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The influential triple-code model of number representation
proposed that there are three distinct brain regions for three
different numerical representations: verbal words, visual
digits and abstract magnitudes. It was hypothesized that
the region for visual digits, known as the number form area,
would be in ventral occipitotemporal cortex (vOTC), near
other visual category-specific regions, such as the visual word
form area. However, neuroimaging investigations searching
for a region that responds in a category-specific manner to
the visual presentation of number symbols have yielded
inconsistent results. Price & Ansari (Price, Ansari 2011
Neuroimage 57, 1205–1211) investigated whether any regions
activated more in response to passively viewing digits in
contrast with letters and visually similar nonsense symbols
and identified a region in the left angular gyrus. By contrast,
Grotheer et al. (Grotheer, Herrmann, Kovács 2016 J. Neurosci.
36, 88–97) found bilateral regions in vOTC which were more
activated in response to digits than other stimuli categories
while performing a one-back task. In the current study, we
aimed to replicate the findings reported in Grotheer et al. with
Price & Ansari’s passive viewing task as this is the most
stringent test of bottom-up, sensory-driven, category-specific
perception. Moreover, we used the contrasts reported in both
papers in order to test whether the discrepancy in findings
could be attributed to the difference in analysis.
1. Introduction
The existence of a region in the ventral visual stream that responds
in a category-specific manner to the visual presentation of number
symbols (i.e. Arabic digits) was postulated byDehaene [1], but only
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recently confirmed with intracranial electrocorticography (ECoG) recordings [2] and with fMRI [3]. This

putative number form area (NFA) is thought to play an important role in recognizing number symbols
and, in turn, mathematical processing [1]. Despite the fact that neuroimaging studies have not
consistently identified an NFA region (see [4] for a meta-analysis), some claim that the NFA is: ‘always
localized and highly reproducible in the occipitotemporal cortex across subjects, fonts, and even sensory
modalities’ [5, p. 374]. If a region dedicated to processing number symbols in the ventral
occipitotemporal cortex (vOTC) was in fact highly reproducible, it would be of particular interest
because numbers are relatively recent cultural inventions [5]. Thus, this putative brain region could not
have evolved specifically for numbers, unlike other regions in vOTC that are selective for categories
such as faces and places, and so the category-specific functioning must be acquired. Indeed, it has been
proposed that additional research of this region could advance our understanding of the organizing
principles and plasticity of occipitotemporal cortex [5] and even of mathematical learning disorders [3].
However, before further investigating the role of the NFA in mathematical learning and development, it
is crucial to establish whether the NFA can be reliably located in a reproducible region and whether it is
truly a category-specific region for number symbols [6].

The extent to which category-specific regions in the ventral visual stream, such as the visual word form
area (VWFA), are specialized for domain-specific processing remains debated (e.g. [7–10]). The VWFA is
the closest analogue to the NFA given that letters and numbers share curvilinear visual features and are
both culturally invented symbol sets. The neuronal recycling hypothesis posits that regions of vOTC that
show functionally specific activation for words capitalize on the fact that these brain regions previously
showed a preference for the curvilinear shapes of letters, before the invention of writing [7]. Thus,
these regions did not evolve to represent letters specifically, but rather learning to read recycles regions
that evolved for sensory processing of curvilinear visual features. Evidence that the VWFA is activated
more to strings of letters than other stimulus categories during passive viewing tasks supports the idea
that this region’s function is bottom-up sensory-driven perception, rather than semantic processing [7].
Specifically, ‘in this case, no other brain region was modulated by literacy, making it difficult to explain
the VWFA activation as a top-down effect from higher-level regions’ [7, p. 258].

