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CHAPTER I 

 

1. Introduction 

 

Lung cancer is the leading cause of all cancer-associated mortalities within the United States. 

In 2020, there will be an estimated 135,720 lung cancer related deaths [1]. The mortality rate has 

been steadily declining over recent years with the advent of preventative measures and new 

treatments. However, the survivorship for lung cancer remains low, ranging from 92% for patients 

in stage IA1 to under 10% for patients with stage IV [2]. There are several important factors 

dictating the onset, treatment, and recurrence of the disease. One especially salient feature, similar 

across many cancer types, is that cells within the same tumor respond heterogeneously to 

chemotherapy. Extensive research has focused on revealing the origin of this disparate treatment 

response; first, identifying the range of cell responses to chemotherapy, and second, uncovering 

the molecular discrepancies between divergently responding cells. The resulting outcome has been 

concurrent advances in both identification of molecular drivers of the disease and specific targeting 

of those drivers as new lines of therapy. Even with these novel tools, lung cancer often progresses 

with new mutations and changes within the cell signaling network. Discerning how and why these 

changes occur within the cell, and what role external cell stimuli perform in cell fate decisions, are 

key details in developing practical, patient-specific treatments.  

When inspecting the sheer scale and interconnectivity of the cell signaling network, it quickly 

becomes apparent that making any type of network response prediction is challenging. 

Nonetheless, a thorough understanding of how the networks are controlled and how they evolve 

in response to dynamic stimuli is needed to develop novel treatments. Mathematical models of 
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biological systems have long been used to inform researchers on their complex behavior. Models 

provide a means of assessing the current knowledge regarding a system and extending that 

knowledge through testable predictions. Cancer, broadly speaking, is a disease caused by the 

misappropriation of cell signaling machinery. The resulting network changes manifest as altered 

cell behavior defined by seven widely recognized hallmarks of cancer: increased proliferative 

advantage, improved survival in response to stress, angiogenesis, metastasis, modified metabolic 

activities, a remodeled microenvironment, and an abated immune response [3]. Models are useful 

for interpreting how stimuli are integrated by the cellular signaling network into higher order 

phenomena and, as in the case of cancer, how these systems can go amiss.  

This work examines the effect of cancer cell microenvironment on chemotherapeutic response 

with experimental studies and connects those results with changes in key regulators of the mitotic 

and apoptotic processes within the cell. The connection is made through the use of a molecular-

level model. This project helps us move toward interpreting cell population behavior through the 

lens of single-cell actions at a molecular-level. In doing so, a bridge is forming between two 

biological scales, the molecular and cellular. By understanding the mathematical rules 

underpinning complex cellular responses, novel treatments can be developed more quickly 

because a more thorough perception of the underlying biology is achieved.  
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CHAPTER II 

 

2. Background 

 

Lung cancer is an immensely heterogenous disease, making identification and treatment 

particularly difficult. Due to its varied nature, patients present with diverse symptoms depending 

on specific disease site. Symptoms also usually appear in advanced stage disease, resulting in 

approximately 70% of lung cancer diagnoses occurring at regionally advanced or metastatic stages. 

Additionally, the link between tobacco use and lung cancer was obscured through a major tobacco 

industry campaign designed to fabricate scientific uncertainty. The high incidence, heterogenous 

and complex biology, and late diagnosis contribute to the poor prognosis of individuals with lung 

cancer. A better understanding of this complex biological environment can be achieved through 

mathematical modeling of the signaling networks and resulting decisions of these cancer cells. We 

use this chapter to provide necessary background information for the biology and mathematics 

underlying this project.  

 

2.1. Lung cancer history 

Lung cancer incidence over the past century provides a compelling narrative of clinical 

identification, discernment of the cause of disease, a public health battle, and treatment. At the 

beginning of the twentieth century, lung cancer incidence was low. There were few diagnosed 

cases and, surprisingly, even very few autopsy-identified cases. The disease had been established 

as a unique affliction in 1761 and relevant information was consolidated into the book Primary 

Malignant Growths of the Lungs and Bronchi, published in 1912. However, occurrences were still 
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rare. Alton Ochsner, a pioneering surgeon of the early twentieth century, describes observing an 

autopsy with the notion that the disease was so uncommon he may never witness another case. 

Seventeen years later, he observed his second. Unexpectedly, though, he encountered an additional 

eight cases within the following six months, marking a sharp rise in frequency. Searching for a 

causative element, Ochsner landed on increased cigarette consumption. Cigarette smoking had 

become fashionable through the First World War, and all the patients were heavy smokers that had 

starting smoking during the war. Even by his own evaluation, his speculation was correlative at 

best, though he had gathered some experimental evidence by placing tobacco on the surface of 

animals and observing malignant tumors.  

Simultaneously, a German physician named Fritz Lickint was investigating associations 

between alcohol and tobacco consumption and health problems. In 1929, he published a paper 

statistically showing that lung cancer patients are likely to also be smokers. Due to his political 

affiliations as a social democrat, he lost his job at the hospital in 1934 and was later conscripted 

into military service in 1939. His work conceived terms and ideas still in use today. He coined the 

phrase “passive smoking” as the effects to those individuals not directly smoking cigarettes and 

described the physical and psychological dependencies of tobacco as addiction. It would not be 

until 1950 that the first paper decisively linking lung cancer to the increase of tobacco consumption 

was published. The authors surveyed lung cancer patients concerning their habits and environment 

and then compared the results to patients with non-lung cancers and without cancer. They found 

the highest correlative risk factor was smoking tobacco. Fortuitously, they had included the 

smoking history question because the final page of the questionnaire had space. 
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2.2. Lung cancer epidemiology 

Lung cancer is the leading cause of cancer-related mortality in the United States, exceeding 

the next four most common cancers (breast, prostate, colorectal, and brain) combined. An 

estimated 228,820 lung and bronchus cancer patients will be diagnosed and 135,720 patients will 

die in 2020. This translates to a lung cancer related death every 3.9 minutes. Though the incidence 

and mortality rates have been leveling off for women and decreasing for men since 2000 in the 

United States, it still accounts for nearly a quarter of all cancer-related deaths [1]. Lung cancer is 

also the most common cancer worldwide with an incidence of 2.1 million and mortality of 1.8 

million in 2018 [4]. The World Health Organization estimates that lung cancer mortality rates will 

continue to increase worldwide from increased tobacco use, particularly in Asia [5].  

Lung cancer is more common in men than women across all ethnicities and races with the 

highest incidence in Black men (0.0712%) and the lowest in Hispanic women (0.0248%). 

Mortality rates follow similar trends. More than 90% of lung cancer diagnoses and deaths occur 

in patients aged 55 or over; the median age of diagnosis is 71 and the median age of death is 72. 

The five-year survival rate is highly dependent on the stage at which the cancer was diagnosed. 

For lung cancer still localized in the primary site, five-year survival is 59%. Once it has spread to 

lymph nodes, five-year survival decreases to 31.7%, and after metastasis to secondary sites, it is 

only 5.8% [6]. 

On top of it being a major health burden, lung cancer represents a substantial financial burden. 

In 2018, the National Institutes of Health reported a lung cancer care cost of $14.2 billion. In 

addition, they estimated the lost productivity cost in 2005 as $36.1 billion, which was higher than 

any other cancer [7].  
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2.3. Non-small cell lung cancer pathogenesis 

Lung cancer is classified as small cell lung cancer and non-small cell lung cancer (NSCLC), 

which account for 15% and 85% of cases, respectively. The World Health Organization further 

divides NSCLCs into three categories: adenocarcinoma, squamous cell carcinoma, and large cell. 

Adenocarcinomas are the most common, accounting for 40% of all lung cancers. 

Adenocarcinomas originate in glandular cells, especially in smaller airways near the periphery of 

the lung [8]. Lung adenocarcinomas are more often found in women. Younger people (20-46 years 

old) and non-smokers are also more likely to have adenocarcinomas than other lung cancers [9]. 

The experimental model used for our investigations is a cell line derived from a human lung 

adenocarcinoma, hence our focus on NSCLCs.  

 

 

Figure 2.1 Typical progression of non-small cell lung cancer. Damage to the lung accumulates mutations 

in healthy cells, resulting in unrestricted proliferation into a heterogenous tumor. After therapeutic 

intervention, many cells undergo apoptosis but often, a resistant subpopulation survives and continues 

proliferating and metastasizing. For lung adenocarcinoma, the five most common sites of secondary 

tumors are, in order: bone, brain, lung, liver, and adrenal glands (indicated by black stars). Created with 

images from BioRender.  
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NSCLCs, like most cancers, are heterogeneous in their origin and their biological signature. 

However, the broadly shared paradigm of cancer pathogenesis (Figure 2.1) involves an initial 

injury, mutation, or perturbation to the genome of cells at the primary site, resulting in a 

dysregulated cell cycle. This leads to uncontrolled growth at the primary site, or the formation of 

a tumor. As the tumor grows, angiogenesis is increased to better transport the necessary oxygen 

and nutrients. However, many tumors eventually exceed a sustainable size and the core becomes 

necrotic. The malignant tumor cells are able to evade a normal immune response through a variety 

of mechanisms, including recruitment of immunosuppressive cells, downregulation of tumor 

antigens, and production of immunosuppressive factors. Individual cells or clusters of cells will 

migrate from the primary tumor and begin circulating through the bloodstream and lymphatics. 

Most of these escaped cells die but eventually, a few will extravasate and establish themselves in 

secondary sites to proliferate, creating secondary tumors. At this point, the cancer is metastatic. 

While these metastases are founded by a cell from the primary tumor, the primary tumor is 

heterogenous, so the secondary tumor has a related but unique biological profile. Most cancers 

spread to the lymph nodes first. Other common sites of metastatic lung cancer are bone, brain, 

lungs, adrenal glands, and liver. In a 2014 study of 4,316 patients with metastatic lung 

adenocarcinoma, 39% presented in bone, 38% in the nervous system, 22% in the respiratory 

system, 17% in the liver, and 8% in the adrenal glands [10], [11].  

While each tumor is unique, there are some frequently altered genes in NSCLCs that provide 

opportunities for identification and therapeutic targeting. Some of these genes and their 

frequencies in lung adenocarcinoma and lung squamous cell carcinoma have been summarized in 

Table 2.1. They provide insight into signaling pathways involved in NSCLC pathogenesis and 

serve as potentially druggable targets.  
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Table 2.1 Selected genes with altered regulation in lung adenocarcinoma and lung squamous cell 

carcinoma [12], [13]. 

Gene Broad Functions 
Activated / 

Inactivated 

Adenocarcinoma 

Frequency 

Squamous Cell 

Carcinoma 

Frequency 

TP53 Tumor suppressor Inactivated 46% 90% 

CDKN2A Tumor suppressor; 

Senescence 

Inactivated 43% 70% 

KRAS Proliferation; 

Differentiation 

Activated 32% 3% 

EGFR Proliferation Activated 27% <9% 

ALK Proliferation; 

Differentiation 

Activated <8% - 

MET Survival; Migration Activated 7% - 

RB1 Tumor suppressor Inactivated 7% 7% 

AKT1 Proliferation; 

Differentiation; Survival; 

Apoptosis 

Activated 1% <1% 

AKT2 Proliferation; Survival; 

Metabolism; Angiogenesis 

Activated - 4% 

AKT3 Proliferation; Survival; 

Protein synthesis 

Activated - 16% 

 

NSCLC can be caused by a range of genetic and environmental factors. The abnormalities to 

genes for epidermal growth factor receptor and anaplastic lymphoma kinase (EGFR and ALK, 

respectively) have identified them as driver oncogenes, primarily present in adenocarcinomas. 

These abnormalities vary inversely with smoking habit and appear dependent on race and 

ethnicity; white Europeans have a lower prevalence (~10%) than Asians (~60%). Less common 

aberrations have highlighted other potential targets, including MET, HER2, KRAS, and mutations 

in the protein kinase B (AKT) and extracellular signal-regulated kinase (ERK or MAPK) signaling 

pathways. There are heritable genetic factors as well, especially for lung adenocarcinoma, though 

they have not been clearly identified. Recent data suggest a germline mutation in EGFR in exon 

20 (EGFRT790M) and mutations in the transmembrane region of HER2 may be oncogenic, though 
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rare. The primary environmental risk factor is tobacco smoking. Globally, 80% of men and 50% 

of women with lung cancer have smoked more than 100 cigarettes in their lifetime [14]. 

Interestingly, the incidence of lung cancer in non-smoking young women (19%) is rising in the 

United States [5]. Secondhand or passive smoking is also associated with an increased risk. 

Smoking marijuana and using electronic cigarettes may also increase risk, but their contribution is 

not yet quantified. Alcohol consumption has also been identified as a risk factor. Some 

environmental factors are, unfortunately, less controllable. Air pollution, specifically the presence 

of particulate matter <10µm in diameter, is associated with an increased risk of lung 

adenocarcinoma. The decay of uranium (238U) in soil produces radon that, when inhaled, exposes 

lung tissue to decay products of the radon gas that irradiate the cells. Radon inhalation contributes 

to 9% of lung cancer mortality [14]. Asbestos is a carcinogen that contributes to lung cancer risk; 

insulation workers in the United States had a sevenfold higher risk of lung cancer than the general 

population. Additionally, when exposure to asbestos is combined with exposure to tobacco smoke, 

the factors act synergistically to dramatically increase risk [15]. Ionizing radiation (e.g. X-rays, 

alpha particles) and other toxins such as arsenic, chromium, nickel, and polycyclic aromatic 

hydrocarbons are also risk factors. Patients affected by pulmonary fibrosis or human 

immunodeficiency virus are at a higher risk for lung cancer [5].  

 

2.4. Tumor microenvironment 

As the tumor cells proliferate, they remodel their environment, optimizing it for growth. The 

extracellular matrix (ECM) is typically composed of collagens I, III, IV, and V (mostly collagen 

I), fibronectin, laminin, elastin, and osteonectin arranged in specific orientations to provide 

structure, a network that guides migration, and present ligands that stimulate signaling. In the case 
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of NSCLC, excess osteonectin can be synthesized to promote invasion and migration. Tumor 

migration is also supported by increased and organized collagen deposition. Conversely, a matrix 

composition with higher elastin content prevents cancer cell migration. The excessive growth of 

fibrotic tissue around the tumor, or desmoplasia, is characterized by thick bundles of collagen 

fibers and can inhibit tumor migration. This increased ECM density has also been reported to 

prevent T cells from infiltrating the tumor microenvironment [11], [16].  

The tumor is initially surrounded by healthy stroma containing healthy immune cells (e.g. 

macrophages, neutrophils, lymphocytes, dendritic cells) and tissue maintenance cells (e.g. 

fibroblasts, myofibroblasts). As the tumor expands, the supply of oxygen and nutrients must be 

maintained, so the tumor promotes angiogenesis. Angiogenesis is one of the seven hallmarks of 

cancer. Malignant cells can directly release vascular endothelial growth factor (VEGF) or 

cooperate with macrophages to release angiogenic growth factors. Macrophages have been 

classified into two subpopulations: M1/pro-inflammatory macrophages secrete interleukin (IL)-2 

and coordinate with natural killer cells and cytotoxic lymphocytes to attack tumor cells; M2/anti-

inflammatory macrophages produce IL-10 and promote tumor growth and evasion of the immune 

system. When angiogenesis cannot provide enough oxygen to a rapidly growing tumor, the tumor 

becomes hypoxic. Hypoxia has been shown to induce VEGF transcription as well as promote cell 

migration and epithelial to mesenchymal transition (EMT). EMT is a process by which epithelial 

cells acquire migratory and invasive properties instrumental to escaping the tumor mass and 

entering a blood or lymph vessel to metastasize [11], [16].  

Macrophages also cooperate with resident fibroblasts and myofibroblasts to remodel the ECM 

for easier migration. Fibroblasts associated with tumors more closely resemble myofibroblasts 

than healthy lung fibroblasts. For example, tumor-associated fibroblasts have higher expression of 



11 

 

fibroblast activation protein (FAP) and expression of matrix metalloproteinases (MMPs), 

proteases that degrade collagen and other ECM proteins. When FAP was reduced in a mouse model 

of lung cancer, collagen accumulation increased, myofibroblasts decreased, and blood vessel 

density decreased, all of which resulted in decreased tumor cell proliferation. These cancer-

associated fibroblasts also secrete IL-6, which activates signal transducer and activator of 

transcription 3 (STAT3) to increase metastasis. The fibroblasts increase expression of α11β1 

integrin, which leads to increased ECM stiffness. Cancer-associated fibroblasts also contribute to 

immune modulation of the tumor microenvironment. They can suppress T cell function through 

the expression of programmed cell death protein-ligand 1 (PD-L1) and PD-L2. They can also 

present antigens to CD8+ T cells that result in T cell elimination, effectively evading the typical 

killing process. Tumor cells express indoleamine 2,3-dioxygenase (IDO), which catabolizes 

tryptophan to decrease cytotoxic T lymphocytes, accumulate Treg cells, and cause proliferation of 

myeloid-derived suppressor cells that inhibit T cells. IDO can also increase metastasis, increase 

vascular density, and reprogram immune cells (e.g. inactivating CD8+ T cells). By these and more 

mechanisms, the cancer cells modify their physical, chemical, and biological environment to 

optimize it for tumor survival and growth [11], [16].  

