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Background: Advances in next-generation sequencing (NGS) of antibody repertoires have led to an explosion in B
cell receptor sequence data from donors with many different disease states. These data have the potential to
detect patterns of immune response across populations. However, to this point it has been difficult to interpret
such patterns of immune response between disease states in the absence of functional data. There is a need for a
robust method that can be used to distinguish general patterns of immune responses at the antibody repertoire

Results: We developed a method for reducing the complexity of antibody repertoire datasets using principal
component analysis (PCA) and refer to our method as “repertoire fingerprinting.” We reduce the high dimensional
space of an antibody repertoire to just two principal components that explain the majority of variation in those
repertoires. We show that repertoires from individuals with a common experience or disease state can be clustered
by their repertoire fingerprints to identify common antibody responses.

Conclusions: Our repertoire fingerprinting method for distinguishing immune repertoires has implications for
characterizing an individual disease state. Methods to distinguish disease states based on pattern recognition in the
adaptive immune response could be used to develop biomarkers with diagnostic or prognostic utility in patient
care. Extending our analysis to larger cohorts of patients in the future should permit us to define more precisely
those characteristics of the immune response that result from natural infection or autoimmunity.
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Background

Adaptive immune receptors on the surface of lympho-
cytes are the principal determinants of the adaptive im-
mune response responsible for specific molecular
recognition, necessary for a rapid and long-lived im-
mune response to infection [1]. B cell encoded immuno-
globulins are of particular interest due to their diversity
and remarkable specificity. Immunoglobulin genes are
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formed by recombination events joining variable (V), di-
versity (D), and joining (J) genes to encode the variable
region of an antibody sequence [2]. Recombination of
different gene segments (V, D, and ] gene segments for
heavy chains, and V and ] gene segments for light
chains), along with addition of non-templated nucleo-
tides at the junction between gene segments, heavy
chain and light chain pairing, and somatic hypermuta-
tion, are all molecular processes responsible for generat-
ing immense diversity in the amino acid sequence of
rearranged immunoglobulins. The total diversity of the
antibody repertoire owing to these mechanisms has the
theoretical potential to be 10'''? in any given individual
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[2, 3] although recent studies have shown human anti-
body repertoires to be much smaller [4, 5]. Rapid ad-
vances in next-generation sequencing (NGS) have now
made it possible to interrogate an individual’s repertoire
directly through sequencing of antibody variable genes
in B cells [6, 7].

Antibody repertoire sequencing has been used to
analyze clonal lineages of antibodies in diverse settings,
such as antibodies specific to HIV [8, 9] or influenza
[10-12], as well as to characterize repertoires in patients
with autoimmune disorders [13, 14]. However, in the ab-
sence of functional data about the specificity of individ-
ual clones, it is unclear how to best interpret antibody
gene sequence data. In addition, it is difficult to compare
repertoires between individuals to glean any meaningful data
on how their antibody repertoires compare. Several groups
have published methods to differentiate repertoires [15-17]
and to predict characteristics of B and T cell repertoires
based on features such as heavy chain complementarity-
determining region 3 (CDRH3) length, amino acid compos-
ition, and germline gene usage [3, 18-20]. However, these
methods use parameters derived from the primary data that
have been computed from the high-dimensional data derived
from antibody sequencing. We hypothesize that an unsuper-
vised method that operates on the sequence data directly will
improve accuracy and confidence when distinguishing be-
tween antibody repertoires. Previous methods have used
principal components analysis (PCA) as an unsupervised ap-
proach to interpreting immune repertoire features [21-23].
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In this work, we report a new method we refer to as
“repertoire fingerprinting” that uses PCA of repertoire-
wide V and ] germline gene segment pairs to reduce
each repertoire to a set of two components. The result-
ing PCAs can be analyzed to infer common and unique
features between repertoires. We applied PCA to reper-
toire data for plasmablasts in blood samples from a set
of HIV-infected subjects soon after influenza vaccin-
ation, who we reasoned should have a highly complex
immune response. We found that the repertoire patterns
of these individuals converged to a common antibody re-
sponse that is distinct from the repertoires of healthy
donors. Our repertoire fingerprinting approach is not
completely novel - PCA has been used in previous stud-
ies in many different contexts to analyze immune reper-
toires [21-23]. However, the power of our approach is
that we show that the resulting PCA-transformed groups
can differentiate repertoires based on disease state, ex-
tending the applicability of this technique.