An opposing view, the interactive account of vOTC function, proposes that object recognition is
dependent on forward and backward feedback loops between visual cortices and higher-order
semantic processing regions [10]. Support for this latter hypothesis comes from a recent study
showing that the development of the localization of the VWFA can be predicted by functional
connectivity with higher-level language processing regions in the left hemisphere [11]. Comparatively
less research has investigated the functional specificity of the NFA compared with the VWFA due to
the fact that this region has not been consistently localized with fMRI [4]. Notably, a meta-analysis
identified an NFA region in the right inferior temporal gyrus (ITG) [4], but some studies have
identified this region bilaterally [3]. It, therefore, remains unclear whether this region is indeed
functionally specialized for recognizing number symbols, or whether it interacts with higher-order
mathematical processing regions in various task contexts.

In order to resolve this debate, it is important to determine the criterion for a region to be considered
functionally specific for number symbols. For example, Shum et al. proposed that to be considered an
NFA, the region ‘should be anatomically consistent across subjects and should respond more to
numerals than morphologically, semantically, or phonologically similar stimuli’ [2, p. 6709]. Cohen &
Dehaene [12] further proposed that functional specialization for visual category recognition cannot be
reduced to visual processing for the curvilinear features that make up letters and numbers. They
argued that the VWFA satisfies this criterion because it has been shown to respond more to letters
than to false fonts and even strings of digits [13]. Notably, Grotheer et al. [3] found that the bilateral
region they labelled the NFA not only showed more activation to numbers than letters, but also
showed more activation to letters than to unfamiliar, scrambled symbols. This suggests that this
region may not be functionally specific to numbers, but rather responds preferentially to all learned
symbol categories [6]. Testing the more stringent criterion, that category specificity cannot be
explained by visual processes, requires assessing whether the difference in activation in the NFA
region between numbers and unfamiliar characters with the same visual features (i.e. scrambled
symbols) is greater than the difference between letters and scrambled symbols.

Price & Ansari [14] used a more stringent contrast than Grotheer et al. [3] to test for an NFA but did
not find any number-specific activation in vOTC. Specifically, Price & Ansari [14] ran a conjunction
analysis to identify regions that responded more to digits than scrambled digits (i.e. segmented and
rearranged images with the same curvilinear features as the corresponding digits) and digits more
than letters, whereas Grotheer et al. [3] ran a contrast to identify regions that responded to digits more
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than to all other stimuli types combined. It is possible that the discrepancy between these findings could

be attributed not only to the contrast used but also to the imaging acquisition methods used. The putative
NFA is located in a region where fMRI signal dropout can occur, and this was put forward as a possible
explanation for why many fMRI investigations have failed to locate the NFA [2]. However, meta-analysis
results suggested that signal dropout was not the most likely explanation for discrepant findings and
found that controlling for task demands was more important for localizing an NFA region [4]. While
Price & Ansari [14] used a passive viewing task, Grotheer et al. [3] used a one-back task which
required more cognitive processing. Thus, these discrepant findings could be due to differing task
demands in addition to, or instead of, the different contrasts used. Given these inconsistent results,
further investigation is needed to determine whether an NFA can be reliably located with fMRI using
a passive viewing task.

1.1. Current study
If an NFA can be reproducibly localized and is specific to Arabic numerals rather than familiar symbols
more broadly, it should activate more strongly for Arabic numerals than other meaningful written
symbols, regardless of task demands. The current study, therefore, aimed to replicate and extend the
study by Price & Ansari [14] using updated imaging acquisition parameters and the analyses reported
by Grotheer et al. [3] to determine whether Price & Ansari failed to find a region in vOTC that
responded preferentially to number symbols because the contrast they used was more stringent. The
main question being asked in this study was: is there a region in the ventral visual stream that exhibits
category-specific activation for number symbols? If there is category-specific activation in the ventral
stream for numbers, then the difference in activation between numbers and scrambled symbols should
be greater than the difference between letters and scrambled symbols in this region. Alternatively, if the
difference in activation between numbers and scrambled symbols is not greater than the difference
between letters and scrambled symbols in the NFA region, this would suggest this region in the ventral
visual stream that shows a preference for learned symbolsmore generally (i.e. for both letters and numbers).
2. Material and methods
This article received results-blind in-principle acceptance (IPA) at Royal Society Open Science. Following
IPA on 7 March 2019, the accepted Stage 1 version of the manuscript, not including results and discussion,
was pre-registered on the OSF (https://osf.io/wz268/register/5a970dfec69830002df68ac2). This pre-
registration was performed after data analysis. We had also previously registered our analysis plan on
the OSF on 15 September 2017, before we completed data collection (https://osf.io/hcs7t).

