computational models 

have been articulated in terms of neural circuits at various levels of specificity from 

identification with specific brain structures and circuits (Adeli et al., 2017; Bundesen et 

al., 2011; Murray et al., 2017; Schwemmer et al., 2015) to microcircuitry of a cortical 

area (Heinzle et al., 2007) and with convolutional neural networks (e.g., Adeli & 

Zelinsky, 2018). Another approach has embedded neural signals measured during 

visual search performance into the stochastic accumulator framework (Purcell et al., 

2010; Purcell et al., 2012b).  

These diverse computational and algorithmic approaches offer tools appropriate 

to translate between the neural and cognitive processes producing an observed pattern 

of performance. They serve another scientific function too. The literature on visual 

search and selective attention is governed by ambiguous and vague terms such as 

attention (both as cause and as effect), capacity, capture, disengage, efficiency, 

engage, map, priority, salience, selection, and shift. Formal models are needed to 

explain what these terms mean by identifying them with specific components, 

processes, or outputs. 
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4.1.1 Human and Nonhuman Primate Visual Search Performance 

Visual search has been investigated in many laboratories in many ways. Nevertheless, 

some general attributes have been established in human studies and replicated in 

macaque studies. The first key attribute is this: visual search takes time. A minimal 

amount of time is needed for visual encoding and response preparation. Not much more 

time is needed if the sought for object is easily discriminated from distracting objects, 

but progressively more time is needed if the distracting objects are more visually similar 

to the sought for target object and there are more such distracting objects (e.g., Duncan 

& Humphreys, 1989; Treisman & Gelade, 1980). Additional time may be taken if one of 

the non-target items is especially conspicuous (e.g., Bacon & Egeth, 1994; Theeuwes, 

1994) or if the target item is in the same location as a previously attended target (Klein, 

2000; Posner & Cohen, 1984). More time is needed if the response to the target object 

requires any kind of arbitrary mapping from stimulus location or property to response. 

To investigate mechanisms of visual search at the neural circuit level requires 

systematic testing in nonhuman primates. For such studies to be relevant for 

understanding human performance, we must verify that nonhuman primates exhibit 

chronometric characteristics of search performance corresponding to humans. 

Fortunately, when sought, this confirmation has been found. Macaque monkeys exhibit 

dependence of visual search on target-distractor similarity and set size during singleton 

search (Arai et al., 2004; Azzato & Butter, 1984; Balan et al., 2008; Buracas & Albright, 

1999; Camalier et al., 2007; Cohen et al., 2009b; Lee & McPeek, 2013; McPeek & 

Keller, 2001; Motter & Holsapple, 2007, 2000; Nothdurft et al., 2009; Sato et al., 2001; 

Song et al., 2008) and conjunction search (Bichot & Schall, 1999; Motter & Belky, 1998; 

Shen & Paré, 2006). They can exhibit feature search asymmetries (Nakata et al., 2014). 
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They can exhibit inhibition of return (Bichot & Schall, 2002; Fecteau & Munoz, 2003; 

Torbaghan et al., 2012). Visual search is guided by memory as well as sensation. On 

the shortest time scale, performance of popout search varies if the search feature 

dimensions change (Maljkovic & Nakayama, 1994). Called priming of popout, this 

demonstrated the limits of automaticity in visual search. Monkeys also exhibit priming of 

pop out (Bichot & Schall, 2002; Purcell, et al., 2012b). Macaque monkeys can also 

perform visual search filtering tasks that require search on one feature dimension and 

response according to another (Katnani & Gandhi, 2013; Sato & Schall, 2003). Most 

recently, we have shown that monkeys also show contingent capture of attention by 

conspicuous non-target items (Cosman et al., 2018). Hence, macaque monkeys are a 

valid model of human visual search.  

 

4.1.2 Nonhuman Primate Visual Search Neurophysiology 

Establishing that macaque monkeys perform visual search like humans provides the 

opportunity to investigate at the neurophysiological level the various operations, 

processes, and stages supporting visual search. To orient the reader to this literature, 

we offer a selective survey of the neurophysiological correlates of visual search. 

The first such studies were published by Chelazzi et al. (1993) in inferotemporal 

cortex and Schall and Hanes (1993) in frontal eye field. Both studies found that neurons 

that initially did not distinguish the target from distractors eventually came to discharge 

more spikes when the target relative to a distractor was in the response field. 

Subsequent studies across numerous laboratories have replicated and extended the 

original observations during visual search tasks in frontal eye field (Bichot et al., 2001a; 

Bichot et al., 2001b; Cohen et al., 2007, 2009; Costello et al., 2013; Heitz & Schall, 
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2012; Miller & Buschman, 2013; Mirpour et al., 2018; Monosov et al., 2008; Monosov & 

Thompson, 2009; Murthy et al., 2009; Nelson et al., 2016; Phillips & Segraves, 2010; 

Purcell et al., 2013; Ramkumar et al., 2016; Sapountzis et al., 2018; Sato et al., 2001; 

Sato et al., 2003; Sato & Schall, 2003; Schall et al., 1995a; Schall, 2004b; Thompson et 

al., 1996; Thompson et al., 2005a, 2005b; Thompson et al., 1997; Trageser et al., 2008; 

Woodman et al., 2008; Zhou & Desimone, 2011), in other prefrontal regions (Bichot et 

al., 2015; Hasegawa et al., 2000; Iba & Sawaguchi, 2003), in extrastriate visual areas 

like MT (Buracas & Albright, 2009) and V4 (Arcizet et al., 2018; Bichot et al., 2005; 

Chelazzi et al., 2001; Gee et al., 2010; Ipata et al., 2012; Mazer & Gallant, 2003; Motter, 

1994; Ogawa & Komatsu, 2006; Zhou & Desimone, 2011), as well as areas in the 

temporal lobe (Chelazzi et al., 1998; Monosov et al., 2010; Mruczek & Sheinberg, 

2007a, 2007b, 2012) and the parietal lobe (Arcizet et al., 2018; Balan et al., 2008; 

Constantinidis & Steinmetz, 2001; Ipata et al., 2006a, 2006b; Meyers et al., 2018; 

Mirpour et al., 2009, 2010; Mirpour & Bisley, 2013; Nishida et al., 2013, 2014; Ogawa & 

Komatsu, 2009; Sapountzis et al., 2018; Steenrod et al., 2013; Tanaka et al., 2015; 

Thomas & Paré, 2007) as well as subcortically in the superior colliculus (Lovejoy & 

Krauzlis, 2017; McPeek & Keller, 2002; Reppert et al., 2018; Shen & Paré, 2007, 2014; 

Song & McPeek, 2015; White et al., 2009, 2017), substantia nigra of the basal ganglia 

(Basso & Wurtz, 2002), and central thalamus (Costello et al., 2016).  

Viewing these diverse results with a goal of formulating a mechanistic model of 

visual search, we must appreciate that each of these cortical areas and subcortical 

structures is comprised of a diversity of neurons distinguished by morphology and 

connectivity. Only some of the neurons in these various neural loci contribute to visual 
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search. The detailed connectivity of this network has yet to be worked out, but some 

results point toward nuances that will constrain such a mechanistic model. For example, 

different neurons in FEF project to V4 and to MT, and the two pools of neurons have 

different frontal lobe inputs (Ninomiya et al., 2012). Also, FEF is connected with at least 

80 cortical areas (Markov et al., 2014; Schall et al., 1993; Schall et al., 1995b). Similarly, 

the superior colliculus receives inputs from effectively as many cortical areas (Cerkevich 

et al., 2014; Fries, 1984). Crucially, pyramidal neurons in the cerebral cortex do not 

project to more than one cortical area (Markov et al., 2014). Likewise, pyramidal 

neurons in layer 5 that project to the superior colliculus do not also project to cortical 

areas (Pouget et al., 2009). Hence, if each pyramidal neuron projecting to a different 

target conveys a different signal, then a cortical area like FEF must have dozens of 

distinct types of pyramidal neurons. The extent of this functional variability has only 

recently been investigated quantitatively (Lowe & Schall, 2018). 

Research has demonstrated that different neurons support different operations. 

For example, the target selection process manifest by visually responsive neurons is 

distinct from saccade production. For example, in FEF the target selection process 

happens if no saccade to the target is made (Thompson et al., 2005b; Thompson et al., 

1997) or if the endpoint of the saccade is not at the search target (Murthy et al., 2009; 

Sato et al., 2003). Moreover, the target selection process does not automatically 

produce saccade preparation (Juan et al., 2004; cf. Katnani & Gandhi, 2013). Corrective 

saccades are produced by FEF (and related) movement neurons independent of state 

of the visual neurons (Murthy et al., 2007).  
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The claim that anatomically and functionally different populations of neurons 

accomplish visual search requires an explanation of the relationship between those 

populations. One approach was formalized in the Gated Accumulator Model (Purcell et 

al., 2010; Purcell et al., 2012b). This model explains the relationship between visual 

target selection and saccade preparation by using the observed responses of FEF 

visual neurons as inputs to a network of accumulators. The salience evidence that is 

accumulated is just the spike trains recorded from visually responsive neurons in FEF. 

Accumulated variability in the firing rates of these neurons explains choice probabilities 

and the distributions of correct and error response times with search arrays of different 

set sizes if the accumulators are mutually inhibitory. The dynamics of the stochastic 

accumulators quantitatively predict the activity of presaccadic movement neurons that 

initiate eye movements if gating inhibition prevents accumulation before the 

representation of stimulus salience emerges. This formal modeling approach 

demonstrates the viability of combining neurophysiological data and computational 

models to identify neural substrates of visual attention and to formalize the otherwise 

vague concepts and terms listed above. 

 

4.1.3 Human and Nonhuman Primate Visual Search Electrophysiology 

Establishing similarities between macaque and human measures of visual search is 

necessary to enable mapping between monkey neurophysiology and human cognition. 

We reviewed similarities of macaque and human performance above. Here, we briefly 

summarize another empirical bridge, recording event-related potentials in nonhuman 

primates to obtain measures parallel to those of human studies. First, the ERP 

signature known as contralateral delay activity has been measured in macaque 
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monkeys (Reinhart et al., 2012), so the contribution of working memory in guiding 

search can be investigated with macaque monkeys in parallel to human studies (e.g., 

Woodman et al., 2007).  Next, the allocation of visual attention during visual search is 

indexed by an event-related potential known as the N2pc (e.g., Liesefeld et al., 2017; 

Luck & Hillyard, 1994; McCants et al., 2018). Also, the suppression of salient distractors 

is indexed by an event-related potential known as the Pd (Hickey et al., 2008; Liesefeld 

et al., 2017; Sawaki & Luck, 2010). Previous research has confirmed that macaque 

monkeys manifest the N2pc (Cohen et al., 2009a; Heitz et al., 2010; Purcell et al., 2013; 

Woodman et al., 2007). Recent work has also demonstrated monkeys manifest the Pd 

component associated with suppression of salient distractors (Cosman et al., 2018). 

The relationship of intracranial single-unit signals and extracranial EEG signals requires 

much further investigation, because for unknown reasons the neural events signaling 

search target location arise in FEF before the N2pc (Cohen et al., 2009a). To 

understand these timing relationships, data from a likely generator of the N2pc, such as 

area V4, is needed (e.g., Hopf et al., 2000).  

 

4.1.4 Linking Propositions Through Combined Neural and Mental Chronometry 

To claim that we understand the neural mechanisms of visual search, we will need to 

explain the neural processes that occupy the different amounts of time taken during 

visual search under various conditions. As visual search time increases, do a fixed 

number of neuro-computational processes just take longer? Or does an increase of 

visual search time happen because additional neuro-computational processes are 

inserted between encoding and responding? If additional processes are invoked, how 

do the multiple processes interact?   
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We believe that the answers to these questions will end with neurophysiological 

data, but they must begin with a clear appreciation of the psychological perspective on 

visual search and the history of response time models. A conceptually and historically 

foundational hypothesis posited that response time (RT) in complex tasks is the 

summation of functionally distinct stages (Donders, 1868). This stage assumption is 

foundational to the predominant model of “decision-making”, which consists of a single 

stochastic sequential-sampling process following an uninteresting visual encoding stage 

and preceding a delayed response production stage (Ratcliff et al., 2016; Michael N. 

Shadlen & Kiani, 2013). Such models explain performance and account for neural 

activity in visual discrimination tasks as well as visual search with direct stimulus-

response mapping (Purcell et al., 2010; Purcell et al., 2012b). But, if RT is not 

comprised of dissociable stages, or if RT is comprised of multiple stochastic sequential-

sampling processes, then models like drift diffusion seem disqualified. If that is so, then 

alternative models must be considered. One possibility is a cascade architecture in 

which multiple levels of processing are arranged serially with information continuously 

propagating from one level to the next (e.g., McClelland, 1979). Another, intermediate 

possibility is known as asynchronous discrete flow in which the processing of multiple 

features is accomplished discretely, independently but in parallel and finishing at 

different times (Miller, 1988). These qualitatively different mechanisms with aspects of 

simultaneity of processing have been overlooked in the canonical literature on the 

neural mechanisms of decision making.  

Crucially, models with a single stochastic decision process cannot explain tasks 

that require multiple, sequential operations. Consider a visual search filtering task like 
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the one used in this study. In the vernacular of this literature, accomplishing such a task 

requires a “decision” about the location of a color singleton, a “decision” about the 

shape of the singleton, a “decision” about the shapes of distractors, a “decision” about 

the congruency of the singleton and distractor shapes, a “decision” about the instructed 

stimulus-response mapping, a “decision” about the correct endpoint of the saccade, and 

a “decision” about when to initiate the saccade. This confusion can be eliminated by 

using the term “decision” to describe the deliberations and actions of agents but not to 

characterize particular neuro-computational processes (Schall, 2001). 

If neuro-computational modules are distinct and independent, then it should be 

possible to change one process without changing another. This idea underlies the logic 

of separate modifiability formulated by Saul Sternberg (1969, 2001). If mental modules 

are distinct and independent, then it should be possible to change one process without 

changing the other. The logical, mathematical, and statistical formulation developed by 

Sternberg specifies how to interpret the effects of specific causal manipulations on 

performance and neural measures. For example, if factors F (e.g, singleton-distractor 

identifiability) and G (stimulus-response cue discriminability) influence two sequential 

processes, A and B, selectively, then RT = DurationA(F) + DurationB(G). If A and B are 

distinct, sequential processes, then in an F x G factorial experiment, changes of RT 

over variation of F will be independent of changes of RT over variation of G (Figure 4.1). 

This approach has already revealed additivity and mutual invariance of singleton-

distractor similarity and response interference in monkey cognitive neurophysiology 

studies (Mouret & Hasbroucq, 2000; Sato et al., 2001) and human ERP studies (e.g. 
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Osman et al., 1992; Servant et al., 2015; Smulders et al., 1995; see also Liesefeld, 

2018). 

Although this approach has proven effective, distinct and independent modules 

need not result in total additivity. If factors F and G selectively influence distinct but 

simultaneous processes, A and B, then RT < DurationA(F) + DurationB(G) (Figure 1). 

The literature is divided on how filtering tasks, like the one we used, are performed. The 

most common view is that selection and categorization of an object are separate 

sequential stages 

(Figure 1A) (e.g., 

Broadbent, 1971; 

Hoffman, 1978; 

Treisman, 1988; Wolfe 

et al., 2015). An 

alternative view is that 

objects are selected 

and categorized 

through parallel 

processes (Figure 

4.1B) (e.g., Bundesen, 

1990; Logan, 2002).  

The 

fundamental problem 

of distinguishing serial 

Figure 4.1. Two alternative architectures for the interaction of two distinct processes. 
(A) Serial exhaustive architecture. Both processes must complete before a response can be 
initiated. The durations of the two stages of processing, A and B, are under the selective 
influence of factors, F and G. Mutual invariance is satisfied when manipulation of factor F (or 
G) alters the duration of stage A (or B) but not B (or A). Additivity is satisfied when the total RT 
equals the sum of the durations of the separate processes. (B) Parallel exhaustive architecture. 
The two processes operate concurrently but both must complete before a response can be 
initiated. Manipulation of factor F (or G) alters the duration of stage A (or B) but not B (or A). 
The variation of RT across the two manipulations is additive or under-additive.  
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from parallel processing has proven challenging because particular serial and parallel 

architectures can be mathematically indistinguishable (e.g., Townsend, 1972; 

Townsend, 1990). However, a mathematically rigorous approach to investigating 

alternative process architectures was developed by James Townsend and colleagues, 

known as systems factorial technology (Harding et al., 2016; Houpt et al., 2014; 

Townsend & Nozawa, 1995). Based on mathematical axioms, postulates, and 

theorems, systems factorial technology offers strong tests of alternative architectures. 

Under conditions of selective influence, distinct predictions about response time 

dynamics are made for serial and parallel models with different decision stopping rules. 

Through a series of specific analyses of response time distributions, systems factorial 

technology can discriminate between five types of information processing architectures 

that could accomplish a task. These are (1) serial self-terminating, (2) serial exhaustive, 

(3) parallel self-terminating, (4) parallel exhaustive, and (5) coactive. Of course, 

distinguishing serial from parallel processing in visual search has a long and some may 

say discouraging history (Townsend, 1990; Treisman & Gelade, 1980; see also 

Liesefeld & Müller, 2020; Moran et al., 2016; Thornton & Gilden, 2007); yet, progress on 

this issue remains possible. Through systems factorial technology, when selective 

influence is applied effectively in visual search, predictions of serial and parallel models 

and their stopping rules are mathematically distinct and experimentally discriminable 

(Fifić et al., 2008b). 

 

4.1.5 Prerequisites for Linking Neurophysiology and Systems Factorial Technology 

The integration of neurophysiology and systems factorial technology has three 

prerequisites: (1) the existence of distinct operations or stages that can be selectively 
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influenced by experimental manipulations; (2) a factorial task design that selectively 

influences these distinct operations or stages; and (3) evidence that macaque monkeys 

can perform such a factorial experiment in a manner that can be analyzed by SFT. For 

perspective, prerequisites like this had to be satisfied when this laboratory began using 

the stop signal saccade countermanding task (Hanes & Schall, 1995).    

The first prerequisite has already been satisfied empirically. During cognitive 

neurophysiological experiments, RT can be divided into distinct processing stages 

during visual search (Thompson et al., 1996; c.f. Costello et al., 2013). The singleton 

selection stage takes longer during less efficient search when the target is more similar 

to distractors (Sato et al., 2001). Saccade preparation is delayed in less efficient relative 

to more efficient visual search (Woodman et al., 2008). Requiring arbitrary stimulus-

response mapping reveals more neuro-computational processes because it requires 

more operations that occupy different intervals including singleton selection, encoding 

the stimulus-response rule, and saccade endpoint selection (Sato et al., 2003; Schall, 

2004). 

Here, we present the second and third prerequisites. We have developed a 

filtering task that requires search on color and response on shape with factorial 

manipulations of singleton selection through singleton-distractor chromatic similarity and 

of stimulus-response mapping through stimulus elongation. We then provide the first 

demonstration that such tasks can be performed by macaque monkeys. We also show 

that performance can be analyzed using the methods of systems factorial technology 

producing results that support substantive inferences about the processing architectures 

underlying the performance. Importantly, the processing architectures discovered for 
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two monkeys differed. We regard this as a positive indication about the utility of systems 

factorial technology to discriminate different strategies. Using the large datasets 

provided through cognitive testing of macaque monkeys, we addressed other questions 

that have not been possible using systems factorial technology with the smaller 

datasets typical of human studies. These include relating processing architecture to the 

quality of performance and to the production of error responses. These novel results 

establish a foundation for neurophysiological investigation using the logic of separate 

modifiability and the tools of systems factorial technology, which will provide 

unprecedented insights into the neuro-computational mechanisms of visual search. 

 

4.2 METHODS 

4.2.1 Subjects, Surgical Procedures, and Gaze Acquisition 

All procedures were approved by the Vanderbilt Institutional Animal Care and Use 

Committee in accordance with the United States Department of Agriculture and Public 

Health Service Policy on Humane Care and Use of Laboratory Animals. 

 Behavioral data were collected from two macaque monkeys, Macaca mulatta and 

M. radiata, identified as Le and Da. The monkeys weighed approximately 12 kg (Le) 

and 8 kg (Da) and were aged 6 years (Le) and 12 years (Da) at the time of the study. 

Monkeys were surgically implanted with a headpost affixed to the skull via ceramic 

screws under aseptic conditions with isoflurane anesthesia. Antibiotics and analgesics 

were administered postoperatively. Monkeys were allowed at least 6 weeks to recover 

following surgery before being placed back on task. Gaze was tracked using an Eyelink 

1000 system (SR Research; sampling rate = 1,000 Hz). 
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4.2.2 Task Design and Protocol 

Monkeys performed 30 sessions of a go-nogo visual search task in which response was 

cued by the shape of a color singleton. Trials began with the monkey fixating a central 

stimulus for 800-1200 ms, after which eight iso-eccentric, isoluminant stimuli were 

presented with eccentricity = 6.0 deg. Stimuli were either square or rectangular. All eight 

stimuli had the same shape on each trial. If the singleton and distractors were square, 

cueing a no-go trial, monkeys were rewarded for maintaining fixation at the central spot 

for 1000 ms. No-go trials comprised ~20% of all trials in each session. If stimuli were 

rectangular, monkeys were rewarded for shifting gaze to the singleton and maintaining 

fixation for 800 ms (monkey Le) or 1000 ms (monkey Da). The inter-trial interval was 

fixed at 2 sec. 

Task difficulty varied along two dimensions (Figure 4.2): singleton-distractor color 

similarity and stimulus elongation. Singleton-distractor color similarity manipulated 

singleton identifiability. Stimulus elongation manipulated cue discriminability. All stimuli 

had four possible colors: red (CIE x 628, y 338, Y 4.4 or x 604, y 339, Y 5.2), off-red 

(CIE x 552, y 399, Y 4.5 or x 520, y 405, Y 6.6), green (CIE x 280, y 610, Y 4.6 or x 292, 

y 575, Y 6.1), and off-green (CIE x 322, y 558, Y 4.6 or x 364, y 426, Y 6.8) presented 

on a gray background (CIE x 275, y 228, Y 0.54 or x 334, y 375, Y 0.6). Stimuli had 

three possible aspect ratios: square for nogo trials, and either 1.4 or 2.0 for go trials. 

The orientation of elongation was counterbalanced between the two monkeys; for 

monkey Da a vertical rectangle signaled go, whereas for monkey Le a horizontal 

rectangle signaled go.  



119 

 

 

Figure 4.2. Visual search task designed to elucidate distinct operations. (A) Visual search task with go-nogo stimulus-response 
mapping. Six representative trial types are depicted. Correct gaze behavior is illustrated with dotted arrows for go trial saccades or 
dotted circle for nogo maintained fixation. The singleton is illustrated as always red and located on the right for purposes of 
illustration. Singleton shape cued the response rule. If the singleton was square (right), it cued withholding of the saccade. If the 
singleton was elongated (left and middle), it cued a pro-saccade. Two factors were manipulated independently. Stimulus-response 
cue discriminability was either High (aspect ratio = 2.0, HDiscrim or HD) or Low (aspect ratio = 1.4, LDiscrim or LD). On each trial, all 
distractors shared the degree of elongation with the color singleton. Singleton identifiability was either High (larger chromatic 
difference between singleton and distractors, HIdent or HI) or Low (smaller chromatic difference between singleton and distractors, 
LIdent or LI). The task offered 4 basic types of trials: High Identifiability and High Discriminability (HIdentHDiscrim), Low Identifiability and 
High Discriminability (LIdentHDiscrim), High Identifiability and Low Discriminability (HIdentLDiscrim), and Low Identifiability and Low 
Discriminability (LIdentLDiscrim). To assess the additivity and mutual invariance of these factors, trial types were interleaved in a 2x2 
design. (B) Alternative processing architectures for the double factorial visual search task. Singleton identification is influenced by 
target-distractor similarity but not singleton elongation. Stimulus-response cue discrimination is affected by singleton elongation, but 
not target-distractor similarity. Under the serial exhaustive architecture (top), singleton identification is completed before cue 
discrimination, which must then be completed before production of the response. Under the parallel exhaustive architecture (bottom) 
singleton identification and cue discrimination operate concurrently and must both finish before production of the response. 
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4.2.3 Assessment of Operations, Stages and Strategies 

To assess alternative process architectures supporting performance of this task, we 

applied systems factorial technology (Harding et al., 2016; Houpt et al., 2014; 

Townsend & Nozawa, 1995). Statistical details of systems factorial technology and 

reporting conventions can be found in these references. Systems factorial technology 

typically requires a 2x2 manipulation of factors that selectively influence distinct 

processing operations (cf. Yang et al., 2014). As illustrated in Figure 4.2, the first 

manipulation was singleton identifiability through interleaved presentation of search 

arrays with low singleton-distractor similarity (e.g., red among green) (High 

Identifiability, HIdent) and search arrays with high singleton-distractor similarity (e.g., red 

among off-red) (Low Identifiability, LIdent). The second manipulation was cue 

discriminability through interleaved presentation of array items with higher aspect ratio 

(High Discriminability, HDiscrim.) and array items with lower aspect ratio (Low 

Discriminability, LDiscrim.). The cue discrimination was enforced by interleaving 20% nogo 

trials. This 2x2 design results in four types of trial. The easiest were High Identifiability 

with High Discriminability (HIdentHDiscrim.). The most difficult were Low Identifiability with 

Low Discriminability (LIdentLDiscrim). The two intermediate difficulty were Low Identifiability 

with High Discriminability (LIdentHDiscrim) and High Identifiability with Low Discriminability 

(HIdentLDiscrim). 

