
MODELS OF GRAPH CLASSES AND APPLICATIONS

By

Zlatko Joveski

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

September 30, 2020

Nashville, Tennessee

Approved:

Jeremy P. Spinrad, Ph.D.

Akos Ledeczi, Ph.D.

Julie L. Johnson, Ph.D.

Mark N. Ellingham, Ph.D.

To Mihaela

ii

TABLE OF CONTENTS

Page

DEDICATION . ii

LIST OF TABLES . v

LIST OF FIGURES . vi

Chapter

I Definitions . 1

II Introduction . 3

III Geometric Intersection Models: Generalizing Interval and Permutation Graphs . 6

3.1 Introduction . 6
3.2 Preliminaries . 7
3.3 IP-SEG model representation . 9
3.4 Chordless cycles in IP-SEG graphs . 12

3.4.1 Interval and permutation arcs . 13
3.4.2 Permutation arcs are always short . 17

3.5 Neighborhood properties and other forbidden induced subgraphs of IP-SEG graphs 19
3.6 Polynomial algorithms for optimization problems when the IP-SEG model is given 26

3.6.1 The CLIQUE problem . 27
3.6.2 The INDEPENDENT SET problem . 28
3.6.3 The LONGEST CHORDLESS CYCLE problem 30

3.7 First steps towards recognition . 32
3.8 Additional geometric intersection models generalizing those of interval and per-

mutation graphs . 37
3.9 Conclusion . 39

IV Vertex Orderings . 41

4.1 Introduction . 41
4.2 Preliminaries . 42
4.3 Vertex ordering types . 43

4.3.1 Elimination orderings . 44
4.3.2 Forbidden ordered subgraphs . 45
4.3.3 Complexity of recognition . 47

4.4 Optimization Problems . 51
4.4.1 Using a VOC of a known graph class . 51
4.4.2 New graph class from a VO with a nice property 57

iii

4.4.3 Using a non-characterizing elimination VO to develop robust algorithms . 59
4.5 Combining Properties . 62

4.5.1 Distance-hereditary and chordal: Proper subclasses of ptolemaic graphs
and the bandwidth problem . 63

4.5.2 TE and co-TE: Two generalizations of permutation graphs 64
4.6 Conclusion . 68

V Decentralized Consensus on Graphs with Different Structural Properties 70

5.1 Introduction . 70
5.2 Effects of communication and strategic tension on decentralized coordination . . . 71

5.2.1 Experimental methodology . 72
5.2.2 Aggregate results: the value of communication and the importance of

graph density . 74
5.2.3 Individual behavior . 76
5.2.4 Summary of findings . 78

5.3 Decentralized coordination in the presence of adversarial and trusted agents . . . 79
5.3.1 Experimental methodology and aggregate results 80
5.3.2 Modeling of individual behavior and agent-based simulations 83
5.3.3 Summary of findings . 89

5.4 Further exploration of the effects of graph structure through simulations 89
5.4.1 Structural properties and extreme graph examples 89
5.4.2 Increasing the value of visible nodes . 91

5.4.2.1 Placement of visible nodes: Connected dominating sets 92
5.4.2.2 Model modifications: Increase trust in visible nodes 93
5.4.2.3 Optimizing visible node placement and modifying agent behav-

ior in the presence of visible nodes 95
5.4.3 Decentralized consensus on graphs with geometric intersection models . . 99

5.5 Conclusion . 102

BIBLIOGRAPHY . 104

iv

LIST OF TABLES

Table Page

4.1 Classes of graphs characterized by sets of forbidden ordered subgraphs 46

5.1 Timing of initial color choice . 85

5.2 Initial color choice . 86

5.3 Timing of color switch . 87

5.4 Consensus rates on trees with different degree distributions 90

5.5 Consensus rates on treatments with 2 and 5 visible nodes, under different visible
node placements . 93

5.6 Consensus rates under different modifications to the color-changing models . . . 94

5.7 Consensus rates across different combinations of visible node placements and
model variations . 96

5.8 Consensus rates across different combinations of visible node placements and
limited model variations . 98

5.9 Consensus rates on dense ER graphs and on graph classes with geometric inter-
section models . 101

v

LIST OF FIGURES

Figure Page

3.1 A graph that is both interval and permutation, together with corresponding geo-
metric intersection models . 8

3.2 Two IP-SEG models of a C5 . 9

3.3 An IP-SEG model of a C4 of permutation segments 13

3.4 Active and inactive interval representations of a P3 14

3.5 Constraints on a simple IP-SEG representation of a chordless cycle 16

3.6 Additional constraints on an IP-SEG representation of a chordless cycle 17

3.7 Possible IP-SEG configurations of Cn . 18

3.8 The graph G7,2 that is IP-SEG, but not simple IP-SEG 19

3.9 The 2-apex wheel graph W5,2 that is not IP-SEG 20

3.10 An IP-SEG representation of the neighborhood of an interval segment not con-
tained by another . 22

3.11 An IP-SEG representation of the neighborhood of a permutation segment 24

3.12 A graph that is not IP-SEG, in which a vertex is adjacent only to the vertices of
an asteroidal triple . 25

3.13 Possible configurations of segments corresponding to three independent vertices 26

3.14 An IP-SEG representation of K5 . 27

3.15 An IP-SEG representation of an independent set with at least two permutation
segments . 29

3.16 An IP-SEG model of a graph that has exponentially many chordless cycles . . . 31

3.17 A 4-segment permutation arc that could be combined with an interval arc to form
a chordless cycle . 31

3.18 A transformation of the model of an IP-SEG tree 36

3.19 The forbidden subtree T2 of caterpillar trees and another tree that is not IP-SEG . 38

vi

4.1 The ordered subgraphs ch and cp . 45

4.2 The two forbidden ordered subgraphs, and the corresponding pattern, character-
izing interval graphs . 47

4.3 The ordered subgraphs b0, b1, b2, and b3 . 49

4.4 The ordered subgraph te . 50

4.5 The forbidden ordered subgraphs ch and cpC 54

4.6 The natural ordering of P4 and the only possible ordering of C3 55

4.7 The forbidden ordered paths on four vertices characterizing perfectly orderable
graphs . 58

4.8 Two Ptolemaic graphs . 63

4.9 The forbidden ordered subgraphs characterizing (co-)comparability and (co-)triangle-
extendible graphs . 64

4.10 A 13-vertex graph that is (te)∩ (teC), but not (te, teC) 66

5.1 Graphical user interface for networked consensus experiments and instances of
underlying networks . 85

5.2 Consensus rates under different treatments in non-adversarial decentralized net-
worked consensus . 86

5.3 Coefficients of a logistic regression model of individual behavior 86

5.4 The 2-wide-path, 2-star, and 2-wide-star on 6 vertices 91

5.5 Effect of degree distribution on consensus rate, across different levels of density 91

vii

CHAPTER I

Definitions

In this chapter, we provide a brief overview of basic concepts and terms used throughout the disser-

tation. Additional standard graph-theoretic notions not included here can be found in many graph

theory and graph algorithms textbooks, including [12, 15, 104].

We primarily deal with finite undirected simple graphs and refer to them simply as graphs.

Given a graph G, we denote its vertices as V (G) and its edges by E(G). We also denote the number

of vertices in G by n(G) and the number of edges by m(G). When G is unambiguous, we denote

the above notions as V , E, n, and m, respectively and we write G = (V,E). We will use uv to denote

an edge between vertices u and v.

The complement G = (V,E) of a graph G = (V,E) is defined by E = {uv | u,v ∈ V,u 6= v, and

uv /∈ E}. In some instances, we will also use the notation GC for the complement of G. We say that

a graph G′ = (V ′,E ′) is an induced subgraph of a graph G = (V,E) if V ′ ⊆V and E ′ = {uv | uv ∈ E

and u,v ∈V ′}. We also say that G′ is induced by V ′ and write G′ = G[V ′] or, if V ′ = {v1,v2, . . . ,vk},

we sometimes write G′ = G[v1,v2, . . . ,vk]. Since we will only be dealing with induced subgraphs in

this paper, we will often omit the word “induced".

We say that V ′ ⊆ V is an independent set in G (or empty subgraph of G) if for all u,v ∈ V ′,

uv /∈ E. We say that V ′ ⊆V is a clique in G (or complete subgraph of G) if for all u,v ∈V ′ such that

u 6= v, uv ∈ E. An independent set (clique) S is maximal if there is no independent set (clique) S′

in G such that S (S′. Further, S is maximum if |S| is the maximum possible size of an independent

set (clique) in G. We will refer to the problem of finding a maximum independent set (clique) as

INDEPENDENT SET (CLIQUE).

Given a vertex v of a graph G, we use N(v) to denote the open neighborhood of v consisting of

vertices adjacent to v in G. We use N[v] = {v}∪N(v) to denote the closed neighborhood of v. We

call v simplicial if its closed neighborhood N[v] induces a clique in G. The degree d(v) of v is the

number of edges in G incident with v. For simple undirected graphs we have d(v) = |N(v)|. We call

vertices of degree 1 pendant.

We call two vertices u,v ∈ V (G) twins if they share all their neighbors, except possibly them-

1

selves, i.e. when N(u)−{v} = N(v)−{u}. Further, we call two twins u and v true when they are

adjacent and false when they are not.

Throughout this dissertation, we will denote by Pk and Ck the chordless path and chordless cycle

on k vertices, respectively. We refer to the problems of finding a maximum Pk and a maximum Ck

as the LONGEST CHORDLESS CYCLE and LONGEST CHORDLESS PATH problems.

We say that a graph G is k-colorable if each vertex in G can be assigned a color in the range

{1,2, . . . ,k} so that no two adjacent vertices are assigned the same color. We use COLORING

to refer to the problem of finding the lowest possible value of k for which an input graph G is

k-colorable.

Given an algorithm A that solves a particular problem, we will say that A is efficient if its running

time is polynomial in the size of the input (e.g. if the running time of A is bounded from above by a

polynomial in n and m, when the input is a graph G).

In this dissertation, we will primarily deal with problems on classes of graphs having a particular

characterization or model. We will distinguish between three different types of graph algorithms on

special classes of graphs: model-based, promise, and robust [95].

Model-based algorithms will require that the input graph is given together with its special model

(not just its adjacency list or adjacency matrix representation). In promise and robust algorithms,

the input graph will be given without an additional model, usually through its adjacency list rep-

resentation. A promise algorithm operates on the basis of a “guarantee" that the input graph is a

member of the restricted class of graphs that the algorithm is designed for. If this guarantee is not

met, the algorithm need not function correctly or even terminate. A robust algorithm A, on the other

hand, is required to produce a “correct" output in polynomial time, for any input. For an input graph

that does come from the restricted class of graphs, A needs to solve the original problem in polyno-

mial time. For an input graph G not from the class, A needs to either solve the original problem in

polynomial time, or produce, in polynomial time, a certificate that G is not a member of the special

class of graphs.

2

CHAPTER II

Introduction

Graphs, as a tool for modeling entities and relationships between them, are ubiquitous. For example,

graphs are used to represent and study communication and interaction in offline and online social

networks of individuals [78, 80, 90]. Further, Bayesian networks – which are modeled as directed

acyclic graphs – are a fundamental tool in the theory of causal inference [31, 93, 110]. Many

biological systems can be represented as graphs, including metabolic pathways, protein-protein

interaction networks, and food webs [90, 106]. Graphs also play a very important role in large-scale

information processing systems where structured and unstructured data is integrated into knowledge

graphs on which further reasoning and inference is performed [94, 99].

In many application domains, the corresponding graphs satisfy special properties such as pa-

rameter (in)equalities, absence of certain forbidden subgraphs, having geometric intersection or

containment models, or having certain types of vertex or edge orderings [15]. This can lead to

restricted graph classes on which important optimization problems such as CLIQUE and INDE-

PENDENT set, that are NP-hard on general graphs, become tractable. In such situations, the design

of efficient algorithms can take one of several forms. In some instances, we may be given a special

model of the input graph, in addition to the the usual adjacency matrix or list representation, which

facilitates the design of a model-based polynomial algorithm. It may also be possible to recognize

that a graph belongs in the restricted class and reconstruct its special model in polynomial time. In

other cases, the special property that graphs in the restricted class satisfy may be such that a robust

polynomial algorithm is possible, without needing to be given, or to reconstruct, a model.

When solving optimization problems on graphs such as CLIQUE and INDEPENDENT SET,

we are interested in finding graph substructures of a certain kind. However, identifying special

substructures of graphs is not always of primary interest. Another important line of research is the

study of how different processes evolve or spread over a graph as time passes, including informa-

tion diffusion [75] and disease spread in social networks [89]. Decentralized coordination between

entities positioned as nodes on a network can also be seen as a process over a graph. Different

forms of decentralized coordination have been studied, including consensus [69, 73, 74], coloring

3

[69, 85], and bargaining [18]. An important question in these settings is to what extent properties of

the underlying graphs, which may be coming from different restricted classes, affect the dynamics

of a process [11, 90].

This dissertation is centered around models of graph classes. We explore how models can be

used to define new graph classes that either generalize or combine multiple properties. Further, we

study when and how such properties can help us design efficient algorithms for recognition and

optimization problems on the class. We also consider how properties of graph class models can

affect the dynamics of processes taking place over a graph. Our work consists of three main parts.

In Chapter III, we consider graph classes characterized by geometric intersection models. In

particular, we introduce a novel model that generalizes the geometric intersection models of inter-

val and permutation graphs. As a result, we obtain two new classes of graphs – simple IP-SEG and

IP-SEG – that generalize interval and permutation graphs, but are not contained within the class of

perfect graphs. We show that even though simple IP-SEG and IP-SEG graphs may contain large

chordless cycles, there are limitations in how such cycles may be represented in the corresponding

models. This allows us to identify several families of forbidden subgraphs for the classes. Leverag-

ing properties of the geometric intersection model, we design polynomial model-based algorithms

for the CLIQUE, INDEPENDENT SET, and LONGEST CHORDLESS CYCLE problems on IP-

SEG graphs. We make initial progress on the recognition problem by presenting a polynomial

recognition algorithm for the subclass of IP-SEG trees. We also discuss possible generalizations

of the geometric intersection model of IP-SEG graphs that may preserve properties that allow the

design of polynomial model-based algorithms for the above optimization problems.

In Chapter IV, we consider a different model used for characterizing or representing special

classes of graphs – vertex orderings. We explore how properties defining a vertex ordering can

affect the complexity of recognizing graphs in the class and we look at situations in which vertex

orderings can help us in designing efficient algorithms for optimization problems. We give the first

robust polynomial algorithm for the CLIQUE problem on IP-SEG graphs that is based on a vertex

elimination ordering. We discuss a generalization of the approach to vertex and edge elimination

orderings where induced neighborhoods belong to classes of graphs on which the CLIQUE problem

is tractable. Further, we consider two different methods of combining vertex ordering properties and

present examples of pairs of properties for which one of the methods leads to a more restricted class

4

of graphs. We show that there are cases where this leads to a class of graphs on which a generally

hard optimization problem becomes tractable.

In Chapter V, we consider multiple graph classes and associated random generating models and

we study how structural properties of the underlying graph can impact the effectiveness of mecha-

nisms for facilitating or preventing decentralized consensus between agents positioned as vertices

of a graph. The mechanisms being considered include communication, as well as introduction and

varied placement of adversarial and trusted agents. We build on the work done in [56], where

models of individual behavior were trained based on data from experiments with human subjects,

by performing agent-based simulations over a wider range of graph-generating models, including

geometric-based models of special graph classes like IP-SEG graphs. We consider varying levels

of modifications to models of individual behavior and show that agents could be more successful

in reaching decentralized consensus if they were to more closely follow the lead of neighbors who

are known to be non-adversarial agents. In addition, we demonstrate that consensus rates can be

increased, over all considered graph classes and random generating models, by ensuring that ver-

tices of trusted agents induce a connected subgraph. When model modifications are combined with

optimized placement of trusted agents, we observe compounded gains in consensus rates. Finally,

we find that reaching decentralized consensus on classes like unit-disk and interval graphs, that

are more likely to exhibit a community structure, is particularly challenging and we may need to

consider alternative placements of trusted agents that prioritize coverage of inter-community edges.

5

CHAPTER III

Geometric Intersection Models: Generalizing Interval and Permutation Graphs

3.1 Introduction

A large number of important graph classes are defined or can be characterized by a geometric in-

tersection model. These characterizations can arise from different geometric objects that are being

intersected. Boxicity graphs (intersection graphs of d-dimensional rectangles), circular-arc graphs

(intersection graphs of arcs along a circle), and string graphs (intersection graphs of curves in the

plane) [50, 104] are just a few of many such examples. Two particularly well-studied examples are

the classes of interval and permutation graphs [41]. In both of their respective models, the inter-

secting objects are line segments in the plane, with different restrictions imposed on their positions.

In interval graphs, the line segments must lie on a single line, while in permutation graphs, their

endpoints must lie on two separate parallel lines. Because of the similarity, it is natural to look

for geometric intersection models that would generalize those of interval and permutation graphs.

One approach is to have geometric objects that generalize line segments. In the model of simple

triangle graphs (also known in the literature as point-interval) [23, 107], the intersecting objects are

triangles, while in the model of trapezoid graphs (also referred to as interval-interval) [23, 26], the

intersecting objects are trapezoids.

Another way of generalizing the models of interval and permutation graphs is to use the same

kind of intersecting geometric objects - straight line segments - but reduce the restrictions on their

possible positions. If we drop all restrictions, then we obtain the large class of SEG graphs - the

intersection graphs of straight line segments in the plane [15]. However, many of the standard

optimization problems, including COLORING [37], INDEPENDENT SET [76], and CLIQUE [17],

remain NP-hard on SEG graphs, even if the representation as a set of segments is given as part of the

input. Sub-classes of SEG graphs, with restrictions on the number of directions that line segments

could have, have been studied, including grid intersection (or 2-DIR) and k−DIR graphs [59, 76].

Such models, however, do not generalize the model of permutation graphs, where segments can

have any direction in the plane, except being parallel with the two lines.

We introduce a new model in which the intersecting objects remain straight line segments, but

6

they can either lie along one of two horizontal lines or go from one horizontal line to the other. This

leads to two natural generalizations of both interval and permutation graphs, based on whether all

horizontal segments lie on the same line [67, 68]. We formally define the models and graph classes

in Section 3.2. In Section 3.3, we show that these classes have implicit representations. Unlike

simple triangle and trapezoid graphs, the two new classes are not contained in the class of perfect

graphs. However, in Section 3.4, we show that we are somewhat limited in how we can represent

chordless cycles using the new model, which helps us identify some forbidden subgraphs for the

graph classes. In Section 3.5 we demonstrate several neighborhood-related properties satisfied by

some vertices of the new classes and identify additional forbidden subgraphs. In Section 3.6, we

present polynomial algorithms for the CLIQUE, INDEPENDENT SET, and LONGEST CHORD-

LESS CYCLE problems, when the model is given as part of the input. We offer partial results with

respect to the recognition problem in Section 3.7. In Section 3.8, we briefly discuss possible further

generalizations of the new classes of graphs. Finally, in Section 3.9, we discuss some of the open

questions on the new graph classes.

3.2 Preliminaries

Let G = (V,E) be a graph with a vertex set V = {v1,v2, . . . ,vn}. An intersection model of G is a

family of sets Si, i = 1,2, . . . ,n, such that (vi,v j) ∈ E if and only if Si∩S j 6= /0. We say that G is an

intersection graph of the family of sets Si.

Many classes of graphs can be defined or characterized as the intersection graphs of different

kinds of families of sets. For example, the line graph L(G) of a graph G is the intersection graph of

edges of G (seen as two-element sets of edge endpoints), EPT graphs are defined as the intersection

graphs of nontrivial simple paths (seen as sets of edges) in trees [51], and chordal graphs can be

characterized as the intersection graphs of subtrees of trees [15]. More often, the intersecting sets

correspond to geometric objects in a Euclidean space, including circular arcs, disks, triangles, d-

dimensional rectangles and d-dimensional spheres. We refer to intersection models of this kind as

geometric intersection models. In this chapter, we are primarily interested in geometric intersection

models of straight line segments in the Euclidean plane. The two most prominent and extensively

studied graph classes with such a model are interval and permutation graphs.

Definition 3.2.1. Interval graphs are the intersection graphs of intervals on the real line.

7

Definition 3.2.2. Permutation graphs are the intersection graphs of straight line segments having an

endpoint on each of two parallel lines.

An example of a graph that is both interval and permutation, together with the respective geo-

metric intersection models, is given in Figure 3.1. Note that we can obtain an equivalent definition

of interval graphs by dropping the requirement that the line in question is real and by substitut-

ing intervals with straight line segments. This allows for multiple natural ways of simultaneously

generalizing the geometric intersection models of interval and permutation graphs. These include

point-interval (or simple triangle) and interval-interval (or trapezoid) graphs introduced by Corneil

and Kamula [23], in which the geometric objects (or sets) corresponding to vertices are formed by

combining multiple line segments.

1 2 3 4 5

2 34 5 1

1

2 3
4 5

2

1

3 5

4

Figure 3.1: A graph that is both interval and permutation, together with a corresponding interval
(top right) and permutation (bottom right) geometric intersection models.

In this work, we study generalization of the models of permutation and interval graphs in which

the geometric objects corresponding to vertices remain individual line segments. We borrow the

following piece of notation from [86]: for a given line segment s in the plane, by t(s), b(s), l(s),

and r(s), we denote a top-, bottom-, left-, and rightmost point of s. We will reserve the use of this

notation for situations where the extreme point of the segment is uniquely defined (as one of the

segment’s endpoints). We will also use the same notation when s represents a set of line segments.

Definition 3.2.3. Let L1 and L2 be two horizontal lines in the plane, with L1 lying above L2. We

say that a straight line segment s is an interval segment if both its endpoints l(s) and r(s) lie on the

same horizontal line Li. We say that s is a permutation segment if t(s) lies on L1 and b(s) lies on

L2. Let I be a set of interval segments, P a set of permutation segments, and G the intersection

8

graph of the set of segments I ∪P . We call MG = I ∪P an interval-permutation-segment (IP-

SEG) model of G. If all interval segments in I lie on the line L1, we call MG = I ∪P a simple

IP-SEG model of G.

Definition 3.2.4. A graph G is an IP-SEG graph if it has an IP-SEG model. G is a simple IP-SEG

graph if it has a simple IP-SEG model.

Note that under the above definitions, a simple IP-SEG model is also an IP-SEG model, which

indicates that simple IP-SEG graphs are contained in IP-SEG graphs. We will later show that this

containment is proper.

We know that other generalizations of permutation and interval graphs like simple triangle or

trapezoid graphs remain perfect. One important characteristic that distinguishes IP-SEG and simple

IP-SEG graphs is that they may contain odd holes, meaning they are not contained in the class of

perfect graphs. Simple IP-SEG and IP-SEG models of a chordless cycle on five vertices are shown

in Figure 3.2. It is easy to see how these models can be extended to models of larger chordless

cycles.

1

2

3 4

5

1

2

3
4

5

Figure 3.2: A simple IP-SEG model of a C5 is shown on the left. An alternative IP-SEG model is
given on the right. Note that the numbers shown next to line segments indicate the corresponding
vertex labels from a natural labelling of C5.

3.3 IP-SEG model representation

Each line segment s in the plane is uniquely determined by its two endpoints, each of which can

be specified by their x and y coordinates. We will use the notation s = (x1(s),y1(s),x2(s),y2(s)).

Thus, when we say we are given the model or representation of an IP-SEG graph G, we mean that

for each vertex v of G we are given a four-tuple of numbers specifying the segment corresponding

to v. When xi(s),yi(s) ∈ R, the above is not a representation that characterizes IP-SEG graphs. In

fact, it is a characterizing representation of the class of SEG graphs. However, we know that for

IP-SEG graphs, the yi(s) coordinates identify the horizontal lines that the endpoints of a segment s

9

belong to, and without loss of generality, we may assume that y1(s),y2(s) ∈ {1,2}. Having y1(s) =

y2(s) = y(s) indicates that we are dealing with an interval segment and y1(s) 6= y2(s) means we have

a permutation segment. In addition, we may assume that for each permutation segment p the first

endpoint is always positioned on L∞ i.e. y1(p) = 1 and y2(p) = 2. Further, we may assume that

for each interval segment, its left endpoint comes first, i.e. for i = (x1(i),y(i),x2(i),y(i)), we have

x1(i)≤ x2(i). We can also show that the range of values that x1(i) and x2(i) can take, can be limited

to a finite set of integers.

Recall that in the model of interval graphs, whether two intervals share a non-empty intersection

depends entirely on the relative ordering of their endpoints along the horizontal line. Similarly,

whether two permutation segments of a permutation graph representation intersect depends entirely

on the relative orderings of their endpoints along L1 and L2. A similar observation can be made

for IP-SEG graphs. In particular, for two segments s and q, the following holds:

i) If s and q are two interval segments, they intersect if and only if

• y(s) = y(q) (s and q lie on the same horizontal line), and

• x1(q)≤ x1(s)≤ x2(q) or x1(s)≤ x1(q)≤ x2(s) (s and q overlap).

ii) If s and q are two permutation segments, they intersect if and only if

• x1(s)≤ x1(q) and x2(q)≤ x2(s), or

• x1(q)≤ x1(s) and x2(s)≤ x2(q).

iii) If s is an interval segment and q is a permutation segment, they intersect if and only if s contains

one of the endpoints of q, that is

• y(s) = 1 and x1(s)≤ x1(q)≤ x2(s), or

• y(s) = 2 and x1(s)≤ x2(q)≤ x2(s).

Thus, all we need to know to determine adjacency between two segments s and q from an IP-

SEG model is to know what types of segments s and q are, on which line Li each of their endpoints

is located on, and what are the relative orderings of their endpoints on L1 and/or L2. The last part

implies that the number of different values the xi endpoint coordinates could take is bounded by the

10

maximum number of endpoints positioned on a single line and, by extension, the total number of

endpoints. In other words, we may assume that in an IP-SEG model of a graph G on n vertices, for

any line segment s in the model we have x1(s),x2(s) ∈ {1,2, . . . ,2n}.

With the above limitations on the range of xi and yi values, it follows that we need only O(logn)

bits of information (the four-tuple specifying the corresponding segment) per vertex to properly

represent any IP-SEG graph G, meaning that the number of IP-SEG graphs on n vertices is bounded

by 2O(nlogn). Furthermore, the O(logn) bits of information associated with vertices u and v are

sufficient to test for adjacency between u and v in constant time. Therefore, similar to interval and

permutation graphs, simple IP-SEG and IP-SEG graphs have an implicit representation [71, 104].

Like all classes with geometric intersection models, simple IP-SEG and IP-SEG are hereditary

graph classes. Thus, they represent additional examples that conform with the implicit graph con-

jecture made by Kannan, Naor and Rudich in [71], which states that every hereditary class of graphs

with 2O(nlogn) graphs on n vertices has an implicit representation. On the other hand, the more gen-

eral class of SEG graphs also satisfies the conditions of the conjecture, but has no known implicit

representation [19]. The analogous representation using four-tuples does not work for SEG graphs,

because real-valued coordinates can require an exponential number of bits.

Note that in the above discussion we have allowed for the possibility of segments sharing one

or both endpoints. We know that permutation graphs are usually defined so that no two permutation

segments share an endpoint. While this is not imposed as a requirement in the definition of interval

graphs, the consecutive cliques arrangement [13] of an interval graph implies that every interval

graph has a representation in which no two intervals share an endpoint. This is also the case for

IP-SEG graphs.

Indeed, suppose that we have an IP-SEG model of a graph G in which line segments share

endpoints and let e be one of those endpoints. Without loss of generality, we may assume e lies on

L1. Let P be the set of permutation segments having e as an endpoint. Similarly, let IL and IR be

the sets of interval segments having e as a left and right endpoint, respectively. We can modify the

IP-SEG model of G so that e is no longer a shared endpoint, in the following way. Use the open

interval ie around e that does not contain any other endpoints. In it, arrange the L1 endpoints of

permutation segments in P in a reverse order from the one their corresponding L2 endpoints have.

In case some of the permutation segments also share an endpoint on L2, resolve the tie arbitrarily.

11

Then, we can extend the interval segments in IL to the left, so that they all include the new endpoints

of permutation segments in P, end at different endpoints, but their endpoints still remain within

ie. We can achieve the same thing with interval segments in IR by extending them to the right.

With this transformation, we ensure that permutation segments that shared e as an endpoint now

either intersect between L1 and L2, or still have a shared endpoint on L2. In addition, all interval

segments in IL and IR do contain the new endpoints of permutation segments P and all interval

segments in IL and IR still contain the point e, meaning they have non-empty pairwise intersections.

Finally, no new pairwise intersections are created as segments in P∪ IL ∪ IR are the only ones that

have an endpoint in the open interval ie.

Thus, the above transformation leads to a new IP-SEG model of G that has one fewer shared

endpoint. By doing this repeatedly, we can obtain an IP-SEG model in which no two segments share

an endpoint. The following lemma summarizes the results in this section.

Lemma 3.3.1. Every IP-SEG graph has an IP-SEG model MG such that:

i) for every line segment s ∈MG, x1(s),x2(s) ∈ {1,2, . . . ,2n} and y1(s),y2(s) ∈ {1,2}, and

ii) no two segments in MG share an endpoint.