2.1. Participants
Forty adults between 18 and 37 years of age (M = 25.5, s.d. = 5.9) recruited from the London, Ontario,
region participated in the study, and 27 of them were female. An additional three adults completed
the study but were excluded from data analysis for failing to disclose that they were left-handed in
advance. All included participants were right-handed with normal or corrected to normal vision.

2.2. Procedure
The study consisted of one scanning session at Western University’s Centre for Functional and Metabolic
Mapping that lasted up to an hour. During that time, participants completed four functional runs, an
anatomical scan and a diffusion-weighted imaging scan. During each functional run, participants
completed a change detection task using the same paradigm as Price & Ansari’s [14] study. They were
instructed to fixate on a pound sign or hashtag (#), which was positioned in the centre of the screen and
to push a response key when the sign changed colour from white to red. They were told that other
symbols would be presented throughout the task, but that they were to respond only to the colour
change of the pound sign. Stimuli were presented in white font on a black background at font size 40
using E-Prime 2 (Psychology Software Tools, Inc., Pittsburgh, PA, USA). The symbols displayed were
the digits from 1 to 9 and the capitalized letters L, S, N, R, P, E, D, C and G. A scrambled version of
each symbol was also presented in order to control for the visual curvilinear features of numbers
and letters. The scrambled stimuli were created manually by segmenting and rearranging each digit
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and letter into a unified, but novel, shape. The average visual angles for each condition were as follows:
Arabic digits: width 4.63 (s.d. = 0.55), height 9.24 (s.d. = 0); scrambled digits: width 6.18 (s.d. = 1.00),
height 8.25 (s.d. = 2.11); letters: width 5.67 (s.d. = 0.44), height 9.24 (s.d. = 0); and scrambled letters:
width 6.72 (s.d. = 1.77), height 10.83 (s.d. = 3.5). The mirrored image (flipped horizontally) of each
included digit and letter was also displayed in the task, but this condition was not analysed here.

Each of the digits and letters was presented twice per run in each of standard, scrambled and
mirrored formats for 500 ms per presentation, and so, there were 18 trials per condition per run. Note
that Price & Ansari [14] included a condition where stimuli were presented for 50 ms, but we have
cut this condition here as they failed to find any digit-specific activation for trials at that shorter
duration. The red pound sign was displayed 6 times per run for a total of 114 trials per run.
Inter-stimulus fixation intervals were either 1000, 2000 or 3000 ms, and these different fixation lengths
were equally distributed across stimulus types in order to introduce jitter to allow for the
deconvolution of different events from one another (figure 1). These inter-stimulus intervals are
shorter than those used by Price & Ansari [14] because the time to repeat (TR) for imaging
acquisition is also shorter in the current study (1000 ms) than the original (2000 ms). Each run began
with an initial fixation for 16 s and ended with an additional 16 s of fixation to improve the
estimation of the baseline.

2.3. Imaging data acquisition
Imaging data were acquired with a 3 T Siemens Prisma Fit MR scanner using a 32-channel head coil
(Siemens, Erlangen, Germany). A whole-brain high-resolution T1-weighted anatomical scan was
collected using an MPRAGE sequence with 176 slices, a resolution of 1 × 1 × 1 mm voxels and a scan
duration of 5 min and 21 s (TR = 2300 ms; TE = 2.98 ms; TI = 900 ms; flip angle = 9°). The in-plane
resolution was 256 × 256 pixels. Functional MRI data were acquired during the change detection task
using a T2*-weighted single-shot gradient-echo planar sequence (TR = 1000 ms, TE = 30 ms, FOV 208 ×
208 mm, flip angle = 40°). Forty-eight slices were obtained in an interleaved ascending order with a
voxel resolution of 2.5 × 2.5 × 2.5 mm. A multiband acceleration factor of 4 was used. There were 4
runs of the change detection task with 335 volumes. Padding was used around the head to reduce
head motion. The total scan duration was approximately 45 min.