 

4.2.4 Statistical Analyses 

All t-tests presented are two-sided, unless otherwise stated. ANOVA were calculated on 

across-session mean response times and accuracy rates. Also, to account for incidental 

variation across sessions while preserving relative relationships between conditions, 
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ANOVA were repeated with per-session response times after subtracting the session 

mean from each response time (adjusted session means). To avoid edge effects, 

accuracy rates were transformed using the logit transformation (Warton & Hui, 2011). 

 

4.3 RESULTS 

Each monkey performed 30 sessions of the search task. On average, Da performed 

649 correct trials per session providing a total of 19470 correct trials, and Le performed 

642 correct trials per session, providing a total of 19260 correct trials. 

 

4.3.1 Monkeys are Sensitive to Cue Discriminability and Singleton Identifiability 

Response times (RT) of both monkeys were affected by both task manipulations. The 

RTs for each condition are plotted in Figure 4.3A and listed in Table 4.1. As expected, 

response times were longer for trials in which the singleton was more chromatically 

similar to distractors and thus harder to identify. Likewise, response times were longer 

when the cue was less discriminable. These differences were statistically significant 

when evaluated as simple session means or when accounting for variation in means 

Table 4.1. Response time mean ± SD (ms) and associated ANOVA table. 
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across sessions (Table 4.1). In session means we found a significant interaction of the 

Figure 4.3. Basic performance measures. (A) Mean RT ± SEM for each trial type of the double factorial paradigm. There 
were four trial types: HIdentHDiscrim, HIdentLDiscrim, LIdentHDiscrim, and LIdentLDiscrim Trials with High and Low singleton identifiability are 
shown in black and red, respectively. Monkey Da exhibited under-additivity of RT, whereas monkey Le exhibited over-
additivity of RT across the two manipulations. (B) Log plot of the probability density of saccade endpoints relative to 
singleton location for High (black) and Low (red) singleton identifiability and High (bold) and Low (thin) cue discriminability. 
Spacing between search stimuli was 45˚ in polar angle. Both monkeys exhibited higher incidence of error saccades to the 
location adjacent to the singleton. Error bands are SE across sessions. (C) Probability density of RT, f(t). (D) Cumulative 

distribution of RT, F(t). Percent correct for each trial type is inset. (E) Survivor function of RT, S(t) = 1 – F(t).  
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factors for monkey Da but not Le. In adjusted session mean values, the interaction was 

evident for both monkeys.  

The endpoints of errant saccades were not distributed randomly and were thus 

informative. Both monkeys made false alarm saccades toward the color singleton when 

it was a square (Da: 11.5 ± 5.2% HIdent, 11.3 ± 3.3% LIdent; Le: 26.7 ± 15.0% HIdent, 7.2 ± 

7.1% LIdent). This demonstrates that squares and the less elongated rectangles were 

sufficiently similar to invoke cue discriminability confusion.  

Saccade endpoint was affected more by singleton identifiability than by shape 

discriminability (Figure 4.3B, Table 4.2). As expected, accuracy was significantly higher 

under high identifiability relative to low identifiability for both monkeys. However, the 

effect of cue discriminability on saccade endpoint accuracy was different for the two 

monkeys. Monkey Le was equally accurate when stimulus shape was more or less 

discriminable. Curiously, monkey Da was more accurate when stimulus shape was less 

discriminable. Finally, as observed previously (e.g., Findlay, 1997), on error trials both 

monkeys more commonly shifted gaze to a distractor adjacent to the color singleton 

(Figure 4.3B).  

The average trends are commonly all that is reported. However, the approach we 

will use begins with recognizing that singleton identifiability and cue discriminability 

influenced the shape of the RT distributions. To prepare for the systems factorial 

Table 4.2 Percent correct mean ± SD (%) and associated ANOVA table 
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analysis, we illustrate the variation of the RT distributions in three formats. The first is 

the simple probability density (f(t) = Prob(t < RT < t+Δt)), which is the probability of a 

response at a given time (Figure 4.3C). The second is the cumulative distribution (F(t) = 

∫f(t)dt = Prob(RT≤t)), which is the probability of a response being produced at a time 

less than or equal to t (Figure 4.3D). The third is the survivor function (S(t) = Prob(RT > 

t) = 1 – F(t)), which is the probability that a response has not yet been produced by time 

t (Figure 4.3E). The influence of both factors on the shape of these distributions is clear 

for both monkeys. However, much deeper computational insights are available through 

the next analytical steps. 

 

4.3.2 Systems Factorial Technology-Based Assessment of Visual Search Performance 

Systems factorial technology is used to assess processing stage architecture and 

performance strategy by analyzing the RT distributions of each condition within a 2x2 

factorial design (Harding et al., 2016; Houpt et al., 2014; Houpt & Townsend, 2010; 

Townsend & Nozawa, 1995). Given that each factor (singleton identifiability and cue 

discriminability) affected RT, we assessed the manner in which one factor affected RT 

while the other factor was fixed. In other words, how stimulus shape affects RT on trials 

with dissimilar singleton and distractors may or may not be the same as how shape 

affects RT on trials with similar singleton and distractors.  

 To illustrate the rationale and implementation of systems factorial technology, we 

performed a system of simple simulations (Figure 4.4). The 5 alternative architectures 

were simulated with pairs of linear accumulators embodying two processes, designated 

A and B (S. D. Brown & Heathcote, 2008; Carpenter & Williams, 1995). The finishing 

times of the accumulators were determined by four parameters: threshold, drift rate, drift 
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rate variability, and non-decision time. To simplify, both accumulators shared an 

Figure 4.4. Systems factorial technology simulations. (A) Each of five processing architectures were modeled using two simple 
linear accumulator models, each representing an independent operation or stage. The two operations, A and B, were assumed to be 
under the selective influence of Factors F and G. Stage A varied with Factor F (but not G), and Stage B varied with Factor G (but not 
F). Essential features of each architecture are shown with depictions of relative stage durations. (B) Mean interaction contrast. Plots 
of mean RT for each trial type of the double factorial setup. Lines in red and black refer to Low and High levels of Factor G. (C) 
Survivor function S(t) for each trial type. The gray and red shadings highlight the effects of Factor F on S(t) at fixed levels of Factor 
G. (D) Difference in survivor function S(t) for fixed levels of Factor G. Regions of blue and green denote intervals of underadditivity 
and overadditivity, respectively. (E) Survivor interaction contrast S(t). The serial self-terminating architecture produced a SIC that did 
not differ from 0.0 for all time. The serial exhaustive architecture produced a SIC that deviated to under-additivity followed by over-
additivity, with equal area under each region. The parallel self-terminating architecture produced a SIC with overadditivity. The 
parallel exhaustive architecture produced a SIC with underadditivity. The coactive architecture produced a SIC that deviated to 
underadditivity followed by overadditivity, with greater area under the overadditive region for net overadditivity. 
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equivalent arbitrary threshold and a non-decision time of zero. An arbitrary mean drift 

rate was assigned for the more efficient condition of each factor, and a slower drift rate 

was assigned for the less efficient condition of each factor. Each manipulation was also 

assigned identical drift rate variability. For the combined manipulation, the drift rate 

effects were added. Each replicate for each condition had a drift rate sampled from a 

normal distribution centered on the assigned mean drift rate and with a standard 

deviation of the assigned drift rate variability. The parameters of each simulation were 

adjusted to produce similar ranges of RT. The resultant process durations were 

assessed by 10000 random samples defined by each manipulation’s drift rate 

parameterization.  

We explore the influence of two factors, designated F and G, either of which can 

cause higher (H) or lower (L) efficiency. For example, factor F could be identified with 

singleton-distractor similarity that influences the duration of singleton identification 

(process A), and factor G could be identified with singleton elongation that influences 

the duration of response cue discrimination (process B). Importantly, depending on task 

demands not all processing architectures are candidates for task performance. For 

example, if a response is specified by a conjunction of two features, self-terminating 

architectures will result in high error rates. Conversely, if a response can be determined 

from a single source of information and not necessarily both, exhaustive architectures 

will result in inefficient performance. Nevertheless, because no particular task is being 

modeled in these simulations, SFT can be applied to simulated outcomes produced by 

all 5 architectures. We present these simulations to aid in conceptualizing the 

differences in the architecture details and in recognizing how the signatures of each 
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architecture are produced. We now present the 5 possible processing architectures 

resolved by SFT. 

 Consider first processes A and B as serial self-terminating processes (Figure 

4A). The two processes are queued sequentially, but only one needs to be completed 

for the overt response to be produced. Formally, the order of sub-processes is unknown 

and random. The two levels of factor F result in two distributions of process finishing 

times that overlap but have different modal values. Similarly, the two levels of factor G 

result in two distributions of finishing times that overlap but have different modal values. 

In this architecture, RT on each trial corresponds to the finishing time of the fastest 

process. Of course, process A or B might finish first on a given trial, but on average the 

systematic variation of RT will depend on the influence of the respective factors on each 

process. Crucially, under this architecture the influence of each factor on each process 

is independent. This results in mutually invariant, additive differences in average RT 

(<RT>) of both processes across both factors. In other words, a plot of average RT 

produced for each combination of the 2x2 design will produce parallel relations with no 

interaction across factors. The nature of the interaction across factors can be 

summarized by a value known as the Mean Interaction Contrast (MIC), which is 

calculated as 

MIC = (<RT>HH - <RT>HL) – (<RT>LH - <RT>LL). 

In this formula <RT>HH is the mean RT on trials with both factors allowing high efficiency 

for their respective processes, which tends to make it the smallest value. In comparison, 

<RT>LL is the mean RT on trials with both factors allowing low efficiency for their 

respective processes, which tends to make it the largest value. Likewise, <RT>HL and 
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<RT>LH are the mean RT on trials with one factor allowing high efficiency for its process 

with the other factor allowing only low efficiency for its process, which tends to make 

these intermediate values.  

 For the serial self-terminating processes, MIC = 0, which indicates perfect 

additivity of the underlying processes. Non-zero values of MIC signify an interaction 

among the processes. Such an interaction can be underadditive (MIC < 0) or 

overadditive (MIC > 0). MIC > 0 identifies either parallel self-terminating or coactive 

process architectures, and MIC < 0 identifies parallel exhaustive processes. Thus, the 

MIC offers some insight into the nature of the interaction between sub-processes. 

However, MIC cannot discriminate between the self-terminating or exhaustive stopping 

rules for serial architectures or discriminate between coactive and parallel self-

terminating architectures (Townsend & Nozawa, 1995). 

Further insight is available through examination of the production of responses 

through time across conditions. The effects of the combination of conditions can be 

assessed as a function of time over the production of the responses by measuring the 

difference of the survivor functions. The justification and rationale for this approach is 

detailed by Townsend and colleagues (Houpt et al., 2014; Houpt & Townsend, 2010; 

Townsend & Nozawa, 1995). The purpose of the analysis is to determine the extent to 

which the two levels of each factor influence the rate of response production through 

time. This is quantified by measuring the difference between response production when 

one factor is highly efficient (HF) and when it is less efficient (LF), while the other factor 

is more (HG) or less (LG) efficient.  
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The interaction between the two manipulations is known as the survivor 

interaction contrast (SIC). The SIC is a distribution-free measure for assessing the 

architecture (i.e., serial or parallel) and stopping rule (i.e., race minimum time or 

exhaustive maximum time) of information processing, which indexes the difference in 

levels of G between the levels of F, is calculated similar to the MIC by subtracting the 

two resulting difference functions over time: 

SIC(t) = [SHH(t) – SHL(t)] – [SLH(t) – SLL(t)] 

where SHH(t) is the value of the survivor function at time t when both factors are more 

efficient (HFHG), SLL(t) is the value of the survivor function at time t when both factors 

are less efficient (LFLG), SHL(t) is the value of the survivor function at time t when factor 

F is more efficient and factor G is less efficient (HFLG), and SLH(t) is the value of the  

survivor function at time t when factor F is less efficient and factor G is more efficient 

(LFHG). These operations are commutative thus the effect of varying G with respect to 

varying F is expected to be equivalent. The SIC measures the interaction contrast 

throughout the duration of all processes. The basic concepts of additivity, 

underadditivity, and overadditivity apply to the SIC; they just apply through time. Under 

the assumptions of systems factorial technology (e.g., stochastic independence of the 

processes), the form of SIC(t) is diagnostic of the 5 processing architectures. The 

statistical issues involved in evaluating SIC curves have been detailed (Houpt & 

Townsend, 2010). 

 The purely additive influence of factors in the serial self-terminating architecture 

result in SIC values that do not vary over time. However, the SIC produced by the other 

4 architectures varies through time, each producing a different pattern of variation. 
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Accordingly, the pattern of variation of the SIC curves can diagnose which underlying 

architecture produced a given pattern of RTs in the 2x2 factorial experimental design. 

 Consider next the serial exhaustive architecture. The processes are queued 

sequentially and the overt response is produced only when both processes have 

finished. Formally, the order of processes is unknown and SFT is unable to identify 

which one acted first. The mean RTs across factors exhibit no sign of interaction, so the 

MIC = 0 for this architecture as well. However, through time this architecture produces 

first underadditivity then overadditivity. That is, the SIC exhibits a negative-going 

followed by a positive-going deflection. Importantly, to satisfy the requirement that MIC 

= 0, the areas under the negative-going and positive-going deflections are equivalent. 

This time varying SIC is then used to resolve ambiguities when MIC = 0. 

Consider next the parallel self-terminating architecture. Both processes operate 

simultaneously, so a stopping rule must be specified. Specifically, if a response can be 

made when one stage is complete, then the combined process is parallel self-

terminating. In this architecture, the overt response is produced as soon as either 

process finishes. This architecture is also known as a race and predicts overadditivity. 

Thus, MIC > 0, and the SIC curve deviates only positively.  

Consider next the parallel exhaustive architecture in which a response can only 

be made when both stages are complete. Both processes operate simultaneously, but 

the overt response is produced only after both processes have finished. This 

architecture predicts underadditivity. Thus, MIC < 0, and the SIC curve deviates only 

negatively. The performance of one of the monkeys will have this appearance. 
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Consider finally the coactive architecture. While more complex and less explicit in 

form, it can be distinguished in function through these methods. In this architecture 

processes interact in a manner that can be characterized as finer grain coordination 

such as summation of the respective states through time. This can be realized if neither 

of the two processes A nor B produce the overt response but instead provide 

activations to a third process that sums the activations from A and B and thereby 

produces the overt response. This architecture, like a serial exhaustive architecture, 

predicts first underadditivity and then overadditivity. However, unlike a serial exhaustive 

architecture, for the co-active architecture, MIC > 0. Therefore, the area under the 

positive-going, over-additive deflection is greater than the area under the negative-going 

under-additive deflection and the architecture predicts a net overadditivity. Accordingly, 

although this architecture has an initial negative dip and a positive deflection (like serial 

processing) and has an MIC greater than 0 (like parallel self-terminating), the 

combination of SIC and MIC differentiates it from either of these other architectures. 

The performance of another monkey will have this appearance. 

 

4.3.3 Processing Architectures Supporting Visual Search  

We applied systems factorial technology to the visual search data obtained from two 

macaque monkeys. Figure 4.5A presents mean survivor functions for each level of the 

2x2 factorial design for each monkey. At a fixed level of singleton identifiability, the 

difference between survivor functions represents the effect of shape discriminability. 

Figure 4.5B plots the difference in survivor functions for each level of singleton 

identifiability. The shape of these differences reveals the effect of the separate factors 

on response production through time. Figure 4.5C plots the difference of these 
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differences, which is the survivor interaction contrast (SIC). The SIC summarizes the 

influence of the two factors through time. We will report SIC results by first describing 

the shape of the curve, then reporting the MIC, then reporting the inferred architecture.  

 For monkey Le, the SIC exhibited a pronounced period of underadditivity 

followed by a prolonged period of overadditivity. The integral of the period of 

Figure 4.5. Systems factorial analysis of RT distributions from the double factorial visual search task. (A) Survivor 
functions S(t) for each combination of singleton identifiability and cue discriminability. Black and red lines depict High and Low 
singleton identifiability. Thick and thin lines depict High and Low cue discriminability. The difference between survivor functions 
for High and Low cue discriminability is shaded in black (High singleton identifiability) and red (Low singleton identifiability).  (B) 
Difference between survivor functions for High and Low cue discriminability, computed at fixed levels of singleton identifiability. 
Shaded regions represent period of underadditivity (blue) and overadditivity (green) for Low (red) and High (black) singleton 
identifiability. Error regions are SE across sessions.  (C) Survivor interaction contrast curves. The SIC curve for monkey Da was 
exclusively sub-additive, consistent with the parallel exhaustive architecture. The SIC curve for monkey Le exhibited a change 
from under- to over-additivity, consistent with the parallel coactive architecture.  
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overadditivity exceeded that of the underadditivity, indicative of a positive mean 

Figure 4.6. Variation of performance across sessions. (A) Dendrogram resulting from clustering of SIC curves across 
sessions for monkey Da based on Euclidean distance. Four clusters were evident, suggesting the use of different strategies. (B) 
Form of the four clusters of SIC curves. Two (blue, magenta) corresponded to the co-active architecture, and two (red, green) 
were unlike the SIC of any architecture. (C) (left) Proportion correct as a function of MIC across sessions for monkey Da. A 
strong correlation was observed. MIC across session number inset. Points are colored in accordance with their cluster identity. 
(right) Mean RT for correct (filled) and error (open) trials as a function of MIC across sessions. Error RT were longer than 
correct RT, and a strong correlation with MIC was observed for correct but not error RT. (D) (left) Proportion correct as a 
function of MIC across sessions for monkey Le. MIC across session number inset. A significant correlation was not observed. 
(right) Mean RT for correct (filled) and error (open) trials as a function of MIC across sessions. Error RT were longer than 
correct RT, and a correlation with MIC was observed for error RT and a trend toward correlation with MIC was observed for 
correct RT. 
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interaction contrast (MIC = 14.3). This outcome is characteristic of the coactive 

processing architecture (Figure 4.4, fifth architecture).  

For monkey Da, the SIC exhibited only a prolonged underadditive deflection with 

MIC =  -15.3.  This outcome is characteristic of the parallel exhaustive architecture 

(Figure 4.4, fourth architecture). Note that neither monkey exhibited a self-terminating 

architecture. This is reassuring because a correct response requires both singleton 

identification and cue discrimination. Either serial or parallel self-terminating 

architectures would produce a response with only half of the necessary information and 

thus nearly chance performance. 

SFT analyses are typically performed on a per-subject basis rather than the 

present repeated testing across many sessions that can be done with monkeys. Thus, it 

is possible that the performance strategy associated with different processing 

architectures or dynamics varies across sessions. If so, then the multiphasic SIC curves 

could be artifacts of averaging sessions performed with different strategies. To assess 

whether the average SIC curve is a mixture of multiple architectures across different 

sessions, we performed a hierarchical agglomerative cluster analysis of SIC curves. We 

contrasted the use of Euclidean distance, which emphasizes the magnitudes of the SIC 

curves, and correlation distance, which emphasizes the shapes of the SIC curves, as 

similarity metrics.  

For monkey Da, using Euclidean distance as the similarity metric, we identified 

four clusters (Figure 4.6A). Using correlation distance as a similarity metric was less 

discriminating. We believe this indicates that the major differences in SIC are in 

magnitude rather than shape. To examine the systematic variability across sessions, we 



135 

plotted the SIC for each cluster (Figure 4.6B). With MIC > 0 and a later overadditive 

deflection exceeding the early underadditive deflection of the SIC, two of the clusters 

identified the coactive architecture. With MIC < 0 and only underadditive SIC 

deflections, the other two clusters identified the parallel exhaustive architecture. 

Notably, the biphasic SIC was evident in individual clusters. Even the most clearly 

underadditive SIC cluster had bimodal characteristics.  

For monkey Le, neither Euclidean nor correlation distance yielded distinct 

clusters. The coactive architecture was identified by the MIC values and SIC forms from 

each session, although MIC magnitude varied across sessions. 

The variation in MIC values across sessions offers a unique opportunity to 

assess whether qualitative or quantitiative differences in processing strategies result in 

predictable differences in performance. Hence, we examined the relationship between 

the per-session MIC, accuracy and response times (Figure 4.6C). For monkey Da, we 

found a significant negative correlation between percent correct and MIC (r = -0.69, p < 

0.001). We also found a significant negative correlation between RT of correct 

responses and MIC (r = -0.49, p < 0.01). However, we found no relationship between 

MIC and RT on error trials (r = -0.30, p = 0.11).  

For monkey Le, some early sessions had MICs much greater than the majority of 

sessions. Treating these as outliers, we found no relationship between percent correct 

and MIC (r = -0.21, p = 0.32), but RT and MIC trended toward a significant negative 

correlation for correct RTs (r = -0.38, p = 0.058) and were significantly negatively 

correlated for error trials (r = -0.45, p = -0.022). Relationships like these have not been 

reported before.  
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4.3.4 Processing Architectures for Correct and Error Performance 

SFT analyses commonly assume a low error rate. The performance of our monkeys had 

relatively high error rates. However, other investigators have demonstrated that 

conclusions from SFT are reliable in spite of error rates approximating what we obtained 

(Fifić et al., 2008a). We utilized the large amount of data obtained across sessions to 

investigate for the first time whether performance strategies differed between correct 

trials and errors. Given the prevalence of erroneous saccades to the distractor adjacent 

to the singleton, we distinguished two categories of errors. First, we will examine 

informed errors made to the stimulus adjacent to the singleton. Second, we will examine 

guess errors made to any other location.  

Figure 4.7 illustrates the progression of distributions used for the SFT analysis for 

correct responses, informed errors, and guesses for both monkeys. The factorial 

manipulation trial types were assigned according to the configuration of the search array 

and not saccade endpoint. That is, HI, LI, HD, and LD were assigned with respect to the 

identifiability and discriminability of the singleton.  

For monkey Da, both informed errors and guesses were generated with SIC 

deflecting only in the underadditive direction (MIC < 0), like the correct responses. 

Hence, like correct responses, errors were identified with the parallel exhaustive 

architecture. In other words, qualitatively a single architecture produced both correct 

and error responses. However, quantitatively, MIC for guesses was more underadditive 

than MIC for informed errors, which was more underadditive than MIC for correct 

responses. Also, the SIC for error responses was prolonged but lacked the pronounced 
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multiphasic pattern obtained from correct trials. Thus, the evidence suggested that 
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monkey Da employed similar architectures on both error and correct trials.  

For monkey Le, we observed qualitative variation in MIC and SIC for error 

relative to correct trials. As noted, correct trial performance produced MIC and SIC 

values that identified the coactive architecture. However, for guess errors, the SIC 

deviated only in the underadditive direction (MIC < 0), which identify the parallel 

exhaustive architecture. Meanwhile, for the informed errors, the SIC deflected more in 

the under- than overadditive direction (MIC slightly greater than zero). This pattern 

seems to approximate at least the parallel exhaustive architecture.  Thus, for monkey 

Le, errors may originate from a processing architecture different from that resulting in 

correct trials.  

For both monkeys, although their overall SIC curves have different shapes, the 

MIC for correct responses (Da: MIC = -15.3; Le: MIC = 14.3) was more positive than the 

MIC for informed errors (Da: MIC = -18.1; Le: MIC = 2.6), which was more positive than 

the MIC for guess errors (Da: MIC = -30.8; Le: MIC = -5.5). It should be noted that for 

both monkeys this difference appears most pronounced around the time of the second 

negative peak in Da’s biphasic SIC curve.  

 

4.4 DISCUSSION 

Through the present results, we have demonstrated the ability of monkeys to perform a 

speeded response task with 2x2 factorial manipulations of difficulty. To our knowledge, 

this is a first application of this experimental design in nonhuman primate research. We 

Figure 4.7. SFT analysis for different trial outcomes. (A) SIC curves derived from monkey Da performance on correct 
(left), informed errors adjacent to the singleton (middle) and guess errors (right). SIC curves for informed and guess errors 
exhibit more underadditivity relative to correct trials. All three SIC curves resemble that of the parallel exhaustive 
architecture. (B) SIC curves derived from monkey Le performance on correct (left), informed errors adjacent to the singleton 
(middle) and guess errors (right). SIC curves for errors exhibit more underadditivity (less overadditivity) relative to correct 
trials. The SIC curve for guess errors resembles the parallel exhaustive architecture, for informed errors, the serial 
exhaustive architecture, and for correct trials, the coactive architecture. 
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have also demonstrated the utility of systems factorial technology in assessing 

behavioral responses to infer underlying processing architectures. These findings pave 

the way for developing studies in monkeys that are directly comparable to studies in 

humans and to extend investigation to the neurophysiology producing the performance. 

We discuss two potential limitations of these current results: inter-monkey differences 

and error-prone performance. We conclude that neither of these considerations 

undermines the utility of this new experimental approach for nonhuman primate 

cognitive neurophysiology. In fact, the inter-monkey differences highlight the utility of 

systems factorial technology in diagnosing visual search strategy. We then situate this 

work in the context of related research using other approaches.  

 

4.4.1 Individual Differences Between Monkeys  

We identified a plausible processing architecture for both monkeys. Technically, 

it should be noted that the approach could have resulted in implausible architectures. 