From our discussion so far, it is clear that an IP-SEG graph may have more than one IP-SEG

model. Nevertheless, when we deal with an IP-SEG graph G paired with a particular IP-SEG model

MG, there is a clear one-to-one correspondence between vertices in G and line segments in MG.

In such situations, for convenience, we will interchangeably use the notions of vertices and line

segments, as well as the notions of induced subgraphs and sets of line segments.

3.4 Chordless cycles in IP-SEG graphs

In an IP-SEG model, two interval segments that do not lie on the same parallel line cannot intersect.

Let G be a graph with an IP-SEG model consisting of interval segments only. If G is connected,

then all of the interval segments in its IP-SEG model must lie on the same line. By extension, if

G has more than one connected component, the interval segments of a single component C must

lie on the same line. It is easy to see that the interval segments of a component C on L2 can be

translated to L1, while ensuring that they do not intersect with other interval segments already on

L1. This means that a graph G has an IP-SEG model consisting only of interval segments, if and

12

only if it has a simple IP-SEG model of only interval segments. In other words, G has an IP-SEG

model consisting of only interval segments if and only if G is an interval graph. We can also make

the analogous observation for permutation segments: a graph G has an IP-SEG model consisting of

only permutation segments if and only if G is a permutation graph.

Interval graphs are chordal and therefore an IP-SEG model of a chordless cycle of length greater

than three cannot consist exclusively of interval segments. Similarly, permutation graphs cannot

contain an induced cycle on more than four vertices. Therefore, an IP-SEG model of a chordless

cycle of length greater than four cannot consist exclusively of permutation segments. Figure 3.3

shows how a chordless cycle on four vertices may be represented using only permutation segments.

2

1 4

3

Figure 3.3: An IP-SEG model of a C4 consisting of permutation segments only.

3.4.1 Interval and permutation arcs

We have already seen that a C5 is a (simple) IP-SEG graph. It is easy to see how the models of

C5 in Figure 3.2 can be extended by adding more interval segments to represent larger chordless

cycles. Our goal is to show that the ways in which such a cycle can be represented is, in a certain

sense, limited and we will use that to identify examples of graphs that do not belong to the classes

of simple IP-SEG and IP-SEG graphs.

Let u and v be vertices of an IP-SEG graph G corresponding to interval segments iu and iv,

respectively, in a given IP-SEG representation of G. Further, suppose that iv is fully contained in iu.

Then, u and v are adjacent and all neighbors of v must also be neighbors of u in G. In other words,

N[v]⊆ N[u] must hold for the closed neighborhoods of v and u.

Consider a path Pn = (v1,v2, . . . ,vn). Clearly, N[v1]⊆ N[v2], N[vn]⊆ N[vn−1], and v1 and vn are

the only vertices in Pn with the property of having a closed neighborhood that is contained within

a closed neighborhood of another vertex. Now consider an IP-SEG representation of Pn using only

interval segments. From the above discussion, it follows that an interval segment could be contained

within another only if it corresponds to v1 or vn. We say that an IP-SEG representation of Pn using

13

only interval segments is an active interval representation if no interval segment is contained within

another. Assuming that the interval segment corresponding to v1 is the one with the leftmost left

endpoint, it is easy to see that in an active interval representation of Pn, the left-to-right ordering of

all left endpoints would coincide with the ordering of the vertices in Pn. The same is true for the

left-to-right ordering of all right endpoints of interval segments. An example is shown in Figure 3.4.

1 1

2
3 3

2

Figure 3.4: An active (left) and an inactive (right) interval representation of a P3.

Suppose we are given an IP-SEG representation MCn of a chordless cycle Cn = (v1,v2, . . . ,vn),

with n ≥ 4. Let s(vi) denote the line segment in MCn corresponding to vertex vi. Further, suppose

that not all s(vi)’s are permutation segments, i.e. that MCn consists of both interval and permutation

segments. Let Si, j = (s(vi),s(vi+1), . . . ,s(v j)) be a maximal nonempty sequence of consecutive

interval segments in IP(Cn), i.e. a sequence such that s(vi−1) and s(v j+1) are permutation segments

and for each k ∈ {i, i+1, . . . , j}, s(vk) is an interval segment (indices are modulo n). We call Si, j an

interval arc of length j− i+1. We can define the notion of a permutation arc of MCn , analogously.

Using the above notation, any IP-SEG representation of a chordless cycle Cn, for n ≥ 5, can be

described as consisting of interval and permutation arcs. Note that because we define interval and

permutation arcs as nonempty sequences of segments, the IP-SEG model of a C4 shown in Figure 3.3

has 0 interval arcs and 0 permutation arcs. Clearly, all other IP-SEG models of chordless cycles

which have segments of both types, must contain arcs of both types, and the number of interval arcs

must equal that of permutation arcs. We also have the following result.

Lemma 3.4.1. Let Cn be a chordless cycle, with n ≥ 4. Cn has an IP-SEG representation with t

interval arcs of lengths {l1, l2, . . . , lt} if and only if Cn−n′ , where n′ = ∑
t
i=1(li− 1), has an IP-SEG

representation with t interval arcs, each of length 1.

Proof. Let Si,i+k be an interval arc of a given IP-SEG representation of a chordless cycle Cn. Note

that Si,i+k, being formed by k+ 1 segments, must be an active interval representation of the path

Pk+1. Suppose we take one interval segment s j in Si,i+k and replace it with two partially overlapping

14

interval segments s j′ and s j′′ such that s j = s j′ ∪ s j′′ and s j′ ∩ s j′′ does not overlap any of the other

segments in Si,i+k. With this we are transforming an IP-SEG representation of Cn into an IP-SEG

representation of Cn+1. Similarly, assuming k≥ 1, we can take two consecutive interval segments s j

and s j+1 in Si,i+k and replace them with one new segment s j∗ such that s j∗ = s j ∪ s j+1. This allows

us to transform an IP-SEG representation of Cn with an interval arc of length k+1 into an IP-SEG

representation of Cn−1 with an interval arc of length k. The more general result stated in the lemma

follows from a repeated application of the above transformation.

A natural question to ask is how many interval arcs an IP-SEG representation of a chordless cy-

cle can have. Recall that in Figure 3.2 we saw one (simple) IP-SEG representation of a C5 consisting

of one interval arc and one permutation arc, as well as another IP-SEG representation consisting of

two interval arcs and two permutation arcs. We also noted that a C4 is the only example of a chord-

less cycle that can have no arcs. We will show that these are in fact the only three possibilities.

Lemma 3.4.2. Let MCn be a simple IP-SEG model of a chordless cycle Cn, containing both interval

and permutation segments. Then MCn must have exactly one interval arc.

Proof. Suppose there exists a chordless cycle Cn with a simple IP-SEG model that has two interval

arcs. Then, by Lemma 3.4.1, there exists a chordless cycle Cm, m ≤ n, with a simple IP-SEG

model that has two one-segment interval arcs I1 and I2. Without loss of generality, we may assume

that I1 lies to the left of I2 on L1. Let P1 = (p1,1, p1,2, . . . , p1,q) and P2 = (p2,1, p2,2, . . . , p2,r) be

the two permutation arcs so that p1,1 and p2,1 are the permutation segments that intersect I1 and the

intersection point p2,1∩ I1 is to the right of p1,1∩ I1. Consider the points z0 = p1,1∩ I1, zq = p1,q∩ I2,

and zk = p1,k∩ p1,k+1, 1≤ k < q. The straight-line segments connecting zi with zi+1, 0≤ i≤ q, form

a broken line B(P1) connecting z0 with zq. Note that B(P1) is a continuous curve connecting z0

and zq that is bounded between L1 and L2. As such, one of its constituting straight-line segments

must intersect p2,1 (see Figure 3.5). Since each of these line segments must be contained within

some permutation segment of P1, there must be a permutation segment p1,x that intersects p2,1.

However, p1,x and p2,1 correspond to two non-consecutive vertices of a chordless cycle that cannot

be adjacent, which is a contradiction. Therefore, a Cn cannot have a simple IP-SEG model with

two interval arcs. Furthermore, if a Cn could have a simple IP-SEG model with k ≥ 3 interval arcs,

we could turn this into a simple IP-SEG model with k− 1 interval arcs by collapsing one of the

15

interval arcs into a single point and effectively merging two permutation arcs into one. Therefore, a

Cn cannot have a simple IP-SEG model with more than one interval arc.

I1 I2

B(P1)

p2,1

Figure 3.5: A simple IP-SEG representation of a chordless cycle cannot consist of two interval
arcs because the broken line B(P1) induced by the first permutation arc P1 will have to intersect a
segment of the other permutation arc P2.

Lemma 3.4.3. Let MCn be an IP-SEG model of a chordless cycle Cn, containing both interval and

permutation segments. Then MCn must have either exactly one interval arc, or exactly two interval

arcs positioned on separate horizontal lines.

Proof. Given Lemma 3.4.2, we only need to consider "proper" IP-SEG models having at least

one interval arc on each horizontal line. Suppose there exists a chordless cycle Cn with an IP-

SEG model that has two interval arcs I1 and I2 on L1 and one interval arc I3 on L2. As in the

proof of Lemma 3.4.2, we may assume that each of these are one-segment interval arcs. Let

P1 = (p1,1, p1,2, . . . , p1,q) be the permutation arc between I1 and I2, P2 = (p2,1, p2,2, . . . , p2,r) the

permutation arc between I2 and I3 and P3 = (p3,1, p3,2, . . . , p3,s) the permutation arc between I1

and I3. Further, assume that p1,1 and p3,1 are the permutation segments of P1 and P3, respectively,

intersecting with I1.

If the intersection point p1,1∩ I1 is to the left of p3,1∩ I1 (left half of Figure 3.6), then the broken

line B(P1) induced by the intersection points of permutation segments of P1 (see proof of Lemma

3.4.2) must intersect p3,1. This would imply an intersection between two permutation segments that

correspond to non-consecutive vertices in Cn, a contradiction.

Suppose the intersection point p3,1 ∩ I1 is to the left of p1,1 ∩ I1 (right half of Figure 3.6) and

consider the endpoint of p1,1 that lies on L2. It cannot lie within I3 as p1,1 and I3 do not correspond

to consecutive vertices in the chordless cycle. However, if it were to lie to the left or right of I3, then

B(P3) or B(P2) would need to intersect with p1,1, both of which lead to a contradiction. Therefore,

a Cn cannot have an IP-SEG model with two interval arcs on one horizontal line and one interval

16

arc on the other. Recalling the observation about collapsing interval arcs on the same line, this also

implies that an IP-SEG model of a chordless cycle Cn cannot have more than one interval arc per

horizontal line.

I1 I2

I3

p3,1B(P1)

I1 I2

I3

B(P3)
B(P2)

Figure 3.6: An IP-SEG representation of a chordless cycle cannot consist of two interval arcs on L1
and one on L2 because: (1) the broken line B(P1) induced by the permutation arc P1 will have to
intersect a segment of the permutation arc P3 (model on the left) or (2) a segment of the permutation
arc P1 would have to intersect either B(P2), B(P3), or I3 (model on the right).

3.4.2 Permutation arcs are always short

From our discussion of the IP-SEG models of C5 shown in Figure 3.2 and from the proof of

Lemma 3.4.1, we know that interval arcs can have arbitrarily large lengths, assuming the corre-

sponding chordless cycle is large enough. This, however, is not the case for permutation arcs. First,

consider a simple IP-SEG model of a chordless cycle Cn with an interval arc I and a permutation

arc P = (p1, . . . , pk), such that p1 intersects I to the left of pk. It is easy to see that k ≥ 2 is a tight

lower bound. Suppose k ≥ 5 and let O1 and O2 be the two permutations of (1, . . . ,k) that define the

relative ordering of endpoints of permutation segments in P along the horizontal lines L1 and L1,

respectively. Then p1 and pk will correspond to nonconsecutive vertices of Cn and 1 will have to

appear before k in both O1 and O2. Since p1 and pk are the only permutation segments intersecting

I, 1 and k must appear consecutively in O1. Further, p3 cannot intersect neither p1 nor pk. Also,

p3 cannot have both of its endpoints to the left of p1 because one of the segments p4, p5, . . . , pk−1

(and the broken line they form) would have to cross p1. Similarly, p3 cannot be be entirely to the

right of pk. The only other potential option is to place p3 between p1 and pk, but to achieve this we

would need for both O1 and O2 to contain the sub-ordering (1,3,k), which contradicts 1 and k being

consecutive in O1. Therefore, the length k of a permutation arc in a simple IP-SEG model of Cn is

bounded by 2≤ k ≤ 4.

Now, consider an IP-SEG model of Cn having two interval arcs I1 and I2, with I1 being the one

along L1. Let the two permutation arcs be P = (p1, . . . , pk) and Q = (q1, . . . ,ql), with t(p1), t(q1) ∈

17

I1, b(pk),b(ql) ∈ I2, and t(p1) being to the left of t(q1). Since segments of P cannot intersect with

segments of Q, b(p1) cannot be to the right of b(ql). If b(p1) lies on I2 then we must have k = 1.

Suppose that k ≥ 2. Then b(p1) < l(I2) < b(pk) and, by symmetry, t(pk) < l(I1) < t(p1). This

implies that p1 intersects pk, which is only possible if they correspond to consecutive vertices in

Cn, i.e. if k = 2. Therefore, in an IP-SEG model of Cn that has two arcs of each kind, a single

permutation arc can consist of either one or two segments. Figure 3.7 summarizes all possible

configurations of chordless cycles that contain both interval and permutation segments.

Figure 3.7: The possible IP-SEG configurations of Cn with one arc of each kind (top) and with two
arcs of each kind (bottom). Dashed lines indicate that interval arcs can have arbitrary length. Note
that the left-to-right symmetric equivalents of the top middle and bottom middle configurations are
also possible.

Knowing the limited ways in which we can represent a chordless cycle in an IP-SEG model,

we can describe the first family of forbidden induced subgraphs for the classes of simple IP-SEG

and IP-SEG graphs. Consider the graph G7,2 on 21 vertices formed by a cycle C7 = (v1,v2, . . . ,v7)

and vertices wi and zi, 1 ≤ i ≤ 7, such that wi is pendant to vi and zi is pendant to wi. A simple

IP-SEG model MC7 of the C7 in G7,2 must consist of one interval arc I and one permutation arc

P. As P cannot have length greater than 4, I must be composed of at least three segments. Then

there exists a vertex vt corresponding to an interior interval segment st of I, i.e. a segment such

that l(I) < l(st) and r(st) < r(I). Moreover, st must fully lie between the endpoints of the broken

line B(P) induced by the permutation arc. Consequently, the segment corresponding to vt’s pendant

neighbor wt cannot be a permutation segment as it would intersect with at least one segment in P.

This, combined with the fact that st’s ends are overlapped by the two neighboring interval segments,

18

implies that wt must correspond to an interval segment that is fully contained in st . However, wt

has a neighbor zt that it does not share with vt , a contradiction. Therefore, G7,2 is not a simple

IP-SEG graph. Note that this would be true for any graph Gn,2 constructed in an analogous way

from a cycle Cn with n≥ 7. One can easily verify that G7,2 is also a minimal non-member of simple

IP-SEG graphs, under vertex removal. Note that the above argument showing that G7,2 is not a

simple IP-SEG graph does not require the vertices zi to be pairwise nonadjacent, meaning that any

combination of edges (zi,z j) leads to other examples of graphs that are not simple IP-SEG.

Figure 3.8: The graph G7,2 (left) is not a simple IP-SEG graph, but is an IP-SEG graph. One possible
IP-SEG model of G7,2 is shown on the right.

On the other hand, G7,2 and G8,2, can be represented using an IP-SEG model (for G7,2 see

Figure 3.8), which demonstrates that the class of simple IP-SEG graphs is properly contained in

IP-SEG. However, this is not true for graphs Gn,2 with n ≥ 9. We know that in an IP-SEG model

MCn of Cn which has two interval and two permutation arcs, the permutation arcs cannot consist

of more than two segments. Thus, when n ≥ 9, at least one interval arc of MCn would need to be

of length at least three and at least one vertex vt would have to correspond to an interior interval

segment. This would again lead to a contradiction when trying to assign segments to wt and zt .

3.5 Neighborhood properties and other forbidden induced subgraphs of IP-SEG graphs

The observed limitations on IP-SEG models of chordless cycles that use segments of both types

allow us to make some inferences on the kinds of neighborhoods a vertex of an IP-SEG graph

may have. Let G be an IP-SEG graph and MG be one of its IP-SEG models. Suppose v is a

vertex of G such that N(v) contains a Cn = {c1,c2, . . . ,cn} as an induced subgraph, with n ≥ 5. A

short inspection of the possible Cn configurations shown in Figure 3.7 suffices to see that v cannot

correspond to a permutation segment in MG. Without loss of generality, we may assume that the

19

interval segment i(v) that v corresponds to lies on L1. Since n≥ 5, we know that there has to be at

least one vertex ck that corresponds to an interval segment i(ck). Because an interval segment cannot

intersect interval segments lying on a different horizontal line, i(ck), as well as any other interval

segments corresponding to vertices of Cn in MG, must lie on L1. If u is a vertex different from v,

such that N(u) contains the same Cn = {c1,c2, . . . ,cn}, then u must also correspond to an interval

segment i(u) lying on L1 in MG. Because Cn must contain at least one vertex cl corresponding to

a permutation segment in MG, i(v) and i(u) must have a non-empty intersection (at the very least,

containing the top endpoint of cl’s permutation segment). Let Wn,2 be the graph formed by adding

a single vertex v to a wheel graph Wn and making v a false twin of the apex of Wn. We call Wn,2 a

2-apex wheel graph. The above discussion implies that 2-apex wheel graphs Wn,2, with n ≥ 5, are

another set of graphs that do not belong to the class of IP-SEG graphs. The 2-apex wheel graph W5,2

shown in Figure 3.9) is a minimal non-member of IP-SEG graphs.

Figure 3.9: The 2-apex wheel graph W5,2 formed by taking the wheel graph on six vertices W5 and
adding to it a false twin v of the wheel apex u.

We can say something even stronger about the interval segment i(v) in the above discussion. If

Cn, in MG, is represented using the first configuration (see Figure 3.7), its interval arc I will need

to be of length at least 3 and contain at least one interior interval segment, which i(v) will need to

fully contain. Similarly, if we are dealing with the second configuration, the length of the interval

arc I will need to be at least two and, to ensure that i(v) intersects all of the permutation segments,

i(v) will have to fully contain the leftmost interval segment of I. Finally, in the third configuration,

which will have a nonempty interval arc I, in order to intersect all permutation segments, i(v) will

need to fully contain all the segments of I. In short, if a vertex v of an IP-SEG graph G contains

a chordless cycle in its neighborhood, then in any IP-SEG model of G, v necessarily corresponds

20

to an interval segment i(v) that contains at least one other interval segment. Having in mind that

Cn, for n ≥ 5, is not a permutation graph, we have the following, significantly more general, result

regarding the neighborhoods of vertices of IP-SEG graphs.

Lemma 3.5.1. Let G be an IP-SEG graph and let MG be one of its IP-SEG models. If v is a vertex

of G with a corresponding line segment s(v) in MG such that:

a) s(v) is an interval segment not containing any other interval segments, or

b) s(v) is a permutation segment such that no interval segment intersecting s(v) is contained within

another interval segment,

then N[v] must induce a permutation graph.

Proof. We will prove this result by showing how the line segments corresponding to vertices in N[v]

can be mapped from MG to another IP-SEG model consisting exclusively of permutation segments,

while maintaining the same set of segment pairs having non-empty intersections.

a) Suppose s(v) is an interval segment, lying on L1, and such that it does not contain any other

interval segments. We can split the set of segments of MG corresponding to vertices of N[v] into the

following 4 groups:

• P: all permutation segments,

• IL: interval segments i that overlap s(v) on the left, i.e. such that l(i)< l(s(v)) and r(i)∈ s(v),

• IR: interval segments i that overlap s(v) on the right, i.e. such that l(i) ∈ s(v) and r(i) >

r(s(v)),

• IC: interval segments i that contain s(v) (we include s(v) itself in this set).

Let L∗ be a point on the lower horizontal line L2 satisfying L∗ < b(p), for all p ∈P . Let R∗ be

a right-hand side analog of L∗. Consider the following mapping τa:

τa(q) =


q, q ∈P

permutation segment p with t(p) = r(q) and b(p) = L∗, q ∈IL

permutation segment p with t(p) = l(q) and b(p) = R∗, q ∈IR∪IC

21

Figure 3.10 illustrates why τa produces a valid permutation representation of G[N[v]] that main-

tains the original set of segment pairs with non-empty intersections from MG.

Figure 3.10: An IP-SEG representation of the neighborhood of vertex v, with v represented as an
interval segment not contained by another (model on the left) and how that representation can be
mapped to another (model on the right) consisting entirely of permutation segments.

b) Now suppose that s(v) is a permutation segment such that no interval segment intersecting

s(v) is contained within another interval segment. In part a), our task was simpler in that we were

able to come up with an appropriate transformation that kept all permutation segments in their

original positions. However, such a transformation is not always possible when s(v) is a permutation

segment. Consider a vertex u in N[v] corresponding to an interval segment i(u) ∈ L1 such that

l∗1 < l(i(u)) and r(i(u))< r∗1, where l∗1 = min{t(p) : p ∈P} and r∗1 = max{t(p) : p ∈P}. Further,

suppose that i(u) intersects with at least one permutation segment pl such that l∗1 < t(pl)< t(s(v))

and at least one permutation segment pr such that r∗1 > t(pr)> t(s(v)). It is easy to see that the only

way to map i(u) to a permutation segment p(u) that intersects both pl and pr is if p(u) intersects a

permutation segment ending at l∗1 or r∗1, which would introduce at least one new pair of segments

with a non-empty intersection.

There is, however, a way to rearrange the endpoints of permutation segments, so that all interval

segments corresponding to vertices of N[v] in MG can be mapped to new permutation segments,

while maintaining the same set of segment pairs with non-empty intersections. We divide the end-

points of segments, both interval and permutation, intersecting s(v) into 4 groups:

• LT : endpoints e on L1 such that e < t(s(v)),

• RT : endpoints e on L1 such that e > t(s(v)),

22

• LB: endpoints e on L2 such that e < b(s(v)),

• RB: endpoints e on L2 such that e > b(s(v)).

Note that for each permutation segment p intersecting s(v) we either have: 1) t(p) ∈ LT and

b(p) ∈ RB, or 2) t(p) ∈ RT and b(p) ∈ LB. Similarly, for each interval segment i intersecting s(v)

we either have: 1) l(i) ∈ LT and r(i) ∈ RT , or 2) l(i) ∈ LB and r(i) ∈ RB.

The first step of our transformation is to reverse the ordering of endpoints in LT . More formally,

for e ∈ LT , let l(e) denote the line segment that has e as one of its endpoints. Further, let e1 <

e2 < · · · < e|LT | be the ordering of endpoints in LT . Then, for each k ∈ {1,2, . . . , |LT |}, we make

ek the new endpoint of segment l(e|LT |−k+1) in LT . In the second step of the transformation, we

perform an analogous reversal of the endpoints in RB. The third step amounts to swapping the sets

RT and LB. Namely, let f1 < f2 < · · · < f|RT | and g1 < g2 < · · · < g|LB| be the endpoints in RT

and LB respectively. We translate the endpoints in RT from L1 to L2, so that their relative left-to-

right ordering is preserved and f|RT | is positioned to the left of b(s(v)). Similarly, we translate the

endpoints in LB from L2 to L1, so that their relative left-to-right ordering is preserved and g1 is

positioned to the right of t(s(v)).

Steps one and two do not change the type of a line segment - permutation (interval) segments

remain permutation (interval) segments. The swap of endpoints in step three, on the other hand,

moves one endpoint of each interval segment to a different horizontal line, in effect mapping it

to a permutation segment. It is easy to confirm that once the three steps are completed, pairs of

permutation that intersected before, intersect now too. Interval segments originally lying on L1,

now become permutation segments entirely to the left of s(v) which, because of the re-positioning

of endpoints of the original permutation segments, now have the desired intersections. The same is

true for the interval segments originally lying on L2, which now lie to the right of s(v). The only

issue is that the permutation segments that interval segments are mapped to, now do not intersect

s(v). However, we can easily resolve this by re-positioning s(v) so that it intersects all newly formed

permutation segments. We illustrate the full transformation in Figure 3.11.

Any non-empty IP-SEG model must include an interval segment not containing any other inter-

val segments. One such example is the interval segment on L1 that has the leftmost right endpoint.

23

Figure 3.11: An IP-SEG representation of the neighborhood of vertex v - with v represented as a
permutation segment (left) - and how that representation can be mapped to another (right) consisting
entirely of permutation segments. The mapping reverses the orderings of endpoints in LT and RB.
Then, it swaps the elements of sets RT and LB, while preserving the respective orderings. Finally, it
re-positions the segment corresponding to vertex v so that it intersects all other segments.

Thus, we have the following simple corollary of Lemma 3.5.1.

Corollary 3.5.1. Any IP-SEG graph G must have at least one vertex v such that G[N[v]] is a per-

mutation graph.

Note that Corollary 3.5.1 does not constitute a characterization of IP-SEG graphs. All vertices

of the graph Gn,2 (described in the previous section) have closed neighborhoods that induce per-

mutation graphs, but Gn,2 is not an IP-SEG graph when n ≥ 9. Nevertheless, Corollary 3.5.1 gives

us another family of graphs that are not IP-SEG, namely graphs that do not have vertices whose

neighborhood induces a permutation graph. There is one example set of such graphs that is partic-

ularly easy to construct. Let k ≥ 5 and let Ck,2 be the graph on n = 2k vertices formed by taking the

union of two copies of Ck and adding all possible edges that go between vertices of different copies.

Clearly, for each vertex v ∈Ck,2, G[N[v]] contains an induced chordless cycle of length greater than

4 and therefore cannot be a permutation graph. Note that Ck,2 is not a minimal non-member of

IP-SEG graphs under vertex removal, as it contains instances of the 2-apex wheel graph Wk,2 as in-

duced subgraphs. We will see another, more significant consequence of Corollary 3.5.1, in the next

chapter when we discuss a robust algorithm for the CLIQUE problem based on a vertex elimination

ordering.

We conclude this section with an observation regarding asteroidal triples. The neighborhood of

a vertex v in an IP-SEG graph G can contain an asteroidal triple (a1,a2,a3), but in any valid IP-SEG

model of G, v will have to correspond to an interval segment containing another as permutation

24

Figure 3.12: An example of a graph that is not IP-SEG, in which a vertex v is adjacent only to the
vertices of an asteroidal triple (a1,a2,a3).

graphs cannot contain asteroidal triples. However, we cannot have a vertex u whose only neighbors

are a1,a2, and a3. An example of such a graph, that is not IP-SEG, is shown in Figure 3.12. The

following lemma summarizes the result.

Lemma 3.5.2. Let G be an IP-SEG graph containing an asteroidal triple (a1,a2,a3) and a vertex u

such that a1,a2,a3 ∈ N(u). Then, there exists i ∈ {1,2,3} such that N(ai)⊆ N(u).

Proof. Let M(G) be an IP-SEG model of G and p be a permutation segment in M(G). We say that

another segment s ∈M(G) (interval or permutation) lies to the left (right) of p, if any endpoints of

s on L1 lie to the left (right) of t(p) and similarly, any endpoints of s on L2 lie to the left (right) of

b(p). Further, given two segments s1,s2 ∈M(G), we say that p separates s1 and s2 if one of the two

segments lies to the left, and the other to the right, of p. For a vertex x of G we denote by s(x) the

line segment corresponding to x in M(G).

We consider two cases. First, suppose that at least one of s(a1),s(a2), and s(a3) is a permutation

segment. Without loss of generality, we may assume that this includes s(a1). It is easy to see that

s(a1) cannot separate s(a2) and s(a3), as any path between s(a2) and s(a3) will need to contain a

vertex whose corresponding segment intersects s(a1). Thus, s(a1),s(a2), and s(a3), up to horizon-

tal and vertical symmetry and swapping s(a2) with s(a3), can have only one of the three potential

arrangements shown in the top half of Figure 3.13. Note that in arrangement 1), there is no way to

place s(u) so that it intersects all three segments. Therefore, we actually cannot have this arrange-

ment in M(G). The arrangements 2) and 3) are possible in M(G), but the only way to place s(v)

so that it intersects all three segments is as an interval segment on the top line containing the s(a2)

segment. On the other hand, if each of s(a1),s(a2), and s(a3) is an interval segment, we essentially

25

Figure 3.13: Possible configurations of segments corresponding to three independent vertices, up to
symmetry and segment relabeling.

have two arrangements to consider, shown in the bottom half of Figure 3.13. In arrangement 4), we

cannot place s(u) so that it intersects all three of s(a1),s(a2), and s(a3), so this arrangement cannot

occur in M(G). Arrangement 5) remains possible, but as before, the only way to place s(u) is as an

interval segment on L1 containing s(a2). Since M(G) is an IP-SEG model of G and s(u) and s(a2)

must be interval segments with s(u) containing s(a2) in M(G), we must have that N(a2)⊆ N(u).

3.6 Polynomial algorithms for optimization problems when the IP-SEG model is given

The respective geometric intersection models of interval and permutation graphs, imply very nat-

ural polynomial algorithms for solving several important optimization problems, including clique,

independent set, and graph coloring. For example, given the model of an interval graph, we can find

a maximum independent set by using a greedy algorithm which at each step selects the interval with

the leftmost right endpoint, while removing all other intervals that intersect it from consideration.