Interestingly, when lung cancer cells do metastasize, they tend to localize to consistent 

secondary organs. Investigation of brain metastasis has been shown to involve astrocytes, which 

secrete inflammatory cytokines and MMPs to create a more hospitable microenvironment for 

metastases. Lung adenocarcinoma metastasis to bone is mediated by lymphoid enhancer-binding 

factor 1, homeobox B9, osteoclast-derived CXC chemokine receptor 12 (CXCR12), CXCR4, 

activated ERK, and MMP9 signaling. Comparison of the metastatic site to primary site immune 

profiles show a more tumor-promoting microenvironment at the metastatic site (i.e. lower 
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CD8+:CD4+ T cell ratios and CD8+:CD68+ T cell ratios). Adenocarcinoma cells have also been 

shown to secrete IL-6 to mobilize inflammatory myeloid cells to basically seed a metastatic niche 

in the liver that the cancer cells can later colonize [16], [17].  

Though some characteristics of the tumor microenvironment are highly similar, one striking 

difference between the lung and bone, where 39% of metastases occur, is stiffness. A healthy lung 

has an elastic modulus around 0.44-7.5 kPa and a cancerous lung has a stiffness of about 20-100 

kPa but can be as high as 150 kPa [18]–[20]. Cortical bone is by far the stiffest tissue at 10-20 GPa 

[21], [22]. Other common sites of NSCLC metastasis have stiffnesses more similar to lung: healthy 

brain is approximately 0.5-7.3 kPa [23], [24] and healthy liver is 0.3-0.6 kPa [25]. The stiffness of 

a cell’s environment is well known to influence its phenotype. For instance, quiescent fibroblasts 

can become activated myofibroblasts from exposure to increased substrate stiffness, as well as 

other mechanical forces (e.g. tension in wound healing) [19]. In a pathological positive feedback 

loop, myofibroblasts deposit more ECM, stiffening their environment and subsequently activating 

more myofibroblasts [16]. Stiffness can also affect metastasis. In a study of lung adenocarcinoma 

cells, stiffer substrates induced more collective, slow migration and cells on softer substrates had 

higher migration velocity and fewer cell contacts [20]. Integrin α11, previously noted to be 

increased by cancer-associated fibroblasts, is associated with collagen stiffness, which can induce 

the cancer-associated fibroblast phenotype in another positive feedback loop of myofibroblast 

activation. It also contributes to systemic metastasis of NSCLC [26]. While the mechanisms by 

which stroma stiffness modulates cancer progression are complex and not fully understood, the 

importance of stiffness is clear.  

Collectively, these variations constitute intertumor and intratumor heterogeneity characteristic 

of NSCLC. This diversity between individuals necessitates a large number of specialized or 
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targeted diagnostic and therapeutic strategies for effective recovery. The diversity within tumors 

makes it difficult to effectively eradicate every cancer cell and prohibit recurrence. Another barrier 

to remission is the late stage of diagnosis. Since over 45% of lung cancer patients are diagnosed 

with distant metastases [6], it is nearly impossible to kill every heterogenous cancer cell. The only 

potentially curative treatment is surgical resection at an early stage, and a remarkable 30-55% of 

these cases still recur [27]. Better understanding the basic biology of the cells in the context of 

varied microenvironments and how they respond to therapies will help garner better lung cancer 

treatment results.  

 

2.5. Non-small cell lung cancer diagnosis 

NCSLC is often not diagnosed until an advanced stage of the disease when symptoms become 

more apparent. The most common symptom is a cough, which is present in 50-75% of cases. Other 

symptoms include hemoptysis (bleeding in the airway), chest pain, dyspnea (labored breathing), 

and weight loss. In fewer cases, venous congestion in the upper chest, shoulder and forearm (ulnar 

side) pain together, and Horner syndrome (characterized by a small pupil, drooping eyelid, and 

reduced sweating on the affected side) can be symptoms. Though these symptoms may indicate 

NSCLC, histology of a tumor biopsy is required to confirm the diagnosis [5], [14].  

Various minimally invasive and non-invasive procedures are employed to assess the presence 

of lung cancer, identify its subtype, and characterize its stage. The first tests often performed are 

posterolateral and lateral chest radiography (i.e. X-rays), though these can be negative in up to 4% 

of lung cancer patients. Patients will have a contrast-enhanced computed tomography (CT) scan 

of the thorax and upper abdomen. CT scans highlight the location and shape of lesions and are 

important for evaluation of the mediastinum for proper staging. Magnetic resonance imaging 
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(MRI) is often performed for patients suspected of having brain metastases because of its ability 

to identify smaller lesions. There is some debate over the cost-effectiveness of brain imaging 

because CT and MRI scans of NSCLC patients’ brains can yield up to 11% false-positive results 

due to other lesions, gliomas, or abscesses. Positron emission tomography (PET) imaging with 

radiotracer 18-fluorodeoxyglucose (FDG) can provide metabolic information about lesions. A 

maximum FDG standardized uptake value of 2.5 has been designated as the threshold between 

benign and malignant tumors, though some low-grade tumors yield false-negatives and some 

inflammatory lesions yield false-positives. FDG PET scans cannot define lesion size but they are 

a relatively low-risk method for gathering information on lesion malignancy [14].  

In addition to imaging techniques, clinicians evaluate various tissues for evidence of cancerous 

cells. Sputum, or a mixture of saliva and mucus from the respiratory tract, can be collected and 

evaluated for the presence of abnormal cytology. This test has a sensitivity of 66% and a specificity 

of 99% for lung cancer. In cases where the lung tumor is centrally located, a bronchoscopy can be 

performed. A flexible tube with a light and camera on the end is inserted down the airway and has 

the capability to biopsy a nearby tumor. Bronchoscopy can be combined with ultrasonography and 

needle aspiration biopsy (EBUS-TBNA) to sample peribronchial or mediastinal masses and 

enlarged mediastinal or hilar lymph nodes. EBUS-TBNA is the preferred method for mediastinal 

staging as it is less invasive than the traditional mediastinoscopy and has an equivalent sensitivity 

and specificity. Transthoracic needle aspiration is a diagnostic technique used when a 

bronchoscopy has negative results from peripheral lesions. This has a 90% sensitivity except in 

tumors <2cm in diameter, where it is lower. During the procedure, a cytopathologist is on site to 

analyze the sample. Mediastinoscopy, parasternal mediastinoscopy, and extended cervical spine 

mediastinoscopy are more invasive, surgical procedures used when less invasive options are 
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inconclusive. A thoracoscopy can be performed by inserting a thin, flexible scope inside the chest 

(pleural cavity) to view and potentially biopsy peripheral areas of the lung. In lung cancer patients 

with pleural effusion, or fluid accumulation around the lungs, the pleural fluid should be sampled 

via thoracentesis and undergo cytopathological evaluation [14]. Once samples have been obtained, 

pathologists analyze the histology and cytology of the tissue to determine the presence, type, and 

grade of cancerous cells.  

The diagnostic process culminates in staging of the disease to track the cancer’s development 

and to identify the best treatment options. The most widely used staging system is the TNM staging 

system, which evaluates the size and extent of the primary tumor (T), identifies nearby lymph 

nodes (N) with cancer, and describes whether the cancer has metastasized (M). The International 

Association for the Study of Lung Cancer organized an International Staging Project that utilized 

a database of 94,708 cases from 16 countries to standardize the T, N, and M classification 

definitions and how they translate to the Roman numeral stage groupings. Briefly, the tumor 

classifications range from Tis (in situ) to T4 (major axis >7cm), the lymph node classifications 

range from N0 (no regional lymph node metastasis) to N3 (metastasis in contralateral mediastinal, 

contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph nodes), and the 

distant metastasis classifications range from M0 (no distant metastasis) to M1c (multiple 

extrathoracic metastases in one or more organs) [2]. The TMN classifications are organized into 

stage groupings that indicate the progression of the disease. Other factors may also be included in 

the staging such as tumor grade and biomarkers. Grade is a description of the cancer cytology and 

ranges from zero to four. If the cancer cells are differentiated, appearing similar to the surrounding 

healthy tissue, the tumor is low-grade. If the cells are poorly differentiated, the tumor is high-grade 

and in general, more likely to metastasize. Relevant biomarkers such as cell surface marker 
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expression or the presence of a genetic mutation will also be recorded with the staging since they 

can affect treatment plans [28].  

Most cancers are staged from I to IV in order of severity. Stage 0 lung cancer is in situ, meaning 

the primary tumor has not grown into surrounding tissue. Stage I lung cancer describes a primary 

tumor that is <4cm in its greatest dimension and has not spread to any lymph nodes. Stage I is 

subdivided based on tumor size: IA1 is ≤1cm, IA2 is >1cm and ≤2cm, IA3 is >2cm and ≤3cm, and 

IB is >3cm and ≤4cm. Stage IIA describes a primary tumor >4cm and ≤5cm without lymph node 

involvement, and Stage IIB describes a tumor >5cm with no lymph node involvement or a tumor 

≤5cm with metastasis to the ipsilateral peribronchial or ipsilateral hilar lymph nodes and 

intrapulmonary lymph nodes, ipsilateral mediastinal lymph nodes, or subcranial lymph nodes. 

Stage III lung cancer is subdivided into A, B, and C based on tumor size and which lymph nodes 

are affected. Stage IIIA describes a primary tumor >7cm with no lymph node involvement or a 

tumor >5cm with metastasis to the ipsilateral peribronchial or ipsilateral hilar lymph nodes and 

intrapulmonary lymph nodes, ipsilateral mediastinal lymph nodes, or subcranial lymph nodes. 

Stage IIIB describes primary tumors >5cm with metastasis in the ipsilateral mediastinal or 

subcranial lymph nodes or a tumor ≤5cm with metastasis in the contralateral mediastinal, 

contralateral hilar, ipsilateral or contralateral scalene, or supraclavicular lymph nodes. Stage IIIC 

describes tumors >5cm with metastasis in the contralateral mediastinal, contralateral hilar, 

ipsilateral or contralateral scalene, or supraclavicular lymph nodes. Stage IV lung cancer is by 

definition metastatic. Stage IVA is defined by separate tumor lesions in a contralateral lobe, a 

tumor with pleural or pericardial nodules, a malignant pleural or pericardial effusion, or a single 

extrathoracic metastasis. Stage IVB is defined by multiple extrathoracic metastases in one or more 
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organs. The International Association for the Study of Lung Cancer also summarized the survival 

for almost 95,000 lung cancer cases based on these stage groupings (Figure 2.2) [2].  

 

 

Figure 2.2 Survival curves and median survival time (MST) for non-small cell lung cancer 

patients by diagnosis stage, compiled from 16 countries and diagnosed between 1999 and 2010. 

Shared with permission from [2]. 

 

The majority of NSCLC cases, approximately 70%, are diagnosed in a locally advanced or 

metastatic stage, either III or IV [29]. With earlier stage detection, prognosis significantly 

improves [2]. This highlights the importance of screening high-risk patients. The National Lung 

Screening Trial evaluated X-ray against CT screening in over 50,000 high-risk patients and found 

a benefit of 20% for lung cancer mortality. Therefore, the US Preventative Services Task Force 

recommends annual low-dose CT screening for patients 55 to 80 years old who have smoked 

within the last 15 years for a total of ≥30 pack-years (the equivalent number of cigarettes to one 

pack each day for one year, or 7,305 cigarettes). A randomized study implementing low-dose CT 

screening in the Netherlands and Belgium (NELSON trial) found a 26% reduction in lung cancer 

mortality for high-risk men at 10-year follow-up [5]. With approximately 8 million high-risk 

individuals in the United States, this translates to an ability to prevent over 24,000 lung cancer 

deaths [30]. Despite this, there is some debate over CT scanning because of a high false-positive 
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rate (24.2%), of a false-negative rate of 6%, 66% of tumors detected are already advanced (stage 

IIIB-IV), around 18% of cancers will be overdiagnosed, and the radiation used for the scans might 

increase the risk of lung cancer – it is believed to cause death in 0.024% of screened individuals 

[5], [14].  

 

2.6. Non-small cell lung cancer treatment 

Treatment of NSCLC depends on its stage. Stages 0 – IIA have no metastases or lymph node 

involvement, so they are typically surgically resected. Lobectomy, or removal of a single lung 

lobe, is prognostically superior to sublobar resection. A trial from the Lung Cancer Study Group 

observed a threefold increase in local cancer recurrence in patients given sublobar resections 

instead of lobectomies. Though this trial was performed before PET, survival still appears to be 

lower in populations with sublobar resection instead of lobectomy. There has been some evidence 

for the benefit of neoadjuvant chemotherapy to treat micrometastases and downstage the tumor to 

allow for complete resection in cases with limited or no lymph node involvement (N0-N1). After 

surgical resection, adjuvant chemotherapy is indicated for patients with stage II and IIIA disease. 

It has been shown to yield a 5.4% survival benefit at five years. Induction chemotherapy has shown 

a significant survival benefit for patients with stage IIB and IIIA lung cancer as well [5]. For stage 

III lung cancer, chemoradiation has been the standard of care for the past decade, but survival 

remains poor. More recently, the PACIFIC trial reported a benefit to inhibiting a PD-L1 with 

durvalumab. Progression-free survival with this targeted immunotherapy was 16.8 months 

compared to 5.6 months in controls, leading to FDA approval of durvalumab for unresectable stage 

III NSCLC. Oligometastatic NSCLC is defined by limited metastases to one or two organs that 

can be locally treated in combination with any systemic therapy. For example, brain metastases 
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are typically surgically resected or treated with precise radiation via stereotactic radiosurgery. 

Metastatic NSCLC requires systemic treatment. Historically, this has meant four to six cycles of 

platinum doublet chemotherapy (i.e. carboplatin or cisplatin with gemcitabine, vinorelbine, 

paclitaxel, or docetaxel). In nonsquamous NSCLC, treatment with pemetrexed and cisplatin had 

better tolerance and survival, so it is the current standard of care [5].  

Immunotherapy is a relatively new advancement in the treatment of NSCLC and cancer in 

general. Broadly, immunotherapies strive to support the immune system in the recognition and 

killing of malignant cells. PD-L1, typically expressed in T cells, is often expressed by malignant 

cells as a defense mechanism against the immune system. This ligand can be blocked and a subset 

of treated NSCLC patients were alive five years after diagnosis, which is about five times longer 

than the typical case. There have been disparate results in the clinical trials currently run for a few 

PD-L1 inhibitors. Pembrolizumab treatment increased progression-free survival from 6 months to 

10.3 months and overall survival from 14.2 months to 30 months. On the other hand, there was no 

significant difference between nivolumab and platinum doublet chemotherapy. Notably, the 

combination of platinum doublet chemotherapy with pembrolizumab improved treatment efficacy 

for patients with metastatic NSCLC, especially those whose tumors highly express PD-L1. 

Another immune checkpoint inhibitor expressed by T cells is cytotoxic T-lymphocyte-associated 

protein 4 (CTLA-4). The inhibition of PD-L1 and CTLA-4 has improved melanoma prognoses 

and is being evaluated as a lung cancer therapy. The combination of nivolumab with anti-CTLA-

4 antibody ipilimumab improved progression-free survival over nivolumab alone. However, this 

improvement was correlated with PD-L1 expression and there were more higher-grade adverse 

events. Though they remain under evaluation, immunotherapies represent an important tool in the 

clinician’s armory [5].  
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Targeted therapy takes advantage of specific mutations often present in NSCLC and modifies 

the affected proteins’ function. EGFR mutations are present in 15% of NSCLC patients in the 

United States and can be targeted with two approaches: monoclonal antibodies and tyrosine kinase 

inhibitors (TKIs). Erlotinib (ERL), gefitinib, afatinib, dacomitinib, and osimertinib are all EGFR 

TKIs. These have significantly improved progression-free survival in advanced NSCLC compared 

with platinum-based chemotherapy, but they had little effect on overall survival. Recently, 

osimertinib and dacomitinib have shown improved progression-free survival over first generation 

TKIs (i.e. erlotinib and gefitinib), qualifying them for frontline treatment of EGFR-mutated 

advanced NSCLC. Unfortunately, the disease progresses in most NSCLC patients after six to 12 

months of EGFR targeted therapy. Though the etiology of this resistance is not fully understood, 

40 to 60% of patients develop a secondary mutation in exon 20 (EGFRT790M). Osimertinib 

specifically targets this mutation and has a 61% response rate in patients already treated with an 

EGFR TKI. Median progression-free survival on osimertinib is 10 months. Another factor in this 

resistance appears to be amplification of the MET oncogene in 5 to 20% of patients treated with 

erlotinib or gefitinib. Mutations in PIK3CA and HER2 may also play a role in this resistance. 

