
 

Migdal effect and photon bremsstrahlung in effective field theories of dark
matter direct detection and coherent elastic neutrino-nucleus scattering

Nicole F. Bell,1 James B. Dent,2,3 Jayden L. Newstead ,4,7,* Subir Sabharwal,5 and Thomas J. Weiler6
1ARC Centre of Excellence for Particle Physics at the Terascale School of Physics,

The University of Melbourne, Victoria 3010, Australia
2Department of Physics, Sam Houston State University, Huntsville, Texas 77341, USA

3Kavli Institute for Theoretical Physics, University of California,
Santa Barbara, California 93106-4030, USA

4Department of Physics, Arizona State University, Tempe, Arizona 85287, USA
5Eastmore Group, Suite 1701, 40 Wall St, New York, New York 10005, USA

6Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235, USA
7School of Physics, The University of Melbourne, Victoria 3010, Australia

(Received 6 May 2019; revised manuscript received 15 December 2019; published 22 January 2020)

Dark matter direct detection experiments have limited sensitivity to light dark matter (below a few GeV),
due to the challenges of lowering energy thresholds for the detection of nuclear recoil to below OðkeVÞ.
While impressive progress has been made on this front, light dark matter remains the least constrained
region of dark-matter parameter space. It has been shown that both ionization and excitation due to the
Migdal effect and coherently emitted photon bremsstrahlung from the recoiling atom can provide
observable channels for light dark matter that would otherwise have been missed owing to the resulting
nuclear recoil falling below the detector threshold. In this paper we extend previous work by calculating the
Migdal effect and photon bremsstrahlung rates for a general set of interaction types, including those that are
momentum independent or dependent, spin independent or dependent, as well as examining the rates for a
variety of target materials, allowing us to place new experimental limits on some of these interaction types.
Additionally, we include a calculation of these effects induced by the coherent scattering on nuclei of solar
or atmospheric neutrinos. We demonstrate that the Migdal effect dominates over the bremsstrahlung effect
for all targets considered for interactions induced by either dark matter or neutrinos. This reduces photon
bremsstrahlung to irrelevancy for future direct detection experiments.

DOI: 10.1103/PhysRevD.101.015012

I. INTRODUCTION

Although dark matter is the most abundant form of
matter in the Universe, its particle nature, including its mass
and nongravitational interactions with Standard Model
particles, remains elusive. For dark matter masses
mχ ≳ 1 GeV, searches for dark-matter-induced nuclear
recoils in detectors with extremely low backgrounds are
a primary means of attempting to discern the particle nature
of dark matter [1–15]. Although such direct detection
experiments continue to increase their sensitivity to pos-
sible dark matter interactions by lowering their energy
thresholds, increasing their exposure, and reducing

backgrounds, no conclusive signals of such interactions
have arisen. This situation has spurred a great deal of
interest in examining alternative signals to nuclear recoils.
For example, dark matter could produce ionization signals
through alternate channels. These include dark matter
scattering directly from electrons [2,3,16–24], or secondary
signals such as the Migdal effect [25–28] and photon
bremsstrahlung [29,30]. Such effects are generically sub-
dominant to the conventional nuclear scattering, with the
exception of very light dark matter with a mass below a few
GeV. In such cases these alternate signals can provide
competitive experimental sensitivities. In the present work
we examine both the Migdal effect and photon brems-
strahlung from the nucleus, in cases where the accompany-
ing nuclear recoil is manifested below detector thresholds.
We extend previous analyses by formulating both the

dark matter induced Migdal effect and photon brems-
strahlung in an effective field theory (EFT) framework of
nucleons [31–36]. We examine a variety of target materi-
als and interaction types, and demonstrate that the
scattering rates due to the bremsstrahlung effect are
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subdominant to those from the Migdal effect in all cases.
We then proceed to place new bounds on EFT operators
for low mass dark matter.
It is well known that coherent elastic neutrino-nucleus

scattering (CEνNS) from solar and atmospheric sources can
approximate weakly interacting massive particle (WIMP)-
style interactions, and will eventually become a background
for upcoming direct detection experiments [37]. Therefore,
we also provide the expected rates for these sources due to
both theMigdal and bremsstrahlung processes. We find that
there exists a small window in recoil energy where the
Migdal effect from solar neutrinos can provide comparable
rates to those from atmospheric-neutrino-induced nuclear
recoils. This provides the possibility of an increased back-
ground through themeans ofCEνNS.However, these effects
are below the standard nuclear recoil rates in the remainder
of the recoil energy space outside this small window.
This work proceeds as follows. In Sec. II we briefly review

both the Migdal effect and photon bremsstrahlung in the
direct detection context, followed by an overview in Sec. III
of the general effective field theory framework for dark
matter–nucleus scattering. In Sec. IV we demonstrate the
dominance of the Migdal effect across all interactions and
materials. In Sec. V we use the Migdal effect rates to place
new bounds on EFToperators using existing direct detection
data. The results of including the Migdal effect and brems-
strahlung in coherent elastic neutrino-nucleus scattering
arising from the scattering of solar and atmospheric neutrinos
off of target nuclei are given in Sec. VI. A summary of our
results anddirections for futurework are provided in Sec.VII.

II. MIGDAL EFFECT AND PHOTON
BREMSSTRAHLUNG IN DARK

MATTER–NUCLEUS SCATTERING

A. General recoil rate for dark matter scattering
including the Migdal effect

The Migdal effect is the process of ionization or
excitation of an atom due to the lack of instantaneous
movement of the electron cloud during a nuclear recoil
event, leading to a possible detection of the subsequent
electromagnetic signature. We will briefly review the
treatment of Ref. [25] in order to present the formulas
needed in the present work to calculate rates for the Migdal
effect due to both dark matter scattering and CEνNS.
To calculate the rate of ionization events due to the

Migdal effect the standard dark matter–nucleus differential
recoil rate, RχT (where T denotes the target nucleus), is
multiplied by the ionization rate, jZionj2,

d2R
dERdv

¼ d2RχT

dERdv
× jZionj2: ð1Þ

In what follows ER is the nuclear recoil energy, and v is the
dark matter speed.1 The ionization rate corresponding to
single electron ionization, jZionj2 is given in terms of the
ionization probability pc

qe (here the subscript qe refers to

the average momentum transfer to an individual electron in
the target) and electronic energy, Ee, by

jZionj2 ¼
1

2π

X
n;l

Z
dEe

d
dEe

pc
qeðnl → ðEeÞÞ: ð2Þ

Therefore, one finds the differential rate

d3R
dERdEEMdv

¼ d2RχT

dERdv
×

1

2π

X
n;l

d
dEe

pc
qeðnl → ðEeÞÞ ð3Þ

where the total electromagnetic energy injection EEM is
defined as the sum of the outgoing unbounded electron
energy, Ee and energy from deexcitation Enl. The final
atomic state is assumed to be completely deexcited, and so
Enl is taken to be the binding energy of the (n;l) state from
which the outgoing electron was ejected. The differential
probability rates were calculated in Ref. [25] with the use of
the publicly available Flexible Atomic Code [38].2 This
treatment makes no assumption about the underlying
nuclear scattering interaction, and is therefore applicable
to the general EFT interaction framework to be introduced
in Sec. III.
It should be noted that this formulation of the Migdal

effect treats each atom in isolation, not taking into account
the shifts in electronic energy levels due to atoms in a liquid
(such as xenon and argon targets) or a crystal (such as
sodium iodide, germanium, or silicon targets). This
prompted the EDELWEISS Collaboration, for example,
to investigate the Migdal effect with respect to the n ¼ 3
level electrons exclusively, rather than including the
valence n ¼ 4 shell [28]. In this work, we also adopt the
free atom approximation, though clearly a more complete
formulation that integrates the effects of atoms in the
detector environment would be welcomed.
This approach to the inclusion of ionization via the

Migdal effect is not exclusive to scattering induced by dark
matter. Nuclear recoils produced by CEνNS can be treated
in a similar fashion (as noted in Sec. VII of Ref. [25]), as we
will discuss shortly.
Before displaying the rates for the Migdal effect, we will

next describe dark matter–nucleus scattering accompanied
by photon bremsstrahlung.