Given the model of a permutation graph, we can easily find a maximum clique by recovering the

defining permutation of the graph from the model and finding the longest decreasing subsequence

in it. These algorithms are not of great practical importance, as there exist linear-time algorithms for

26

the respective problems on larger graph classes, such as chordal and comparability graphs, which do

not require a model as part of the input. Nevertheless, such model-based algorithms point us to an

initial direction in the study of optimization problems on the new classes of simple IP-SEG and IP-

SEG graphs. In particular, we look at the following three optimization problems when the IP-SEG

model is given as part of the input: CLIQUE, INDEPENDENT SET, and LONGEST CHORDLESS

CYCLE.

3.6.1 The CLIQUE problem

Suppose that C is a clique in an IP-SEG graph G with a given IP-SEG model MG. Since interval

segments lying on different parallel lines cannot intersect, all interval segments in C, if any, must lie

on a single line. Without loss of generality, we may assume that line is L1. Denote by Cint the set

of interval segments in C and by Cprm the set of permutation segments in C.

Consider the case when Cint 6= /0 and let sC be the intersection of interval segments in Cint. As

such, sC is fully contained in each interval segment in Cint and it must contain the top endpoint of

each permutation segment in Cprm. In addition, the endpoints of sC must be endpoints of one or

more interval segments in Cint. Figure 3.14 provides an illustration.

sC

Figure 3.14: An IP-SEG representation of a clique on 5 vertices.

If we knew what sC was, it would not be difficult to recover a clique of maximum size. First, set

Cint to be the set of interval segments fully containing sC. Then, identify all permutation segments

that have an endpoint in sC and find a clique of maximum size Cprm on the permutation graph they

induce. Note that, since there may be multiple possible options for Cprm, there may be multiple

cliques of maximum size that correspond to sC. Nevertheless, the above procedure will recover a

maximum clique, when we know sC.

This leads to a simple polynomial algorithm for the clique problem, when the IP-SEG model

is known [67]. First, identify the maximum clique on the graph Gp induced by the permutation

segments of G. Then, go over all pairs of endpoints (s1,s2) of interval segments (s1 and s2 may

27

belong to different segments) along L1 and identify the maximum clique formed by interval seg-

ments containing the interval sC = [s1,s2] and permutation segments with an endpoint in sC. Repeat

the same for pairs of endpoints along L2. The clique of largest size found in this procedure is a

maximum clique of G.

Algorithm 1 CLIQUE on IP-SEG graphs (given the model)
Clique(G, MG)

1: Cp: maximum clique of the graph induced by all permutation segments of G
2: Cmax =Cp

3: for i ∈ {1,2} do
4: for each pair of endpoints (s1,s2) on Li do
5: Cint: interval segments on Li containing the interval [s1,s2]
6: Cprm: maximum clique formed by permutation segments with an endpoint in [s1,s2]
7: C =Cint∪Cprm
8: if |C|> |Cmax| then
9: Cmax =C

10: end if
11: end for
12: end for
13: return Cmax

Depending on what subroutine we apply to find a maximum clique Cprm on the permutation

graphs induced by permutation segments, the overall running time of the algorithm would be

O(n2(n+m)) or O(n3logn).

3.6.2 The INDEPENDENT SET problem

We already encountered the notion of a line segment q being to the left or to the right of a permu-

tation line segment p in the proof of Lemma 3.5.2. For simplicity, we use the notation q < p and

q > p. Clearly, two permutation line segments p1 and p2 do not intersect if and only if p1 < p2 or

p1 > p2. We say that a line segment q is between two non-intersecting permutation segments p1 and

p2, if p1 < q < p2 or p2 < q < p1.

Suppose G is an IP-SEG graph with a given model MG. Let I be a maximum independent set in

G and Iprm and Iint be the sets of permutation and interval segments, respectively, that form I. The

permutation segments in Iprm must form a sequence {pi} such that each pi+1 is to the right of pi.

Let pn−1 and pn be the next to last and last permutation segments in the sequence {pi}, respec-

tively, as shown in Figure 3.15. Let G′(pn−1) be the set of all segments, interval and permutation,

28

that are to the left of pn−1. Let G(pn−1) = G′(pn−1)∪{pn−1} and let I(pn−1) = I ∩G(pn−1). It is

easy to see that if I is of maximum size in G, then I(pn−1) must be an independent set of maximum

size in the induced subgraph G(pn−1) of G.

pnpn−1

I(pn−1) I1(pn−1, pn)

I2(pn−1, pn)

Figure 3.15: An IP-SEG representation of an independent set with at least two permutation seg-
ments.

Denote by Gi(pn−1, pn) the set of all interval segments along Li that are between pn−1 and pn

and let Ii(pn−1, pn) = I∩Gi(pn−1, pn). It is again easy to see that if I is of maximum size in G, then

Ii(pn−1, pn) must be an independent set of maximum size in the induced subgraph Gi(pn−1, pn) of

G.

While finding I(pn−1) amounts to solving the original problem of finding I, we do know that

the subgraph Gi(pn−1, pn) is an interval graph and therefore, we can find Ii(pn−1, pn) by applying

an existing algorithm for finding an independent set of maximum size on interval graphs. This leads

to a simple dynamic programming algorithm for the independent set problem in which for each

permutation segment p we keep track of the largest independent set I(p) formed by p along with

segments that p is to the right of [67]. Begin by obtaining a left-to-right topological ordering T

of the set of all permutation segments using the to the right of relation. Then, process segments

in T in a left-to-right order. If a segment p is not to the right of any of the already processed

segments from T , then I(p) is simply the union of p and the largest independent sets on L1 and L2

formed by interval segments that p is to the right of. Otherwise, we also need to consider the sets

I(p′)∪ I2(p′, p)∪ I2(p′, p) for each permutation segment p′ that p is to the right of. We also need to

account for the possibility that the largest independent set of G consists only of interval segments in

MG. For this, we simply need to combine the largest independent set of the interval subgraph of G

induced by interval segments lying on L1 with the corresponding independent set on L2. Finally,

it is possible that a largest independent set of G contains interval segments that lie to the right of pn.

We deal with this by introducing a new permutation segment p∗ to MG that lies to the right of all

29

other line segments. In the above notation, finding a maximum independent set of I of G amounts

to finding I(p∗)−{p∗} in (the updated version of) MG.

Algorithm 2 INDEPENDENT SET on IP-SEG graphs (given the model)
IndependentSet(G, MG)

1: p∗: a new permutation segment that is to the right of all segments in MG

2: MG = MG∪{p∗}
3: T : a topological ordering of the permutation segments of MG

4: for p in T do
5: I1(p): largest independent set of interval segments s on L1 such that s < p
6: I2(p): largest independent set of interval segments s on L2 such that s < p
7: I(p) = I1(p)∪ I2(p)∪{p}
8: for p′ in T such that p′ < p do
9: I∗(p) = I(p′)∪ I1(p′, p)∪ I2(p′, p)∪{p}

10: if |I(p)|< |I∗(p)| then
11: I(p) = I∗(p)
12: end if
13: end for
14: end for
15: return I(p∗)−{p∗}

Since we are given the model and thus we have the interval segments in sorted order, we can

find each of the independent sets of interval subgraphs in the algorithm in O(n) time. This leads to

an overall running time of O(n3).

3.6.3 The LONGEST CHORDLESS CYCLE problem

Another problem that is NP-hard on general graphs, but can be solved in polynomial time on IP-

SEG graphs when given the model, is the longest chordless cycle (LCC) problem. In the literature,

this problem is also known as the longest induced cycle problem and it remains NP-complete on

bipartite graphs [45]. Further, much like the CLIQUE problem, the LCC problem on general graphs

is NP-hard to approximate within n1−ε , for any ε > 0 [70]. However, due to the fact that the set of

possible IP-SEG configurations of Cn is limited (see Figure 3.7), we can solve the LCC problem on

IP-SEG graphs in polynomial time by going through these configurations. Note that this approach

is not based on exhaustive enumeration as IP-SEG graphs can have exponentially many chordless

cycles. For example, the graph on 2n+2 vertices whose IP-SEG model is shown in Figure 3.16 has

2n different chordless cycles of length n+2.

Nonetheless, we know that chordless cycles can only use 2-4 permutation segments in an IP-

30

Figure 3.16: A simple IP-SEG model MG of a graph G on 2n+ 2 vertices. Each of G’s chordless
cycles is of length n+ 2 and consists of 2 permutation segments and n interval segments in MG.
Notice that each interval segment i1 has a true twin i2. Substituting i1 with i2 in any chordless cycle
that i2 is part of, leads to different chordless cycle.

SEG model. For a given subset of 2-4 permutation segments P, we can easily check whether they

can correspond to a chordless cycle configuration (i.e. whether they can form one valid permutation

arc or two disjoint valid permutation arcs). Suppose they can and that we want to find a longest

chordless cycle that includes P. This can be reduced to the problem of finding a longest interval arc

whose interval segments fall within a certain range. We illustrate the approach by looking at one

particular configuration shown in Figure 3.17.

Figure 3.17: A 4-segment permutation arc P = (p1, p2, p3, p4) that could potentially be combined
with an interval arc I to form a chordless cycle. The interval segments in green could partake in
such an interval arc I, but those in red cannot.

The set P consists of 4 permutation segments. The only way to incorporate P into an IP-SEG

model of a chordless cycle C is to combine it with an interval arc I along the line L1. A valid

interval arc I can consist only of interval segments that lie entirely between t(p2) and t(p3) and

contain at least part of the interval [t(p1), t(p4)] - these are the green segments in Figure 3.17 and

we refer to them as I1(P). Thus, to find a longest chordless cycle C containing P it suffices to find a

longest interval arc I in I1(P) that starts in (t(p2), t(p1)] and ends in [t(p4), t(p3)).

31

Recall that an interval arc corresponds to a chordless path. Further, the problem of finding a

longest chordless path in a vertex-weighted graph (WLCP) is known to be solvable in polynomial

time on the class of interval graphs [47, 63]. We cannot apply such algorithms to the interval graph

induced by I1(P), as a longest chordless path of interval segments in I1(P) is not guaranteed to

intersect t(p1) and t(p4) and may therefore not constitute a valid interval arc. However, we can

find a longest valid interval arc by transforming our problem to the following instance of the WLCP

problem. Let G1(P) be the subgraph induced by vertices corresponding to the set of segments

I1(P)∪{p1, p4}. It is easy to see that G1(P) must be an interval graph. Further, assign weights of

n to the vertices of p1 and p4 and weights of 1 to all other vertices of G1(P). Then, I1(P) contains

a valid interval arc of length k connecting p1 with p4 if and only if G1(P) contains a chordless path

with total weight of 2n+ k.

Analogous reductions to instances of the WLCP problem on interval graphs can be done for

each of the other IP-SEG configurations of chordless cycles. When exploring configurations with

2 interval arcs, we will actually need to solve 2 instances of the WLCP problem. Each of these

reductions can be performed in O(n) time when the model of the IP-SEG graph is given. Solving

each instance of the WLCP problem can be done in O(n3) time [63]. Overall, we will need to

consider up to O(n4) subsets of 2-4 permutation segments P, leading to a total running time of

O(n7). We summarize the full algorithm for the LCC problem on IP-SEG graphs, when the model

is given, below.

Note that Algorithm 3 only explores chordless cycle configurations that contain both interval and

permutation segments. The LCC of a given IP-SEG graph, may be of length 3 or 4, meaning it could

be composed of segments of the same type. For completeness, if the LCC found by Algorithm 3

is of length less than 4, we will need to identify if the subgraph induced by permutation segments

only contains a C4. If no chordless cycle was found at this point, we will also need to see if the

subgraph induced by interval segments only contains a triangle. These additional checks, however,

do not affect the overall asymptotic running time bound.

3.7 First steps towards recognition

In this section we tackle the recognition problem of IP-SEG graphs and offer some partial results.

A natural place to start is to look at simpler subclasses of IP-SEG graphs like trees. We say that a

32

Algorithm 3 LONGEST CHORDLESS CYCLE on IP-SEG graphs (given the model)
LongestChordlessCycle(G, MG)

1: LCC = /0
2: P: k-element subsets of permutation segments in MG, with 2≤ k ≤ 4
3: for P ∈P do
4: if P can be part of a valid chordless cycle configuration C then
5: for i ∈ {1,2} do
6: Ii(P): interval segments on Li that could partake in a valid interval arc in C
7: if Ii(P) 6= /0 then # C may or may not admit an interval arc on Li

8: p,q: permutation segments of P delimiting valid interval arcs on Li in C
9: w : Ii(P)∪{p,q}−→{1,n}: weight function s.t. w(p) =w(q) = n and w(x) = 1,∀x /∈

{p,q}
10: Gi(P): interval graph induced by Ii(P)∪{p,q} and weighted by w
11: MIAi(P) =WLCP(Gi(P))−{p,q} # find a longest interval arc on Li

12: else
13: MIAi(P) = /0
14: end if
15: end for
16: if |P∪MIA1(P)∪MIA2(P)|> |LCC| then
17: LCC = P∪MIA1(P)∪MIA2(P)
18: end if
19: end if
20: end for
21: return LCC

tree T is a caterpillar if the removal of all pendant vertices (leaves) of T results in a path P. We call

P the central path of T . We say that a subtree S of a tree T is attached to a vertex v ∈ T if v /∈ S

and S is a connected component of T − v. Note that if a subtree S of a tree T is attached to v, then v

must have exactly one neighbor in S.

Trees in the class of interval graphs are exactly caterpillars [36]. The same is true for trees in the

class of permutation graphs [3, 48]. While IP-SEG graphs can contain trees that are not caterpillars,

we will show that IP-SEG trees can be characterized as a fairly simple generalization of caterpillars.

Let T be a an IP-SEG graph that is a tree and let M(T) be an IP-SEG model of T . Let Q

be the set of permutation segments in M(T). First, suppose that the subgraph T [Q] induced by

vertices corresponding to permutation segments is connected, i.e. is a subtree. Then T [Q] must be a

caterpillar. Let q ∈Q be an arbitrary permutation segment and let S(q) be the set of vertices that can

be reached from q without going through any vertices of Q−{q}. Since T is a tree and thus acyclic,

S(q) must consist of interval segments only. Moreover, for each i ∈ {1,2}, the set Si(q) ⊆ S(q) of

33

interval segments lying on line Li must be either empty or form a caterpillar that is attached to q.

Our choice of q was arbitrary, meaning that any q ∈ Q can have up to two caterpillars formed by

interval segments attached to it, regardless of whether q is part of the central path C(T [Q]) of T [Q]

or q is a leaf node of T [Q]. In other words, we can think of T as containing a central caterpillar T [Q]

such that each q ∈ T [Q] may have up to 2 peripheral caterpillars attached to it. Note that different

IP-SEG models of T may lead to different central and peripheral caterpillars, i.e. an IP-SEG tree

may have multiple subtrees that could play the role of a central caterpillar.

Now let us consider the case when T [Q] is not connected. Then, T [Q] must consist of a set of

k disjoint caterpillars that have a unique left-to-right ordering O = T [Q1] < T [Q2] < · · · < T [Qk]

in M(T). Let t1 and b1 be the segments in T [Q1] with the rightmost top and bottom endpoints,

respectively. Note that t1 ∩ b1 6= /0 and further, when T [Q1] consists of a single segment, we have

that t1 = b1. Let T1 be the set of interval segments on L1 that can be reached from t1, using only

interval segments. Similarly, let B1 be the set of interval segments on L2 that can be reached

from b1, using only interval segments. Since T is both connected and acyclic, exactly one of T1

and B1 must intersect with exactly one permutation segment in T [Q2]. Without loss of generality,

we may assume this to be T1. It is possible that T1 intersects with permutation segments from

other caterpillars T [Q j] for 3 ≤ j ≤ J, but only if T [Q2],T [Q3], . . . ,T [QJ−1] consist of exactly one

permutation segment each.

Suppose that k = J and let I1,k be the unique path of interval segments on L1 connecting t1

with the permutation segment qk ∈ T [Qk] that T1 intersects. Let C(Q j) denote the central path

of the caterpillar T [Q j]. Then, t1 is either an end vertex of C(Q1) or a leaf vertex pendant to an

end vertex of C(Q1). The same can be said about qk with respect to C(Qk). Because of this,

T ′ = T [I1,k∪Q1∪Q2∪·· ·∪Qk] is a caterpillar with a central path C(Q1)∪ I1,k∪C(Qk). Moreover,

T has T ′ as a central caterpillar and each of the vertices of T ′ has at most 2 peripheral caterpillars

attached to it. It is easy to see how the argument can be extended inductively to trees T where k > J.

This leads us to the following characterization of IP-SEG trees.

Lemma 3.7.1. A tree T is an IP-SEG graph if and only if it satisfies the property P: T can be

decomposed into one central caterpillar C and a set of peripheral caterpillars C such that each

vertex v ∈C has at most two caterpillars of C attached to it.

34

Proof. We have already shown in the above discussion that any IP-SEG tree must satisfy the prop-

erty P . Going in the opposite direction, suppose that T is a tree satisfying the property P . We can

construct an IP-SEG model of T as follows. The central caterpillar C is a permutation graph and

therefore, we can construct a model of C consisting only of permutation segments using any recog-

nition algorithm for permutation graphs that outputs a model as a by-product. Since any caterpillar

is also an interval graph, we can create an interval model for each of the peripheral caterpillars in

an analogous way. Finally, for each vertex v ∈C with a permutation segment p(v):

• if v has no caterpillars attached to it, do nothing;

• if v has one caterpillar C1 attached to it, scale the interval model of C1 and place it along L1,

while making sure that the appropriate segment of C1 contains t(p(v));

• if v has two caterpillars C1 and C2 attached to it, scale the interval models of C1 and C2 and

place them along L1 and L2, so that the appropriate segments of C1 and C2 contain t(p(v))

and b(p(v)), respectively.

We can use the above characterization of IP-SEG trees to design a recognition algorithm. For

any pair of vertices u,v from a tree T , there is a unique u− v path in T . Thus, if T were an IP-SEG

tree, then the central path PC of its central caterpillar will be uniquely determined by the endpoints

of PC (which may coincide when PC is trivial). As a consequence, when trying to determine if T is

an IP-SEG tree, we only need to consider O(n2) paths as candidates for PC. The challenge is that we

do not know beforehand what caterpillars contained in T and having PC as a central path could play

the role of a central caterpillar. Moreover, we may have an exponential number of such caterpillars

since there could be exponentially many subsets of vertices of T that are at distance 1 from PC which

we could add as leaves of the central caterpillar. However, we can resolve this issue by looking at a

specific kind of candidate central caterpillars that are easier to construct and must exist in any tree

that is IP-SEG.

Suppose that T is an IP-SEG tree with a model M(T) and let q be a permutation segment in

M(T) that is part of the central path PC of T ’s central caterpillar. Let q∗ be the unique vertex of Si(q)

adjacent to q, where Si(q) is a nonempty caterpillar attached to q. Deleting a vertex of degree at most

35

2 from a caterpillar can produce an empty set, one caterpillar, or two caterpillars. This means that, if

q∗ has at most 2 neighbors in Si(q), we can modify M(T) by turning q∗ into a permutation segment

and re-positioning the interval segments of the resulting (at most two) caterpillars. Figure 3.18

illustrates the transformation which leads to a new IP-SEG model of T . This implies that we can

treat q∗ as a leaf of the central caterpillar, with at most two caterpillars attached to it.

Figure 3.18: On the left, we see an IP-SEG tree with a central caterpillar formed by permutation
segments only and having a central path (1,2,3). 2 has a caterpillar attached to it, such that the
attaching interval segment (green squares) has two neighbors (red crosses) in the attached caterpillar.
On the right, we see how the attaching interval segment can be transformed to a permutation segment
with two trivial caterpillars attached to it.

Applying the above transformation for all eligible caterpillars attached to a permutation segment

of PC leads to what we call a maximal central caterpillar. Further, any path that is a central path of

at least one central caterpillar, is a central path of exactly one maximal caterpillar. Therefore, for a

given tree T and a path P in T , we can check if T is an IP-SEG graph with P as the central path of

some maximal caterpillar of G as follows. For any vertex v∈ P examine the subtrees S of T attached

to v (Sv ∩P = /0). For each such subtree S check if S−{u} is a union of at most two caterpillars,

where u is the vertex of S adjacent to v. If the answer is negative, check if S is a caterpillar itself.

If S is not a caterpillar, then P cannot be the central path of a maximal caterpillar of T . Otherwise,

mark S as a special caterpillar. If we are able to complete the process without encountering a vertex

v ∈ PC with more than 2 special caterpillars attached to it, then G is an IP-SEG tree, otherwise it is

not. We summarize the full recognition algorithm below.

The recognition algorithm for IP-SEG trees first checks in O(n) time whether the graph is a

tree to begin with. If the input graph is a tree, the algorithm then goes through O(n2) pairs of

vertices. For a given pair u,v, the unique u−v path P and all the subtrees attached to vertices of that

path can all together be computer in O(n) time. The potentially bigger portion of work is done in

determining whether P can serve as the central path of a central caterpillar. The checks performed

36

Algorithm 4 Determine if a graph G is an IP-SEG tree
IsIP-SEGTree(G)

1: if G is not a tree then
2: return False
3: end if
4: P: {(u,v) | u,v ∈V (G)} # u = v is also also accounted for
5: for (u,v) ∈P do
6: P: the unique u− v path in G
7: for q ∈ P do
8: Sq: subtrees of G attached to q but disjoint from P
9: specialq = 0 # number of special caterpillars attached to q

10: for Sq ∈Sq do
11: q∗: the neighbor of q in Sq

12: if S−q∗ is not a union of at most 2 caterpillars then
13: if Sq is a caterpillar then
14: specialq = specialq +1
15: else
16: return False
17: end if
18: end if
19: end for
20: if specialq > 2 then
21: return False
22: end if
23: end for
24: end for
25: return True

on each subtree S attached to a vertex of P are linear in the size of S - they are based on identifying

connected subtrees of a forest and determining if a given tree is a caterpillar. Since attached subtrees

are attached to exactly one vertex of P, the overall work that we end up doing on these checks for all

subtrees is O(n). Therefore, the full recognition algorithm runs in O(n3) time and it can easily be

extended to produce an actual IP-SEG model when the input graph is an IP-SEG tree. We conclude

this section with a specific example of a tree not in the class of IP-SEG graphs, shown in Figure 3.19.

3.8 Additional geometric intersection models generalizing those of interval and permutation

graphs

One way to look at IP-SEG graph models, in relation to interval graph models, is as a relaxation

that allows endpoints of line segments in the plane to lie on two parallel straight lines in the plane

as opposed to just one. This viewpoint opens up the possibility of considering a parametric general-

37

Figure 3.19: The forbidden subtree T2 of caterpillar trees is shown on the left. T2 is an IP-SEG tree.
However, the tree shown on the right is not IP-SEG. Whatever path P we choose, at least one subtree
S attached to a vertex v of P will always contain a copy of T2 and will thus not be a caterpillar. In
addition, u is the vertex in S that v is adjacent to, S− u will either contain a copy of T2 or it will
consist of more than 2 connected subtrees.

ization of interval graph models, where the endpoints of line segments can be anchored at k parallel

straight lines in the plane. We will call this type of model k-IP-SEG and the class of graphs having

such a model k-IP-SEG graphs. Clearly, 1-IP-SEG graphs are just interval graphs and for k ≥ 2,

k-IP-SEG graphs also generalize permutation graphs.

A similar parametric generalization, which we refer to as k-permutation, has been considered

by Middendorf and Pfeiffer in [86]. As the name suggests, in this generalization the two endpoints

of a line segment cannot lie on the same parallel straight line. Clearly, k-permutation graphs are

contained in the class of k-IP-SEG graphs. Because 2-permutation graphs are exactly the class of

permutation graphs, the containment is proper for k = 2. On the other hand, it is easy to see how

for any set of n arbitrarily-oriented line segments in the plane, we can draw at most 2n distinct

parallel straight lines so that each endpoint of a line segment lies on one of the parallel lines. Thus,

if we allow k to be unbounded, both parametric generalizations coincide with the general class of

SEG graphs. An interesting open question is whether the containment k-permutation ⊆ k-IP-SEG

remains proper for all bounded values of k.

Middendorf and Pfeiffer show that given the model, the CLIQUE problem on k-permutation

graphs, when k is bounded, can be solved in polynomial time. A clique in an k-IP-SEG graph with

an associated model MG can only contain interval segments coming from one parallel line in MG.

Therefore, our algorithm for the CLIQUE problem on IP-SEG graphs (see Algorithm 1) can be

38

naturally extended to the class of k-IP-SEG graphs, when k is bounded.

Another approach towards generalizing the geometric intersection models of interval and per-

mutation graphs has been to allow the endpoints of segments in the plane to lie on curves other than

parallel lines. In particular, circle graphs are the intersection graph of chords in a circle (line seg-

ments whose endpoints lie on a circle) and they generalize permutation graphs. Circular arc graphs

are a generalization of interval graphs where instead of intersecting line segments on a straight line

we have intersecting circular arcs lying on a circle. Both circle and circular arc graphs are well-

studied in the literature and efficient algorithms for a number of optimization problems, including

CLIQUE and INDEPENDENT SET, are known [104]. A natural extension of the two classes would

be to allow for both chords and circular arcs within the same circle. Such a model clearly gener-

alizes the IP-SEG model and it seems quite possible that similar approaches to the CLIQUE and

INDEPENDENT SET problems could work on the new class of graphs.

3.9 Conclusion

In this chapter we introduced the new IP-SEG geometric intersection model simultaneously gen-

eralizing the respective models of interval and permutation graphs. We showed that the resulting

classes of simple IP-SEG and IP-SEG graphs have an implicit representation. In addition, we saw

that unlike earlier generalizations such as simple triangle and trapezoid graphs, these classes are

not contained in the class of perfect graphs. Nonetheless, we are somewhat limited in how we

can represent a chordless cycle using an IP-SEG model, which leads to some forbidden subgraphs

for the two classes. Further, we demonstrated that all IP-SEG graphs have at least one vertex v

whose neighborhood N(v) not only cannot contain a large chordless cycle but has to induce a per-

mutation graph. We presented polynomial algorithms for the CLIQUE, INDEPENDENT SET, and

LONGEST CHORDLESS CYCLE problems on IP-SEG graphs when the model is given as part

of the input. Note that each of these algorithms can be extended to solve the weighted version of

the corresponding problem. We also tackled the recognition problem and presented a polynomial

recognition algorithm for the special case of IP-SEG trees. Finally, we discussed parametric and

non-parametric models further generalizing that of IP-SEG graphs and how some of the algorithms

designed for IP-SEG graphs could be extended to work on the more general classes of graphs.

The recognition problem on the full class of IP-SEG graphs, as well as the related problem of

39

reconstructing an IP-SEG model of an IP-SEG graph, are natural questions that remain open. There

are three lines of approach, two of which involve finding alternative characterizations of IP-SEG

graphs, that appear most promising. First, given that interval and permutation graphs have nice

vertex ordering characterizations and a similar result has been recently obtained for one of their

generalizations - simple triangle graphs - by Takaoka [107], it would be worth exploring if such a

characterization can be found for simple IP-SEG or IP-SEG graphs. A second approach would be

to identify further neighborhood properties of vertices in IP-SEG graphs with the goal of expanding

the list of forbidden subgraphs to a forbidden induced subgraph characterization. A third approach

would be to build on our result for the recognition of IP-SEG trees and consider subclasses of IP-

SEG graphs by incrementally reducing the restrictions on the kinds of cycles we allow. Potential

starting points include the recognition of IP-SEG cactus graphs (graphs in which two cycles can

share at most one vertex) [15] and IP-SEG graphs that contain only atomic cycles (chordless cycles

C such that for each pair of vertices u,v in C, one of the shortest u− v paths is fully contained in C)

[46].

Future work should also be done on studying other optimization problems on the class of IP-

SEG graphs. A good candidate would be COLORING, given the simple algorithms for this problem

on interval and permutation graphs arising naturally from their geometric intersection models. In

addition, given our result on the LONGEST CHORDLESS CYCLE problem, it could be worthwhile

exploring related problems like HAMILTON CYCLE and its generalization LONGEST CYCLE,

where cycles of interest do not have to be chordless. In the following chapter we will see a robust

algorithm for the CLIQUE problem on IP-SEG graphs based on a vertex elimination ordering. It

would be interesting to know if we can design robust algorithms for optimization problems other

than CLIQUE. Finally, future study could involve better understanding the generalizations of IP-

SEG graphs discussed in Section 3.8 and extending additional algorithmic results from IP-SEG

graphs to the IP-SEG generalizations.

40

CHAPTER IV

Vertex Orderings

4.1 Introduction

There are different methods for defining or characterizing graph classes. We have already seen

intersection models characterizing a number of classes, including interval, permutation, and IP-

SEG graphs. Other characterization methods include containment models, forbidden subgraphs,

intersection of properties, vertex orderings, and edge orderings [104]. Some well-studied classes

like permutation graphs have known characterizations of multiple types, including:

• Intersection model [104]: Line segments going between two parallel lines;

• Containment model [15, 35, 52, 104]: Intervals on the real line;

• Forbidden induced subgraphs [28, 44]: No induced subgraphs from an infinite set of graphs

of various kinds, that includes odd-holes;

• Intersection of properties [35, 104]: Graphs that are both comparability and co-comparability;

• Vertex ordering [15, 104]: An ordering of the vertices v1,v2, . . . ,vn that does not have any

triples (vi,v j,vk), 1≤ i < j < k ≤ n, such that:

1. vivk is an edge, but viv j and v jvk are not edges, or

2. vivk is not an edge, but viv j and v jvk are edges.