Monoclonal antibodies against EGFR cetuximab and necitumumab have demonstrated only 

modest improvement in overall survival in combination with systemic chemotherapy [5].  

Another TKI, crizotinib, was developed as a c-MET inhibitor and later discovered to have a 

beneficial effect in patients with translocations in the ALK or ROS1 genes. Ceritinib and alectinib 

are ALK TKIs that have shown improved efficacy over combination chemotherapy. Alectinib had 

longer progression-free survival than crizotinib (34.8 months versus 10.9 months) and is better 

tolerated, so it is now approved for treating ALK-positive NSCLC. Crizotinib is, however, the 

preferred treatment for patients with ROS1-positive NSCLC, with a progression-free survival of 
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19.2 months. Bevacizumab is a monoclonal antibody against VEGF, which is instrumental in 

angiogenesis. In the ECOG trial, bevacizumab in combination with chemotherapy showed an 

improved progression-free survival over chemotherapy alone (12.3 months versus 10.3 months). 

However, due to some bleeding adverse effects, bevacizumab is only recommended for 

nonsquamous NSCLC. Other therapies against VEGF like aflibercept and ramucirumab 

demonstrated improved progression-free survival as well. V-raf murine sarcoma viral oncogene 

homolog B1 (BRAF) mutations exist in 2% of NSCLCs and can be targeted with vemurafenib or 

combination dabrafenib and trametinib, which have a median progression-free survival of 7.3 

months and 9.7 months, respectively. Larotrectinib is FDA approved for NTRK-positive NSCLC 

without an acquired resistance mutation and no alternative treatment. KRAS mutations are present 

in nearly a quarter of NSCLCs but molecular agents under review have not yet shown benefits 

over current therapeutics [5].  

There are no curative treatments for metastatic disease, which is when most cases are 

diagnosed. Even for those in stage I receiving surgical resection, the survival rate is 60-80% [31]. 

Fortunately, there are currently over 3,000 clinical trials for NSCLC in progress [32]. Better 

understanding the underlying biology of NSCLC progression and the mechanisms of resistance 

will lead to more effective treatment strategies.  

 

2.7. Mathematical models of protein signaling networks 

We begin with the basic assumptions that a cell is composed of many interacting parts and that, 

through the interaction of those parts with each other and their surroundings, a cell can perform a 

particular function including division, movement, apoptosis or many other behaviors. A major 

question within biology is how do the interactions of cellular components give rise to higher order 
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events? This has specific application in how cells respond to external stimuli and integrate what 

they sense into a behavior response. The first step in answering this question involves identifying 

the cellular components that are necessary to a particular phenomenon. Cells sense their 

surroundings through proteins associated with the cell surface and transfer the information 

internally through modification of proteins along a signaling cascade. Modifications to proteins 

include phosphorylation, dephosphorylation, association, and glycosylation, amongst others. 

Estimates for the number of protein species in humans ranges from 0.62-6.13 million, including 

variants and modified proteins [33]. Many of the protein species are capable of interacting with 

each other, further complicating the system. When observing the network of proteins, we recognize 

that the collective activity cannot be understood by summing the activity of the individual proteins, 

defined as a nonlinear system. The system can also typically form self-organized network 

structures, said to be ‘emergent,’ that require additional description beyond the component 

functions. Additionally, the fact that the proteins can modify each other acts as a form of coupling 

within the system. These particular features together classify the cellular signaling network as a 

‘complex system’.  

Complex systems benefit from an interpretation using a mathematical modeling approach, 

helping to provide a formalism to describe the systems behavior. Models provide a means to 

simplify, or coarse-grain, the system to better understand the connection of the system and 

behaviors that can emerge. They have been used extensively in the past to describe complex 

systems that often contain behavior nonlinear in nature and, therefore, difficult to predict [34], 

[35]. Accordingly, models are integral for understanding the complex systems that are presented 

in cell signaling networks composed of a large collection of tightly coupled signaling molecules. 

Keeping track of all these components and their interactions and, then, making predictions about 
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their behavior quickly becomes insurmountable without computational assistance. Cells 

communicate with and integrate signals from their surrounding environment through their 

signaling networks. The behavior of a cell is based on the proper response to an external signal 

[36]. The information is encoded through the network by multiple chronological steps that include 

protein binding, post-translational modification, and compartmentalization [37]. Many past studies 

have focused on identifying the immediate upstream and downstream components of signaling 

cascades, resulting in large, highly connected maps of known interactions. What has emerged from 

these previous studies is a picture composed of coupled modules, or motifs, that perform a unique 

signaling behavior. That is, though the specific components may be different, the behavior of the 

system will be based on how the components are connected, known as the system topology.  

Discerning the topology, or architecture of a system, represents an integral first step into 

understanding how that system operates. Once the connections of the system are defined, the 

components can be organized into modules based on function. In this section, we illustrate two 

common modules found in cell signaling networks: a bistable switch and an oscillating circuit. 

Both will be later used to build a molecular model of NSCLC fate decision. The behaviors of a 

system that arise from the interaction of its components are called its emergent properties. Often, 

it is difficult to predict emergent properties from the topology alone. Additionally, because the 

emergent behavior is the result of the interaction of all components, properties of the system are 

not the result of a single element. This particular feature makes a reductionist approach of 

understanding difficult. Instead, it is necessary to view the system as a whole. 

Furthermore, a model, by its definition, is used to represent a process. When a model is 

constructed, the approach and the modeling methods employed make inherent assumptions about 

that system. Some approaches are applicable in certain instances but not in others. We review two 
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common methods for representing the protein signaling cascades present in the cell. It is important 

to remember that the model representation is a proxy for the underlying physical machinations that 

are occurring. In the descriptions, we will cover the important assumptions made by the model, in 

what applications the model can be useful, and limitations of the model. 

 

2.7.1. Differential equation implementations 

The most common and simplest approach in modeling protein signaling dynamics uses the 

kinetic equation framework. Here, the kinetics, or change, in a molecule concentration is equal to 

the rate that the molecule is being created or destroyed:  

 
𝑑𝐶

𝑑𝑡
= (𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛) − (𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛) (2.1) 

The terms within the equation can represent different cellular processes if a set of particular 

assumptions are made. Each term, generation and consumption, can be symbolized as a constant 

(e.g. synthesis), first order reaction (e.g. degradation), or nonlinear component (e.g. Michaelis-

Menten kinetics) [38]. We make use of all three options in our eventual model implementation. 

The expression ordinary differential equation (ODE) refers to the system only evolving in time, 

not space. The use of differential equations as a basis for the model classifies the approach as 

deterministic, which is the first of the two formalisms commonly used to model protein signaling 

networks. One of the major assumptions underpinning this model is that the system is a large, well-

stirred reactor, functionally meaning that any reaction can occur readily. There are no limitations 

to molecule count or location. The use of ODEs as a model system is well characterized and 

although analytical solutions for a system of coupled equations may not exist, numerical methods 

are well established to solve the system. Additionally, solving large systems of ODEs is relatively 

computationally inexpensive in comparison to other approaches, allowing for large ranges of 



25 

 

parameter sets to be explored. As models become more complex, both in size and detail, the 

computational cost increases, resulting in a greater time to reach a solution. Models generally trade 

detail to reach a solution more quickly. Properly defining the model involves finding an 

appropriate balance between detail and speed.  

We know that cells do not exist as a single, large compartment as the ODE model assumes. 

Instead, they contain a multitude of physically separated regions. Taking this fact into 

consideration when building a model, either a partial differential equation (PDE) or compartmental 

model is employed. A PDE approach allows for evolution in both time and space, and the dynamics 

of the system are described by the reaction-diffusion equation: 

 
𝜕𝐶

𝜕𝑡
= 𝐷

𝜕2𝐶

𝜕𝑥2
− 𝑣

𝜕𝐶

𝜕𝑥
+ 𝑅 (2.2) 

where C is molecule concentration, t is time, D is the diffusion coefficient, v is the convective 

velocity, x is the spatial variable, and R is the rate of production and depletion. Equation 2.2 states 

that the change in concentration of a molecule at a particular point is dictated by diffusion (the first 

term), active transport (the second term), and the reaction rates (third term). While this approach 

more closely realizes actual cellular processes, it comes with the disadvantage of a large increase 

in parameters to a system that may already contain a multitude.  

The difference between the two approaches highlights an important question when building a 

model – what is the degree of simplification that should be used? That is, what is the appropriate 

amount of abstraction of the system that can occur while still maintaining the phenomena of 

interest. The details that are included in a model (i.e. what steps can be simplified and what steps 

cannot) can offer important insight into the dynamics and highlight significant variables of the 

system.  

 



26 

 

2.7.2. Michaelis-Menten kinetics 

Here, we pay particular attention to Michaelis-Menten kinetics, as a thorough understanding 

of enzyme behavior is helpful in building more complex protein signaling networks. Historically, 

the proposed model was developed to describe the enzymatic reaction mechanism of invertase 

[39]. The process can be represented as: 

 E + S 
𝑘𝑟
⇌

     𝑘𝑓

 𝐸𝑆
𝑘𝑐𝑎𝑡
→  𝐸 + 𝑃 (2.3) 

where an enzyme E binds to a substrate S to form complex ES at a forward rate kf and a reverse 

rate kr. The complex then releases the product P and original enzyme E at the catalytic rate constant 

kcat.  

To derive the rate at which the product P is formed, specific assumptions about the system 

must be applied. The first is the application of the law of mass action, stating that the rate of a 

chemical reaction is proportional to the product of the reactants’ concentrations, resulting in a 

system of four coupled non-linear ODEs that describe the evolution of all four components of the 

process. The differential equations are as follows:  

 
𝑑[𝐸]

𝑑𝑡
= −𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆] + 𝑘𝑐𝑎𝑡[𝐸𝑆] (2.4) 

 
𝑑[𝑆]

𝑑𝑡
= −𝑘𝑓[𝐸][𝑆] + 𝑘𝑟[𝐸𝑆] (2.5) 

 
𝑑[𝐸𝑆]

𝑑𝑡
= 𝑘𝑓[𝐸][𝑆] − 𝑘𝑟[𝐸𝑆] − 𝑘𝑐𝑎𝑡[𝐸𝑆] (2.6) 

 
𝑑[𝑃]

𝑑𝑡
= 𝑘𝑐𝑎𝑡[𝐸𝑆] (2.7) 
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At the beginning, the substrate binds to enzyme forming a reversible complex. The enzyme 

then catalyzes a reaction, forming a final product and freeing the enzyme once again. An example 

time course is provided in Figure 2.3.  

 

 

Figure 2.3 Michaelis-Menten system kinetics. (A) Species time course for the evolution of the Michaelis-

Menten model. [S] represents substrate, [E] represents enzyme, [ES] represents substrate-enzyme 

complex, and [P] represents product concentrations. (B) Michaelis-Menten saturation curve. The rate of 

reaction is dictated by substrate concentration. At low substrate concentrations, the change in reaction 

time is nearly linear (first-order reaction), at high substrate concentration the rate reaches the asymptotic 

value of Vmax (zero-order reaction). Rate parameters and initial conditions are found in Appendix A. 

 

Using the derived ODEs, we can describe the rate of product formation as:  

 
𝑑[𝑃]

𝑑𝑡
=
𝑉𝑚𝑎𝑥[𝑆]

𝐾𝑚 + [𝑆]
 (2.8) 

where [P] represents the concentration of the product and [S], the concentration of the substrate. 

Vmax is the maximum velocity of the reaction and is the product of the total enzyme concentration 

[E] and kcat. Km is the dissociation constant for the enzyme-substrate complex and is the ratio of 

the reverse rate kr and the forward rate kf, or kr / kf.  

A. B. 
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There are distinct system behaviors depending on the relative size between Km and [S]. When 

substrate concentration is low, [S] << Km, the reaction rate varies approximately linearly with 

substrate concentration, resulting in first-order kinetics. However, when substrate concentration is 

much greater than Km, [S] >> Km, the reaction rate becomes independent of substrate 

concentration, giving rise to zero-order kinetics. At this point, the reaction is referred to as 

saturated since all of the available enzyme is bound to substrate. Overall, the relationship between 

substrate concentration and reaction rate is hyperbolic.  

 

2.7.3. Zero-order ultrasensitivity 

In 1981, Goldbeter and Koshland published seminal work showing that the response curve to 

a given input within a signaling network can be sigmoidal [40]. The term they used to describe 

this phenomenon is called zero-order ultrasensitivity. Zero-order refers to the regime where the 

reaction occurs, at enzyme saturation. Ultrasensitivity is in reference to the response seen; the 

response can largely vary with small changes in input strength. Ultrasensitive activity has been 

implicated in signaling cascades, bistable systems, and oscillating systems [41]–[43]. 

Ultrasensitivity is an important concept in molecular signaling as it allows for filtering of low-

level stimulus and a large difference in response for small changes in input. Functionally, within 

the signaling networks, ultrasensitivity enables the formation of more complex systems, including 

bistable switches and oscillators. 

To examine ultrasensitivity in practice, we can look at a protein that can be activated by 

phosphorylation and inactivated through dephosphorylation. Assuming mass action kinetics, the 

rate of phosphorylation for a protein X is: 
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𝑑𝑝𝑋

𝑑𝑡
= 𝑘1[𝑘𝑖𝑛𝑎𝑠𝑒](𝑋𝑡𝑜𝑡 − pX) − 𝑘−1[𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒](𝑝𝑋) (2.9) 

where k1 is the rate constant for phosphorylation, Xtot is total protein, pX is the phosphorylated 

fraction of X, and k-1 is the rate of dephosphorylation. From here, we can solve for the 

phosphorylated fraction of X as a function of the concentration of kinase: 

 
𝑝𝑋

𝑋𝑡𝑜𝑡
=

[𝑘𝑖𝑛𝑎𝑠𝑒]𝑛

𝐾𝑚
𝑛 + [𝑘𝑖𝑛𝑎𝑠𝑒]𝑛

 (2.10) 

We can describe the change by including n, an exponential factor transforming the above 

relationship into the Hill function. Ultrasensitive responses are generally sigmoidal, with flat 

responses at low and high inputs and a steep response between the two. The curve is well 

approximated by the Hill function and provides a means of quantifying ultrasensitivity through the 

Hill exponent n. In this form, when n = 1, the response is Michaelian and when n > 1, the response 

is ultrasensitive, with the system becoming more switch-like as n increases (Figure 2.4).  

 

 

Figure 2.4 Hill function response curves. The input (kinase concentration) and output (fraction of 

phosphorylated protein X) relationship for Hill functions with exponent 1, 2, 5, and 10. As the exponent 

increases in value, the response becomes more ultrasensitive and switch-like in nature. 
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2.7.4. Stochastic implementations 

Many biological systems exist at low concentration of species (e.g. proteins, RNA, DNA, 

signaling chemicals). At this level, small changes in the overall number of signaling molecules can 

have large and profound effects on the behavior of the system. When this is the case, using a 

deterministic model is not appropriate to study system dynamics. Instead, a formalism that treats 

the time evolution of the system as a type of random walk process can be used. This approach uses 

a chemical master equation that describes a set of phenomenological first-order differential 

equations.  

 

 

 

For our stochastic approach, we used the Gillespie algorithm, or stochastic simulation 

algorithm (SSA). This method, while the slowest of the stochastic techniques, offers an exact 

solution by explicitly simulating every reaction. The approach uses a Monte Carlo procedure to 

Figure 2.5 Schematic of the Gillespie algorithm and representative stochastic Michaelis-Menten time 

course. (A) The direct method (DM) procedure developed by Gillespie for describing the evolution of a 

chemical system. (B) The stochastic implementation of Gillespie’s DM procedure.  