B. Photon bremsstrahlung and dark
matter–nucleus scattering

In Ref. [29], the authors showed that the irreducible
contribution of the inelastic scattering process χðpÞ þ
NðkÞ → χðp0Þ þ Nðk0Þ þ γðωÞ which is associated with

1Consistent with the treatment in Ref. [25], we do not include
the effects of electronic excitation because the excitation prob-
abilities are suppressed in comparison to those from ionization.

2In this work we utilize the probabilities calculated by the
authors of Ref. [25], who graciously made the numerical results
presented in their Fig. 4 available to us.
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the elastic scattering χðpÞ þ NðkÞ → χðp0Þ þ Nðk0Þ, can
provide a detectable signal for a range of dark matter
masses which would not produce elastic nuclear recoils
above the detector threshold, thereby enhancing the sensi-
tivity of direct detection experiments to low-mass dark
matter.
The double differential cross section in nuclear recoil

energy, ER, and photon energy, ω, is found by integrating
the bremsstrahlung matrix element amplitude over the
three-body phase space (details of this integration are given
in Appendix B). In Ref. [29], the bremsstrahlung cross
section was found in terms of the factorized elastic two-to-
two cross section,

d2σ
dERdω

¼ 4αZ2

3π

ER

mTω

�
dσ
dER

�
ð2→2Þ

; ð4Þ

wheremT is the target nuclei mass (note that Ref. [29] used
mN for the nuclear mass, while we definemN as the nucleon
mass). This result is obtained in the soft photon limit where
ω=mχ ≪ 1. The bremsstrahlung rate can then be cast into
the same form as Eq. (3),

d3R
dERdωdv

¼ d2RχT

dERdv
4αZ2

3π

ER

mTω
: ð5Þ

The elastic scattering process considered in Ref. [29] was
momentum independent (here and hereafter meaning, no
dependence on the transferred momentum) as well as
independent of the nuclear spin. Thus, the cross section
benefited from a coherent enhancement factorA2, whereA is
the number of protons plus neutrons. In general, however,
the elastic scattering process may proceed through momen-
tum-dependent or spin-dependent interactions. Importantly,
the key relations for both the Migdal effect and bremsstrah-
lung processes are independent of the dark matter–nucleon
interaction. The bremsstrahlung rate given in Eq. (5) does
not account for atomic screening effects as detailed in
Ref. [29]. As this reduces the bremsstrahlung rate at low
energies, which we demonstrate to be subdominant to the
Migdal effect, the screening effect is neglected throughout
the remainder of this work.
We will now turn to a discussion of the general non-

relativistic effective field theory (NR-EFT) for dark matter–
nucleus scattering. This NR-EFT provides the formalism
within which we will calculate the elastic rate appearing in
Eqs. (3) and (5) for the Migdal effect and photon brems-
strahlung, respectively.

III. OVERVIEW OF EFFECTIVE FIELD THEORY
OF DARK MATTER–NUCLEUS SCATTERING

Dark matter candidates can take a variety of forms,
many of which do not couple to the Standard Model
through the basic momentum-independent channels

[39–41]. Momentum-dependent interactions are sup-
pressed relative to interactions with no momentum depend-
ence since galactic dark matter is nonrelativistic with a
virial speed of roughly v ∼Oð10−3Þ. The target nucleus
will recoil with energy ER due to a momentum transfer
q⃗, with magnitude dependent on the target nuclear mass
mT , as jq⃗j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mTER
p

. The recoil energy is given by
ER ¼ μ2Tv

2ð1 − cos θÞ=mT . Here θ is the scattering angle
between the incident scatterer and the recoiling nucleus, and
μT¼mTmχ=ðmTþmχÞ is the dark matter–nucleus reduced
mass. For typical weak-scale masses mχ¼100GeV≈
mT , the recoil energy will be in the Oð10 keVÞ range.
These values lead to momenta transfer of roughly
jq⃗j≲ 100 MeV, and therefore terms containing q⃗=mχ orN

will be suppressed relative to terms without momentum
dependence. Spin-dependent interactions do not contain the
A2 enhancement factor arising for isospin-invariant inter-
actions, but rather depend on the nuclear spin and thus on the
expectation values of the spins of the nucleons. As a result,
spin-dependent interactions are suppressed by several orders
of magnitude compared to the spin-independent variety.
The NR-EFT formalism contains general interactions

which can include momentum and spin dependence. This
approach aids in mapping high-energy particle models of
dark matter onto operators that act on nuclear states
[31,32]. This formalism provides a neat split between
the nuclear and particle physics, allowing us to use
precalculated nuclear form factors for the relevant inter-
action operators. In this formalism a general set of
operators are compiled from the relevant variables: the
WIMP spin S⃗χ , nucleon spin S⃗N , momentum transfer q⃗, and
the projected velocity v⃗⊥ (where q⃗ · v⃗⊥ ¼ 0). Here we
consider a subset of the typical set of operators [32],

O1 1χ1N;

O4 S⃗χ · S⃗N;

O6

�
q⃗
mN

· S⃗χ

��
q⃗
mN

· S⃗N

�
;

O10 1χ

�
i
q⃗
mN

· S⃗N

�
: ð6Þ

The inclusion of just this subset of operators allows us to
examine the effects of spin-independent/-dependent and
momentum-independent/-dependent WIMP interactions,
without needing to consider the full space of operators.
For small momentum transfer (i.e., low-mass WIMP
scattering) which we consider here, these operators can
be considered representative of the behavior of operators
with the same momentum dependence [42].