In this chapter, our focus will be on vertex orderings. A vertex ordering characterization (VOC)

of a class G usually has the following form: a graph G is a member of the class G if and only if

G has a vertex ordering satisfying one or more properties [55, 107]. These characterizing vertex

orderings can often be a powerful tool in developing efficient algorithms for various problems on

the corresponding graph class. Such algorithms process these vertex orderings from left to right or

right to left, looking at local properties of a single vertex at a time [15]. The vertex ordering for

permutation graphs shown above allows for a linear dynamic programming algorithm that solves

the clique problem [104]. Similarly, we can solve the graph coloring problem on chordal graphs in

41

linear time by stepping through a reversed perfect elimination ordering [15]. Vertex orderings can

help us develop efficient algorithms for optimization problems even when they do not constitute a

VOC of a class of interest. In fact, there are instances in which such vertex orderings allow us to

design robust algorithms for an optimization problem on the class.

In Section 4.2 we introduce some notation and basic definitions that will be used throughout

the chapter. In Section 4.3 we explore several types of vertex orderings, differing in the way the

defining property is specified. These include elimination orderings and vertex orderings that avoid

certain forbidden ordered subgraphs. We also explore the complexity of the related problems of

class recognition and representation construction on different vertex ordering types. In Section 4.4

we look at when and how different types of vertex ordering characterizations are useful in design-

ing efficient algorithms for important optimization problems. We give the first robust polynomial

algorithm for the CLIQUE problem on IP-SEG graphs and discuss a generalization of the approach

to other classes of graphs. In Section 4.5 we focus on multiple-property vertex ordering characteri-

zations as a method of combining graph class properties. We explore when this approach leads to a

more restricted graph class than simply taking the intersection of the corresponding graph classes.

Further, we discuss situations where certain optimization problems may become tractable on the

more restricted class.

4.2 Preliminaries

If a graph G has a linear ordering < of its vertices associated with it, we write G = (V,E,<) and we

call G an ordered graph.

An ordered graph G′ = (V ′,E ′,<G′) is an induced ordered subgraph of an ordered graph G =

(V,E,<G) if G′ is an induced subgraph of G and <G′ is a suborder of <G.

We call GR the reversal of an ordered graph G if V (GR) = V (G) and E(GR) = E(G), but <GR

is obtained by reversing the ordering <G. The complement of an ordered graph G = (V,E,<G),

denoted by GC, is the unordered complement G of G combined with the linear ordering <G.

We now formalize the two main methods of graph class characterization that we will be referring

to in this chapter.

Definition 4.2.1. We say that a graph class G has an intersection of properties characterization

(IPC) in terms of graph classes G1,G2, . . . , and Gn, if G = G1∩G2∩·· ·∩Gn.

42

The reason we call the above characterization method “intersection of properties", instead of just

“intersection of graph classes", is that the intersecting graph classes are themselves characterized

by possessing certain properties. Any graph that is a member of the new graph class satisfies each

of the properties characterizing the intersecting graph classes.

Definition 4.2.2. Let G be a class of graphs and let P = {P1,P2, . . . ,Pn} be a set of properties. We

say that G admits a vertex ordering representation (VOR) in terms of properties P if for any graph

G ∈ G , there exists a linear ordering of the vertices V (G) that satisfies the properties P . We say

that G has a vertex ordering characterization (VOC) in terms of properties P , if for any graph G,

G ∈ G if and only if there exists a linear ordering of the vertices V (G) that satisfies the properties

P .

Note that a VOR or a VOC, as defined above, requires a single vertex ordering that satisfies all of

the properties P simultaneously. The importance of this distinction will become more apparent in

Section 4.5 when we look at VOC as a potentially more restrictive approach than IPC for combining

multiple vertex ordering properties. In addition, the notion of a VOR will be particularly useful in

the context of graph classes for which we do not yet have a nice VOC, but can identify a VOR that

helps us solve a particular optimization problem.

4.3 Vertex ordering types

Vertex ordering properties can take different forms, but they can be broadly fitted into two main

types. The first type includes properties that a vertex v needs to satisfy with respect to vertices that

come after it in a vertex ordering. While it is generally important which vertices come after v in

the vertex ordering, the property that v needs to satisfy is usually specified in a way that does not

put any restrictions on the relative ordering of said vertices. The vertex ordering characterizations

induced by such properties are most commonly referred to as elimination orderings. The second

type of properties are usually specified in terms of a set of patterns of vertices and edges that a valid

vertex ordering needs to avoid. These forbidden patterns are most commonly expressed as a set of

small ordered graphs.

43

4.3.1 Elimination orderings

We use the following formalization of an elimination vertex ordering satisfying a property taken

from [15].

Definition 4.3.1. The ordering (v1,v2, . . . ,vn) of the vertex set V of a graph G is an elimination

ordering satisfying property P if for all i ∈ {1, . . . ,n}, the vertex vi has property P in the graph

Gi = G[vi,vi+1, . . . ,vn].

One very important example of an elimination ordering characterizes the class of chordal graphs

- the graphs in which every cycle of four or more vertices has a chord.

Theorem 4.3.1. (Dirac [32]) A graph G is chordal if and only if there exists an ordering of its

vertices (v1,v2, . . . ,vn) such that each vertex vi is simplicial in Gi = G[vi,vi+1, . . . ,vn]. We call such

a vertex ordering a perfect elimination ordering.

Note that chordal graphs are defined by a global property as the graphs that do not contain an

induced chordless cycle on four or more vertices. However, the property of a vertex being simplicial

in the above VOC characterization is local. This, combined with the fact that it is easy to test if a

specific vertex is simplicial, leads to a straightforward greedy polynomial recognition algorithm for

chordal graphs: find a simplicial vertex, eliminate it from the graph, and then repeat the same for

the remaining subgraph. If at any point the algorithm fails to find a simplicial vertex, the graph is

not chordal. If, however, the algorithm is able to eliminate all vertices of the graph then the graph is

chordal and the elimination ordering is perfect.

Another example of a graph class defined by a global property, but having a simple and useful

VOC that uses a local property is that of distance hereditary graphs. A graph G is distance hered-

itary if and only if for every pair of vertices x and y all induced paths between x and y have the

same length. Distance hereditary graphs also have the following VOC that uses the local property

of being a pendant vertex or a twin vertex.

Theorem 4.3.2. (Bundelt et al. [7]) A graph G is distance hereditary if and only if there exists

an ordering of its vertices (v1,v2, . . . ,vn) such that each vertex vi is pendant to, or is the twin of, a

vertex in Gi = G[vi,vi+1, . . . ,vn]. We call such a vertex ordering a pruning sequence.

44

As was the case with chordal graphs, the above local-property VOC of distance-hereditary

graphs allows for a naive greedy recognition algorithm. While there are more efficient linear time

recognition algorithms for both classes [104], the fact remains that graph classes having an elim-

ination VOC are generally easy to recognize, one approach being through the construction of the

corresponding elimination ordering. We will see that the same is not always true for graph classes

that only have a VOC that forbids certain ordered patterns.

4.3.2 Forbidden ordered subgraphs

The other main type of vertex ordering properties are usually stated as follows: < is a valid vertex

ordering of G if < contains no subordering from a set S [15]. In the most common formulation due

to Damaschke [27], the set S consists of ordered graphs. Such a vertex ordering becomes a repre-

sentation (characterization) of a graph class, if (and only if) every graph from the graph class has a

vertex ordering avoiding the ordered subgraphs from S. Two forbidden ordered subgraphs on three

vertices, denoted by the abbreviations ch and cp, that are used in vertex ordering characterizations

of a number of well known graph classes are shown in Figure 4.1.

ch cp

Figure 4.1: The ordered subgraphs ch and cp.

The following theorem states several forbidden ordered subgraph characterizations of graph

classes expressed in terms of ch and cp, as well as their reversals or complements. Note that most of

these characterizations were known in the literature prior to [27], but appeared in different contexts

and were not identified as belonging to the same type of VOC’s.

Theorem 4.3.3. (Damaschke [27]) For each pair (G ,S) in Table 4.1, G ∈ G if and only if there is

a vertex ordering of G that contains no induced ordered subgraph from S.

It is easy to see that perfect elimination orderings mentioned earlier are exactly the orderings

that avoid ch. Thus, for chordal graphs, elimination orderings and forbidden ordered subgraphs

are just two different ways of describing the same characterization. A similar statement can be

made about threshold graphs, whose elimination ordering is such that each vertex vi must be either

isolated or neighboring all vertices in Gi = G[vi,vi+1, . . . ,vn].

45

Table 4.1: Classes of graphs characterized by sets of forbidden ordered subgraphs.

(1) G = chordal S = {ch}
(2) G = comparability S = {cp}
(3) G = threshold S = {ch, chC} or S = {chR, chC, cp}
(4) G = split S = {ch, chCR}
(5) G = proper interval S = {ch, chR}
(6) G = interval S = {ch, cpC}
(7) G = permutation S = {cp, cpC}

Comparability graphs arise from partial orders and are the graphs whose edges can be oriented

transitively, i.e. in such a way that for any triple of vertices a,b,c, if we have the directed edges

a→ b and b→ c then we also must have the edge a→ c. Such a transitive orientation of the edges

of a graph produces an acyclic directed graph
→
G and it is not difficult to see that the topological

orders of
→
G are exactly the vertex orderings of G that avoid cp.

Split graphs are those whose vertices can be partitioned into a clique and an independent set.

They can also be characterized as the graphs that are both chordal and co-chordal. Using this second

characterization, one can easily derive the forbidden ordered subgraph characterization stated in

Theorem 4.3.3. Threshold graphs are a proper subclass of split graphs and we will revisit this

relationship in Section 4.5.

We have already seen that permutation graphs are defined as the intersection graphs of line

segments with endpoints on two parallel lines and interval graphs as the intersection of intervals on

the real line. Proper interval graphs are a subclass of interval graphs with a geometric intersection

model in which no interval properly contains another.

We should note that in the more recent literature, the equivalent notion of forbidden patterns has

been used in place of forbidden ordered subgraphs [40, 61, 107]. In its original formulation [61],

a pattern on k vertices is just an ordered graph on k vertices, but specified in such a way that the

vertices always have the labels {1,2, . . . ,k}, i.e. the vertex ordering of the graph is implied by the

vertex labels. Some authors, however, expand the notion of a pattern to include edges that may or

may not be present in the corresponding ordered subgraph [40, 107]. More precisely, they define

a pattern as an ordered graph in which a pair of vertices has one of three relations: plain edges,

dashed edges, and non-edges. A subgraph of an ordered graph matches a pattern, if the plain edges

are present, the non-edges are absent, and there is no constraint on dashed edges. Then, a graph class

46

G has a VOC in terms of a set of forbidden patterns S if each graph G∈ G has a vertex ordering such

that no ordered subgraph of G matches a pattern in S. Clearly a pattern with no dashed edges is just

an ordered subgraph. The presence of a dashed edge xy implies that the given pattern encompasses

both ordered graphs that have the edge xy and ordered graphs that do not have it. Thus, as in the

case of interval graphs shown in Figure 4.2, patterns may lead to a more compact representation of

a VOC than ordered subgraphs.

ch cpC
a)

b)

Figure 4.2: a) The two forbidden ordered subgraphs characterizing interval graphs. b) The forbidden
pattern characterizing interval graphs. The dashed edge indicates that this pattern encompasses both
ch and cp.

If a graph class G has a forbidden ordered subgraph characterization in terms of the set S =

{s1,s2, . . . ,sk}, we simply write G =(s1,s2, . . . ,sk). Thus, from Theorem 4.3.3 we have that chordal =

(ch) and interval = (ch,cpC). We will adopt the convention of using lowercase letters for denoting

forbidden ordered subgraphs, reserving the use of uppercase letters for vertex ordering properties

expressed in a different way. For example, we will use (DH) to denote a vertex ordering that is the

pruning sequence of a distance hereditary graph, since we do not know of a finite set of forbidden

ordered subgraphs characterizing this graph class.

4.3.3 Complexity of recognition

We saw that classes like chordal and threshold graphs that have elimination ordering characteriza-

tions admit a naive greedy algorithm for constructing the special ordering which also serves as a

recognition algorithm. The other graph classes mentioned in Theorem 4.3.3 do not have a known

elimination ordering. Despite that, we can efficiently recognize them (in polynomial time). The

algorithms are not as straightforward as greedily building an elimination ordering, but all of the

graph classes in Theorem 4.3.3 can be recognized in O(n+m) time, except comparability graphs

for which the best known algorithms require time proportional to matrix multiplication. In addition,

Hell et al. [61] have shown that all graph classes having a VOC in terms of forbidden patterns of

47

3 vertices can be recognized in polynomial time. Thus, a natural question to ask is whether graph

classes with a VOC can always be recognized in polynomial time. The answer, assuming P 6= NP,

is no.

Before we give the first example of a graph class with a VOC that is NP-complete to recognize,

we need to define several notions taken from Chaturvedi in [20].

Definition 4.3.2. Let
→
G be a directed acyclic graph (DAG). We say that a directed path

→
p = p1→

p2→ ··· → pb in
→
G is open if the ends p1 and pb are not adjacent. We say that

→
G is βββ -transitive

if the number of vertices in a longest open directed path of
→
G is equal to β . An undirected graph

G is βββ -orientable if there is an acyclic orientation of its edges such that the resulting DAG is

β -transitive. βββ -ORIENT is the following decision problem: Given an undirected graph G and a

number k, does there exist an acyclic orientation of the edges of G such that the resulting DAG is

β -transitive for some β ≤ k?

The notion of β -transitivity generalizes that of transitivity and 2-orientable graphs are exactly

the class of comparability graphs. Thus 2-orientable graphs can be recognized in polynomial time.

Chaturvedi cites the following hardness result in [20], which is attributed to Xu.

Theorem 4.3.4. β -ORIENT is NP-complete.

A closer look at the actual reduction from MONOTONE NAE-3SAT to β -ORIENT presented

in [20] reveals that the following stronger result also holds.

Proposition 4.3.1. 3-ORIENT is NP-complete.

Now consider the set S = {b0,b1,b2,b3} of ordered subgraphs shown in Figure 4.3. We claim

that the graph class with a VOC in which the elements of S are forbidden, i.e. (b0,b1,b2,b3), is

exactly the class of 3-orientable graphs. Indeed, if an undirected graph G is 3-orientable, it is easy

to see that any topological order of the corresponding 3-transitive DAG
→
G can serve as a vertex

ordering of G that avoids all elements of S. In addition, one can show that any ordered subgraph on

four or more vertices that does not have an edge between the first and the last vertex, must contain

as an induced ordered subgraph one of the elements of S. Thus, if G ∈ (b0,b1,b2,b3) and L is a

vertex ordering of G that avoids the elements of S, orienting each edge xy as x→ y if and only if

x <L y, produces a 3-transitive DAG
→
G.

48

b3

b0 b1

b2

Figure 4.3: The ordered subgraphs b0, b1, b2, and b3.

Thus, the class of 3-orientable graphs has a VOC, but is NP-complete to recognize. In addition,

the larger graph class (b0) containing 3-orientable graphs is also known to be NP-complete to rec-

ognize [34]. The following result by Duffus et al. establishes the hardness of recognition for a much

larger set of forbidden ordered subgraphs.

Theorem 4.3.5. (Duffus et al. [34]) Let g be a 2-connected ordered graph with

<g= (v1,v2, . . . ,vk),

whose automorphism group contains neither of the mappings

(v1,v2, . . . ,vk)→ (v2,v3, . . . ,vk,v1) and (v1,v2, . . . ,vk)→ (vk,vk−1, . . . ,v2,v1).

Then determining if a graph belongs to the class G = (g) is NP-complete.

Given that almost all graphs are 2-connected and almost all graphs have the trivial automor-

phism group consisting of only the identity mapping (v1,v2, . . . ,vk)→ (v1,v2, . . . ,vk), Duffus et al.

propose the following conjecture.

Conjecture 4.3.1. (Duffus et al. [34]) For any ordered graph g, such that g is neither complete nor

an empty graph, the recognition problem for the graph class (g) is NP-complete if either g or its

complement is 2-connected.

This conjecture remains unresolved. One particular instance that was open until recently is the

recognition problem for the class of triangle-extendible (TE) graphs. Consider the ordered graph

te shown in Figure 4.4. A graph is TE if and only if it has a vertex ordeing that avoids te, i.e.

TE = (te). The class of TE graphs was introduced by Spinrad [104] as another generalization of

comparability graphs. te is isomorphic to the ordered subgraph b3 - one of the graphs used to define

3-orientable graphs. Thus, every 3-orientable graph is also triangle-extendible.

49

Note that te does not satisfy the assumptions of Theorem 4.3.5 - the automorphism group of te

contains the mapping (1,2,3,4)→ (4,3,2,1). However, it does satisfy the assumptions of Conjec-

ture 4.3.1 - te is not complete or empty and it is 2-connected. Neogi et al. have recently shown that

the recognition problem for triangle-extendible graphs is in fact NP-complete [88], offering further

support for Conjecture 4.3.1. Given that both the proof of Theorem 4.3.5 and the proof of Neogi

et al. use the 3-COLORING problem to establish the respective NP-completeness results, it would

be interesting to see if the two can be generalized to positively resolve Conjecture 4.3.1. We will

explore the class of triangle-extendible graphs, along with related subclasses and superclasses, in

more detail in later sections.

te
1 2 3 4

Figure 4.4: The forbidden ordered subgraph te characterizing the class of triangle extendible graphs.

One possible approach for dealing with graph classes with VOCs, for which we do not have a

polynomial recognition algorithm, is to consider subclasses on which the special vertex ordering

can be constructed greedily. In other words, we want to be able to construct an elimination ordering

of the vertices in such a way that when we are picking the next vertex xi, we can be certain that

xi cannot form any violations with vertices that are yet to be eliminated, regardless of the order in

which these vertices are later eliminated.

Consider a graph G belonging to the class (b0), which we know is NP-complete to recognize. If

G has a vertex v which does not appear as one of the endpoints in any induced path on four vertices

in G, then G must have a vertex ordering that avoids b0 and starts with v. Not all graphs in b0 have

such a vertex. For example, every vertex of C5 - a cycle on 5 vertices - appears as the endpoint of

two induced paths on four vertices, even though (1,4,2,5,3) is a vertex ordering of C5 that avoids

b0. Nonetheless, by only considering graphs for which we can greedily construct a b0-free ordering,

at each step eliminating the next vertex that does not start or end an induced path on four vertices,

we obtain a subclass of (b0) graphs for which we can solve the recognition problem, and recover

the special vertex ordering, in polynomial time.

50

4.4 Optimization Problems

One of the main motivations behind the study of special graph classes is that important optimization

problems, that are hard on general graphs, can become tractable. Knowing a vertex ordering, with

a particular set of properties, of a graph is often very helpful in designing efficient algorithms for

such problems. There are three main lines of approach that take advantage of this. One is trying

to find a nice vertex ordering characterization of a graph class defined using a different model (not

involving vertex orderings) and then using the properties of the characterizing vertex ordering to

come up with an algorithm that solves a particular optimization problem P efficiently. The second

approach involves taking a vertex ordering with properties that lead to a straightforward algorithm

for a particular problem and then studying the class of graphs characterized by that vertex ordering.

This often comes in the form of generalizations like 3-orientable or triangle-extendible graphs of

a well-studied class like comparability graphs. Note that this mirrors our approach with IP-SEG

graphs in the previous chapter where we studied geometric intersection models generalizing those of

interval and permutation graphs, while trying to keep properties of the model that allowed for simple

polynomial algorithms for the CLIQUE and INDEPENDENT SET problems. The third approach

is a variation of the first - instead of finding a VOC of the class of interest, we try to identify a VOR

of the class that can be recovered in polynomial time. Then, if we develop a polynomial algorithm

that solves P by using the special vertex ordering, we are effectively solving P on a larger class

of graphs. Our main contribution in this section - a robust algorithm for the CLIQUE problem on

IP-SEG graphs - falls under the last category.

4.4.1 Using a VOC of a known graph class

Consider the class of chordal graphs which was originally defined as consisting of graphs that do not

contain a chordless cycle of length 4 or more as an induced subgraph. Chordal graphs can also be

characterized by having a perfect elimination ordering, which is used to design efficient algorithms

for several problems, including CLIQUE, INDEPENDENT SET, and COLORING.

Let G be a chordal graph and let <G be a perfect elimination ordering of G. Further, let C be an

arbitrary maximal clique in G and let vi be the vertex of C having the leftmost position in <G. Since

vi is simplicial in Gi = G[vi,vi+1, . . . ,vn], C is the unique largest clique with vi as its leftmost vertex

in <G. Thus, an arbitrary vertex v j can be the leftmost vertex in <G of at most one maximal clique,

51

implying that the number of maximal cliques of a chordal graph is at most n. Moreover, the above

argument indicates a straightforward algorithm for finding a maximum clique of a chordal graph G

with a given perfect elimination ordering <G. Process the perfect elimination ordering from left to

right and identify the vertices vi whose neighborhood in Gi is of the largest possible size. For each

such vi, N[vi] would be a clique of maximum size.

To find the maximum independent set of a chordal graph G with a given perfect elimination

ordering <G, we step through <G= (v1,v2, . . . ,vn) from left to right, greedily selecting a vertex vi if

none of the vertices already included in the independent set are its neighbors. To see that this greedy

algorithm is correct, suppose that it makes a first mistake when selecting the k-th vertex vik . That

would mean that there is a maximum independent set I that contains the vertices vi1 ,vi2 , . . . ,vik−1 , but

there is no maximum independent set that also contains vik . Now, the algorithm selected vik since

it did not have any neighbors in the set among vi1 ,vi2 , . . . ,vik−1 . Furthermore, since the algorithm

was greedy, all vertices after vik−1 in the set I must appear after vik in <G. Since <G is a perfect

elimination ordering, vik can have at most one neighbor among the vertices of I appearing after vik

in <G. In addition, vik must have at least one neighbor in I, otherwise I+ = I + {vik} would be an

independent set properly containing I which would contradict the maximality of I. That would mean

that vik has exactly one such neighbor v∗. But then I∗ = I−{v∗}+{vik} is a maximum independent

set containing vik , contradicting the assumption that selecting vik was a mistake.

Consider the following greedy coloring algorithm. Let G be a graph along with an ordering of

its vertices <G. Suppose also that the colors are identified with the positive integers {1,2,3, . . .}.

Step through <G from left to right, coloring vertex vi with the lowest-integer color not used on any

already processed neighbor of vi. On general graphs, finding an optimal coloring is NP-hard and so

a greedy coloring will often be suboptimal. However, if G is a chordal graph and <G is a reversed

perfect elimination ordering, the above greedy algorithm produces an optimal coloring. This stems

from the fact that vi and its already colored neighbors form a clique C. One can use this in an

inductive argument to show that the color that will be assigned to vi is exactly |C|. This, in turn,

implies that the total number of colors used will be equal to the maximum clique size, which is a

lower bound on the number of colors needed on any graph.

All of the above algorithms can be made to run in O(n+m) time. In all of them, we assumed

that we are given a chordal graph along with a perfect elimination ordering. We will later see

52

cases where we do not know how to efficiently recognize a graph class and find the special vertex

ordering. Nevertheless, we can recognize chordal graphs by constructing a perfect elimination

ordering in O(n+m) time.

The first, constructive stage of the algorithm uses a modification of the breadth-first search (BFS)

algorithm called lexicographic BFS (LexBFS). We include the description of LexBFS presented in

[104]. Vertices are partitioned into sets, all vertices being in the same set initially. At each step, an

arbitrary vertex x from the last set is chosen. We remove x from the graph and place it in the output

list. Each set S is subdivided into neighbors and non-neighbors of x, with neighbors of x in S placed

immediately after the set of non-neighbors of x in S. Standard data structures can be used to make

LexBFS run in O(n+m) time. The output of LexBFS is a vertex ordering. The following result due

to Rose, Tarjan, and Lueker, shows the close connection between LexBFS and chordal graphs.

Theorem 4.4.1. [15] The following two conditions are equivalent:

(i) G is chordal;

(ii) Every LexBFS vertex ordering of G is a reversed perfect elimination ordering.

Thus, the first stage of the recognition algorithm for chordal graphs will consist of running

LexBFS. In the second stage, we need to verify that the reversal of the LexBFS ordering from stage

one is a perfect elimination ordering. Step through the reversal of the LexBFS ordering from left to

right. Let v be the vertex considered at a given step. Find the first neighbor of v that appears after it

and call this vertex w. Verify that w has edges to all neighbors of v that come after w. If this is not

the case, answer that the ordering is not a perfect elimination ordering since v is not simplicial. If the

verification step works at all vertices, the graph is chordal and the ordering is a perfect elimination

ordering. Since the verification step for each vertex v takes time proportional to |N(v)| for each

vertex v, the verification stage runs in O(n+m).

Having an O(n+m) recognition algorithm for chordal graphs that produces a perfect elimination

ordering means that we can solve the CLIQUE, INDEPENDENT SET, and COLORING problems

in O(n+m) time without the promise that a graph G is chordal and without being given a perfect

elimination ordering as an additional part of the input.

We should note that the above three problems are solvable in polynomial time on the larger

class of perfect graphs that contains chordal graphs. Perfect graphs were introduced by Berge in

53

the 1960s. A graph G is perfect if and only if for every induced subgraph H of G, the chromatic

number of H is equal to the maximum clique size of H. Grötschel, Lovász, and Schrijver [54]

used the ellipsoid method for convex programming to develop polynomial algorithms for the above

three problems. However, the ellipsoid method is generally considered impractical and polynomial

combinatorial algorithms for subclasses of perfect graphs, like the vertex-ordering-based algorithms

for chordal graphs, remain very much of interest.

We have seen three problems that are solvable in polynomial time on perfect graphs, and in

particular on chordal graphs. There are, however, a number of standard optimization problems that

remain NP-hard on chordal graphs. These include the problems of finding a dominating set of

minimum size and a vertex ordering of minimum bandwidth. In what follows, we will discuss the

class of interval graphs which is a proper subclass of chordal graphs. In particular, we will discuss

how the interval graph vertex ordering characterization that we have seen in Section 4.3 played a key

role in the design of the first linear-time algorithms for the DOMINATING SET and BANDWIDTH

problems on this class.

Recall that interval graphs have a very nice and simple geometric intersection model in which

vertices correspond to intervals on the real line and two vertices are adjacent if and only if the cor-

responding intervals intersect. The extensive research on interval graphs began in the 1960s, partly

motivated by an important work of Benzer [10] that dealt with the internal organization of genes

and is directly related to interval graphs [104]. There are many different known characterizations

of interval graphs, including the the intersection of properties characterization due to Gilmore and

Hoffman [104] which states that interval graphs are the intersection of chordal and co-comparability

graphs. In this section, however, we are interested in the vertex ordering characterization interval

= (ch,cpC), i.e. interval graphs are those that have a vertex ordering that avoids the ordered sub-

graphs ch and cpC shown in Figure 4.5.

ch cpC

Figure 4.5: The forbidden ordered subgraphs ch and cpC characterizing interval graphs.

Suppose we are given an interval representation I of an interval graph G. In particular, let i(v)

be the interval corresponding to vertex v and let l(v) and r(v) be the left and right endpoints of i(v),

54

respectively. We can obtain a (ch,cpC) vertex ordering of G by ordering the vertices of G based on

the right endpoints of the intervals: for any two vertices u and v, if r(u) < r(v), place u before v;

if r(u) = r(v), use the left endpoints to break the tie, placing u before v if l(u) < l(v). There are

at least two works which appear to have independently discovered the (ch,cpC) VOC of interval

graphs and how to obtain it from an interval representation [77, 96].

Let G be an ordered graph with a vertex ordering <G. Denote by p(v) the position of vertex v in

<G, where the positional indices run from 1 to n. The bandwidth of G is the maximum difference

p(u)− p(v) across all pairs of adjacent vertices u,v. Consider the ordered graphs P4 and C3, as

shown in Figure 4.6. P4 has bandwidth of 1 and C3 has bandwidth of 2.

P4 C3

Figure 4.6: The natural ordering of the path of four vertices and the only possible ordering of a
triangle.

The minimum bandwidth of an unordered graph G is the smallest bandwidth that can be achieved

across all vertex orderings of G. The orderings of P4 and C3 shown in Figure 4.6 are the vertex order-

ings that achieve the minimum bandwidth, respectively. Any other vertex ordering of P4, however,

will lead to a suboptimal bandwidth of 2 or more. The BANDWIDTH problem is particularly in-

teresting in the context of vertex ordering characterizations because it requires us to find a special

vertex ordering. In particular, we can think of the class of graphs of minimum bandwidth k as hav-

ing a VOC of a different type - one that is not an elimination ordering or avoids certain forbidden

ordered subgraphs, but one that minimizes a certain quantity.