The aim of this studywas to test whether anNFA region can be localized using the passive design used
by Price & Ansari [14] and imaging acquisition methods that minimize signal dropout in vOTC. We,
therefore, piloted these imaging acquisition parameters on two volunteers to ensure there was minimal
signal dropout in inferior temporal cortex. Grotheer et al. [3] compensated for signal loss in this region
by acquiring images with high spatial resolution and collected 1 mm slices. The downside of this
approach is that it increases the TR. Here, we wanted to compensate for signal loss but also retain
whole-brain coverage, and so, after piloting to ensure we could get adequate signal in our region of
interest, we decided to collect 2.5 mm slices, which have higher spatial resolution than the 3 mm slices
used by Price & Ansari [14] but still allowed us to collect volumes of the whole brain in a quicker time
frame. Grotheer et al. [3] also used GRAPPA with an acceleration factor of 3 and localized shimming,
but our piloting suggested this was not necessary to get adequate temporal signal-to-noise ratio (tSNR).

2.4. Data analysis
Imaging data were analysed using Brain Voyager Software v. 20.6 (Brain Innovation, Maastricht, The
Netherlands). The functional images were corrected for head motion, low-frequency noise (high-pass
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filter with a cut point of two cycles per time point) and differences in slice time acquisition, and spatially

smoothed with a 6 mm FWHM Gaussian kernel. The number of functional volumes acquired (335)
exceeded the length of the behavioural task and was adjusted to 323 volumes for the second
participant to match the duration of the task. However, this correction was not saved to the
acquisition protocol and only that participant had this number of volumes acquired for functional
runs. Therefore, the runs for the other 39 participants were trimmed to 323 volumes during pre-
processing so that all runs had the same number of volumes. Three runs were excluded from further
analysis because the participant’s movement exceeded 3 mm over the total course of the run or 1 mm
between volumes. An automatic alignment procedure using gradient-driven affine alignment in Brain
Voyager was used to spatially align the functional data to the corresponding anatomical scan. Images
were then spatially transformed to MNI-152 space. All contrast and conjunction analyses were
run using voxel-wise general linear models and thresholded at an initial, uncorrected threshold of
p < 0.001. These maps were then corrected for multiple comparisons using the Monte Carlo simulation
procedure to determine a minimum cluster threshold [15] resulting in an overall α < 0.05. This cluster
thresholding algorithm estimates and accounts for spatial smoothness and spatial correlations within
the data (see [16]).

In order to resolve the discrepancy in the literature, we ran analyses reported previously in Price &
Ansari [14] and Grotheer et al. [3]. Therefore:

1. We ran a contrast similar to the one reported in Grotheer et al. [3] to test whether there was a region in
the ITG that responded to (digits > letters, scrambled digits and scrambled letters). Note that Grotheer
et al. [3] had additional conditions in their experiment, Fourier randomized versions of letters and
numbers (noise letters and numbers) and objects. Therefore, the contrast reported in their study
was (digits > scrambled letters, scrambled numbers, letters, noise letters, noise numbers and objects).

2. To test whether there was a region in the ITG that is number-specific, we ran the more stringent
conjunction analysis reported in Price & Ansari [14] to look for a region that responded to (digits >
letters) and (digits > scrambled digits).

3. To test the alternative hypothesis that there is a region in the ITG that responds preferentially to
familiar symbols, we ran a conjunction analysis to look for a region that responded to: (digits >
scrambled digits) and (letters > scrambled letters).

