
Article
Interactive Multiresolution Visualization of Cellular
Network Processes
Oscar O. Ortega,

Carlos F. Lopez

c.lopez@vanderbilt.edu

HIGHLIGHTS
Static and dynamic

interactive visualizations

of systems biologymodels

Community detection

algorithms are used to

facilitate network

exploration

Visualization embedded

in Jupyter Notebooks for

easy model pipeline

dissemination

Support for multiple

graph formats including

GraphML, SBGN, and SIF

Ortega & Lopez, iScience 23,
100748
January 24, 2020 ª 2019 The
Authors.

https://doi.org/10.1016/

j.isci.2019.100748

mailto:c.lopez@vanderbilt.edu
https://doi.org/10.1016/j.isci.2019.100748
https://doi.org/10.1016/j.isci.2019.100748
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.100748&domain=pdf

Article
Interactive Multiresolution Visualization
of Cellular Network Processes
Oscar O. Ortega1 and Carlos F. Lopez1,2,3,*
1Chemical and Physical
Biology Program, Vanderbilt
University, Nashville, TN, USA

2Biochemistry Department,
Vanderbilt University,
Nashville, TN, USA

3Lead Contact

*Correspondence:
c.lopez@vanderbilt.edu

https://doi.org/10.1016/j.isci.
2019.100748
SUMMARY

Visualization plays a central role in the analysis of biochemical network models to identify patterns

that arise from reaction dynamics and perform model exploratory analysis. To facilitate these ana-

lyses, we developed PyViPR, a visualization tool that generates static and dynamic representations

of biochemical network processes within a Python-based environment. PyViPR embeds network visu-

alizations within Jupyter notebooks, thus enabling integration with modeling, simulation, and analysis

workflows. To present the capabilities of PyViPR, we explore execution mechanisms of extrinsic

apoptosis in HeLa cells. We show that community-detection algorithms identify groups of molecular

species that capture key biological functions and ease exploration of the apoptosis network. We then

show how different kinetic parameter sets that fit the experimental data equally well exhibit signifi-

cantly different signal-execution dynamics as the system progresses toward mitochondrial outer-

membrane permeabilization. Therefore, PyViPR aids the conceptual understanding of dynamic

network processes and accelerates hypothesis generation for further testing and validation.

INTRODUCTION

Cellular signaling pathways are controlled by networks of biomolecular interactions that process signals

from environmental cues (Lemmon and Schlessinger, 2010; Blinov et al., 2006; Sachs et al., 2005). Thesemo-

lecular networks give rise to nonlinear dynamic processes that are difficult to explain and predict using

reductionist methods (Ahn et al., 2006). Mathematical models of cellular signaling pathways have become

commonplace to gain insights and describe the molecular mechanisms that control cellular processes

(Gaddy et al., 2017; Perry et al., 2019; Albeck et al., 2008). In general, these models continue to grow in

size and complexity, which makes the exploration of network structure and dynamics increasingly chal-

lenging. Visualization tools present one effective way to explore network processes and acquire conceptual

insights about signal-execution mechanisms. In addition, visualization tools can facilitate the detection of

execution patterns and aid in hypothesis generation for experimental validation. However, most tools

focus on static single-resolution network representations of models and generally lack support to visualize

model dynamics. Therefore, there is an unmet need for tools that facilitate multi-resolution visualizations of

model networks and simulated dynamics.

Numerous tools have been developed to visualize network representations of models that capture rela-

tionships between model components. Some examples include molecular species networks (Bergmann

et al., 2017), hierarchical species networks (Paduano and Forbes, 2015), species-reactions networks (Schaff

et al., 2016), contact maps (Harris et al., 2016; Boutillier et al., 2018; Cheng et al., 2014), model-defined rules

(Boutillier et al., 2018; Cheng et al., 2014), and rule-based networks (Smith et al., 2012; Danos et al., 2012),

among many others (Kolpakov et al., 2019; Tiger et al., 2012; Dang et al., 2015). Although these tools have

been highly useful within their domains, they exhibit limitations when it comes to visualizing the structures

of increasingly complex networks with an ever-larger number of nodes and edges labels. Moreover, stand-

alone visualization tools can be difficult to incorporate into model-building and analysis workflows, further

compounding the lack of reproducibility in analysis pipelines.

Identifying reactions that drive cellular processes is central to dynamic network analysis, yet it is highly chal-

lenging without visualization tools to facilitate an intuitive understanding of the signal execution mecha-

nisms. A handful of tools to visualize dynamic network processes have been published, notably COPASI

(Bergmann et al., 2017) and the Kappa Dynamic Influence Network (KDIN) (Forbes et al., 2017). COPASI

uses a network in which nodes represent biochemical species and edges represent biochemical interac-

tions. Species concentrations obtained from a simulation are encoded in the size of the box around the

network nodes. Kappa employs a network in which nodes are the model rules and the edges indicate
iScience 23, 100748, January 24, 2020 ª 2019 The Authors.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1

mailto:c.lopez@vanderbilt.edu
https://doi.org/10.1016/j.isci.2019.100748
https://doi.org/10.1016/j.isci.2019.100748
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2019.100748&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

that the rules have common reactant or product species. KDIN quantitatively represents the temporal in-

fluence that each biochemical rule exerts on other rules. Although both tools yield useful information about

dynamic network processes, information about the reactions that drive the dynamic consumption and pro-

duction of different biomolecules, essential to understanding signal execution mechanisms, is not easily

obtained. In addition, these tools have been developed for software-specific environments, thus limiting

their use in general modeling and analysis workflows.

In this work we tackle three main visualization challenges that, we believe, will accelerate the conceptual

understanding of biological network processes: (1) develop legible and comprehensible visualizations of

increasingly large networks; (2) generate intuitive dynamic network visualizations of model simulations;

and (3) facilitate the integration of visualizations into model building and analysis pipelines. To tackle these

challenges, we developed Python Visualization of Processes and Reactions (PyViPR), a Python-based frame-

work that provides multiple static and dynamic representations of biological processes. Importantly, Py-

ViPR unifies tools typically used in isolation, enables access to community-detection algorithms, and

encodes model simulations into node and edge attributes, thus enabling the study of network dynamics

at multiple resolutions. PyViPR embeds all its visualization and analysis capabilities within Jupyter Note-

books (Kluyver et al., 2016) to facilitate reproducibility and dissemination of model analysis pipelines. Py-

ViPR currently supports the rendering of rule-based models declared in the PySB framework (Lopez et al.,

2013), BioNetGen (BNG) (Harris et al., 2016), and Kappa language (Boutillier et al., 2018), as well as models

encoded in the SBML format (Hucka et al., 2003), thus providing a general tool to visualize models of

biochemical network processes. In what follows we describe PyViPR’s design and implementation, fol-

lowed by a demonstration of key PyViPR capabilities in the exploration of cellular signal processing.
RESULTS

PyViPR Overview

PyViPR is a Python package that operates within the Jupyter notebooks environment (Kluyver et al., 2016).

In this manner, PyViPR takes full advantage of a Literate Programming paradigm (Knuth, 2001), which en-

ables the definition of both code and documentation concurrently and allows users to develop shareable

workflows for model definition, visualization, and analysis. PyViPR leverages the capabilities of PySB to

generate model objects, import models from BNGL and SBML formats, and provide simulation-based

results for dynamic visualization. In addition, PyViPR integrates Cytoscape.js (Franz et al., 2015), a well-es-

tablished JavaScript library for graph visualization, into the Python environment to interactively render

static and dynamic visualization of model networks. Therefore, PyViPR merges software packages that

would traditionally be used in isolation onto a common modeling environment. Further, PyViPR benefits

from community-driven software development, and improvements made to any of its software depen-

dencies are automatically accrued by the framework. PyViPR encourages community-driven collaboration

through its open-source philosophy built around GitHub: https://github.com/LoLab-VU/PyViPR.

A typical PyViPR workflow comprises the following steps. First, a supported model file is passed to one of

the PyViPR visualization functions. PyViPR then uses NetworkX (Hagberg et al., 2008) to convert the model

components into graph nodes and edges. The user could then simplify the graph through community

detection (e.g., with the Louvain algorithm [Blondel et al., 2008]) on the NetworkX graph object. The soft-

ware will then create a compound node and place all the nodes from a community within it. For dynamic

visualization, PyViPR maps the simulated species concentrations and reaction data to node and edge

properties. The resulting NetworkX graph is transferred to cytoscape.js via a JSONdictionary and rendered

real-time in a Jupyter notebook for visualization. We note that the user can interact with all graph objects in

a Jupyter notebook rendering to, e.g. change the layout, groupings, or placement of a given graph.