Kratsch [77] appears to have been the first to identify and use the (ch,cpC) vertex ordering of

interval graphs in an algorithmic context. He designed one of the first polynomial time algorithms

for the decision version of the BANDIWDTH problem on interval graphs. His algorithm uses the

(ch,cpC) ordering of an interval graph as a starting point. It then processes one vertex at a time,

modifying the current vertex ordering while trying to not increase the distance between already

processed neighbors beyond k. At the end, it produces a vertex ordering achieving a bandwidth of at

most k if such an ordering of the interval graph exists. The overall running time of this algorithm is

O(n2). This then leads to a straightforward O(n2logn) time algorithm for the optimization version of

55

the problem which performs a binary search on the n possible bandwidth values using the decision

version algorithm as a subroutine. It was later discovered by Mahesh et al. [83] that one of the

rearrangement steps in Kratsch’s algorithm was flawed. They were, however, able to correct that

particular step preserving the overall structure and running time of the original algorithm.

[96] is a work that appeared several years later and used the (ch,cpC) vertex ordering of interval

graphs to solve variations of the DOMINATING SET problem. Given a graph G = (V,E), S ⊆ V

is a dominating set of G if every vertex in V − S has a neighbor in S. S is a totally dominating

set if every vertex in V , including those in S, has a neighbor in S. The standard dominating set

problem consists of finding a dominating set of minimum cardinality, or minimum total weight if

vertices have weights. Variations of the problem specify additional properties that the dominating

set needs to satisfy. In [96], Ramalingam et al. consider the properties of the set being independent,

connected, or totally dominating. They then develop a unified algorithm that can be applied to

each of the four weighted variations of the problem and runs in linear time. The (ch,cpC) ordering

is a key building block of the algorithm, since the decision of whether to include a vertex in the

dominating set or not is based in part on the positions of its neighbors in the ordering. In addition to

their algorithm being simultaneously applicable to these four variations of the DOMINATING SET

problem, it was actually one of the first polynomial algorithms for weighted total domination and

improved the best known bound at the time for weighted connected domination.

We should note that both the BANDWIDTH and the DOMINATING SET algorithms mentioned

above relied on a recognition algorithm for interval graphs due to Booth and Lueker [13]. When

given an interval graph G, this algorithm produces as a byproduct a consecutive cliques arrangement

(CCA) of G - an ordered list of the maximal cliques of G such that each vertex belongs only to cliques

that appear consecutively in the list. CCA is yet another characterization of interval graphs that is

equivalent to an interval representation. This recognition algorithm runs in O(n+m) time, but uses

a relatively complex data structure called PQ-tree. There is an alternative O(n+m) recognition

algorithm that was later discovered by Corneil, Olariu, and Stewart [24]. This algorithm avoids

using non-standard data structures and is simpler to implement, but has a much more complicated

proof of correctness [104]. It is based on multiple sweeps of a modified LexBFS and instead of a

CCA, it produces a (ch,cpC) ordering when the input is an interval graph.

56

4.4.2 New graph class from a VO with a nice property

Recall the greedy coloring algorithm from earlier. This algorithm produces an optimal coloring of

a chordal graph G when applied to a reversed perfect elimination ordering of the vertices of G. The

same algorithm is also optimal when applied to a topological sort of a transitive orientation, i.e. a

(cp) ordering, of a comparability graph [82]. In both cases, we have a special vertex ordering on

which the greedy algorithm is optimal. It turns out that every graph has a vertex ordering on which

the greedy coloring is optimal - the vertices being ordered based on their color in a particular optimal

coloring, with vertices of the same color being ordered consecutively. Unfortunately, finding such

an ordering, and more generally obtaining an optimal coloring, is NP-hard on general graphs. The

cases of chordal and comparability graphs are different since we can construct the special vertex

orderings efficiently.

Our ultimate goal is to be able to solve COLORING efficiently on as large a class of graphs

as possible. In the context of the above discussion, one possible avenue is to look for a vertex

ordering that generalizes the (ch) and (cp) orderings, but satisfies some additional properties which

are restrictive enough so that not all graphs would have such an ordering. One such example is

formed by the perfect orderings introduced by Chvátal in the early 1980s.

Definition 4.4.1. (Chvátal [21]) A vertex ordering (v1,v2, . . . ,vn) of graph G is perfect if, for each

induced (ordered) subgraph F of G, the number of colors used by the greedy coloring algorithm on

F is optimal on F . A graph G is perfectly orderable if it has a perfect vertex ordering.

Unfortunately, the recognition problem for the class of perfectly orderable graphs is known to

be NP-complete [15]. A great deal of research has been done on exploring subclasses of perfectly

orderable graphs for which there are efficient recognition algorithms, including bipolarizable, P4-

indifference, and P4-comparability graphs. This was facilitated in part by the following characteri-

zation of perfect orderings.

Theorem 4.4.2. (Chvátal [21]) A vertex ordering < of a graph G is perfect if and only if G contains

no (induced) P4 = a−b− c−d such that a < b and d < c.

Note that the alternative characterization shown in Theorem 4.4.2 can be easily translated to

the language of forbidden ordered subgraphs. Perfectly orderable graphs are exactly equal to

57

(p14, p24, p34) graphs (see Figure 4.7). This, along with the fact that perfectly orderable graphs

are perfect, has led Olariu to generalize Chvátal’s original notion of perfect orderings by identifying

all 40 sets of forbidden orderings of P4 that define graph classes which are perfect [91].

p14 p24 p34

Figure 4.7: The forbidden ordered paths on four vertices characterizing perfectly orderable graphs.

We include another example of a simple algorithm for an optimization problem that gives rise to

an interesting set of classes generalizing comparability graphs. Suppose G is a comparability graph

and we are given a (cp) vertex ordering <G of G. To simplify the notation, assume the vertices

in <G are labelled 1 to n. To find the size of a maximum clique in G, we can apply the following

dynamic programming algorithm [104]. For each vertex i, denote by Ci the size of the maximum

clique containing i as its last (rightmost) vertex in <G. Let w be a neighbor of i preceding i in

<G. Then, since (G,<G) does not contain cp as an induced ordered subgraph, any neighbor of w

preceding w in <G must also be a neighbor of i. This implies that to calculate the value of Ci, we

simply need to find the maximum Cw over all neighbors w of i preceding i in <G, and add 1.

An analogous dynamic programming algorithm can be used for CLIQUE on triangle-extendible

graphs, if the (te) ordering is given [104]. In this case, instead of keeping track of the maximum

cliques ending with a single vertex, we need to maintain the sizes Ci j of maximum cliques having

i as second to last and j as last vertex in the (te) ordering. Then, we calculate Ci j by adding 1 to

the maximum Cw,i, such that w precedes i and w neighbors both i and j. It is not difficult to see

that, on an appropriate vertex ordering, we can further generalize the above dynamic programming

approach to keeping track of the sizes of maximum cliques ending with an arbitrary constant number

of vertices. This gives rise to the notion of k-extendible (or k-clique-extendible) graphs defined by

having a vertex ordering that avoids ke - the ordered k+1-vertex graph with only one missing edge

between the first and the last vertex. It follows that 2-extendible graphs are simply comparability

graphs and 3-extendible graphs are the triangle-extendible graphs.

For k a constant, using the dynamic programming approach described above we can solve the

CLIQUE problem on k-extendible graphs in O(nk) time when a (ke) ordering is given. An alter-

native dynamic programming algorithm that runs in O(kmk/2) time and may be more efficient on

58

sparse graphs, is presented in [58]. We know that we can recognize comparability graphs in time

proportional to matrix multiplication. As mentioned earlier, Neogi et al. have recently shown that

the recognition problem is NP-complete on both triangle-extendible graphs and on k-extendible

graphs, for k≥ 4 [88]. Much like with perfectly orderable graphs, a possible next step is to consider

subclasses of k-extendible graphs that could potentially be easy to recognize. We consider a couple

of such candidate classes, that generalize permutation graphs, in Section 4.5.

Before proceeding we should include the following important remark. Establishing that recog-

nition of a graph class is NP-complete does not immediately imply that a particular optimization

problem on the class would necessarily be NP-hard. For example, intersection graphs of axis-

aligned rectangles (boxicity 2 graphs) and intersection graphs of paths in a tree (EPT graphs) are

both NP-complete to recognize, but admit polynomial algorithms for the CLIQUE problem [104].

Therefore, the question of whether there exists a robust algorithm for the CLIQUE problem on

k-extendible graphs – one that does not need to use a (ke) ordering – remains open.

4.4.3 Using a non-characterizing elimination VO to develop robust algorithms

We saw that the characterizing perfect elimination ordering of chordal graphs can be used to develop

a simple polynomial algorithm for the CLIQUE problem. In particular, the VO allows us to reduce

the CLIQUE problem on a chordal graph G to instances of the CLIQUE problem on a series of n

induced subgraphs of G. Since all of these induced subgraphs are cliques themselves, each of the

instances of the CLIQUE problem is trivially tractable. The solution of the initial CLIQUE problem

on the overall graph then is simply the largest among the solutions to the instances of the CLIQUE

problem.

A similar approach is also applicable to non-trivial settings where the special elimination or-

dering does not necessarily characterize the graph class. Consider the class of unit disk graphs

consisting of intersection graphs of sets of circles in the plane having the same radius. Clark, Col-

bourn, and Johnson have shown that when the geometric intersection model (centers and radii of

each circle) is given, the CLIQUE problem can be solved in polynomial time on unit disk graphs

[22]. It was later shown that recognition of unit disk graphs is NP-hard [16]. Thus, one might think

that the Clark, Colbourn, and Johnson model-based algorithm will not help in designing a robust

algorithm for the CLIQUE problem on unit disk graphs. However, by focusing on certain steps of

59

the model-based algorithm which lead to efficient computation of the maximum clique, Raghavan

and Spinrad were able to remove the dependence on the model [95].

Let G be a graph and let e1 < e2 < · · · < em be an ordering of its edges. We denote by Gi

the graph formed by including edges which occur after edge ei in the ordering. The edge ordering

is called a co-bipartite edge elimination ordering (EEO) if for all edges ei = (x,y), the common

neighbors of x and y in Gi induce a co-bipartite graph in G. Raghavan and Spinrad showed that each

unit disk graph has a co-bipartite edge elimination ordering, thus reducing the original CLIQUE

problem to m instances of the CLIQUE problem on co-bipartite subgraphs. CLIQUE is solvable in

polynomial time on co-bipartite graphs. Moreover, it is easy to find a co-bipartite edge elimination

ordering in polynomial time, if such an ordering exists – at each step greedily select and eliminate

an edge whose endpoints’ common neighbors induce a co-bipartite graph in the remaining graph

(co-bipartite graph recognition is also polynomial). If we are not able to eliminate all edges with

the above procedure, the graph does not have a co-bipartite edge elimination ordering and therefore

cannot be a unit-disk graph. This constitutes a robust algorithm for CLIQUE on unit-disk graphs.

This leads us to our main result in this chapter regarding the CLIQUE problem on IP-SEG

graphs. Recall Corollary 3.5.1 which stated that every IP-SEG graph G has at least one vertex

v whose closed neighborhood N[v] induces a permutation subgraph of G. Note the similarity to

chordal graphs where each graph has at least one simplicial vertex. Like chordal graphs, and as any

graph class with an intersection model, IP-SEG graphs are a hereditary class, meaning that G− v

remains an IP-SEG graph. This implies that an IP-SEG graph G must have an elimination vertex

ordering < such that for any vertex v, the subgraph induced by the neighbors of v that are to the right

of it in < must be a permutation graph. We call such an ordering a permutation vertex elimination

ordering (VEO).

While the permutation VEO is not a VOC of IP-SEG graphs, it does allow us to develop a

robust polynomial algorithm for the CLIQUE problem. Find a vertex v whose open neighborhood

is a permutation graph – we can afford to do this since recognition of permutation graphs can be

done in linear time. If such a vertex does not exist, then the graph cannot be an IP-SEG graph. If

such a v does exist, in linear time identify the largest clique containing v in the remaining graph by

solving an instance of CLIQUE on a permutation graph, remove v and repeat. With this algorithm

that runs in O(n2(n+m)) time, we either find that the input graph cannot be an IP-SEG graph or

60

produce a list of cliques, the largest of which must be a maximum clique of the input graph.

Note the connection between the above robust algorithm and the model-based CLIQUE algo-

rithm (see Algorithm 1) where we were also reducing the original problem to instances of CLIQUE

on permutation subgraphs. In addition, the robust algorithm for CLIQUE on IP-SEG graphs can

also serve as a robust algorithm for CLIQUE on circle graphs in which the open neighborhood of

every vertex must be a permutation graph. It is also worth noting that class of graphs characterized

by having a permutation VEO is much larger than the class of IP-SEG graphs. While the class of

IP-SEG graphs has 2θ(nlogn) graphs on n vertices, each bipartite graph has a trivial permutation VEO

and therefore the class of graphs with permutation VEOs contains 2θ(n2) graphs on n vertices.

The robust algorithms for CLIQUE on unit-disk and IP-SEG graphs point to a more general

approach. Let G be a class of graphs on which CLIQUE is solvable in polynomial time. Further,

suppose we know how to recognize members of the G in polynomial time. Then, we can solve the

CLIQUE problem in polynomial time on both 1) the class of graphs having a G vertex elimination

ordering and 2) the class of graphs having a G edge elimination ordering. Algorithm 5 provides a

sketch of the robust algorithm for the case of vertex elimination orderings.

Algorithm 5 Robust algorithm for CLIQUE on G VEO graphs
RobustClique(G)

1: Cmax = /0
2: while G is not empty do
3: e = 0 # count the eliminated vertices in this iteration
4: for v ∈V (G) do
5: if G[N(v)] ∈ G then
6: C: a clique of maximum size in G[N(v)]
7: if |C|> |Cmax| then
8: Cmax =C
9: end if

10: remove v and all edges incident with v from G
11: e = e+1
12: end if
13: end for
14: if e = 0 and G is not empty then
15: return input is not a G VEO graph # we cannot extend the G VEO
16: end if
17: end while
18: return Cmax

61

4.5 Combining Properties

Recall the intersection of properties and vertex ordering characterizations of permutation graphs.

Permutation graphs are the intersection of comparability and co-comparability graphs, but they are

also the graphs having a vertex ordering that simultaneously avoids the ordered subgraphs cp and

cpC. In Damaschke’s forbidden ordered subgraphs notation, we have the following equality:

permutation graphs = (cp)∩ (cpC) = (cp,cpC)

In both characterizations, we are essentially combining the same pair of properties. In the IPC

method, the combination is performed by taking the set intersection of the larger classes of com-

parability and co-comparability graphs. In the VOC method, we are requiring that a single vertex

ordering simultaneously satisfies the characterizing vertex ordering properties of comparability and

co-comparability graphs.

Let P1, P2, be vertex ordering properties. Then we trivially have (P1,P2) ⊆ (P1)∩ (P2).

Damaschke [27] mentions this observation in the context of forbidden ordered subgraphs, but P1

or P2 may belong to any other type of vertex ordering properties, including, for example, pruning

sequences of distance-hereditary graphs.

We know that

interval graphs = (ch,cpC) = (ch)∩ (cpC) and

split graphs = (ch,chCR) = (ch)∩ (chCR).

However, we also know that

threshold graphs = (ch,chC)((ch)∩ (chC) = split graphs.

Thus a natural question is: for which properties P1, P2, does the equality (P1,P2) = (P1)∩

(P2) hold? Unfortunately, while we know of some simple sufficient conditions [27], this question

remains largely unresolved even when limited to VOC’s in terms of forbidden ordered subgraphs.

In what follows, we examine two pairs of properties whose VOC combination is a proper sub-

class of their IPC combination. We also look at how the different combinations might affect the

62

tractability of important problems.

4.5.1 Distance-hereditary and chordal: Proper subclasses of ptolemaic graphs and the band-

width problem

Consider the properties of being distance-hereditary (DH), i.e. having a pruning sequence, and of

being chordal (ch), i.e. having a perfect elimination scheme. Howorka [62] has shown that the

class (ch)∩ (DH) obtained by IPC combination coincides with that of ptolemaic graphs, originally

defined using pairwise distances between vertices.

Definition 4.5.1. (Kay, Chartrand [72]) A connected graph G is ptolemaic if for any four vertices

u,v,w,x of G, d(u,v)d(w,x) ≤ d(u,w)d(v,x)+ d(u,x)d(v,w), where d(a,b) denotes the number of

edges in a shortest path between vertices a and b.

As was the case with combining the chordal and co-chordal properties, there are two different

VOC combinations of the distance-hereditary and chordal properties: a pruning sequence that is

also a perfect elimination scheme - (DH,ch); or, a pruning sequence that is also a reversed per-

fect elimination scheme - (DH,chR). Unlike the case of chordal and co-chordal, however, both of

(DH,ch) and (DH,chR) are proper subclasses of the IPC class (ch)∩ (DH).

1

2

3

4

2

3

4

1

5

8

7

6

a) b)

Figure 4.8: Ptolemaic graph that is not: a) (DH,ch); b) (DH,chR)

The graph shown in part a) of Figure 4.8 is ptolemaic: (1,2,3,4,5,6,7,8) is a pruning sequence

and (2,1,3,4,5,6,7,8) is a perfect elimination ordering. However, the only simplicial vertices of this

graph are 2 and 7, none of which has a twin or is a pendant vertex. Thus this graph is not (DH,ch).

Similarly, the claw graph shown in part b of Figure 4.8 has a pruning sequence (2,3,4,1) and a

reversed perfect elimination ordering (1,2,3,4), so it is ptolemaic. But any pruning sequence must

have 1 in position 3 or 4, while any reversed perfect elimination scheme must have 1 in positions 1

or 2. Therefore, the claw graph is not (DH,chR).

63

One of the relatively few optimization problems that are intractable on ptolemaic graphs is the

minimum bandwidth problem. In fact, the problem remains intractable on trees, even on caterpillar

trees of hair length at most 3 [30]. Note that the vertex ordering of any tree obtained by removing

a leaf at a time is a (DH,ch) ordering. Thus, trees ⊆ (DH,ch), which implies that the minimum

bandwidth problem is intractable on the class (DH,ch).

The class of (DH,chR) graphs, however, is different. We not only have that the claw graph

is not a member of this class, but also, no (DH,chR) graph could contain a claw as an induced

subgraph. This means that the only trees that belong to (DH,chR) are simple paths. This opens

up the possibility for the minimum bandwidth problem being tractable on (DH,chR) graphs. In

fact, it is an easy exercise to show that any (DH,chR) vertex ordering cannot contain cpC as an

induced ordered subgraph. This implies that any (DH,chR) graph must be an interval graph. We

have seen that the minimum bandwidth problem is tractable on interval graphs. The most efficient

known algorithms include an O(n∆2log∆) algorithm by Muradyan (∆ denotes the maximum vertex

degree), an O(nBW (G)) by Kleitman and Vohra, and an O(nlogn) algorithm by Sprague [30]. Given

that we do not know of an O(n+m) minimum bandwidth algorithm for interval graphs, it would be

interesting to see if such an algorithm exists for (DH,chR) graphs.

4.5.2 TE and co-TE: Two generalizations of permutation graphs

Recall that triangle-extendible graphs generalize comparability graphs and, by extension, co-triangle-

extendible graphs generalize co-comparability graphs. We have also seen that permutation graphs =

(cp,cpC) = (cp)∩ (cpC).

cp

cpC

te

teC

Figure 4.9: The forbidden ordered subgraphs characterizing (co-)comparability and (co-)triangle-
extendible graphs.

Now consider the two graph classes (te, teC) and (te)∩ (teC), obtained by applying the two

64

different methods, VOC and IPC, of combining the two properties TE and co-TE. Unlike the case

with comparability and co-comparability, the VOC method leads to a class that is a proper subclass

of the one obtained with the IPC methods.

Proposition 4.5.1. (te, teC)((te)∩ (teC).

Proof. The 13-vertex graph G13, illustrated in Figure 4.10, is a member of (te)∩ (teC), but not of

(te, teC). The vertex set of G13 is given by V (G13) = A∪B∪C, where

• A = {a1,a2,a3,a4} and A is an independent set,

• B = {b12,b13,b14,b23,b24,b34} and B is a clique,

• C = {c12,c13,c14} and C is an independent set.

The additional edges of G13 that go between two different component sets are given by the follow-

ing:

• bi j is adjacent to ai and a j;

• c1i is adjacent to a1 and ai;

• b1i is adjacent to c1i.

To simplify the proof, we will treat the two-digit indices of vertices in B and C as two-element

sets, i.e. we wil treat b32 and c41 as alternative labels for the vertices b23 and c14, respectively.

We consider the two vertex orderings O1 = (a1,b23,b24,a2,a4,b34,a3,c12,b12,c13,b13,c14,b14)

and O2 = (a2,a1,b12,c12,b13,b14,b23,b24,b34,c13,a4,c14,a3). A 4-vertex TE violation in a vertex

ordering of G13 can only take one of the following forms:

• suborders with b1k and c1k appearing between a1 and ak, or

• suborders ai < b jk < blm < bnp or bnp < b jk < blm < ai such that i /∈ {n, p} and { j,k} ∩

{l,m}= {i}.

The list of forms that 4-vertex co-TE violations in a vertex ordering of G13 can take is somewhat

longer and includes suborders with:

• c1i and c1 j appearing between bpq and brs, where {{1, i},{1, j}}∩{{p,q},{r,s}}= /0,

65

c12

c13

c14

C = K3

a1

a2

a3

a4

A = K4

b12

b13

b14

b23

b24

b34

B = K6

Figure 4.10: A sketch of the 13-vertex graph G13 that is (te)∩ (teC), but is not (te, teC). The figure
only illustrates a few of the edges going across component sets. The full set of edges is specified in
the main text.

• c1i and a j appearing between bpq and brs, where i /∈ {1, j}, {1, i} /∈ {{p,q},{r,s}}, and j /∈

{p,q}∪{r,s},

• ai and a j appearing between c1k and b1k, where {i, j}∩{1,k}= /0,

• ai and a j appearing between c1k and al , where l ∈ {1,k} and {i, j}∩{1,k}= /0,

• ai and c1 j (or c1i and c1 j) appearing between c1k and ak, where {i, j}∩{1,k}= /0,

• ai and a j appearing between ak and blm, where k ∈ {l,m} and {i, j}∩{l,m}= /0, and

• c1i and a j (or c1i and c1 j) appearing between ap and bqr, where p ∈ {q,r}, p 6= 1, j 6= 1, and

{q,r} /∈ {{1, i},{1, j}}.

Using the above enumeration of all forms TE and co-TE violations could take in a vertex order-

ing of G13, it is easy to verify that O1 is a valid (te) ordering and O2 is a valid (teC) ordering. This

demonstrates that G13 does belong to the class (te)∩ (teC). However, O1 contains the co-TE viola-

tion (a1,a2,a3,c14) and O2 contains the TE violation (a1,b12,b13,b23). This means that neither O1

nor O2 is a valid (te, teC) vertex ordering. In fact, using a computer program, we were able to verify

that G13 cannot have a valid (te, teC) vertex ordering, showing that G13 ∈ ((te)∩ (teC))− (te, teC).

66

The class of TE graphs contains all bipartite graphs and therefore it is a superfactorial hereditary

class of graphs [103] – it contains 2Θ(n2) graphs on n vertices. We show, however, that this is not the

case for the classes of (te, teC) and (te)∩ (teC) graphs [66]. Consider the following theorem.

Theorem 4.5.1. (Alekseev [4]) A hereditary class of graphs has 2Θ(n2) members on n vertices if and

only if it contains all bipartite graphs, all co-bipartite graphs, or all split graphs.

Let B15 be the bipartite graph on 15 vertices with vertex partitions X = {xi | 1 ≤ i ≤ 5} and

Y = {yi, j | 1 ≤ i < j ≤ 5} and edge set E = {(xi,y jk) | i = j or i = k}. It is easy to see that this

graph is highly symmetric – any permutation of (1,2,3,4,5) implies a corresponding relabelling of

the vertices of B15 that induces an automorphism of the graph. Therefore, if B15 has a co-TE vertex

ordering, it would have to have a co-TE vertex ordering that has vertices x1,x2,x3,x4, and x5 in that

order. However, in whatever position we try to place vertex y15 in, relative to the vertices of the X

partition, we would get at least one of (x1,x2,x3,y15) or (y15,x3,x4,x5) as a co-TE violation. Hence,

B15 is a bipartite graph that is not co-TE and its complement B15 is a co-bipartite graph that cannot

be TE. Note that the above argument did not depend on the fact that Y is an independent set in B15.

This implies that the split graph S15 obtained by taking B15 and making Y a clique also cannot be a

co-TE graph.

B15,B15, and S15 are examples of bipartite, co-bipartite, and split graphs, respectively, that do

not belong to either of the classes (te, teC) and (te)∩ (teC). If f (n) is such the class of (te, teC)

(or (te)∩ (teC)) graphs has 2(Θ(f (n))) members on n vertices, by Alekseev’s theorem we must

have f (n) ∈ o(n2). In addition, since both classes generalize permutation graphs, we also have

f (n) ∈ Ω(nlogn). Finding tighter bounds on f (n) is an open problem. We know that permutation

graphs always have a "large" (of size θ(n1/2)) clique or an independent set. It would be interesting

to know if a similar result can be established for (te, teC) or (te)∩ (teC) graphs. A positive result

could help us in proving a tighter upper bound on the number of graphs in the respective graph class.

Most of the other natural questions are open on both of (te, teC) and (te)∩ (teC) graphs. Given

that (te, teC) and (te)∩ (teC) generalize permutation graphs, an interesting question is whether the

two classes have a nice geometric intersection or containment model related to their special vertex

orderings. We would also like to know whether the two classes can be recognized in polynomial

67

time. In particular, a polynomial algorithm that constructs the relevant special orderings will im-

ply a polynomial algorithm for the clique and independent set problems. Even if it were shown

that recognition on (te, teC) and (te)∩ (teC) is NP-complete, we would still have the related open

question of whether there are robust algorithms for CLIQUE and INDEPENDENT SET on the two

graph classes.

4.6 Conclusion

In this chapter, we looked at different types of vertex orderings and related graph classes. We

explored how the properties defining some of the vertex orderings can affect the complexity of

recognizing graphs in the class. Additionally, we looked at situations in which vertex orderings can

be a powerful tool for designing efficient algorithms for optimization problems. In particular, we

gave the first robust polynomial algorithm for the CLIQUE problem on IP-SEG graphs using the

permutation vertex elimination ordering and discussed a generalization of the approach to vertex and

edge elimination orderings where induced neighborhoods belong to classes of graphs on which the

CLIQUE problem is tractable. Further, we considered two different methods – IPC and VOC – of

combining two vertex ordering properties. We presented additional examples of pairs of properties

for which VOC leads to a more restricted class of graphs than IPC and showed that in some cases

this may lead to a class of graphs on which a generally hard optimization problem may become

tractable. In what follows, we summarize several interesting avenues for future research, some of

which were already touched upon in previous sections.

In Section 4.3, we mentioned that there are two main vertex ordering types: elimination order-

ings and orderings avoiding ordered subgraphs. We saw examples like chordal graphs which have

VOC’s of both types - perfect elimination ordering and (ch). We also saw examples like 3-transitive

graphs or perfectly orderable graphs, which have a forbidden ordered subgraph characterization but,

since the recognition problem on these classes is known to be NP-complete, they cannot have an

elimination ordering defined by a local property that can be checked in polynomial time. It would be

interesting to know which sets of forbidden ordered subgraphs lead to elimination orderings defined

by local properties that can be checked in polynomial time.

An answer to the above question may be helpful in further understanding the complexity of

recognition on graph classes with a forbidden ordered subgraph VOC’s. In particular, it would

68

be interesting to extend the results by Duffus et al. [34]. In particular, since both the proof of

Theorem 4.3.5 and the proof of Neogi et al. that recognition of TE graphs is NP-complete make use

of the 3-COLORING problem, it would be interesting to see if the two proofs can be generalized

to positively resolve Conjecture 4.3.1. Another approach would be to look at graphs gn that are

not 2-connected and see if we can arrive at a more comprehensive set of sufficient conditions for

recognition being polynomial on the class (gn), thus extending the work done by Hell et al. [61].

Another avenue for future research is to try to extend the work of Damaschke [27] and better

understand when a multi-property VOC characterization is more restrictive than the corresponding

IPC characterization, i.e. for which combinations of properties (P1,P2, . . . ,Pk)((P1)∩(P2)∩

·· · ∩ (Pk). Further, we would like to better understand how this is related to the complexity of

recognition or different optimization problems on the corresponding classes. For example, we saw

in Section 4.5 that bandwidth on (DH)∩ (chR) = ptolemaic graphs is NP-complete, but we know

how to solve it in polynomial time on the more restricted class (DH,chR).

Stemming from Olariu’s work on perfectly orderable graphs [91], another possible direction

would be to try to characterize, using vertex orderings, all graph classes on which a particular

problem is (in)tractable. This is likely to be a challenging question and may need further refinement,

but looking at a problem like bandwidth, that is about finding a special vertex ordering, may be a

good starting point.

In this chapter, we saw examples of graph classes such as unit-disk and IP-SEG on which we

can design a robust algorithm for the CLIQUE problem based on a special vertex or edge elimina-

tion ordering. We were able to do this because the corresponding neighborhood-induced subgraphs

belonged to other graph classes on which recognition and CLIQUE are solvable in polynomial time.

It could be worthwhile to more systematically examine classes on which CLIQUE and INDEPEN-

DENT SET are still open and try to see if we can construct analogous elimination orderings.