A. From nucleons to target nuclei:
Nuclear response functions

Dark matter–nucleus scattering, and the resulting elec-
tronic ionization due to the Migdal effect or photon
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bremsstrahlung, is a coherent process (meaning the
momentum transfer is less than the inverse nuclear size).
This implies that the EFT nucleon operators in the
amplitude must be summed over the nucleons in the target
nuclei. For the bremsstrahlung process, incoherence caused
by internucleon effects are neglected since it only makes a
meaningful contribution at photon energies [43,44] higher
than those of interest here.
Following the formalism of Fitzpatrick et al. [32], the

operators acting on nuclear states are decomposed into
spherical components and expanded in multipoles. For this
analysis, only three single-particle operators from semi-
leptonic electroweak theory [45–47] are required,M, Σ0, Σ00,
which are called the vector charge, axial transverse electric
operator and axial longitudinal operator, respectively:

MJM;τðq2Þ≡
XA
i¼1

MJMðqx⃗iÞτ3ðiÞ;

Σ0
JM;τðq2Þ≡ −i

XA
i¼1

�
1

q
∇⃗i × M⃗M

JJðqx⃗iÞ
�
· σ⃗ðiÞτ3ðiÞ;

Σ00
JM;τðq2Þ≡

XA
i¼1

�
1

q
∇⃗iMJMðqx⃗iÞ

�
· σ⃗ðiÞτ3ðiÞ; ð7Þ

where τ is an isospin label. The spin-summed elasticWIMP-
nucleus scattering amplitude can then be written as

1

2jχ þ 1

1

2jN þ 1

X
spins

jMj2

¼ 4π

2jN þ 1

X
τ¼0;1

X
τ0¼0;1

½Rττ0
M ðq2ÞWττ0

M ðq2Þ

þ Rττ0
Σ0 ðq2ÞWττ0

Σ0 ðq2Þ þ Rττ0
Σ00 ðq2ÞWττ0

Σ00 ðq2Þ�; ð8Þ

where jχ and jN label the WIMP and nuclear spin,
respectively. Themomentum transferq-dependent functions
RXðq2Þ and WXðq2Þ are known as the WIMP and nuclear
response functions, respectively. Note that the definition of
the amplitudeM in Eq. (8) has the nonrelativistic normali-
zation and produces a dimensionful amplitude (a factor of
4mTmχ is required to make it dimensionless). The WIMP
response functions are

Rττ0
M ðq2Þ¼cτ1c

τ0
1 ;

Rττ0
Σ0 ðq2Þ¼ jχðjχþ1Þ

12
cτ4c

τ0
4 ;

Rττ0
Σ00 ðq2Þ¼ q2

2m2
N
cτ10c

τ0
10þ

jχðjχþ1Þ
12

�
cτ4c

τ0
4 þ

q4

m4
N
cτ6c

τ0
6

�
; ð9Þ

where the cτi are coefficients of the operators Oi written in
the isospin basis τ, rather than the nucleon basis. The nuclear
responses in Eq. (8) are defined in terms of the electroweak

operators, acting on the nuclear states and summed over
multipoles,

Wττ0
O ðq2Þ¼

X∞
J

hjN jjOJ;τðq2ÞjjjNihjN jjOJ;τ0 ðq2ÞjjjNi; ð10Þ

where, for elastic scattering, the WM response receives
contributions only from the even multipoles, while
the WΣ0 and WΣ00 responses receive contributions only
from the odd multipoles. For this analysis the nuclear
responses were calculated with the Mathematica package
DMFormFactor [34]. The differential cross section is then,

dσ
dER

¼ 2mT

ð2jN þ 1Þv2
X
τ¼0;1

X
τ0¼0;1

½Rττ0
M ðq2ÞWττ0

M ðq2Þ

þ Rττ0
Σ0 ðq2ÞWττ0

Σ0 ðq2Þ þ Rττ0
Σ00 ðq2ÞWττ0

Σ00 ðq2Þ�: ð11Þ

B. Elastic dark matter–nucleus scattering rates

First, we will describe our assumptions regarding the
local dark matter population encountered in direct detec-
tion. A direct-detection experiment on Earth will encounter
a dark matter flux which depends on its local density at the
location of the Solar System, ρχ;⊙, and the dark matter
velocity distribution, fðv⃗þ v⃗eÞ, where v⃗e is the Earth’s
velocity with respect to the galactic rest frame. For our
calculations we adopt the value ρχ;⊙ ¼ 0.3 GeV=cm3 for
the dark matter density, and a Maxwell-Boltzmann velocity
distribution with its mode at v0 ¼ 220 km=s, given by the
circular velocity of the Sun in the galactic rest frame. The
velocity distribution is taken to have a cutoff at the escape
velocity vesc ¼ 544 km=s (in the galactic frame):

fðv⃗Þ ∝
8<
:

�
e
−v2

v2
0 − e

−v2esc
v2
0

�
v ≤ vesc;

0 v > vesc;

ð12Þ

where the proportionality factor is determined by normal-
izing the velocity distribution. The elastic WIMP-nucleus
differential rate, per unit detector mass, is obtained by
averaging over this velocity distribution,

dR
dER

¼ NT
ρχ;⊙
mχmT

Z
v>vmin

dσ
dER

vfðv⃗Þd3v; ð13Þ

where vmin is the minimum speed of an incoming dark
matter particle that can produce a given recoil energy, ER,
and NT is the number of target nuclei per unit detector
mass. It is customary to place bounds on the dark matter–
nucleon cross section at zero momentum transfer, and
therefore for comparison with other results we calculate the
nucleon cross section as,

σχn ¼
cni

2μ2χn
π

: ð14Þ
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IV. DARK-MATTER-INDUCED MIGDAL AND
BREMSSTRAHLUNG RATES

In this section, we calculate the rates associated with the
Migdal effect and photon bremsstrahlung in the context of
dark matter–nucleus scattering. To do so, we must integrate
Eqs. (3) and (5) over the relevant phase space. In the low-
momentum-transfer limit relevant for dark matter scatter-
ing, these two effects share the same kinematics, which
differs from the previous section by the inclusion of an
inelastic parameter, δ. For the cases of the Migdal effect and
bremsstrahlung, the inelastic parameter is EEM and ω,
respectively. The kinematics for both cases and their
equivalence is reviewed in Appendix C. The standard
relationship between kinematic parameters for dark matter
scattering is written in terms of the minimum incoming
speed that can produce a given recoil and inelastic energy:

vmin ¼
mTER þ μTδ

μT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p : ð15Þ

As noted in Ref. [26], the end points of the phase space are

ER;max ¼
2μ2Tv

2
max

mT
;

δmax ¼
μTv2max

2
: ð16Þ

When the nuclear mass far exceeds the dark matter
mass, the global upper bound on the energy deposited is
approximately,

ER;max ≈ 2

�
mχ

GeV

�
2
�
GeV
mT

��
v2max

10−6

�
keV;

δmax ≈
1

2

�
mχ

GeV

��
v2max

10−6

�
keV; ð17Þ

which allows one to immediately see that δmax > ER;max

due to the enhancement by a factor of mT=mχ > 1. This
general feature is due to the fact that, for a given
momentum transfer, more energy can be carried off by
light or massless particles. It is this feature that allows the
Migdal effect and bremsstrahlung to produce observable
signals when the nuclear recoil energy falls below conven-
tional detector thresholds, as the electronic or photonic
energy signal can still extend into the observable region.
For example, a 1 GeV dark matter particle incident on
xenon with vmax ¼ vesc þ ve will give an unmeasurable
maximum nuclear recoil of ∼10−2 keV, while the maxi-
mum inelastic energy is ∼3 keV. Thus, there is a range of
dark matter masses where the Migdal effect can provide
new discovery channels or a means of constraining dark
matter interactions via nonobservation.