Interestingly, the results differed, indicating that the two monkeys used different 

strategies. While such lack of replication invites further research with more subjects, we 

believe useful insights are still available for two reasons. First, although both monkeys 

showed the same main effects of the factorial manipulations, subtle differences in RT 

distributions were evident across monkeys. However, in and of themselves, these 

differences offer no insights into the source of those differences. The use of systems 

factorial technology provided distinctively different results for both monkeys. This 

outcome offers additional inferences about the mechanisms producing the RT 

distributions.  
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Second, these different inferences provide starkly contrasting predictions for the 

neurophysiological underpinnings of this behavior. For example, for monkey Da, whose 

RT distributions suggest a parallel exhaustive processing architecture, separate 

populations of neurons may carry signals related to singleton identifiability or cue 

discriminability. In contrast, for monkey Le, whose RT distributions suggest a coactive 

processing architecture, one population of neurons may carry signals related to 

singleton identifiability and cue discriminability. These are just two of multiple 

alternatives that can be formulated but are beyond the scope of this paper. Further 

insights are available through quantifying the degree and timing of saccade preparation 

assessed through the activity of movement neurons (e.g., Bichot et al., 2001a; Hanes & 

Schall, 1996; Woodman et al., 2008). 

The differences across monkeys could be due to one of two differences in the 

task. First, the two monkeys were required to fixate the search stimuli for different 

amounts of time. We doubt that this modest difference in fixation duration can explain 

the major difference in strategy. Because the fixation interval follows both array 

presentation and response time and are identical for all go-trial conditions, we do not 

see a mechanism by which this post-response fixation interval would affect the 

processing of the array during the trial. Still, further research can verify this supposition. 

Second, the elongated stimuli seen by Da were vertical whereas those seen by Le were 

horizontal. The orientations of the stimuli result in different edge-to-edge distances of 

stimulus pairs which may influence stimulus salience. We doubt that stimulus shape 

explains the difference in strategy. This rotation of the stimuli would be balanced across 

the two monkeys, where the edge-to-edge distance of the stimuli on the left and right for 
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monkey Da would be the same as the edge-to-edge distance of the stimuli on the top 

and bottom for monkey Le. Similarly, the stimuli on the top and bottom for Da have the 

same edge-to-edge distance as the stimuli on the left and right for Da. If this did explain 

the difference in processing architectures, then these stimulus location sets (Da: 

left/right, Le: top/bottom and Da: top/bottom, Le: left/right) should also be systematically 

different. We have compared results across these stimulus configurations and found no 

differences. Therefore, differences in array configuration cannot explain the differences 

in inferred processing architectures.  

 Further, the dissociation between parallel exhaustive and coactive architectures 

has been described previously. Fifić and colleagues (2008a) had human participants 

perform a multidimensional classification task for stimuli with dimensions that were 

either separable or integral. Performance during classification of separable-dimension 

stimuli was marked by the use of a parallel exhaustive architecture whereas 

performance during classification of integral-dimension stimuli was marked by the use of 

a coactive architecture. This performance strategy difference, revealed only through 

systems factorial technology, resembles the performance strategy difference identified 

here. Because the shape and chromatic dimensions of the current stimuli are different, 

they could be treated as separable dimensions. However, because both dimensions are 

carried by the same object they could be seen as integral. Monkey Da had performed 

several visual search tasks prior to this study in which shape and color cue different 

aspects of the response rules (Heitz & Schall, 2012; Reppert et al., 2018). This 

experience may enable the parallel exhaustive strategy by treating these feature 

dimensions separately. Monkey Le, on the other hand, had not performed other tasks 
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prior to this study and thus may integrate the two feature dimensions through a coactive 

strategy. Alternatively, monkey Le may have analyzed the distractors, or the whole 

array holistically, to determine the stimulus-response rule. If he did not individuate 

stimuli, this may also explain the coactive processing strategy, pooling all sources of 

information. 

Many other investigators have addressed the problem of the architecture 

underlying visual search. All now agree that the slope of RT with set size is not an 

effective criterion. More complex tasks are needed. For example, previous work 

studying a wide variety of visual search displays with multiple targets concluded that 

whereas most search conditions are accomplished through parallel limited-capacity 

process, a few conditions require serial search (Thornton & Gilden, 2007; see also 

Moran et al. 2016). A previous investigation of visual search with manipulation of target-

distractor similarity employed systems factorial technology (Fifić et al., 2008b). These 

authors reported systematic departure from parallel or serial processing and concluded 

that the results were consistent with co-active processing.  

  

4.4.2 Potential Problems of Error-Prone Performance 

 Systems factorial technology generally assumes perfect or near-perfect 

performance, because errors can contaminate RT distributions through speed accuracy 

tradeoffs. However, performance was not perfect in the data presented here. Thus, it is 

valid to wonder whether the SIC calculations and processing architecture inferences are 

invalidated by contamination of errors. This seems unlikely for two reasons. First, the 

SIC curves for both monkeys are qualitatively similar to those obtained in several other 

studies in humans with low error rates. Thus, the inferences supported by the findings 
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are sensible in the context of separable and integral feature dimensions as discussed 

above.  

Second, simulation approaches that are allowed to produce errors have shown 

that the MIC and SIC signatures are robust with moderately high error rates (Fifić et al., 

2008a; Townsend & Wenger, 2004). Specifically, only the coactive architecture 

signatures degrade with errors by losing their overadditivity. However, such an outcome 

means that a coactive architecture would be mistakenly identified as serial exhaustive. 

Hence, if performance supports the inference of the coactive architecture in spite of high 

error rates, then this should only increase confidence in the validity of the inference. If 

anything, we suspect that the high error rate may have resulted in the uncharacteristic 

bimodality of the SIC curve for monkey Da, but the nature of this bimodality is not at 

odds with the overall inference of a parallel exhaustive architecture. 

Further evidence that errors do not prevent interpretation of system factorial 

results is found in the interesting relationships we discovered between MIC and SIC 

values and error production. For monkey Da, although both error and correct responses 

arose from the same parallel exhaustive architecture, the magnitude of additivity 

assessed through MIC values was lower for errors relative to correct trials. This 

indicates that errors arose from quantitative, not qualitatively different processing. In 

contrast, for monkey Le, errors arose from qualitatively different processing. Correct 

trials arose from the coactive architecture, but errors arose from the parallel exhaustive 

architecture. We surmise, therefore, that rather than system factorial technology being 

challenged by errors, with large enough samples, errors can be interpreted by systems 

factorial technology. This is an innovative extension.  
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4.4.3 The Logic of Selective Influence, Additivity, Race Inequalities, and Systems 
Factorial Technology 

As noted above, the overall goal of applying the logic of selective influence is to 

distinguish cognitive, motor, and sensory, or, more generally, computational processes. 

The experimental approach of creating dissociations to discover separable processes is 

well-known in ocular motor and visual neuroscience. For example, memory-guided 

saccades were devised to dissociate visual processing from saccade production (Bruce 

& Goldberg, 1985; Hikosaka & Wurtz, 1983). Double-step saccades were devised to 

dissociate retinal location and eye position in saccade production (Hallett & Lightstone, 

1976). Anti-saccades are contrasted with pro-saccades to distinguish contributions of 

voluntary stimulus-response mapping (Hallett & Adams, 1980). Bistable visual stimuli 

afford a distinction between explicitly perceiving an object from simply responding to 

stimuli (Blake & Logothetis, 2002; Logothetis & Schall, 1989). Visual search was used to 

dissociate presentation of a stimulus in a neurons response field from that stimulus 

being the target of a saccade (Schall & Hanes, 1993). And so on. 

The straightforward framing hypothesis that RT is the summation of functionally 

distinct stages (Donders, 1868) was challenged on multiple grounds during the early 

years of experimental psychology. Indeed, in the 1938 edition of his textbook 

Experimental Psychology, Robert S. Woodworth wrote, “If we cannot break up the 

reaction into successive acts and obtain the time of each act, of what use is the reaction 

time?” (page 310). However, this pessimistic conclusion was removed from a revised 

edition (Woodworth & Schlosberg, 1954). Further progress on inferring processing 

architecture from systematic variation of RT was sparked by the formulation of the 

additive factors method (Sternberg, 1969). To determine whether two factors affect the 
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same or separate stages, the method assesses additivity of mean response times and 

of their variances. When response times from two or more factors are additive, the 

factors are taken to affect separate independent stages.  

The formulation of critiques (Townsend, 1972) and extensions (e.g., Ashby & 

Townsend, 1980; Schweickert, 1978; Taylor, 1976; Townsend, 1984) energized more 

sophisticated approaches to decomposing RT. For example, additive factors assumes a 

strictly serial architecture. As demonstrated in Figure 1, though, in a parallel architecture 

two factors can independently affect processing stages without affecting response times 

in an additive fashion. Today, the theoretical foundation and empirical effectiveness of 

the approach has been established in multiple research domains of experimental 

psychology and cognitive neuroscience (e.g., Sternberg, 2001; Townsend & Ashby, 

1983).  

Today, systems factorial technology offers the most complete method to infer 

processing architectures from performance of a double-factorial task (Townsend and 

Nozawa 1995). Here, we manipulated singleton identifiability by varying singleton-

distractor similarity and cue discriminability by varying singleton elongation. Other 

factors can be manipulated, of course. Indeed, the selective influence approach enables 

discovery of which factors influence common or different sub-ordinate processes. In the 

context of visual search, additional factors that merit investigation include set size, 

feature conjunctions, inhibition of return, priming of popout, attentional capture, and 

stimulus-response mapping difficulty. For example, the relationship between singleton-

distractor similarity and stimulus-response mapping could be assessed by adding an 

additional stimulus-response mapping rule, e.g. instructing pro-saccades or anti-
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saccades (Sato & Schall, 2003). By iteratively and systematically testing the 

independence and interactions of pairs of factors, we will gain a deeper understanding 

of the existence of and relationships among the computational processes accomplishing 

visual search. Further validation would entail simulation as illustrated in Figure 4 and 

identification of neural signaling corresponding to the timing of the hypothetical 

constituent processes. 

We should note that other, more specific approaches to inferring processing 

architecture and duration have been developed. For example, Miller (1982) described 

the race model inequality to distinguish between parallel channels and coactive 

processing. In this conception, if two sources of information are in separate parallel 

channels, then the probability of responding to two sources of information at a given 

time t must be less than the probability of responding to either individual source alone at 

time t. Otherwise, processing must be coactive. This model holds for self-terminating 

architectures, such as a race model, because it assumes that either piece of information 

can elicit a response. However, if both pieces of information are needed to produce a 

response, then this assumption does not hold and violations of the inequality do not 

necessarily indicate coactivity. 

Similarly, Logan & Cowan (1984) used the race model formulation to explain 

performance of the stop signal (countermanding) task. This model affords estimation of 

the duration of a covert stopping process that happens to correspond precisely to the 

moment of modulation of particular sensory-motor neurons (Costello et al., 2013; Hanes 

et al., 1998; Mallet et al., 2016; Murthy et al., 2009; Paré & Hanes, 2003). The 

relationship between the abstract race model and the neurophysiological findings was 
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elucidated through development and validation of the interactive race model (Boucher et 

al., 2007; Logan et al., 2015).  

 Systems factorial technology improves upon both of these methods by 

distinguishing self-terminating and exhaustive stopping rules and is not limited to 

additivity which allows the assessment of both serial and parallel processing 

architectures. Thus, if an experiment can be designed such that the response times are 

amenable to systems factorial technology, it is the more powerful method because it 

can differentiate all possibilities. Ultimately, we believe that similar mappings between 

abstract model architectures and neural processes can be achieved using the logic of 

selective influence and the tools of systems factorial technology. 

 

4.4.4 Conclusions 

RT in complex tasks is the summation of functionally distinct operations or 

stages. While not emphasized, the stage assumption is fundamental to the predominant 

model of “decision- making” – a single sequential-sampling process intervening 

between uninteresting visual encoding and response production stages. Such models 

explain performance and account for neural activity in visual discrimination tasks as well 

as visual search with direct stimulus-response mapping. But, if RT is not comprised of 

dissociable stages, then models like drift diffusion may be disqualified and alternative 

models are endorsed, such as cascade (e.g., McClelland, 1979) or asynchronous 

discrete flow (Miller, 1988), which are qualitatively different mechanisms.  

The most effective and perhaps only method for assessing the existence and 

characterizing the properties of modules or stages is the logic of separate modifiability. 

Crucially, single-stage decision-making models cannot explain tasks that require 
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multiple, sequential operations. The term “decision” is hopelessly ambiguous when 

applied to a task that requires a “decision” about the location of a color singleton, a 

“decision” about the shape of the singleton, a “decision” about the shapes of distractors, 

a “decision” about the congruency of the singleton and distractor shapes, a “decision” 

about the instructed stimulus-response mapping, a “decision” about the correct endpoint 

of the saccade, and a “decision” about when to initiate the saccade. We have 

established that macaque monkeys can perform a task with simultaneous, independent 

factorial manipulations, producing performance measures that produce interpretable 

outcomes using the most advanced computational analytical approaches. This paves 

the way for a next step in cognitive neurophysiology of visual search by providing the 

ability to assess whether individual neural processes are prolonged, more numerous, or 

interacting. 

  



149 

CHAPTER 5: SEQUENTIAL OPERATIONS REVEALED BY SERENDIPITOUS 

FEATURE SELECTIVITY IN FRONTAL EYE FIELD 

5.0 SUMMARY 

In Chapters 2 and 3, I characterized functional neural diversity by way of a consensus 

clustering algorithm. In Chapter 4, I characterized the cognitive architectures underlying 

the GO/NO-GO search task by way of SFT and workload capacity analyses. To 

complete the link between observations at the neural and behavioral levels, we must 

first establish that some categories of neurons instantiate cognitive operations. In this 

chapter, I analyze FEF neural responses during a related pro-/anti-saccade search task 

(Sato & Schall, 2003). Specifically, by leveraging an imbalanced stimulus-reward 

contingency across stimulus features, I identify separate, sequential stimulus selection 

and saccade selection processes in visually responsive FEF neurons. This identification 

demonstrates the ability to define neural indices of the finishing times of separate 

cognitive operations. This chapter has been uploaded to bioRxiv as Lowe & Schall 

(2019). 

 

5.1 INTRODUCTION 

To navigate in and interact with the visual world, primates must locate and identify 

objects to scrutinize through gaze. To understand how this localization, identification 

and gaze shifting is performed, we use visual search tasks in which targets for gaze 

shifts are presented with distracting stimuli. Target stimuli can be distinguished from 

distractors by some feature or set of features (Wolfe & Utochkin, 2019). Targets are 
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sought through an interplay of localization, identification, and saccade preparation 

manifest as covert and overt orienting.  

The frontal eye field (FEF), in prefrontal cortex, is known to support attention and 

eye movements and the performance of visual search (see Bisley & Mirpour, 2019; 

Schall, 2015 for review). Neurons in FEF respond to visual stimulation, before eye 

movements, or both (Bruce & Goldberg, 1985; Lowe & Schall, 2018; Schall, 1991). FEF 

has been conceptualized as a salience or priority map (Bisley, 2011; Fernandes et al., 

2014; Thompson & Bichot, 2005), meaning that its responses are related to whether a 

stimulus is important for attention or gaze shifts regardless of what features make it 

important (Mohler et al., 1973; Monosov et al., 2010; Ogawa & Komatsu, 2006; 

Ramkumar et al., 2016; Schall et al., 1995a; Zhou & Desimone, 2011). However, FEF is 

also an ocular motor center (Schall, 2015). Therefore, experimental manipulations are 

needed to dissociate selection of a stimulus as a conspicuous object, selection of a 

stimulus as a potential endpoint of a gaze shift, or preparation of a saccade 

(Matsushima & Tanaka, 2014; Murthy et al., 2001; Sato et al., 2001; Sato & Schall, 

2003; Scerra et al., 2019; Thompson et al., 1996; Trageser et al., 2008; c.f. Costello et 

al., 2013). 

Our laboratory designed a visual task to dissociate localization of a color 

singleton from the endpoint of a saccade reporting its location (Sato & Schall, 2003; 

Schall, 2004). The orientation of a color singleton cued monkeys to produce either a 

pro-saccade to the singleton or an anti-saccade to the distractor at the opposite 

location. We have improved the task by making the distractors elongated. This requires 

monkeys to select on color but respond on shape, resembling classic filtering tasks 
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(Eriksen & Eriksen, 1974; Sperling, 1960; Theeuwes, 1992; Treisman & Gelade, 1980). 

The literature is divided on whether selecting an object and categorizing it are separate, 

sequential stages (Broadbent, 1971; Hoffman, 1978; Treisman, 1988; Wolfe et al., 

2015) or objects are selected and categorized in a single step (Bundesen, 1990; Logan, 

2002). Thus, whether covert and overt orienting processes are comprised of distinct 

operations or stages remains uncertain.  

These differing views can be resolved through measurements of neural 

chronometry (Fig. 5.1). In the pursuit of this research aim, reward contingencies allowed 

one monkey to discover a strategy that prioritized the shape of the stimuli. 

Unexpectedly, some neurons recorded during this task exhibited rapid selectivity for 

stimulus shape. Here, we compare these findings to a previous report of color selectivity 

in FEF (Bichot et al., 1996) and characterize the neural chronometry of these FEF 

Figure 5.1. Visual search with explicit 

stimulus-response mapping. (A) Visual search 

task in which the orientation of a color singleton 

cues a pro-saccade (vertical), an anti-saccade 

(horizontal), or no saccade (square). Response 

times can be subdivided into three states or 

operations. Array presentation is followed by 

stimulus encoding and localization (thin line); the 

conclusion of this operation is indexed by 

singleton selection time (SST). Next, stimulus-

response mapping and selection of the saccade 

endpoint happens if a pro- or anti-saccade will be 

produced (thick line); the conclusion of this 

operation is indexed by endpoint selection time 

(EST). This operation may not occur when no 

saccade is made (grayed thick line). Finally, 

saccade preparation leads to initiation of the 

saccade which is manifest as the measurement 

of RT (dotted line). (B) Response time on anti-

saccade trials (RTAnti) is systematically longer 

than that on pro-saccade trials (RTPro). 

Measurements of SST and EST provide insight 

into the operations contributing to the variation of 

RT. Theoretically, a difference between SSTAnti 

and SSTPro (left) or between ESTAnti and ESTPro 

(right) could explain all (top), some (middle), or 

none (bottom) of the variation of RT. 

 



152 

neurons. The results provide new evidence that selection of objects and saccade 

endpoints are distinct operations, both accomplished by visually responsive FEF 

neurons. The time course of this feature selectivity provides new evidence that visual 

search is accomplished through sequential operations.  

 

5.2 METHODS 

5.2.1 Subjects 

Data from one male macaque monkey (M. radiata) was compared to data previously 

collected from four male macaque monkeys (M. mulatta). All procedures were in 

accordance with the National Institutes of Health Guide for the Care and Use of 

Laboratory Animals and approved by the Vanderbilt Institutional Animal Care and Use 

Committee.  

 

5.2.2 Visual Search Task 

All macaque monkeys performed color singleton visual search tasks. For two monkeys 

(A, C) the colors of singleton and distractor were constant, giving rise to strong search 

performance asymmetries (Bichot et al., 1996). For two monkeys (B, Q) the singleton 

and distractors alternated between red/green or green/red across sessions. New 

performance and neurophysiology data were collected from another monkey (Da) 

performing the visual search task with pro- and anti-saccades (Sato & Schall, 2003). 

The orientation of the singleton cued the pro- or anti-saccade and was presented with 

elongated distractors. The monkey was trained to fixate a central point whose 

appearance marked the beginning of the trial. After fixating this point for between 300 

and 800 ms, an array of four rectangular stimuli appeared between 3° and 10° 
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eccentricity. One of these stimuli was a color singleton (either red with green distractors 

or green with red distractors). The color of the singleton and distractors were randomly 

assigned on a trial by trial basis. All stimuli had an area of 1 square degree. Singletons 

could be either vertical (aspect ratio = 4.00) or horizontal (aspect ratio=0.25). Distractors 

could be either vertical, horizontal, or square (aspect ratio = 1.00). The aspect ratio of 

the color singleton indicated a response rule. If the singleton was vertical then reward 

was delivered for a saccade to the singleton (pro-saccade; Fig. 5.2A). If the singleton 

was horizontal then reward was delivered for a saccade to the stimulus located opposite 

to the singleton (anti-saccade). After making the saccade, the monkey was required to 

fixate the correct stimulus for 400 ms, until the fluid reward was delivered. If the monkey 

broke fixation or made a saccade to an incorrect location, a 2,000 ms time-out delay 

occurred. 

 Correct responses were defined by the orientation of the color singleton. Hence, 

the orientation of the distractors can influence response selection. Consequently, 

particular combinations of singleton and distractor orientations can cue congruent or 

incongruent saccades. The distractor opposite the singleton was a correct endpoint on 

anti-saccade trials, so congruency was operationalized by the relationship of the shape 

of the singleton and the distractor at the opposite location. If the distractor was vertical, 

a saccade may be planned toward it. If it was horizontal a saccade may be planned 

toward the color singleton. If the saccade consistent with the orientation of the opposite 

distractor corresponded to the saccade cued by the singleton, then the stimulus array 

was congruent. If the singleton and opposite distractor cued saccades in opposite 



154 

directions, then the stimulus array was incongruent. If the opposite stimulus was square, 

the stimulus array was neutral.  

  

5.2.3 Data acquisition and analysis 

Because all details have been described previously (Cohen et al., 2009b; Sato et al., 

2001; Schall et al., 1995a), they will not be repeated. The following approaches and 

definitions are particular to this analysis. 

 For averaging across neurons, SDFs were normalized by z-scoring across the 

full trial and performing a baseline subtraction. That is, the SDFs aligned on array 

presentation and saccade for each condition were concatenated and the standard 

deviation of this concatenated vector was calculated. The SDFs for that unit were then 

divided by that standard deviation. Then, the mean baseline activity, the average value 

of the SDF in the 300 ms preceding array onset, was subtracted. This method of scaling 

responses reduces the skewness of the SDF across the population and generates a 

comparable range of activity across neurons without erroneously scaling neurons with 

little to no modulation (Lowe & Schall, 2018).  

Selection times were calculated from the SDFs by subtracting the mean 

difference during the 300 ms before array onset from the difference between two 

conditions. Selection times were defined as the earlier of two times (1) the time the 

difference function exceeds 2 standard deviations of the baseline difference and 

continues on to exceed 6 standard deviations for at least 20 ms continuously or (2) the 

time the difference function exceeds 2 standard deviations of the baseline difference for 

at least 50 ms continuously. Visual latency was calculated in a similar fashion where the 

SDF itself meeting the above criteria as opposed to a difference function. Differences 
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among selection time distributions were assessed with a nonparametric Kruskal-Wallis 

test for equal medians. 

Each selection time measure was calculated over all RTs and in groups of trials 

with shortest and longest RTs based on median split. The magnitude of any difference 

in selection times across RT groups was compared to the difference in RT across the 

groups through a two-tailed t-test and associated Bayes factor. 

 

5.3 RESULTS 

5.3.1 Performance Results 

We begin by introducing a nomenclature used below. Correct saccades to vertical 

stimuli included pro-saccade trials with congruent, neutral, or incongruent arrays 

(ProC,N,I) and congruent anti-saccade trials (AntiC). We also designate saccades to 

square stimuli as neutral anti-saccade trials (AntiN) and saccades to horizontal stimuli as 

incongruent anti-saccade trials (AntiI).  

RT and accuracy both exhibited an influence of response mapping and singleton-

distractor congruency (Fig. 5.2B). As expected, mean RT ± SEM on all anti-saccade 

trials (311 ± 48 ms) was significantly greater than RT on all pro-saccade trials (240 ± 28 

ms) (ANOVA: F(1,198) = 182.5, p < 0.001. A Bayesian analysis suggested that the data 

were 2.8 x 1022 times as likely to have been observed in a model including stimulus-

response mapping as a factor as compared to a null model. Also, RT on all incongruent 

trials (304 ± 57 ms) was significantly greater than RT on all neutral trials (282 ± 50 ms), 

which was significantly greater than RT on all congruent trials (260 ± 45 ms) (ANOVA: 

F(2,198) = 20.9, p < 0.001). A Bayesian analysis suggested that the data were 1.7 x 107 

times as likely to have been observed in a model including congruency in addition to 
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stimulus-response 

mapping as compared 

to a model with 

stimulus-response 

mapping alone. Thus, 

the shape of the 

distractors influenced 

the efficiency of visual 

search and saccade 

production. A Bayesian 

analysis did not provide 

evidence for or against 

an interaction; the data 

were nearly 

equiprobable (only 1.24 

times as likely) in a 

model with no interaction as compared to a model with an interaction between stimulus-

response mapping and congruency.  

 Analyzing the pattern of errors, we discovered that the monkey more commonly 

shifted gaze to a vertical item than to any other (Fig. 5.2C). Endpoint errors were 

significantly more common to vertical stimuli (80 ± 12% vertical, 10 ± 7 % square, 11 ± 

7% horizontal; ANOVA: F(2,117) = 833.92, p < 0.001). A Bayesian analysis suggested 

that the data were 3.6 x 1065 times as likely to have been observed in a model including 

Figure 5.2. Search array configurations and task performance. (A) Visual search with 

pro-saccade (top) and anti-saccade (bottom) responses based on orientation of color 

singleton. Distractors could be square or elongated. Because shape of the singleton cues 

stimulus-response rule, the shape of the distractors may influence the efficiency of 

stimulus-response mapping via a congruency effect. We operationalized neutral trials as 

those in which the distractor opposite the singleton was square (left column), congruent 

trials as those in which the distractor opposite the singleton would cue the same saccade 

as the singleton (middle column), and incongruent trials as those in which the distractor 

opposite the singleton cued the opposite saccade (right column). The saccades cued by 

the singleton (distractor) are indicated as red (green) arrows. (B) Defective RT distributions 

for pro-saccade (black) and anti-saccade (red) trials with congruent arrays (full saturation), 

neutral arrays (intermediate saturation), and incongruent arrays (lowest saturation). 