Finally, it would also be interesting to study particular new graph classes defined using a VOC

that generalize important existing classes. In particular, we would like to better understand the class

of triangle-extendible graphs that generalizes comparability graphs. As suggested in Section 4.5,

one possible approach is to first look at subclasses of this class obtained by intersection of properties

– e.g. (te)∩ (teC) – or multi-property vertex orderings – e.g. (te, teC).

69

CHAPTER V

Decentralized Consensus on Graphs with Different Structural Properties

5.1 Introduction

In earlier chapters, we discussed how properties of different models of restricted classes of graphs

can help us design efficient algorithms for solving important optimizations problems such as COL-

ORING, CLIQUE, and INDEPENDENT SET. Such algorithms are usually applied when we are

interested in finding certain kinds of subgroups of entities or relations. In other settings, however,

we may be interested in studying how different processes evolve or spread over a graph. In particu-

lar, we want to know if the dynamics of such processes change across restricted graph classes which

may have different structural properties.

The processes of interest may include cascading failures in computer networks and power grids

[25], disease spreads in contact networks of individuals [89], or information diffusion in social

networks [75]. In some instances, the evolution of these processes may be the result of actions

performed by, and interactions between, purposeful agents in control of vertices or edges of the

graph. This usually takes the form of decentralized coordination between agents which may or may

not have competing objectives [18, 53, 69, 85].

We note that in applied settings where graphs are used to model real, existing systems like the

World Wide Web, individuals linked by family or friendship ties, or the chemical reactions taking

place in a cell, the use of network science terminology is more common. Namely, these systems are

considered to be networks of nodes with links between them, whereas their corresponding mathe-

matical representations are graphs of vertices and edges [9]. We will interchangeably use the graph

theory and network science terminology, without differentiating between graphs and networks.

In this chapter, we study the effects of the underlying network structure, across multiple graph

classes and associated random generating models, on the effectiveness of different mechanisms for

facilitating or disrupting coordination. We start by reviewing our work in [111] on the utility of

communication on decentralized coordination between human subjects, including settings where

competing incentives may be present. We also review the subsequent study of the disruptive ef-

fects of adversarial agents on decentralized coordination [56] and how well these can be mitigated

70

through the introduction of trusted agents. In both cases, we put emphasis on the varying levels of

effectiveness of mechanisms for facilitating or disrupting coordination depending on the structural

properties of the underlying graph model or class. We then build on the work done in [56], by

performing simulations over a wider range of graph-generating models, including geometric-based

models of special graph classes such as IP-SEG graphs, and explore in more detail the effects of

graph structure on decentralized coordination success. We find that reaching decentralized con-

sensus is challenging on graphs with geometric intersection models, including random geometric

graphs and IP-SEG graphs. We show that the chances for consensus can be improved, over all

considered graph classes and random generating models, by ensuring that the set of visible nodes

is connected. Through simulations, we demonstrate that by increasing the trust that agents have

in their visible neighbors, we can further increase consensus rates. Moreover, we find that there

is an amplified positive effect when optimized placement of visible nodes is combined with in-

creased trust in visible nodes. Finally, we discuss directions for future study, including alternative

placements of visible nodes and additional graph classes and associated generating models.

5.2 Effects of communication and strategic tension on decentralized coordination

Coordination between individuals plays a central role in many biological processes, often to facil-

itate energy saving. Examples include huddling in groups of penguins, drafting in flocks of birds

and schools of fish [108], and groups of ants working together to move a large object [84] or build

a bridge with their own bodies allowing other members of the colony to cross a gap in the foraging

trail [97]. Coordination is also ingrained in a wide range of human tasks, from navigation in large

crowds and coordination of cockpit members [60], to coordination between disaster response teams

on the ground and teams preparing to deploy [33, 100]. As a result, there is considerable literature

that explores mechanisms that facilitate more successful coordination [33, 81, 98].

Communication is considered to be one of the key mechanisms promoting human coordination

and has received significant attention in previous literature, including studies using human subjects

[42, 105] and theoretical methods [29, 38]. In most of this literature, communication is only allowed

in a distinct, pre-play stage, with particular focus on simple, two-player games. However, real tasks

involve a significantly greater number of coordinating agents and communication takes place during

the coordination phase. Further, in real coordination settings, the access to information and ability

71

to communicate are often localized.

In order to better account for such complexities, in [111], we investigate the effects of com-

munication on a more complex coordination task involving 20 players. The players are situated as

nodes of a network who can make decisions in real-time over a fixed time-horizon, but only observe

decisions by their network neighbors. This setup builds on a class of games introduced by Kearns

et al. [69, 73, 74], considering global consensus as the goal, but allowing agents to have clashing

individual incentives. Unlike most prior literature, we allow subjects to communicate while they

are making decisions in real time. Moreover, we explore the impact of a) communication restricted

to immediate neighborhoods, b) global communication across the entire network, and c) communi-

cation with strong constraints on the information content of messages, on the ability of subjects to

ultimately reach global network consensus, with or without strategic tension.

5.2.1 Experimental methodology

Echoing several prior experiments in networked consensus [69, 73, 74], we designed experiments

in which sets of 20 human subjects were assigned to nodes of a network and were asked to choose

one of two colors (red or green), with the primary objective of reaching a global consensus on a

single color. Subjects could see the color choices made by their network neighbors (or white, if no

choice had been made) and could change their own color at any point. The crucial novel element

in these experiments was the integration of an instant-messaging-like communication interface (see

Figure 5.1).

First we recruited workers from Amazon’s Mechanical Turk, a crowdsourcing online platform.

In the recruitment stage, each worker completed a simple three-question English language profi-

ciency test, followed by a tutorial that explained each part of the experimental setup, the networked

consensus task, and the web application interface. Once they completed the tutorial, participants

were required to affirm (by checking a box in an online form) that they were over the age of 18 and

that they had read and consented to the terms of participation. We also asked participants to indicate

their time availability and if they would agree to be contacted for scheduled experiment sessions.

Workers were able to participate in a full experiment session only after they have completed the

recruitment stage.

In total, we ran more than 250 games (instances of the networked consensus task) over 6 experi-

72

ment sessions, involving 131 distinct participants. Each game could last at most 60 seconds, but was

terminated as soon as consensus was reached. Each participant received a base payment of $0.15

per game. In addition, if the game reached consensus each player received a bonus. The magnitude

of the bonus depended on two things: 1) whether the game involved individuals with color prefer-

ences, and 2) which color was chosen as consensus. In the first case, no matter which color was

chosen in consensus, all subjects received $0.20. In the second case, if consensus was achieved in

which all players chose the individual’s preferred color, this participant received a $0.30 bonus; if,

on the other hand, the less preferred color was chosen in consensus, the bonus to this individual was

only $0.10. In all treatments involving color preferences (which constituted half of all treatments),

exactly 10 nodes preferred each of the two colors. To ensure quality of the data, we treated games

in which one or more participants did not choose a color at all as invalid, and removed these from

consideration. In the end, we were left with 239 valid games which comprised our first analysis.

In these experiments, we systematically varied four factors: a) communication form, b) com-

munication structure, c) color preferences, and d) network structure. Communication form involved

three treatments: no communication, which provided our baseline, local communication, where in-

dividuals could only send messages to their immediate neighbors, and global communication, which

allowed the individual’s messages to be seen by the entire network. With communication structure,

we controlled the extent to which exchanged messages were constrained through two treatments:

unconstrained, in which arbitrary natural language (or otherwise) messages could be exchanged,

and constrained, in which an individual could only send messages of the form “# of my neighbors

choosing green, # of my neighbors choosing red”. The “unconstrained” treatments did involve two

character-limit constraints: we imposed a 10-character limit on each message, and a 50-character

limit on all messages sent by a given node in a game. In the experiments, these character lim-

its appeared to be quite generous. We considered settings with no color preferences, and those in

which different participants faced conflicting preferences about colors (for example, some receiv-

ing a higher payout for a red, and others for a green, consensus); however, the number of subjects

preferring each color was always equal.

Finally, we considered three categories of network structure. The first set of networks were

generated using the Barabási–Albert preferential attachment model (BA) [8]. In this model, we

start with a set of q0 disconnected nodes and continue by successively adding one new node at a

73

time, connected to q (q ≤ q0) existing nodes with a probability proportional to the current degrees

of the existing nodes. Formally, the probability pi that the new node is connected to the existing

node i is pi = ki/∑ j k j, where ki is the degree of node i and the sum is taken over all existing nodes

j. The BA model is an example of a scale-free model with a node degree distribution that follows a

power law of the form P(k)∼ k−3. In other words, BA networks generally contain large numbers of

nodes with small degree, and a small numbers of “hubs”, which are nodes with very large degree.

The other two sets of networks were generated using the G(n,m) variant of the Erdős–Rényi

random graph model (ER) [39], in which a graph is chosen uniformly at random from the collection

of all graphs which have n nodes and m edges. In networks generated by the ER model, connectivity

is entirely random and they have approximately binomial degree distribution with a central peak near

the mean degree
2m
n

and rapidly decreasing probabilities for degrees away from the mean.

In all our experiments, we used networks of size 20 and set q0 = q = 3, which meant that the

BA model always produced networks with 51 edges. To try to differentiate between the effects that

network edge density – fraction of possible edges present in the network or
2|E(G)|
n(n−1)

– and node

degree distribution might have on the ability of subjects to reach consensus, we considered two sets

of ER networks: i) ER-Dense (ERD) with n = 20, m = 51, and ii) ER-Sparse (ERS) with n = 20,

m = 26.

5.2.2 Aggregate results: the value of communication and the importance of graph density

Prior research considering the role of communication in coordination has almost universally found

that allowing people to communicate improves their performance. However, most such investi-

gations were either not tightly controlled, were very small-scale, or allowed communication only

during a distinct pre-play phase, in which all individuals were allowed to discuss the task. Our

experimental setup aimed to more realistically capture the role of communication by embedding

it within the task itself and varying its form (local vs global) and structure (unconstrained vs con-

strained). We found that local communication had no significant benefit over no communication:

60% of all games were solved (subjects reached global consensus) when no communication was

allowed, while 61% of games were solved in the local communication treatments. On the other

hand, allowing subjects to communicate beyond local neighborhood boundaries (global communi-

cation), led to an overall consensus rate of 83%, a significantly higher fraction than either no or

74

local communication (p < 0.005 for both comparisons). Moreover, Figure 5.2a) shows that global

communication systematically dominates the other two forms (local and no communication) across

network structures. This observation remains consistent in treatments with or without color pref-

erence incentives (where people obtain a higher payout for consensus on one color rather than the

other). The difference is particularly significant in the sparser ERS networks, where global commu-

nication exhibits nearly double the success rate of local and no communication treatments.

Previous literature, as well as common intuition, suggest that natural language can significantly

improve the chances of success in human coordination tasks. Therefore, a plausible hypothesis

would be that imposing constraints on messages should significantly degrade ability of subjects to

coordinate. However, we find that the opposite is true. Namely, approximately 67% of games with

unconstrained communication were solved, compared with 77% of games solved when only a single

type of message could be sent (counts of the two colors in one’s neighborhood) (comparison was

significant at p < 0.05). As Figure 5.2b) shows, this observation extends to both local and global

communication settings. However, the primary difference between consensus rates arises in BA

networks (see Figure 5.2c)).

Looking at Figure 5.2a) again, the consensus rates in games with dense ER networks appear

to match those in games with BA networks, but players are less successful in games over sparse

ER networks when communication is not global. While this is a very limited setting with only two

levels of network density considered, the above observation agrees with previous literature in that

higher density should improve the chances for successful coordination in networked settings. On the

other hand, it appears that the presence of global communication can be quite helpful in overcoming

the challenge posed by lower network density.

Previous research has also found that the existence of network hubs (high-degree nodes) may

help facilitate coordination. While we do not observe this consistently across treatments - Fig-

ure 5.2a) shows virtually no difference between consensus rates over ER and BA networks of

the same density - we do observe significantly higher consensus rates in games with constrained

communication than in games with unconstrained communication, when the underlying network is

generated using the BA model (Figure 5.2c)). In fact, this difference persists in local constrained

communication settings (significant at p < 0.05). This suggests that the presence of network hubs

can be helpful when combined with appropriate constraints on communication structure. In our

75

experimental treatments, in particular, hub nodes in BA networks were often able to observe the

color choices of 65-85% of network nodes. Therefore, the constrained messages they were send-

ing, describing the state of their neighborhood at time t, were very good approximations of the

global network state at time t. In addition, their high degree may also explain why in games on BA

networks, constrained communication offered significant improvement over unconstrained commu-

nication, even when nodes were only allowed to communicate locally - a message sent by a hub

node to its neighbors will be received by a sizable majority of nodes.

5.2.3 Individual behavior

To better understand the aggregate findings discussed above, we developed a parametric behavior

model, making use of the following parameters which we hypothesize were the primary observable

drivers of individual behavior:

• Game stage: we divided the game into three stages, beginning, middle, and end; the latter

two stages (middle, end) were represented as binary variables (the beginning becoming the

default).

• Number of neighbors (neighbors): the number of neighbors of a player.

• Fraction of neighbors choosing a different color (opposite color): the fraction of a player’s

neighbors who are choosing a different color from the decision maker.

• Relative excess of received messages promoting different color over the same color (op-

posite message): the count of messages received that suggest using a different color less

the count of messages promoting the same color as currently chosen by the decision maker,

measured over the previous 15 seconds.

• Preference for currently chosen color (prefer current): whether the player would earn

higher payout if their currently chosen color becomes the consensus choice.

We discretized time at 1 second intervals and used a logistic regression to predict the probabil-

ity that an individual will change their color in the next 10-second interval. We developed 5 such

models, one for no communication, and one for each of the four combinations of communication

76

forms (local vs global) and communication structure (unconstrained vs. constrained), with all vari-

ables normalized to facilitate cross-variable and cross-model comparison. The results are shown in

Figure 5.3. We found that behavior is broadly consistent across the different settings. As one might

expect, having a greater fraction of neighbors with and receiving more messages advertising the

opposite color increases, while the player preferring their current color reduces the chances that the

player will change their color, in all communication settings. An intriguing observation is that the

prevalence of messages advertising the color not currently chosen have the greatest impact on an

individual’s decision to switch, in most cases far greater than any other factor. In fact, it appears to

be the strongest factor in local communication, even though we have found it to offer little improve-

ment in facilitating coordination. Similarly, the impact of such messages on decisions only seems to

diminish as we introduce constraints. What this strongly suggests is that it is the information content

of messages, rather than behavior in response to these, that explains our aggregate observations.

To explore this hypothesis, in [111] we developed a quantitative measure of marginal informa-

tion about the global state conveyed by messages over time. With this measure we tried to capture

how much closer to the global state (proportion of network nodes having the current majority color)

a recipient’s observed information is after receiving messages over a fixed unit of time than they

were prior to these messages (based on both choices by immediate neighbors, as well as messages

received in the past). We refer the reader to [111] for the formal definition of the measure. We

include an informal description, through example, below.

We focused on messages that could be perceived as suggestions for recipients to stay with or

change to a particular color. For a recipient in the unconstrained communication setting, such

messages might include "choose red", "red wins", or simply "red" (all of them indicating that the

recipient should stay with or change to red), but do not include messages like "Sam", "come on", or

"ignore pay". For recipients in the constrained communication setting, we assumed that they would

treat messages reporting more neighbors of one color ("3 red, 2 green") as suggestions to stay with

or change to that color (red). Now, suppose that recipient Y’s neighborhood was predominantly red

or in the past she had mostly received messages suggesting red. However, more recently she had

started receiving significantly more messages suggesting green and the actual global majority color

is green. In this scenario, we consider the recent communication this player received to have high

marginal information as it better indicates the current global state of the network than the player’s

77

neighborhood or past received communication.

Using this this approach, we found that marginal information conveyed by messages over time is

significantly greater in global communication than in local, particularly early in the games, which is

partly due to the fact that more messages are received in global communication treatments. We also

found that difference in marginal information is especially significant in sparse ER networks, ex-

plaining the rather dramatic advantage of global communication in such settings. We also observed

that constrained communication games involved messages with higher marginal information earlier

during the game for dense ER and BA networks, speeding up consensus. This partially explains

why constrained communication settings achieved somewhat higher consensus rates.

5.2.4 Summary of findings

Much of prior literature has found that communication has substantial value in facilitating coordi-

nation. This seems quite natural when one considers the importance of communication in everyday

small-scale coordination activities, ranging from who picks up the kids from school to how a par-

ticular complex task should be split among several workers. Game theoretic literature, in particular,

has explored extensively the strategic role of “cheap-talk” communication, taking for granted the

role it serves in providing valuable information about the state of the world. Our experiments ex-

plored communication as embedded in a networked coordination task, allowing subjects to make

decisions and communicate in real time, and we systematically investigated the impact that different

constraints on communication play in its value to the coordination task. From a behavioral stand-

point, we found that people indeed “respond” to messages that they receive: specifically, they are

significantly more likely to change their decision if it conflicts with received messages. This behav-

ioral trait is consistent across all communication treatments. The key difference is how informative

received communication is. When people can only discuss the task locally, little information about

global state is ultimately conveyed. In contrast, global communication is clearly far more informa-

tive, and that ultimately leads to improved performance. We see some evidence that constraining the

structure of local communication could add some value, but this appears to be limited to network

settings containing well-connected hubs whose messages can relay a very good approximation of

the current global state to a sizable portion of the population. The consideration of information

conveyed in communication has not figured significantly in prior literature, even though realistic

78

communication contexts are, typically, local. Consequently, our findings suggest that unconstrained

communication through local channels may be insufficiently effective in promoting global coordi-

nation, and entities, such as media and government, with the ability to reach a broad array of the

population may have a critical role to play in facilitating coordination.

5.3 Decentralized coordination in the presence of adversarial and trusted agents

There has been considerable prior literature devoted to studying and modeling human behavior in

networked coordination settings, including networked consensus [69, 73, 74, 111], coloring [69, 85],

bargaining [18], and social dilemma games [53]. However, decentralized coordination often takes

place in the presence of adversarial agents. For example, organizations attempting to coordinate on

a strategy may also compete with other organizations, and coordination in combat mission planning

and execution inherently faces adversarial entities in the form of enemy combatants. Addition-

ally, in many settings adversaries attempt to exert their influence undetected, such as by bribing

insiders, taking control of network nodes through cyber attacks, and spreading fake information

[5]. Therefore, it is important to consider resilience to adversarial tampering with the decentral-

ized coordination process. While existing research has devoted considerable attention to ensuring

robustness to faults and attacks, it has mostly done so assuming that non-malicious agents follow

simple stylized models of individual behavior [2, 14, 79]. However, many settings feature human

actors who play an important role in reaching consensus.

In this section, we will discuss one of the first studies to address the question of human behavior

in adversarial coordination settings by Hajaj et al. [56]. This study investigates the problem of

decentralized consensus on networks in the presence of adversarial nodes, first using human subject

experiments with 556 participants, and subsequently through the data-driven agent-based modeling

(DDABM) methodology [113]. The experiments explore two design factors and their potential

to mitigate adversarial influence: allowing neighboring nodes to communicate and embedding a

small set of trusted nodes in the network. Note that in [111], discussed in Section 5.2, we found

that communication among network neighbors has limited value in facilitating consensus. On the

other hand, much prior research, using stylized models of individual behavior, has argued that the

presence of trusted nodes can significantly facilitate decentralized coordination [1, 2, 109].

The results in [56] that we will discuss in this section, run counter to both of these observations.

79

First, they demonstrate that local communication can help a great deal, especially as the number of

adversarial nodes is increased. Second, they show that the presence of trusted nodes does not, in the

aggregate, help, reinforcing the need to develop better models of individual and collective behavior

in such settings. Next, Hajaj et al. develop a data-driven agent-based model of adversarial decen-

tralized consensus on networks, following the DDABM methodology [113]. In DDABM, individual

agent models are derived from data, and are then instantiated in an agent-based framework via fea-

tures that capture behavioral inter-dependencies among network neighbors. These agent models

serve three purposes. First, like the descriptive models of individual decision-making in [111], they

provide further insight into individual behavior. Second, the resulting agent-based model effectively

captures the experimental observations at the macro level, and is quite robust to small errors in the

individual agent models. Third, it demonstrates the usefulness of the derived computational plat-

form as a means for further simulation-based investigation of the adversarial consensus problem.

This last point will form the foundation of our work presented in Section 5.4, where we explore the

influence of network structure on decentralized coordination over a much wider range of network

generating models, including some restricted to special graph classes.

5.3.1 Experimental methodology and aggregate results

The general experimental setup of Hajaj et al. in [56] largely replicated that in [111] which we

discussed in Section 5.2. There was, however, one change that turned out to be quite consequen-

tial. The visual game interface in [111] featured a progress bar, showing how close the overall state

is to global consensus (measured by the percentage of nodes having the majority color). In the

new setting, however, such a progress bar communicated too much information, particularly when

adversaries were present, and it was therefore removed (particularly since it did not have a clear mo-

tivation and was just a design artifact of prior sets of experiments [69, 73]). Removing the progress

bar increased the importance of local unconstrained communication (there were no treatments with

global or constrained communication in these experiments), relative to our earlier findings in [111].

The above experimental framework was augmented with several features in order to study how

adversarial nodes impact the ability of the rest (i.e., the non-adversarial sub-network) to reach global

consensus. Namely, players were divided into two teams: a consensus team and a no-consensus

team (in our parlance, these are the adversaries). The goal of the consensus team is to reach global

80

consensus among members of this team only. The goal of the no-consensus team is to prevent

consensus among members of the consensus team. The bonus payout of each player was contingent

on their team achieving its goal. Unlike in [111], there were no treatments with competing incentives

among players of the same team. At the beginning of the game, each player was assigned to one of

these teams, and this assignment was indicated in their view of the game.

The number of consensus players in each game was fixed to 20, to control the baseline difficulty

of the task (the underlying consensus problem on networks becomes more difficult as the network

size grows, other things being equal). In addition, in each game there were a no-consensus players

introduced, where a ∈ {0,2,5}. The value of a was not disclosed to the players at the beginning of

a game; although an omniscient observer can infer it from the size of the overall network (which

is 20+a), no player could, in fact, do this, since players could only observe their direct neighbors,

and the maximum node degree was limited to 15 to facilitate effective visualization. Adversaries

(no-consensus nodes) were non-visible to others, including other adversaries.

Additionally, it is often possible to have a small number of known reliable or trusted nodes

on the network, for example, nodes which are particularly difficult to compromise due to a high

amount of investment in their security, and conventional wisdom is that such nodes can greatly

facilitate consensus [2]. To allow for this, visible members (henceforth, visible nodes) of the con-

sensus team were introduced. The number v of visible nodes was also varied, with v ∈ {0,1,2,5}.

These nodes were visible only to their immediate network neighbors, which in the game interface

was highlighted by an orange circle around the corresponding nodes. As in [111], three network

structures were explored: BA, ER-dense, and ER-sparse. Average degrees increased slightly due

to the addition of adversarial nodes. For example, BA and dense ER networks on 20 nodes had a

mean degree of 5.1, whereas those on 25 nodes had a mean degree of 5.28. Nevertheless, the overall

goal of differentiating between the effects of network density and those of degree distribution on

decentralized coordination, remained.

The human subjects - 556 in total - were again recruited through the Amazon Mechanical Turk

platform and they jointly played 1,080 games. The measure of coordination success used was

the consensus rate - the proportion of games reaching global consensus on a single color among

members of the consensus team. We now give a brief overview of some of the aggregate experiment

results.

81

Confirming intuition, having adversarial players participate in the game did have a statistically

significant deleterious impact on consensus rate (p < 0.01). Delving deeper, they distinguished

between two kinds of impact adversaries can have: structural (the presence of adversarial nodes

may lead to the subgraph formed by consensus nodes being poorly connected or disconnected) and

behavioral (color choices made or messages sent by adversaries may mislead neighboring consensus

nodes). Their analysis confirms that in the experiments with human subjects, adversaries can indeed

have both kinds of negative impact on coordination between consensus nodes.

Hajaj et al. also find that allowing unconstrained communication between neighbors has a clear

positive impact on reaching consensus: when no adversaries are present, communication increases

consensus rate by 23.5%, with 2 adversaries improvement rises to 35.1%, and with 5 adversaries

games that feature communication are 54.5% more likely to reach consensus than those that do

not. In particular, they find that in settings where adversaries have significant structural impact (the

subgraph of consensus nodes is disconnected), communication appears to neutralize the behavioral

impact of adversaries. They note that communication helps even when there are no adversaries,

in contrast with prior results [111]. The key distinction, as mentioned earlier, is the absence of the

progress bar: without this source of global information, communication becomes considerably more

informative.

In terms of the impact of network structure, the main observation made by Hajaj et al. is that

BA are more resilient in the presence of adversaries. In particular, when no communication is al-

lowed, the addition of adversaries leads to drop in consensus rates across network structures, but

it is less pronounced on BA networks than on ER-dense networks. Moreover, when local uncon-

strained communication is allowed, 2 adversaries are unable to significantly impact consensus rate,

suggesting that when only few adversarial nodes are present, the ability to communicate endows

scale-free networks with resilience even in the face of behavioral manipulation [56].

Finally, prior research that used stylized models of node behavior had demonstrated that the

presence of trusted nodes can significantly improve the resilience to attacks [1, 2, 109]. However,

in this experimental setting with coordination between human participants, Hajaj et al. find that

the value of trusted nodes is limited. They explain that typical models assume that trusted nodes

cannot be attacked, whereas in this setup, trusted nodes (as any other node) have no information

about who the adversaries are and can also be influenced by the attackers. Nevertheless, they do

82

find that allowing players (including the trusted node) to communicate can improve resilience when

there are many adversarial nodes.

5.3.2 Modeling of individual behavior and agent-based simulations

In [111], we followed the analysis of aggregate experiment results by developing models of individ-

ual behavior to better understand what are the main factors affecting when players decide to change

their color (after they have made an initial choice). Hajaj et al. also proceed by developing models

of individual behavior, but in addition to being interested in describing individual behavior, they

specifically tailor the models to allow for agent-based simulations both with the goal of both val-

idating the models on a macro level (how closely aggregate simulation outcomes match aggregate

experimental results) and providing a computational platform for additional investigation of decen-

tralized coordination on additional treatments not explored in experiments with human subjects.

Given that communication in these experiments allowed for messages without constraints on

their structure and it is not clear how to model this in a simulation, the authors focus on the setting

with no communication. This, combined with the fact that players only choose between two colors,

might make one think that the modeling task ahead should be straightforward. There are several

complications, however. The first is that individual nodes have one of three roles: adversarial, visi-

ble, and regular (members of the consensus team that are not visible). It is intuitive that adversarial

nodes would behave differently from others, but as the models below will show, there is also a

difference in behavior between visible and regular nodes, even though they are both members of

the consensus team. Second, nodes in any of the above three roles may behave differently depend-

ing on whether they see visible nodes in their neighborhood. Finally, the third challenge involves

modeling real-time color choices by players. To address the first two challenges, 6 individual agent

models were created: two models for each role, one of which was for situations with visible neigh-

bors and another for situations without any visible neighbors. The third challenge was addressed by

discretizing time into 1 second intervals, leading to at most 60 decision points in a game.

An additional complication that needed to be addressed was the fact that agents make two kinds

of decisions during the span of a game: first, as they start as “white”, they must choose an initial

color, and subsequently, they choose whether to switch their color. The initial decision is a deliber-

ate choice of a particular color, and includes both the timing of the choice, as well as the particular

83

choice between red or green color. Once they have chosen an initial color, players exhibit a consid-

erable amount of inertia - they change color less frequently than once every 20 seconds on average.

Given the inherent symmetry of their decision at this point (players do not have a preference for one

color over the other beyond reaching consensus), it can be modeled as the timing of their next color

switch. Consequently, the authors developed and trained 3 different models for each of the 6 com-

binations of roles and neighborhood assignments: 1) timing of initial color choice, 2) initial color

choice, and 3) timing of color switch. We refer the reader to [56] for additional detail regarding the

models. Below we give a brief description of the features being used.

• Dt : absolute difference between the fraction of player’s neighbors of type t that picked red

and the fraction that picked green.

• Nt : number of a player’s neighbors of type t.

• Gt : fraction of a player’s non-visible neighbors of type t choosing green.

• Rt : fraction of a player’s non-visible neighbors of type t choosing red.

• Ot : fraction of a player’s non-visible neighbors of type t choosing the opposite color from the

one chosen by the player.

• Ct : fraction of a player’s non-visible neighbors of type t choosing the same color as the player.

Note that features will have two instances, based on the type of neighbors they are referring to:

vis for neighbors that are visibly on the consensus team and inv for non-visible neighbors whose role

(regular or adversarial) is not discernible to the player. Additionally, Ot and Ct are only meaningful

when the player has made an initial color choice and are only used in the timing of color change

models. The subsets of features used by individual models can be seen in Tables 5.1, 5.2, and

5.3 (these are Table 1, 2 and 3 in [56], respectively). Note that the absence of a coefficient value

indicates that the column feature is not used by the corresponding row’s model. Each of the 18

models is represented by a logistic regression with these features, the coefficients of which were

learned from experimental data. Also, l1 (sparse) regularization was added to control for overfitting,

with a regularization parameter tuned using cross-validation.