3. Results
3.1. Planned contrasts
Analysis of the behavioural results revealed that button press data were not recorded for three
participants due to a technical error, so data from these participants were excluded from the analyses.
Accuracy on the change detection task was high for all remaining participants (M = 99.12%, s.d. =
2.2%). We first ran the contrast reported by Grotheer et al. [3] to test whether there is a region in the
ITG that responds to (digits > letters, scrambled digits and scrambled letters), with the contrast
balanced to account for differences in the number of conditions (one versus three). Results revealed
that regions in the bilateral fusiform gyrus and middle occipital gyrus were activated less in response
to digits than in response to the other stimuli (figure 2 and table 1). These results were in the
opposite direction to our predictions in regard to the activation in response to digits. Moreover,
the clusters of the activation did not overlap with the region identified as the NFA in previous studies
and we did not find any clusters in the ITG.

To further test whether there is a region in the ITG that is number-specific, we also ran the more
stringent conjunction analysis reported by Price & Ansari [14] to look for a region that responds to:
(digits > letters) and (digits > scrambled digits). No clusters reached the statistical threshold for this
contrast. Notably, we observed no difference in activation in the left angular gyrus across conditions,
which were previously found by Price & Ansari [14].

To test the alternative hypothesis that there is a region in the ITG that responds preferentially to
familiar symbols, we ran a conjunction analysis to look for a region that responds to (digits >
scrambled digits) and (letters > scrambled letters). Results revealed bilateral clusters in the middle
occipital gyrus that responded less to familiar characters than to scrambled symbols (figure 2 and
table 1). This again was in the reverse direction of what we predicted and did not identify any
clusters in the ITG.
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Table 1. Cluster results for planned contrasts.

contrast cluster centre of gravity MNI (x, y, z) peak t cluster size

A right middle occipital gyrus 41, −74, 2 −6.04 5715

A right fusiform gyrus 32, −41, −16 −5.26 1942

A left middle occipital gyrus −37, −77, 1 −6.43 5935

A left fusiform gyrus −27, −65, −11 −4.43 410

B right middle occipital gyrus 40, −76, 3 −5.06 4778

B left middle occipital gyrus −35, −87, 8 −4.23 972
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3.2. Additional pre-processing to check data quality
As the putative NFA is close to areas of signal dropout (i.e. where the air–bone interfaces within the ear-
canal and can induce susceptibility distortions and spin dephasing), we ran additional analyses that were
not included in the registered protocol to check the signal quality in our data. To investigate whether the
absence of a region that responded specifically to viewing number symbols could be attributed to poor
data quality and signal loss in the ITG, we took a two-step approach to determine the quality of data in
an a priori region of interest (ROI) based on a recent meta-analysis by Yeo et al. [4]. A spherical ROI with
5 mm radius was defined, centred on the peak MNI coordinates (55, −50, −12) of the right ITG cluster
from Yeo et al. which demonstrated significant activation in response to number symbols across
studies, corresponding to the putative NFA (figure 3). This ROI is more ventral and lateral compared
with the coordinates of the contrast results reported above (figure 3). To assess data quality in this
region, we first measured the mean tSNR within the ROI across all runs for each participant, after
smoothing (mean ± s.d. = 233.1 ± 58.4, range = 145.2–354.4). Figure 3 shows these results along with the
mean and standard deviation across subjects, indicated by solid and dashed red lines, respectively. To
provide context for these values in comparison to the rest of the brain, we also calculated the ratio of
mean tSNR in the NFA to mean tSNR across the brain. The whole-brain tSNR was extracted from
subject-level brain masks defined using the most conservative clip fraction of 0.75 (see below). These
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Table 2. Cluster results comparing centre of gravity (CoG) across the main and post hoc analyses.

cluster CoG MNI (x, y, z) post hoc CoG MNI (x, y, z) Euclidean distance (mm)

right middle occipital gyrus 41, −74, 2 41, −76, 3 4

right fusiform gyrus 32, −41, −16 32, −41, −16 0

left middle occipital gyrus −37, −77, 1 −32, −86, 12 15

left fusiform gyrus −27, −65, −11 −43, −71, −8 17
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results suggest that, on average, TSNR values in the NFA ROI were highly comparable to the rest of the
brain (mean ± s.d. = 0.994 ± 0.198, range = 0.666–1.448), providing confidence that our findings cannot be
attributed to poor data quality arising from noisy signal in this area of the ITG.