PyViPR supports visualization of the two main approaches used to build chemical kinetics models of

cellular regulatory networks. In the first approach, reaction networks are generated by enumerating all

the molecular species and reactions that can occur in a cellular process. This reaction network can then

be translated into a set of Ordinary Differential Equations (ODEs) or stochastic equations (Aldridge

et al., 2006). In the second approach, rule-based modeling formalisms (Faeder et al., 2009; Boutillier

et al., 2018; Lopez et al., 2013) are used to circumvent the need to enumerate all the species and reactions

by hand. In these formalisms, species are defined as structured objects that can have binding and state

sites, and reaction rules define interactions between specific domains or binding sites on a given species.

Then, rule-based modeling tools automatically generate a reaction network by identifying all possible
2 iScience 23, 100748, January 24, 2020

https://github.com/LoLab-VU/PyViPR

species that have the conditions required to undergo the interaction defined in a rule. PyViPR supports

visualization of both model encodings through a Tellurium (Choi et al., 2018) interface for reaction network

models and a PySB (Lopez et al., 2013) interface for rule-based models.

In addition to biochemical network visualization, PyViPR supports the following graph formats widely used

in the systems-biology community: GraphML, SIF, SBGN XML, Cytoscape JSON, GEXF, GML, and YAML.

Additionally, rendered graphs in a Jupyter Notebook can be downloaded in the following formats: PNG,

SIF, GraphML, and JSON.
Design Choices for PyViPR

Numerous approaches have been developed to visualize temporal networks. Beck et al. (Beck et al., 2017)

surveyed a range of existing tools and derived a taxonomy based on temporal representation, either as

an animation or as a static timeline. From this perspective, PyViPR would be classified as a hybrid visuali-

zation that uses the node-edge paradigm to visualize networks, an animation for visual representation of

time, and superimposition of pie charts embedded in nodes as well as edges width and color, to represent

the temporal changes in species concentration and reaction flux, respectively. PyViPR was designed with

the following visualization goals:

G.1 Highlight functionally related species by grouping them in compound nodes.

G.2 Understand how a signal is executed in a biochemical network and how it depends on parameter

values.

G.3 Provide easy-to-use interactive visualizations for investigating the topology and simulation results

of biochemical models.

Murray et al. (Murray et al., 2017) identify a task taxonomy for biological pathways analysis across three

categories: attribute, relation, andmodification tasks. PyViPR specifically supports attribute tasks, to obtain

information about a species node, and relationship tasks to identify types of relationships between

nodes (e.g. protein binding, protein translocation), the direction of nodes interactions, and grouping

relationships (e.g. model compartments, communities). With respect to the temporal features tasks

described in the task taxonomy of network evolution analysis by Ahn et al. (Ahn et al., 2014), PyViPR focuses

on the temporal features of aggregated events. More specifically, PyViPR aims tomake it easy to observe at

any point in time, the reaction rates that have a higher flux than other reactions.

To satisfy the design criteria introduced above, we made the following design choices:

DC.1 Employ node-link diagrams for all static and dynamic visualizations to show interactions between

model components. We decided to use node-link diagrams because they are commonly used by

biology experimentalists (Demir et al., 2010; Cerami et al., 2010) and computational modelers (Murray

et al., 2017) and that would facilitate the interpretation and communication of results.

DC.2 Dynamically map simulated species concentrations and reaction rates values onto pie charts

embedded within nodes and edge color and width, respectively. Our main goal is to clearly show the

reactions that carry most flux and drive the behavior of the system over time. Therefore, we followed

the design principles for the representation of flow quantity and direction discussed by Bernhard

et al. (Jenny et al., 2018) and used color brightness to represent reaction flow quantity on edges.

DC.3 Include search mechanisms, multiple layout options, zoom and grouping functionality to organize

model components, and focus on important details, thus enabling interactive exploration of complex

biological networks.
Network Creation from Multiple Model Components

PyViPR supports visualization of multiple model components, including molecular species, reactions,

rules, compartments, macro functions (Lopez et al., 2013), and modules comprising independent model

elements (Lopez et al., 2013). These components are depicted by either simple nodes, which are funda-

mental units in a graph (Figure 1A), or compound nodes, which can contain children nodes and are used

to group simple nodes with shared attributes or through user-defined groupings. Interactions between
iScience 23, 100748, January 24, 2020 3

Figure 1. PyViPR Visual Encodings

(A) Node types used for visualizations as labeled.

(B) Edge types used for interactions: unidirectional interactions (left) are depicted with a unidirectional arrow and

represent irreversible biochemical reactions. Bidirectional interactions (middle) are depicted with bidirectional arrows

and represent reversible reactions. Arrows fill state indicate directionality from reactant (hollow) to product (solid)

species. Solid bidirectional arrows represent bidirectional interactions lacking directionality information. Modifier

reaction (right) are depicted with an arrow tail shaped with a hollow diamond and a solid arrow head and represent

reactions where the species is both a reactant and a product of the reaction.

(C) Pie charts embedded within nodes indicate the concentration of a species relative to its maximum value in the

simulation.

(D) Color shade of arrows indicate the fractional reaction flux for interactions.
these different model components correspond to unidirectional or bidirectional reactions and are repre-

sented by arrows (Figure 1B).

To create a bipartite network, PyViPR first obtains the list of species and rules/reactions from a model and

adds them as nodes to the network. Then, PyViPR uses edges to connect species nodes with their respec-

tive rule/reaction node. To reduce the network resolution a bipartite graph can be projected onto a unipar-

tite graph that contains only the species or rules/reactions nodes (see Figure S1A—Unipartite graph).

This unipartite species graph can then be organized by grouping the species nodes using the biological

compartments on which they are located (See Figure S1A—Compound graph). Similarly, a unipartite rules

graph can be grouped by the macro functions used to create them or the model modules where they

are defined. This allows users to interactively explore and revise the model network topology at different
4 iScience 23, 100748, January 24, 2020

resolutions. For a complete list of the different model components that can be visualized in a network see

Figure S2.

A key feature in PyViPR is the use of community detection algorithms to automatically cluster nodes

and thereby simplify network complexity. For example, the Louvain method detects communities by opti-

mizing the graph modularity. In this method, optimization is achieved by first iterating over all nodes and

assigning each node to a community that results in the greatest local modularity increase, then each small

community is grouped into one node and the first step is repeated until no modularity increase can occur

(Blondel et al., 2008). As a result, the Louvain algorithm finds groups of highly connected nodes that could

have similar biological functions or represent molecular-complex formation processes (Fortunato, 2010)

(design goal 1). Other community detection algorithms based on label propagation (Raghavan et al.,

2007; Cordasco and Gargano, 2010), fluid communities (Parés et al., 2018), and centrality (Girvan and New-

man, 2002) methods are also available in PyViPR. Alternatively, users can also manually define clusters of

nodes interactively for a ‘‘human in the loop’’ type optimization (Daschinger et al., 2017; Holzinger,

2016). Taking advantage of the PySB interface to BioNetGen, we also incorporated (1) compact rule

visualization, (2) atom-rule graph, and (3) tunable compression pipeline as implemented by Sekar et al.

(Sekar et al., 2017) into the PyViPR workflow to enable a more thorough and complete visualization of large

rule-based models.
Dynamic Visualization in PyViPR

PyViPR supports dynamic visualization of deterministic and stochastic model simulations (See Figure S1D).

This visualization mode uses a unipartite network (Design Choice DC.1) in which nodes represent model

species and edges represent reactions between the species. Species concentrations and reaction rates

are encoded into the properties of nodes and edges, respectively (Design Choice DC.2).

To represent temporal concentration changes during a simulation, we embedded pie charts within the

graph species nodes. Pie chart slices within each node depict the species concentration relative to the

maximum amount attained throughout the simulation. Pie chart slices are updated at each time point

during animation (Figure 1C). Absolute species concentrations at a given time point are also accessible

as tooltips through a click-hold gesture on a species node.