Saccade latency was longer for anti- relative to pro-saccades, and longer of incongruent 

relative to neutral and congruent trials. (C) Proportions of error saccades made to each 

stimulus shape for trials in which at least one distractor was vertical (open). (D) RTs to 

each stimulus shape for error (filled) and correct (open) trials. Saccades to vertical items 

were shortest latency. 
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shape as a factor as compared to a null model. The preference for vertical stimuli was 

evident also in the RT (Fig. 5.2D). RTs were significantly shorter for saccades to vertical 

(271 ± 38 ms), relative to square (339 ± 49 ms) and horizontal stimuli (394 ± 67 ms) 

(ANOVA: F(2,234)  = 110.15, p < 0.001) regardless of correct or error trial outcome 

(ANOVA: interaction F(2,234) = 0.58, p = 0.561). A Bayesian analysis suggested that 

the data were 3.8 x 1030 times as likely to have been observed in a model including 

shape as a factor as compared to a null model. There was also no evidence of an 

interaction, as the data were 8.3 times as likely to have been observed in a model with 

only shape and trial outcome as factors as compared to a model with an interaction. 

The more frequent and faster responses to vertical stimuli indicate that the monkey 

adopted a strategy of searching for vertical items as opposed to guiding gaze by the 

stimulus-response rule provided by the singleton. In other words, the monkey divided 

attention to vertical items in the array rather than focusing attention on the singleton that 

cued the stimulus-response rule. Serendipitously, the short-cut used by the monkey 

revealed new properties of feature and spatial processing supporting visual search with 

arbitrary stimulus-response mapping. 

  

5.3.2 Shape Selectivity in FEF 

Based on previous observations during color singleton search with fixed target and 

distractor color assignments (Bichot et al. 1996), we tested whether the predisposition 

for vertical stimuli was associated with altered stimulus feature processing by FEF 

neurons. FEF is comprised of a diversity of neurons with visual, visuomovement, 

movement, and other patterns of modulation (Lowe & Schall 2018). The sample of 

neurons analyzed for this report consisted entirely of visually responsive neurons. This 
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is important to understand because we will describe a pattern of modulation that is 

related to saccade production but is distinct from the saccade preparation accomplished 

by movement neurons. 

Responses to the different stimulus shapes was assessed when they were 

irrelevant distractors, i.e., not the color singleton nor the endpoint of an anti-saccade or 

error saccade. Responses to vertical, square, and horizontal irrelevant distractors from 

two example neurons are shown in Fig. 5.3A. Both neurons responded more to a 

vertical than to any other item in the RF. The 

time at which this difference between 

responses to vertical and non-vertical stimuli 

was defined as feature selection time (FST). 

For neuron 1, FST occurred 136 ms after 

array presentation, 41 ms after the initial 

transient. FST for neuron 2 occurred 95 ms 

after array presentation, only 8 ms after the 

visual transient. These representative 

neurons exemplify two other distinctive 

properties. Whereas neuron 1 showed 

graded selectivity (vertical > square > 

horizontal), neuron 2 showed categorical 

selectivity (vertical > square = horizontal) 

(e.g., Ferrera et al., 2009). The average 

responses to vertical, square, and horizontal 

Figure 5.3 Feature selectivity in FEF. (A) Normalized 

firing rate for two example neurons that exhibited shape 

selectivity aligned on stimulus onset. Responses to 

vertical (green), square (magenta), and horizontal (cyan) 

stimuli that were irrelevant distractors across correct (blue 

drop) and error (crossed blue drop) pro- and anti-saccade 

trials. Trial types are indicated in the color-coded insets. 

The set of possible stimuli that can appear at a given 

location are superimposed. The singleton shown at 90° 

could have appeared at 270°; likewise, the distractors 

shown at 270° could have appeared at 90°. Feature 

selection time (FST) is indicated by the vertical green 

line. (B) Average normalized firing rate ± SEM for all 

feature selective neurons aligned on array presentation 

(left) and saccade initiation (right). Vertical green line 

plots the median FST for this population. 
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objects for the feature selective neurons is shown in Fig. 5.3B. The mean ± SEM FST 

was 130 ± 30 ms (mode = 134 ms; Table 1).   

In monkeys performing color singleton search with constant target and distractor 

colors, the color-selective neurons in FEF responded with latencies not less than ~60 

ms, while non-selective neurons responded with latencies as short as ~40 ms (Bichot et 

al., 1996). We compared the current results to those data (Fig. 5.4). For each neuron, 

an ANOVA was performed on the SDF values during the first 25 ms (corresponding to 

the interval used by Bichot et al. (1996)) or 100 ms after the visual transient. Of 124 

neurons sampled, 13% showed shape selectivity in the first 25 ms and 24% in the first 

100 ms. As observed previously, neurons with shape selectivity were not the earliest to 

respond. The earliest visual response of shape selective neurons was 66 ms (median 

95 ms; mode 89 ms), later than the two earliest visual responses from non-shape 

selective neurons 52 and 58 ms). Combined across the two studies, the results show 

that neither shape nor color information arrives in FEF via the fastest visual pathway 

and indicate that the training conditions of the present study created the same feature 

selective state.  

Table 5.1. Selection time summary statististics. For each selection time, the table reports the mean value ± SEM, 

modal value, probability that variation in selection time over interquartile range of the response times is equal to zero (i.e., 

the probability that selection time is synchronized to array presentation), and the Bayes factor for whether the change in 

selection time is synchronized to the change in RT (BF < 0) or not synchronized to the change in RT (BF > 0).  
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5.3.3 Relation of Feature Selection to 
Spatial Selection 

The serendipitous discovery of orientation 

sensitivity in FEF offered an opportunity to 

relate these observations to previous 

findings (Thompson et al., 1996; Murthy et 

al., 2001; Sato & Schall, 2003; Schall, 

2004b). We performed the following 

sequence of analyses. To report the 

findings most clearly and concisely, we 

introduce a nomenclature to distinguish the 

categories of neurons, the types of trials 

and the timing measures. First, as previou 

sly, we distinguish singleton selection time 

(SST) from saccade endpoint selection time 

(EST). Second, we distinguish whether 

measures were obtained in correct or error 

trials with left subscript, e.g., CorrEST and 

ErrEST. Third, we distinguish whether 

measures were obtained in pro- or anti-

saccade trials with right subscript, e.g., 

CorrESTPro and CorrESTAnti. Finally, we 

distinguish whether the measure was 

obtained in trials with congruent, 

Figure 5.4. Relationship between feature selectivity 

and visual latency. Neurons sampled in this study 

(green) were compared to those reported previously in 

control monkeys that performed search with variable 

color assignments (open black circles) and experimental 

monkeys that performed search with constant color 

assignments (filled black circles) (Bichot et al. 1996). The 

probability of the response to the singleton in the 

receptive field being the same as the response to a 

distractor in the receptive field during the first 25 ms (A) 

and 100 ms (B) is plotted as a function of visual response 

latency. Horizontal lines indicate analysis window. In (B) 

the dashed portions of the line indicate that the 100 ms 

analysis window extends beyond the range of the plot. 

The shaded region indicates nonsignificant probability 

values greater than 0.05. In the previous study, of the 43 

neurons from control monkeys, 39 fell in the 

nonsignificant area, two responded preferentially to the 

target, and two responded preferentially to the distractors 

of the search array field (marked by diagonal lines). In 

contrast, 21 of 47 neurons recorded from the 

experimental monkeys exhibited significantly greater 

initial responses when the singleton fell in the receptive 

field, and none showed the opposite effect. In the current 

study, of 124 neurons sampled, 16 showed shape 

selectivity in the first 25 ms and 30 in the first 100 ms. 

Example neurons 1 and 2 are identified as N1 and N2.  
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incongruent, or neutral search arrays 

with right superscript, e.g., CorrESTC,I
Pro 

and CorrESTC,I
Anti. The absence of a 

particular superscript or subscript implies 

that the measure was obtained over all 

possible groups. The authors appreciate 

the complexity of this nomenclature, 

which is in keeping with that of more 

mature scientific fields such as 

chemistry, molecular biology, and 

physics that require non-intuitive but 

detailed nomenclatures and symbols. 

In the first analysis, responses 

during pro- and anti-saccade trials were assessed for the feature selective and the non-

feature selective neurons to identify SST and EST as measured previously (Sato & 

Schall, 2003) (Fig. 5.5A). In pro-saccade trials, the average response became greater 

when the singleton was in the RF relative to when it was opposite the RF, replicating 

Sato & Schall (2003) and numerous other studies describing target selection in FEF 

during search (e.g., Bichot et al., 2015; Buschman & Miller, 2007; Glaser et al., 2016; 

Keller et al., 2008; McPeek, 2006; Mirpour et al., 2019; Monosov et al., 2010; Monosov 

& Thompson, 2009; Phillips & Segraves, 2009; Pouget et al., 2009; Scerra et al., 2019; 

Schall et al., 1995a; Schall & Hanes, 1993; Thompson et al., 1996; Wardak et al., 2006; 

Zhou & Desimone, 2011). Conversely, in anti-saccade trials, the average response 

Figure 5.5. Singleton and saccade endpoint selection. 

(A) For the 30 feature selective neurons, average normalized 

SDF when the singleton appeared in (dark) or opposite 

(light) the RF during interleaved pro- (top) and anti-saccade 

(bottom) trials aligned on array presentation (left) and on 

saccade initiation (right). Insets illustrate the locations and 

orientations of the singleton and possible horizontal, square, 

or vertical distractors relative to RF (gray arc) plus the 

reward earned (drop icon) for each SDF. SST measures 

when the SDF for the singleton in the RF exceeds the SDF 

for a distractor in the RF. EST measures when the SDF for 

the anti-saccade endpoint opposite the RF exceeds the SDF 

for the singleton in the RF.  
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across the sample of feature selective neurons became greater when the endpoint of 

the saccade was in the RF relative to when the singleton was in the RF. Similar results 

were found for the non-feature-selective neurons (Fig. 5.5B).  

These results generally replicate 

previous observations (Sato & Schall, 2003); 

however, the absence of SST during anti-

saccade trials was unexpected. The 

monkey’s performance strategy resulted in 

low accuracy for AntiN and AntiI trials. 

Hence, the absence of SSTAnti is consistent 

with a failure to focus attention on the 

singleton appropriately. Further, the aspect 

ratio of the stimuli used in this study was 

greater than that used by Sato & Schall and so was more easily discriminable from 

central fixation. However, when RTs were longer, due either to more deliberate focusing 

of attention on the singleton or overall slowing of processing, SST preceded EST during 

anti-saccade trials (Fig. 5.6). Therefore, the overall pattern of neural modulation 

observed in FEF is consistent with the performance data indicating that the monkey 

divides attention among vertical items, sacrificing accuracy for speed.  

Across the sample of feature selective neurons, SST measured in pro-saccade 

trials (CorrSSTPro) preceded EST measured in anti-saccade trials (CorrESTAnti) Average 

values for these and all subsequent temporal indices ± SEM are found in Table 5.1. 

Statistical tests on all pairs of distributions are found in Table 5.2. 

Figure 5.6. Singleton and saccade endpoint 

selection across response time. Representative 

neuron illustrating variation of SST and EST for 

shortest (left) and longest (right) RT (highlighted in 

inset cumulative RT distributions). In pro-saccade 

trials, SST does not vary with RT. In anti-saccade 

trials, SST was manifest in long but not short RT 

trials, followed by EST. Conventions as in Figure 5.4. 
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Having established that these relationships replicate previous observations (Sato 

& Schall, 2003), we can now explore the relationship of the new measure FST to SST 

and EST measured in the different types of trials. FST was not significantly different 

than CorrSSTPro. In contrast, FST was significantly earlier than CorrESTAnti.  

The simultaneity of FST with CorrSSTPro entails that they index a common 

process. If so, then FST can inherit the interpretation of SST. Accordingly, we 

conjecture that FST indexes the process of stimulus selection through attention 

allocation and not saccade endpoint selection.  

The second analysis assessed how feature selection was related to spatial 

selection of locations other than the singleton or saccade endpoint. This was 

accomplished by contrasting responses of feature-selective neurons to fixated and non-

fixated stimuli. Fig. 5.7A compares the activity of the two example neurons and of the 

sample of feature-selective neurons to vertical distractors in the RF that were not 

fixated, activity preceding correct pro-saccades to the vertical singleton in the RF, and 

activity when unchosen square or horizontal distractors were in the RF. Responses 

were greater when the vertical color singleton in the RF attracted a gaze shift relative to 

when a vertical distractor in the RF was not fixated, replicating the well-known 

enhancement effect (Goldberg & Bushnell, 1981). By comparing discharge rates when 

an unfixated, irrelevant vertical distractor was in the RF and when the fixated vertical 

color singleton was in the RF, we m easured endpoint selection time for pro-saccades 

(CorrESTPro).  
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The time CorrESTPro identifies when the endpoint of the upcoming pro-saccade is 

specified by feature-selective neurons. This is a new measure. It is distinct from EST 

defined by Sato and Schall (2003), or CorrESTAnti described above because it was not 

calculated from anti-saccade trials. Across the sample of feature selective neurons, 

CorrESTPro was significantly later than FST and CorrSSTPro, but was not different from 

CorrESTAnti.  

Figure 5.7. Distinction of feature selectivity from saccade selection. Normalized firing rates for neuron 1 (1st column) 

and neuron 2 (2nd column) aligned on array presentation, plus mean normalized SDF ± SEM of feature selective neurons 

aligned on array presentation (3rd column) and on saccade initiation (4th column). (A) Activity associated with irrelevant 

vertical (green), non-vertical (cyan), and the singleton in the RF (black) demonstrate enhancement associated with correct 

saccade selection, which distinguishes FST from CorrESTPro. (B) Activity on pro- and anti-saccade trials associated with 

irrelevant vertical (green), non-vertical (cyan), and incorrectly selected vertical distractors in the RF (magenta) demonstrate 

enhancement associated with errant saccade selection, which distinguishes FST from ErrEST. (C) Activity on anti-saccade 

trials associated with irrelevant vertical (green), non-vertical (cyan), and correctly selected vertical distractor in the RF (red) 

demonstrate enhancement associated with anti-saccade selection, which distinguishes FST from CorrESTC
Anti.  
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 The third analysis tested whether CorrESTPro was due only to the difference in 

color between the fixated and unfixated vertical items. This was accomplished by 

contrasting responses when an incorrect saccade was made to a vertical distractor in 

the RF relative to the un-fixated vertical distractor (Fig. 5.7B). The response to the 

fixated vertical distractor was greater than the response to the un-fixated vertical 

distractor. This replicates multiple previous findings that saccade endpoint errors during 

visual search arise when FEF neurons treated a distractor as if it were the target (Heitz 

et al., 2010; Reppert et al., 2018; Thompson et al., 2005a). We identify the time when 

this occurs as endpoint selection time for errors (ErrEST). Across the sample of feature 

selective neurons, ErrEST was significantly later than FST and trended toward being 

later than CorrSSTPro, but was not different than CorrESTAnti or CorrESTPro. 

The fourth analysis tested whether the responses of feature-selective neurons 

varied across trial context. This was accomplished by comparing the responses 

observed with correct anti-saccades to the vertical item and responses to irrelevant 

vertical and non-vertical distractors (Fig. 5.7C). This analysis compared only items of 

the same color. Both example neurons produced most activity associated with fixated 

vertical stimuli in the RF relative to un-fixated vertical distractors, and least activity with 

square or horizontal distractors in the RF. Across the sample of feature selective 

neurons, the endpoint selection time for congruent anti-trials (CorrESTC
Anti) was 

significantly later than FST but was not different than 
CorrSSTPro, CorrESTAnti, CorrESTPro, or 

ErrEST. 

These analyses assess the temporal aspects of attention allocation and endpoint 

selection. Fig. 5.7 shows three conditions in which vertical items were fixated: correct 
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Pro trials, incorrect saccades to 

vertical items, and correct AntiC trials. 

These were used to identify 

CorrESTPro, ErrEST, and CorrESTC
Anti, 

respectively. In a fifth analyses, the 

magnitude of response in three 

conditions were compared at three 

time windows: 100 to 150 ms after 

array onset (around the time of FST 

and CorrSSTPro), 150 to 200 ms after array onset (around the time of EST), and -25 to 25 

ms from saccade initiation (Fig. 5.8). The magnitude of the responses did not differ in 

the early visual time window (F(2,87) = 0.022, p = 0.9774), the late visual time window 

(F(2,87) = 0.077, p = 0.9263), or around the saccade (F(2,87) = 0.106, p = 0.8994). In 

short, responses were identical if a saccade was made toward a vertical item in the RF, 

regardless of context or whether such a saccade was correct or incorrect.  

 

5.3.4 Variation of Modulation Times in Relation to RT 

Previous research using this task distinguished neurons by measuring whether SST and 

EST were synchronized on array presentation or varied with RT (Sato & Schall, 2003; 

Schall, 2004b). We performed the same analysis for these data, calculating FST, 

CorrSSTPro, CorrESTAnti, CorrESTPro, ErrEST, and CorrESTC
Anti in the fastest and slowest 50% 

of trials. The difference in selection times divided by the interquartile range of the RTs 

could range between 0.0 (synchronized on array presentation) to 1.0 (synchronized on 

saccade initiation).  

Figure 5.8. Magnitude of response during saccade selection. 

Mean normalized SDF ± SEM of feature selective neurons aligned on 

array presentation (left) and on saccade initiation (right). Activity 

associated with correct Pro saccades into the RF (black), incorrectly 

selected vertical distractors in the RF (magenta), and correct AntiC 

saccades into the RF (red) do not differ, showing that this population 

does not differentiate type of saccade if a saccade is to be made. 
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The proportion of RT accounted for by variation in selection times are shown in 

Fig. 5.9. We found that this proportion was not different than 0.0 for FST (t(13) = -0.49, 

p = 0.683) or CorrSSTPro (t(18) = 0.91, p = 0.377). In terms of Bayes Factors (Rouder et 

al., 2009) we found moderate evidence that FST (BF = 0.22) and CorrSSTPro (BF = 0.28) 

account for no variability of RT. In other words, the state indexed by FST and CorrSSTPro 

arises at a time synchronized on array presentation.  

In contrast, variation in all measures of endpoint selection in feature-selective 

cells accounted for a significant fraction of variation of RT. With strong evidence 

rejecting the null hypothesis (BF = 24.62), a significant proportion of the variation of RT 

was accounted for by variation in CorrESTAnti (t(13) = 3.92, p = 0.002). At a moderate 

level of evidence, a significant proportion of the variation of RT was accounted for by 

variation in ErrEST (t(9) = 3.22, p = 0.011, BF = 5.64) and CorrESTC
Anti (t(7) = 2.95, p = 

Figure 5.9. Chronometry of feature selection, singleton 

selection, and endpoint selection in relation to response 

time. (A) Selection times for faster and slower RT groups 

plotted as a function of the mean RT of each group. Each line 

corresponds to one neuron with a measurable selection time 

in both RT groups. The slope indicates the contribution of 

each selection time to RT. Inset in top left subplot (FST) 

illustrates range of possible influences of selection times on 

RTs. Selection times could be synchronized on array 

presentation and invariant with respect to RT (0% RT 

explained) or synchronized on saccade presentation (100% 

RT explained). Colors as in Fig. 6. Dashed lines indicate 

measures from non-feature-selective cells. (B) Bayes factors 

from statistical test of the slopes of each selection time 

relative to RT. Bayes factors less than 1 (log values less than 

0) indicate evidence for the null hypothesis (H0) that the 

distribution mean is equal to 0. Bayes factors greater than 1 

(logs greater than 0) indicate evidence for the alternate 

hypothesis (H1) that the distribution is greater than 0. Levels 

of evidence defined by the Bayes factor are indicated. Line 

and color assignments as in Fig 6. We found moderate 

evidence supporting the hypothesis that FST and CorrSSTPro 

are synchronized on array presentation and not on saccade 

initiation. On the other hand, we found strong evidence that 

CorrESTAnti, anecdotal evidence that CorrESTPro, and moderate 

evidence that ErrEST and CorrESTC
Anti were not synchronized 

on array presentation nor saccade initiation. 
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0.021, BF = 3.29). At an anecdotal level of evidence, a significant proportion of the 

variation of RT also was accounted for by variation of CorrESTPro (t(8) = 2.71, p = 0.027, 

BF = 2.55).  

Although the measures of EST account for some RT variability, the average 

proportion of RT explained across all significant relationships is 24.8%. The additional 

RT variability will be accounted for by response preparation processes subsequent to 

EST and not included in these data. 

 

5.3.5 Neural Chronometry of Feature and Spatial Selection 

The various distinct response modulations reveal a temporal sequence of operations in 

FEF accomplishing this visual search task (Fig. 5.10; Table 5.2). Following array 

presentation, the first state transition is indexed by the response of visually responsive 

neurons after a characteristic latency. The next state transition was indexed by FST, 

which coincided with CorrSSTPro. The state indexed by CorrSSTPro has been identified with 

the allocation of visual attention on th e singleton based on its salient visual attribute to 

encode the stimulus-response rule (Sato & Schall, 2003; Schall, 2004b). The discovery 

of feature-selection arising concomitantly with CorrSSTPro reported here suggests that the 

monkey divided visual attention among the vertical items in the array. The allocation of 

Table 5.2. Selection time comparisons. The distribution of each selection time was compared to the distribution of 

each other selection time using a Kruskal-Wallis test. The Χ2 value, degrees of freedom, and p value of each pairwise test 

is shown. Because the tests are symmetric, only the lower diagonal is shown. Values that trend toward significance (p < 
0.10) are marked with a dagger (†). Values that reach significance (p < .05) are marked with an asterisk (*). 
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spatial visual attention to spatially 

separated, noncontiguous items in a 

search array has been demonstrated (e.g., 

Bichot et al., 1999; Dubois et al., 2009). 

The next state transition was indexed by 

EST. The state indexed by EST has been 

identified with the specification of the 

endpoint of the saccade. Being different in 

time and relationship with RT, it is a state 

different from that identified by CorrSSTPro 

(Sato & Schall, 2003; Schall 2004b) and 

likewise distinct from the presaccadic 

build-up of movement related neurons 

(Woodman et al., 2008), which accounts 

for the remainder of the variation of RT.  

 

5.4 DISCUSSION 

The present study demonstrates two 

primary findings: (1) besides color (Bichot 

et al., 1996), shape selectivity can arise in 

FEF when strategies commit feature 

attention and (2) this feature selectivity, 

which seems associated with divided 

attention, is functionally distinct from the 

Figure 5.10. Distributions of feature selective 

processes. (A) Diagrams showing sequence of states 

during pro-saccades (top). The hypothesized spotlight of 

attention is shown in gray lines and a saccade is indicated 

by a solid arrow. Cumulative distributions of selection time 

metrics alongside visual response latency and Pro RT 

distribution (bottom). The colors are the same as the 

diagrams and previous figures and labeled above the plot 

boundary. Line thickness increases as stages become 

further from array onset and closer to RT. (B) Diagrams 

showing sequence of states during anti-saccades (top) and 

cumulative distributions of selection time metrics (bottom).  
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selection of the saccade endpoint. The first finding may seem at odds with the 

perspective that FEF selects targets regardless of the feature that identifies a stimulus 

as that target. However, adaptive performance strategies can explain this anomaly. 

Strategies are revealed by analyzing the responses made on error trials and RT in all 

trials. The increased prevalence of error saccades to vertical stimuli and the fastest RT 

to vertical stimuli reveals a priority for locating vertical stimuli.  

 The results are based on data obtained from a single monkey. Nevertheless, we 

believe they are reliable and interpretable for the following reasons. First, the 

observation of feature selectivity in FEF replicates previous findings (Bichot et al. 1996; 

Peng et al. 2008). A similar predisposition for motion direction has been described in the 

superior colliculus of monkeys performing a motion discrimination task with fixed 

stimulus-response mapping (Horwitz et al., 2004). The unexpected but clear robustness 

of this phenomenon should engender confidence in the replicability of the current 

observations. Second, the distinction of singleton selection and endpoint selection 

replicates previous findings (Sato & Schall, 2003; Schall 2004b). Such replication 

should increase confidence in the interpretability of the new findings. Finally, the novel 

observation of a distinct endpoint selection in pro-saccade trials is statistically robust, 

conceptually novel, and theoretically important. While we are confident that another 

monkey could be trained into this state, we judge that effort is better invested in more 

novel research goals. Indeed, we have discovered that the second monkey, trained 

without the opportunity to experience the confounds, employs a qualitatively different 

strategy to perform this task (Lowe et al., 2019). 
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5.4.1 Possible Sources of Feature Selection in FEF 

We do not know whether the shape selectivity we observed is intrinsic to FEF, imparted 

by other prefrontal areas, inherited from earlier visual areas, or manifest from broad 

associations of stimulus, action, and reward. We consider each hypothesis below. 

The hypothesis that feature selectivity is intrinsic to FEF runs counter to the 

framework of FEF as an area that contains a salience or priority map regardless of 

features defining salience or priority (Thompson & Bichot, 2005). However, some 

studies have reported differential activity to stimuli defined by features whose identities 

do not dictate different stimulus-response rules (Ferraina et al., 2000; Peng et al., 2008; 

Xiao et al., 2006). Mohler et al. 1973 reported 6% of FEF neurons (12.5% of those with 

visual responses) responding differently according to direction of motion or color. Peng 

and colleagues (2008) found that even during a passive fixation task a quarter of FEF 

neurons had responses that differed according to the form of the presented stimuli. 