A. Detected energy

As the nuclear recoil energy is well below a keV for the
light dark matter masses (below a few GeV, dependent on
target mass) we will be considering, it will be undetectable.
The physical quantity we want to calculate is the differ-
ential rate with respect to the detected energy, Edet. We thus
integrate Eqs. (3) and (5) over all possible nuclear recoil
energies and average over the incoming dark matter speeds.
These integrals can be performed in either order, so long as
one takes the appropriate phase-space limits.
For the elastic nuclear recoil events the detected electron-

equivalent energy (i.e., the quenched nuclear recoil energy)
is Edet ¼ QðERÞER, where QðERÞ is the recoil-energy-
dependent quenching factor. Using this relationship allows
us to compare the nuclear and electronic recoil spectra as
seen by a detector. The quenching factor is target dependent
and is usually in the range of 0.1–0.3. For the case of
xenon, various measurements of the quenching factor
have been made with a range of outcomes (see Fig. 1 of
Ref. [48]). For xenon, which will be used to set bounds in
this analysis, we use an energy-dependent form of the
quenching factor given by Lindhard theory [49]. For the
other targets, where we only provide rate calculations, for
simplicity we use constant quenching factors of 0.25, 0.15
and 0.10 for argon, germanium and sodium targets,
respectively [50–52]. We note that this scaling is approxi-
mate and for comparative purposes only. For both the
Migdal and bremsstrahlung events the detected energy
given by Edet ¼ Enl þ Ee and Edet ¼ ω, respectively, is
from electronic recoil and is therefore not quenched.
Using a liquid xenon detector as an example of how

these effects manifest in an experimental setting, a photon
(produced directly from bremsstrahlung or through atomic
deexcitation) with energy in the range of hundreds of eV, up
to a few keV, will not propagate far in liquid xenon and can
be assumed to convert all of its energy into the ionization of
valence electrons. Such an event will produce a large signal
appearing in the electronic recoil band, and be detected
with high efficiency. That being the case, any such signal
will have to contend with the higher rate of electronic recoil
backgrounds.
We will now show that the Migdal rate dominates over

the bremsstrahlung rate for a variety of targets and
interactions. This could plausibly be anticipated (and
was remarked upon in Ref. [25]) via an examination of
Eqs. (3) and (5), where we see that the bremsstrahlung rate
features an additional suppression factor of ER=mT in
comparison with the Migdal rate.

B. Rates for different targets

We calculate the rates of elastic nuclear recoil, the
Migdal effect, and bremsstrahlung induced in a represen-
tative sample of targets used in current and future
dark matter detection which includes liquid xenon
(LXe), liquid argon (LAr), sodium crystals, and germanium
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crystals. We perform the calculations for our four
chosen operators O1, O4, O6 and O10. The momentum-
independent operators O1 and O4 are the standard spin-
independent and spin-dependent operators, typically
dubbed SI and SD, respectively. The O6 and O10 operators
are chosen as representatives of operators with momentum
dependence of Oðq2=m2

TÞ and Oðq=mTÞ, respectively (the
grouping of operators in this fashion is standard practice;
see Refs. [42,53–55] for example). The rate of spin-
dependent scattering is highly dependent on the isotopic
makeup of the target, since the addition or subtraction of
single neutrons can open or close nuclear shells. Therefore,
we take the weighted average over the natural abundance of
the isotopes in the target for all of our calculations. In this
analysis we have neglected atomic effects for bremsstrah-
lung. Including these effects would modestly reduce the
rates by a common amount for all cases considered and

serves to provide a cutoff at low energy (see Ref. [29] for a
detailed treatment).
In Fig. 1, we show the rates as a function of energy (in

units of keVelectron equivalent, KeVee) induced by theO1

interaction operator for argon (top left), germanium (top
right), sodium (bottom left), and xenon (bottom right) for
an incident dark matter particle with a 1 GeV mass (the
rates for all four interaction operators with mχ ¼ 2 and
0.5 GeV and using LXe as the target are displayed in
Appendix A). For comparison, in each case the interaction
strength is scaled such that 106 nuclear recoils are expected.
The solid black line represents the spectrum for nuclear
recoil, the solid colored lines give the Migdal effect rates
for the various electron energy levels designated by n, and
the dashed orange line represents the spectrum for the
photon emitted via bremsstrahlung. One notes several
features common to all targets. First, the rates for both

FIG. 1. The rate for the Migdal effect (depicted by the colored lines associated with various atomic energy levels denoted by n) and
bremsstrahlung (dashed orange line) induced by a 1 GeV mass dark matter particle interacting with the nucleus through the spin- and
momentum-independent operator O1 ¼ 1χ1N for the target elements argon (top left), germanium (top right), sodium (bottom left),
and xenon (bottom right). The rate for the standard nuclear recoil is depicted by the black line.
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the Migdal effect and the bremsstrahlung process are
strongly suppressed compared to the peak rate for nuclear
recoils, with the bremsstrahlung rate being dominated by
the Migdal effect across all energies and targets. Second,
the Migdal rate naturally differs for each atomic target due

to the different electron energy levels that are occupied.
Finally, an essential point to note is: though the Migdal rate
is significantly lower than the peak nuclear recoil rate, it is
the dominant rate for a 1 GeV dark matter particle above
100 keVee for all targets. For many current detector

FIG. 2. The rate for the Migdal effect (depicted by the colored lines associated with various atomic energy levels denoted by n) and
bremsstrahlung (dashed orange line) induced by a 1 GeV mass dark matter particle interacting with the target elements germanium (left),
sodium (center), and xenon (right), for the spin-dependent but momentum-independent operator O4 ¼ S⃗χ · S⃗N (top row), the spin- and

momentum-dependent operator O6 ¼ ð q⃗
mT

· S⃗χÞð q⃗
mT

· S⃗NÞ (middle row) and the spin- and momentum-dependent operator O10 ¼
1χði q⃗

mT
· S⃗NÞ (bottom row). The rate for the standard nuclear recoil is depicted by the black line.
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technologies, their detection thresholds lie squarely in this
region, leading to the possibility of utilizing the Migdal
effect to lower the reach of detectors into the ≲1 GeV dark
matter mass window.
We see this type of scenario play out for each of the

operators studied, as depicted in Figs. 1, 2, and 6 (in
Appendix A). In every combination of operator and target
studied, the bremsstrahlung rate is subdominant to the
Migdal effect, which is the leading signal for a significant
portion of the ≲keV recoil range. Since the bremsstrahlung
rates are subdominant, we adopt the reasonable simplifi-
cation of neglecting them for any detailed experimental
calculations. For the spin-dependent operators,O4,O6, and
O10, only germanium, sodium, and xenon responses are
shown. This is because the argon target studied is 40Ar,
which is insensitive to spin-dependent interactions. For
each of the operators, the Migdal rate is almost indistin-
guishable. This is because the Migdal rate at a given Edet is
integrated over all ER, and so only a small residual
dependence on the operator remains. This is most visible
at small Edet, where the bounds of the ER integral are
restricted to low recoils, where the NR rate differs the most
between operators.