84

Figure 5.1: A: an example graphical interface from the point of view of an experimental subject,
who is represented by a node in the network. The subject can see both her own node (labeled
as “Me”) and her network neighbors (labeled with their pseudonyms, randomly assigned at the
beginning of a game), as well as connections among her neighbors. The subject can also observe her
current total payout in the experiment session (over all games played thus far). In some treatments
individuals had preferences about which color is chosen in consensus; these preferences in terms
of the potential payouts are shown on the left. Also on the bottom left portion of the interface the
subjects see both progress towards global consensus, as well as time remaining in the game. Finally,
in games involving communication, an instant-message-like interface is shown on the right, with a
box where messages can be viewed and entered. A clearly labeled sign describes whether the player
is allowed to engage in LOCAL or GLOBAL communication. B: example instances of networks
generated by the 3 models considered, where darker colors indicate higher node degrees. This figure
appears in [111] and can be accessed at https://doi.org/10.1371/journal.pone.0170780.g001.

Table 5.1: Timing of initial color choice, P(choose a color).

Type VN Intercept Dinv Dvis Ninv Nvis

Reg No -1.952 1.290 0.000
Yes -2.210 0.548 0.933 0.002 0.016

Vis No -2.045 1.742 0.040
Yes -1.734 0.579 0.840 -0.061 0.048

Adv No -2.284 1.250 0.011
Yes -2.744 0.802 0.662 0.025 0.155

85

https://doi.org/10.1371/journal.pone.0170780.g001

a) b) c)

Figure 5.2: a) Differences in consensus rate under different communication forms grouped by net-
work structure. b) differences in consensus rate for constrained and unconstrained communication,
in local and global treatments. c) differences in consensus rate under different communication struc-
tures grouped by network structure.

Figure 5.3: Coefficients of a logistic regression model of individual behavior, relating different
aspects of the information available to a player to the likelihood of that player changing their current
color. This figure appears in [111] and can be accessed at https://doi.org/10.1371/journal.pone.
0170780.t002.

Table 5.2: Initial color choice, P(red | choose a color).

Type VN Intercept Ginv Gvis Rinv Rvis

Reg No 0.000 -4.863 5.032
Yes -0.066 -2.855 -2.022 3.453 1.733

Vis No 0.109 -4.411 4.202
Yes 0.188 -3.215 -1.599 2.395 1.996

Adv No -0.023 0.817 -0.649
Yes -0.286 0.172 0.732 -0.204 0.000

86

https://doi.org/10.1371/journal.pone.0170780.t002
https://doi.org/10.1371/journal.pone.0170780.t002

Table 5.3: Timing of color switch, P(switch color)

Type VN Intercept Oinv Ovis Cinv Cvis Ninv Nvis

Reg No -3.98 2.65 -0.33 -0.01
Yes -3.79 1.10 1.48 -0.87 0.09 0.00 -0.03

Vis No -4.11 2.70 -0.10 -0.01
Yes -3.53 1.07 1.27 -0.33 -0.29 -0.06 0.00

Adv No -2.80 -1.13 1.19 0.00
Yes -2.72 -0.60 -0.37 0.95 0.30 0.00 -0.20

Looking at the trained models, we can say that they broadly agree with expectations. Players on

the consensus team tend to choose the color that a majority of their neighbors currently have, while

adversarial players tend to go in the opposite direction, trying to disrupt the formation of a clear

majority in their neighborhood. We include a couple of observations regarding the decision-making

of individual players, made by Hajaj et al. that were somewhat unexpected [56]. First, for players on

the consensus team, disagreement among visible neighbors has a more significant, positive impact

on the likelihood of them choosing an initial color at a particular time point. Adversarial players, on

the other hand, seem to react more strongly to disagreement between non-visible neighbors (see Ta-

ble 5.1). These dynamics can also be observed in the timing of color switch models (Table 5.3), with

consensus team members reacting more strongly to the decisions made by their visible neighbors

and adversarial players being more influenced by the decisions of their non-visible neighbors. Sec-

ond, when deciding whether to choose red or green as their initial color (see Table 5.2), adversarial

nodes appear to act relatively unaggressively: the negative relationship between neighbor choices

and their own initial color choice is relatively slight, in comparison with the magnitude of the posi-

tive relationships for the regular nodes (note that the values of all features used by the initial color

choice models fall in the range [0,1], so this comparison is meaningful). This unaggressiveness of

adversaries continues to persist even after they have made their initial choice and they are deciding

when to make a color switch (see Table 5.3). The authors conjecture that the explanation for this

is that adversaries are attempting to achieve their disruptive goals without being overly obvious to

their non-adversarial neighbors.

Hajaj et al. validated their models individually, based on how good they were in predicting the

decisions actually taken by human subjects finding themselves in the corresponding setup during

87

the experiments. In particular, they found that all 18 models were highly effective: they either ex-

hibited high accuracy (90-95%), or large likelihood improvement over a frequency-based baseline

(50%-100% improvement). In addition, they validated the collection of models as a whole, in terms

of aggregate outcomes of agent-based simulations. In particular, for each of the environments ex-

perienced by human subjects in experiments, they constructed an agent-based model (ABM) with

agents being instantiated as nodes on a network and each agent being assigned one of the three

roles. The network and the role assignments are generated exogenously, using the same methods

and parameters used to generate the corresponding experimental environment. After running agent-

based simulations across the full set of experimental environments the authors found a reasonable

quantitative agreement, with the largest deviation between simulation outcomes and the experimen-

tal consensus rates being within 0.14. The qualitative agreement was even stronger. Simulation

consensus rates were dropping as the number of adversaries was increased. In addition, simulation

consensus rates were highest on BA networks, closely followed by ER-dense networks, while the

lowest consensus rates were observed on ER-sparse networks. They add one final validation step,

where they show that their set of models are robust to perturbations in the model parameters.

After extensive validation, Hajaj et al. proceed by performing additional simulations using the

above models, to explore settings that were not covered in the experiments with human subjects.

Namely, in the experiments, roles were randomly assigned to nodes. In their simulations, the au-

thors consider scenarios where the visible nodes or the adversarial nodes could be placed optimally

(from their team’s perspective) on the network. The heuristic used as a proxy to optimality is the

number of unique neighbors that players with the corresponding role have. For example, if the no

consensus team had the opportunity to try and maximize their potential influence before the game

starts, one intuitive way to do it would be to position themselves on a set of nodes A whose union

of neighborhoods is as large as possible (the ideal case being when A is a dominating set of the

entire graph). The simulation results lead the authors to several interesting observation. First, it

appears that even with optimized placement of visible (trusted) nodes, their value remains limited

in settings with no adversaries. On the other hand, when adversarial nodes are afforded optimized

placement, they are highly effective. In fact, this is true even if the "best" nodes were given to the

visible nodes first, and adversarial nodes only had the chance to "optimize" their placement on the

remaining nodes of the network. Nevertheless, the authors do observe that in simulated games with

88

adversaries, having 1 or 2 visible nodes placed optimally does help (compared to not having visible

nodes at all), particularly on BA networks.

5.3.3 Summary of findings

In [56], Hajaj et al. consider the problem of adversarial consensus on social networks, with both

conducting experiments with human subjects and performing agent-based simulations. Their ex-

periment results show that the ability to communicate locally, can significantly improve coordina-

tion success despite adversarial presence, but randomly placing trusted nodes within the network

is of limited value. They use experimental data to construct and validate an agent-based model

of adversarial consensus, opening the possibility of exploring settings not covered in experimental

treatments through agent-based simulations. Finally, they make the first steps in this direction by ex-

ploring settings where the placements of visible or adversarial nodes are not both random, and show

that the ability of visible nodes to counter adversarial influence may be increased if their placement

is optimized.

5.4 Further exploration of the effects of graph structure through simulations

In this section, we extend the work done in [56] by using agent-based simulations to explore de-

centralized networked consensus across a wider variety of treatments [65]. We take another look

at structural properties such as density and degree distribution that affect the ability of agents to

coordinate and explore what happens in certain extreme network examples. We explore additional

node placements and consider potential individual behavior changes (simulated through model co-

efficient modifications) and we show that they can significantly increase the value of trusted nodes

and, as a consequence, improve the chances for consensus. Finally, we examine decentralized con-

sensus on an expanded set of network topologies and show that consensus can be particularly hard

to reach on networks arising from geometric models.

5.4.1 Structural properties and extreme graph examples

Recall that the experiments in [111] and [56] explored the effects of network structure on decentral-

ized consensus rates across two dimensions: density and degree distribution. Two levels of network

density were considered: one in the range [0.11,0.14) (for sparse ER networks) and another in the

89

range [0.22,0.27) (for BA and dense ER networks). Similarly, two types of degree distributions were

considered: normal (sparse and dense ER) and power-law (BA). The experimental results, agree-

ing with prior literature, suggested that increase in network density facilitates better decentralized

coordination. Similarly, the presence of hubs in networks with power-law distributions, leads to

consensus rates that are higher than in networks with normal degree distributions. Our first set of

simulations offers a more fine-grained look at the role that degree distribution plays.

Consider the baseline setting with no adversarial or visible nodes, on networks of size 20. In line

with expectations, on the lower end of the density spectrum we observe consensus rates of 26.3%

on trees generated with the BA and 13.1% on trees generated with the ER model. The most extreme

trees in terms of degree distribution are paths (almost uniform distribution) and stars (one hub, with

all other vertices pendant to it). Unsurprisingly, we find that reaching consensus on a path of 20

vertices is extremely difficult, while the opposite is true in the case of a star graph (see Table 5.4).

Table 5.4: Consensus rates on trees with different degree distributions.

Tree type Path ER BA Star
Consensus rate 8.2% 13.1% 26.3% 94.3%

In [57], the authors looked at how the consensus rate on ER and BA networks changes as we vary

the density from 0.1 to 0.5 and noted that BA networks are more conducive to consensus at lower

density levels, but the difference becomes almost negligible as the density increases. Nevertheless,

for both network models, increasing the density does lead to higher consensus rates. For complete-

ness, here we consider the full density spectrum. In addition, we introduce denser generalizations of

the path and star graphs to see what effects adding more edges to such extreme examples can have.

We define as a k-wide-path (kwPATH) the graph on n vertices formed by taking a path on n vertices

and adding all edges between vertices i, j such that j− i = k. We call the graph formed by a clique

of size k and n− k vertices, each of which is adjacent to all vertices of the initial clique, a k-star

(kSTAR). Note that 1-wide-path and 1-star are simply a path and a star on n vertices, respectively.

We also consider a slightly different generalization of the star graph – a k-wide-star (kwSTAR) –

where instead of having a central clique of size k, we have only one vertex of degree n−1 and n−1

vertices of degree 2k−1. The 2-wide-path, 2-star, and 2-wide-star graphs on 6 vertices are shown

in Figure 5.4.

90

Figure 5.4: The 2-wide-path (left), 2-star (middle), and 2-wide-star (right) on 6 vertices.

Figure 5.5: The effect that degree distribution has on the consensus rate, across different levels of
graph edge density.

Figure 5.5 offers several interesting observations. First, adding edges to a graph, does not always

lead to a higher consensus rate. In particular, when there are no adversaries present, having all nodes

being connected only to a single hub is much better than having additional connections between the

peripheral nodes (compare kSTAR with kwSTAR). Having more than one hub can also be somewhat

detrimental (see kSTAR as we increase density). Finally, for very dense graphs, there is much less

room for difference between the degree distributions and the consensus rate starts to level off.

5.4.2 Increasing the value of visible nodes

Prior work on decentralized coordination in stylized settings where the agent models are pre-defined

(rather than trained on data from experiments with human subjects) has found that the presence of

91

visible nodes can significantly improve coordination [1, 2]. Experiment results in [56], however,

found the presence of visible nodes being of limited value. Through the use of ABM simulations,

the authors found that having visible nodes can somewhat improve consensus rates if their placement

is optimized so that the union of their neighbors, or their reach, is as large as possible (i.e. the set

of visible nodes is as close to a dominating set as possible). The improvement was particularly

noticeable in BA networks, but nonetheless, was smaller than expected. The authors also noted that

having too many visible nodes can be detrimental due to the increased potential for miscoordination

among visible nodes themselves.

In this subsection we explore how the value of visible nodes can be further increased across two

fronts. First, we show that when trying to optimize the placement of visible nodes, sacrificing some

of the reach that visible nodes have (in terms of neighbors) to improve the connectivity between

them, can lead to higher consensus rates. Second, through modifications of the individual behavior

models, we find that human subjects may not be making the most out of the presence of visible

nodes. We present several model modification approaches and argue that it is possible to further im-

prove consensus rates by increasing the trust that players have in visible nodes through mechanisms

such as additional pre-play training or modified coordination incentives. Further, we show that com-

bining an optimized placement of visible nodes with adjustments to individual decision-making can

have a compounding effect on coordination.

5.4.2.1 Placement of visible nodes: Connected dominating sets

In [57], the authors mention that the drop-off in consensus rates when increasing the number of

visible nodes is likely due to more often having subgroups of visible nodes being disconnected from

each other. In addition, an earlier work on a consensus protocol in the presence of visible nodes

[2] identifies connected dominating sets as a particularly robust option for where to place visible

nodes. Of course, this is not directly transferable to our decentralized consensus setting with human

subjects as the agents, since we have a limit of 5 visible nodes, but networks will not always have a

connected dominating set of size≤ 5. Instead, we modify the notion of optimizing the placement of

visible nodes to maximizing the reach that visible nodes have, under the constraint that the subgraph

they induce is connected. To better isolate the effect that connectivity between visible nodes has on

coordination, we also consider the setting where visible agents are positioned on the nodes of a

92

randomly selected connected subgraph. For the next set of simulations, we keep the rest of the

setup as in the experiments in [56]: we consider BA, dense ER and sparse ER networks, and we

consider settings with 0, 2, and 5 adversaries. Adversaries, if any, are still assigned randomly, after

visible nodes have been placed. The results, aggregated by the number of visible nodes, are shown

in Table 5.5.

Placement of visible 2 visible 5 visible
random 26.60% 27.21%
random | connected 30.71% 30.31%
max reach 35.12% 29.51%
max reach | connected 37.44% 32.62%

Table 5.5: Consensus rates on treatments with 2 and 5 visible nodes, under different visible node
placements. In all settings, adversarial nodes are placed randomly.

First, we observe that ensuring connectivity, while trying to maximize the reach of visible nodes,

is a slightly better approach than optimizing reach only. Second, ensuring connectivity between

visible nodes helps even when we are not trying to optimize their reach. This may be useful in

settings where increasing the reliability of multiple hub nodes may be too expensive, but we can still

gain some coordination improvement by securing a set of lower-degree connected nodes. Finally,

even though ensuring connectivity while maximizing reach does help, it does not resolve the drop-

off in consensus rate we observe when going from 2 to 5 visible nodes. This suggests that the

difficulty larger numbers of visible nodes have coordinating among themselves is only in part due

to their placement and connectivity. How agents, including visible ones, behave in the presence of

visible neighbors, may be another significant reason.

5.4.2.2 Model modifications: Increase trust in visible nodes

The coefficients of individual behavior models shown in Tables 5.1, 5.2, and 5.3, suggest that co-

operative players try to strike a balance between what their visible and invisible neighbors have

chosen when making their own decision. Given that a cooperative player’s neighborhood may con-

tain multiple adversarial players as invisible nodes, it is worthwhile considering how much weight

a player should give to each type of neighbor when considering their own decision. Is it better for

cooperative players to follow the overall majority in their neighborhood, especially since very often

they would only have 1 or 2 visible neighbors? Could coordination improve if each cooperative

93

player P tried to more closely follow her visible neighbors and trust their judgement (which may be

based on additional information from nodes that P is not able to see)?

We explore these questions through simulations using modified models of individual behavior.

Since players spend most of their time in the game having already selected an initial color, we

focus only on the color-changing models of cooperative players. Further, since we are interested in

modifying the importance that cooperative nodes place on the choices of their visible neighbors, we

focus only on the models for cooperative players that have visible nodes in their neighborhood. We

consider model changes of the following kind. Given a tuning parameter t in the range [0,1], we

change the coefficients (Oinv,Ovis,Cinv,Cvis) to ((1− t)Oinv,Ovis + tOinv,(1− t)Cinv,Cvis + tCinv).

Intuitively, the larger the value of t is, the more importance a node gives to what their visible

neighbors, as opposed to their invisible neighbors, do.

Note that increasing or decreasing an individual model coefficient may effectively lead to an

increase or decrease in the frequency of color changes made by an agent. For example, only in-

creasing the value of the Ovis coefficient, will effectively make the agents play the game at a faster

pace, which will by default increase their chances of consensus (it is somewhat similar to giving

players more time to complete the task). With the above model transformation in which we increase

one coefficient, at the expense of another, however, we control for this - if a player P’s neighborhood

is fully red, for example, they would be equally likely to change their color for any value of t. This

is in line with how the original models of players without visible neighbors relate to those of players

with visible neighbors – there a portion of the value of Oinv is essentially transferred to Ovis when

visible nodes are introduced.

Model variation 1 visible 2 visible 5 visible
ttt === 000 (no modification) 26.56% 26.60% 27.21%
ttt === 000...222555 26.28% 27.91% 29.68%
ttt === 000...555 27.32% 29.04% 31.38%
ttt === 111 28.85% 30.60% 34.86%

Table 5.6: Consensus rates under different modifications to the color-changing models of cooper-
ative players with visible neighbors, grouped by the numbers of visible nodes. Both visible and
adversarial nodes are selected randomly.

As before, the remaining treatment aspects in these simulations followed the experimental setup

from [56]. We can see from Table 5.6 that as we vary t from 0 to 1, there is some increase in the

94

consensus rate, it being more pronounced when more visible nodes are present, but this increase

is not as large as one might expect. In particular, the increase when 2 visible nodes are present,

even for t = 1, appears to be somewhat smaller than the increase we saw in Table 5.5 when we

optimized the placement of visible nodes with respect to reach and connectivity. On the other hand,

in games with 5 visible nodes, the t-based modifications to the model led to matching or slightly

better consensus rates than placing the visible nodes optimally. In fact, we no longer see a drop-off

in the consensus rate in games with 5 visible nodes, in contrast to what we observed in the earlier

set of simulations which used the original models of individual behavior. This offers support for our

hypothesis that miscoordination between visible nodes is also due to agents playing sub-optimally

in the presence of visible neighbors. In other words, trusting visible neighbors even more is a better

strategy than equally valuing the choices of visible and invisible neighbors.

5.4.2.3 Optimizing visible node placement and modifying agent behavior in the presence of

visible nodes

The fact that optimized placement of visible nodes and modifications to agent behavior are both able

to improve coordination, but achieve that by increasing the value of visible nodes across separate

dimensions, leads to the natural question of what gain can we expect if we combine the two. Main-

taining the same overall setup, we explore this question through simulations. Table 5.7 contains the

results.

Overall, the results show a synergy between optimizing the placement of visible nodes and

modifying the color-changing models of cooperative agents so that they value choices by visible

neighbors more. These compounded improvements in consensus rates are noticeable even for t =

0.25. Notice that for visible nodes placed on a random connected subgraph, we no longer see a

drop-off, but a sizeable increase, in the consensus rate when going from 2 to 5 visible nodes. In

addition, when t = 1, we see that the highest consensus rate is achieved when both the number and

reach of visible nodes are largest, as long as visible nodes are connected.

There are several factors at play here. The model variations facilitate better coordination be-

tween visible nodes, when visible nodes are connected. This helps the overall team of cooperative

players to reach consensus as regular players are now trying to more closely follow the lead of a

well-coordinated minority. At the same time, by ensuring connectivity between visible nodes, we

95

Model variation: ttt === 000 (no modification)
Placement of visible 1 vis 2 vis 5 vis
random 26.56% 26.60% 27.21%
random | connected 30.71% 30.31%
max reach 32.72% 35.12% 29.51%
max reach | connected 37.44% 32.62%
Model variation: ttt === 000...222555
Placement of visible 1 vis 2 vis 5 vis
random 26.28% 27.91% 29.68%
random | connected 34.45% 36.13%
max reach 36.82% 39.64% 35.24%
max reach | connected 45.47% 42.44%
Model variation: ttt === 000...555
Placement of visible 1 vis 2 vis 5 vis
random 27.32% 29.04% 31.38%
random | connected 37.68% 42.40%
max reach 40.32% 44.47% 40.85%
max reach | connected 53.52% 53.02%
Model variation: ttt === 111
Placement of visible 1 vis 2 vis 5 vis
random 28.85% 30.60% 34.86%
random | connected 42.37% 53.44%
max reach 46.08% 49.60% 48.08%
max reach | connected 61.88% 68.76%

Table 5.7: Consensus rates across different combinations of visible node placements and model
variations.

end up having more visible nodes that have other visible nodes as neighbors. By increasing the reach

of visible nodes, we increase the number of regular nodes having other visible nodes as neighbors.

If we think of the model variations as better strategies for making use of visible nodes, then the

optimized placements (in terms of connectivity and reach) of visible nodes allow for more agents

to take advantage of these strategies. The main takeaway from these simulations results is that the

value visible nodes provide in reaching decentralized consensus can be significantly amplified, but

it may require a combination of optimized placement and modifications to agent behavior.

While optimized placement of visible nodes can be easily transferred back to the experimen-

tal setting with human subjects as agents, doing the same for model modifications would not be

straightforward. Instead of adjusting model coefficients, we would need to influence the behavior

of cooperative human players so that they are more reactive to, and more trustful of, changes made

96

by their visible neighbors. The most obvious candidate mechanism at our disposal for influencing

the behavior of cooperative players in this way is additional pre-play instruction and training. This

could take multiple forms such as expanding the textual description of the experimental setup with

a “suggested" strategy for playing the game (follow your visible neighbors) or including simulation

results which show that being more responsive to and following the lead of visible players improves

the chances for overall consensus. Another candidate mechanism is to adjust the coordination in-

centives for visible players – instead of having a single reward awarded when global consensus is

reached, introduce a second, partial reward for when a consensus is reached between the subset of

visible players only. While we can reasonably expect some change in subjects’ behavior resulting

from such additional steps, we cannot expect the change to be drastic. For example, values like t = 1

or t = 0.5 in the parameterized model modifications above would be difficult to attain. Additionally,

it is possible that the added instruction and training may not lead to equal behavior changes among

all subjects.

To address such concerns, we ran an additional set of simulations applying simpler (fewer co-

efficient adjustments), more limited (smaller coefficient adjustments) and variable (across different

agents in the same game) modifications. Specifically, we consider the following four modifications

to color-changing models of cooperative (regular and visible) players in the presence of visible

neighbors:

• M1: Change Ovis to Ovis +0.5

• M2: Change (Oinv,Ovis) to (Oinv−0.25,Ovis +0.25)

• M3: For each cooperative agent A, select a value a uniformly at random from (0,0.5) and

modify A’s model by changing Ovis to Ovis +a

• M4: For each cooperative agent A, select a value a uniformly at random from (0,0.25) and

modify A’s model by changing (Oinv,Ovis) to (Oinv−a,Ovis +a)

Note that all four models are more conservative in the number of feature coefficients they adjust.

M2 and M4 affect two coefficients, while M1 and M3 affect only one coefficient. M2 and M4, on the

other hand, perform the modification so as to reduce any impact on the average number of changes

that a player makes in a unit of time. Finally, M3 and M4 perform modifications with slightly

97

different intensity for different agents, trying to account for the fact that efforts to influence behavior

of human subjects may have non-uniform effects. A summary of the simulations results can be seen

in Table 5.8.

Model variation: none
Placement of visible 0 visible 1 visible 2 visible 3 visible 4 visible 5 visible
random 23.80% 25.87% 26.68% 27.16% 27.26% 27.90%
random | connected 30.54% 32.53% 30.94% 30.51%
max reach 33.06% 35.21% 34.49% 30.57% 28.84%
max reach | connected 38.71% 38.54% 36.08% 31.72%
Model variation: MMM111

Placement of visible 0 visible 1 visible 2 visible 3 visible 4 visible 5 visible
random 28.89% 32.13% 34.12% 36.71% 39.63%
random | connected 39.95% 45.16% 46.14% 46.43%
max reach 41.65% 47.83% 51.57% 47.75% 45.43%
max reach | connected 53.60% 58.98% 58.64% 54.88%
Model variation: MMM222

Placement of visible 0 visible 1 visible 2 visible 3 visible 4 visible 5 visible
random 25.80% 27.08% 27.92% 28.28% 28.68%
random | connected 33.18% 35.82% 33.75% 33.31%
max reach 35.01% 38.53% 38.39% 34.64% 32.11%
max reach | connected 42.57% 43.94% 41.42% 37.50%
Model variation: MMM333

Placement of visible 0 visible 1 visible 2 visible 3 visible 4 visible 5 visible
random 27.13% 28.92% 30.64% 32.32% 34.20%
random | connected 35.48% 38.67% 38.90% 37.67%
max reach 37.55% 42.07% 43.32% 39.53% 37.55%
max reach | connected 46.53% 49.05% 46.76% 43.01%
Model variation: MMM444

Placement of visible 0 visible 1 visible 2 visible 3 visible 4 visible 5 visible
random 25.84% 27.18% 27.53% 28.30% 28.59%
random | connected 31.27% 33.65% 32.62% 32.02%
max reach 34.10% 36.88% 36.08% 32.93% 30.10%
max reach | connected 40.68% 41.27% 38.67% 34.24%

Table 5.8: Consensus rates across different combinations of visible node placements and limited
model variations.

Note that each of the considered model variations leads to higher consensus rates than the orig-

inal models trained on experiment data, especially when combined with placing the nodes on a

connected subgraph maximizing their reach. While smaller, these improvements are there even for

M3 and M4 where different agents receive different levels of model adjustment. The overall take-

away is that consensus rates in adversarial decentralized coordination between human subjects in

98

networked settings can be improved through the use of trusted nodes. Further, these improvements

can be amplified by optimizing the number of visible nodes and their placement and by increasing

the importance that cooperative players place on trusted neighbors.

5.4.3 Decentralized consensus on graphs with geometric intersection models

Other settings where decentralized coordination between agents is an important problem are ad hoc

networks and robotic swarm systems [43, 87]. Typically, wireless devices and robots in such settings

have limited communication range and in simulations this is captured by placing the agents on nodes

of a random geometric graph. The model of a random geometric graph consists of unit balls in the

n-dimensional Euclidean space with randomly generated ball centers [43, 49], with two vertices u

and v being adjacent if and only if the corresponding unit balls bu and bv contain the other’s center.

It is easy to see that this model is equivalent to an intersection model of n-dimensional balls with

the same centers, but half the original radii. Thus, when n = 1, we simply have random unit interval

graphs. Similarly, when n = 2, we have random unit disk graphs.

In addition for being good models of ad hoc networks and robotic swarm systems, random

geometric graphs are also important in the context of social networks. Namely, in the study of

network science it is known that many real-world social networks exhibit a community structure

– the presence of dense subgraphs that are only loosely interconnected [92]. Further, real-world

social networks also have higher degree assortativity – the tendency of nodes to be connected with

other nodes of similar node degrees. While the Barabási–Albert preferential attachment model

is able to capture some observed properties of real-world networks such as having a power-law

degree distribution (i.e. being scale-free), BA networks do not exhibit a community structure or

degree assortativity. Erdős–Rényi random graphs also have these shortcomings. Random geometric

graphs, on the other hand, are not scale-free, but do have clear community structure [92] and high

degree assortativity [6].

In this subsection, we explore the difficulty of reaching decentralized consensus on several

classes of graphs with geometric intersection models. We consider random geometric graphs for n∈

{1,2,3}, as well as four other classes that we have seen in earlier chapters – interval, permutation,

simple IP-SEG, and IP-SEG graphs. As a baseline, both for the consensus rate and the graph density,

we use dense ER networks from the original experimental setup.

99

Since we run simulations on only a limited number of graphs from each class, we also need

to specify a corresponding random generating model, much like the G(n,m) Erdős–Rényi random

graph model that we use for dense ER graphs. One approach would be to leverage the G(n,m)

model and only keep a graph if it belongs to the graph class of interest. However, since we do not

yet have a full polynomial recognition algorithm for IP-SEG graphs and recognition of unit-disk

graphs is known to be NP-hard, we instead use random generating models based on the geometric

intersection models of the graph classes.

In particular, for random geometric graphs we choose the centers of the n-dimensional balls

uniformly at random from within the n-dimensional unit cube [0,1]n [43]. Since we want to control

for density, we scale the radius of the n-dimensional balls down to 0.07,0.165, and 0.24 for n being

equal to 1,2, and 3, respectively. One random generating model for interval graph introduced by

Scheinerman [101] generates n interval segments by randomly selecting the 2n segment endpoints

from the interval [0,1]. However, the expected density of these graphs is
2
3

, making this approach

less suitable for generating graphs with edge density in the range [0.22,0.27). Instead, we use a

different model, also due to Scheinerman [102], in which we first randomly select n points in the

interval [0,1] to serve as centers of the n interval segments. Then, for each segment, we randomly

select a radius r in the range (0,ρ], where ρ is the parameter of the model that allows us to better

control for density. In these simulations, we use ρ = 13.

We are not aware of any random generating model for permutation graphs in prior literature that

allows controlling for expected edge density. Therefore, we simply use Scheinerman’s parametric

model for interval graphs to identify the x coordinates of segment endpoints. Then, for each seg-

ment, we randomly choose which of the endpoints will be placed on L1 and which on L2. Since

simple IP-SEG and IP-SEG models consist of interval and permutation segments, we again take

advantage of Scheinerman’s parametric model, with an additional initial step that randomizes the

numbers of permutation and interval segments in the model. To control for the expected density in

permutation, simple IP-SEG, and IP-SEG graphs, we use slightly different values for the parameter

ρ – 0.21, 0.2, and 0.26, respectively.