These differences occurred at most 12 ms after the initial visual transient. This short 

delay between visual response onset and feature selectivity is consistent with the 

selectivity for color found previously (Bichot et al. 1996). However, the shape selectivity 

presented here was not as immediate. This may be due to the nature of the tasks 

across studies in that there are unbalanced reward contingencies of nonpreferred 

stimuli in the present study whereas all stimuli were evenly rewarded in the passive 

fixation and delayed match to sample tasks used by Peng et al. It is notable that the 

proportions of feature selective neurons found by Peng et al. are similar to those found 

in the present data, but are fewer than those found by Bichot et al. (1996). This could be 

due to differences in complexity of the stimuli, nature of the task, or sampling of units. 
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 The hypothesis that feature selectivity in FEF can be imparted by another 

prefrontal area is motivated by the recent description of a ventral prearcuate area 

(Bichot et al. 2015), which has dense connections with FEF (Huerta et al., 1987). 

Neurons in this area have differential responses to complex visual stimuli during 

detection and delayed search tasks, and this feature selectivity preceded the selection 

of a saccade endpoint (Bichot et al., 2015). However, direct comparison between this 

and the current study is challenged by differences in experimental design and particular 

observations. For example, their target item was cued before array presentation and so 

was held in working memory, but our target item in this study was a long-term memory 

trace. Also, neurons in the ventral prearcuate area exhibited feature selectivity at 

approximately the same time as FEF, and the spatial selectivity identified in FEF was 

earlier than that observed in the present data (CorrSSTPro). Further research is needed, 

therefore, to clarify whether FEF receives feature information primarily from this area, or 

both areas have common inputs and process feature information in parallel. 

 The hypothesis that feature selectivity in FEF is inherited from feature selective 

responses earlier in the visual stream is motivated by the connections between FEF and 

effectively all extrastriate visual areas (Schall et al. 1995; Markov et al. 2014). V4 is one 

likely source because the neurons are selective for color (Schein & Desimone, 1990; 

Zeki, 1980; Zeki, 1973) and shape (Desimone & Schein, 1987; Pasupathy & Connor, 

1999). In the previous (Bichot et al. 1996) and current study, neither color nor shape 

selectivity were carried by the FEF neurons with the shortest visual latencies. This is 

consistent with color and shape information arriving in relatively longer latency afferents 

(e.g., Schmolesky et al., 1998). Evidence from simultaneous recordings in FEF and V4 



173 

demonstrate an association of visual neurons in FEF with V4 (Gregoriou et al., 2012) 

and feature selectivity in V4 preceding FEF selective modulation (Zhou & Desimone, 

2011). Further research is needed, though, to understand the interplay of feature 

selectivity and attentional modulation between FEF and extrastriate visual areas (Zhou 

et al., 2011; see also Monosov et al., 2010).  

 The hypothesis that feature selectivity in FEF is manifestation of the association 

of strategy and reward is motivated by well-known reports that visual responses in FEF 

are modulated by reward expectation (Glaser et al., 2016) or magnitude (Ding & 

Hikosaka, 2006). Parallel modulation is observed broadly in the visuo-motor network 

(e.g., Griggs et al., 2018; Platt & Glimcher, 1999; Sugrue et al., Newsome, 2004; 

Yamamoto et al., 2013). In human studies, both reward probability and magnitude have 

been shown to influence behavior. Della Libera & Chelazzi, (2009) found that by 

associating meaningless shape stimuli with high, low, or neutral reward in a practice 

phase resulted in facilitation or interference of response times, depending on task 

conditions. Similarly, attentional biases emerge when color stimuli are associated with 

high or low reward, whether or not participants are aware of the stimulus-reward 

associations (Kiss et al., 2009; Kristjánsson et al., 2010). These associations do not 

require physical salience as they are present with stimulus configurations that have only 

reward histories to differentiate stimuli and for which rewarded features are not the 

basis for selection (Anderson et al., 2011). These findings suggest that stimulus-reward 

associations can be learned and combined with physical salience to form an integrated 

priority map (Awh et al., 2012). These reward associations manifest themselves in 

neural activity (Anderson, 2016). The tail of the caudate is sensitive to learned reward 



174 

associations (Anderson et al., 2014). Learned value associations are reflected in BOLD 

signaling in attentional visual areas such as parietal cortex (Anderson et al., 2014) and 

are reflected in shifts of ERPs indexing attentional selection such as the N2pc (Kiss et 

al., 2009).  

In conjunction search FEF neurons respond maximally when the correct saccade 

target is in the RF (Bichot et al., 2001b; Ogawa & Komatsu, 2006) but also show larger 

responses to a distractor that shares a feature with the correct saccade target than a 

distractor that shares no features (Bichot et al., 2001b). Similarly, FEF neurons respond 

more when a distractor that was the target on the previous session is in the RF than a 

distractor that shares no features with the current saccade target. This demonstrates 

that FEF neurons can differentially respond to features that are remembered to be 

rewarded even when not presently rewarded. Reward associations, specifically the lack 

thereof, can also participate in distractor suppression (Cosman et al., 2018). In a search 

task with salient distractors that  “capture” attention (Theeuwes, 1991) two monkeys 

overcame capture with training and produced equal performance when the color 

singleton distractor was present or absent. Neurons recorded from those two monkeys 

showed a reduction in firing rate when the salient distractor was in the RF compared to 

a non-salient distractor was in the RF. Because the salient distractors were never a 

saccade target, but were nevertheless distinguishable from the other distractors, 

responses to them can be more actively and immediately suppressed than the other 

distractors. Bichot and colleagues (2001) also tested neural responses during a search 

task with a salient distractor and did not find distractor suppression. However, the 

monkeys in that study were behaviorally affected by the singleton distractor and thus 
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distractor suppression may not be expected. Further, the neurons analyzed by Bichot 

and colleagues were movement neurons whereas those analyzed here and by Cosman 

et al. had visual responses. This difference in neuron type may also explain the 

differences in results. 

Interestingly, the third monkey in the study by Cosman and colleagues that was 

unable to overcome attentional capture was the same monkey Da whose data are 

reported here. Neurons from this monkey did not show such distractor suppression. 

Notably, this monkey also had neurons that retained an initial nonspecific visual 

response whereas monkeys A and C did not have such a response during the color 

singleton search task. Such an initial visual response is reduced in FEF neurons when 

stimuli are not saccade targets (or, alternatively, enhanced when they are saccade 

targets) in both search tasks (Thompson et al., 1997) and in single stimulus 

presentations (Goldberg & Bushnell, 1981; Mohler & Wurtz, 1976; Schall et al., 1995a). 

In the case of monkeys A and C, the stimuli whose colors were not the target color were 

never correct saccade targets and can thus be discounted and would have attenuated 

nonspecific responses to these stimuli, and this attenuation could be complete such that 

there is no such response. In the case of Da, square and horizontal stimuli were correct 

saccade endpoints on a subset of anti-saccade trials, thus they are still associated with 

reward to some degree and thus may require the retaining of the nonspecific visual 

transient. 

 

5.4.2 Processing Operations and Neural Chronometry  

We replicated the previous finding of distinct operations mediated by visually responsive 

neurons selecting a conspicuous stimulus and selecting the endpoint of the saccade 
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(Sato & Schall, 2003). The prior experiment did this by contrasting modulation in pro- 

and anti-saccade trials. The current experiment did this, innovatively, by contrasting 

modulation to preferred and non-preferred features and to fixated and non-fixated items 

among identified neurons exhibiting feature selectivity even for stimuli that should not be 

and were not selected. Specifically, we demonstrated quantitative differences between 

two measures of neural modulation: stimulus selection, indexed by FST and CorrSSTPro, 

and saccade endpoint selection, indexed by EST. The chronometric distinction between 

singleton selection and endpoint selection in both pro- and anti-saccade trials and the 

simultaneity of EST on pro- and anti-saccade trials having very different RT validates 

the conceptual distinction between these operations. These neural measures index 

some of the computational operations occupying response time in this task (Donders, 

1868).  

The delay between EST and saccade initiation identifies another operation 

preceding saccade initiation. This operation has been identified psychologically as 

response preparation and neurally as the presaccadic build-up of movement related 

neural activity, which does not occur until information about target items becomes 

available (Woodman et al., 2008) and is identified with the accumulation of sensory 

evidence (Purcell et al., 2010, 2012b; Servant et al., 2019). The final saccade initiation 

operation is accomplished by competitive interactions between movement cells (Purcell 

et al., 2010, 2012b). The time required for this competition resolution explains the 

additional time necessary for anti-saccades compared to pro-saccades. The relationship 

between stimulus selection, endpoint selection, and saccade preparation has been 
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investigated in monkeys (Juan et al., 2004; Katnani & Gandhi, 2013)  and humans 

(Juan et al., 2008).  

To verify the existence and elucidate the properties of these distinct operations 

and stages, and to resolve different explanations for causal manipulations, further 

research should employ the powerful logic of selective influence in factorial 

experimental designs (Sternberg, 2001; Townsend & Nozawa, 1995) with joint 

measures of mental and neural chronometry.  
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CHAPTER 6: NEURAL CORRELATES OF MULTIDIMENSIONAL DECISION-MAKING 

IN MACAQUE FRONTAL EYE FIELD 

6.0 SUMMARY 

In Chapters 2 and 3 I identified functional neuron categories in FEF. In Chapter 4 I 

identified cognitive architectures underlying our GO/NO-GO search task. In Chapter 5, I 

identified neural indices of cognitive operations. In this chapter, my goal is to identify 

neural indices of the cognitive operations in GO/NO-GO search, relate these neural 

indices to the architecture of those operations, and outline a mechanistic description of 

information processing between the array presentation and response. 

 In these recordings, I expect to identify neurons that exhibit singleton selection, 

or increased responses when a search singleton is located within the response field of 

FEF neurons as compared to when a search singleton is located outside its response 

field (Schall et al., 1995a; Schall & Hanes, 1993). Further, I expect to see that with 

increased singleton identifiability, the time at which this selection occurs, the singleton 

selection time (SST), will be decreased (Sato et al., 2001). If the cognitive architecture 

is coactive, i.e., both factorial manipulations affect operations that are summed before a 

common decision operation, then SST should scale with response time across all four 

GO conditions. If cognitive architecture is not coactive, i.e., the two factorial 

manipulations affect different decision operations, then SST should not be impacted by 

cue discriminability, given that it is affected by singleton identifiability as expected. 

Conversely, this architecture implies the existence of a sub-population of neurons 

selective for aspect ratio. The time when GO and NO-GO conditions are differentiated 

will be termed cue discrimination time (CDT), which should be faster when cue 
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discriminability is increased. I assess which of these subpopulations of neurons exist in 

FEF, and whether their responses are consistent with the behaviorally defined cognitive 

architectures. These analyses are in preparation for submission in a minimal and/or 

detailed form; the remainder of this chapter is the detailed version of the analyses. 

 

6.1 INTRODUCTION 

For more than a century, an area in the frontal lobe called frontal eye field (FEF) has 

been known to be involved in the production of eye movements (Ferrier, 1875). 

Recordings of single neurons in FEF have confirmed the presence of neurons whose 

discharge rate increases before eye movements (e.g., Bizzi & Schiller, 1970) as well as 

neurons that respond to visual stimuli (Bruce & Goldberg, 1985; Lowe & Schall, 2018; 

Schall, 1991). Movement-related neurons in FEF trigger saccade production when a 

critical discharge rate is achieved (Hanes & Schall, 1995). Visually driven neurons in 

FEF exhibit target selection, or a differential response when a search target is within as 

compared to outside its receptive field (Schall, 2015; Schall & Hanes, 1993; Thompson 

et al., 1996).  

Now, FEF visual neurons are generally seen as containing a salience or priority 

map that defines the behavioral significance of locations or items in the visual field (for 

review, see Bisley, 2011; Thompson & Bichot, 2005). But the mechanism by which the 

visuomotor transformation, the conversion of visual salience to an oculomotor 

command, is not fully understood. Some investigators have focused on the coordinate 

system transformations in neurons during the delay period of a delayed saccade task 

(Sajad et al., 2016). Others tried to remove the motor planning component of neural 

responses by varying the visual processing time (Costello et al., 2013; Stanford et al., 
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2010), or interfere with the motor plan by changing the target location (Goldberg & 

Bruce, 1990; Ray et al., 2009; Sato et al., 2001; Umeno & Goldberg, 1997) or 

introducing a stimulus-response mapping rule (Everling & Munoz, 2000; Lowe & Schall, 

2019; Sato & Schall, 2003). Still others have focused on whether transmission between 

visual and movement neurons is continuous (Bichot et al., 2001a) or discrete 

(Woodman et al., 2008).  

The latter question has been more or less resolved during search by the Gated 

Accumulator Model (Purcell et al., 2010, 2012b). A family of models with or without 

certain components, such as lateral inhibition, gating, leak, etc., were all generally able 

to fit behavioral data. This highlights the problem of model mimicry whereby multiple 

alternatives for underlying processes can explain behavior similarly well. However, only 

the model with gating between the visual and movement units was able to capture the 

neural dynamics. 

This model provided convincing evidence that at least some gate is necessary 

during visuomotor transformations, specifically during search. However, while this 

finding can explain why movement neuron activity begins to rise after visual neurons 

select search targets, it cannot on its own explain the canceling of movement neuron 

buildup activity during saccade countermanding tasks (Boucher et al., 2007; Hanes & 

Schall, 1995). Nor can it explain why visual neurons can be influenced by target-

distractor similarity in search but not changes of target position while response times 

(RT) are affected by both (Sato et al., 2001). Further, at least two subpopulations of 

visual neurons have been demonstrated in a pro-/anti-saccade search task with 

different relationships to RT across the two stimulus-response mapping rules (Sato & 
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Schall, 2003). In this task, type I visual cells seem to create the salience map whereas 

type II visual cells select the saccade endpoint. We have also demonstrated this 

dissociation between stimulus selection and saccade endpoint selection on pro-saccade 

trials with specific task manipulations (Lowe & Schall, 2019). 

It seems as though there are additional gating mechanisms for stimulus-

response mapping rules that interact with the visuomotor transformation demonstrated 

by the Gated Accumulator Model. Direct investigations of such interactions have not yet 

been performed, as there have not been studies that specifically and selectively 

manipulated the stimulus selection and saccade selection processes. Or, such tasks 

have not manipulated both processes within the same sessions and for the same 

neurons (e.g., Sato et al., 2001). Here we present results from such an approach. 

By adding a response preparation manipulation to a search task, we can 

selectively manipulate the search efficiency and the response rule to probe additional 

interactions between visual and movement-related neurons. Behaviorally, these tasks 

are filtering tasks that require the selection of a stimulus based one feature and 

selection of a response based on a different feature. In psychology, these tasks have 

been studied extensively but the mechanisms by which stimulus selection and response 

selection are still unknown. The most common view is that stimulus selection and 

response selection are separate sequential stages (e.g., Broadbent, 1971; Hoffman, 

1978; Treisman, 1988; Wolfe et al., 2015). An alternative view is that objects are 

selected and categorized through parallel processes (Bundesen, 1990; Logan, 2002).  

 Serial and parallel processing have a long and complex history which we have 

summarized previously (Lowe et al., 2019). In brief, these two processing architectures 
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were once seen as easily dissociable in tasks like search where the reliance of RT on 

set size was taken to be indicative of serial processing and a lack of such reliance was 

taken to be indicative of parallel processing (Treisman & Gelade, 1980). However more 

recent models have shown that mimicry is rampant between these architectures (e.g., 

Moran et al., 2016; Townsend, 1990; Wolfe, 2007). However, Townsend and colleagues 

(Houpt et al., 2014; Townsend & Nozawa, 1995) developed a method of identifying 

these architectures, systems factorial technology (SFT), in a way that gives nearly 

unambiguous inferences of underlying processing architectures from RT distributions. 

Each of the family of architectures discriminable through SFT make specific 

predictions of the underlying neurons involved in the task (Fig. 6.1). To test these 

predictions, and to understand the roles of response preparation and stimulus selection 

in the visuomotor transformation in FEF, we developed a filtering task in which the 

aspect ratio of a color singleton in a search array cued either a GO or NO-GO rule. To 

selectively manipulate the stimulus selection process, we changed the chromatic 

similarity of the singleton and distractor stimuli. To selectively manipulate the response 

preparation process, we changed the aspect ratio of the stimuli to be more or less 

similar to the NO-GO cue. These manipulations were performed independently of one 

another so that all trial types were available for comparison within a single session. The 

behavioral effects and application of SFT to this task has been reported previously 

(Lowe et al., 2019). Now, we recorded from neurons in the FEF of two monkeys 

performing this GO/NO-GO search task and compare the responses of the visual and 

movement-related neurons to the predictions of SFT.  
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6.2 METHODS 

6.2.1 Monkeys, Surgical Procedures, and Gaze Acquisition 

All procedures were approved by the Vanderbilt Institutional Animal Care and Use 

Committee in accordance with the United States Department of Agriculture and Public 

Health Service Policy on Humane Care and Use of Laboratory Animals. 

 Behavioral data were collected from two macaque monkeys, Macaca mulatta and 

M. radiata, identified as Le and Da. The monkeys weighed approximately 12 kg (Le) 

and 8 kg (Da) and were aged 7 years (Le) and 13 years (Da) at the time of the study. 

Monkeys were surgically implanted with a headpost affixed to the skull via ceramic 

Figure 6.1. Neural activity predicted by SFT. (A) In a coactive 
architecture, both manipulations feed one common decision 
operation. Thus, the singleton selection time of visual cells should 
be affected by both manipulations. Trial conditions are labeled as 
superscripts, and neuron types are labeled as subscripts. Singleton 
selection time is the time when the response to a singleton in the 
RF (saturated lines) is elevated relative to the response to a 
singleton out of the RF (desaturated lines). Responses to high 
singleton identifiability are shown in black, and to low singleton 
identifiability in red. Responses to high cue discriminability are in 
thick lines, and to low cue discriminability in thin lines. Movement 
cells should not activate until after SST. On the right, predicted 
relationships between RT and SST are shown for each neuron type. 
(B) In a non-coactive architecture, singleton identifiability and cue 
discriminability affect different subpopulations of neurons. 
Movement neurons activate after both of these subpopulations have 
selected their feature. Conventions as in (A). (C) Similar predictions 
are made for a serial exhaustive architecture in which the singleton 
selection operation occurs first. Conventions as in (A). 
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screws under aseptic conditions with isoflurane anesthesia. Antibiotics and analgesics 

were administered postoperatively. Monkeys were allowed at least 6 weeks to recover 

following surgery before being placed back on task. Gaze was tracked using an Eyelink 

1000 system (SR Research; sampling rate = 1,000 Hz). 

 

6.2.2 Assessment of Operations, Stages and Architectures 

To assess alternative process architectures supporting performance of this task, we 

applied systems factorial technology (Harding et al., 2016; Houpt et al., 2014; Lowe et 

al., 2019; Townsend & Nozawa, 1995). Statistical details of systems factorial technology 

and reporting conventions can be found in these references. Systems factorial 

technology typically requires a 2x2 manipulation of factors that selectively influence 

distinct processing operations (cf. Yang et al. 2014). As illustrated in Figure 6.2, the first 

manipulation was singleton identifiability through interleaved presentation of search 

arrays with low singleton-distractor similarity (e.g., red among green; High Identifiability, 

HIdent) and search arrays with high singleton-distractor similarity (e.g., red among off-red; 

Low Identifiability, LIdent). The second manipulation was cue discriminability through 

interleaved presentation of array items with higher aspect ratio (High Discriminability, 

HDiscrim.) and array items with lower aspect ratio (Low Discriminability, LDiscrim.). The cue 

discrimination was enforced by interleaving 20% nogo trials. This 2x2 design results in 

four types of trial. The easiest were High Identifiability with High Discriminability 

(HIdentHDiscrim.). The most difficult were Low Identifiability with Low Discriminability 

(LIdentLDiscrim). The two intermediate difficulty were Low Identifiability with High 

Discriminability (LIdentHDiscrim) and High Identifiability with Low Discriminability 

(HIdentLDiscrim).  
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6.2.3 Task Design and Protocol 

Monkeys performed 30 sessions of a GO/NO-GO visual search task in which response 

was cued by the shape of a color singleton. Trials began with the monkey fixating a 

central stimulus for 800-1200 ms, after which eight iso-eccentric, isoluminant stimuli 

were presented. Eccentricities varied between 4.0 and 8.0 degrees of visual angle and 

were adjusted per-session to drive isolated neurons. Stimuli were either square or 

rectangular. All eight stimuli had the same shape on each trial. If the singleton and 

distractors were square, cueing a no-go trial, monkeys were rewarded for maintaining 

fixation at the central spot for a random interval between 800 and 1200 ms. No-go trials 

comprised ~20% of all trials in each session. If stimuli were rectangular, monkeys were 

rewarded for shifting gaze to the singleton and maintaining fixation for 700 ms. The 

inter-trial interval was fixed at 1500 ms. 

Task difficulty varied along two 

dimensions (Figure 6.2): singleton-distractor 

color similarity and stimulus elongation. 

Singleton-distractor color similarity manipulated 

singleton identifiability. Stimulus elongation 

manipulated cue discriminability. All stimuli had 

four possible colors: red (CIE x 628, y 338, Y 4.4 

(monkey Da) or x 604, y 339, Y 5.2 (monkey 

Le)), green (CIE x 280, y 610, Y 4.6 (monkey 

Da) or x 292, y 575, Y 6.1 (Monkey Le)), off-red, or off-green presented on a gray 

background (CIE x 275, y 228, Y 0.54 or x 334, y 375, Y 0.6). CIE values for off-red and 

off-green stimuli were adjusted for each monkey to elicit a performance deficit when 

Figure 6.2. Task design. In this task an eight 
element search array was presented on each trial, 
with one color singleton and seven distractors. The 
aspect ratio of the singleton cued a GO response 
when elongated (indicated by dotted arrows) or a 
NO-GO response when square (indicated by a 
dashed circle around fixation). Task difficulty was 
manipulated by chromatic similarity, or singleton 
identifiability which could be either high (HI) or low 
(LI), and by the aspect ratio, or cue discriminability 
which could be either high (HD) or low (LD). 
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presented in a Low Identifiability condition. Stimuli had three possible aspect ratios: 

square for NO-GO trials, and either 1.4 or 2.0 for GO trials. The orientation of elongation 

was counterbalanced between the two monkeys; for monkey Da a vertical rectangle 

signaled GO, whereas for monkey Le a horizontal rectangle signaled GO.  

 

6.2.4 Recording Techniques 

MRI compatible headposts and recording chambers were placed over the arcuate 

sulcus. Surgery was conducted under aseptic conditions with animals under isoflurane 

anesthesia. Antibiotics and analgesics were administered postoperatively. Details have 

been described previously (Schall et al., 1995a; Sato et al., 2001; Cohen et al., 2009b). 

Electrophysiological data was obtained from 32-channel linear electrode arrays 

(Neuronexus Vector Array). Probes had either 100 or 150 μm recording contact 

spacing. Data were streamed to TDT System 3 (25 kHz, Tucker Davis Technologies). 

Single units were identified online using principal component analysis (TDT) and sorted 

offline automatically using JRClust (Jun et al., 2017) or manually using Plexon Offline 

Sorter (Plexon). Well isolated neurons were identified as units that met several criteria: 

a minimum firing rate during the pre-stimulus baseline period, a maximum Fano factor 

(variance divided by mean) during the pre-stimulus baseline period, a minimum signal-

to-noise ratio of the spike waveforms (Joshua et al., 2007), and a minimum 10th 

percentile of inter-spike intervals. Criteria for these values were assigned by visually 

inspecting distributions across the population and SDFs of the included neurons, but 

specific values did not substantially change the results reported here. 
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6.2.5 Cell Type Classification 

First, we classified neurons according to traditional criteria and defined neurons as 

visually-responsive, visuomovement, movement-related, fixation, or post-saccadic 

(Bruce & Goldberg, 1985; Schall, 1991). Visually responsiveness was defined as a 

significant increase in response from pre-array baseline of more than 2 standard 

deviations for at least 50 ms beginning less than 150 ms after array onset. Movement-

related activity was defined similarly, with the time period assessed being the 100 ms 

before saccade. Movement-related activity was also required to have a positive 

correlation over time in the 20 ms before saccade to eliminate the effect of delay period 

activity, and a peak of less than 100 ms post-saccade. Visuomovement neurons were 

those that exhibited both types of activity. Fixation neurons were those that decreased 

in response by more than 2 standard deviations from pre-array baseline around the time 

of the saccade. Post-saccadic neurons were those that met the movement-related 

criteria in the 100 ms after saccade, whose activity peaked later than 100 ms after 

saccade, and were not otherwise categorized as movement-related. 

  

6.2.6 Statistical Analyses 

All t-tests presented are two-sided, unless otherwise stated. ANOVA were calculated on 

across-session mean response times and accuracy rates. To account for incidental 

variation across sessions while preserving relative relationships between conditions, we 

performed a repeated measures ANOVA with sessions accounting for the repeated 

measure. To avoid edge effects, accuracy rates were transformed using the logit 

transformation (Wharton & Hui, 2011). 
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6.3 RESULTS 

6.3.1 Behavioral Sensitivity to Identifiability and Discriminability 

To assess the effects of singleton identifiability and cue discriminability in the neural 

responses, we must first demonstrate that these effects are behaviorally significant. We 

found that both monkeys were significantly slower to respond to low identifiability trials 

with respect to high identifiability trials (Fig. 6.3A; Da: F(1,61) = 2089.7, p < 0.001; Le: 

F(1,39) = 1608.9, p < 0.001), and to low discriminability trials with respect to high 

discriminability trials (Da: F(1,61) = 371.7, p < 0.001; Le: (F(1,39) = 275.1, p < 0.001). 