A. B. 
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reproduce evolution of a chemical system. The algorithm, called the direct method (DM), was 

initially described by Gillespie and is presented as a schematic in Figure 2.5A [44]. Briefly, it 

consists of the following steps: a stoichiometry matrix for all reactants is constructed, each reaction 

probability is calculated given the state (number of species at the current time) of the system and 

the probabilities are summed, the time step and a specific reaction are chosen based on two random 

numbers, the species number and current time are updated based on the previous step, and the 

procedure is repeated. When the number of reactions or species becomes large, the DM becomes 

too slow to be practical. As an example, we present the Michaelis-Menten equation, solved 

stochastically. We first define the three reactions from the Michaelis-Menten equation as follows: 

 1. S + E
𝑘𝑓
→ 𝐸𝑆 (2.11) 

 2. 𝐸𝑆
𝑘𝑟
→ 𝐸 + 𝑆 (2.12) 

 3. 𝐸𝑆
𝑘𝑐𝑎𝑡
→  𝐸 + 𝑃 (2.13) 

The resulting stoichiometry matrix is: 

Table 2.2 Stochastic solution for system of Michaelis-Menten equation.  

 E S ES P 

1. -1 -1 1 0 

2. 1 1 -1 0 

3. 1 0 -1 1 

 

All concentrations in the original ODE implementation must be converted to molecule number. 

The conversion is achieved by defining a system size for the stochastic implementation. As the 

system size increases, the time course evolution approaches the ODE solution. Conversely, as the 
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system size decreases, stochastic effects are more pronounced. An example of one stochastic 

solution for the Michaelis-Menten equation is shown in Figure 2.5B. 

 

2.7.5. Rb-E2F switch 

Turning to our first molecular motif, we examine a bistable switch. The idea and characteristics 

of a bistable switch are well known within the fields of mathematics and engineering, and 

beginning to see extensive use in biology as a control mechanism of molecular signaling. The 

restriction point (R point) marks the time that a cell commits to entering the cell cycle. From an 

ideal standpoint, once the cell chooses to enter the cell cycle, it should fully commit to completing 

its own division. At a molecular level, this is achieved through the implementation of a bistable 

switch (Figure 2.6A). The system exists in three regimes. The first, at low input signal, results in 

a low output response. As input signal is increased, a threshold is reached, and the output quickly 

increases, marking the second regime. The third region, a bistable central area, exists between the 

two extremes and results from hysteresis of the system, meaning the initial state of the entire 

system dictates the observed response (Figure 2.6B). The behavior of a bistable switch captures 

two important biological purposes: a high threshold for activation from a system with low input 

signal and continued signaling once the switch is activated. The first property results in effective 

signal from noise filtering, a necessary function in noisy biological systems. The second ensures 

that once the circuit has been activated, the response remains high and the cell can complete 

mitosis. The bistable mechanism marking the entry into mitosis was suggested theoretically before 

being confirmed experimentally, highlighting the value in modeling approaches [45]–[47].  
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Figure 2.6 Model of the bistable Rb-E2F switch. (A) Schematic representation showing the topology of 

the Rb-E2F switch model. The system behavior is the result of two positive feedback loops, between 

CycE/Cdk2 and Rb and E2F autoactivation. (B) E2F concentration as a function of serum treatment 

showing hysteresis. Figure is adapted from Yao et al. with journal permission [48].  

 

Outlining a molecular example, the retinoblastoma protein (Rb)-E2F mechanism forms the 

gateway for the cellular decision to enter mitosis. In response to external stimuli (growth signals), 

the transcriptional factor E2F is activated. E2F is involved in the regulation of proteins controlling 

DNA replication and cell-cycle progression, and is critical in the control of cell proliferation [49]–

[51]. Mechanistically, the growth signals lead to increased activation of Myc and cyclin D/cyclin-

dependent kinase (Cdk) 4-6 complex. Myc additionally activates cyclin D/Cdk 4-6 and induces 

E2F transcription [52]. At low signal, the cellular quiescent state, E2F is bound to Rb, which results 

in preventing the cell cycle. Cyclin D phosphorylates Rb and the free E2F is able to activate cyclin 

E/Cdk 2. There exist two positive feedback loops within the network: cyclin E phosphorylates Rb 

enhancing Rb inactivation from cyclin D, and E2F activates its own transcription (Figure 2.6A). 

 

A. B. 
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2.7.6. Oscillating circuit 

A defining property of a cell is the ability to self-replicate. Mammalian cell division is 

carried out through the successive activation of four different cyclins with their dependent 

kinases [53]. Historically, the cell cycle was divided into four phases: G1 (gap 1 phase) 

corresponding to the interval between division and DNA replication, S (synthesis phase) when 

DNA replication occurs, G2 (gap 2 phase) during which the cell continues to grow and the 

molecular machinery for mitosis is produced, and M (mitosis phase) when the cell finally divides 

[54]. Each of the different phases is characterized by the distinct dynamics of the separate 

cyclin/Cdk complexes. Cyclin D/Cdk4-6 and cyclin E/Cdk2 characterize G1 and drive the G1/S 

transition (the Rb-E2F bistable switch highlighted in the previous section). Cyclin A/Cdk2 

facilitates the progression of S phase and the S/G2 transition, and cyclin B/Cdk1 enables the 

G2/M transition. A full detailed model of the mammalian cell cycle proposed by Goldbeter and 

colleagues is driven by the Cdk network and is composed of 39 variables [55].  
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Figure 2.7 Schematic for minimal cell cycle model. (A) Network topology for the Goldbeter skeleton 

model of mitosis is driven by progressive activation of the four cyclin proteins and their respective cyclin 

dependent kinases. Note the absence of the protein Rb, integral to the bistable switch. (B) Evolution of the 

five coupled ODE system at high growth factor input. Oscillations are phenomenologically the same as 

the large 39 component model. Figure is adapted from Goldbeter et al. with journal permission [56]. 

 

Next, Goldbeter undertook defining the minimum molecular architecture necessary for 

maintaining sustained oscillations (Figure 2.7) [56]. The reduced form is more tractable for quicker 

modeling implementations and for a greater search of parameter space. Additionally, it helps 

define the critical topology necessary for mitotic behavior. The model itself is composed of only 

the four cyclins in complex with their respective Cdks, the transcription factor E2F, and cell-

division cycle protein 20 homolog (Cdc20). The model shows the same phenomenological 

behavior as its larger relative. A key component missing in this model iteration is the protein Rb. 

The skeleton model still oscillates at high input signal and reaches a constant steady state at low 

signal but the sharp, switch-like transition between the two is missing.  

The wiring of the cell cycle contains multiple oscillatory circuits driven by negative feedback 

loops. Even the simple five variable model contains three such circuits [55], [56]. Feedback loops 

are one of the necessary components for a circuit to oscillate in addition to ultrasensitivity and 

A. B. 
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enough delay within the feedback loop. The existence of multiple, coupled oscillators can give rise 

to complex oscillations and chaos [57], [58]. The behavior of the system when the multiple 

oscillators are tightly coupled results in self-organized, sequential activation. However, as the 

coupling is decreased, complex periodic oscillations can develop. The existence of decoupled 

oscillations has been proposed as an explanation for endoreplication in yeast and eukaryotic cells 

[59], [60].  

 

2.8. Experiment-model iteration process 

The understanding of such complex systems as a cell, organ, or a body requires not only the 

identification of components, but also discernment of how the components interact. The 

interactions give rise to a host of phenomena difficult to calculate from a list of the parts. 

Developing a deep comprehension of emergent phenomena requires the concurrent development 

of a mathematical framework to describe such a system. The study of systems biology, whose 

definition has itself been somewhat emergent, attempts to define how such phenomena come about 

from biological organization. The field relies heavily on the quantitative measurement of 

biological systems, modeling those systems, and then development of theory. Each part of the 

approach is interrelated, and the theory development occurs from feedback from both ‘wet’ and 

‘dry’ experiments.  
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Figure 2.8 Schematic outlining the general procedure for understanding a biological phenomenon using a 

systems biology approach. Used with permission from [61]. 

 

We employ a systems biology approach to examine the heterogenous response seen in NSCLC 

to targeted drug therapy using the schematic shown in Figure 2.8 as an outline for our approach. 

The biological phenomenon we are examining is the fate decision of an individual cell. At the 

single cell level, whether NSCLC continues to develop or not is based on the proportion of cancer 

cells proliferating, dying, and entering quiescence. The following chapters follow the progression 

of this outline. In Chapter III, we collect the necessary molecular components from the literature 

to build a model of cell fate decision. In Chapter IV, we take quantitative single-cell results from 

defined perturbations to the system. Finally, in Chapter V, using the molecular model generated in 

Chapter III and the wet experimental data from Chapter IV, we compare experimental and model 
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results, highlighting discrepancies between the two and extending the model for future 

experimental testing.  
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CHAPTER III 

 

3. Building a molecular model of cell fate decision 

 

We constructed a literature-based, minimal protein network model with the goal of capturing 

the heterogeneous cell response seen in our experiments. Overall, this work examines whether our 

current understanding of the cellular signaling network can be used to evaluate and predict tumor 

growth and treatment response. Whether a tumor will grow or shrink ultimately depends on the 

distribution of decisions by the population of cells to either continue dividing, die, or enter 

quiescence. To gain a better understanding of how heterogeneity in cell fate decision is linked to 

the underlying protein signaling network, we propose a simplified model of the process. When 

designing our model, we highlight several important features. We have chosen to focus on the fate 

decision process that directs a cell into mitosis or apoptosis. However, the entirety of the process 

is complex and not fully known. First, it was necessary for our model to be able to integrate 

external signals through receptor tyrosine kinases (RTKs) and integrin. Both are canonical 

signaling axes that drive AKT and ERK activation. Second, we needed to include modules to 

incorporate cell death and division. Third, we needed to return population dynamics and capture 

stochastic features to link protein network signaling to cell population. The model is purposefully 

simple to focus on network structure and behavior. As a starting point, we have simplified the 

signaling upstream of mitosis, and instead implement a mapping of cell surface molecules to AKT 

and ERK activation levels. In our simplified model, AKT and ERK signaling set the threshold for 

fate decision.  
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In this chapter, we present an overview of the signaling pathway as a review for our model, 

highlighting important caveats of our approach and highlighting the complexity of the cellular 

signaling network. Building on the design principles laid out by Goldbeter, we use a similar 

framework to model the cellular decision between division, apoptosis, and quiescence [56]. The 

model contains three modules: the mitosis module positioned around the cyclin network, a simple 

apoptosis switch, and a component that integrates the signal transduction network from external 

cues (Figure 3.1). This system allows us to ask: What does the topology of the signaling network 

tell us? What types of cellular phenomena can be captured with a simple model? Where do we 

need to add more complexity? Finally, we can probe the model to gain insight into expected cancer 

cell behavior and potential mechanisms thereof.  
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Figure 3.1 Schematic representation of the cell fate model. Microenvironment cues are integrated through 

RTKs and integrins via molecular signaling cascades. AKT, ERK, and FAK represent major axes within 

the signaling network and serve as the inputs to our molecular apoptosis model and molecular mitosis 

model.  

 

3.1. Signal transduction network 

Our goal is to connect cell surface signaling to cell fate decision. The cell surface contains a 

multitude of proteins that allow the cell to sense its surroundings. The microenvironment has been 

shown to have a significant effect, both in our studies and prior work, on cell behavior and tumor 

treatment response. However, modeling the full transduction network is outside the scope of this 

project and the capability of our stochastic technique. Understanding the signal transduction 
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network and its feedback has its own set of challenges. In the current study, we have chosen to 

map RTK expression and signaling directly to AKT and ERK activation levels. However, we offer 

a brief review of the pathway from receptor to AKT and ERK activation. Regardless of 

mechanism, both integrins and RTKs signal through AKT and ERK. These signaling axes are 

major signaling nodes within the cell. The idea is part of an emerging theory of so-called “bow-

tie” signaling that represents a characteristic feature of robust, evolvable systems [62]. The amount 

of plasticity afforded to the signaling network from RTKs and integrins is considerable.  

 

3.1.1. Receptor tyrosine kinases (RTKs) 

RTKs represent an important class of proteins within oncogene-addicted cancers. The receptor 

family is often overexpressed or possesses activating mutations, leading to disease progression. 

This cancer subclass derives its name from the apparent reliance on oncogene signaling for 

continued survival. In this study, we focus on two of the receptors from the RTK family: 

hepatocyte growth factor receptor (HGFR or cMet) and EGFR (or ErbB1 or Her1). RTKs have 

similar molecular architecture with a single transmembrane helix that connects an extracellular 

ligand binding domain to an intracellular, conserved protein tyrosine kinase (PTK) domain [63]. 

Upon ligand binding, the receptor can either homo- or heterodimerize with subsequent tyrosine 

autophosphorylation. Both cMet and EGFR have shown the capability to signal through the same 

pathways, ultimately activating both AKT and ERK. 

The ErbB family consists of four different members that are structurally similar. We focus on 

EGFR as it is often mutated in NSCLC. The cytoplasmic domain has at minimum 20 tyrosine 

residues capable of phosphorylation, seven of which are autophosphorylation sites [64], [65]. Our 

model cell line, PC9, harbors an exon-19 deletion within the PTK domain, making EGFR 
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constitutively active. This particular mutation occurs in approximately half of all EGFR-mutated 

lung tumors [66].  

Aberrant cMet expression and activation has been correlated with poor prognosis in cancer. 

Furthermore, we have shown that elevated cMet expression correlates with the erlotinib-resistant 

phenotype characterized by an increased drug-induced proliferation (DIP) rate. It has also been 

shown that MET amplification leads to gefitinib resistance by heterodimerizing and activating 

ErbB3, a member of the ErbB family mentioned previously [67].  

Upon activation, cMet recruits and activates many downstream signaling molecules at the 

plasma membrane. A key adaptor is growth factor receptor-bound protein 2 (GRB2), which 

facilitates the binding of the nucleotide exchange factor Son of Sevenless (SOS) [68]. SOS 

functions as a guanine nucleotide exchange factor that acts on the proto-oncogene c-rat sarcoma 

viral oncogene homolog (Ras) family of small GTPases. Ras operates by binding rapidly 

accelerated fibrosarcoma (Raf) kinases and translocating Raf to the cell membrane for activation. 

The activation of Raf represents the first step of the integral MAPK cellular signaling module. The 

module is composed of MAPK kinase kinase (MAP3K, Raf), MAPK kinase (MEK, MKK), and 

ERK. 

The AKT signaling cascade is also initiated by RTK activation. Upon RTK activation, the 

phosphoinositide 3-kinase (PI3K) family can bind to the intracellular domain of the RTK, resulting 

in the conversion of phosphatidylinositol (4,5)-bisphosphate (PIP2) to phosphatidylinositol 

(3,4,5)-trisphosphate (PIP3) at the plasma membrane. PIP3 then recruits AKT to the membrane, 

where it is activated.  

The signaling cascade between receptor and AKT and ERK contains a multitude of molecules 

with significant crosstalk. We highlight canonical pathways from our selected RTKs to AKT and 
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ERK but have chosen to measure AKT and ERK activation directly for our model. We pay 

particular attention to AKT and ERK signaling, as they represent a point of convergence within 

the transduction pathway.  

 

3.1.2. Integrins 

Integrins are class of receptors connecting the ECM with the cellular cytoskeleton. They 

provide the cell with important mechanical cues controlling a wide range of cellular responses. We 

focus on their role in cell cycle regulation. Cellular proliferation is highly altered in cancer. 

Knowledge of how integrin signaling alters the proliferative state of a cell population will help 

develop new treatment strategies.  

Integrins are transmembrane, heterodimeric receptors. Mammals possess 18 α and 8 β subunits 

that can form 24 heterodimers. There are several mechanisms as to how integrins promote cellular 

proliferation. Integrins signal through the same canonical pathways as RTKs, both the PI3K/AKT 

and Ras/Raf/MEK/ERK axes. Integrins are also capable of regulating RTK expression at the 

transcriptional level [69]. Within the cell, integrins facilitate the formation of cell adhesion 

complexes consisting of numerous adaptor proteins (e.g. paxillin, vinculin, talin). Focal adhesion 

kinase (FAK) is an additional protein recruited to the focal adhesion complex. We use FAK 

phosphorylation as a means of measuring cellular signaling response to stiffness. Once activated, 

FAK can engage PI3K, thus activating the AKT signaling pathway. Additionally, FAK is capable 

of signaling through the ERK axis by forming a complex with GRB2 and activating the Ras family 

of GTPases [70].  
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3.2. Mitosis 

Activated AKT and ERK are responsible for initiating the cell cycle through the activation of 

several transcription factors. The scheme and approach for our mitosis module is inspired by the 

Goldbeter skeleton model, which itself is based off a larger, more comprehensive model that 

Goldbeter and colleagues have developed [55], [56]. The objective of the model is to reduce the 

number of variables and parameters necessary to capture the complex phenomena of cell division. 