As a second step, to determine the degree of signal dropout in this region, we employed a masking
procedure using AFNI’s 3dAutomask function to create a ‘brain-only’ mask of each subject’s mean
functional image. We then determined the percentage of voxels within the NFA ROI that were
excluded from the brain mask, serving as a measure of signal loss in this region. We assessed these
data quantitatively by varying the signal intensity ‘clip fraction’ parameter, from the default setting of
0.5 (a more liberal mask) up to 0.75 (more conservative) (figure 3). To summarize these measures, we
calculated the mean percentage of excluded voxels across clip fractions for each subject (maroon bar),
with the group-level mean (6.25%) and standard deviation (13.75%) of this metric shown with solid
and dashed red lines, respectively. These data indicate that there was minimal to no signal dropout in
most subjects within the NFA ROI, despite some exceptions (e.g. P08). The group-level mean image
(figure 3, top right) illustrates that indeed the NFA ROI sits close, but still posterior, to the signal
dropout zone in these data.

As a final assessment, we sought to verify whether participants with a poor signal in the NFA ROI,
relative to the group, influenced our activation results. We defined an exclusion criterion in which two
conditions had to be true: (i) tSNR in the ROI was below 1 s.d. of the mean across our sample and (ii) the
mean percentage of voxels excluded from the ROI was above 1 s.d. of the mean across our sample (i.e.
participants who had low data quality in the NFA that could be attributed to signal dropout). Two
participants met this criterion (P08 and P13). We then ran the same contrasts described above excluding
these two participants from the analysis and the pattern of results remained the same (table 2). Figure 4
shows the results from the contrast of (digits > letters, scrambled digits and scrambled letters) and the
distributions and means of the per cent signal change in each cluster. These findings suggest that
the results are not attributable to signal dropout or poor data quality in the inferior temporal region.
4. Discussion
Despite mixed evidence for the existence of an NFA, it has been proposed that it is an important research
direction for gaining insight into the organizing principles of vOTC, as well as mathematical learning and
development [3,5]. The aim of this study was to investigate whether the putative NFA could be
reproduced in vOTC and whether it responds to number symbols in a category-specific manner.
We sought to overcome limitations of previous studies by recruiting a comparatively large sample of
adults in order to ensure the study was sufficiently powered and by using imaging acquisition
parameters that resulted in adequate signal in the inferior temporal gyrus. We ran the contrasts used
by both Price & Ansari [14] and Grotheer and colleagues [3] in order to address the discrepant
findings. Results surprisingly failed to replicate the findings of either previous study as we did not
find any regions in the brain that responded selectively to visually presented numbers. Our results
instead showed regions in the occipital cortex that showed greater activation in response to scrambled
stimuli than to letters and numbers. These findings suggest that no region in vOTC responds
selectively to number symbols in a passive viewing task and that if such a region exists, its function
cannot be understood in terms of bottom-up visual recognition of an overlearned category.

Importantly, this study cannot rule out the possibility that a region in vOTC responds to numbers
when participants are asked to engage in tasks that require identifying numbers. We used a passive
viewing task because previous investigations successfully used similar tasks to locate other category-
specific regions in the ventral visual stream, including the parahippocampal place area [17], the
fusiform face area and even a region for letters [18]. These regions are thought to be visual areas
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responsible for recognizing categories of objects and symbols in an automatic way, independent of task

demands [7]. Our findings therefore fail to support this account of the functional specialization of vOTC
when it comes to the processing of numerical symbols.