These factors did not interact for either monkey (Da: F(1,61) = 0.45, p = 0.5010; Le: 

F(1,39) = 1.03, p = 0.3170).  

 We also assessed the effects of singleton identifiability and cue discriminability 

on the response accuracy. Both monkeys were significantly more accurate on high 

identifiability trials with respect to low identifiability trials (Fig. 6.3B; Da: F(1,61) = 

Figure 6.3. Behavioral results. 
(A) Mean ± SEM response times 
across sessions included in the 
neural analysis for monkey Da 
(left) and monkey Le (right). 
Response times were longer in 
the low discriminability condition 
(HDiscrim) and in the low 
identifiability condition (LIdent). 
Response times for NO-GO 
trials, 0Discrim, are undefined. (B) 
Mean ± SEM probability of 
making a saccade toward the 
singleton for monkey Da (left) 
and monkey Le (right). For 
LDiscrim and HDiscrim conditions, 
these values correspond to 
behavioral accuracy. For the 
0Discrim condition, these 
correspond to failures to 
withhold response and are 
roughly equal to 1 – P(correct). 
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1209.4, p < 0.001; Le: F(1,39) = 1466.7 < 0.001). We also found that monkey Da was 

significantly more accurate on high discriminability trials with respect to low 

discriminability trials (F(1,61) = 34.9, p < 0.001) whereas the accuracy of monkey Le 

was not affected by discriminability (F(1,39) = 0.96, p = 0.3339). For Da, these factors 

did not interact (F(1,61) = 2.31, p = 0.1337). Whereas for monkey Le they did (F(1,39) 

6.70, p = 0.0135).  

 

6.3.2 Neurometric Sensitivity to Identifiability and Discriminability 

Movement-related neurons in FEF are considered to manifest an evidence 

accumulation process during decision-making tasks, ramping to a common threshold 

which triggers a saccade (Hanes et al., 1995; Hanes & Schall, 1995). This finding has 

been replicated in visual search, wherein the onset of movement activity is variable with 

respect to array presentation but not with respect to saccade initiation (Purcell, Schall, 

et al., 2012; Woodman et al., 2008). Because of this tight association between activity of 

movement-related neurons in FEF and saccade production, we expect that movement-

related neurons should being ramping or discriminating a singleton in its RF at a time 

invariant with respect to the saccade on GO trials in the present task. This invariance 

should then manifest as being affected by both singleton identifiability and cue 

discriminability with respect to array onset. 

 We find this prediction to hold in the current sample of FEF movement neurons 

(Fig. 6.4). For Da, SSTHH
Mov was 134.0 ± 21.2 ms, SSTHL

Mov was 153.3 ± 29.2 ms, 
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SSTLH
Mov was 164.0 ± 26.1 ms, and SSTLL

Mov was 174.1 ± 22.4 ms. For Le, SSTHH
Mov 

was 139.9 ± 19.7 ms, SSTHL
Mov was 149.7 ± 23.9 ms, SSTLH

Mov was 166.4 ± 29.3 ms, 

and SSTLL
Mov was 177.7 ± 28.6 ms. The singleton selection time of movement related 

neurons (SSTMov) was significantly longer for low identifiability trials than for high 

identifiability trials (Da: F(1,21) = 76.9, p < 0.001; Le: F(1,63) = 111.0, p < 0.001). 

SSTMov was also significantly longer for low discriminability trials than for high 

discriminability trials (Da: F(1,21) = 15.4, p < 0.001; Le: F(1,63) = 12.6, p < 0.001). 

These two factors did not interact (Da: F(1,21) = 1.1, p = 0.2975; Le: F(1,63) = 0.13, p = 

0.716). Thus, as predicted movement neurons are sensitive to the same factors as the 

RTs.  

 Visual neurons in FEF exhibit singleton selection (Schall, 2015; Schall & Hanes, 

1993). This singleton selection tends to be locked to array onset (Thompson et al., 

Figure 6.4: Movement-related 
responses. (A) Mean ± SEM normalized 
SDFs for movement neurons recorded 
from monkey Da in the HH, HL, LH, and 
LL conditions. Responses to singletons in 
the RF are shown in saturated colors, 
responses to singletons out of the RF are 
shown in desaturated colors. High and 
low singleton identifiability are shown in 
black and red, respectively. High and low 
cue discriminability are shown in thick and 
thin lines, respectively. Cumulative 
distrubutions of SSTMov in each condition 
are shown, with the mean value indicated 
by the dashed arrow. (B) Mean ± SEM 
response times (solid) and SSTMov 
(dashed lines) for the neurons whose 
responses are shown in (B). High and low 
singleton identifiability are shown in black 
and red, respectively. High and low cue 
discriminability are shown on the left and 
right, respectively. (C) Mean ± SEM 
normalized firing rates for movement 
neurons recorded from monkey Le. 
Conventions as in (A). (D) Mean ± SEM 
response times and SSTMov for the 
neurons whose responses are shown in 
(C). Conventions as in (B). 
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1996), but can be modulated by search difficulty (Purcell et al., 2012b; Sato et al., 2001) 

or stimulus-response rule (Sato & Schall, 2003). Thus, these neurons are those for 

which the different processing architectures make differing predictions.  Spike density 

functions of visual neurons for singletons in or out of the RF for each of the four GO 

conditions are shown in Fig 6.5A and Fig. 6.5C for monkey Da and Le, respectively. For 

Da, SSTHH
Vis was 131.5 ± 27.0 ms, SSTHL

Vis was 135.0 ± 28.4 ms, SSTLH
Vis was 146.9 ± 

31.2 ms, and SSTLL
Vis was 150.4 ± 32.9 ms (Fig. 5B). Although RT was sensitive to both 

manipulations, SSTVis was sensitive to singleton identifiability (F(1,69) = 34.7, p < 0.001) 

but not cue discriminability (F(1,69) = 1.3, p = 0.257), nor their interaction (F(1,69) = 0.0, 

p = 0.999). This distinction suggests that singleton identifiability and cue discriminability 

are separate operations that are selectively influenced by our manipulations, as 

predicted by all architectures except coactive.  

For Le, SSTHH
Vis was 

128.5 ± 23.5 ms, SSTHL
Vis  was 

128.5 ± 26.0 ms, SSTLH
Vis was 

147.7 ± 29.3 ms, and SSTLL
Vis 

was 159.8 ± 29.4 ms (Fig. 5D). 

SSTVis was sensitive to both 

singleton identifiability (F(1,76) = 

114.4, p < 0.001) and cue 

discriminability (F(1,76) = 4.5, p = 

0.0365), as well as their 

interaction (F(1,76) = 6.5, p = 

Figure 6.5: Visual responses. Mean ± SEM normalized SDFs from 
visually responsive neurons from monkey Da (A) and Le (C), and mean ± 
SEM and SSTVis for these neurons from monkey Da (B) and Le (D). 
Conventions as in Fig. 6.4. 
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0.0129). This sensitivity to both manipulations and the interaction suggests that 

singleton identifiability and cue discriminability are integrated before a common decision 

point, as predicted by a coactive architecture. 

Behaviorally, we have previously reported that monkey Da performs the task with 

a parallel exhaustive architecture and that monkey Le performs the task with a coactive 

architecture (Lowe et al., 2019). Thus, the sensitivity of the visual neurons to our 

manipulations is consistent with these architectures. However, we also reported 

variability in architectures between sessions. To test the hypothesis that these inter-

monkey differences are due to the processing architectures used, and not simply 

differences between monkeys, we next examine processing architecture. 

 

6.3.3 Effect of Processing Architecture 

To determine which processing architecture was used by each monkey, we subjected 

the response time distributions to SFT analysis (Fig. 6.6A). On average, we found that 

both monkeys exhibited a serial exhaustive architecture as they both have negative 

deflections followed by positive deflections whose areas are approximately equal (Da: 

MIC = 1.90 ± 15.76; Le: MIC = 1.63 ± 9.00). Notably, these values are quite variable. To 

assess the extent of the heterogeneity in processing architecture, we performed a 

clustering analysis on the SIC curves. We found three clusters of SIC for monkey Da 

and two clusters for monkey Le (Fig. 6.6B). For both monkeys we found coactive and 

serial exhaustive clusters. Monkey Da also had a parallel exhaustive cluster.  

 For each neuron, we used SFT to classify the processing architecture used in the 

trials for which that neuron was isolated. An example schematic of a non-coactive 

architecture, specifically a parallel exhaustive architecture, is shown in Fig. 6.7A. 
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Normalized responses of visually 

responsive neurons from both 

monkeys during non-coactive 

architectures are shown in Fig. 6.7B, 

as are distributions of SSTVis, mean ± 

SEM RT, and mean ± SEM SSTVis for 

each condition. For these neurons, 

SSTVis was sensitive to singleton 

identifiability (Da: F(1,67) = 33.3, p < 

0.001; Le: F(1,61) = 77.41, p < 0.001; 

Both: F(1,129) = 101.3, p < 0.001) but 

not cue discriminability (Da: F(1,67) = 

1.1, p = 0.303; Le: F(1,66) = 1.70, p = 

0.1974); Both: F(1,129) = 2.72, p = 

0.101) nor their interaction (Da: F(1,67) 

= 0.0, p = 0.946; Le: F(1,66) = 2.44, p 

= 0.1233; Both: F(1,129) = 1.35, p = 

0.248). Similarly, responses for movement-related neurons are shown in Fig. 6.7C. 

SSTMov was sensitive to both singleton identifiability (Da: F(1,19) = 64.8, p < 0.001; Le: 

F(1,48) = 81.8, p < 0.001; Both: F(1,68) = 132.7, p < 0.001) and cue discriminability (Da: 

F(1,19) = 14.4, p = 0.001; Le: F(1,48) = 15.3, p < 0.001; Both: F(1,68) = 27.2, p < 

0.001).  

Figure 6.6: Survivor interaction contrasts.  (A) Mean ± SEM 
survivor interaction contrast curve (SIC(t)) for sessions from monkey 
Da (left) and monkey Le (right). Mean ± SEM mean interaction 
contrast (MIC, the integral of SIC(t)) is also shown. (B) Given large 
SEM in the MIC, we examined heterogeneity of SIC curves across 
sessions using a cluster analysis. We identified three clusters of 
sessions for monkey Da (left) and two clusters of sessions for 
monkey Le. For both monkeys, coactive session clusters are shown 
in green, serial exhaustive session clusters are shown in red, and 
parallel exhaustive session clusters are shown in blue. The 
dendrogram for the clustering is shown on the top, and the mean ± 
SEM SIC curve for each cluster is shown on the bottom. 
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A schematic of a coactive architecture is shown in Fig. 6.7D. Responses of 

visually responsive neurons during coactive architectures are shown in Fig. 6.7E. For 

these neurons, SSTVis was sensitive to singleton identifiability (Le: F(1,14) = 49.21, p < 

Figure 6.7: SST by architecture. (A) Schematic of an example non-coactive architecture, specifically parallel exhaustive. In this 
architecture, both manipulations affect different stages; color affects the singleton selection operation and shape affects the cue 
discrimination operation. Both operations drive or modulate movement-related neurons that drive the response. (B) Mean ± SEM RT 
(solid) and SSTVis (dashed) for visually responsive neurons in non-coactive sessions. Mean ± SEM normalized SDFs for each 
condition, in four insets. Arrangement of conditions in the SDF plots follows the arrangement of RT conditions. Cumulative 
distributions and means are indicated as in Fig. 6.4. (C) Mean ± SEM RT and SSTMov for movement-related neurons in non-coactive 
sessions. Conventions as in (B). (D) Schematic of a coactive architecture. In a coactive architecture, both manipulations affect a 
shared stage, which then drives movement neurons and the response. (E-F) RTs, SSTs, and SDFs as in (B) and (C) for visually 
responsive (E) and movement-related (F) neurons in a coactive architecture. 
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0.001; Both: F(1,16) = 44.0, p < 0.001), cue discriminability (Le: F(1,14) = 5.00, p = 

0.0421; Both: F(1,16) =  6.2, p = 0.0244), and their interaction (Le: F(1,14) = 13.89, p = 

0.0023; Both: F(1,16) = 9.3, p = 0.0076). Responses of movement-related neurons 

during coactive architectures are shown in Fig. 6.7F. Interestingly, these neurons were 

only sensitive to singleton identifiability (Le: F(1,14) = 28.30, p < 0.001; Both: F(1,16) = 

35.54, p < 0.001) but not cue discriminability (Le: F(1,14) = 0.14, p = 0.7103; Both: 

F(1,16) = 0.28, p = 0.6041) nor the interaction (Le: F(1,14) = 3.37, p = 0.0875; Both: 

F(1,16) = 1.86, p = 0.1915). This was surprising, but the lack of effect of cue 

discriminability is driven by the delay in HDiscrim conditions, not a speeding of LDiscrim 

conditions. Notably, monkey Da did not have enough neurons during performance with 

coactive architectures to analyze individually.  

 

6.3.4 SSTMov Accounts for More Change in RT Than SSTVis 

To assess whether the effects of singleton identifiability and cue discriminability on SST 

explain their effects on RT, we calculated the change in SST divided by change in RT, 

where we define the difference values as the average difference in one manipulation at 

fixed levels of the second manipulation. For example, ΔRTIdent was the average of RTLH 

– RTHH and RTLL – RTHL. For visually responsive neurons, we found that 

ΔSSTVis/ΔRTIdent was 44.0 ± 77.8%, which was significantly above 0 (t(129) = 6.45, p < 

0.001). Conversely, we found that ΔSSTVis/ΔRTDiscrim was 3.4 ± 156.1%, which was not 

significantly different than 0 (t(129) = 0.28, p = 0.779). Moreover, ΔSSTVis/ΔRTIdent was 

significantly greater than ΔSSTVis/ΔRTDiscrim (t(129) = 2.91, p = 0.004). In contrast, for 

movement related neurons, we found that ΔSSTMov/ΔRTIdent was 71.2 ± 68.6%, which 

was significantly above 0 (t(68) = 8.62, p < 0.001). ΔSSTMov/ΔRTDiscrim was 40.3 ± 
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107.5%, which was also significantly above 0 (t(68) = 3.12, p = 0.003). ΔSSTMov/ΔRTIdent 

was also greater than ΔSSTMov/ΔRTDiscrim (t(68) = 2.04, p = 0.046). Comparing ΔSSTVis 

to ΔSSTMov, movement-related neurons account for more of the RT differences than 

visually responsive neurons, both in the effect of singleton identifiability (Wilcoxson rank 

sum: Z = 2.30, p = 0.022) and cue discriminability (Wilcoxson rank sum: Z = 2.48, p = 

0.013).  

Whereas these findings show that SSTVis accounts for some of the RT 

differences due to identifiability, and SSTMov accounts for some of the RT differences 

due to both identifiability and discriminability, these RT differences are all significantly 

less than 1. This suggests that while change in SST influences response production, it 

does not dictate it. There must exist some other influence preventing the execution of a 

saccade as soon as the correct location is discriminated. This influence likely arises 

from the subpopulation of neurons affected by cue discriminability but not singleton 

identifiability that we did not record in this sample. However, we can see evidence of the 

influence of this other subpopulation in the responses during NO-GO trials. 

 

6.3.5 Visual Neurons Select Singletons During NO-GO Trials 

One methodological consideration in the present study, with respect to processing 

architecture, is that all stimuli shared an aspect ratio. Thus, the GO/NO-GO rule could 

be determined by assessing the aspect ratio of any individual stimulus, not just that of 

the singleton. If the rule is decided upon via a distractor stimulus, the search for the 

singleton can be terminated in lieu of maintaining central fixation. To assess whether 

this self-termination of search after discrimination of the cue occurs, we analyzed the 

neural responses on the NO-GO trials.  
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 Figure 6.8 shows the neural responses from visually responsive neurons during 

NO-GO trials. For monkey Da, a small separation between singleton in RF and 

singleton across from RF can be observed, but only in the high identifiability condition. 

In the low identifiability condition, the singleton in RF and singleton across from RF 

condition are nearly identical. However, this difference is transient and quickly collapses 

as the response returns to baseline; it does not continue to increase as it does in the 

GO trials (compare with Figs. 6.4, 6.5). For monkey Le, visually responsive neurons 

have differential responses when the singleton is in or across from RF on NO-GO trials, 

but the magnitude of this separation is different between the two conditions. Movement-

related neurons demonstrate between monkey differences. For monkey Da, movement 

neurons do not 

activate on NO-GO 

trials. For monkey Le, 

movement neurons 

do activate on NO-

GO trials, and to a 

larger magnitude on 

HIdent trials than on 

LIdent trials.  

 

6.3.6 Visual and Movement Neurons Discriminate the Cue 

The differential responses of both visual and movement neurons indicates that these 

neurons also discriminate the cue. The time at which the responses differ is the cue 

discrimination time (CDT). In a non-coactive architecture, CDTVis should complement 

Figure 6.8: NO-GO responses. Responses of visually responsive neurons and movement-
related neurons from monkey Da (left) and monkey Le (right) on NO-GO trials. Saturated 
lines indicate a NO-GO singleton in the RF, and desaturated lines indicate a NO-GO 
singleton out of the RF. High singleton identifiability NO-GO SDFs are shown in black, low 
singleton identifiability NO-GO SDFs are shown in red. 
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SSTVis and be affected only by cue discriminability and not singleton identifiability. 

During performance with non-coactive architectures, we found that for the visually 

responsive neurons neurons that exhibited both singleton selection and cue 

discrimination, CDTHH
Vis was 133.1 ± 25.7 ms, CDTHL

Vis was 144.4 ± 28.9 ms, CDTLH
Vis 

was 130.0 ± 30.5 ms, and CDTLL
Vis was 149.9 ± 32.8 ms. These values were 

significantly modulated by cue discriminability (Fig. 6.9; Da: F(1,55) = 33.4, p < 0.001; 

Le: F(1,20) = 19.7, p < 0.001; Both: F(1,76) = 52.5, p < 0.001), but not singleton 

identifiability (Da: F(1,55) = 0.2, p = 0.639; Le: F(1,20) = 0.1, p = 0.808; Both: F(1,76) = 

0.26, p = 0.614). For movement related neurons, CDTHH
Vis was 154.3 ± 20.9 ms, 

CDTHL
Vis was 169.8 ± 24.2 ms, CDTLH

Vis was 153.9 ± 25.1 ms, and CDTLLVis was 172.6 

± 27.8 ms. These values were significantly modulated by cue discriminability (Da: F(1,9) 

= 25.2, p < 0.001; Le: F(1,19) = 18.5, p < 0.001; Both: F(1,29) = 37.1, p < 0.001), but 

Figure 6.9: Cue discrimination compared to singleton selection. Mean ± SEM SDFs for visually responsive neurons (left) 
and movement-related neurons (right) combined across monkeys. Solid, saturated lines indicate GO trials with the singleton 
in the RF, solid desturated lines indicate GO trials with the singleton out of the RF. Dashed lines indicate NO-GO trials with 
the singleton in the RF. HH GO trials are compared with high identifiability NO-GO trials in the upper left, HL GO trials are 
compared with high identifiability NO-GO trials in the upper right. LH and LL trials are compared with low identifiability NO-GO 
trials in the bottom left and right, respectively. Singleton selection time for each condition is shown in blue as both cumulative 
distribution (solid) and mean (dashed arrow). Cue discrimination time (CDT) is similarly shown in green. 
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not singleton identifiability (Da: F(1,9) = 0.2, p = 0.676; Le: F(1,19) = 0.0, p = 0.880; 

Both: F(1,29) = 0.1, p = 0.749).  

  

6.3.7 Simultaneous Analyses: Transmission Lag 

The Gated Accumulator Model describes mechanisms by which visual neurons provide 

evidence regarding a singleton location to movement neurons, which accumulate to a 

threshold (Purcell et al., 2010, 2012b). However, this model was developed for a search 

task that did not include a GO/NO-GO manipulation. If this same model is applicable to 

the GO/NO-GO search task, it would predict that movement neuron accumulation 

should begin once the singleton is identified by the visual neurons. On the other hand, if 

instead there is an additional GO/NO-GO gate that prevents movement neuron 

accumulation until the GO cue is discriminated, then movement neuron accumulation 

should only begin when both operations are completed. That is, the delay between 

SSTVis and SSTMov should be affected by the level of cue discriminability. 

 To test these alternatives, we calculated the delay between SSTVis and SSTMov 

for each condition for simultaneously recorded neuron pairs. We focused on non-

coactive architectures as the predictions rely on the existence of separate operations. In 

non-coactive architectures, we recorded 243 pairs of visually responsive and movement 

related neurons. To avoid the possibility of a small subset of neuron pairs skewing lag 

values, we randomly sampled half of the pairs and calculated the mean lag in each 

condition. We repeated this process 500 times to arrive at bootstrapped mean lags and 
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sampling error. The lag between visual and 

movement related neurons was -5.8 ± 2.0 

ms for the HIdentHDiscrim condition, -21.0 ± 

2.3 ms for the HIdentLDiscrim condition, -12.6 ± 

2.2 ms for the LIdentHDiscrim condition, and -

25.2 ± 2.4 ms for the LIdentLDiscrim condition. 

These values were significantly affected by 

singleton identifiability (Fig. 6.10; F(1,242) = 

9.48, p = 0.002) and cue discriminability 

(Both: F(1,242) = 42.74, p < 0.001). 

Importantly, these effects do not interact 

(Both: F(1,242) = 0.56, p = 0.453).  

We also tested whether CDTVis is the instantiation of the cue discrimination 

operation or if it simply reflects interactions with the cue discrimination operation. For 

the simultaneously recorded neuron pairs, we similarly calculated transmission lag 

between CDTVis and SSTMov. We found that the mean lag between visual and 

movement related neurons was 15.0 ± 2.7 ms for the HIdentHDiscrim condition, 17.1 ± 2.7 

ms for the HIdentLDiscrim condition, -9.4 ± 2.6 ms for the LIdentHDiscrim condition, and -11.7 ± 

2.6 ms for the LIdentLDiscrim condition. These values were significantly affected by 

singleton identifiability (F(1,107) = 130.7, p < 0.001) but not cue discriminability 

(F(1,107) = 0.1, p = 0.777).  

 

Figure 6.10. Simultaneous analysis. (A) For 
simultaneously recorded visually responsive and 
movement-related neurons, we calculated the difference 
between SSTVis and SSTMov to assess transmission lag 
between neuron subtypes for each condition. Lags are 
plotted such that negative values indicate that SSTVis 
occurs before SSTMov. Visuomotor transmission lag for high 
and low identifiability trials are shown in black and red, 
respectively. Lag for high and low cue discriminability are 
shown on the left and right, respectively. A dashed line at 0 
indicates simultaneous SSTVis and SSTMov. (B) Similarly, we 
calculated the difference between CDTVis and SSTMov for 
simultaneously recorded pairs. Conventions as in (A), with 
negative values indicating CDTVis occurring before SSTMov. 
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6.4 DISCUSSION 

For the first time, we recorded neural activity while monkeys performed a task with an 

explicit 2x2 factorial manipulation. To perform this task, monkeys were required to make 

a multidimensional decision: where is the singleton, and is this a GO or NO-GO trial. 

This explicit manipulation allows the inference of cognitive architecture from the 

response time distributions using systems factorial technology. In doing so, we can 

identify the neural correlates of the factorial manipulations and thus the neural 

instantiation of the constituent cognitive operations. This approach provides 

unprecedented leverage on the understanding of neural computations underlying 

complex behavior. 

 

6.4.1 SST Conforms to SFT Predictions 

The first important finding of this study is that the singleton selection time of visually 

responsive and movement related neurons conforms to the predictions made by SFT 

analysis (Lowe et al., 2019; Townsend & Nozawa, 1995). Specifically, when the 

architecture was coactive (i.e., the two manipulations influenced stages that drive a 

common decision operation), SSTVis was modulated by both singleton identifiability and 

cue discriminability. Conversely, when the architecture was non-coactive (i.e., the two 

manipulations affected separate decision operations), SSTVis was modulated only by 

singleton identifiability, but not cue discriminability. SSTMov, on the other hand, was 

influenced by both operations. Thus, visual neurons instantiate the singleton 

identification operation and movement neurons instantiate the confluence of the 

singleton identification and cue discrimination operations and generation of the 

response. Interestingly, SSTMov during performance with coactive architectures was 
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modulated only by singleton identifiability but not cue discriminability, counter to SFT 

predictions. However, it is notable that this lack of effect appears driven more by 

delaying SST*H
Mov rather than a speeding of SST*L

Mov.  

 This finding is not unexpected. SSTVis has repeatedly been demonstrated to be 

linked to visual processing as opposed to movement selection (Kodaka et al., 1997; 

Sato & Schall, 2003; Thompson et al., 1996; Thompson et al., 2005b). Further, SSTVis 

has already been shown to modulate with singleton-distractor similarity (Sato et al., 

2001) and the set size effect (Cohen et al., 2009b). Similarly, SSTVis has been shown to 

be invariant to response preparation (Sato et al., 2001; Sato & Schall, 2003). The 

mechanism by which SSTVis is related to SSTMov has also been demonstrated and 

quantitatively modeled using the Gated Accumulator Model (Purcell et al., 2010, 2012b). 