Making the model simpler allows for quicker simulation and the ability to search through 

parameter space. Also, it allows us to begin interpreting the minimal signaling circuitry necessary 

to capture complex cellular phenomena. The model is constructed around the Cdks that regulate 

the progression of the mammalian cell cycle through the consecutive phases of mitosis. The cell 

cycle can be divided into four phases marked by the sequential activation of specific cyclins and 

their associated kinases.  

 

3.2.1. G1 phase 

In the first phase, ERK directly phosphorylates cMyc. The myc family of genes are 

transcription factors that result in the expression of genes that drive the cell cycle (down regulation 

of p21 and upregulation of cyclins). They also play an important role in other vital cell processes 

such as apoptosis, differentiation, and growth. In addition, ERK promotes the formation AP1, 

which in turn, stimulates the production of cyclin D. In our model, both of these steps are modeled 

directly with no intermediates. Cyclin D forms an inactive complex with p21/p27, inhibiting the 

cell cycle. p21/p27 is negatively regulated by FAK activity.  

Additionally, activated AKT induces both Myc and cyclin D activation through several 

mechanisms. First, AKT phosphorylates glycogen synthase kinase 3 (GSK3) preventing the 
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degradation of cyclin D [71]. AKT also stimulates mTOR signaling, increasing the translation of 

cyclin D by activating ribosomal protein S6K [72]. The transcription activity of Myc is promoted 

by AKT-mediated degradation of Mad1. Mad1 is an inhibitor of Myc [73].  

Central to the G1/S transition is a bistable switch comprised of Rb and the transcription factor 

E2F. E2F is another set of transcription factors responsible for both activating and suppressing 

transcription. In this work, we focus on their role as activators. E2F upregulates the synthesis of 

cyclins D, E, and A, helping to drive the transition through the cell cycle. Conversely, 

hypophosphorylated Rb inhibits entry into the cell cycle by binding to E2F, thereby preventing the 

expression of necessary cell cycle-promoting factors. Rb exists in three forms: 

hypophosphorylated, monophosphorylated, and hyperphosphorylated states. Each of these serve a 

specific function within the cell. Our simple model only takes into account two forms of Rb: the 

non- and phosphorylated (combined mono- and hyper-) states. In our model, cyclin D/Cdk4-6 

complex phosphorylates Rb, inhibiting it from binding to E2F. Cyclin E/Cdk2 complex further 

phosphorylates and inactivates Rb. Biologically, the cyclin D complex is responsible for 

monophosphorylating Rb and the cyclin E complex hyperphosphorlates Rb, progressing the cell 

cycle. We model this by increasing the Rb phosphorylation rate from the cyclin E complex in 

comparison to the cyclin D complex.  

 

3.2.2. S phase 

Once cyclin E levels – stimulated by E2F – reach a threshold, the cell moves from G1 into S. 

Cyclin E/Cdk2 can form an inactive complex with p21/p27. A positive feedback loop controls 

further activation of the cyclin E/Cdk2 complex through Cdc25. We do not explicitly include 

Cdc25 in this model, but the effect of its positive feedback is included via self-activation of cyclin 
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E. Through S-phase kinase-associated protein 2 (Skp2), cyclin E phosphorylates p21/p27, marking 

it for degradation. Skp2 also degrades cyclin E, helping the cell cycle to progress. Inactivation of 

cyclin E can occur through Wee1 kinase. In our model, the cyclin E complex is inactivated by the 

emergence of the cyclin A/Cdk2 complex.  

 

3.2.3. G2 phase 

The S/G2 transition occurs with the synthesis of active cyclin A/Cdk2 complex, driven by E2F. 

Cyclin A supports the transition through S phase by both inactivating E2F and inhibiting cadherin-

1 (CDH1). In turn, CDH1 degrades Skp2, which stimulates the degradation of cyclin E. The 

reduction in cyclin E activity facilitates the proper progression through S phase. Further control is 

exhibited through p21/p27 binding, sequestering cyclin A out of the available pool. It has been 

shown that Wee1 also inactivates cyclin A, similar to cyclin E. We do not include this step. Instead, 

cyclin A is ultimately inactivated by Cdc20, the final component of our mitotic model.  

 

3.2.4. M phase 

Cyclin A triggers the activation of the cyclin B/Cdk1 complex, signaling the progression of 

the cell cycle into M phase. In the full model, cyclin B is degraded by CDH1, with constant 

synthesis of cyclin B. When CDH1 is inhibited by cyclin A, cyclin B levels can then increase 

unhindered. In the simple model, cyclin A activates cyclin B directly. Subsequently, cyclin B 

activates Cdc20, which, in turn, negatively regulates cyclin B and cyclin A. Negative feedback 

pathways acting through cyclin B and Cdc20 down regulate cyclin A and help set the proper 

progression through division.  
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3.3. Apoptosis 

We have included an intrinsic apoptosis module to account for cell death in our model by 

adapting a portion of the Tyson model for apoptosis [74]. ERK, in addition to AKT through 

forkhead box O3 (FOXO3), negatively regulates BCL-2-like protein 11 (BH3 or BIM). When 

AKT and ERK are low, BH3 levels increase. B-cell lymphoma 2 (BCL2) initially binds to and 

removes active BH3 from the activating pool. However, if AKT and ERK remain low, BH3 levels 

continue to rise, leading to the activation of BCL2-like protein 4 (BAX). Within the cell, BH3 

instigates a conformational change within BAX, allowing it to insert into the mitochondrial 

membrane. BAX oligomerizes with itself to form a pore, allowing the release of cytochrome c and 

apoptotic factors. Once this occurs, the apoptosis decision within the cell is final. Additionally, 

BAX negatively regulates BCL2, preventing BCL2 from binding and inhibiting BAX. The 

relationship allows for a bistable response to low AKT and ERK inputs. In the model, BAX is 

inactivated at a basal level to prevent accumulation and premature cell death.  
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Table 3.1 Model equations.  

𝑑𝑆𝑘𝑝2

𝑑𝑡
 = 𝑠 ∗ [𝑉𝑠𝑠𝑘𝑝2 + (𝑉𝑠2𝑠𝑘𝑝2 ∗ 𝐹𝐴𝐾) − (𝑉𝑑𝑠𝑘𝑝2 ∗ (

𝑆𝑘𝑝2

𝐾𝑑𝑠𝑘𝑝2 + 𝑆𝑘𝑝2
) ∗ (

𝐶𝑑ℎ1

𝐾𝑐𝑑ℎ1 + 𝐶𝑑ℎ1
))

− (𝑘𝑑𝑑𝑠𝑘𝑝2 ∗ 𝑆𝑘𝑝2)] 

(3.1) 

𝑑𝑝21

𝑑𝑡
 = 𝑠 ∗ [𝑉𝑠1𝑝21 + (𝑣𝑠2𝑝21 ∗ 𝐸2𝐹 ∗ (

𝐾𝑖13
𝐾𝑖13 + 𝑅𝑏

) ∗ (
𝐾𝑖14

𝐾𝑖14 + 𝑝𝑅𝑏
)) − (𝑘𝑐1 ∗ 𝐶𝑦𝑐𝐷 ∗ 𝑝21)

+ (𝑘𝑐2 ∗ 𝐶𝑦𝑐𝐷𝑝21) − (𝑘𝑐3 ∗ 𝐶𝑦𝑐𝐸 ∗ 𝑝21) + (𝑘𝑐4 ∗ 𝐶𝑦𝑐𝐸𝑝21) − (𝑘𝑐5

∗ 𝐶𝑦𝑐𝐴 ∗ 𝑝21) + (𝑘𝑐6 ∗ 𝐶𝑦𝑐𝐴𝑝21)  − (𝑘𝑐7 ∗ 𝐶𝑦𝑐𝐵 ∗ 𝑝21)

+ (𝑘𝑐8 ∗ 𝐶𝑦𝑐𝐵𝑝21) − (𝐶𝑦𝑐𝐸 ∗ (
𝑉1𝑝21 ∗ 𝑝21

𝐾1𝑝21 + 𝑝21
))  + (

𝑉2𝑝21 ∗ 𝑝21𝑝

𝐾2𝑝21 + 𝑝21
)

− (𝐹𝐴𝐾 ∗ 
𝑉𝐹𝑝 ∗ 𝑝21

𝐾𝐹𝑝 + 𝑝21
) − (𝑘𝑑𝑑𝑝21 ∗ 𝑝21)] 

(3.2) 

𝑑𝑝21𝑝

𝑑𝑡
 = 𝑠 ∗ [(𝐶𝑦𝑐𝐸 ∗ (

𝑉1𝑝21 ∗ 𝑝21

𝐾1𝑝21 + 𝑝21
)) − (

𝑉2𝑝21 ∗ 𝑝21𝑝

𝐾2𝑝21 + 𝑝21
) + (𝐹𝐴𝐾 ∗ 

𝑉𝐹𝑝 ∗ 𝑝21

𝐾𝐹𝑝 + 𝑝21
)

− (𝑉𝑑𝑝21𝑝 ∗ (
𝑆𝑘𝑝2

𝐾𝑑𝑝21𝑝 + 𝑆𝑘𝑝2
) ∗ (

𝑝21𝑝

𝐾𝑑𝑝21𝑠𝑘𝑝2 + 𝑝21𝑝
)) − (𝑘𝑑𝑑𝑝21 ∗ 𝑝21𝑝)] 

(3.3) 

𝑑𝐶𝑑ℎ1

𝑑𝑡
 = 𝑠 ∗ [((

𝑉1𝑐𝑑ℎ1 ∗ (𝐶𝑑ℎ1𝑡𝑜𝑡 − 𝐶𝑑ℎ1)

𝐾1𝑐𝑑ℎ1 + (𝐶𝑑ℎ1𝑡𝑜𝑡 − 𝐶𝑑ℎ1)
)) − ((𝐶𝑦𝑐𝐴 + 𝐶𝑦𝑐𝐵) ∗ (

𝑉2𝑐𝑑ℎ1 ∗ 𝐶𝑑ℎ1

𝐾2𝑐𝑑ℎ1 + 𝐶𝑑ℎ1
))] (3.4) 

𝑑𝑀𝑦𝑐

𝑑𝑡
= 𝑠 ∗ [(

𝑘𝑀 ∗ 𝐴𝐾𝑇

𝐾𝑆 + 𝐴𝐾𝑇
) + (

𝑘𝐸𝑀𝑌 ∗ 𝐸𝑅𝐾

𝐾𝑀𝑌 + 𝐸𝑅𝐾
) − (𝑑𝑀 ∗ 𝑀𝑦𝑐)] (3.5) 

𝑑𝐶𝑦𝑐𝐷

𝑑𝑡
= 𝑠 ∗ [(

𝑘𝐶𝐷𝑆 ∗ 𝐴𝐾𝑇

𝐾𝑆 + 𝐴𝐾𝑇
) − (𝑘𝑐1 ∗ 𝐶𝑦𝑐𝐷 ∗ 𝑝21) + (𝑘𝑐2 ∗ 𝐶𝑦𝑐𝐷𝑝21) + (

𝑘𝐸𝐷 ∗ 𝐸𝑅𝐾

𝐾𝑀𝑌 + 𝐸𝑅𝐾
)

+ (
𝑘𝐶𝐷𝐹 ∗ 𝐹𝐴𝐾

𝐾𝑀𝑌 + 𝐹𝐴𝐾
) + (

𝑘𝐶𝐷 ∗ 𝑀𝑦𝑐

𝐾𝑀 +𝑀𝑦𝑐
) − (𝑑𝐶𝐷 ∗ 𝐶𝑦𝑐𝐷)] 

(3.6) 

𝑑𝐶𝑦𝑐𝐷𝑝21

𝑑𝑡
= 𝑠 ∗ [(𝑘𝑐1 ∗ 𝐶𝑦𝑐𝐷 ∗ 𝑝21) − (𝑘𝑐2 ∗ 𝐶𝑦𝑐𝐷𝑝21)] (3.7) 
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𝑑𝑅𝑏

𝑑𝑡
= 𝑠 ∗ [𝑘𝑅 + (

𝑘𝐷𝑃 ∗ 𝑝𝑅𝑏

𝐾𝑅𝑃 + 𝑝𝑅𝑏
) − (𝑘𝑅𝐸 ∗ 𝑅𝑏 ∗ 𝐸2𝐹) − (𝐶𝑦𝑐𝐷 ∗ (

𝑘𝑃1 ∗ 𝑅𝑏

𝐾𝐶𝐷 + 𝑅𝑏
))

− (𝐶𝑦𝑐𝐸 ∗ (
𝑘𝑃2 ∗ 𝑅𝑏

𝐾𝐶𝐸 + 𝑅𝑏
)) − (𝑑𝑅 ∗ 𝑅𝑏)] 

(3.8) 

𝑑𝑝𝑅𝑏

𝑑𝑡
= 𝑠 ∗ [(𝐶𝑦𝑐𝐷 ∗ (

𝑘𝑃1 ∗ 𝑅𝑏

𝐾𝐶𝐷 + 𝑅𝑏
)) + (𝐶𝑦𝑐𝐸 ∗ (

𝑘𝑃2 ∗ 𝑅𝑏

𝐾𝐶𝐸 + 𝑅𝑏
)) + (𝐶𝑦𝑐𝐷 ∗ (

𝑘𝑃1 ∗ 𝑅𝑏𝐸2𝐹

𝐾𝐶𝐷 + 𝑅𝑏𝐸2𝐹
))

+ (𝐶𝑦𝑐𝐸 ∗ (
𝑘𝑃2 ∗ 𝑅𝑏𝐸2𝐹

𝐾𝐶𝐸 + 𝑅𝑏𝐸2𝐹
)) − (

𝑘𝐷𝑃 ∗ 𝑝𝑅𝑏

𝐾𝑅𝑃 + 𝑝𝑅𝑏
) − (𝑑𝑅𝑃 ∗ 𝑝𝑅𝑏)] 

(3.9) 

𝑑𝐸2𝐹

𝑑𝑡
= 𝑠 ∗ [(𝑘𝐸 ∗ (

𝑀𝑦𝑐

𝐾𝑀 +𝑀𝑦𝑐
) ∗ (

𝐸2𝐹

𝐾𝐸 + 𝐸2𝐹
)) + (

𝑘𝑏 ∗ 𝑀𝑦𝑐

𝐾𝑀 +𝑀𝑦𝑐
)

+ (𝐶𝑦𝑐𝐷 ∗ (
𝑘𝑃1 ∗ 𝑅𝑏𝐸2𝐹

𝐾𝐶𝐷 + 𝑅𝑏𝐸2𝐹
)) + (𝐶𝑦𝑐𝐸 ∗ (

𝑘𝑃2 ∗ 𝑅𝑏𝐸2𝐹

𝐾𝐶𝐸 + 𝑅𝑏𝐸2𝐹
))

− (𝐶𝑦𝑐𝐴 ∗ (
𝑉2𝐸2𝐹 ∗ 𝐸2𝐹

𝐾2𝐸2𝐹 + 𝐸2𝐹
)) − (𝑘𝑅𝐸 ∗ 𝑅𝑏 ∗ 𝐸2𝐹) − (𝑑𝐸 ∗ 𝐸2𝐹)] 

(3.10) 

𝑑𝑅𝑏𝐸2𝐹

𝑑𝑡
= 𝑠 ∗ [(𝑘𝑅𝐸 ∗ 𝑅𝑏 ∗ 𝐸2𝐹) − (𝐶𝑦𝑐𝐷 ∗ (

𝑘𝑃1 ∗ 𝑅𝑏𝐸2𝐹

𝐾𝐶𝐷 + 𝑅𝑏𝐸2𝐹
))

− (𝐶𝑦𝑐𝐸 ∗ (
𝑘𝑃2 ∗ 𝑅𝑏𝐸2𝐹

𝐾𝐶𝐸 + 𝑅𝑏𝐸2𝐹
)) − (𝑑𝑅𝐸 ∗ 𝑅𝑏𝐸2𝐹)] 

(3.11) 

𝑑𝐶𝑦𝑐𝐸

𝑑𝑡
= 𝑠 ∗ [(𝐸2𝐹 ∗ (𝑎 + 𝑏1 ∗ 𝐶𝑦𝑐𝐸) ∗ (

𝑉1𝑀𝑒 ∗ (𝐶𝑦𝑐𝐸𝑡𝑜𝑡 − 𝐶𝑦𝑐𝐸𝑝21 − 𝐶𝑦𝑐𝐸)

𝐾1𝑀𝑒 + (𝐶𝑦𝑐𝐸𝑡𝑜𝑡 − 𝐶𝑦𝑐𝐸𝑝21 − 𝐶𝑦𝑐𝐸)
))