Goal-directed attention imposed by task demands may be required in order to engage neurons in
vOTC in response to numbers. Recent studies have provided evidence that a region in vOTC activates
preferentially to number symbols when participants are performing active numerical tasks [19–22].
Results of a recent meta-analysis also revealed that there is a network involved in processing number
symbols that includes bilateral parietal regions and right-lateralized superior and inferior frontal
regions [4]. Daitch et al. [20] probed this network using ECoG to investigate the temporal dynamics of
the activation of neurons in the ITG and the intraparietal sulcus (IPS) during number processing in
different task contexts. They showed that both the IPS and ITG were involved in visual processing of
number symbols and in arithmetic. This finding suggests that different tasks are accomplished
through multiple feedback loops across the brain network involved in mathematical processing and
that a given region does not necessarily perform a single function independent of context.
Furthermore, Grotheer et al. [21] systematically manipulated visual stimuli and task demands, and
found that responses in the ITG were more reliably activated by mathematical processing in a
stimulus-independent manner than by visual number symbols in a task-independent manner. Taken
together, this evidence challenges the idea of a dedicated brain region for recognizing Arabic digits
[1], but rather supports the interactive account of vOTC function and suggests that processing
numerical symbols and mathematical thought engage a network of sensory cortices and higher-level
semantic processing regions that work together through feedback loops [10].

Our results did not replicate Price & Ansari’s [14] finding of left angular gyrus activation in response
to digits. This suggests that this effect was not robust or was perhaps a false positive, which is more likely
in studies with small samples [23]. While we did not find any brain regions that responded selectively to
the presentation of digits, we did find regions that activated more in response to scrambled symbols than
letters and numbers in the current study. One possible explanation for this unexpected result is that the
differences between conditions may be driven by the novelty of the scrambled symbols. Previous studies
have reported increased activation in vOTC areas to false fonts compared with letter strings or words
during passive viewing [24,25], or false fonts compared with letter or number strings during a
perceptual matching task [26]. These findings suggest that novel symbols may elicit greater attentional
engagement compared to familiar symbols. Furthermore, the clusters identified here included the
lateral occipital complex (LOC), which plays a role in object recognition [27]. The scrambled stimuli
were scrambled lines but still formed a coherent shape, unlike the noisy scrambled object stimuli that
are typically used as controls in object recognition studies in visual cortex. The LOC has been shown
to activate more when participants are instructed to attend to an object’s form compared with its
texture [28]. Therefore, it could be that these regions were recruited more in response to the novel
scrambled symbols because these images had coherent forms, but participants did not have an
existing learned representation for them. It is also possible that the findings could be due to
differences in low-level visual properties [29,30]. However, there were no differences in luminance or
perimetric complexity between the images of digits and letters and their scrambled counterparts.

Future studies should investigate the modulation of vOTC by different task demands. There is
mounting evidence that neural activation in response to number in vOTC seems to be engaged by
semantic rather than perceptual processes (e.g. [20,21,22,31,32]). Future research should therefore
further investigate the types of tasks required to elicit number-related activation in vOTC and how
this relates to mathematical cognition. Moreover, symbolic number processing tasks engage a
frontoparietal network in addition to a region in the ITG, suggesting that number processing is
distributed across the brain, rather than localized in specific regions [4]. Future research should also
explore individual differences in the location of an NFA using cortex-based alignment. Previous
research has shown that the VWFA can be identified at the individual level and that variability
between subjects may obscure its location at the group level [33]. Investigating the experience-
dependent development of this network for symbolic number processing could further our
understanding of the plasticity of vOTC as well as the development of mathematical cognition [6].
5. Conclusion
The results fail to support the theory that there exists a region in the vOTC that can be reproducibly
localized and responds selectively to the visual presentation of number symbols during passive
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viewing. The current study failed to replicate previous reports of a putative NFA and corroborates a

growing body of evidence that this region is not responsible for bottom-up visual processing of
Arabic digits. Given that some reproducible localization is evident across active task paradigms, more
work is needed to understand the function of this region and how it interacts with the network of
regions involved in symbolic number processing.
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