However, none of these studies explicitly manipulated both visual and motor processing 

simultaneously. Without simultaneous manipulations, the relationships between the 

manipulations are intangible; because SSTVis relationships across conditions differ with 

cognitive architectures, guaranteeing constancy of architecture or inferring architecture 

at all is difficult or impossible. Therefore, we are uniquely able to demonstrate the 

cognitive architecture using behavioral means and confirm that SST is modulated as 

expected by manipulation and neuron type. Or rather, when SST relationships between 

visually responsive and movement-related neurons have a certain form, this generates 

behavior whose architecture is appropriately inferred. 

 

6.4.2 Cue Discrimination Interacts with Singleton Identification 

While SSTVis is selectively influenced by singleton identifiability and not cue 

discriminability, the responses on NO-GO trials still indicate interactions with the cue 
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discrimination operation. Specifically, the magnitude of singleton identification is smaller 

on NO-GO trials than GO trials, if it occurs at all. If cue discriminability did not affect the 

singleton identification operation at all, the visually responsive neurons in FEF should 

still exhibit SST and to a comparable magnitude. Indeed, in other tasks FEF visual 

neurons do select singletons even in the absence of eye movements (Kodaka et al., 

1997; Thompson et al., 2005b). The modulation of these neurons by the GO/NO-GO 

rule suggests that once the NO-GO rule is discriminated, the singleton identification 

process is cancelled. Further, the increase in activity of movement neurons for monkey 

Le, but not monkey Da, suggests that the cue discrimination operation has a different 

time course for the two monkeys; it is shorter for monkey Da than for monkey Le, and 

thus the singleton identification operation is cancelled earlier. It also suggests that 

movement neurons can be driven before cue discrimination is completed, so long as the 

visual neurons identify the singleton to a sufficient magnitude before being cancelled. 

Finally, these interactions and differences in time course between the two monkeys may 

explain the differences in overall architectures we have previously observed 

behaviorally (Lowe et al., 2019). In a parallel exhaustive system, interactions between 

operations result in a shift in the SIC curve from being entirely negative to being 

biphasic, and this shift is larger with larger degrees of interaction (Eidels et al., 2011). 

The analysis of simultaneously recorded pairs of neurons further demonstrates 

the interactions between operations. Because CDTVis follows SSTMov in HIdent conditions, 

CDTVis cannot be instantiating the cue discrimination operation. Instead, it seems to 

reflect an interaction between the singleton identification and cue discrimination 

operations. There must be some other subpopulation of neurons that instantiates the 
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cue discrimination operation, and this operation in turn inhibits the singleton 

identification operation, resulting in the decreased magnitude of singleton selection and 

differential magnitude between identifiability conditions. This operation may also 

facilitate the singleton identification operation on GO trials, but without knowing the 

response properties of this cue discriminating subpopulation we can neither confirm nor 

rule out this possibility. Similarly, we can also not determine whether the cue 

discrimination operation drives movement neurons on GO trials beyond the drive from 

the singleton identification operation, nor can we determine whether the cue 

discrimination operation inhibits movement neurons on NO-GO trials directly or whether 

the cancellation of movement neuron response is inherited from the interactions 

between the cue discrimination operation and the singleton identification operation. 

 

6.4.3 Architecture of the Visuomotor Transformation 

Above, we demonstrate that the responses of visually responsive and movement-

related neurons per se yield important insights into the cognitive architectures 

underlying the GO/NO-GO search task. However, because we used multicontact 

electrodes to perform these recordings, these architectures can be further understood 

by the lag between selection times in visually responsive and movement related 

neurons that were recorded simultaneously. 

 First, we consider the temporal lag between the visually responsive neurons 

selecting the singleton and the movement related neurons selecting the singleton. This 

lag between SSTVis and SSTMov depends on both cue discriminability and singleton 

identifiability. When cue discrimination is easy (HDiscrim conditions), SSTVis precedes 

SSTMov by approximately 11 ms. When cue discrimination is difficult (LDiscrim conditions), 
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SSTVis precedes SSTMov by approximately 23 ms. This dependence on cue 

discriminability is consistent with the existence of a GO/NO-GO gate preventing 

movement neuron accumulation until the GO cue is discriminated; that is, when cue 

discrimination becomes more difficult, there is additional time necessary to discriminate 

the GO cue before movement neurons are allowed to increase their response.  

The dependence on singleton identifiability is curious, but can be explained by 

the visuomotor gate required by the GAM. This gate instantiates some level of visual 

activity that must be reached before movement neurons begin accumulating. At the time 

of SSTHH
Mov, 7 ms after SSTHH

Vis, the difference in visual response between singleton in 

and out of the RF is 1.49 ± 1.2 AU. At the time of SSTLH
Mov, 15 ms after SSTLH

Vis, the 

difference in visual response between singleton in and out of the RF is 1.27 ± 0.94 AU. 

These differences are not significantly different (Wilcoxson rank sum: Z = 0.699, p = 

0.485), suggesting that while the difference in response in the LH condition is reliable at 

SSTLH
Vis, it is not large enough to exceed the visuomotor gate and begin driving 

movement neurons until later. Specifically, taking the lower of the two difference values, 

1.27 AU, SSTLH
Vis occurs 15 ms before the difference exceeds the gating value whereas 

SSTHH
Vis occurs only 2 ms before the difference exceeds the gating value. This 

difference between SSTVis and the time the gate is crossed can explain the greater 

transmission lag in the LIdent conditions. 

Given the above relationships between SSTVis and SSTMov, and interactions 

between the singleton identification and cue discrimination operations, we can propose 

a mechanistic architecture of the visuomotor transformation occurring during this task.  
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 When the trial begins, an array of stimuli with color and feature dimensions 

appears on the screen. The relative color of the stimuli defines one stimulus as a color 

singleton. This singleton is identified by visually responsive neurons in FEF at a time 

that is modulated by the chromatic similarity of the singleton and distractors. These FEF 

neurons then partially drive the FEF movement-related neurons. This drive is partial 

because accumulation of movement-related neurons is only permitted once the GO/NO-

GO cue is discriminated, as seen in the simultaneous recordings.  

Alongside the singleton selection operation as instantiated by FEF visually 

responsive neurons, a separate latent subpopulation of neurons discriminates the 

shape of the singleton to discriminate whether it is a GO or NO-GO trial. The dynamics 

of this operation are unknown, but we can see that a GO discrimination permits 

accumulation in movement-related neurons and that a NO-GO discrimination inhibits 

the FEF visual neurons that instantiate the singleton identification operation. Whether 

this permission from a GO discrimination is active or passive is unknown, as is whether 

the NO-GO discrimination actively inhibits the FEF movement neurons, as discussed 

above. Nevertheless, FEF movement neurons begin activating when the FEF visual 

neurons identify the singleton to a particular magnitude and when the cue discrimination 

operation provides sufficient evidence that the trial is a GO trial, and can be cancelled if 

and when the cue discrimination operation determines that the trial is a NO-GO trial. 

Finally, we should consider the meaning of a coactive architecture. In this case, 

the two manipulations are summed to drive a common decision operation. In other 

words, in a coactive architecture decisions regarding cue discriminability and singleton 

identifiability are made simultaneously. One way of conceptualizing this difference is 
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that in a non-coactive architecture, one identifies the singleton and discriminates the 

cue separately; one searches for the unique color and then determines whether the 

shape indicates a GO or NO-GO trial. In a coactive architecture, one instead searches 

directly for an elongated color singleton; the search is directed by both color and shape 

(or alternatively, there are extensive interactions between singleton identification and 

cue discrimination operations; see Eidels et al., 2011). In this case, the FEF visually 

responsive neurons, which instantiate the result of the search operation, will be 

modulated by both manipulations. The mechanism by which shape influences the 

responses of FEF visually responsive neurons is unclear, but will be discussed below. 

 

6.4.4 Outstanding Issues 

The present experiments provide unprecedented leverage on the organization of 

information processing by allowing comparisons of neural indices (e.g., SSTVis, SSTMov, 

CDT) across task conditions for the same individual neurons. However, this leverage 

still leaves many questions regarding the neural basis of complex visuomotor tasks.   

 The first major remaining question is whether there does, in fact, exist a 

subpopulation of neurons somewhere that instantiates the cue discrimination operation. 

One potential locus for this operation is the ventrolateral prefrontal cortex, vlPFC. In a 

conditional saccade countermanding task, this region has been implicated in mapping 

stimulus features to response rule regardless of which feature value defines the 

response rule (Xu et al., 2017). This was dissociated from response selection per se as 

FEF reflected the GO/NO-GO decision, correctly or not, whereas vlPFC reflected the 

GO/NO-GO rule whether the rule was followed or not. This area has also been 

implicated in rule discrimination in a delayed match-to-sample task (Miller et al., 1996). 
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This area may then be specifically involved in stimulus-rule associations to generate a 

stimulus-independent response. However, it is unclear whether this area would be 

spatially specific like FEF visually responsive neurons. In the present task this 

dissociation is difficult as all stimuli shared a shape and thus future work could 

implement a task where only the shape of the singleton is informative regarding the 

response rule. This may affect the cognitive architecture of the task, but if tested in the 

appropriate 2x2 manner proposed here, the influence of the cue discriminating neurons 

can be tested similarly to the singleton identifying neurons reported here. 

 The next outstanding question is the manner in which the feature dimensions 

affect the FEF visually responsive neurons or, more generally, what is the drive on the 

FEF visually responsive neurons. While FEF neurons generally form a salience or 

priority map (Bisley, 2011; Schall, 2015; Thompson & Bichot, 2005), the mechanisms by 

which these FEF neurons compute or reflect such a salience calculation are unclear. 

The inputs to FEF from visually responsive brain regions are diverse (Markov et al., 

2014), but given the present task demands we focus on area V4. Neurons in area V4 

are selective for both color (Schein & Desimone, 1990; Zeki, 1980) and shape 

(Desimone & Schein, 1987; Pasupathy & Connor, 1999), and are differentially active 

when their preferred stimulus has common features with a search target (Ogawa & 

Komatsu, 2004; Westerberg et al., 2020; Zhou & Desimone, 2011). The temporal 

relationship between this singleton selection and stimulus feature selection imply a 

directional relationship between the areas; specifically, feature selectivity in V4 

precedes search target selection in FEF, which in turn precedes search target selection 

in V4 (Ogawa & Komatsu, 2006; Zhou & Desimone, 2011). That is, V4 neurons are 



209 

differentially responsive to preferred shape and color combinations earlier than FEF 

select singletons.  

The direct connections between FEF and V4 suggest that this color and/or shape 

information is received by FEF neurons; however, these connections do not in and of 

themselves describe the mechanisms by which the singleton identification operation is 

performed. Because the features of the stimuli in the array are varied trial to trial, the 

color singleton is not defined by the specific shape and color features of the singleton 

per se as opposed to a search for a consistent feature (Bichot et al., 2001b; Purcell et 

al., 2012b; Sato et al., 2001), we see that the singleton identification in this task is, 

specifically, a singleton identification operation as opposed to a feature-matching 

operation. If FEF visual neurons are correctly identifying the singleton using color only, 

the pattern of SSTVis would match that of the non-coactive architectures as the feature 

dimensions would affect separate operations. On the other hand, if FEF visual neurons 

are identifying the singleton using color and shape, where shape is an uninformative 

feature dimension for singleton identification but does cue the response rule, then the 

pattern of SSTVis would match that of the coactive architecture. Thus, more work is 

necessary to understand how FEF visual neurons are driven, and how the weights of 

feature dimensions in the singleton identification operation can be dynamic. 

 The final remaining question from this experiment is the source of the remaining 

RT variation. Even the movement neurons, which instantiate the convergence of 

singleton identification and cue discrimination to generate a response, only account for 

71.2% of the RT difference due to singleton identifiability and 40.3% of the RT 

difference due to cue discriminability. The visually responsive neurons account for an 
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even smaller proportion of the RT difference due to singleton identifiability (44.0%). In a 

similar search task without a simultaneous response interference component, SST 

differences due to an analog of singleton identifiability accounted for 87% of the RT 

differences, which was not significantly different than 100% (Sato et al., 2001). In other 

tasks, the SST within quantiles of the RT distribution also accounts for approximately 

100% of RT variance (Bichot & Schall, 2002; Thompson et al., 1996). However, in a 

task with a stimulus-response component, SSTVis did not vary with RT quantiles (Lowe 

& Schall, 2019) or RT differences across conditions, at least for Type I cells (Sato & 

Schall, 2003). In one of these studies, a different neurometric index, endpoint selection 

time, was found to account for approximately 25% of RT differences, similar to 

ΔSSTVis/ΔRTIdent (Lowe & Schall, 2019). In the other, though, endpoint selection time 

across conditions in Type II cells did account for 100% of the RT variability (Sato & 

Schall, 2003). Together, these findings suggest that the added stimulus-response rule 

interferes with the direct transmission of saccade rule from visually responsive to 

movement-related neurons, suggesting additional gating mechanisms arising outside 

FEF. To fully understand the computations underlying this task, and the neural 

instantiation of those computations, the source of the remaining RT difference must be 

accounted for. Whether this can be accounted for by the drive on the visual units, the 

dynamics of the latent cue discriminating subpopulation, or a third unknown 

subpopulation is unknown and merits further quantitative modeling.  
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CHAPTER 7: GENERAL DISCUSSION 

7.1 Summary of Results 

In Chapter 2, I developed a consensus clustering algorithm to identify patterns of neural 

responses. This approach identified visually responsive, visuomotor, movement-related, 

post-saccadic, and fixation neurons; the traditional categories of FEF neural responses. 

However, it also identified additional variability within these categories that may be 

accounted for by anatomical diversity of inputs to FEF. In Chapter 3, I applied this 

clustering algorithm to a sample of neurons recorded in both FEF and dorsal premotor 

cortex (F2vr) during a more complex visuomotor task. This demonstrated the utility of 

the algorithm and its applicability to additional task conditions, and provided a 

mechanism for comparing the response profiles of neurons in different brain regions. 

 In Chapter 4, I applied an approach from cognitive psychology, systems factorial 

technology (SFT), to behavior during a complex visual search task to infer the cognitive 

architecture of the task. This behavioral experiment was the first time that an explicit 

2x2 factorial manipulation was performed in monkeys, let alone the first time the 

behavior was analyzed using SFT. I demonstrated that one monkey performed the task 

using a parallel exhaustive architecture, in which the two task manipulations affect 

separate decision operations, and the second monkey used a coactive architecture, one 

in which the two task manipulations affect the same decision operation. I also 

demonstrated that monkeys can use different architectures on different sessions. 

 In Chapter 5, I demonstrated that neural indices of cognitive operations are 

tractable using a similar complex visual search task. I demonstrated that by including 

two relevant feature dimensions, the feature dimension that does not define the search 
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singleton can still gain behavioral relevance when the monkey uses a behavioral 

shortcut. This induced feature selectivity allowed the separation of two cognitive 

operations: singleton selection and saccade selection. I demonstrated that the singleton 

selection operation occurs first and is invariant with respect to response time whereas 

the saccade selection operation occurs second and is modulated by response time. 

This approach can be extended to identify neural indices of other cognitive operations. 

 Finally, in Chapter 6 I defined such neural indices during the GO/NO-GO visual 

search task and related them to cognitive architectures. I demonstrated that when the 

task was performed using a coactive architecture, singleton selection in FEF was 

modulated by both task manipulations. However, when the task was performed using a 

non-coactive architecture, singleton selection in FEF was modulated only by the 

chromatic similarity of the search singleton and distractors but not by the discriminability 

of the response cue. Movement related neurons in FEF were modulated by both 

manipulations and are thus the confluence of the two individual operations, integrating 

them and generating a response. In doing so, I identified specific neural correlates of 

cognitive operations and architectures for the first time. This approach can be extended 

to additional manipulations and as such provides unique leverage for understanding the 

neurobiological mechanisms of information processing. 

 

7.2 Levels of Explanation and Linking Propositions 

Thus far, I have summarized the results of the experiments from this dissertation. Now, I 

assess the general scope of the experiments. First, I situate the findings in the level of 

analysis afforded, and assert and discuss resulting linking propositions. 
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7.2.1 Levels of Analysis 

To most honestly discuss the present results, one must understand the level of analysis 

at which the present experiments operate. That is, at what level am I describing the 

neurobiological phenomena underlying the cognitive architectures I identified? I 

certainly am not describing them at their most fundamental level of ion flow across 

neurons’ cell membranes (or more fundamental still, the electrochemistry of those ions). 

However, because the ionic nature of action potentials is  well understood (Hodgkin & 

Huxley, 1952) and rate coding is generally accepted as a manner of understanding 

neural function (though spike timing is also argued to be critical; for review, see Brette, 

2015), it is unlikely that these levels of understanding provide meaningful insights above 

and beyond the inferences I make from the rate code in these experiments (at least 

given our current knowledge; characterization of the phenomena in the rate code must 

be done first, and may later be updated using models at a more fine-grained scope). 

That being said, it is still difficult to understand the scope of these findings without 

explicitly defining the level of understanding achievable by the present experiments. 

 To define this level, one can invoke Marr’s levels of analysis: the computational 

level, the algorithmic level, and the implementational level (Marr & Poggio, 1976; Marr, 

1982). These levels correspond to the questions of what computations are performed by 

the system, what algorithms are used to perform those computations, and what is the 

physical realization of those algorithms. In the GO/NO-GO search task, the 

computations performed by the system are singleton identification, cue discrimination, 

and the integration of the two for response generation. This is exemplified by the 

response times, which are affected by our two task manipulations. The algorithms used 

to perform these computations are the cognitive architectures. That is, a representation 
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of stimulus color and stimulus shape are created, used to identify chromatic uniqueness 

and degree of elongation, respectively. These representations are integrated to 

generate (or withhold) a response. This level of explanation was accomplished in 

Chapter 4. However, my unique application of this framework to non-human primate 

research allows for the third level of explanation: the implementational level. 

 The physical instantiation of the algorithmic level of explanation was tested in 

Chapter 6. I found that when an algorithm was used in which singleton identification and 

cue discrimination were represented separately (i.e., a non-coactive cognitive 

architecture), the visually responsive neurons in FEF identified the singleton in 

accordance with the chromatic similarity of the stimuli, regardless of their elongation. 

The movement related neurons in FEF, on the other hand, identified the singleton and 

generated a response in accordance with both manipulations and in accordance with 

response times. This entails the existence of an additional latent subpopulation that 

discriminates the cue in accordance with the elongation of the stimuli but not the 

chromatic similarity. Together, these subpopulations comprise the implementation of the 

algorithms used to perform the computations necessary to complete this task.  

 An additional, complementary algorithmic level of explanation for the present 

findings is Bundesen’s Theory of Visual Attention (Bundesen, 1990). This model 

describes response choice probabilities as a function of attentional weights and 

response biases. Specifically, a stimulus in an array is selected through feature values 

and the weighting of feature dimensions (the feature priority). Similarly, a response is 

selected by way of the weighting of response dimensions (the response bias). In the 

GO/NO-GO search task, the stimuli are selected by their color (i.e., the feature priority 
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for the color dimension is high, and for the shape dimension is low), whereas the 

responses are selected by their shape (i.e., the response bias for shape dimension is 

high, and for the color dimension is low). I demonstrated a segregation of operations for 

stimulus selection and response generation, embodied by the visually responsive and 

movement-related neurons in FEF respectively. This allows the physical instantiation of 

feature priority and response bias as the relative influence of feature dimensions on the 

response of visually responsive and movement-related neurons, respectively. It also 

allows the relative feature priorities to explain coactivity, as this architecture is defined 

by the use of both features in the selection of stimuli. Further understanding of the drive 

on visual neurons (see section 7.5.2) will provide additional an implementation level 

explanation of the mechanisms by which feature dimensions influence stimulus 

selection, and thereby will elaborate the implementational level of TVA. 

 While we can identify the levels of analysis afforded by these experiments, 

whether this final level of physical instantiation is truly satisfied requires comparisons to 

other quantitative models. Attractor models provide useful comparisons to the present 

results. These models have been used to explain neural activity in working memory 

tasks as well as search tasks (e.g., Standage et al., 2014; Wimmer et al., 2014). 

Importantly, these models also provide physical models of behavior, but as single stage 

models with explicit differentiation between excitation and inhibition. In the present 

experiments, we did not analyze differences between putative excitatory pyramidal 

neurons and putative inhibitory interneurons. Instead, I focused simply on the rate code. 

Thus, whether these experiments should be considered to describe the physical 

implementation of the cognitive algorithms or whether they provide a neural algorithm 
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whose biophysical basis still needs described is unclear. In any case, the different 

response properties of FEF neurons are associated with different biophysical properties 

(Cohen et al., 2009d; Lowe & Schall, 2018). Future work may bridge these levels and 

provide a more complete explanation of the implementational level of analysis.  

 

7.2.2 Linking Propositions 

Most generally, the goal of this work is to understand the neural basis of cognitive 

architectures used to perform complex behaviors. That is, when cognitive events occur, 

what are the neurobiological events associated with them? Or rather, what are the 

neurobiological events instantiating them? I focused on three cognitive events in these 

experiments: identification and selection of a stimulus, discriminating a rule cue and 

selecting a response, and response generation by way of integration of stimulus and 

response selection. Moreover, I also focused on the manner by which the information 

from the stimulus selection operation is transmitted to the movement-related neurons. 

Above, I discussed the level of analysis and scope afforded by these experiments. 

While there is still much to be learned, here I explore the extent of the relationship 

between the neurobiological and cognitive by describing linking propositions. 

A linking proposition is “a claim that a particular mapping occurs, or particular 

mapping principle applies, between perceptual and physiological states” (Teller, 1984). 

This framework arises from the supposition that “… whenever two stimuli cause 

physically indistinguishable signals to be sent from the sense organs to the brain, the 

sensations produced by those stimuli, as reported by the subject in words, symbols or 

actions, must also be indistinguishable” (Brindley, 1970). As this formulation of the 

relationship between neurophysiological activity and cognitive function was derived from 
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visual science, it can be narrowly rephrased as: when visual neurons responsive to 

some feature or set of features X are responsive, an object with feature or set of 

features X is perceived (e.g., Teller, 1984). However, Brindley had a broader notion of 

sensation that includes reports by the subject with actions; for the below discussion, and 

because our task involves two response options of GO and NO-GO, I consider 

response option and percept to be the same. 

 This definition of a linking proposition entails a set of logical relationships 

between neural states and cognitive states that must hold (Teller, 1984): 

(1) “The initial proposition states that identical neural states map onto 

identical cognitive states.  

(2) The contrapositive of the initial proposition states that nonidentical 

cognitive states correspond to nonidentical neural states.  

(3) The converse proposition states: identical cognitive states map onto 

identical neural states, and  

(4) The contrapositive of the converse states: nonidentical neural states 

entail nonidentical cognitive states.” (Schall, 2004a) 

The brain regions that satisfy these propositions are known as bridge loci, so named 

because they form the bridge between the physical and psychical phenomena studied. 

From the present set of experiments, I assert two linking propositions: (1) the 

visually responsive neurons in FEF constitute the bridge locus of stimulus selection, and 

(2) the movement-related neurons in FEF constitute the bridge locus of response 

selection. Because neural responses are directly accessible, I can evaluate the 

converse and contrapositive propositions.  
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Firstly, I assert that the activity of FEF visually responsive neurons is the 

selection of a stimulus. The converse proposition states that identical cognitive states 

map onto identical neural states. That is, when the same stimulus is selected, the same 

subpopulations of FEF visually responsive neurons have high levels of activity. I found 

this to be true in our data; when a response was made toward a given stimulus, FEF 

neurons with RFs at that location had high levels of activity. Moreover, this relatively 

higher level of activity was reached at a time dependent on the ease of selection, 

singleton identifiability, but not on response selection difficulty, cue discriminability, on 

GO trials. Similarly, in Chapter 5 I demonstrated that when responses were made to a 

stimulus in the RF, neural activity did not differentiate whether the response was correct 

or incorrect. The contrapositive proposition states that nonidentical responses 

correspond to nonidentical neural states. I also found this to be true as responses to a 

stimulus in the RF of a visual neuron, as opposed to out of the RF, were associated with 

different levels of activity in that visual neuron. Thus, FEF visually responsive neurons 

satisfy the requirements to be a bridge locus for stimulus selection. 

Second, I assert that the activity of FEF movement-related neurons is the 

integration of singleton identifiability and cue discriminability for response generation. 

Similarly, the converse and contrapositive propositions can be evaluated. I found that 

when a saccade is generated to a stimulus in the movement field of our FEF movement-

related neurons, activity in those neurons was high. This increased activity was 

dependent on both singleton identifiability and cue discriminability in contrast to visually 

responsive neurons. The contrapositive states that non-identical responses correspond 

to nonidentical neural states. I found that the activity of these movement-related 
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neurons was dependent on location, and responses made to or away from the 

movement field elicited high and low activity, respectively. As such, FEF movement-

related neurons satisfy the requirements to be a bridge locus for response selection. 

  

7.3 A Schematic Model of GO/NO-GO Visual Search 

Having evaluated the scope of the results and the specifics of the linking propositions 

that can be asserted from this work, I now detail the model of GO/NO-GO visual search. 

This schematic model is shown in Figure 7.1. First, in architectures with selective 

influence, one subpopulation of neurons instantiates the cognitive operation of singleton 

identification, one subpopulation instantiates the cognitive operation of cue 

discrimination, and one subpopulation integrates these operations and generates a 

response. I identified the first and third subpopulations. Having done so, I formed the 

linking propositions that FEF visual neurons instantiate the singleton identification 

operation, and FEF movement neurons instantiate the integration and oculomotor 

response generation. The nature of information processing between these 

subpopulations has been studied previously and can be defined mathematically using 

the Gated Accumulator Model (Purcell et al., 2010, 2012b). Thus, the linking proposition 

that the Gated Accumulator Model is the visuomotor transformation occurring in FEF 

has been asserted. However, this model does not account for the increased delay 

between stimulus selection and response selection when cue discriminability is difficult, 

so a latent subpopulation that instantiates cue discrimination operation must exist.  