− (𝐶𝑦𝑐𝐴 ∗ (
𝑉2𝑀𝑒 ∗ 𝐶𝑦𝑐𝐸

𝐾2𝑀𝑒 + 𝐶𝑦𝑐𝐸
)) − (𝑘𝑐3 ∗ 𝐶𝑦𝑐𝐸 ∗ 𝑝21) + (𝑘𝑐4 ∗ 𝐶𝑦𝑐𝐸𝑝21)] 

(3.12) 

𝑑𝐶𝑦𝑐𝐸𝑝21

𝑑𝑡
= 𝑠 ∗ [(𝑘𝑐3 ∗ 𝐶𝑦𝑐𝐸 ∗ 𝑝21) − (𝑘𝑐4 ∗ 𝐶𝑦𝑐𝐸𝑝21)] (3.13) 
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𝑑𝐶𝑦𝑐𝐴

𝑑𝑡
= 𝑠 ∗ [(𝐸2𝐹 ∗ (

𝑉1𝑀𝑎 ∗ (𝐶𝑦𝑐𝐴𝑡𝑜𝑡 − 𝐶𝑦𝑐𝐴𝑝21 − 𝐶𝑦𝑐𝐴)

𝐾1𝑀𝑎 + (𝐶𝑦𝑐𝐴𝑡𝑜𝑡 − 𝐶𝑦𝑐𝐴𝑝21 − 𝐶𝑦𝑐𝐴)
))

− (𝐶𝑑𝑐20 ∗ (
𝑉2𝑀𝑎 ∗ 𝐶𝑦𝑐𝐴

𝐾2𝑀𝑎 + 𝐶𝑦𝑐𝐴
)) − (𝑘𝑐5 ∗ 𝐶𝑦𝑐𝐴 ∗ 𝑝21) + (𝑘𝑐6 ∗ 𝐶𝑦𝑐𝐴𝑝21)] 

(3.14) 

𝑑𝐶𝑦𝑐𝐴𝑝21

𝑑𝑡
= 𝑠 ∗ [(𝑘𝑐5 ∗ 𝐶𝑦𝑐𝐴 ∗ 𝑝21) − (𝑘𝑐6 ∗ 𝐶𝑦𝑐𝐴𝑝21)] (3.15) 

𝑑𝐶𝑦𝑐𝐵

𝑑𝑡
= 𝑠 ∗ [(𝐶𝑦𝑐𝐴 ∗ (𝑏 + 𝑏2 ∗ 𝐶𝑦𝑐𝐵) ∗ (

𝐾𝑖𝑒
𝐾𝑖𝑒 + 𝐶𝑦𝑐𝐸

)

∗ (
𝑉1𝑀𝑏 ∗ (𝐶𝑦𝑐𝐵𝑡𝑜𝑡 − 𝐶𝑦𝑐𝐵𝑝21 − 𝐶𝑦𝑐𝐵)

𝐾1𝑀𝑏 + (𝐶𝑦𝑐𝐵𝑡𝑜𝑡 − 𝐶𝑦𝑐𝐵𝑝21 − 𝐶𝑦𝑐𝐵)
))

− (𝐶𝑑𝑐20 ∗ (
𝐾𝑖𝑏

𝐾𝑖𝑏 + 𝐶𝑦𝑐𝐸
) ∗ (

𝑉2𝑀𝑏 ∗ 𝐶𝑦𝑐𝐵

𝐾2𝑀𝑏 + 𝐶𝑦𝑐𝐵
)) − (𝑘𝑐7 ∗ 𝐶𝑦𝑐𝐵 ∗ 𝑝21)

+ (𝑘𝑐8 ∗ 𝐶𝑦𝑐𝐵𝑝21)] 

(3.16) 

𝑑𝐶𝑦𝑐𝐵𝑝21

𝑑𝑡
= 𝑠 ∗ [(𝑘𝑐7 ∗ 𝐶𝑦𝑐𝐵 ∗ 𝑝21) − (𝑘𝑐8 ∗ 𝐶𝑦𝑐𝐵𝑝21)] (3.17) 

𝑑𝐵𝐴𝑋

𝑑𝑡
= 𝑚 ∗ [−(𝑘𝑓1 + 𝑘𝑓2 ∗ 𝐵𝐴𝑋) ∗ 𝐵𝐻3 + 𝑘𝑏 ∗ (𝐵𝐴𝑋𝑚 + 𝐵𝐴𝑋𝑚𝐵𝐶𝐿2)] (3.18) 

𝑑𝐵𝐴𝑋𝑚𝐵𝐶𝐿2

𝑑𝑡
= 𝑚

∗ [𝑘𝑎𝑠𝑏𝑎𝑥𝑚𝑏𝑐𝑙2 ∗ 𝐵𝐴𝑋𝑚 ∗ 𝐵𝐶𝐿2 − 𝑘𝑑𝑠𝑏𝑎𝑥𝑚𝑏𝑐𝑙2 ∗ 𝐵𝐴𝑋𝑚𝐵𝐶𝐿2 − 𝑘𝑏

∗ 𝐵𝐴𝑋𝑚] 

(3.19) 

𝑑𝐵𝐻3

𝑑𝑡
= 𝑚 ∗ [𝑘1𝑠𝑏ℎ3 + 𝑘2𝑠𝑏ℎ3 ∗ 𝑆𝑡𝑟𝑒𝑠𝑠 − 𝑘𝑑𝑏ℎ3 ∗ 𝐵𝐻3 − 𝑘𝑎𝑠𝑏ℎ3𝑏𝑐𝑙2 ∗ 𝐵𝐻3 ∗ 𝐵𝐶𝐿2

+ 𝑘𝑑𝑠𝑏ℎ3𝑏𝑐𝑙2 ∗ 𝐵𝐻3𝐵𝐶𝐿2] 

(3.20) 

𝑑𝐵𝐻3𝐵𝐶𝐿2

𝑑𝑡
= 𝑚

∗ [𝑘𝑎𝑠𝑏ℎ3𝑏𝑐𝑙2 ∗ 𝐵𝐻3 ∗ 𝐵𝐶𝐿2 − 𝑘𝑑𝑠𝑏ℎ3𝑏𝑐𝑙2 ∗ 𝐵𝐻3𝐵𝐶𝐿2 − 𝑘𝑑𝑏ℎ3

∗ 𝐵𝐻3𝐵𝐶𝐿2] 

(3.21) 
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CHAPTER IV 

 

4. NSCLC cell response to variations in microenvironment 

 

How cells interpret their chemical and mechanical environments to make fate decisions 

remains an open question at the interface of multiple disciplines. Cancer, generally speaking, is a 

misappropriation of the cellular machinery responsible for those decisions. Targeted therapy of 

EGFR has been a successful initial treatment for patients with NSCLC [75]. The disease, however, 

will frequently progress as the tumors become resistant [76], [77]. One cause of resistance is linked 

to heterogeneity of cell fates in response to drug treatment. Underlying fate decision, and the 

resulting population response, is the complex signaling network of the cell. To understand the 

dynamics of a drug response, it is necessary to determine how an external stimulus is integrated 

into fate determination and how perturbations in the signaling network alter the decision process.  

Previous work has focused on identifying key mutational drivers and quantifying the dynamic 

changes to cell fate that occur upon treatment, describing the flux between populations of dividing, 

dying, and quiescent cells [78]–[81]. These changes directly translate into the variation of overall 

population number and intermitotic time (IMT). Ultimately, cellular regulation of the mitotic and 

apoptotic pathways dictates overall disease response and subsequently, patient outcome. As the 

signaling networks of the cell are vast and complex, computational modeling of the cellular 

circuitry has emerged as a valuable tool offering insight into the behavior of these networks and 

suggesting novel mechanisms of system control.  

We use this chapter to first quantitatively define the single cell response to changes in the 

microenvironment. The changes are presented as the addition of the small molecule EGFR-
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inhibitor erlotinib and by varying the substrate stiffness. We know from past studies that response 

to erlotinib is heterogenous even for cells that are genetically similar [82]. This type of resistance 

is distinct from other forms involving receptor amplification, secondary mutations, or activation 

of separate pathways [67], [83], [84]. Previous work in the Quaranta laboratory has established 

distinct subclones of the parental PC9 NSCLC cell line based upon the response to erlotinib 

treatment. Briefly, cells are plated at single-cell density and allowed to grow into small colonies. 

A perturbation (e.g. drug treatment) is presented to the cells and their change in population is 

followed through quantity doublings providing a linear fit in log2 scale (Figure 4.1A). What is 

observed in the case of PC9 is a distribution of response rates (Figures 4.1B and 4.1C). We select 

the sublines that show the greatest and least response to erlotinib therapy, DS9 and DS8, 

respectively, to compare further perturbation response.  
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Figure 4.1 PC9 clonal response to erlotinib therapy. (A) The drug-induced proliferation rate (DIP) is the 

linear fit to total cell number in log2 scale. (B) Variability in DIP rate response seen within subclones. 

The DIP rate varies between clones ranging from a strong negative response to little effect to therapy. (C) 

The relative density seen in response. The majority of clones have a negative DIP rate. (D) An example 

time course showing DS8 (resistant) and DS9 (sensitive) response to erlotinib therapy over six days. 

Scale bars are 200 μm Adapted from [85].  

 

We initially sought to examine the effects of 2D versus 3D culture with the purpose of more 

closely mimicking an in vivo environment. Many studies point to variable cell response depending 

on how they are cultured with changes in proliferation, morphology, drug metabolism, and 

A. B. 

C. D. 
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differentiation [86], [87]. We found a large difference between 3D culture techniques with a strong 

correlation on substrate stiffness, leading us to inquire how substrate stiffness changes NSCLC 

behavior and confers increased resistance to targeted therapy (Figure 4.2).  

 

 

Figure 4.2 Percent dead cells after erlotinib treatment as a function of culture technique. Cells show an 

increased resistance to erlotinib treatment as substrate stiffness is increased across sublines. Adapted with 

permission from [88]. 

 

4.1. Soft substrate decreases overall cell number similar to erlotinib treatment 

To examine the influence of substrate stiffness on NSCLC behavior, cells were grown on 

polyacrylamide substrates of varying stiffness, modulated from 0.2 kPa to 55 kPa, coated with 

collagen. For tracking and analysis purposes, cells were labeled with H2B-mRFP and Geminin-

mAG. The first reporter allows for continual tracking of individual cells over the course of the 

experiment, while the latter marks the transition from G1 to S phase, remaining expressed until 

the cell divides. Cells were imaged every 20 minutes over a period of five days.  
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Figure 4.3 Schematic of experimental design on cellular effects of substrate stiffness. (1) Cells are seeded 

on polyacrylamide (PA) gels with stiffnesses varying from 0.2 kPa – 55 kPa. Gels are coated with 

collagen, allowing cells to adhere at low density. Excess media is added and the media is not changed 

over the course of the experiment, as it was shown to alter mitotic behavior. (2) Cells are imaged every 20 

minutes over the course of five days. The frame rate is rapid enough to allow tracking of individual cells 

over the course of the experiment. (3) Population-level analysis is performed using the fractional 

proliferation framework where the linear response curve is fit to the log2 change in cell number. (4) 

Individual cells can be tracked through the length of the experiment. Cells are histone H2B-mRFP labeled 

and express Geminin-mAG during S, G2, and M phases. (5) The expression of the Geminin label allows 

for the quantification of cell time spent in G1 and S, G2, and M phases.  

 

We followed the change in overall cell population using the methodology developed by 

Quaranta et al. called the DIP rate [82]. The DIP rate is the linear fit of cell population doubling 
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as a function of time after the point of linear response. Using the DIP rate as a growth metric over 

other fits, such as logistic growth, allows us to compare a single fit quantity across cell populations 

that are expanding or declining. On the stiffest substrate (55 kPa), the two sublines behave as 

previously described: with no significant difference between subline DIP rates (Figure 4.4). Upon 

erlotinib treatment, the underlying heterogeneity of sensitivity is made apparent, with DS8 

showing no significant change in DIP rate and DS9 showing a significant negative rate (Figure 

4.4).  
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We then investigated the effects of substrate stiffness on DIP rate for both untreated and 

erlotinib-treated cells. As the substrate becomes softer, cells show a marked decrease in growth 

rate under dimethyl sulfoxide (DMSO) conditions, still with little difference between sublines. All 

DIP rates, regardless of stiffness, are positive with no drug treatment. Here, we point out one 

A. 

B. C. 

Figure 4.4 DIP rate response to erlotinib and substrate stiffness perturbations. (A) Population 

doubling graphs for the erlotinib-sensitive DS9 and -resistant DS8. The sublines behave similarly 

when untreated, showing a decrease in overall cell number on soft substrates. On the softest substrate, 

resistant DS8 has a slightly negative DIP rate under treatment. (B) DIP rate as a function of stiffness. 

DMSO-treated cells show a small decrease in proliferation rate with decreasing stiffness. The 

sensitive DS9 shows a negative DIP rate across all stiffnesses, while DS8 shows increased 

proliferation with increasing stiffness. (C) The inflection point of sensitive DS9. As stiffness 

increases, DS9 reaches a greater overall cell number and takes longer to reach an inflection point. 
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limitation of the DIP rate: as the DIP rate expresses the linear fit of the population change over a 

given window, it does not fully capture all of the dynamics of a cell population. Namely, the initial 

response and behavior of the cells. On our softest substrate, the DIP rate is significantly different 

between sublines. In this case, using a logistic growth curve would show more similar behavior 

between the two experiments. However, it would not be possible to fit a curve that is initially 

positive, then negative with a logistic curve. We know from previous work in the Quaranta 

laboratory that DS8 and DS9 are discrete sublines (DS) that respond disparately to EGFR 

inhibition [82]. In light of our results showing a change in DIP rate with substrate stiffness, we 

investigated if and how substrate stiffness affects sensitivity to EGFR inhibition. We find that both 

cell lines behave similarly to previous results on our stiffest substrates. Specifically, DS8 continues 

to proliferate in the presence of EGFR inhibitor, marked by a positive DIP rate, while DS9 shows 

a linear, negative DIP rate response after erlotinib treatment. At the intermediate stiffness of 4 kPa, 

the resistant cell line shows a decreased DIP rate and, intriguingly, at our softest substrate of 0.2 

kPa, the resistant cell line exhibits a negative DIP rate. Of note, the erlotinib-treated DS8 grown 

on 4 kPa substrate responds with the same curve and DIP rate as the non-treated DS8 grown on 

0.2 kPa substrate. DS9 shows sensitivity across all substrates with a substantial negative DIP rate. 

There is a small decrease in DIP rate on the 0.2 kPa substrate compared to the 55 kPa substrate. 

Additionally, as substrate stiffness increases, the DS9 subline shows a higher cell count before the 

action of drug treatment is evident and takes a longer time to reach a negative DIP rate.  
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4.2. Sensitivity to substrate stiffness is maintained for different ECM proteins 

We questioned whether the differences we saw in cell population responses were a result of 

substrate stiffness or perhaps another factor. Therefore, we considered if a different extracellular 

matrix protein would elicit a different cellular response due to disparate cellular adhesion or 

activation of different signaling pathways. Resistant DS8 was grown on two stiffnesses, 1 kPa and 

20 kPa. We found no difference in the resultant DIP rate induced by the two proteins.  
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Figure 4.5 DIP rate response to collagen and fibronectin extracellular matrix. Resistant DS8 was cultured 

on 1 kPa and 20 kPa substrates using collagen and fibronectin as extracellular matrix proteins. There was 

no discernable difference in the resulting DIP rates due to matrix proteins. 
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4.3. Erlotinib treatment lengthens G1 time in a substrate stiffness-dependent manner 

The decreased DIP rate observed in cells grown on soft substrates and in the presence of EGFR 

inhibitor led us to investigate the origin of the decreasing cell number. A change in DIP rate is 

produced by a change in fraction of actively dividing, dying, or quiescent cell populations. We 

investigated the cause of this change in DS8 and DS9 by modulating the stiffness of the substrate 

in addition to treating with erlotinib. To track variations in cell cycle progression timing, we used 

a fluorescent marker for G1/S transition, Geminin-mAG. The marker is expressed at the onset of 

S-phase until the cell completes mitosis. We followed both the time that Geminin was not 

expressed, labeled G1, and the time that Geminin was expressed, S/G2/M, for individual cells 

across experiments. We fit an exponentially-modified Gaussian (EMG) distribution to cell cycle 

events to allow comparison between experiments, noting however, that the fit does not capture all 

the features of our experimental distributions. In particular there appears to be a small, secondary 

peak at approximately twice the time of the primary peak (Figure 4.6A).  
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Figure 4.6 G1 time distributions. (A) Probability distributions of time spent in G1 for different substrate 

stiffnesses with and without erlotinib treatment. Curves represent the exponentially-modified Gaussian fit 

to the distribution. (B) Parameters expressing the exponentially-modified Gaussian fit. Increased stiffness 

results in decreased skew, while erlotinib treatment greatly increases skew for all substrate stiffnesses. 