Results

We briefly describe our workflow which is depicted in the
flowchart in Fig. 1. We first sequenced antibody variable
genes from several donors with different disease states
and ages (described in detail below). From the raw se-
quence data, we determined unique V3] clonotypes [4, 5],
where clonotypes were defined as sequences encoded by
the same heavy chain Variable (V) and Joining (J) germline
genes (henceforth referred to as IGHV and IGH]
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Fig. 1 Workflow of repertoire fingerprinting by principal component analysis. To perform repertoire fingerprinting we first sequenced antibody
genes of human donors and tabulated the IGHV-IGHJ gene pair usages. We then processed the data by subsampling to uniform depth over 10
replicates per donor and normalized counts by Z score transformation. We used PCA to project the input features onto 2 dimensions and analyze
gene pairs that contribute to differences between repertoires
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respectively) with identical CDRH3 amino acid sequences.
Using the distribution of unique V3] clonotypes from each
donor, we tabulated IGHV and IGH] gene usage (hence-
forth referred to as V-] gene pairs). This resulted in a total
of 306 unique V-J gene pairs which comprised our feature
data. We then generated replicates of each sequencing
dataset by repeated subsampling of V-] gene pairs from
the empirical distribution, to a depth of 10° gene pairs per
replicate, creating 10 replicates for each data set from each
donor. This approach was used to overcome differences in
sampling depth between datasets and is similar to the ap-
proach in Bolen et al. [17]. In addition, the subsampling
was designed to simulate the error introduced when re-
peatedly sequencing a subject, specifically in rarely ob-
served germline genes. The resulting data matrix
containing V-] gene pair counts from subsampled repli-
cates was then normalized according to their Z score (see
Methods for details). PCA was then performed on the
subsampled replicate data across multiple donors.

As a proof of concept, we first applied this method-
ology to the repertoires of three healthy donors (desig-
nated HIP1-3) whose samples were sequenced to
extraordinary depth [5]. We found that each donor had
a distinct V-J gene pair pattern that could be represented
with as few as two principal components while maintain-
ing >95% of variation in the data (Fig. 2a). We also ob-
served that these donors could not be distinguished by
CDRH3 amino acid sequence length, another commonly
used feature in antibody repertoires (Additional file 1:
Figure S1). From this experiment, we concluded that the
input feature space of 306 V-J gene pairs can be reduced
significantly to distinguish antibody repertoires from dif-
ferent donors.

Next, we hypothesized that PCA transformation could
differentiate repertoires based on disease state. We com-
pared the three healthy subject repertoires HIP1-3 to
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repertoires from samples obtained from five HIV-
positive individuals on day 7 after influenza vaccination
(designated “HIV/Flu”; Table 1).

It was expected that these patients would have an abun-
dance of B cells producing antibodies targeting HIV
resulting from chronic infection, as well as a large propor-
tion of circulating plasmablasts stimulated by seasonal in-
fluenza vaccination. We isolated PBMCs from the five
donors and sequenced their antibody repertoires to
analyze the repertoire fingerprints. We found that the first
three components could account for 78% of total vari-
ation, with 56% in the first two components (Fig. 2b). In
addition, we observed that the HIV/Flu repertoires segre-
gated from the healthy repertoires in 2D PC space. We
performed K-means clustering on the repertoires trans-
formed into PC1 + 2 space and found that the repertoires
clustered based on disease state (Fig. 2b; black circles).
Since we had a priori knowledge of two distinct disease
states, we reasoned that K-means clustering with just two
clusters was a logical choice.