V. BOUNDS ON EFT OPERATORS FROM THE
MIGDAL EFFECT

Now that we have calculated the rates and determined that
the bremsstrahlung process can be neglected relative to the
Migdal effect in all of the cases under inspection, wewill use
the Migdal effect results to place new limits on a variety of
EFToperators for low mass dark matter. Our bounds will be
placed usingXENON1T, a liquid xenon detector of the dual-
phase (liquid and gas) time projection chamber (TPC) type.
In these detectors nuclear and electronic recoils produce
both prompt scintillation and ionization. The former signal
(S1) is measured directly, and the latter is measured as a
proportional signal (S2) when the drifted electrons are
extracted into the gas phase. Electronic recoils produce
events with a much larger S2 to S1 ratio when compared to
nuclear recoils. This fact is the origin of nuclear/electronic
recoil discrimination in xenon TPCs (argon TPCs can
additionally make use of pulse-shape discrimination [9]).
The XENON Collaboration have performed several

analyses of their 1.3 ton-years of exposure, providing
world-leading bounds on dark matter interactions. The
standard analysis makes use of both S1 and S2 signals to
perform a low-background search (enabled by discrimina-
tion) for NR due to WIMPs [1]. Alternately, one can
analyze the same data using the S2 signal alone. This “S2-
only” analysis sacrifices background discrimination and
live time in exchange for a lower threshold; this enables
stronger bounds to be set on low-mass WIMPs [56].
In this work we calculate bounds on each of the operators

via to the Migdal effect using the S2-only analysis, since
this provides the best sensitivity available. Additionally we

calculate bounds on the operators using the S1S2 and S2-
only analyses directly from the nuclear recoil channel. The
calculation was carried out using a cut and count method.
This method does not require a thorough detector simu-
lation, greatly simplifying the computation while still
capturing the general detector characteristics. A more
advanced analysis could leverage the location of the
Migdal events in the S1/S2 space; in Ref. [30], however,
this was found to only have a small effect. The energy-
dependent efficiency of nuclear and electronic recoil detec-
tion was applied for both analyses (see Fig. 1 of Ref. [56]).
The 90% C.L. was found using the profile likelihood ratio
[57], based on the Poisson likelihood. For the S1S2 analysis
we use a single binwherenexp ¼ 7.36 andnobs ¼ 14. For the
S2-only analysis a large number of events were observed at
low energies: to improve the bounds we break the data into
two bins (around the point ER ¼ 0.3 keVee) with nexp ¼
f38.8; 26.5g and nobs ¼ f153; 39g.
The bounds on the spin-independent cross section are

shown in Fig. 3. For the spin-independent case, the neutron
and proton cross sections are assumed to be equal (no
isospin violation). The broad agreement between our
nuclear recoil limits and the official limits from
XENON1T verifies that our approach accurately models
the experiment. Though we do not calculate the effect here
it should be noted that, for large enough cross sections,
underground detectors will lose sensitivity to scattering
signals from incoming dark matter as the incident flux is
attenuated due to scattering in the Earth [58–61].

FIG. 3. The bounds from XENON1T on the spin-independent
WIMP-nucleon cross section from the S1S2 NR analysis (red),
S2-only NR analysis (green), the S2-only Migdal analysis (blue),
and “cosmic-ray dark matter” (black) [62]. The dashed curves
show official limits from the XENON1T Collaboration. Bounds
from CDMSlite [11] and CRESST-III [63] are also shown for
comparison.
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For the spin-dependent operators, we place bounds
on the neutron and proton cross sections separately, as
shown in Fig. 4. The bounds on each operator follow the
same general shape whereby the Migdal effect produces
stronger bounds than those from nuclear recoils below
around mχ ∼ 3 GeV, falling off sharply for masses below
0.1 GeV. The Migdal-nuclear bound crossover point is
dictated by the detector-dependent threshold. Where avail-
able we have included the official bounds from XENON1T.
The disagreement between our result and the official results
is due to the use of different spin structure functions. The
similarity in the Migdal effect bounds on each operator (up
to a scaling factor) is due to the insensitivity of the shape
of the Migdal recoil spectrum to the underlying nuclear
recoil operator, as pointed out in Sec. IV. For very small dark
matter masses the strongest constraints come from cosmic-
ray dark matter [62], where dark matter is up-scattered to
GeV energies by cosmic-ray protons and helium. While
these constraints, as well as those from protonated scintil-
lators [64], can be applied to all operators, only bounds for
O4 proton cross sections are available. Xenon isotopes,
having an even number of protons and thus a small proton
spin expectation value, are ill suited to constraining the

spin-dependent proton cross sections. Better bounds from the
Migdal effect on the proton spin-dependent cross sections
could be obtained from a proton spin-rich target such as
fluorine. However, presently the best proton spin-dependent
bounds are from PICO-60 [15], which is insensitive to
electronic recoils and therefore also to the Migdal effect.

VI. COHERENT ELASTIC NEUTRINO-NUCLEUS
SCATTERING

The formalism developed for the Migdal effect and
photon emission during dark matter–nucleus scattering
can also be applied to the case of CEνNS.3 In this case,
the differential cross section is already known to be
dominantly spin independent, having been calculated in
the 1970s [66]. The first experimental evidence of the
process was announced by the COHERENT Collaboration
in 2017 [8]. Following the discussion of Sec. II, we utilize
Eqs. (1) and (4) with the CEνNS cross section

FIG. 4. The bounds from XENON1T on the spin- and momentum-dependent operators from the S1S2 NR analysis (red), S2-only NR
analysis (green) and the S2-only Migdal analysis (blue). The dashed curves show official limits from the XENON1T Collaboration.
Bounds from CRESST-III [63], Collar [64], CDMSlite [11] and cosmic-ray dark matter scattering in Borexino [62] are also shown for
comparison.

3Recently bremsstrahlung in the CEνNS process was dis-
cussed as a possible means of determining the neutrino mass by
examining the photon end point [65].
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�
dσ
dER

�
CEνNS

¼ G2
FmT

4π
Q2

V

�
1 −

mTER

2E2
ν

�
F2ðq2Þ: ð18Þ

In this expression, GF is the Fermi constant, Eν is the
incident neutrino energy, and Fðq2Þ is the nuclear form
factor which encodes the momentum dependence, or
equivalently the loss of coherence. In what follows, we
will adopt the standard Helm form factor for Fðq2Þ [67].
The quantity QV is the vector charge of the nucleus, and in
the CEνNS process, it depends dominantly on the neutron
number, N: QV ¼ N − ð1 − 4sin2θWÞZ ≃ N − ð:08ÞZ. As
discussed below, the kinematic limits for both the Migdal
effect and bremsstrahlung must be adjusted for CEνNS as
compared to the massive dark matter case, due to the
neutrino’s relativistic nature.

As first outlined in Ref. [25], the CEνNS process can
produce ionization through the Migdal effect.4 The differ-
ential cross section becomes

dσ
dER

¼ G2
F

4π
Q2

VmT

�
1 −

mTER − E2
EM

2E2
ν

�
F2ðq2Þ × jZionðqeÞj2

ð19Þ

and the kinematic end points are also slightly altered due to
the electronic energy injection. The nuclear recoil now lies
in the range (see Appendix C 3 for the details)

FIG. 5. The total rate for the Migdal effect and bremsstrahlung induced by coherent neutrino-nucleus scattering from solar and
atmospheric neutrinos for the four targets considered: argon, germanium, sodium and xenon. For comparison, the rate for CEνNS
(electronic recoils) is depicted by the black (green) line.