PyViPR aims to highlight reactions with high rates of consumption or production, as these can drive com-

plex network processes (Design Goal 2). To attain this goal, simulated reaction rates are encoded on both

the color shade and the thickness of arrows that connect interacting species. For each species PyViPR

obtains its related reactions and then calculates the fractional flux of each reaction using a normalization

function:

fi;cðtÞ = ri;cðtÞPn
j = 1rj;cðtÞ

where ri;c is the reaction rate value at a specific time point, n is the number of reactions, and the sub-index c

indicates the type of reaction (consumption or production). Fractional fluxes are then linearly mapped to a

color shade ranging from low (light shade) to high (dark shade) flux representations (Figure 1D). In addition,

reaction rate values, relative to their maximum value throughout the simulation, are represented by edge

thickness. Absolute reaction rate values for each interaction and at any given time point are also accessible

as tooltips using the click-hold gesture.
Exploration of a Biological Process with PyViPR: Apoptosis Execution

To illustrate the visualization capabilities of PyViPR, we use the Extrinsic Apoptosis Reaction Model (EARM

v2.0) (Lopez et al., 2013) to perform an exploratory analysis of the receptor-mediated apoptosis signaling

network. Briefly, EARM v2.0 describes the biochemical interactions from an initial death ligand cue to a

cleaved PARP response. Initiator caspases trigger interactions among the Bcl-2 family of proteins that

lead to mitochondrial outer membrane permeabilization (MOMP). MOMP, in turn, propagates the signal

to effector caspase activation and PARP cleavage. EARM is a sizable model that comprises 74 molecular

species, 127 parameters, 62 rules, and 100 reactions. We explored the EARM network using the following

steps: (1) visualization of the apoptosis species-rules bipartite network; (2) application of the Louvain

community detection algorithm to functionally cluster species nodes; (3) study of the simulation dynamics
iScience 23, 100748, January 24, 2020 5

at a coarse-grained community level; and (4) identification of molecular targets that modulate model

behavior.

Multiresolution Visualization and Exploration of EARM

We wanted to study the architecture of the network defined in EARM to find insights about molecular or-

ganization and function in apoptosis execution. We first visualized a species-rules bipartite network (Fig-

ure 2, upper panel). However, this network is difficult to explore, as no discernible structures are readily

apparent. We then projected the species-rules bipartite graph onto a species unipartite graph and clus-

tered highly connected nodes using the Louvain algorithm (Figure 2, middle panel). These communities

can also be further collapsed to obtain the EARM communities graph, a coarse-grained representation

of the apoptosis pathway (Figure 2, lower panel).

The Louvain community detection algorithm identified nine communities, numbered 0–8, which is summa-

rized in Table 1 (see Figure S3). Briefly, these communities capture biologically relevant and functional

processes throughout the apoptosis pathway. Community 1, describing Caspase 8 activation and Bid

truncation, is linked with Communities 3 and 4, the starting points for type I and type II cellular apoptosis,

respectively (Özören and El-Deiry, 2002). Interestingly, Mcl-1, a potent apoptosis inhibitor, was placed in a

separate community from all the other Bcl-2 inhibitors, highlighting its unique inhibitory interactions that

have been well documented (Yang-Yen, 2006). Community 4 is also connected to Communities 5 and 8 that

correspond to Bak and Bax activation, polymerization, and pore formation, respectively. These commu-

nities capture mitochondrial regulation events that lead to eventual MOMP formation in type II apoptosis

execution (Kale et al., 2017; YIN, 2000). These MOMP-related communities are connected to Communities

2 and 7, which correspond to MOMP-driven release of cytochrome c and Smac from the mitochondria.

Finally, these communities connect to Community 3, which corresponds to the activation of executioner

Caspase 3 (C3) and subsequent PARP cleavage, which signals that the cell has executed apoptosis. As

shown, C3 can be directly activated by Caspase 8 (C8) (type I) or by the apoptosome formed after cyto-

chrome c is released via MOMP (type II).

The Louvain algorithm also led to some interesting observations regarding molecular interactions. For

example, Caspase 3, the effector caspase, is the species with the highest within-community node degree,

indicating that it is a highly regulated protein in apoptosis execution. Also, mBid has the highest number of

interactions across communities, indicating that it plays a key regulatory role in apoptosis execution.

Taken together, we find that Louvain community detection could be used as an interactive ‘‘coarse-grain-

ing’’ methodology to automatically group biochemical interactions, simplify mechanism exploration, and

identify important proteins within a biochemical network.

Parameter Sets Fit Experimental Data but Yield Different Network Dynamics

To demonstrate the advantages of dynamic visualization, we calibrated EARM to previously published time

course experimental data (Spencer et al., 2009) using the Particle Swarm Optimization (PSO) algorithm

(Kennedy and Eberhart, 1995). Ten thousand PSO runs were carried out, which resulted in 6,572 parameter

sets with an error % 2.8 (See Methods section for details). It is well established that multiple parameter

sets can fit experimental data equally well, due to parameter unidentifiability and model sloppiness

(Gutenkunst et al., 2007). To explore the mechanistic implications of different parameter sets on EARM

execution, we compared the dynamics generated by two different parameter sets, labeled Parameter

Set 1 (PS1) and Parameter Set 2 (PS2) (Table S1), as described below.

We hypothesized that these two parameter sets with different kinetic parameter values would yield distinct

signal mechanisms. Thus, we first asked whether a trajectory plot of tBid dynamics could yield useful mech-

anistic information about apoptosis execution with different parameter sets. As shown in Figure 3A, both

parameter sets generated tBid trajectories that were essentially indistinguishable, yielding no mechanistic

information from the two distinct parameter sets. We then employed the EARM communities graph to

compare the global dynamic signal execution for both parameter sets. Figure 3B shows three time points

in signal execution for PS1 (upper panel) and PS2 (lower panel). As shown, there is little activity between

communities in both parameter sets in the early time points (Figure 3B left). However, for PS1 at t =

4040s we observe that Community 1, which regulates C8 activation, exhibits increased flux toward Commu-

nity 3, which controls C3 activation. This indicates that C3 is being activated by C8. Despite the activation
6 iScience 23, 100748, January 24, 2020

Figure 2. Multiresolution Visualization of a Reaction Network

Upper panel: EARM species rules bipartite graph. Green nodes represent molecular species with initial condition set to

zero, cyan nodes are species with nonzero initial conditions, and red nodes represent rules defined in the model. Middle

panel: EARM species graph obtained from projecting the bipartite graph into a unipartite graph. Densely connected

nodes have been automatically grouped into communities detected with the Louvain algorithm. Lower panel: EARM

communities graph obtained by collapsing each communities into a single node. Community node names are assigned

by the species with the highest number of interactions within its community. All edges correspond to interactions

between species nodes as specified in the EARM model.

iScience 23, 100748, January 24, 2020 7

Community

Number

Apoptosis Subprocess References

0 Ligand-receptor interactions that lead to the DISC

formation and regulation by Flip

Pennarun et al., 2010

1 Initiator Caspase 8 activation by DISC and Caspase 6

and subsequent truncation of Bid by activated Caspase

8

Kantari and Walczak, 2011

2 Release of cytochrome C through mitochondrial Bax

and Bak pores

Garrido et al., 2006

3 Activation and regulation of effector Caspase 3,

formation of apoptosomes, and cleavage of PARP

Zou et al., 2003

4 Bcl-2 family of interactions responsible for translocation

of Bax to the mitochondria by mitochondrial Bid (mBid)

and inhibition of Bax, Bak, and mBid by BclxL and Bcl2

Kale et al., 2017; YIN, 2000

5 Formation of mitochondrial Bax pores Annis et al., 2005; Westphal et al., 2014

6 Mcl1 inhibition of pro-apoptotic proteins Yang-Yen, 2006

7 Release of Smac through mitochondrial Bax and Bak

pores and its subsequent inhibition by XIAP

Deng et al., 2002

8 Formation of mitochondrial Bak pores Westphal et al., 2014; Dewson et al., 2009

Table 1. Summary of the Biological Functions Enclosed in Each Community
of the effector Caspase, apoptosis does not take place because the antiapoptotic XIAP inhibits active C3

activity. Community 4, which regulates mBid, also exhibits increased signal flux toward the Community 8

(active Bax regulation), indicating that the pores formed in the mitochondria are dominated by Bax

oligomerization.