To determine which V-] gene pairs contributed most
significantly to the observed differences in HIV/Flu vs.
healthy populations, we analyzed the feature weights
from principal components 1 and 2 trained on healthy
and HIV/Flu donors and plotted them as a heat map
(Additional file 1: Figure S2, panel A). We observed that
the genes that most strongly contributed to differences
in these sets of repertoires were among the most highly
expressed antibody heavy chain gene segments in
humans [24]. This was not a surprising outcome, consid-
ering our normalization method was designed to de-
emphasize the contribution of genes with very low
counts. Many gene pairs contributed to component 1,
including a strong contribution from gene IGHJ4. In
addition, many IGHV3 family genes appeared to contrib-
ute to the HIV/Flu-specific repertoire. Component 2 had
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Fig. 2 Principal component analysis can be used to distinguish antibody repertoires. a. PCA was applied to features of V-J gene use frequency for
three healthy donors (HIP1-3). Artificial replicates were generated by subsampling each repertoire to a common depth, repeated 10 times per
repertoire. X and Y axes show principal components 1 and 2, and the percent variation explained by each component is shown in parenthesis. b.
PCA was applied to gene use frequencies from three healthy donors (HIP1-3) and five HIV-infected donors after influenza vaccination (HIV/Flul-
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Table 1 HIV-infected subjects studied on day 7 after influenza vaccination

HIV/Flu Race Ethnicity Age range (years) Site of collection
Subject

1 Caucasian Non-Hispanic 50-59 Nashville, TN

2 Caucasian Non-Hispanic 50-59

3 Caucasian Hispanic 30-39

4 African-American Non-Hispanic 50-59

5 Caucasian Non-Hispanic 40-49

strong contributions from IGHV3-30-3 and IGHJ4. This
analysis suggests that usage of genes in the IGHV3 fam-
ily and gene IGHJ4 was perturbed in the HIV/Flu reper-
toires. This finding agreed with previous reports that
show that /GHJ4 usage is highly enriched in many mem-
ory B cell subsets [7, 25].

To examine whether raw germline gene usage can pro-
vide the same level of differentiation, we plotted germ-
line gene usage of two of the V-] gene pairs mostly
highly implicated in the PCA, IGHV3-30-3_IGHJ4 and
IGHV4-31_IGHJ4 (Additional file 1: Figure S2, panel B).
Although there is some differentiation between healthy
and HIV/Flu repertoires, it is not nearly as robust as that
seen when using PCA. Therefore, we conclude that a
PCA of the full germline gene usage data is necessary
for robust discrimination between disease states, and
that analysis of the top germline genes is not sufficient.

As a control, we investigated the use of alternate fea-
tures to describe these immune repertoires, including
commonly used features such as CDRH3 length, CDRH3
net charge, and CDRH3 amino acid composition. We
calculated each of these three features for healthy and
HIV/Flu donors and reduced them to two components
using the same PCA procedure as previously described.
Surprisingly, these variables did not seem to provide
added value in distinguishing healthy donors from HIV/
Flu donors (Additional file 1: Figure S3). There was no
clear separation of donors in principal component space,
and the raw values of these features did not appear to
differ between healthy and infected/immunized donors.
Therefore, we concluded that V-] gene pairing data pro-
vides the most information when attempting to distin-
guish immune repertoires.

To test the advantage of our repertoire fingerprinting
method compared to an existing approach, we imple-
mented the Repertoire Dissimilarity Index (RDI) metric
from Bolen et al. [17]. We then calculated the RDI for each
pair of subjects between the healthy cohort and the HIV/
Flu cohort and plotted the intra-cohort distance for two
subjects in the same cohort (i.e., healthy donor 1 — healthy
donor 2), and the inter-cohort distance for subjects in sep-
arate cohorts (i.e., healthy donor 1 — HIV/Flu 1) (Fig. 3a).
We repeated the same calculation using the Euclidean dis-
tance between repertoires in PC space to see which metric

provided better discrimination between healthy and in-
fected/immunized donors (Fig. 3b). We observed that,
while the RDI provided some separation between intra-
and inter-cohort pairs, repertoire fingerprinting provided
better separation between these groups (compare Fig. 3a
and Fig. 3b). The difference in intra- and inter-cohort
groups was not significant (a = 0.05) when comparing ei-
ther healthy subjects or HIV/Flu donors to inter-cohort
pairs using the RDI (p =0.12 and 0.07, respectively). How-
ever, when using repertoire fingerprinting the separation
between these groups was statistically significant (p = 0.009
and 0.04, respectively). Therefore, we conclude that reper-
toire fingerprinting by PCA provides better discrimination
between donor cohorts than using RDL