The softest substrate shows a large shift in G1 time. 

 

The EMG is a right-skewed distribution that captures G1 variability better than most unimodal 

models (e.g. log-normal, gamma distributions). The EMG distribution is the result of the 

convolution of a Gaussian and exponential distribution. The familiar Gaussian probability density 

function (PDF) with mean μ and standard deviation σ can is represented as follows: 

 g(x; μ, σ) =
1

𝜎√2𝜋
𝑒−
1
2
(
𝑥−𝜇
𝜎
)
2

 (4.1) 

and the exponential probability density function with rate τ and x ≥ 0: 

 h(x; τ) = τe−τx (4.2) 

The resulting EMG has a probability density function: 

A. 

B. 
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 f(x; μ, σ, τ) =
𝜏

2
𝑒
𝜏
2
(−2𝑥+2𝜇+𝜏𝜎2)𝑒𝑟𝑓𝑐 (

−𝑥 + 𝜇 + 𝜏𝜎2

𝜎√2
) (4.3) 

It is important to remember that familiar parameters no longer have the same meaning. For 

example, μ + 1/τ represents the mean now instead of μ.  

Additionally, we find that upon drug treatment, there is a delay until drug action. For this 

reason, we capture cell cycle dynamics data for times greater than 24 hours. We first observe that 

changing substrate stiffness has little apparent effect on G1 length, as exhibited by a slight change 

in μ and τ. An increase in τ is associated with increased skewness of the distribution (e.g. how long 

the rightward tail is). Comparing erlotinib-treated cells to their counterparts grown on the 

equivalent substrate stiffness, we see an increase in G1 time. For erlotinib-treated cells, τ increases 

two-fold from the non-treated counterparts.  
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Figure 4.7 S-G2-M time distributions. (A) Probability distributions of time spent in S-G2-M for different 

substrate stiffnesses with and without erlotinib treatment. Curves represent the exponentially-modified 

Gaussian fit to the distribution. (B) Parameters expressing the exponentially-modified Gaussian fit. There 

is a decrease in mean time spent in S-G2-M as stiffness increases. Treatment with erlotinib cause a slight 

increase in mean time and increased distribution spread. There is very little skew in S-G2-M in 

comparison to G1.  

 

4.4. Both substrate stiffness and erlotinib treatment increase S/G2/M times 

Next, we compare the effects of modulating substrate stiffness and erlotinib treatment on S-

G2-M timing. The first observation we note is that the shape of the distribution is more Gaussian 

than the G1 distribution. At low substrate stiffness, the mean time spent in S/G2/M is 

approximately 13 hours compared to 11.5 at 55 kPa stiffness, contributing to the decreased DIP 

rate. All erlotinib-treated cells have increased S/G2/M time in comparison to their untreated 

counterparts (Figure 4.7B). There is an increased broadening of the distribution on soft substrate 

from untreated to treated cells that disappears on the 55 kPa substrate. Decreased DIP rate from 

A. 

B. 
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erlotinib treatment is the result of a combination of increased death rate, increased quiescence, and 

extended time in both G1 and S/G2/M. The major differences observed are an increased mean and 

variance under erlotinib treatment.  

 

4.5. A subset of cells spends approximately double the mean time in G1 

A major factor for the poor fit using either an exponentially-modified Gaussian or log-normal 

fit for the G1 distributions is the appearance of a secondary peak at approximately double the 

average G1 time. We have found a small subset of cells take approximately twice as long to 

complete the G1/S transition (Figure 4.8). The increased intermitotic time seen at lower stiffnesses 

or under drug treatment are primarily caused by increases in G1 time, as opposed to a change in 

S-G2-M, evidenced by comparing shifts in distributions in Figure 4.6 and Figure 4.7. Decreased 

stiffness and erlotinib treatment both increase the fraction of cells in the second peak, with the 

greatest fraction occurring on the 0.2 kPa substrate with erlotinib treatment. Using a right-skewed 

fit as a description of the distribution both overestimates intermediate G1 times and underestimates 

extended G1 times.  

Therefore, we compared fits of common models used to describe the cell cycle, most being 

right-skewed in nature. We used the Akaike information criterion (AIC) to evaluate the fits of our 

statistical models. The AIC is a means of comparing the quality of model in comparison to a 

separate model used to describe a distribution [89]. AIC is based within the field of information 

theory. When a statistical model is used to represent data, the model will generally never return an 

exact reproduction of the original data. In other words, since we are using a model as a 

representation, some amount of information is lost about the original data. AIC is an estimation of 

the information that is lost by using a given statistical model. By comparing the AIC between 
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statistical models, one can select the model with the least information lost. The AIC also includes 

a cost penalty that is based on the number of estimated parameters. This has the practical effect of 

avoiding overfitting.  

  

 

Figure 4.8 G1 statistical model fits. (A) Model fits of a log-normal, exponentially-modified Gaussian 

(EMG), and 3-component Gaussian mixture model. The EMG and Gaussian-mixture model fit the 

primary peak well. The unimodal models, EMG and log-normal, both overestimate the distribution from 

approximately 20-30 hours. (B) The three Gaussian components that comprise the Gaussian-mixture 

model. The means for each distribution are approximately all intervals of 14 hours. 

 

Comparing the AIC values, we find that the EMG is the best quality model for the unimodal 

distributions, scoring consistently better than a Gaussian, log-normal, or gamma distribution 

(Figure 4.9). The log-normal fits untreated cells fairly well, but serves as a poor statistical model 

in comparison to the other models examined for erlotinib treated cells. In comparison to the models 

we fit, the three-component Gaussian mixture model scores the best AIC consistently. Where the 

secondary peaks are more pronounced (under erlotinib treatment) the two-component Gaussian 

mixture model also scores well.  

A. B. 
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4.6. Signaling changes in response to erlotinib treatment and matrix stiffness 

After examining how erlotinib treatment and substrate stiffness perturbations affect total cell 

population and mitotic behavior, we inquired how the same microenvironment alterations modify 

the cell signaling network. Changes in cell signaling are ultimately manifested in cell behavior (i.e. 

increased motility, changes in apoptotic, quiescence, and mitotic rates). Here, we seek to associate 

the changes in key signaling pathways to overall cell population dynamics. The relative signaling 

strength measured here provides model input in Chapter V. While Western blot analysis does not 

provide the specific concentration of a molecule (all measurements are relative to a control protein) 

it does provide detailed enough information to make comparisons between environmental 

perturbations.  

Figure 4.9 AIC scores for fit statistical models. The EMG scores the best out of the unimodal 

characterizations. The three component Gaussian scores the best of all models most consistently 

across stiffness and erlotinib perturbations. A lower AIC score represents a better quality model. 
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Figure 4.10 Quantitative Western blot analysis of activated fractions of AKT, ERK, and FAK by 

substrate stiffness with or without erlotinib treatment. (A) Representative Western blots of DS8 samples. 

(B) Densitometry of DS8 and DS9 treated with DMSO (control) or erlotinib at 0.2, 4, and 55 kPa. Blue = 

DS8 DMSO, Red = DS8 erlotinib, Green = DS9 DMSO, Purple = DS9 erlotinib. 

 

We look at three upstream drivers of mitosis, FAK, AKT, and ERK. To determine relative 

signaling strength, we measure the relative concentration of the phosphorylated state of the protein. 

Figure 4.10A shows a representative Western blot of the total and phosphorylated state of our 

A. 

B
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proteins of interest. We examine the same conditions as our imaging analysis. We find a strong 

stiffness dependence of FAK signaling that is not dependent on treatment or subline. Examining 

AKT signaling, we find decreased activation at the softest (0.2 kPa) stiffness. Erlotinib treatment 

diminishes activation approximately two-fold for both sublines. Interestingly, there is no stiffness 

dependence of ERK activation. Erlotinib treatment greatly reduces ERK signaling, nearly 

completely ablating activation in DS9.  

 

4.7. Fractional proliferation analysis 

We are interested in associating the change in overall cell number to single cell fate decision 

of mitosis, apoptosis, and quiescence. We use the fractional proliferation framework developed by 

Quaranta et al. to analyze cell response [78]. The fractional proliferation framework makes use of 

a quiescence growth model. The model contains two compartments consisting of dividing and 

nondividing cells (Figure 4.11A). Apoptosis can occur from either compartment. Three parameters 

determine the rate of cells entering or leaving a compartment: d, the division rate, controls the 

growth of the dividing compartment, q, the quiescent rate, describes the number of cells leaving 

the dividing and entering the quiescent compartment, and a, the apoptosis rate, describes the 

number of cells dying from both compartments.  

We examine the fold change in rate values as a function of stiffness and drug treatment for 

DS8. Interestingly, the division rate does not show a large alteration upon drug treatment. Stiff 

substrate increases division rate ~50%. There is a large decrease in death rate with increasing 

substrate stiffness. We find that erlotinib treatment increases the quiescent rate for all stiffnesses.  
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Figure 4.11 Subline fractional proliferation analysis. (A) Schematic of the fractional proliferation model 

consisting of three compartments of dividing, quiescent, and dying cells. d, q, and a define the rates of 

entry into each compartment, respectively. (B) Example fit of the fractional proliferation model on DS8 

grown on 0.2 kPa substrate under erlotinib treatment. The purple curve represents the total cell number, 

blue number of quiescent cells, and green dividing cells. (C) The log2 fold change of fractional 

proliferation rate parameters as a function of time. 

 

4.8. Discussion and conclusion  

In this chapter, we experimentally measured NSCLC single cell and cell population response 

to changes in stiffness under erlotinib treatment. Understanding what role stiffness can play in cell 

behavior has important implications in defining disease progression. Lung cancer is known to 

metastasize to other tissues within the body, and as tumors grow, the tumor cells modify their own 

A. B. 

C. 
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microenvironment, making stiffness an integral factor in treatment response. Single cell studies 

allow us to investigate heterogenous treatment response in genetically identical subpopulations of 

a primary tumor. It is important to first define what the expected rates of cell division, quiescence, 

and death in response to treatment are to then identify differences in cell to cell response.  

We established that substrate stiffness can have a profound effect on cell behavior, showing 

that a stiffer substrate leads to increased proliferation as measured by the DIP rate. These findings 

fit well into a growing field of literature showing cell stiffness-dependent behavior across many 

different cell types and applications [25], [90], [91]. Mechanotransduction has been recognized as 

equivalently important as classic molecule-based signaling. A significant experimental finding we 

have shown is that matrix stiffness modulates treatment response in an erlotinib-resistant subline. 

At our softest substrate stiffness of 0.2 kPa, the resistant subline shows a slightly negative DIP 

rate. This suggests that treatment focusing on disrupting stiffness signaling could be effective, 

especially in metastatic cases where the new substrate is far stiffer than the lung (e.g. bone).  

We observe treatment response heterogeneity between sublines on the stiffest substrate, with 

DS8 continuing to proliferate under treatment and DS9 quickly dying. We have found in past 

studies that cMet expression correlates with treatment sensitivity [85]. However, we do not observe 

any difference in cMet signaling quantified with Western blot densitometry. This suggests there 

may be some other mechanism of resistance or cMet may be modified in a different capacity. 

There have been recent studies showing that cMet can replace α5 integrin to form a cMet/β1 

integrin complex that has a greater affinity for fibronectin than the α5/β1 integrin complex [92]. 

Defining the binding partners of surface receptors and how they change in disease states is 

important to understanding the mechanisms of cellular signaling. 
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We found that stiffness and erlotinib drug treatment modulate G1 and S-G2-M time. Erlotinib 

treatment causes a large increase in G1 time, resulting in a reduced DIP rate. Defining the shape 

of the G1 time distribution can reveal insight surrounding the underlying biological processes and 

has been the subject of ongoing research. The exponentially-modified Gaussian curve has been 

successfully implemented in the past and offers a suitable fit for the G1 distribution [78]. The curve 

is the convolution of an exponential and a Gaussian distribution. These two distributions can be 

mapped to the processes within the cell cycle. The Gaussian distribution is associated with tasks 

that occur in sequence corresponding to G2, S, M, and most of G1. The exponential portion is 

produced by a single rate-limiting event, the G1/S transition [93]. We know underlying cell cycle 

progression is a series of tightly coupled and interrelated components centering around the CDK 

network. The cell cycle contains several feedback loops that the EMG distribution does not take 

into consideration. However, we know that feedback loops are important to the proper function of 

the cell cycle. Given the tightly coupled nature of the cell cycle, how do feedback loops influence 

the G1/S transition (exponential portion) of the mitotic time distribution? We build a testable, 

molecular-level model examine such effects. 

We observed experimental evidence that the intermitotic time is not a unimodal distribution. 

There is a secondary peak that becomes more pronounced under certain experimental conditions 

(low stiffness and erlotinib treatment). To characterize the complex curve shape, we used a non-

equally weighted Gaussian mixture model containing two or three Gaussians. We compared those 

results against commonly used unimodal distributions, gamma, log-normal, and exponentially-

modified Gaussian. Using the AIC as a metric, we found the three Gaussian mixture model to have 

the best overall fit across treatment and stiffness modulation. Notably, the peaks appear to occur 

at regular intervals, with peaks at approximately 14, 28, and 42 hours. This phenomenon has been 
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observed in past studies and referred to as ‘cell cycle quantization’ [94], [95]. We will use a 

molecular model to recapitulate the phenomenon and discuss it further in the next chapter. 

Single cell behavior and fate decision is related to the overall cell population. In the past, the 

fractional proliferation model, which considers the rate of cells dividing, entering quiescence, and 

dying, has been used to describe population changes in response to an external perturbation [78]. 

We use the same methodology here and define the rate constants expressing the dividing, 

quiescent, and apoptotic populations. Interestingly, the division rate increases approximately 50% 

on stiffer substrates but shows little dependence on drug treatment. The change in population 

dynamics can be attributed to increased rates of quiescence and death. Drug treatment increases 

quiescent rate across all stiffnesses. Unfortunately, an increased quiescent population can be 

problematic in cancer treatment. Once treatment has ended, relapse can occur, often having 

effectively selected for therapeutic-resistant cells [96].  

One of the primary objectives of this work is to connect molecular level signaling with 

population level cell response. To this end, we measured the activity level of molecular reporters 

in major signaling axes connecting cell surface receptors to the cell cycle and apoptosis. We have 

chosen AKT, ERK, and FAK, a small selection of the multitude of factors that comprise the full 

signaling network. We find specific perturbations result in disparate responses between these three 

proteins. FAK activation is highly dependent upon substrate stiffness. AKT shows decreased 

signaling at low stiffness while ERK shows no stiffness dependence. However, ERK is strongly 

inhibited by erlotinib treatment with DS9 showing more sensitivity than DS8. We can now use the 

differentially activated drivers of mitosis and apoptosis to inform our molecular model.  
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4.9. Future studies 

Our findings provide helpful characterization of the difference in substrate-dependent erlotinib 

therapy behavior. We have some initial findings continuing the above work and potential avenues 

of investigation outlined below.  

 

4.9.1. Combination drug therapy 

We know that NSCLC is a heterogenous disease that recurs in 30-55% of stage I patients and 

the vast majority of higher staged patients [27]. In an effort to affect more of the cells, combination 

drug therapy has been developed. When the cancer recurs, it is because some cells have escaped 

the first-line therapeutic, whether that be resection, chemotherapy, targeted inhibitors, or 

immunotherapy. Often, this escape is because the remaining cells are resistant to the first-line 

strategy. Therefore, there are different therapeutics often used in recurrent cases. In the case of our 

PC9 discrete sublines, we have observed a correlation between erlotinib-treated DIP rate and cMet 

expression (Figure 4.12), This suggests that cells with high cMet expression are not effectively 

targeted by erlotinib. Crizotinib is a dual inhibitor of cMet and ALK. It has been investigated with 

another EGFR-targeted drug, afatanib, in the context of various resistant NSCLC. Only the 
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combination of afatanib and crizotinib was able to effectively target all three cell lines: EGFR 

T790M mutation, cMet amplification, and EGFR overexpression [97].  

 

Figure 4.12 Erlotinib-treated DIP rate of PC9 discrete sublines correlates with cMet expression. Shared 

with permission from [85].  