4The CEνNS cross section given in Eq. (118) of Ref. [25] is a
factor of 2 smaller than the formula presented here. Our Eq. (17)
is in agreement with other literature on the topic; see for example
Ref. [68].
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ðEe þ EnlÞ2
2mT

< ER <
ð2Eν − ðEe þ EnlÞÞ2

2ðmT þ 2EνÞ
: ð20Þ

For bremsstrahlung, the double differential cross section,
d2σ=dωdER, needs to be integrated between the following
nuclear recoil energy limits, as derived in Appendix C 4:

ER;min ¼
2ω2

mT − 2ω
; ER;max ¼

2E2
ν

mT þ 2Eν
: ð21Þ

Finally, the rate for the CEνNS bremsstrahlung process is

dRνγ

dω
¼ NT

X
α

Z �
dΦ
dEν

�
α

�
dσ
dω

�
CEνNS

dEν ð22Þ

where dΦα=dEν is the incident neutrino flux, α denotes the
neutrino flux source, and Eν;min ¼ ω. In this work we
examine the solar neutrino fluxes pp, pep, 8B and 7Be, as
well as the flux of atmospheric neutrinos [37]. The result of
our calculation is given in Fig. 5. An examination of the
results clearly shows that the Migdal effect has a rate (due
to solar neutrinos) that is comparable to that of the
atmospheric neutrino fluxes in the few-keV energy range,
while the bremsstrahlung effect is subdominant to the total
nuclear recoil rate over the entirety of the energy range.
These results demonstrate that the Migdal effect could play
an interesting role for future G3 dark matter direct detection
experiments with sensitivity to atmospheric neutrinos,
while the effects of bremsstrahlung can be neglected.

VII. SUMMARY

Experimental efforts in the field of dark matter direct
detection have made tremendous progress in probing the
WIMP parameter space, both to lower masses and to lower
cross sections. However, low-threshold detectors come at
the expense of detector size. Thus, simultaneously probing
lower masses and lower cross sections is a challenge. Both
the Migdal effect and bremsstrahlung from interactions
with very light WIMPs provide pathways for experiments
to probe below their nominal nuclear recoil thresholds. This
extends the experimental reach in the WIMP parameter
space. In this paper we have recast the Migdal effect and
bremsstrahlung rates within an effective field theory con-
text capable of including a general set of spin- and
momentum-dependent interactions of the WIMP and
nucleons. We extended and generalized the analyses for
the Migdal effect in Refs. [25,26] and the bremsstrahlung
work of Ref. [29].
We calculated the rates associated with the Migdal effect

and photon bremsstrahlung for a representative set of
effective field theory operators and detector materials.
We found that across all combinations of interactions
and targets considered, the Migdal rate dominates over
the bremsstrahlung rate, and can provide the dominant

signal for direct detection experiments for sub-keV energy
deposits. A signal at these low energies would correspond
to dark matter masses in the sub-GeV range. We used the
Migdal rates to place new experimental constraints on the
EFT operators for low-mass WIMPs.
Finally, we applied the Migdal and bremsstrahlung

formulations to the case of CEνNS, which will soon
become an irreducible background in dark matter experi-
ments. We calculated the rates for these processes induced
by solar and atmospheric neutrinos. We demonstrated that
the contribution from bremsstrahlung is subdominant
to the elastic rate, and can thus be safely ignored.
However, the Migdal effect from 8B solar neutrinos can
provide a competitive or leading signal in the region
typically expected to be dominated by elastic nuclear
recoils from atmospheric neutrinos. Thus, a more careful
study of the Migdal effect in this energy range should be
undertaken.
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APPENDIX A: RATES FOR mχ = 2 GeV
AND mχ = 0.5 GeV

We present the rates (for xenon) from elastic nuclear
recoils, the Migdal effect, and photon bremsstrahlung for
the operators O1, O6, and O10 and for dark matter masses
ofmχ ¼ 0.5 GeV andmχ ¼ 2 GeV in Fig. 6. These figures
clearly illustrate that our principal conclusions are the same
as those for the mχ ¼ 1 GeV case considered above.

APPENDIX B: PHASE SPACE

Here we provide a derivation of the phase space for
the 2 → 3 scattering processes. We begin with the
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four-momenta in the lab frame, where the k=k0 momenta
now denote that of the incoming/outgoing nucleus
respectively:

p ¼ ðEχ ; p⃗Þ; ðB1Þ

k ¼ ðmT; 0Þ; ðB2Þ

p0 ¼ ðE0
χ ; p⃗0Þ; ðB3Þ

k0 ¼ ðmT þ ER; k⃗0Þ; ðB4Þ

ω ¼ ðω; ω⃗Þ: ðB5Þ

The differential cross section is given by

dσ ¼ 1

2Eχ2Ekv
d3p⃗0

ð2πÞ32E0
χ

d3k⃗0

ð2πÞ32Ek0

d3ω⃗
ð2πÞ32ω

× ð2πÞ4jMj2ð2→3Þδ
4ðpþ k − p0 − k0 − ωÞ ðB6Þ

¼ 1

210π5EχEkv
d3p⃗0

E0
χ

d3k⃗0

Ek0
dωdΩωωjMj2ð2→3Þ

× δ4ðpþ k − p0 − k0 − ωÞ: ðB7Þ

We can use the spatial delta function to do the p⃗0
integrations

dσ
dω

¼ 1

210π5EχEkv
1

E0
χ

d3k⃗0

Ek0
dΩωωjMj2ð2→3Þ

× δðEχ þmT − E0
χ − Ek0 − ωÞ ðB8Þ

¼ 1

210π5EχEkv
1

E0
χ

djk⃗jjk⃗j2
Ek0

dΩk0dΩωωjMj2ð2→3Þ

× δðEχ þmT − E0
χ − Ek0 − ωÞ: ðB9Þ

Again we will change variables

dσ
dER

¼ dΩk0

dER

dσ
dΩk0

¼ −2π
d cos θk0

dER

dσ
dΩk0

: ðB10Þ

FIG. 6. The rate for the Migdal effect in xenon (depicted by the colored lines associated with various atomic energy levels denoted by n)
and bremsstrahlung (dashed orange line) induced by a 2 GeV (top) and 0.5 GeV (bottom) mass dark matter particle interacting with the
nucleus through the operators under consideration (the rate for O4 is omitted here since it has the same energy dependence as O1).

BELL, DENT, NEWSTEAD, SABHARWAL, and WEILER PHYS. REV. D 101, 015012 (2020)