We next applied our method to a different comparison
of subject groups that differed by age rather than by a re-
cent exposure or infection. We compared immune reper-
toire fingerprints from cord blood samples of term healthy
newborn infants (designated CORD1-3) and compared
them with the repertoire of healthy adults (HIP1-3) [5].
We found that these two classes of repertoires that dif-
fered by age of subject also could be reliably separated
using PCA (Fig. 4). The CORD repertoires showed unique
patterns of V-] usage compared to those of healthy adults,
with 80% of variation being accounted for in two compo-
nents. We performed K-means clustering with 2 clusters
on these six repertoires in PC1 +2 space and observed
that they separated into healthy adult and cord blood clus-
ters (Fig. 4; black ellipses). To analyze which V-] gene
pairs contributed to the differences between adult and
cord blood repertoires, we extracted and analyzed the fea-
ture weights from PC1 + 2 (Additional file 1: Figure S4).
We observed a strong dependence on IGHJ3 in compo-
nent 1, and IGHV3-23 and IGHVI-69 in component 2
(Additional file 1: Figure S4). In addition, we noticed an
upweighting of IGHVI-2 in component 1, which agreed
with previous reports indicating that this gene is highly
expressed in cord blood repertoires [7]. The partitioning
between the healthy adult and cord blood donor datasets
in principal component space provides a clear indication
of the utility of this method in distinguishing repertoires
based on subjects differing by age.

While our method has utility in distinguishing healthy
donor data sets, we next wanted to test the method on
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datasets comprised of immune repertoires in the same
individuals before and after an environmental exposure,
seasonal influenza vaccination. We used our method on
the public datasets from Laserson et al. where the anti-
body repertoires from three donors (referred to with
designations IB, GMC, and FV—author initials, see [26])
were sequenced at ten different time points before and
after vaccination. We analyzed data from eight time
points, one before vaccination and seven time points
after using our PCA-based approach to monitor pertur-
bations in the repertoire corresponding to vaccination.

When all time points from all three donors were ana-
lyzed in a single PCA, the samples clustered by donor,
rather than by time point (i.e. all time points from IB
clustered together, those from GMC clustered together,
etc.) (data not shown). This finding suggests that the dif-
ference in the repertoires between two individuals is
greater than the difference in one individual over time,
which is an expected finding. Therefore, we performed
PCA on each donor separately, to see how the reper-
toires shifted over time. In each of the three donors, we
saw a distinct shift in principal component space shortly
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Fig. 4 PCA reveals differences between healthy adult and cord blood repertoires. PCA was applied to V-J gene frequency for three healthy
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donors (HIP1-3) and three cord blood donors (CORD1-3). X and Y axes show principal components 1 and 2, and the percent variation explained
by each component is shown in parenthesis. Black circles show results of K-means clustering with k=2 clusters. Each dot represents a synthetic
replicate generated by subsampling each repertoire to a common depth. This subsampling was repeated 10 times per repertoire
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after vaccination. In donors IB and GMC there was a
distinct shift in V-] usage 1-2 weeks after vaccination,
with the repertoire quickly returning to baseline after-
wards (Fig. 5a, b). This finding was in agreement with
previous studies showing that the influenza-specific por-
tion of the antibody repertoire tends to spike between
day 7 and day 30 after vaccination [27, 28]. In the third
donor, FV, we observed a more granular view of the dy-
namics post-vaccination. Perturbations in the repertoire
were visible at day 3 post-vaccination, and the repertoire
appeared to shift V-] usage significantly for up to 4
weeks post vaccination, which was the last time point re-
corded (Fig. 5¢).

Discussion

We note several advantages in our method for under-
standing the complexity of adaptive immune receptor
repertoires. Our repertoire fingerprinting method works
independent of sequencing depth, as the samples for the
healthy donors who formed the main comparator group
here were sequenced to extraordinary depth (1.7 x 10
unique clonotypes in sample HIP2, for example) while
others were not sequenced as deeply (2.5x 10° unique
clonotypes in sample CORD2, for example). We were
able to overcome such large differences in depth by
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subsampling the repertoires to a common depth. In
addition, our method reduces high-dimensional gene use
frequency data to just a few components that can be vi-
sualized and interpreted easily. By reducing the data into
just a few components, the data can be partitioned easily
into groups that are most similar. In this way, PCA not
only reduces the dimensionality of the analysis problem,
but also provides a means for grouping the data in ques-
tion. In this study, we showed how PCA could be used
to distinguish samples from healthy and immunized or
disease state donors.