Singleton identification and cue discrimination interact as seen in the cancelling 

of singleton selection on NO-GO trials. This suggests that on NO-GO trials, the cue 

discrimination neurons inhibit FEF visual neurons. These neurons may actively inhibit 
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FEF movement neurons, 

preventing or cancelling their 

response. Alternatively, these 

neurons may indirectly inhibit 

FEF movement neurons via 

their inhibition of FEF visual 

neurons, reducing the drive on 

the movement neurons. 

Similarly, the cue discrimination neurons may actively drive FEF movement neurons on 

GO trials, or indirectly drive them through facilitating the FEF visual neurons.  

Finally, the FEF visual neurons receive color information in order to identify the 

singleton. However, this color information may not be separated from shape 

information, as areas like V4 that are selective for color are also selective for shape 

(discussed below in section 7.5.2). In a non-coactive architecture, shape is fully and 

correctly filtered out of the singleton identification operation. But in a coactive 

architecture, shape is incompletely filtered and influences the singleton identification 

operation. Therefore, a mechanism for setting the degree of filtering of irrelevant feature 

dimensions must exist. This mechanism would then instantiate the degree of coactivity. 

 

7.4 Importance of Cell Types 

This set of experiments reinforces a notion that is often overlooked: neuron types are 

important. Specifically, in areas like FEF that have a remarkable diversity of response 

profiles, respecting this diversity provides more complete insights than lumping all 

neurons together. In Chapter 2, I identified 10 categories of response profiles, 

Figure 7.1. Schematic model of GO/NO-GO search. This search task is 
solved by selecting the singleton and discriminating the cue. These 
operations occur in parallel, with varying degrees of interactions. In this set 
of experiments, several components were identified empirically, shown in 
solid lines. Other components can be inferred but were not directly 
measured, shown in dashed lines. In this task, a feature filter (diamond) 
separates color and shape dimensions of the stimuli in the search array. 
The color information is used by the singleton selection operation, 
instantiated by FEF visual neurons, and the shape information is used by 
the cue discrimination operation, whose neural instantiation is unknown. 
This filtering may be imperfect as demonstrated by shape information 
driving the singleton selection operation. FEF visual neurons drive FEF 
movement neurons, which instantiate response selection and generation, 
via the Gated Accumulator Model (GAM; Purcell et al., 2010, 2012b).  
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discussed potential anatomical correlates of the subcategories of traditional neuron 

types, and developed an algorithm by which these categories can be determined in a 

less biased manner. In Chapter 5, by restricting analyses to those neurons that 

exhibited feature selectivity, I used this unexpected property to separate stimulus 

selection and saccade selection operations. In Chapter 6, separating neurons into 

visually responsive and movement-related allowed me to dissociate neurons that were 

modulated by only one task manipulation from those that were modulated by both. This 

dissociation then defined neural correlates of the two task operations as well as their 

integration. These inferences would have been impossible without separating neuron 

types, as the sample as a whole was modulated by both task conditions and FEF would 

have been ruled out as the locus of the singleton identification operation.  

 This identification of neuron types is contrasted by a wealth of studies analyzing 

local field potentials, LFPs. LFPs reflect neural activity pooled over many neurons, but 

are still finely localized (e.g., Katzner et al., 2009). Singleton selection in search is 

indexed by LFPs (Cohen et al., 2009a; Purcell et al., 2013) and measures of multiunit 

activity derived from them (Westerberg et al., 2020). LFPs can be used to assess 

coordination between areas, including FEF (Babapoor-Farrokhran et al., 2017; 

Fiebelkorn & Kastner, 2019; Gregoriou et al., 2009), as well as laminar 

compartmentalization of functions (Bastos et al., 2018; Johnston et al., 2019). However, 

such interactions are often cell-type specific, either functionally (Gregoriou et al., 2012) 

or anatomically (Voloh & Womelsdorf, 2018), and the pooling across neurons reflected 

in the LFP can obscure cell-type specific activity. Indeed, in a preliminary analysis I 

defined multiunit activity from the LFPs recorded in this task. I found that a nonspecific 



222 

visual transient was present on nearly all channels, and the separation between the 

singleton in and across from the RF is modulated by both task manipulations (Fig. 7.2). 

Thus, in order to achieve the level of description offered by these experiments, isolating 

single neurons and respecting the heterogeneity of their response profiles is necessary.  

 

7.5 Outstanding Issues 

While this set of experiments provides substantial leverage on an old problem in 

cognitive psychology, several remaining issues must be solved before fully 

Figure 7.2. Multiunit acitivity. (A) Multiunit activity was defined from the local field potentials recorded in FEF during the 
GO/NO-GO search task by bandpass filtering between 80 and 150 Hz. Channels were defined as visually responsive, 
visuomovement, or movement-related using the same criteria as single units in Chapter 6. Responses from visually 
responsive channels are shown for each of the six task conditions, with vertical lines in the GO conditions indicating 
mean SSTVis. Responses are shown for singletons in the multiunit RF (saturated) and out of the multiunit RF 
(desaturated). (B) Cumulative SST for each of the four GO conditions is shown. High and low singleton identifiability are 
shown in black and red, respectively. High and low cue discriminability are shown in thick and thin lines, respectively. (C-
D) Responses from movement-related channels and their cumulative SSTs are shown. Conventions as in (A-B). 
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understanding the neural underpinnings of cognitive architectures. To conclude, I 

describe several prominent questions remaining and assert hypotheses regarding them, 

including the architectures of additional manipulations of visual search. 

 

7.5.1 Bridge Locus of Cue Discrimination 

The first and most task specific issue remaining is the identity of the neurons that 

instantiate the cue discrimination operation. One promising candidate for this task is the 

ventrolateral prefrontal cortex, vlPFC, the putative homologue of the human inferior 

frontal junction (Badre & Wagner, 2007; Chikazoe, 2010; Cieslik et al., 2015). This area 

has been implicated in representing task rules in delayed match-to-sample tasks 

(Bunge et al., 2003; Miller et al., 1996; Schwedhelm et al., 2020), strategy 

implementation (Baxter et al., 2009), and saccade countermanding (Xu et al., 2017). In 

the latter, vlPFC and FEF were specifically compared in a conditional saccade 

countermanding task. In this task, the shape of a fixation spot indicated whether a color 

cue indicated a GO or a NO-GO response. Neurons in vlPFC were found to encode the 

rule, regardless of which feature value indicated that rule, whereas neurons in FEF were 

found to encode the GO/NO-GO response, regardless of the correct rule. This area may 

then be specifically involved in generating stimulus-independent response rules. 

 It is also unclear whether these neurons would have spatially specific RFs like 

the FEF neurons. If vlPFC neurons are the loci of the cue discrimination operation, then 

this operation may not be spatially specific because they have RFs that are 

considerably larger than those in FEF (Suzuki & Azuma, 1983). However, GO/NO-GO 

neurons in this area in a simpler task have shown spatial selectivity (Hasegawa et al., 

2004; Sakagami & Niki, 1994). Hasegawa and colleagues recorded neural activity in 
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FEF and preFEF, or area 8Ar on the convexity of the arcuate sulcus, and found two 

classes of spatially selective GO/NO-GO selective neurons: those that responded more 

for GO trials and those that responded more for NO-GO trials. While both classes of 

neurons were found in both areas, the NO-GO preferring neurons were more prevalent 

in preFEF than in FEF. Unfortunately, particulars of the anatomical localization of these 

neuron subtypes were not provided thus the discussion of these recordings are 

tentative. The recording area is consistent with caudal vlPFC and caudal dorsolateral 

prefrontal cortex, dlPFC. The latter has spatially restricted receptive fields (Hasegawa et 

al., 2000), which may be the source of the observed spatial selectivity, but vlPFC is 

more prominently involved in rule encoding than dlPFC (Wallis & Miller, 2003).  

However, whether these classes of neurons should be taken as evidence that 

vlPFC is the bridge locus of cue discrimination is unclear, as FEF has similar GO/NO-

GO selective neurons (e.g., Sommer & Wurtz, 2001). Our visually responsive neurons 

and movement-related neurons in FEF exhibited GO/NO-GO discrimination at a time 

modulated by cue discriminability, but temporal relationships of singleton identification 

and cue discrimination in these neurons are inconsistent with FEF being the bridge 

locus of cue discriminability (Chapter 6). Presence of these neurons is not sufficient for 

the proposition that these neurons instantiate cue discriminability. Moreover, none of the 

tasks above manipulated the difficulty of encoding the GO/NO-GO rule (perhaps with 

the exception of match/non-match tasks whose difficulty varies with delay period or 

sequence length (e.g., Wittig & Richmond, 2014), but other confounds prevent direct 

comparison). Without manipulating rule encoding difficulty, one cannot determine the 

relationships of neurometric indices of rule encoding to response times.  
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In any case, this dissociation is impossible in the present GO/NO-GO search task 

because all stimuli shared a shape. Thus, the shape of a stimulus in or out of a cue 

discriminating neuron’s RF would never be different, nor would they be differentially 

informative about the rule on a given trial. In future work, the shape of all stimuli could 

be varied and the task rule defined only in terms of the shape of the color singleton. If 

tested in the appropriate 2x2 manner proposed here, the properties of cue 

discriminating neurons can be better understood. 

An alternate candidate area for the bridge locus of cue discriminability is the 

anterior cingulate cortex, ACC. ACC contains an eye field that has been compared to 

other eye fields, FEF, LIP, and SEF specifically (Amiez & Petrides, 2009; Pouget et al., 

2005). ACC and FEF are coordinated during task performance, with a failure of 

synchronization reflected as an increase in error rate in saccade tasks (Babapoor-

Farrokhran et al., 2017). ACC is frequently compared to the dlPFC in studies of goal-

directed behavior (e.g., Boschin et al., 2017; Johnston et al., 2007). Both of these areas 

are implicated in rule encoding in a pro-/anti-saccade task (Johnston et al., 2007). 

Whereas dlPFC activity is maintained throughout blocks sharing a response rule, ACC 

activity was most prominent on trials with a rule switch and decayed throughout the 

block. If ACC is involved in rule discrimination, it may be more prominently active during 

our task than prefrontal cortex (dlPFC or vlPFC) because there is no explicit blocking of 

stimulus-response rule, so rule switches are frequent and unpredictable. ACC has also 

been implicated in inhibition of movements (Bari & Robbins, 2013), a role which would 

be well suited for a GO/NO-GO discrimination. 
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Though ACC’s involvement in rule encoding makes it a promising candidate for 

the bridge locus of cue discriminability, its role is more often considered in response 

monitoring than response generation (Boschin et al., 2017; Heilbronner & Hayden, 

2016; Silvetti et al., 2014). Single neurons and local field potentials recorded from ACC 

during a saccade countermanding task are differentially responsive to correct and error 

trials, often signaling reward omission (Emeric et al., 2008; Ito et al., 2003). In other eye 

fields reward prediction is distinct from error monitoring (Sajad et al., 2019), but 

regardless both types of signals are considered as performance monitoring signals 

(Bissonette & Roesch, 2016; Botvinick, 2007), manifestations of high level abstract 

control (Heilbronner & Hayden, 2016), or the expected value of applying control 

(Shenhav et al., 2013), as opposed to signals generating behavior. Thus, in an actor-

critic framework, in which an actor performs some function and a critic alters the actor’s 

behavior for future behavior, ACC is generally considered a critic (e.g., Babapoor-

Farrokhran et al., 2017; Silvetti et al., 2014). But for modeling of behavior within a trial, 

the bridge locus is the actor. 

ACC may be more involved in behavior monitoring as compared to behavior 

production but the differences in perspectives of the two areas raises an important 

consideration for identifying the bridge locus of cue discrimination: does the bridge locus 

represent response rule per se, or does it represent the stimulus features cuing that 

response rule? In the GO/NO-GO search task, this distinction is subtle as feature 

dimensions are directly mapped to response dimensions. But consider a match/non-

match task. As discussed above, there are subpopulations of neurons in vlPFC that 

respond more when a stimulus matches a sample stimulus (Miller et al., 1996). But is 
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this task modulation due to the correspondence of feature dimensions between the two 

stimuli, or due to the response cued by such a correspondence?  

The question becomes whether the cue discrimination operation uses stimulus 

features or response option as the frame of reference. In the GO/NO-GO search task, a 

bottleneck could occur at a stage where stimuli are categorized as elongated or non-

elongated, and these categories are subsequently mapped to GO or NO-GO rule. 

Alternatively, the bottleneck could occur at a stage where this mapping is carried out, 

and the degree of elongation may differentially drive GO or NO-GO units. Depending on 

the location of the bottleneck, differential responses to elongation and insensitivity to 

singleton identifiability are not sufficient to diagnose the bridge locus of cue 

discriminability. Instead, finding this bridge locus requires an understanding the 

mechanisms by which stimulus features are arbitrarily mapped to responses. 

 

7.5.2 What Drives FEF Visual Cells? 

The next open question is the nature of the visual input to FEF. While the responses of 

FEF visual neurons drive FEF movement neurons according to the Gated Accumulator 

Model, it is unknown how these visually responsive neurons are themselves driven. FEF 

receives input from numerous visual areas (Huerta et al., 1987; Markov et al., 2014; 

Schall et al., 1995b). Three of these merit specific discussion: V4, MT, and LIP. 

 Area V4 is a visual area with neurons selective for shape (Desimone & Schein, 

1987; Pasupathy & Connor, 1999) and color (Schein & Desimone, 1990). Like FEF, V4 

neurons have increased responses when a search target is in their receptive fields 

relative to a search target out of their receptive fields (Ogawa & Komatsu, 2004; 

Westerberg et al., 2020). Importantly, this target selection occurs later in V4 than in 
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FEF, but the feature selectivity in V4 precedes target selection in FEF (Ogawa & 

Komatsu, 2006; Zhou & Desimone, 2011). Thus, it seems likely that V4 is the source of 

the color and shape information required in the GO/NO-GO search task. Because these 

neurons are selective for color and shape, if retinotopically matched color selective and 

shape selective neurons both drive FEF visually responsive neurons, interactions 

between feature dimensions and thus coactivity could result. However, V4 neurons 

encode color and shape dimensions relatively independently (Bushnell & Pasupathy, 

2012) so there may be a mechanism that allows color selective neurons to drive FEF 

visual neurons while preventing shape selective neurons from doing the same. This 

mechanism, then, may be instantiating the feature priorities and response biases that 

parameterize Bundesen’s TVA (Bundesen, 1990). 

 Area MT is also densely interconnected with FEF. The connections between FEF 

and V4 are segregated from the connections between FEF and MT (Ninomiya et al., 

2012). These areas are generally considered to belong to the ventral, or what pathway, 

and the dorsal, or where pathway, respectively (Mishkin et al., 1983; Ungerleider & 

Mishkin, 1982). In the present experiment, motion is not a relevant feature dimension in 

any way and thus the influence of MT on FEF visual neurons should be limited. 

However, FEF visual neurons can use motion information for selecting singletons, and 

singleton selection time in this domain is also modulated by singleton-distractor motion 

similarity (Sato et al., 2001). 

 A second alternative for the visual response driven by MT is that MT drives the 

transient visual neurons that do not select the singleton. As part of the dorsal stream, 

MT may be a part of a broad magnocellular pathway analogous to the retinal inputs to 
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the LGN and V1 (e.g., Callaway, 2005). This pathway is characterized by brisk, 

transient responses to visual stimulation with lower latencies than the sustained, longer 

latency parvocellular pathway. FEF visually responsive neurons that achieved color or 

shape selectivity due to a consistent target identity had latencies longer than those that 

did not achieve feature selectivity (Chapter 5; Bichot et al., 1996). This was taken as 

evidence that the neurons that received chromatic input were a different subpopulation 

than those that did not, and those that did not had faster latencies. Similarly, I identified 

two clusters of visually responsive neurons with different latencies and times of peak 

responses that could also reflect this pathway difference (Lowe & Schall, 2018). 

 The final visual area worth considering as providing drive to FEF visual neurons 

is area LIP. FEF and LIP are highly coordinated during spatial attention (Fiebelkorn et 

al., 2018, 2019). Neurons in area LIP, much like FEF, select salient stimuli that are in 

their RFs, regardless of specific feature values (Bisley, 2011; Bisley & Mirpour, 2019; 

Ipata et al., 2006a, b; Thomas & Paré, 2007). This selection takes place on a similar 

time course in both areas (Ibos et al., 2013; Sapountzis et al., 2018). Also like FEF, LIP 

has been described as an accumulator whose activity increases to a decision threshold 

(Schall, 2019; Shadlen & Kiani, 2013; Shadlen & Newsome, 2001). These two areas are 

broadly similar, but LIP has fewer motor signals than FEF (Ferraina et al., 2002; 

Sapountzis et al., 2018). Similarly, whereas singleton selection time in FEF increases 

with set size and explains RT differences (Cohen et al., 2009b), this is not the case in 

LIP (Balan et al., 2008; c.f. Cohen et al., 2009c). One additional difference is the nature 

of the salience of the stimuli; LIP selects a search singleton earlier than FEF if the 

search target is defined in terms of an intrinsic feature whereas FEF selects first if the 
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target is defined in terms of an extrinsic feature (Ibos et al., 2013). This largely similar, 

but subtly different, pattern of responses between the two areas may suggest that LIP 

operates in parallel to FEF as opposed to being a driving force. 

 While understanding the sources of the drive on FEF visual neurons is certainly 

important, to understand the system one must also understand the time course of those 

inputs. Connections between the discussed areas are largely reciprocal (Markov et al., 

2014), suggesting a recursive pattern of activation. For example, responses of V4 

neurons are modulated when covert attention is directed toward their RF (McAdams & 

Maunsell, 1999; Motter, 1993), and subthreshold microstimulation of FEF produces 

effects similar to deploying covert attention (Moore & Armstrong, 2003). Similarly, 

neurons in FEF and V4 are selectively synchronized during attention (Gregoriou et al., 

2012). Similar behavioral attention manipulations have demonstrated comparable 

neural response differences in area MT (Treue & Martínez Trujillo, 1999), and 

presumably follow a similar mechanism. Thus if areas like V4 and MT are driving FEF 

visual neurons and FEF visual neurons in turn modulate responses in V4 and MT, 

modeling the responses of FEF visual neurons in terms of V4 and MT responses must 

also accommodate this feedback modulation. 

 The final consideration for inferring relationships between areas, and indeed 

neuron types within an area, is the difficulty of matching results across task demands. 

For example, Sato et al. (2001) found that singleton identifiability modulated singleton 

selection time in FEF, but not a response preparation manipulation. This formed my 

hypotheses that FEF visually responsive neurons would be selectively influenced by 

singleton identifiability and not cue discriminability in non-coactive architectures. Indeed, 
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this finding and its relationship to cognitive architectures may have been identified there 

if the two task manipulations were independently interleaved, as done here. In LIP, 

Cohen et al. (2009b) argue that the lack of a relationship between singleton selection 

time and response time across set sizes as reported by Balan et al. (2008) could have 

been due to differences in task conditions between their study and that of Cohen et al. 

(2009a), specifically the effector used for the response. Also studying LIP during visual 

search, Thomas & Paré (2007) note that “Perhaps the unconstrained nature of this 

visual search task does not allow visual and saccade selection processes to be 

dissociated…” Their task was a color singleton search task, as was mine. However, 

because I added a second relevant feature dimension, shape, I was able to dissociate 

singleton and saccade selection operations by exploiting unexpected feature selectivity 

(Chapter 5) and by adding an explicit GO/NO-GO rule (Chapter 6).  

 

7.5.3 Additional Manipulations and Their Architecture 

The results and inferences of this set of experiments, while informative, are restricted 

specifically to the relationship between a singleton selection operation and a stimulus-

response rule mapping operation. However, there are multiple additional task 

manipulations that modulate search difficulty. One particular manipulation that I have 

referred to numerous times thus far is the set size effect, in which response times are 

longer when more distractors are presented (under certain conditions, e.g., Treisman & 

Gelade, 1980). In FEF, the set size effect is instantiated by visually responsive neurons 

(Cohen et al., 2009b; Purcell et al., 2012b). If the set size effect and singleton 

identification are indeed instantiated by the same pool of neurons, then they must 

necessarily affect the same cognitive operation. In this case, if set size and singleton 
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identifiability were simultaneously manipulated, this nexus of the two effects would be 

expected to produce a coactive architecture in the response times and SSTVis would be 

modulated by both manipulations. If these operations are not in fact instantiated by 

these neurons, but the effects are instead inherited from other regions, they may 

produce non-coactive architectures and the true bridge locus of either manipulation may 

be sought elsewhere. 

 Another manipulation of response times in visual search is the priming effect, 

specifically priming of pop-out. When the feature defining a search target is repeated, 

response times are speeded (Maljkovic & Nakayama, 1994). At the neural level, this 

priming effect is reflected by visually responsive neurons in FEF (Bichot & Schall, 2002) 

and in area V4 (Westerberg et al., 2020). However, the origin of this priming effect is still 

debated as area V4 overpredicts RT effects (Westerberg et al., 2020). Thus, if the 

priming effect is in fact instantiated by FEF neurons and is fed back to V4 neurons, then 

testing priming of pop-out and singleton identifiability in tandem would again result in a 

coactive architecture that could be inferred behaviorally. However, if V4 neurons 

instantiate the priming effect, then it is possible (though not necessary) that the 

behaviorally inferred architecture could be non-coactive.  

 In the tasks described so far, the search target is defined by only one feature, 

with a secondary feature that defines the stimulus-response rule. However, when 

multiple features define a search target, response times are more sensitive to the set 

size effect (Bichot & Schall, 1999; Treisman & Gelade, 1980; Wolfe, 1994). Thus, it 

would be plausible to manipulate the difficulty of the individual conjunction features to 

determine the architecture by which the separate feature dimensions are combined. If 
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individual FEF visually responsive neurons select singletons based on both features 

together, a coactive architecture would be predicted. If instead separate subpopulations 

of visually responsive neurons are responsible for selecting the singleton based on the 

individual feature values, the relative contributions of these two subpopulations could be 

determined. For example, singleton selection time in visually responsive neurons in FEF 

is modulated by search difficulty when the selection feature is motion direction (Sato et 

al., 2001), but it is unknown whether these are the same neurons that select the 

singleton based on chromatic similarity. Above, I described reasons for thinking that the 

V4-recipient and MT-recipient FEF visual neurons may be separate subpopulations. 

Such a supposition could be empirically tested in a task where relevant feature 

dimensions are represented by different brain regions, as opposed to color and shape 

as in the present experiments which are both selectively encoded by V4 neurons. 

 Finally, additional manipulations may consider other response modalities; in 

particular, manual responses as opposed to oculomotor responses. FEF visually 

responsive neurons still select search targets during manual tasks (Neromyliotis & 

Moschovakis, 2017b; c.f. Mushiake et al., 1996), but movement-related neurons do not 

(Thompson & Bichot, 2005). Conversely, neurons in premotor cortex select search 

targets or saccade targets during oculomotor tasks (Neromyliotis & Moschovakis, 2018; 

Neromyliotis & Moschovakis, 2017b; Chapter 3), though they are generally considered 

to be related to manual movements (e.g., Cisek & Kalaska, 2005). It is presently 

unknown whether premotor cortex neurons are similarly affected by singleton 

identifiability or cue discriminability as defined in our task. Thus, the question remains 

whether the visually responsive neurons in FEF, which instantiate the singleton 
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identification operation in our task, similarly instantiate the singleton identification 

operation during manual tasks. This seems possible, even likely given the known 

similarities in responses between the two areas in oculomotor or manual tasks. Less 

likely is that the movement-related neurons in FEF instantiate the integration and 

response production operation in a manual task. However, it may be expected that the 

latent cue discriminating subpopulation of neurons would still be the bridge locus for cue 

discriminability regardless of effector. Such a supposition must be empirically tested but 

would ultimately describe modality-dependent and modality-independent operations that 

are coordinated for directed behavior. Using the research approach described and 

implemented here, specifically 2x2 factorial manipulations permit the application of SFT 

to infer the cognitive architecture, cognitive architectures can be related to neural 

indices of cognitive operations in a meaningful way. This research approach is well 

situated to address additional questions regarding the mimicry of multiple brain regions 

in similar tasks and their respective roles in the generation of directed behavior. 

 

7.6 Conclusions 

My goal with this dissertation was to increase neuroscientific understanding, defined as 

an understanding of the biological underpinnings of behavior. I have addressed this by 

approaching questions from both ends. In Chapters 2 and 3 I addressed the question of 

heterogeneity of functional neuron types and with my consensus clustering algorithm I 

developed a method by which this heterogeneity can be appreciated at a finer grain 

than has been done before. In Chapter 4 I addressed the question of cognitive 

operations and architectures and applied SFT, and even explicit 2x2 factorial 

manipulations, to non-human primate work for the first time, allowing the inference of 
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cognitive architectures in a model species where neural recordings are possible. In 

Chapter 6 I did just this by recording neural activity while monkeys performed a GO/NO-

GO search task and, in conjunction with Chapter 5, identified neural indices of cognitive 

operations and their architectures. In sum, by respecting both the biology and 

psychology, I was able to relate these two domains to one another and describe the 

neural substrates of cognitive processing architectures. 
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