PS2 also exhibited increased signal flux between communities but with different interaction patterns

compared with those seen in PS1. Specifically, it exhibited significant flux between Community 4 and Com-

munity 6 (mMcl1 regulation) at t = 7474s, suggesting that mBid was being inhibited by mMcl1. Also, there

was significant signal flux from Community 2, which regulates cytochrome c release from the mitochondria,

toward Community 3, indicating that pores were already formed in themitochondria and cytochrome c was

being released to aid with the formation of the apoptosome. Therefore, dynamic visualization of signal flow

across communities confirms our hypothesis about signal execution and demonstrates the usefulness of

PyViPR to explore the complex dynamics that occur in biochemical processes.

To further explore the effects of kinetic parameters in model behavior, we focused on local signal flow

through mBid and its interactions, as they are tightly linked to MOMP and cellular time-to-death (Spencer

et al., 2009). As shown in Figure 3C, for PS1 we observed that most of mBid was used to transport cytosolic

Bax to the mitochondrial outer membrane (MOM), whereas no activation of Bak occurred, suggesting that

pore activity in the MOM was primarily due to Bax (see Video S1). We, therefore, hypothesized that the

model with PS1 depends on Bax for apoptosis execution. In contrast, for PS2, we observed that mBid ac-

tivity was primarily inhibited by the anti-apoptotic Mcl1 (see Video S2). We thus hypothesized that under

PS2 an MCL-1 knockdown would free mBid to activate Bax and Bak and more rapidly commit cells to

apoptosis. We tested both hypothesis derived from our visualization-based analysis using in silico exper-

iments. First, we knocked out Bax and simulated EARMwith PS1 (Figure 4). We found that knocking out Bax

protected cells from apoptosis induction with TRAIL, confirming that Bax plays an important role in

apoptosis regulation. We then knocked out Mcl1 and simulated EARM with PS2. We found that the

time-to-death was reduced by 22.6%, corroborating that Mcl1 inhibition delayed apoptosis. As a control,

we knocked out Mcl1 for PS1 and Bax for PS2 and found that the dynamics of cPARP were not considerably

affected.
8 iScience 23, 100748, January 24, 2020

Figure 3. Dynamic Visualization of EARM at Different Resolutions

Panel (A) includes three plots of the simulated tBid and the experimental data used for calibration. Gray lines correspond to the

experimental data with error bars indicating the standard deviation. Arrows indicate the concentration level at the

corresponding time point. The time points shown here are the same ones used to obtain snapshots of the dynamic visualization

in the following panels. Panel (B) shows, for PS1 and PS2, the global reaction flow dynamics between the communities detected

with the Louvain algorithm. Panel (C) shows, for PS1 and PS2, the temporal changes in the strength of the interactions between

mitochondrial Bid and the anti-apoptotic and pro-apoptotic proteins. Pie chart slices within the nodes show the concentration

of a species relative to themaximum amount of the concentration attained across all time points of the simulation. Edges color

shade and thickness represent the fractional flux and relative reaction value, respectively.

iScience 23, 100748, January 24, 2020 9

Figure 4. In Silico Knock outs of Bcl-2 Proteins Modulates PARP Cleavage

EARMwas run using Parameter Set 1 (left) and Parameter Set 2 (right) and with knockout (KO) of either Bax or Mcl-1 as labeled. Bax KO has a significant effect

on the dynamics of PARP cleavage (yellow line) for Parameter Set 1 but almost no noticeable effect for Parameter Set 2 (right). In contrast, Mcl-1 KO has

almost no effect for Parameter Set 1 (left) but a significant effect in Parameter Set 2 (right).
Taken together, our results demonstrate that despite multiple parameters fitting the data equally well,

apoptosis is executed differently for each parameter set. Our observations align with experimental results

that show cellular dependence on Bcl-2 regulators for apoptosis execution (Deng et al., 2002; Zhou et al.,

1997). Importantly, visualization of the dynamic process enabled us to identify key reactions under different

parameter sets and generate testable hypotheses to better understand the execution mechanism.
DISCUSSION

In this paper, we presented PyViPR, a tool to visualize the structure and dynamics of biochemical network

models. PyViPR enables a straightforward workflow of model creation, analysis, visualization, and hypoth-

esis generation. Additionally, PyViPR integrates community detection algorithms to organize the nodes of

biochemical networks and ease the exploration of complex networks. Lastly, PyViPR provides an interface

for intuitive dynamic visualization that facilitates the observation of signal flow across biochemical models.

Multiple tools exist for static visualization of biological networks. Some of the tools used to visualize reac-

tion-based models include Dynetica (Eidum et al., 2014), COPASI (Bergmann et al., 2017), CySBML (König

et al., 2012), and Omix (Droste et al., 2011). Although these tools provide useful visualizations of biochem-

ical models, they are implemented as Graphical User Interfaces, which can hinder the creations of pipelines

for model creation, visualization, and analysis. Also, these tools can become difficult to use as network

complexity increases. PyViPR aims to address these issues by enabling access to community detection al-

gorithms for network simplification and facilitating the model definition, visualization, and analysis pipe-

lines in a single Jupyter Notebook environment.

Various tools for visualization of rule-based models have also been published. These include Simmune

(Cheng et al., 2014), BioNetGen (Smith et al., 2012; Sekar et al., 2017), rxncon (Tiger et al., 2012), Virtual

Cell (Vasilescu et al., 2018), and Kappa (Boutillier et al., 2018). All of these tools take advantage of the struc-

tured definition of molecules and rules to generate intelligible visualizations of large models. PyViPR does

not use these structured definitions and instead uses the rule-based modeling framework to obtain the set

of reactions from a given model. This set of reactions is often larger than the number of rules, thus limiting

the size of models that can be intelligibly visualized with PyViPR. To address this potential shortcoming, we

leveraged the flexibility of a Python-based environment and provided an interface to BioNetGen’s atom-

rules graph algorithm.

Visualization tools to explore the dynamics of temporal network processes can be classified into three

groups based on the components animated: (1) Species nodes animation, where the simulated species

concentration is mapped onto the size/color of nodes (e.g. COPASI [Bergmann et al., 2017], Narrator

[Xia et al., 2011], CytoModeler [Mandel et al., 2007]); (2) species nodes and edge animation, where the simu-

lated species concentration is mapped onto the size/color of nodes, whereas reaction rate values are en-

coded into the edge thickness (e.g. DBSolve [Gizzatkulov et al., 2010]); and (3) rules nodes and edges
10 iScience 23, 100748, January 24, 2020

animation (e.g. DIN-Viz [Forbes et al., 2017]), where the number of hits of a rule is mapped into the node

size, and the influence of one rule on another is encoded into the edge width. Similar to the first two groups

of dynamic visualization approaches, PyViPR maps the species concentrations into nodes. The main differ-

ence, however, is that PyViPR encodes the reaction rates into edges width and colors in a more insightful

way as it highlights the edges that carry most of the signal flow. Additionally, PyViPR is better suited for

dynamic visualization of large networks, as it can use community detection algorithms to cluster nodes

and then animate the coarse-grained network with the simulation results. Lastly, it is difficult to compare

PyViPR with the third group of visualization tools, as PyViPR uses a species graph, whereas the latter

uses a rules graph to encode the simulation results. However, one advantage that PyViPR has is that the

visualization can be easily communicated to non-modeling scientists, as it only requires knowledge about

the biological network being studied.

We believe that PyViPR could be incorporated into existing modeling and simulation workflows provided

by Python-based tools such as Tellurium notebooks (Medley et al., 2018) and PySCeS (Olivier et al., 2004). In

the future, we plan to incorporate community-detection algorithms that consider the weight of the edges

for the clustering of nodes. Additionally, we plan to improve the synchronization from the JavaScript fron-

tend to the Python backend to enable users to interactively modify model parameters and components.