There are at least two possible explanations for the ob-
servation that repertoires cluster by disease state. First, it
is possible that individuals who share a history of
chronic infection (in this study it was HIV) have a con-
vergent response when immunized. A second possibility
is that since the cells from the diseased cohort were
from day 7 plasmablasts, and the healthy repertoires
were derived from both plasmablasts and memory B
cells, differences in V-] gene usage might be based
purely on differences in the composition of cell pheno-
types. From the data we collected, it was not possible to
distinguish between these possibilities. Regardless, we
concluded that our repertoire fingerprinting method is
robust enough to detect differences in V-] gene usage
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between individuals and represent the difference in re-
duced feature space.

In this report, we compare our repertoire fingerprint-
ing method to an existing method for comparing im-
mune repertoires, the Repertoire Dissimilarity Index
(RDI). Our approach and the RDI are conceptually simi-
lar in that they both use subsampling to normalize rep-
ertoires by their sequencing depth and use V-] gene
usage as inputs. We show that our approach is more ro-
bust in distinguishing repertoires by disease state. We
believe that our use of PCA to extract the most critical
features from the dataset allows us to minimize noise in
the datasets and consequently improves differentiation.
For this reason, both methods are able to represent the
underlying patterns in the dataset, however by removing
noisy features our fingerprinting method is able to
emphasize the inherent differences in feature space.
Ours is not the first study to use PCA to reduce dimen-
sionality of immune repertoire sequencing data [21-23].
However, we believe that this work shows the power of
PCA applied to high-dimension sequencing data to dis-
tinguish repertoires of different disease states.

Although this repertoire fingerprinting method is
promising, we note several caveats. The cohort size of
subjects in these groups was small (n =3-5). To over-
come the small sample size, we used a subsampling ap-
proach to simulate replicates of each sample, which
makes our method robust to noise when dealing with a
relatively small number of donors. Subsampling provides
a spread of data points per donor to assess whether dif-
ferences are outside the range of error and allows us to
conclude that our findings are not an effect of noise. In
addition, the sequencing depth varied between disease
states (Additional file 2: Table S1). While our subsamp-
ling approach was designed to simulate equal sequencing
depth between samples, further work is needed to rule
out the possibility that sequencing depth affects the
PCA-based differentiation we report here. We also ac-
knowledge that our samples are from donors with ex-
treme immunological perturbations (i.e. HIV-positive
post-influenza vaccination and newborn cord blood).
The signal we detect here may be due to the fact that
the donors are in vastly different immunological states.
Future research is needed to validate the method on do-
nors with less extreme differences in their repertoire
composition. Finally, it was reasonable to assume that
HIV- and influenza-specific antibodies were enriched in
the HIV/Flu donor samples based on the temporal as-
pects of sample collection. However, we did not verify
the binding specificity of the over-represented antibody
clones induced by vaccination or infection. In future
studies, we plan to identify repertoire fingerprints spe-
cific to an infection and test the binding activity of the
enriched clones to confirm their targets.
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All data in this study were collected from circulating B
cells in peripheral blood. It has been shown that B cells
from different tissue compartments have unique patterns
of somatic hypermutation and germline gene usage [29].
In this study, we only examined the blood compartment
due to the fact that we wanted to focus on repertoire
profiling in a way that would be tractable to extend to
human donors in the future. However, we anticipate that
our repertoire fingerprinting method would be robust to
repertoire sequencing data gathered from any tissue.

All data in this study were processed using the same li-
brary preparation and sequencing methods to allow a
fair comparison. However, we observed that when apply-
ing this method to repertoires sequenced using different
protocols, the comparison may be confounded by vari-
ables such as preferential amplification of one germline
family, or there may be an apparent bias in V-] frequen-
cies owing to the sequencing protocol (data not shown).
Thus, although this method can be applied to repertoires
obtained using any protocol, the results are likely to be
most meaningful when comparing repertoires for two
samples obtained using the same amplification and se-
quencing protocols.