015012-12



In the current case this yields

d2σ
dERdω

¼ −2π
d cos θk0

dER

d2σ
dωdΩk0

¼ −2π
d cos θk0

dER

1

210π5EχEkv
1

E0
χ

djk⃗jjk⃗j2
Ek0

dΩωω

× jMj2ð2→3ÞδðEχ þmT − E0
χ − Ek0 − ωÞ: ðB11Þ

In order to find cos θk0 as a function of ER, we need the
momentum relation

p − k0 − ω ¼ p0 − k; ðB12Þ

which leads to

p · k0 þ p · ω − k0 · ω ¼ p0 · k: ðB13Þ

Using the kinematic relations, we find

EχðmT þ ERÞ − jp⃗jjk⃗0j cos θk0 þ Eχω − jp⃗jω cos θω

− ωðER þmTÞ þ jk⃗0jω cos θk0ω ¼ E0
χmT; ðB14Þ

which, together with Eχ þmT ¼E0
χ þmT þERþω,

results in

cos θk0 ¼
ERðmT þ Eχ − ωÞ

jp⃗jjk⃗0j
þ ωðEχ − jp⃗j cos θωÞ

jp⃗jjk⃗0j
þ ω cos θk0ω

jp⃗j ; ðB15Þ

and hence

dcosθk0

dER
¼mT þEχ −ω

2jp⃗jjk⃗0j
−
2mTωðEχ − jp⃗jcosθωÞ

2jp⃗jjk⃗0j3
ðB16Þ

¼ mT

jp⃗jjk⃗0j3
ðERðmTþEχ−ωÞ−ωðEχ− jp⃗jcosθωÞÞ: ðB17Þ

For the delta function we use

δðEχ þmT − E0
χ − Ek0 − ωÞ

¼ δðEχ þmT − ω − ðm2
χ þ jp⃗j2 þ jω⃗j2 þ jk⃗0j2

− 2jp⃗jω cos θω − 2jp⃗jjk⃗0j cos θk0 þ 2jk⃗0jω cos θωk0 Þ1=2

− ðm2
T þ jk⃗0j2Þ1=2Þ ðB18Þ

¼−δðjk⃗0j−XÞ

×
Ek0E0

χ

jk⃗0jðEχ þmT −ωÞþEk0 ð−jp⃗jcosθk0 þωcosθωk0 Þ
:

ðB19Þ

Next we use the momentum relation,

− jp⃗j cos θk0 þ ω cos θωk0

¼ ERðω −mT − EχÞ − ωðEχ − jp⃗j cos θωÞ
jk⃗0j

; ðB20Þ

to find

δðEχ þmT − E0
χ − Ek0 − ωÞ ¼ −δðjk⃗0j − XÞ Ek0E0

χ jk⃗0j
jk⃗0j2ðEχ þmT − ωÞ þ ðmT þ ERÞðERðω −mT − EχÞ − ωðEχ − jp⃗j cos θωÞ

:

ðB21Þ

Using the good approximation mT þ ER ≃mT , we have

δðEχ þmT − E0
χ − Ek0 − ωÞ ¼ −δðk⃗0 − X⃗Þ Ek0E0

χ jk⃗0j
mTERðEχ þmT − ωÞ −mTωðEχ − jp⃗j cos θωÞ

: ðB22Þ

We then obtain the simplification

− 2π
d cos θk0

dER
δðEχ þmT − E0

χ − Ek0 − ωÞ

¼ 2π

jp⃗jjk⃗0j2
δðjk⃗j − XÞ: ðB23Þ

Using the delta function to do the djk⃗0j integration, we
arrive at

d2σ
dERdω

¼ 1

29π4EχmTv
ω

jp⃗j dΩωjMj2ð2→3Þ: ðB24Þ

The 2 → 3 amplitude factorizes to produce the double
differential cross section [29]
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d2σ
dERdω

¼ e2

24π3
q2cos2θω
ω2m2

N
dΩω

�
dσðpÞ

dER

�
ð2→2Þ

¼ 4α

3π

mTER

m2
Nω

�
dσðpÞ

dER

�
ð2→2Þ

; ðB25Þ

where the final line includes an extra factor of 2 from
summing over both polarizations.

APPENDIX C: KINEMATICS

1. Dark matter scattering and the Migdal effect

We begin in the center-of-mass frame where the incident
dark matter momentum and target atom momentum are
related by

mχ v⃗χ;CoM þmTv⃗T;CoM ¼ 0: ðC1Þ

In the nonrelativistic framework, the boost to the lab frame,
where the target is at rest, is provided by the relation

v⃗χ;CoM ¼ v⃗χ;Lab þ v⃗T;CoM; ðC2Þ

or, given in terms of magnitudes,

vχ;COM ¼ vχ;Lab − vT;CoM: ðC3Þ

The relation between the dark matter momentum in the
center-of-mass frame and the incident dark matter velocity
in the laboratory frame is

mχvχ;CoM ¼ μTvχ;Lab: ðC4Þ

Now we can treat the scattering as an incoming dark matter
particle of momentum pχ colliding with a target at rest in
the lab frame represented by momentum k, and producing
dark matter of momentum p0

χ and a target atom of
momentum k0 scattered at a lab angle of θ with nuclear
recoil energy, ER. We represent these by

pχ ¼ ðEχ ; p⃗χÞ; ðC5Þ

k ¼ ðmT þ Ee;i; 0Þ; ðC6Þ

p0
χ ¼ ðE0

χ ; p⃗0
χÞ; ðC7Þ

k0 ¼ ðmT þ Ee;f þ ER; k⃗
0Þ; ðC8Þ

where the energy of the electron cloud in the initial and
final states is represented by Ee;i and Ee;f, respectively.
Energy and three-momentum conservation lead to

Eχ þmT ¼ E0
χ þmT þ ER þ EEM; ðC9Þ

p⃗χ ¼ p⃗0
χ þ k⃗0; ðC10Þ

where EEM ¼ Ee;f − Ee;i. Using p⃗χ · k⃗
0 ¼ jp⃗χ jjk⃗0j cos θ

and the usual energy-momentum relation E2¼m2þjp⃗j2,
we find

2mTER−2mχvcosθ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p
¼−2EχER−2EχEEM;

ðC11Þ

where we have dropped terms quadratic in ER and EEM
relative to EχER and EχEEM, and used that the momentum
exchanged is jq⃗j ≃ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mTER
p

, which is corrected at order
ðEEMÞ2=ð2mTERÞ. We will also use the well-founded
approximation Eχ ≃mχ ≃ E0

χ .
We now have the quadratic equation for the recoil energy

E2
R

�
mT

μT

�
2

þER

�
2EEM

�
mT

μT

�
−2mTv2cos2θ

�
þE2

EM¼ 0:

ðC12Þ

The solutions are

ER ¼ μ2Tv
2cos2θ
mT

2
64�1 − EEM

μTv2cos2θ

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2EEM

μTv2cos2θ

s 3
75:

ðC13Þ

It should come as no surprise that this relation is the same
as that for the recoil energy in the case of inelastic dark
matter with the change in electron cloud energy substituted
for the inelastic mass-splitting parameter δ. (This was also
pointed out in Ref. [26]. See, for example, the non-
numbered first equation in Sec. 2 of Ref. [69].)
From the above expression for ER, we see that the

minimum speed for the dark matter to produce a nuclear
recoil of energy ER and the accompanying electromagnetic
energy injection from the Migdal effect, EEM, as given in
Ref. [25] is

vmin ¼
mTER þ μTEEM

μT
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p : ðC14Þ

We also see the maximum values for the recoil and
electronic energies are set by the maximum dark matter
speed, [25,26]

ER;max ¼
2μ2Tv

2
max

mT
; ðC15Þ

EEM;max ¼
μTv2max

2
: ðC16Þ

For ER;max, we set EEM ¼ 0 and for EEM;max, we set ER ¼
EEM;max in Eq. (C12), respectively.
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2. Dark matter scattering and photon bremsstrahlung