All the model exploratory analyses, which include model calibration, visualization, hypothesis exploration,

and testing, were performed in Jupyter Notebooks. These shareable and reusable notebooks contain all

the source code and markup text that explains the rationale for each step in the analysis. We believe

that access to these resources will promote reproducibility and transparency by enabling other researchers

to rerun or expand the presented model analysis. We invite the community to contribute to open-source

tools such as PyViPR to improve model analysis and visualization (see Supplement Information Section and

https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master).
Limitations of the Study

Although PyViPR can visualize a broad range of systems biology models, it is not a panacea for model visu-

alization. Specifically, PyViPR has limitations to generate intelligible networks of rule-based models with

rules that generate a few hundreds of molecular reactions. This limitation emerges because PyViPR visual-

izations are created from the molecular reactions, which are typically more numerous than model rules,

instead of the monomers and rules encoded in a model. In this case, specialized visualization tools such

as atom-rules (Sekar et al., 2017), rxncon (Tiger et al., 2012), and Kappa (Boutillier et al., 2018) could be

better suited to obtain intelligible visualizations of rule-based models.
METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.
DATA AND CODE AVAILABILITY

The python package PyViPR is an open-source project under the MIT License. Stable releases of PyViPR are

available on PyPi, and the latest unreleased version can be downloaded from GitHub (https://github.com/

LoLab-VU/PyViPR). The documentation with examples and description of the available functions is avail-

able at https://PyViPR.readthedocs.io. A Jupyter notebook with the code to reproduce all the figures

included in the manuscript can be found in binder https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master.
SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2019.100748.
ACKNOWLEDGMENTS

We thank Blake Wilson, Leonard Harris, and Alexander Lubbock for their useful insights throughout the

development of PyViPR and for useful feedback in writing this manuscript. This work was supported by Na-

tional Science Foundation (NSF) award MCB 1411482 to CFL, National Institutes of Health (NIH) award

1U01CA215845 to CFL, the Vanderbilt International Students Program toOOO, and the Vanderbilt Pearson

Graduate Fellowship to OOO.
iScience 23, 100748, January 24, 2020 11

https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master
https://github.com/LoLab-VU/PyViPR
https://github.com/LoLab-VU/PyViPR
https://PyViPR.readthedocs.io
https://mybinder.org/v2/gh/LoLab-VU/PyViPR/master
https://doi.org/10.1016/j.isci.2019.100748

AUTHOR CONTRIBUTIONS

Conceptualization, O.O.O and C.F.L.; Software, O.O.O.; Writing—Original Draft, O.O.O.; Writing—Re-

view & Editing, C.F.L. and O.O.O.; Supervision, C.F.L.; Funding Acquisition, C.F.L.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: June 3, 2019

Revised: November 8, 2019

Accepted: November 25, 2019

Published: January 24, 2020
REFERENCES

Ahn, A.C., Tewari, M., Poon, C.-S., and Phillips,
R.S. (2006). The limits of reductionism in
medicine: could systems biology offer an
alternative? PLoS Med. 3, e208.

Ahn, J.W., Plaisant, C., and Shneiderman, B.
(2014). A task taxonomy for network evolution
analysis. IEEE Trans. Vis. Comput. Graph. 20,
365–376.

Albeck, J.G., Burke, J.M., Spencer, S.L.,
Lauffenburger, D.A., and Sorger, P.K. (2008).
Modeling a snap-action, variable-delay switch
controlling extrinsic cell death. PLoS Biol. 6, e299.

Aldridge, B.B., Burke, J.M., Lauffenburger, D.A.,
and Sorger, P.K. (2006). Physicochemical
modelling of cell signalling pathways. Nat. Cell
Biol. 8, 1195–1203.

Annis, M.G., Soucie, E.L., Dlugosz, P.J., Cruz-
Aguado, J.A., Penn, L.Z., Leber, B., and Andrews,
D.W. (2005). Bax forms multispanning monomers
that oligomerize to permeabilize membranes
during apoptosis. EMBO J. 24, 2096–2103.

Beck, F., Burch, M., Diehl, S., and Weiskopf, D.
(2017). A taxonomy and survey of dynamic graph
visualization. Comput. Graph. Forum 36,
133–159.

Bergmann, F.T., Hoops, S., Klahn, B., Kummer, U.,
Mendes, P., Pahle, J., and Sahle, S. (2017).
COPASI and its applications in biotechnology.
J. Biotechnol. 261, 215–220.

Blinov, M.L., Faeder, J.R., Goldstein, B., and
Hlavacek, W.S. (2006). A network model of early
events in epidermal growth factor receptor
signaling that accounts for combinatorial
complexity. BioSystems 83, 136–151.

Blondel, V.D., Guillaume, J.L., Lambiotte, R., and
Lefebvre, E. (2008). Fast unfolding of
communities in large networks. J. Stat. Mech.
Theor. Exp. 2008, 1–12.

Boutillier, P., Maasha, M., Li, X., Medina-Abarca,
H.F., Krivine, J., Feret, J., Cristescu, I., Forbes,
A.G., and Fontana,W. (2018). The Kappa platform
for rule-based modeling. Bioinformatics 34, i583–
i592.

Cerami, E.G., Gross, B.E., Demir, E., Rodchenkov,
I., Babur, Ö., Anwar, N., Schultz, N., Bader, G.D.,
and Sander, C. (2010). Pathway Commons, a web
resource for biological pathway data. Nucleic
Acids Res. 39, D685–D690.
12 iScience 23, 100748, January 24, 2020
Cheng, H.C., Angermann, B.R., Zhang, F., and
Meier-Schellersheim, M. (2014). NetworkViewer:
visualizing biochemical reaction networks with
embedded rendering of molecular interaction
rules. BMC Syst. Biol. 8, 1–16.

Choi, K., Medley, J.K., König, M., Stocking, K.,
Smith, L., Gu, S., and Sauro, H.M. (2018).
Tellurium: an extensible python-based modeling
environment for systems and synthetic biology.
Biosystems 171, 74–79.

Cordasco, G. and Gargano, L.. (2010).
Community detection via semi-synchronous label
propagation algorithms. 2010 IEEE International
Workshop on: Business Applications of Social
Network Analysis (BASNA), pp. 1–8.

Dang, T.N., Murray, P., Aurisano, J., and Forbes,
A.G. (2015). Reactionflow: an interactive
visualization tool for causality analysis in
biological pathways. BMC Proc. 9, S6.

Danos, V., Feret, J., Fontana, W., Harmer, R.,
Hayman, J., Krivine, J., Thompson-Walsh, C., and
Winskel, G.. (2012). Graphs, Rewriting and
Pathway Reconstruction for Rule-Based Models.
FSTTCS 2012-IARCS Annual Conference on
Foundations of Software Technology and
Theoretical Computer Science, 18, 276–288.

Daschinger, M., Knote, A., Green, R., and Von
Mammen, S.. (2017). A human-in-the-loop
environment for developmental biology. The
2018 Conference on Artificial Life: A Hybrid of the
European Conference on Artificial Life (ECAL)
and the International Conference on the
Synthesis and Simulation of Living Systems
(ALIFE), pp. 475–482.

Demir, E., Cary, M.P., Paley, S., Fukuda, K., Lemer,
C., Vastrik, I., Wu, G., D’Eustachio, P., Schaefer,
C., Luciano, J., et al. (2010). The BioPAX
community standard for pathway data sharing.
Nat. Biotechnol. 28, 935–942.

Deng, Y., Lin, Y., and Wu, X. (2002). TRAIL-
induced apoptosis requires Bax-dependent
mitochondrial release of Smac/DIABLO. Genes
Dev. 16, 33–45.

Dewson, G., Kratina, T., Czabotar, P., Day, C.L.,
Adams, J.M., and Kluck, R.M. (2009). Bak
activation for apoptosis involves oligomerization
of dimers via their a6 helices. Mol. Cell 36,
696–703.

Droste, P., Miebach, S., Niedenfuhr, S., Wiechert,
W., and Noh, K. (2011). Visualizing multi-omics
data in metabolic networks with the software
Omix—a case study. Biosystems 105, 154–161.

Eidum, D., Asthana, K., Unni, S., Deng, M., and
You, L. (2014). Construction, visualization, and
analysis of biological network models in dynetica.
Quantitative Biol. 2, 142–150.

Faeder, J.R., Blinov, M.L., and Hlavacek, W.S.
(2009). Rule-based modeling of biochemical
systems with BioNetGen (Humana Press),
pp. 113–167.

Forbes, A.G., Burks, A., Lee, K., Li, X., Boutillier, P.,
Krivine, J., and Fontana, W. (2017). Dynamic
influence networks for rule-based models. IEEE.
Trans. Vis. Comput. Graph. 24, 184–194.

Fortunato, S. (2010). Community detection in
graphs. Phys. Rep. 486, 75–174.

Franz, M., Lopes, C.T., Huck, G., Dong, Y., Sumer,
O., and Bader, G.D. (2015). Cytoscape.js: a graph
theory library for visualisation and analysis.
Bioinformatics 32, 309–311.