In this work we focused on B cell heavy chains, due to
the fact that these chains generally dominate the interac-
tions responsible for specific antigen recognition. How-
ever, there is no reason why the current methodology
couldn’t be applied to T cell receptor beta (TCRp)
chains or to light chains from either immunoglobulin or
TCRs. With continued development of paired sequen-
cing methods [30], we believe that the addition of B cell
light chain and TCRp sequences would only increase the
signal and allow for better separation of donors into
their respective cohorts after PCA transformation. In fu-
ture work, we plan to add additional genetic features
into the repertoire fingerprint.

Conclusion

In this work, we report a new method called “repertoire
fingerprinting” that uses PCA to analyze the frequency of
V-] gene pairing and extract two descriptors from a reper-
toire that can be compared easily across individuals. We
show that PCA is sufficient to differentiate healthy donors
from one another, independent of sampling depth, and
use this analysis to distinguish healthy donors from HIV-
positive donors after influenza vaccination. The repertoire
fingerprints give a robust discrimination of the health state
and shed light on the V and ] genes that contribute most
to the HIV/influenza response. We extended this analysis
to cord blood samples and showed that the methods also
exhibit the ability to discriminate repertoires that differ
based on subject age. We also validated this method on
external sequences from a publicly available dataset study-
ing antibody repertoires after influenza vaccination and
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found that we can detect dynamic changes in the periph-
eral blood antibody repertoire after vaccination.

Methods

Sample preparation and sequencing

Peripheral blood was obtained from healthy adult donors
following written informed consent, under a protocol ap-
proved by the Vanderbilt Institutional Review Board. B
cells from approximately 1 x 10’ PBMCs per donor sam-
ple were enriched using EasySep Human Pan-B Cell En-
richment Kit on the RoboSepTM-S according to the
manufacturer’s protocol (Stemcell Technologies). After
the enrichment, cells were washed and pelleted for total
RNA extraction using the RNeasy Mini Kit (Qiagen).
First-strand cDNA synthesis was performed by using Pri-
meScript Reverse Transcriptase (Clontech), following the
manufacturer’s instructions (with optional steps), using
20 pmol of ] gene-specific primers [31] with unique mo-
lecular identifiers incorporated into the 5' end of the
primers. After ¢cDNA synthesis, samples were purified
using the AmpureXP Size Select Bead Kit (Beckman
Coulter). Immediately following bead clean up, 30 uL of
PCR mixture containing 2.5 pmol of each V gene-specific
region primer [31] and 2X Kapa Hifi Hotstart Ready Mix
(Kapa Biosystems) was added directly to the 20 pL purified
first-strand synthesis product. PCR reaction conditions
were 95 °C for 3 min, 9 cycles of 98°C for 20s, 65°C for
155, and 72 °C for 30, and a final extension step of 72 °C
for 5 min. The first-round PCR reaction was purified using
the Ampure Size Select Bead Kit (Beckman Coulter).
Second-round PCR mixture containing 25 pmols of each
[llumina adapter extension primer and 2X Kapa Hifi Hot-
start Ready Mix (Kapa Biosystems) was added directly to
20 uL. of the purified first-round PCR reaction product.
PCR reaction conditions were 95 °C for 3 min, 23 cycles of
98 °C for 205, 65 °C for 155, and 72 °C for 20's, and a final
extension step of 72 °C for 5 min. The second-round PCR
products were purified using the Ampure Size Select Bead
Kit (Beckman Coulter). Illumina-ready amplicon libraries
were quantified using the Real-time Library Amplification
Kit (Kapa Biosystems) and pooled at equimolar amounts.
Samples were loaded onto 2X flow cells for sequencing on
the HiSeq 2500 next-generation sequencer with PE-250
V2 chemistry (Illumina).