Note that, all of the above models, except the G(n,m) Erdős–Rényi random graph model, control

for expected edge density. In addition, none of the above random generating models is guaranteed

to always produce a connected graph (in contrast to the BA model, mentioned earlier). Therefore,

100

in preparing our simulation settings, we repeatedly generate graphs from each model until they

are both connected and have exactly the same number of edges as the dense ER graphs from the

experimental setup, namely 3(n− 3), where n is the number of vertices. As in the experimental

setup, we consider settings with 0,2, and 5 adversaries. For conciseness, we only look at the baseline

(random placement and no model modifications) and the best placement and model modification

combination from the previous set of simulations (max reach | connected and M1).

No model modification - random placement
0 visible 1 visible 2 visible 3 visible 4 visible 5 visible

ERD 26.28% 29.40% 32.06% 32.48% 32.21% 33.12%
GEO, n = 1 16.20% 17.32% 18.37% 18.70% 20.01% 19.97%
GEO, n = 2 18.28% 20.19% 21.78% 21.87% 21.60% 22.17%
GEO, n = 3 20.79% 22.75% 24.00% 24.34% 24.89% 24.88%
Interval 17.73% 20.03% 21.24% 21.65% 21.45% 21.66%
Permutation 21.25% 23.33% 24.06% 25.75% 25.57% 25.77%
Simple IP-SEG 21.41% 22.90% 24.70% 24.91% 24.88% 25.79%
IP-SEG 22.77% 23.84% 25.99% 27.00% 26.63% 26.53%
MMM111 - max reach | connected

1 visible 2 visible 3 visible 4 visible 5 visible
ERD 44.72% 60.61% 67.79% 69.98% 69.14%
GEO, n = 1 23.63% 29.58% 33.40% 34.56% 36.70%
GEO, n = 2 30.35% 43.38% 48.80% 51.89% 52.94%
GEO, n = 3 37.53% 51.82% 59.27% 59.36% 57.03%
Interval 29.46% 38.48% 46.75% 50.68% 50.14%
Permutation 36.11% 52.45% 60.59% 62.90% 58.91%
Simple IP-SEG 36.80% 52.95% 59.97% 61.87% 57.89%
IP-SEG 38.64% 54.82% 61.37% 61.82% 58.78%

Table 5.9: Consensus rates on dense ER graphs and on graph classes with geometric intersection
models.

From Table 5.9 we can see that decentralized consensus on the randomly generated graphs with

geometric intersection models is much more difficult to achieve than on equally dense ER graphs.

This is true both in the baseline setting and and the setting with the best combination of visible nodes

placement and model modification. The difference is particularly noticeable for unit interval (GEO,

n = 1) and interval graphs. On the other hand, the consensus rates on classes such as simple IP-SEG

and IP-SEG, whose geometric models contain permutation segments, are considerably closer to the

consensus rates on ER graphs. We believe that this is related to the presence of a more pronounced

community structure in random geometric and interval graphs. It is likely that substituting some

101

interval with permutation segments leads to additional connections between communities. Another

takeaway is that even on networks on which consensus is more difficult to reach, we can attain a

major improvement in the consensus rate of more than 15% by combining the increase of visible

nodes, with optimizing their placement and increasing the trust that agents have in visible neighbors.

5.5 Conclusion

In this chapter, we considered decentralized consensus between agents positioned on nodes of a

graph. We studied how the structure of graphs coming from different graph classes and random

generating models can affect decentralized consensus, as well as the effectiveness of mechanisms

intended to facilitate consensus. We reviewed our earlier experimental study in [111] on the value

of communication in facilitating consensus which found that local communication can be of limited

value, but may help when the underlying network contains high-degree hub nodes that transmit

constrained, highly informative, messages. We then proceeded to perform an extensive simulations-

based investigation of mechanisms for facilitating consensus in the presence of adversarial nodes,

building on the work done in [56]. We considered special examples of graphs of different densities

and found that adding more edges between nodes does not always help in reaching decentralized

consensus and, in fact, may sometimes be detrimental. We showed that ensuring trusted nodes

are placed on a connected subgraph can improve the chances of reaching a global consensus and

that this improvement can be significantly amplified, if combined with increase in the trust that

agents place in their visible neighbors. We explored different, relatively small, modifications to

models of individual behavior, which also led to significant improvements in consensus rates. Based

on this, we argued that strategies such as additional pre-play training and incentive modifications,

can lead to better chances for consensus in experiments with human subjects. We also considered

decentralized consensus on graphs with geometric intersection models, including random geometric

graphs which have applications in ad hoc networks and robotic swarm systems. We found that

reaching consensus on such graphs can be significantly more difficult, further illustrating the need

for having mechanisms that could increase the chances for consensus.

There are a number of interesting questions for further study. On the simulations front, one

may want to consider optimizing the placement of adversarial nodes in settings where visible nodes

are connected. It is not obvious whether adversarial nodes would be better off if they are placed

102

so that they disconnect visible nodes from subsets of regular consensus nodes (structural impact) or

maximize the number of neighbors they have (behavioral impact). In addition, it may be worthwhile

exploring additional placements for visible nodes. We saw that consensus is particularly difficult

to reach on networks such as random geometric graphs that exhibit community structure. In such

settings, it is possible that a better way of facilitating consensus may be to maximize the number of

inter-community edges covered by visible nodes, rather than maximize the reach of visible nodes.

A related line of inquiry would be to explore the above questions on other random graph generating

models which, in addition to community structure, capture other real-world network properties

such as the Watts-Strogatz small-world model [112] or the geometric variant of the BA preferential

attachment model due to Jordan [64].

On the modeling front, one possibility is to consider expanded models of individual behavior

that would be appropriate for more complex settings that include varying individual incentives and

communication. While modeling free-form communication would be quite challenging and may

require much larger experiments with human subjects to collect enough training data, constrained

communication, as described in [111], may be a more feasible starting point as modeling the indi-

vidual communication behavior will deal primarily with frequency of communication, rather than

content. Finally, on the experimental front, it would be valuable to further validate, in experiments

with human subjects, the effectiveness of mechanisms for facilitating decentralized consensus, that

have shown most promise in agent-based simulations.

103

BIBLIOGRAPHY

[1] ABBAS, W., LASZKA, A., AND KOUTSOUKOS, X. Improving network connectivity and
robustness using trusted nodes with application to resilient consensus. IEEE Transactions on
Control of Network Systems 5, 4 (2017), 2036–2048.

[2] ABBAS, W., VOROBEYCHIK, Y., AND KOUTSOUKOS, X. Resilient consensus protocol in
the presence of trusted nodes. In 2014 7th International Symposium on Resilient Control
Systems (ISRCS) (2014), IEEE, pp. 1–7.

[3] ACAN, H., AND HITCZENKO, P. On random trees obtained from permutation graphs. Dis-
crete Mathematics 339, 12 (2016), 2871–2883.

[4] ALEKSEEV, V. On the entropy values of hereditary classes of graphs. Discrete Mathematics
and Applications 3, 2 (1993), 191–200.

[5] ALON, N., FELDMAN, M., LEV, O., AND TENNENHOLTZ, M. How robust is the wisdom
of the crowds? In Twenty-Fourth International Joint Conference on Artificial Intelligence
(2015).

[6] ANTONIONI, A., AND TOMASSINI, M. Degree correlations in random geometric graphs.
Physical Review E 86, 3 (2012), 037101.

[7] BANDELT, H.-J., AND MULDER, H. M. Distance-hereditary graphs. Journal of Combina-
torial Theory, Series B 41, 2 (1986), 182–208.

[8] BARABÁSI, A.-L., AND ALBERT, R. Emergence of scaling in random networks. science
286, 5439 (1999), 509–512.

[9] BARABÁSI, A.-L., ET AL. Network science. Cambridge university press, 2016.

[10] BENZER, S. On the topology of the genetic fine structure. Proceedings of the National
Academy of Sciences of the United States of America 45, 11 (1959), 1607.

[11] BOCCALETTI, S., LATORA, V., MORENO, Y., CHAVEZ, M., AND HWANG, D.-U. Com-
plex networks: Structure and dynamics. Physics reports 424, 4-5 (2006), 175–308.

[12] BONDY, J. A., AND MURTY, U. S. R. Graph theory. Springer, 2008.

[13] BOOTH, K. S., AND LUEKER, G. S. Testing for the consecutive ones property, interval
graphs, and graph planarity using pq-tree algorithms. Journal of computer and system sci-
ences 13, 3 (1976), 335–379.

[14] BRACHA, G., AND TOUEG, S. Resilient consensus protocols. In Proceedings of the second
annual ACM symposium on Principles of distributed computing (1983), pp. 12–26.

[15] BRANDSTÄDT, A., LE, V. B., AND SPINRAD, J. P. Graph classes: a survey. SIAM, 1999.

[16] BREU, H., AND KIRKPATRICK, D. G. Unit disk graph recognition is np-hard. Computa-
tional Geometry 9, 1-2 (1998), 3–24.

[17] CABELLO, S., CARDINAL, J., AND LANGERMAN, S. The clique problem in ray intersection
graphs. Discrete & computational geometry 50, 3 (2013), 771–783.

104

[18] CHAKRABORTY, T., JUDD, S., KEARNS, M., AND TAN, J. A behavioral study of bargaining
in social networks. In Proceedings of the 11th ACM conference on Electronic commerce
(2010), pp. 243–252.

[19] CHANDOO, M. On the implicit graph conjecture. arXiv preprint arXiv:1603.01977 (2016).

[20] CHATURVEDI, M. A parametric classification of directed acyclic graphs. Master’s thesis,
Colorado State University, 2017.

[21] CHVATAL, V. Perfectly ordered graphs. In Topics on perfect graphs, vol. 88. North-Holland
Mathematics Studies, 1984, pp. 63–65.

[22] CLARK, B. N., COLBOURN, C. J., AND JOHNSON, D. S. Unit disk graphs. In Annals of
Discrete Mathematics, vol. 48. Elsevier, 1991, pp. 165–177.

[23] CORNEIL, D. G., AND KAMULA, P. A. Extensions of permutation and interval graphs.
In Proc. 18th Southeastern Conference on Combinatorics, Graph Theory and Computing
(1987), pp. 267–276.

[24] CORNEIL, D. G., OLARIU, S., AND STEWART, L. The ultimate interval graph recognition
algorithm? In SODA (1998), vol. 98, pp. 175–180.

[25] CRUCITTI, P., LATORA, V., AND MARCHIORI, M. Model for cascading failures in complex
networks. Physical Review E 69, 4 (2004), 045104.

[26] DAGAN, I., GOLUMBIC, M. C., AND PINTER, R. Y. Trapezoid graphs and their coloring.
Discrete Applied Mathematics 21, 1 (1988), 35–46.

[27] DAMASCHKE, P. Forbidden ordered subgraphs. In Topics in combinatorics and graph the-
ory. Springer, 1990, pp. 219–229.

[28] DE RIDDER, H., ET AL. Information system on graph classes and their inclusions (isgci),
2020.

[29] DEMICHELIS, S., AND WEIBULL, J. W. Language, meaning, and games: A model of com-
munication, coordination, and evolution. American Economic Review 98, 4 (2008), 1292–
1311.

[30] DÍAZ, J., PETIT, J., AND SERNA, M. A survey of graph layout problems. ACM Computing
Surveys (CSUR) 34, 3 (2002), 313–356.

[31] DIMOVSKA, M., AND MATERASSI, D. A control theoretic look at granger causality: ex-
tending topology reconstruction to networks with direct feedthroughs. IEEE Transactions on
Automatic Control (2020).

[32] DIRAC, G. A. On rigid circuit graphs. In Abhandlungen aus dem Mathematischen Seminar
der Universität Hamburg (1961), vol. 25, Springer, pp. 71–76.

[33] DOLINSKAYA, I. S., SHI, Z. E., SMILOWITZ, K. R., AND ROSS, M. Decentralized ap-
proaches to logistics coordination in humanitarian relief. In IIE Annual Conference. Pro-
ceedings (2011), Institute of Industrial and Systems Engineers (IISE), p. 1.

[34] DUFFUS, D., GINN, M., AND RÖDL, V. On the computational complexity of ordered sub-
graph recognition. Random Structures & Algorithms 7, 3 (1995), 223–268.

105

[35] DUSHNIK, B., AND MILLER, E. W. Partially ordered sets. American journal of mathematics
63, 3 (1941), 600–610.

[36] ECKHOFF, J. Extremal interval graphs. Journal of graph theory 17, 1 (1993), 117–127.

[37] EHRLICH, G., EVEN, S., AND TARJAN, R. E. Intersection graphs of curves in the plane.
Journal of Combinatorial Theory, Series B 21, 1 (1976), 8–20.

[38] ELLINGSEN, T., AND ÖSTLING, R. When does communication improve coordination?
American Economic Review 100, 4 (2010), 1695–1724.

[39] ERDÖS, P., AND RÉNYI, A. On random graphs. Publicationes Mathematicae (Debrecen) 6
(1959), 290–297.

[40] FEUILLOLEY, L., AND HABIB, M. Graph classes and forbidden patterns on three vertices.
arXiv preprint arXiv:1812.05913 (2018).

[41] FISHBURN, P. C. Interval orders and interval graphs: A study of partially ordered sets. John
Wiley & Sons, 1985.

[42] FOWLER, C. A., RICHARDSON, M. J., MARSH, K. L., AND SHOCKLEY, K. D. Lan-
guage use, coordination, and the emergence of cooperative action. In Coordination: Neural,
behavioral and social dynamics. Springer, 2008, pp. 261–279.

[43] FRASER, B., COYLE, A., HUNJET, R., AND SZABO, C. An analytic latency model for a
next-hop data-ferrying swarm on random geometric graphs. IEEE Access 8 (2020), 48929–
48942.

[44] GALLAI, T. Transitiv orientierbare graphen. Acta Mathematica Hungarica 18, 1-2 (1967),
25–66.

[45] GAREY, M. R., AND JOHNSON, D. S. Computers and intractability. W.H. Freeman and
Company, 1979.

[46] GASHLER, M., AND MARTINEZ, T. Robust manifold learning with cyclecut. Connection
Science 24, 1 (2012), 57–69.

[47] GAVRIL, F. Algorithms for maximum weight induced paths. Information Processing Letters
81, 4 (2002), 203–208.

[48] GERVACIO, S. V., RAPANUT, T. A., AND RAMOS, P. C. F. Characterization and construc-
tion of permutation graphs. Open Journal of Discrete Mathematics 3 (2013), 33–38.

[49] GILES, A. P., GEORGIOU, O., AND DETTMANN, C. P. Connectivity of soft random geo-
metric graphs over annuli. Journal of Statistical Physics 162, 4 (2016), 1068–1083.

[50] GOLUMBIC, M. C. Algorithmic graph theory and perfect graphs. Elsevier, 2004.

[51] GOLUMBIC, M. C., AND JAMISON, R. E. Edge and vertex intersection of paths in a tree.
Discrete Mathematics 55, 2 (1985), 151–159.

[52] GOLUMBIC, M. C., TRENK, A. N., ET AL. Tolerance graphs, vol. 89. Cambridge Univer-
sity Press, 2004.

106

[53] GRACIA-LÁZARO, C., FERRER, A., RUIZ, G., TARANCÓN, A., CUESTA, J. A.,
SÁNCHEZ, A., AND MORENO, Y. Heterogeneous networks do not promote cooperation
when humans play a prisoner’s dilemma. Proceedings of the National Academy of Sciences
109, 32 (2012), 12922–12926.

[54] GRÖTSCHEL, M., LOVÁSZ, L., AND SCHRIJVER, A. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica 1, 2 (1981), 169–197.

[55] HABIB, M., AND MOUATADID, L. Maximum induced matching algorithms via vertex or-
dering characterizations. Algorithmica 82, 2 (2020), 260–278.

[56] HAJAJ, C., YU, S., JOVESKI, Z., GUO, Y., AND VOROBEYCHIK, Y. Adversarial coordina-
tion on social networks. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems (2019), pp. 1515–1523.

[57] HAJAJ, C., YU, S., JOVESKI, Z., AND VOROBEYCHIK, Y. Adversarial coordination on
social networks. arXiv preprint arXiv:1808.01173 (2018).

[58] HAMBURGER, P., MCCONNELL, R. M., PÓR, A., SPINRAD, J. P., AND XU, Z. Dou-
ble threshold digraphs. In 43rd International Symposium on Mathematical Foundations of
Computer Science (2018), vol. 117, pp. 69:1–69:12.

[59] HARTMAN, I. B.-A., NEWMAN, I., AND ZIV, R. On grid intersection graphs. Discrete
Mathematics 87, 1 (1991), 41–52.

[60] HELBING, D., BROCKMANN, D., CHADEFAUX, T., DONNAY, K., BLANKE, U.,
WOOLLEY-MEZA, O., MOUSSAID, M., JOHANSSON, A., KRAUSE, J., SCHUTTE, S.,
ET AL. Saving human lives: What complexity science and information systems can con-
tribute. Journal of statistical physics 158, 3 (2015), 735–781.

[61] HELL, P., MOHAR, B., AND RAFIEY, A. Ordering without forbidden patterns. In European
Symposium on Algorithms (2014), Springer, pp. 554–565.

[62] HOWORKA, E. A characterization of ptolemaic graphs. Journal of Graph Theory 5, 3 (1981),
323–331.

[63] ISHIZEKI, T., OTACHI, Y., AND YAMAZAKI, K. An improved algorithm for the longest
induced path problem on k-chordal graphs. Discrete applied mathematics 156, 15 (2008),
3057–3059.

[64] JORDAN, J. Geometric preferential attachment in non-uniform metric spaces. Electronic
Journal of Probability 18 (2013).

[65] JOVESKI, Z., AND HAJAJ, C. Increasing the value of trusted nodes in adversarial decentral-
ized networked consensus. In preparation (2020).

[66] JOVESKI, Z., AND SPINRAD, J. P. Some graph classes with two-property vertex orderings.
In The 6th Gdansk Workshop on Graph Theory (2018), pp. 38–39.

[67] JOVESKI, Z., AND SPINRAD, J. P. Interval-permutation segment graphs. To appear in
Congressus Numerantium (2019).

[68] JOVESKI, Z., AND SPINRAD, J. P. Algorithms for interval-permutation segment graphs. In
preparation (2020).

107

[69] JUDD, S., KEARNS, M., AND VOROBEYCHIK, Y. Behavioral dynamics and influence in
networked coloring and consensus. Proceedings of the National Academy of Sciences 107,
34 (2010), 14978–14982.

[70] KANN, V. Strong lower bounds on the approximability of some npo pb-complete maxi-
mization problems. In International Symposium on Mathematical Foundations of Computer
Science (1995), Springer, pp. 227–236.

[71] KANNAN, S., NAOR, M., AND RUDICH, S. Implicit representation of graphs. SIAM Journal
on Discrete Mathematics 5, 4 (1992), 596–603.

[72] KAY, D. C., AND CHARTRAND, G. A characterization of certain ptolemaic graphs. Cana-
dian Journal of Mathematics 17 (1965), 342–346.

[73] KEARNS, M., JUDD, S., TAN, J., AND WORTMAN, J. Behavioral experiments on biased
voting in networks. Proceedings of the National Academy of Sciences 106, 5 (2009), 1347–
1352.

[74] KEARNS, M., SURI, S., AND MONTFORT, N. An experimental study of the coloring prob-
lem on human subject networks. science 313, 5788 (2006), 824–827.

[75] KIMURA, M., AND SAITO, K. Tractable models for information diffusion in social net-
works. In European conference on principles of data mining and knowledge discovery (2006),
Springer, pp. 259–271.

[76] KRATOCHVÍL, J., AND NEŠETŘIL, J. Independent set and clique problems in intersection-
defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae 31, 1
(1990), 85–93.

[77] KRATSCH, D. Finding the minimum bandwidth of an interval graph. Information and Com-
putation 74, 2 (1987), 140–158.

[78] KUMAR, R., NOVAK, J., AND TOMKINS, A. Structure and evolution of online social net-
works. In Link mining: models, algorithms, and applications. Springer, 2010, pp. 337–357.

[79] LEBLANC, H. J., ZHANG, H., KOUTSOUKOS, X., AND SUNDARAM, S. Resilient asymp-
totic consensus in robust networks. IEEE Journal on Selected Areas in Communications 31,
4 (2013), 766–781.

[80] LIBEN-NOWELL, D., AND KLEINBERG, J. The link-prediction problem for social networks.
Journal of the American society for information science and technology 58, 7 (2007), 1019–
1031.

[81] MACPHAIL, L. H., NEUWIRTH, E. B., AND BELLOWS, J. Coordination of diabetes care in
four delivery models using an electronic health record. Medical care (2009), 993–999.

[82] MAFFRAY, F. On the coloration of perfect graphs. In Recent Advances in Algorithms and
Combinatorics. Springer, 2003, pp. 65–84.

[83] MAHESH, R., RANGAN, C. P., AND SRINIVASAN, A. On finding the minimum bandwidth
of interval graphs. Information and Computation 95, 2 (1991), 218–224.

108

[84] MCCREERY, H. F., DIX, Z. A., BREED, M. D., AND NAGPAL, R. Collective strategy for
obstacle navigation during cooperative transport by ants. Journal of Experimental Biology
219, 21 (2016), 3366–3375.

[85] MCCUBBINS, M. D., PATURI, R., AND WELLER, N. Connected coordination: Network
structure and group coordination. American Politics Research 37, 5 (2009), 899–920.

[86] MIDDENDORF, M., AND PFEIFFER, F. The max clique problem in classes of string-graphs.
Discrete mathematics 108, 1-3 (1992), 365–372.

[87] MONIZ, H., NEVES, N. F., AND CORREIA, M. Turquois: Byzantine consensus in wireless
ad hoc networks. In 2010 IEEE/IFIP International Conference on Dependable Systems &
Networks (DSN) (2010), IEEE, pp. 537–546.

[88] NEOGI, R., RAMAN, V., AND FRANCIS, M. Recognizing k-clique extendible orderings. In
International Workshop on Graph-Theoretic Concepts in Computer Science (2020), Springer.

[89] NEWMAN, M. E. Spread of epidemic disease on networks. Physical review E 66, 1 (2002),
016128.

[90] NEWMAN, M. E. The structure and function of complex networks. SIAM review 45, 2
(2003), 167–256.

[91] OLARIU, S. All variations on perfectly orderable graphs. Journal of Combinatorial Theory,
Series B 45, 2 (1988), 150–159.

[92] ORMAN, K., LABATUT, V., AND CHERIFI, H. An empirical study of the relation between
community structure and transitivity. In Complex Networks. Springer, 2013, pp. 99–110.

[93] PEARL, J. Probabilistic reasoning in intelligent systems: networks of plausible inference.
Elsevier, 2014.

[94] PUJARA, J., MIAO, H., GETOOR, L., AND COHEN, W. Knowledge graph identification. In
International Semantic Web Conference (2013), Springer, pp. 542–557.

[95] RAGHAVAN, V., AND SPINRAD, J. Robust algorithms for restricted domains. Journal of
algorithms 48, 1 (2003), 160–172.

[96] RAMALINGAM, G., AND RANGAN, C. P. A unified approach to domination problems on
interval graphs. Information Processing Letters 27, 5 (1988), 271–274.

[97] REID, C. R., LUTZ, M. J., POWELL, S., KAO, A. B., COUZIN, I. D., AND GARNIER, S.
Army ants dynamically adjust living bridges in response to a cost–benefit trade-off. Proceed-
ings of the National Academy of Sciences 112, 49 (2015), 15113–15118.

[98] REN, W., BEARD, R. W., AND ATKINS, E. M. A survey of consensus problems in multi-
agent coordination. In Proceedings of the 2005, American Control Conference, 2005. (2005),
IEEE, pp. 1859–1864.

[99] ROTMENSCH, M., HALPERN, Y., TLIMAT, A., HORNG, S., AND SONTAG, D. Learning a
health knowledge graph from electronic medical records. Scientific reports 7, 1 (2017), 1–11.

109

[100] SARCEVIC, A., PALEN, L., WHITE, J., STARBIRD, K., BAGDOURI, M., AND ANDERSON,
K. " beacons of hope" in decentralized coordination: learning from on-the-ground medical
twitterers during the 2010 haiti earthquake. In Proceedings of the ACM 2012 conference on
computer supported cooperative work (2012), pp. 47–56.

[101] SCHEINERMAN, E. R. Random interval graphs. Combinatorica 8, 4 (1988), 357–371.

[102] SCHEINERMAN, E. R. An evolution of interval graphs. Discrete Mathematics 82, 3 (1990),
287–302.

[103] SCHEINERMAN, E. R., AND ZITO, J. On the size of hereditary classes of graphs. Journal
of Combinatorial Theory, Series B 61, 1 (1994), 16–39.

[104] SPINRAD, J. P. Efficient graph representations. American Mathematical Society, 2003.

[105] SZÁMADÓ, S. Pre-hunt communication provides context for the evolution of early human
language. Biological Theory 5, 4 (2010), 366–382.

[106] SZKLARCZYK, D., FRANCESCHINI, A., WYDER, S., FORSLUND, K., HELLER, D.,
HUERTA-CEPAS, J., SIMONOVIC, M., ROTH, A., SANTOS, A., TSAFOU, K. P., ET AL.
String v10: protein–protein interaction networks, integrated over the tree of life. Nucleic
acids research 43, D1 (2015), D447–D452.

[107] TAKAOKA, A. A vertex ordering characterization of simple-triangle graphs. Discrete Math-
ematics 341, 12 (2018), 3281–3287.

[108] TRENCHARD, H., AND PERC, M. Energy saving mechanisms, collective behavior and the
variation range hypothesis in biological systems: a review. Biosystems 147 (2016), 40–66.

[109] USEVITCH, J., AND PANAGOU, D. Resilient leader-follower consensus to arbitrary refer-
ence values. In 2018 Annual American Control Conference (ACC) (2018), IEEE, pp. 1292–
1298.

[110] VERMA, T., AND PEARL, J. Causal networks: Semantics and expressiveness. In Machine
intelligence and pattern recognition, vol. 9. Elsevier, 1990, pp. 69–76.

[111] VOROBEYCHIK, Y., JOVESKI, Z., AND YU, S. Does communication help people coordi-
nate? PLOS ONE 12, 2 (2017).

[112] WATTS, D. J., AND STROGATZ, S. H. Collective dynamics of ‘small-world’networks. na-
ture 393, 6684 (1998), 440–442.

[113] ZHANG, H., VOROBEYCHIK, Y., LETCHFORD, J., AND LAKKARAJU, K. Data-driven
agent-based modeling, with application to rooftop solar adoption. Autonomous Agents and
Multi-Agent Systems 30, 6 (2016), 1023–1049.

110

	DEDICATION
	LIST OF TABLES
	LIST OF FIGURES
	I Definitions
	II Introduction
	III Geometric Intersection Models: Generalizing Interval and Permutation Graphs
	3.1 Introduction
	3.2 Preliminaries
	3.3 IP-SEG model representation
	3.4 Chordless cycles in IP-SEG graphs
	3.4.1 Interval and permutation arcs
	3.4.2 Permutation arcs are always short

	3.5 Neighborhood properties and other forbidden induced subgraphs of IP-SEG graphs
	3.6 Polynomial algorithms for optimization problems when the IP-SEG model is given
	3.6.1 The CLIQUE problem
	3.6.2 The INDEPENDENT SET problem
	3.6.3 The LONGEST CHORDLESS CYCLE problem

	3.7 First steps towards recognition
	3.8 Additional geometric intersection models generalizing those of interval and permutation graphs
	3.9 Conclusion

	IV Vertex Orderings
	4.1 Introduction
	4.2 Preliminaries
	4.3 Vertex ordering types
	4.3.1 Elimination orderings
	4.3.2 Forbidden ordered subgraphs
	4.3.3 Complexity of recognition

	4.4 Optimization Problems
	4.4.1 Using a VOC of a known graph class
	4.4.2 New graph class from a VO with a nice property
	4.4.3 Using a non-characterizing elimination VO to develop robust algorithms

	4.5 Combining Properties
	4.5.1 Distance-hereditary and chordal: Proper subclasses of ptolemaic graphs and the bandwidth problem
	4.5.2 TE and co-TE: Two generalizations of permutation graphs

	4.6 Conclusion

	V Decentralized Consensus on Graphs with Different Structural Properties
	5.1 Introduction
	5.2 Effects of communication and strategic tension on decentralized coordination
	5.2.1 Experimental methodology
	5.2.2 Aggregate results: the value of communication and the importance of graph density
	5.2.3 Individual behavior
	5.2.4 Summary of findings

	5.3 Decentralized coordination in the presence of adversarial and trusted agents
	5.3.1 Experimental methodology and aggregate results
	5.3.2 Modeling of individual behavior and agent-based simulations
	5.3.3 Summary of findings

	5.4 Further exploration of the effects of graph structure through simulations
	5.4.1 Structural properties and extreme graph examples
	5.4.2 Increasing the value of visible nodes
	5.4.2.1 Placement of visible nodes: Connected dominating sets
	5.4.2.2 Model modifications: Increase trust in visible nodes
	5.4.2.3 Optimizing visible node placement and modifying agent behavior in the presence of visible nodes

	5.4.3 Decentralized consensus on graphs with geometric intersection models

	5.5 Conclusion

	 BIBLIOGRAPHY