Gaddy, T.D., Wu, Q., Arnheim, A.D., and Finley,
S.D. (2017). Mechanistic modeling quantifies the
influence of tumor growth kinetics on the
response to anti-angiogenic treatment. PLoS
Comput. Biol. 13, 1–23.

Garrido, C., Galluzzi, L., Brunet, M., Puig, P.E.,
Didelot, C., and Kroemer, G. (2006). Mechanisms
of cytochrome c release from mitochondria. Cell
Death Differ. 13, 1423–1433.

Girvan, M., and Newman, M.E.J. (2002).
Community structure in social and biological
networks. Proc. Natl. Acad. Sci. U S A 99, 7821–
7826.

Gizzatkulov, N.M., Goryanin, I.I., Metelkin, E.A.,
Mogilevskaya, E.A., Peskov, K.V., and Demin,
O.V. (2010). DBSolve Optimum: a software
package for kinetic modeling which allows
dynamic visualization of simulation results. BMC
Syst. Biol. 4, 109.

Gutenkunst, R.N., Waterfall, J.J., Casey, F.P.,
Brown, K.S., Myers, C.R., and Sethna, J.P. (2007).
Universally sloppy parameter sensitivities in
systems biology models. PLoS Comput. Biol. 3,
1871–1878.

Hagberg, A.A., Schult, D.A., and Swart, P.J..
(2008). Exploring network structure, dynamics,
and function using NetworkX. Proceedings of the

http://refhub.elsevier.com/S2589-0042(19)30493-6/sref1
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref1
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref1
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref1
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref2
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref2
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref2
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref2
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref3
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref3
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref3
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref3
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref4
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref4
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref4
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref4
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref5
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref5
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref5
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref5
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref5
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref6
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref6
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref6
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref6
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref7
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref7
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref7
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref7
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref8
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref8
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref8
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref8
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref8
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref9
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref9
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref9
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref9
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref10
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref10
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref10
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref10
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref10
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref11
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref11
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref11
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref11
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref11
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref12
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref12
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref12
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref12
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref12
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref13
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref13
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref13
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref13
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref13
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref15
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref15
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref15
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref15
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref18
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref18
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref18
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref18
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref18
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref19
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref19
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref19
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref19
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref20
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref20
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref20
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref20
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref20
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref21
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref21
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref21
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref21
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref22
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref22
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref22
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref22
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref23
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref23
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref23
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref23
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref24
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref24
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref24
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref24
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref25
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref25
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref26
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref26
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref26
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref26
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref27
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref27
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref27
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref27
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref27
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref28
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref28
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref28
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref28
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref29
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref29
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref29
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref29
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref30
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref30
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref30
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref30
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref30
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref30
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref31
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref31
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref31
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref31
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref31

7th Python in Science Conference (SciPy), pp.
11–15.

Harris, L.A., Hogg, J.S., Tapia, J.J., Sekar, J.A.,
Gupta, S., Korsunsky, I., Arora, A., Barua, D.,
Sheehan, R.P., and Faeder, J.R. (2016).
BioNetGen 2.2: advances in rule-based
modeling. Bioinformatics 32, 3366–3368.

Holzinger, A. (2016). Interactive machine learning
for health informatics: when do we need the
human-in-the-loop? Brain Inform. 3, 119–131.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H.,
Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J.,
Bray, D., Cornish-Bowden, A., et al. (2003). The
systems biology markup language (SBML): a
medium for representation and exchange of
biochemical network models. Bioinformatics 19,
524–531.

Jenny, B., Stephen, D.M., Muehlenhaus, I.,
Marston, B.E., Sharma, R., Zhang, E., and Jenny,
H. (2018). Design principles for origin-destination
flowmaps. CartographyGeogr. Inf. Sci. 45, 62–75.

Kale, J., Osterlund, E.J., and Andrews, D.W.
(2017). BCL-2 family proteins: changing partners
in the dance towards death. Cell Death Differ. 25,
65–80.

Kantari, C., and Walczak, H. (2011). Caspase-8
and Bid: caught in the act between death
receptors and mitochondria. Biochim. Biophys.
Acta 1813, 558–563.

Kennedy, J. and Eberhart, R.. (1995). Particle
swarm optimization. Proceedings of ICNN’95-
International Conference on Neural Networks, 4,
1942–1948.

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger,
B.E., Bussonnier, M., Frederic, J., Kelley, K.,
Hamrick, J.B., Grout, J., Corlay, S., et al. (2016).
Jupyter notebooks - a publishing format for
reproducible computational workflows. In
Positioning and Power in Academic Publishing:
Players, Agents and Agendas, F. Loizides and B.
Schmidt, eds. (IOS Press), pp. 87–90.

Knuth, D.E. (2001). Literate programming.
Comput. J. 27, 97–111.

Kolpakov, F., Akberdin, I., Kashapov, T., Kiselev,
l., Kolmykov, S., Kondrakhin, Y., Kutumova, E.,
Mandrik, N., Pintus, S., Ryabova, A., et al. (2019).
BioUML: an integrated environment for systems
biology and collaborative analysis of biomedical
data. Nucleic Acids Res. 47, W225–W233.

König, M., Dräger, A., and Holzhütter, H.-G.
(2012). CySBML: a cytoscape plugin for SBML.
Bioinformatics 28, 2402–2403.
Lemmon, M.A., and Schlessinger, J. (2010). Cell
signaling by receptor tyrosine kinases. Cell 141,
1117–1134.

Lopez, C.F., Muhlich, J.L., Bachman, J.A., and
Sorger, P.K. (2013). Programming biological
models in Python using PySB. Mol. Syst. Biol. 9,
1–19.

Mandel, J.J., Fuß, H., Palfreyman, N.M., and
Dubitzky, W. (2007). Modeling biochemical
transformation processes and information
processing with Narrator. BMC Bioinformatics 8,
103.

Medley, J.K., Choi, K., König, M., Smith, L., Gu, S.,
Hellerstein, J., Sealfon, S.C., and Sauro, H.M.
(2018). Tellurium notebooks-an environment for
reproducible dynamical modeling in systems
biology. PLoS Comput. Biol. 14, 1–24.

Murray, P., McGee, F., and Forbes, A.G. (2017). A
taxonomy of visualization tasks for the analysis of
biological pathway data. BMC Bioinformatics 18,
21.

Olivier, B.G., Rohwer, J.M., and Hofmeyr, J.-H.S.
(2004). Modelling cellular systems with PySCeS.
Bioinformatics 21, 560–561.

Özören, N., and El-Deiry, W.S. (2002). Defining
characteristics of types I and II apoptotic cells in
response to TRAIL. Neoplasia 4, 551–557.

Paduano, F., and Forbes, A.G. (2015). Extended
LineSets: a visualization technique for the
interactive inspection of biological pathways.
BMC Proc. 9, S4.

Parés, F., Gasulla, D.G., Vilalta, A., Moreno, J.,
Ayguadé, E., Labarta, J., Cortés, U., and
Suzumura, T. (2018). Fluid communities: a
competitive, scalable and diverse community
detection algorithm. In Complex Networks &
Their Applications VI, C. Cherifi, H. Cherifi, M.
Karsai, and M. Musolesi, eds. (Cham: Springer
International Publishing), pp. 229–240.

Pennarun, B., Meijer, A., de Vries, E.G.E.,
Kleibeuker, J.H., Kruyt, F., and de Jong, S. (2010).
Playing the DISC: turning on TRAIL death
receptor-mediated apoptosis in cancer. Biochim.
Biophys. Acta 1805, 123–140.

Perry, N.A., Kaoud, T.S., Ortega, O.O., Kaya, A.I.,
Marcus, D.J., Pleinis, J.M., Berndt, S., Chen, Q.,
Zhan, X., and Dalby, K.N. (2019). Arrestin-3
scaffolding of the JNK3 cascade suggests a
mechanism for signal amplification. Proc. Natl.
Acad. Sci. U S A 116, 810–815.