Data processing and analysis

All V3] clonotypes from the HIP and CORD data sets were
obtained directly from [5]. A similar approach as described
in [5] was used to process the HIV/Flu samples and is
briefly described below. The processing pipeline consisted
of the following steps. First, the FASTQC [32] toolkit was
used to inspect the quality of the run. Next, full-length
reads were generated from Illumina paired-end reads using
the software package USEARCH (version 9.1) [33]; 3) The
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BIOMEDII primers (Additional file 2: Table S2) were re-
moved using the software package FLEXBAR (version 3.0)
[34]. Data were then processed using the PyIR informatics
pipeline  (https://github.com/crowelab/PyIR)) and the
resulting sequences filtered based on the following criteria:
1) the E value had to be less than 10™ ° for both the V and J
germline alignments; 2) the junctional sequence was in-
frame; 3) the junctional sequence was productive; 4) the
sequence did not contain stop codons; and 5) a CDR3 se-
quence was defined. We did not filter any of the sequences
based on Phred scores (as in [5]). Unique V3] clonotypes
were obtained from all the remaining sequences belonging
to a specific donor. The frequency of each V-] gene pair
was computed from the V3] clonotypes belonging to each
individual donor. Data from Laserson et al. [26] was proc-
essed in a similar manner.

Normalization and principal component analysis

Datasets first were subsampled with replacement to 10°
sequences to account for differences in sequencing depth,
similar to the method reported in Bolen, et al. [17]. Each
dataset was subsampled 10 times to account for noise in
the datasets and to reduce the possibility of overfitting to
a small number of donors. We reduced the full sequence
data set to a subset of 306 common V-] pairs before per-
forming subsampling (Additional file 2: Table S3).

V-] counts were normalized using a Z score
normalization method, as in [35]. Briefly, the counts
were first log;y transformed to account for large differ-
ences in gene counts, using a pseudocount of 0.01 for
genes that were never observed. The values were con-
verted to a Z score by subtracting the mean and dividing
by the standard deviation. The Z scores then were trans-
formed out of log space before principal component
analysis. We observed that this step improved perform-
ance by de-emphasizing the contribution of genes with
very low or no counts in the sequences.

To investigate the use of alternate features to describe
repertoires, we calculated CDRH3 length, overall CDRH3
charge, and CDRH3 amino acid usage in healthy and HIV/
Flu repertoires. We grouped CDRH3 length and charge
into discrete bins, from length 4 to 30 and charge - 6 to +
6. These three characteristics were used as input to a PCA
model, from which the top two principal components were
extracted and used for comparison. We chose to use mean
amino acid frequency rather than positional amino acid fre-
quency due to the difficulty in building a position-specific
matrix for variable CDRH3 lengths. During subsampling of
the V-] gene pair data, we observed that the amount of vari-
ation was roughly equal to 5% per V-] bin. Therefore, rather
than subsampling to generate replicates, as in the V-] gene
pair data, we directly added 5% gaussian noise to each of
the length, charge, and amino acid composition bins to
simulate replicates.


https://github.com/crowelab/PyIR
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Principle component analysis (PCA) is a dimensional-
ity reduction technique that transforms input data into
orthogonal components that maximize the variance in
the transformed data. PCA was performed using the
scikit-learn package in Python [36]. PCA-transformed
data were plotted using the Matplotlib library [37]. To
infer clusters from PCA-transformed data, we used K-
means clustering to determine which data points consti-
tuted a cluster. K-means clustering was performed using
the scikit-learn package [36] with two clusters (K = 2).

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/512859-019-3281-8.

Additional file 1: Figure S1. Histogram of CDRH3 lengths for three
healthy donors (HIP1-3). Figure S2. A. PCA was applied to healthy and
HIV/Flu donors and the feature weights of each V-J gene pair are shown
as a heat map for principal component 1 (left) and 2 (right). B. Germline
gene usage of two V-J gene pairs are plotted for each of the 8 datasets.
X- and Y-axes show normalized gene usage. Figure S3. Use of alternate
features to describe the HIV/Flu repertoire do not distinguish healthy
from infected donors. Building a PCA model based on CDRH3 length,
charge, and amino acid composition (A) does not provide separation be-
tween healthy and infected repertoires. Raw distributions of these fea-
tures are shown in panels B, C, and D. Figure S4. PCA was applied to
healthy adults and cord blood donors and the feature weights of each V-
J pair are shown as a heat map for principal component 1 (left) and 2
(right).

Additional file 2: Table S1. Number of unique clonotypes analyzed for
each of the 11 donors. Table S2. 306 common V-J pairs were used to
perform normalization and PCA transformation, to reduce the contribu-
tion from rare genes. These genes are listed below. Table S3: BIOMEDII
primers
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