The four-momenta in the lab frame are

p ¼
�
mχ þ

mχv2

2
; mχ v⃗

�
; ðC17Þ

k ¼ðmT; 0Þ; ðC18Þ

p0 ¼
�
mχ þ

mχv02

2
; mχ v⃗0

�
; ðC19Þ

k0 ¼ðmT þ ER;mTv⃗0kÞ; ðC20Þ

ω ¼ðω; ω⃗Þ; ðC21Þ

where the recoil energy and recoil momentum are

ER ¼ mT jv⃗0kj2
2

; ðC22Þ

mT jv⃗0kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p
: ðC23Þ

From energy and momentum conservation we have

ER ¼ mχv2

2
−
mχv02

2
− ω; ðC24Þ

mχ v⃗0 ¼ mχ v⃗ −mTv⃗k0 − ω⃗: ðC25Þ

Squaring the last equation, and substituting it into the
equation for ER, we find

ER ¼−
mT

mχ
ERþvcosθpk0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p

þω

�
vcosθpω−

mT

mχ
v0k cosθk0ω−

ω

2mχ
−1

�
; ðC26Þ

or

ER

�
mT

μ

�
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p �
v cos θpk0 −

ω

mχ
cos θk0ω

�

þ ω

�
v cos θpω −

ω

2mχ
− 1

�
; ðC27Þ

where we have adopted the notation θij to represent the
angle between the three-momenta of particles labeled with
four-momenta i and j.
The maximum nuclear recoil will arise when

θpk0 ¼ 0; θωk0 ¼ π; θpω ¼ π: ðC28Þ
Physically this is when the nucleus recoils in the same
direction as the incident dark matter momentum, while the
photon and scattered dark matter travel in a direction
antiparallel to the incoming dark matter. Including these
relations leads to the equation

E2
R

�
m2

T

μ2

�
þER

�
2
mT

μ

�
ω2

2mχ
þωðvþ1Þ

�

−2mT

�
ωþmχv

mχ

�
2
�
þ
�

ω2

2mχ
þωð1þvÞ

�
2

¼0: ðC29Þ

Using the soft-photon (ω=mχ ≪ 1 and ω ≪ mχv) and
nonrelativistic (v ≪ 1) limits, this reduces to

E2
R

�
m2

T

μ2T

�
þ ER

�
2mT

ω

μT
− 2mTv2

�
þ ω2 ¼ 0: ðC30Þ

This equation also arises when one takes the limit of phase
space that describes the minimum recoil energy

θpk0 ¼ π; θωk0 ¼ 0; θpω ¼ π: ðC31Þ

The meaning of the quadratic equation is more evident if
we define a rescaled recoil energy x≡ ðmT

μT
ÞER. The quad-

ratic becomes simply

ðxþ ωÞ2 ¼ 2μTv2x: ðC32Þ

Two things are noteworthy in this result. The first item is
that the rhs breaks the x ↔ ω symmetry, so the x and ω
energy ranges are different. The second item is that without
the rhs, ER or ω would be negative, and hence unphysical.
The rhs may fortunately be large, and so we do have a
physical phase space. The solutions to the quadratic
equation provide the phase-space boundaries

ER;max =min ¼
μ2Tv

2

mT

2
4�1 − ω

μTv2

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2ω

μTv2

s 3
5: ðC33Þ

These phase space limits are equivalent to those
found for the Migdal effect in Eq. (C13). Thus, we have

the same global upper limit ω ≤ μTv2

2
. Unsurprisingly,

Eq. (C13) is identical to Eq. (C33) when cos θ ¼ 1
in Eq. (C13) and with the (bremsstrahlung) photon energy
ω substituted for the (Migdal) electromagnetic energy
injection, EEM. Conceptually, the reason for this similarity
is that here we are dealing with an inelastic collision
between dark matter and the nucleus; the only difference
from the case of the Migdal effect is that the excess energy
goes into the production and emission of a photon with
energy ω.

3. Neutrino scattering and Migdal effect

We start with the four-momenta in the interaction
νðpÞ þ AðkÞ → νðp0Þ þ Aðk0Þ, where A is the atomic state
and the four-momenta are

p ¼ ðEν; p⃗Þ; ðC34Þ
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k ¼ðmT þ Ee;i; 0Þ; ðC35Þ

p0 ¼ðE0
ν; p⃗0Þ; ðC36Þ

k0 ¼ðmT þ Ee;f þ ER; k⃗0Þ: ðC37Þ

Four-momentum conservation requires

p − p0 ¼ k0 − k: ðC38Þ

We will use p2 ¼ 0 ¼ p02 for relativistic neutrinos,

jk⃗0j ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER

p
, and the difference in atomic momenta

is k0 − k ¼ ðER þ ΔE; k⃗0Þ where ΔE ¼ Ee;f − Ee;i is the
sum of the outgoing unbounded electron energy, Ee and
energy from deexcitation, Enl. Squaring both sides of the
four-momentum equation we find

−2EνE0
νð1 − cos θνν0 Þ ¼ E2

R þ ΔE2 þ 2ERΔE − 2mTER:

ðC39Þ

Substituting E0
ν ¼ Eν − ER − ΔE and dropping the E2

R term
we obtain the maximum recoil, which occurs at θνν0 ¼ π,

ER;max ¼
ð2Eν − ΔEÞ2
2ðmT þ 2EνÞ

: ðC40Þ

The minimum recoil occurs for θνν0 ≃ 0, leading to

ER;min ¼
ΔE2

2mT
: ðC41Þ

Note that this reproduces the limits found in Ref. [25].

4. Neutrino scattering and photon bremsstrahlung

For bremsstrahlung, the four-momenta in the lab frame
can be written as

p ¼ ðEν; p⃗Þ; ðC42Þ
k ¼ðmT; 0Þ; ðC43Þ
p0 ¼ðE0

ν; p⃗0Þ; ðC44Þ
k0 ¼ðmT þ ER;mTv⃗0kÞ; ðC45Þ

ω ¼ðω; ω⃗Þ: ðC46Þ

Energy conservation leads to

Eν ¼ E0
ν þ ER þ ω; ðC47Þ

while three-momentum conservation gives

p⃗ ¼ p⃗0 þmTv⃗0k þ ω⃗: ðC48Þ
The maximum recoil energy is found when the recoiling
nucleus is parallel to the incoming neutrino, and both the
photon and scattered neutrino are antiparallel to the incom-
ing neutrino,

Eν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER;max

p
− E0

ν − ω; ðC49Þ
where we have used the nonrelativistic form for jk⃗0j,
neglecting terms of OðE2

RÞ. The minimum recoil energy
is when the recoiling nucleus and photon are antiparallel to
the incoming neutrino, with the scattered neutrino traveling
parallel to the incoming neutrino direction

Eν ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mTER;min

p þ E0
ν − ω: ðC50Þ

Combining the ER;max equation with energy conservation,
E0
ν ¼ Eν − ER − ω, leads to

−2ER;maxðmT þ 2EνÞ þ 4E2
ν ¼ 0: ðC51Þ

[Incidentally, this equation also holds toOðE2
RÞ, if one keeps

the next-order term in solving for jk⃗0j in terms of ER]. The
solution to this equation is

ER;max ¼
2E2

ν

mT þ 2Eν
: ðC52Þ

Next we can solve for ER;min using the ER;min equation and
energy conservation. We find

ER;minð4ω − 2mTÞ þ 4ω2 ¼ 0: ðC53Þ

Solving this equation, we find

ER;min ¼
2ω2

mT − 2ω
: ðC54Þ
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