Raghavan, U.N., Albert, R., and Kumara, S. (2007).
Near linear time algorithm to detect community
structures in large-scale networks. Phys. Rev. E
Stat. Nonlinear Soft Matter. Phys. 76 (Pt 2),
036106.
Sachs, K., Perez, O., Pe’er, D., Lauffenburger,
D.A., and Nolan, G.P. (2005). Causal protein-
signaling networks derived from multiparameter
single-cell data. Science 308, 523–529.

Schaff, J.C., Vasilescu, D., Moraru, I.I., Loew, L.M.,
and Blinov, M.L. (2016). Rule-based modeling
with virtual cell. Bioinformatics 32, 2880–2882.

Sekar, J.A.P., Tapia, J.J., and Faeder, J.R. (2017).
Automated visualization of rule-based models.
PLoS Comput. Biol. 13, 1–23.

Smith, A.M., Xu, W., Sun, Y., Faeder, J.R., and
Marai, G.E. (2012). RuleBender: integrated
modeling, simulation and visualization for rule-
based intracellular biochemistry. BMC
Bioinformatics 13, S3.

Spencer, S.L., Gaudet, S., Albeck, J.G., Burke,
J.M., and Sorger, P.K. (2009). Non-genetic origins
of cell-to-cell variability in TRAIL-induced
apoptosis. Nature 459, 428–432.

Tiger, C.F., Krause, F., Cedersund, G., Palmér, R.,
Klipp, E., Hohmann, S., Kitano, H., and Krantz, M.
(2012). A framework for mapping, visualisation
and automatic model creation of signal-
transduction networks. Mol. Syst. Biol. 8, 1–20.

Vasilescu, D., Greene, J., Schaff, J.C., Moraru, I.I.,
and Blinov, M.L. (2018). Molecular process
diagram: a precise, scalable and compact
visualization of rule-based models. bioRxiv.
https://doi.org/10.1101/503359.1.

Westphal, D., Kluck, R.M., and Dewson, G. (2014).
Building blocks of the apoptotic pore: how Bax
and Bak are activated and oligomerize during
apoptosis. Cell Death Differ. 21, 196–205.

Xia, T., Van Hemert, J., and Dickerson, J.A. (2011).
CytoModeler: a tool for bridging large-scale
network analysis and dynamic quantitative
modeling. Bioinformatics 27, 1578–1580.

Yang-Yen, H.-F. (2006). Mcl-1: a highly regulated
cell death and survival controller. J. Biomed. Sci.
13, 201–204.

YIN, X.-M. (2000). Signal transduction mediated
by Bid, a pro-death Bcl-2 family proteins,
connects the death receptor and mitochondria
apoptosis pathways. Cell Res. 10, 161–167.

Zhou, P., Qian, L., Kozopas, K.M., and Craig, R.W.
(1997). Mcl-1, a Bcl-2 family member, delays the
death of hematopoietic cells under a variety of
apoptosis-inducing conditions. Blood 89,
630–643.

Zou, H., Yang, R., Hao, J., Wang, J., Sun, C., Fesik,
S.W., Wu, J.C., Tomaselli, K.J., and Armstrong,
R.C. (2003). Regulation of the Apaf-1/caspase-9
apoptosome by caspase-3 and XIAP. J. Biol.
Chem. 278, 8091–8098.
iScience 23, 100748, January 24, 2020 13

http://refhub.elsevier.com/S2589-0042(19)30493-6/sref33
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref33
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref33
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref33
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref33
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref34
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref34
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref34
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref35
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref36
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref36
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref36
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref36
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref37
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref37
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref37
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref37
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref38
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref38
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref38
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref38
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref40
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref41
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref41
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref42
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref42
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref42
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref42
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref42
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref42
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref43
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref43
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref43
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref44
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref44
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref44
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref45
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref45
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref45
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref45
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref46
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref46
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref46
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref46
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref46
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref47
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref47
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref47
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref47
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref47
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref48
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref48
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref48
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref48
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref49
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref49
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref49
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref50
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref50
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref50
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref51
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref51
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref51
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref51
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref52
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref53
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref53
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref53
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref53
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref53
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref54
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref54
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref54
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref54
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref54
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref54
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref55
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref55
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref55
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref55
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref55
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref56
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref56
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref56
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref56
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref57
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref57
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref57
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref58
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref58
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref58
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref59
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref59
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref59
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref59
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref59
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref60
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref60
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref60
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref60
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref61
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref61
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref61
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref61
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref61
https://doi.org/10.1101/503359.1
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref63
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref63
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref63
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref63
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref64
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref64
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref64
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref64
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref65
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref65
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref65
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref66
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref66
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref66
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref66
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref67
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref67
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref67
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref67
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref67
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref68
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref68
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref68
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref68
http://refhub.elsevier.com/S2589-0042(19)30493-6/sref68

ISCI, Volume 23
Supplemental Information
Interactive Multiresolution Visualization

of Cellular Network Processes

Oscar O. Ortega and Carlos F. Lopez

Supplemental data items

Figure S1. Network visualization modes in PyViPR, Related to Figure 1. PyViPR supports four major
modes of network visualization. (A) A bipartite graph where one set of nodes represents the model
species, the second set of nodes represents model model rules/reactions, and the edges connect
reactant and product species with their corresponding rule/reactions. (B) A unipartite graph where
each node represents a chemical species and edges represent biochemical interactions. (C) A
compound graph where the nodes are grouped by the compartments/communities on which they are
located. (D) Snapshot of a dynamic visualization in a unipartite graph. Nodes represent chemical
species, edges represent biochemical reactions, and the pie charts inside nodes represent species
concentration over time.

Figure S2. Names of functions to create model visualizations and the model components included in a
network, Related to Figure 1. There are three types of model components that can be used for
visualization purposes. The first one is primary nodes which correspond to model species, rules and
reactions. Second is the compound nodes that include model compartments, modules/files, and
communities detected by clustering algorithms. Finally, we have the dynamics information which
correspond to the simulation results of a model. Marked checkboxes for each function correspond to
the information displayed in a network.

Figure S3. Communities detected in EARM, Related to Figure 2 and Table 1. Species network of
EARM. Each of the nodes represents a molecular species defined in the model, and the edges depict
the interactions between species. Species nodes are clustered in 9 groups. These are the
communities, labeled from 0 to 8, detected by the Louvain algorithm

Figure S4. higher species concentration does not necessarily translate to a higher reaction flow,
Related to Figure 1. A) Concentration of the complexes E-aS and E-bS over time. Substrate bS is
rapidly bound to the enzyme and has a higher E-bS concentration than the E-aS complex for the first
7.6 seconds. After 7.6 seconds the concentration of substrate aS bound to the enzyme is higher than
the one of substrate bS. B) Dynamic visualization of the enzymatic reaction at time point 10s. The flux
from E to E-bS is higher (indicated by the darker red shade in) than the flux from E to-aS at 10
seconds.

Transparent Methods

Key Resources Table

Reagent or Resource Source Identifier
Data
HeLa cells FRET reporter
proteins data

(Spencer et al.,
2009)

https://github.com/sorgerlab/earm

Software and Algorithms
PyViPR This paper https://github.com/LoLab-VU/pyvipr
PySB (Lopez et al.,

2013)
http://pysb.org/

NetworkX (Hagberg et al.,
2008)

https://networkx.github.io

Louvain algorithm (Blondel et al.,
2008)

https://github.com/taynaud/python-louvain

Cytoscape.js (Franz et al.,
2015)

http://js.cytoscape.org

Contact for Reagent and Resource Sharing
Further information and requests for resources and reagents should be directed to and will be fulfilled by
the Lead Contact, Carlos F. Lopez (c.lopez@vanderbilt.edu)

Method Details

Overview. PyViPR embeds static and dynamic network visualizations of different biochemical model
components into a Jupyter Notebook (Kluyver et al., 2016). To generate these visualizations, PyViPR
requires as input data a model or simulation result encoded in one of the accepted formats (See input
data section below). Once a model or simulation result has been passed to one of the PyViPR functions,
in the back-end PyViPR uses the Python package Networkx (Hagberg et al., 2008) to generate node-
edge graphs that store information from model components (e.g. molecular species, reactions, rules)
and simulation results. Species nodes can be clustered based on community detection algorithms or
model compartments. Then, the NetworkX graph is converted into a JSON file that is passed to the
JavaScript front-end which employs Cytoscape.js (Franz et al., 2015) and some of its extensions to render
the graphs, apply layout algorithms, expand and collapse compound nodes (Dogrusoz et al., 2018), and
enable the dynamic visualization of model simulation results for the visualization of networks within
Jupyter Notebooks.

Input data. PyViPR currently includes three interfaces that enable the support of multiple model and
graph formats: (i) PySB interface, which uses the PySB package (Lopez et al., 2013) to handle models
encoded in the BioNetGen, SBML, PySCeS, E-Cell, and PySB format, (ii) Tellurium interface, which uses
the Tellurium package (Medley et al., 2018) to handle models encoded in SBML and Antimony, and (iii)
Graph interface, which uses NetworkX and Cytoscape.js to handle graphs encoded in GraphML, SIF,
SBGN XML, Cytoscape JSON, GEXF, GML and YAML.

Output data. All visualizations are rendered as networks within a Jupyter Notebook. These networks can
be locally downloaded in the following formats: PNG, SIF, GraphML and JSON.

PyViPR main visualization functions. PyViPR enables the interactive visualization of different model
components as well as simulated trajectories of molecular species and reaction rates. The main
visualization functions include:

• sp_rxns_bidirectional_view(model): Shows a bipartite network where one set of nodes are
species and the other set are bidirectional reactions. Edges connect reaction nodes with their
respective reactants and products species.

• sp_view(model): Shows the unipartite network of interacting species.
• projected_bireactions_view(model): Shows the unipartite network of reactions projected from

the bipartite species-reactions graph.
• sp_comm_louvain_view(model): Shows the unipartite network of interacting species grouped

by the Louvain community detection algorithm.
• sp_dyn_view(model): Shows a species network. Edges size and color are updated according to

reaction rate values, and nodes pie charts slices are updated according to the concentration
of species.

• cluster_rxns_by_rules_view(model): Shows the unipartite graph of the interactions between the
reactions in a model. Reaction nodes are grouped by the rules that generated them.

• highlight_nodes_view(species, reactions): Highlights the species and/or reactions passed as
arguments.

A more detailed description of these and other visualization functions can be found on the PyViPR
documentation website (https://pyvipr.readthedocs.io/)

Bipartite projection to a species graph

The following algorithm describes how PyViPR projects a species-reactions bipartite graph to a species-
only graph. Briefly, PyViPR links two species nodes if they are connected through a reaction node, with
the exception of species nodes that are both reactants of the same reaction as edges should only
connect reactant species nodes with products species nodes. The projection of catalytic reactions results
in the enzyme node having two edges to the enzyme-substrate complex node: one to represent the
reversible substrate binding reaction and a second to represent the catalytic reaction

Model calibration

For the calibration of EARM, nominal values for rate constants were set to their published values in
EARM 2.0 (Lopez et al., 2013). All rate constants were allowed to change two orders of magnitude above
and below their nominal values, indicating a lack of knowledge about the likely parameter values.
Experimental time-courses of the initiator caspase reporter protein (IC-RP), mitochondrial inter-
membrane space reporter protein (IMS-RP), and effector caspase reporter protein (EC-RP) were used
from previously published data (Spencer et al., 2009). In the model, tBid, cytosolic Smac, and cleaved
PARP were fit to the data for IC-RP, IMS-RP, and EC-RP, respectively. Model calibration was then
performed using the simplePSO package (Pino, 2019), which is a python implementation of the Particle
Swarm Optimization algorithm (Kennedy and Eberhart, 1995). The fit of simulated trajectories to
experimental data was measured using the sum of the squared differences:

𝛘 =##
𝟏

𝟐𝛔𝒅𝒂𝒕𝒂𝟐
𝒊

+𝒙𝒎𝒐𝒅𝒆𝒍𝒊 (𝒕; 𝚯) − 𝒙𝒅𝒂𝒕𝒂𝒊 (𝒕)6𝟐

𝒕

Where 𝑡 is the time span of the simulation and experiments, Θ = (θ:,… , θ=)
are the parameters of the model, x?@ABCD are the simulations of the model under condition 𝑖 and xAFGFD is
the experimental data under condition 𝑖.

We first ran PSO 100 times to determine a reasonable cost function threshold to consider that a
calibrated parameter is a good fit. We chose the parameter set with the lowest function, which
corresponds to a value of 2.8, and visually inspected that the fit was good. Then, we ran PSO 10000
times, and only kept parameter sets that had a cost function of 2.8 or less.

Parameter selection for analysis

To obtain the two maximally different parameter sets from the 6572 calibrated parameter sets, we first
standardize the kinetic parameter values as kinetic parameters with a variance that is order of
magnitudes larger than others might dominate the distance function and lead to parameters that are
mostly different at that specific kinetic parameter. To standardize the values of a kinetic parameter we
remove the mean and scale to unit variance:

𝒛 = (𝒙 − 𝒖)/𝒔

Where 𝑥 is a value of a specific kinetic parameter, 𝑢 and 𝑠 are the mean and the standard deviation of
the specific kinetic parameter, respectively.

After standardizing the kinetic parameter values, we use the Euclidean metric (eq. 1) to calculate the
pairwise distances between the 6572 calibrated parameter sets, and then choose the two parameter sets
that yield the largest distance.

(1)				𝑑(𝑝, 𝑞) = T#(𝑝U − 𝑞U)V
W

UX:

(1)

Where p = (p:, pV, … , p=) and q = (q:, qV, … , q=) are two parameter sets, and 𝑛 is the number of kinetic
parameters in the model.

Supplemental References

Spencer SL, Gaudet S, Albeck JG, Burke JM, Sorger PK. Non-genetic origins of cell-to-cell variability in
TRAIL-induced apoptosis. Nature.2009;459(7245):428–432. doi:10.1038/nature08012

Lopez CF, Muhlich JL, Bachman JA, Sorger PK. Programming biological models in Python using PySB.
Molecular Systems Biology. 2013;9(646):1–19.doi:10.1038/msb.2013.1

Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and function using NetworkX.
Proceedings of the 7th Python in Science Conference(SciPy). 2008;(SciPy):11–15.
doi:10.1016/j.jelectrocard.2010.09.003.

Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment. 2008;2008(10). doi:10.1088/1742-
5468/2008/10/P10008.

Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD. Cytoscape.js: A graph theory library for
visualisation and analysis. Bioinformatics.2015;32(2):309–311. doi:10.1093/bioinformatics/btv557.

Kluyver T, Ragan-Kelley B, Pérez F, Granger BE, Bussonnier M, Frederic J, et al. Jupyter Notebooks - a
publishing format for reproducible computational workflows. In: ELPUB; 2016.

Dogrusoz U, Karacelik A, Safarli I, Balci H, Dervishi L, Siper MC. Efficient methods and readily
customizable libraries for managing complexity of large networks. PLOS ONE. 2018;13(5):1–18.
doi:10.1371/journal.pone.0197238.

Medley JK, Choi K, König M, Smith L, Gu S, Hellerstein J, et al. Tellurium notebooks-An environment for
reproducible dynamical modeling in systems biology. PLOS Computational Biology. 2018;14(6):1–
24.doi:10.1371/journal.pcbi.1006220.

Pino J. LoLab-VU/ParticleSwarmOptimization: simplePSO release 1.0; 2019.Available from:
https://doi.org/10.5281/zenodo.2612913.

Kennedy J, Eberhart R. Particle swarm optimization. Neural Networks, 1995 Proceedings, IEEE
International Conference on. 1995;4:1942–1948 vol.4.doi:10.1109/ICNN.1995.488968.

	ISCI100748_proof_v23i1.pdf
	Interactive Multiresolution Visualization of Cellular Network Processes
	Introduction
	Results
	PyViPR Overview
	Design Choices for PyViPR
	Network Creation from Multiple Model Components
	Dynamic Visualization in PyViPR
	Exploration of a Biological Process with PyViPR: Apoptosis Execution
	Multiresolution Visualization and Exploration of EARM
	Parameter Sets Fit Experimental Data but Yield Different Network Dynamics

	Discussion
	Limitations of the Study

	Methods
	Data and Code Availability
	Supplemental Information
	Acknowledgments
	Author Contributions
	Declaration of Interests
	References