 

This project has focused on treatment with erlotinib, but we did perform preliminary 

experiments with crizotinib in our erlotinib-resistant discrete subline, DS8. DS8 had a dose-

dependent response to crizotinib treatment (Figure 4.13), suggesting a combination therapy of 

erlotinib and crizotinib would have a beneficial effect on the original adenocarcinoma cell line, 

PC9. Therapeutics are used in combination more and more often, either concurrently, sequentially, 

or both. Understanding these clinically relevant scenarios with extension of our stochastic model 

has the potential to provide valuable insight into the mechanism and effectiveness of various 

combinations. In the final stage of a project like this, we would be able to characterize key features 

of an individual’s emerging or recurrent cancer and provide personalized therapeutic strategies. 
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Figure 4.13 DS8 population doublings after treatment with cMet-targeting crizotinib (Crz) shows a dose-

dependent inhibitory response.  

 

4.9.2. In vivo experiments 

Further validation of our work will include studies in in vivo models of NSCLC. Preliminary 

data examining erlotinib treatment of PC9 sublines in a mouse model reflect our in vitro results. 

Briefly, DS8 (resistant) or DS9 (sensitive) cells were injected subcutaneously in Matrigel into the 

backs of mice and treated daily with DMSO (control) or erlotinib injections. Erlotinib treatment 

slowed the growth of DS8 cells and was able to kill many DS9 cells, as measured by cell volume 

quantification via ultrasound (Figure 4.14) [85]. Further in vivo studies should incorporate insight 

gained from our in vitro and in silico data. Specifically, we would expect even the resistant cells 

of a heterogenous tumor to respond to erlotinib treatment on soft substrates. However, the brain is 

a common site of NSCLC metastasis (38%) and is a soft tissue (0.5-7.3 kPa) [10], [11], [23], [24]. 

Delivery to the CNS is an added challenge, but even high dose erlotinib or gefitinib does not yield 

a dramatically increased survival time in humans [98]. Extension of our studies to include other 

relevant cues from the brain microenvironment may reveal why NSCLC brain metastases are 
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resistant. Similarly, studying NSCLC in vivo allows us to observe and eventually model more 

interactions (e.g. immune response, specific microenvironments, cell biomarkers) to better 

describe cell fate in a complex environment.  

 

 

Figure 4.14 Cell volume of PC9 discrete sublines injected in Matrigel subcutaneously on the backs of 

mice. DMSO or erlotinib (ERL) was injected daily and cell volume was assessed via ultrasound. (A) 

Resistant subline DS8 and sensitive subline DS9 grow at similar rates in vivo. (B) When treated with 

erlotinib, DS8 grows at a slower rate and DS9 begins dying within 14 days post treatment. Shared with 

permission from [88].  

 

4.10. Methods 

 

4.10.1. Cell lines and cell culture 

PC9 discrete sublines (DS) were obtained from the laboratory of Vito Quaranta (Vanderbilt 

University). They were derived as single cell clones from parental PC9 cell line, expanded in drug-

free media, and fluorescently labeled with Geminin-mAG (Fucci system) and H2B-mRFP. Cells 

were cultured in CO2- (5%), temperature- (at 37°C), and humidity-controlled incubators. Before 

use, the cells were confirmed to be negative for mycoplasma using MycoAlert PLUS kit (Lonza). 

Cells were cultured in RPMI 1640 media supplemented with 10% FBS (Atlanta Biologicals) and 

Antibiotic/Antimycotic mix (Gibco). During imaging, the media was substituted for OPTI-MEM 

A. B. 
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media (Gibco), supplemented with 2% FBS, and Antibiotic/Antimycotic mix to reduce 

background auto-fluorescence. The growth rate was confirmed to be the same for these sublines 

in both types of media.  

 

4.10.2. Collagen-coated polyacrylamide gels 

2D polyacrylamide gels are made according to the protocol of the Gardel laboratory [99]. 

Briefly, circular glass coverslips are activated with 3-aminopropyltrimethoxysilane (3-APTMS) 

and glutaraldehyde. The coverslips are immobilized on the bottom of a 6-well plate. 

Polyacrylamide solution of a chosen stiffness is allowed to polymerize between a hydrophobic 

coverslip and an activated coverslip. The hydrophobic coverslip is gently removed from the well 

using a razor blade edge. Sulfo-SANPAH is placed upon the gel and exposed to UV light, changing 

in color from red-orange to brown. UV-treated coverslips are quickly washed in ddH2O and coated 

with 0.1 mg/ml fibronectin or collagen. Fibronectin or collagen is allowed to bind for 1-2 hours at 

room temperature or overnight at 4°C. Gels are then washed extensively with PBS (pH 7.4) under 

sterile conditions and sterilized under a germicidal lamp in a tissue culture hood for 30 minutes. 

 

4.10.3. Western blot 

Cells were lysed in RIPA buffer (Sigma) supplemented with protease inhibitor cocktail 

(Roche) and phosphatase inhibitor cocktail (Roche). The difficulty in removing cells from the PA 

gels lead to lysing them straight on the gel. Sample lysates were boiled with Laemmli sample 

buffer and loaded in a 4-20% gradient gel (Bio-Rad) for electrophoresis. Protein was transferred 

to polyvinylidene difluoride membranes and then blocked with blocking buffer (LI-COR) and 

incubated with primary antibodies overnight at 4°C. After 3× washing with TBS, secondary 
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antibodies were applied for 1 hour and then washed with TBST (0.05% Tween 20) before imaging. 

Blots were scanned using the Odyssey imager (LI-COR). Densitometry was performed using 

ImageJ software. 

All antibodies are from Cell Signaling Technology and are as follows: phospho-FAK(Tyr397) 

#8556, FAK #13009, phospho-ERK and ERK (Thr202/Tyr204) antibody duet #8201, phospho-

EGFR and EGFR (Tyr1068) antibody duet #11862, phospho-AKT and AKT (Ser473) antibody 

duet #8200.  

 

4.10.4. Quiescence growth model 

The proliferation kinetics model describes the rate at which cells change the overall population 

given the rates of cells proliferating, dying, and entering quiescence. The model is represented by 

a pair of ODEs with x characterizing the number of dividing cells, y the number of quiescent cells, 

and x+y the total cell number. Rate constants for the equations are as follows: d, cell division rate, 

q, quiescent rate, and a, the death rate. 

 
𝑑𝑥

𝑑𝑡
= (d − q − a)x (4.4) 

 
𝑑𝑦

𝑑𝑡
= qx − ay (4.5) 

The analytical solution for the equations is: 

 𝑥(𝑡; 𝑥0, d, q, a) = x0𝑒
(𝑑−𝑞−𝑎)𝑡 (4.6) 

 𝑦(𝑡; 𝑥0, y0, d, q, a) = (𝑦0 + 𝑥0
𝑞

𝑑 − 𝑞
(𝑒(𝑑−𝑞)𝑡 − 1)) 𝑒−𝑎𝑡 (4.7) 
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If the division rate d is greater than the sum of the quiescence rate q and apoptotic rate a, then 

the system will approach exponential growth. Including a quiescent population allows for 

nonlinear proliferation curve. 

 

4.10.5. Drug-induced proliferation (DIP) rate 

We use DIP rate as our major quantification of drug response for our cell culture work. DIP 

rate is the doubling rate of cell proliferation as described by 

 𝑁(𝑡) = N02
𝑘𝐷𝐼𝑃𝑡 (4.8) 

where N(t) is the cell number at time t, and N0 is the seeding cell number at time t=0, kDIP is the 

DIP rate of cell proliferation. kDIP can be calculated as: 

 𝑘𝐷𝐼𝑃 = log2(𝑁(Δ𝑡)) − log2(𝑁0)/Δ𝑡 (4.9) 

 

4.10.6. Image acquisition 

Images are taken on Axio Observer Z1 spinning disk confocal microscope (Zeiss, serial 

#3834004261). During imaging, the cells are maintained in incubation conditions of 5% CO2, 37°C 

temperature, and constant humidity. Images were acquired with 20X objective at the following 

laser settings: 561λ at 12% laser power and 4ms exposure, 488λ at 1% laser power and 2ms 

exposure. The imaging consisted of a 12x12 mosaic with 20 μm overlap, each frame was 400 μm 

x 400 μm. Images were acquired every 20 minutes for a minimum of five days.  
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CHAPTER V 

 

5. Modeling cell fate response 

 

In this chapter, we relate a molecular-based stochastic model of the cell cycle and apoptosis to 

experimentally measured population-level cell behavior. We show that a simple, interconnected 

model is capable of accurately producing cell population behavior and complex IMT distributions 

observed in vitro. Our model is able to connect the effects of variations at the single cell molecular-

level to characteristics of the cell population as a whole.  

The basis of our model is centered on the system of four Cdks, that control the ordered 

progression through the phases of the cell cycle: Gap 1 (G1), DNA synthesis (S), Gap 2 (G2), and 

mitosis (M). A fifth phase, Gap 0 (G0), is used to describe cells that have left the cell cycle and 

are not actively dividing, or quiescent cells. Recent work has identified the G0 population as an 

important collection of cells in the development of cancer treatment resistance. We extend a 

skeleton model of the mammalian cell cycle, a reduced version of a much larger model, both 

proposed by Goldbeter et al. [55], [56]. Our model is a simplification of an expansive ‘bottom-up’ 

model that exchanges many biochemical intricacies for emphasis on the minimum network 

architecture necessary for complex oscillatory behavior. Identically to the full model, our reduced 

version is driven by the chronological activation of the cyclin group of proteins and their associated 

kinases. Each phase of the cell cycle corresponds to the activation of a specific member of this 

family: cyclin D/Cdk4-6 induction marks the progression of G1, increase in cyclin E/Cdk2 

identifies the G1/S transition, cyclin A/Cdk2 activity indicates S and G2 phase, and cyclin B/Cdk1 

precipitates M phase.  
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Additional features of our model include the G1/S restriction point in the form of the Rb-E2F 

bistable switch. The restriction point in this form provides a sharp threshold for cell cycle 

activation that is otherwise absent in the reduced model. We also incorporate the proteins Skp2, 

CDH1, and p21/p27 to allow for substrate stiffness influence on the cell cycle through the 

activation of the FAK signaling axis. To integrate cell death, we include the initiator module of an 

apoptosis model proposed by Tyson et al. [74]. The initiator module functions as a switch 

describing BAX activation. Upon sufficient stress signal, pro-apoptotic BH3 protein level 

increases. Initially, BCL2 sequesters BH3 by binding to it. However, if the stress signal is 

maintained, BH3 will continue to accumulate, activating BAX. The activated, mitochondrial-

bound form, BAXm, promotes the release of BH3 from BCL2. Once this module is active, 

irreversible pores are formed within the mitochondrial membrane, augmenting permeability to 

cytochrome c. A key component of our model is bistability in both apoptosis and mitosis, allowing 

for signal threshold activation of both elements.  

We substantiate our model by comparing its behavior to experimentally measured IMTs and 

total cell number for oncogene-addicted NSCLC cells. This approach allows us to adjust input 

strength to the mitotic and apoptotic modules from EGFR signaling, substrate stiffness, and cMet 

expression through AKT and ERK and to quantify both single cell- and population-level effects of 

these perturbations. EGFR signaling indicates the presence of drug. Substrate stiffness is relevant 

in the case of late-stage cancers that metastasize to softer or harder tissues. NSCLC is often not 

diagnosed until advanced stages and its most common metastatic site is bone, a tissue 500 times 

stiffer than lung [22]. Variation in cMet signaling allows us to model the response of NSCLC 

subpopulations that are resistant to current drug therapeutics. We find that decreased substrate 

stiffness increases sensitivity to EGFR-targeted therapy in drug-resistant sublines. While drug 
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treatment and stiffness can have the same overall effect on total cell number, division behavior is 

markedly different between the two environments. Additionally, we show that IMT distributions 

are bimodal, with a small fraction of cells dwelling in G1/G0 for approximately double the period. 

Our model is sufficient to capture these phenomena.  

We demonstrate the advantages of using a simplified model that still retains the complex 

behavior found in the comprehensive version. For example, if we deconstruct the model into two 

oscillating circuits, we lose the period doubling feature observed in vitro. Since simplifying the 

model would lose this key biological characteristic, we know both loops are required for an 

accurate model. Our model links the period doubling and delayed mitotic progression to several 

key drivers of the cell cycle including low cyclin E/Cdk2 activity at mitotic exit, proposing a novel 

mechanism, which demonstrates its usefulness. Our model retains the necessary structure to make 

insightful predictions while being computationally efficient.  

 

5.1. Ordinary differential equation (ODE) approach of the cell fate model 

We begin with the differential equation model that we established in Chapter III. The initial 

goal is to investigate the behavior of the model under different signal strength (EGFR, cMet, and 

integrin signaling) through AKT, ERK, and FAK. The relative activation levels of AKT, ERK, 

and FAK under various perturbations were established in Chapter IV through quantitative Western 

blotting.  
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Figure 5.1 Schematic of the mitotic module and system behavior. (A) The full wiring diagram of the 

mitotic module. The circuit is driven by AKT, ERK, and FAK by first engaging the Rb-E2F switch. Once 

the switch is activated the cell cycle progresses through ordered activation of cyclin E, cyclin A, and 

cyclin B. (B) The ODE solution for the system at AKT = ERK = FAK =1. The time between Cdc20 peak 

first and cyclin E peak second represents G1 time while the inverse represents S-G2-M. We tune the 

system manually to match the mean G1 and S-G2-M times found in chapter IV, approximately 12.5 and 

11 hours, respectively. (C) The steady state solution at AKT = ERK = FAK = 0 showing no oscillations. 

(D) The effect of FAK level on the circuit activation measured by maximum Cdc20 concentration. At 

high AKT and ERK signal (region 1) Cdc20 is high showing mitotic activity as opposed to low signal 

(region 2) showing no activity. As FAK level increases the necessary level of AKT and ERK to reach 

activation is lowered. 

 

 

A. B. 

C. D. 
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The apoptotic and mitotic modules we have established are not yet coupled, so we review each 

separately. A more detailed schematic including CDH1 and Skp2 is shown in Figure 5.1B. Skp2 

is activated by FAK and specifically degrades phosphorylated p21. CDH1 inhibits Skp2 and is 

itself inhibited by cyclin A and cyclin B. At high AKT and ERK signal, the transcription factor 

Myc and cyclin D are activated. Myc drives the activation of E2F, and cyclin D inhibits Rb through 

phosphorylation (the Rb-E2F switch covered in Chapter II). Once E2F reaches a critical threshold, 

the Rb-E2F switch is activated. Upon activation, the cell cycle can progress by the subsequent 

activation of cyclin E, cyclin A, and cyclin B. When examining the network topology, several 

negative feedback loops are evident, suggesting the system is capable of complex behavior.  

At high levels of AKT and ERK, the Rb-E2F switch is activated, allowing the cell cycle to 

progress routinely. The peaks of cyclin E and Cdc20 mark the G1/S transition and the end of 

mitosis, respectively. Note that the times between peaks are constant, resulting in a static 

intermitotic time. We manually set the parameters to match our measured experimental results for 

G1 and S-G2-M from Chapter IV at 12.5 and 11 hours, respectively. At low AKT and ERK 

activity, the system reaches steady state, indicative of no mitotic oscillations. As FAK level is 

increased from 0, the necessary signal generated by AKT and ERK to activate the mitotic circuit 

decreases. Functionally, this is analogous to increasing the stiffness a cell senses from the 

substrate. 
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Figure 5.2 Apoptosis schematic and response to input strength. (A) The topology of the apoptotic bistable 

switch. BH3 is activated by low AKT and ERK (high stress) signal. BCL2 can temporally stop BH3 

signaling but if a stress signal is maintained, eventually BAX is activated. (B) As opposed to the Rb-E2F 

switch, the apoptotic switch is activated at low input signal. 

 

The apoptotic module is much simpler than its mitotic counterpart. It consists of only three 

components: BH3, BCL2, and BAX. In our model, we define a stress term that is simply the 

difference of taking the current AKT and ERK signal strength from the total possible AKT and 

ERK signal (i.e. 1). If the current signal has strength 0.6, then the stress term would be 0.4. The 

stress term drives proapoptotic factor BH3. Initially, BCL2 sequesters BH3 but the BCL2 pool is 

eventually consumed, leading to activation of BAX. BCL2 is also capable of binding to activated 

BAX. The activated form of BAX is responsible forming a pore within mitochondrial membranes. 

Pore formation is irreversible, so once the step occurs, the cell is committed to apoptosis.  

 

5.2. Stochastic implementation of the cell fate model 

We are interested in capturing the variability observed in our experimental intermitotic time 

and that is not possible using an ODE solution. While the system of ODEs is capable of complex 

oscillations resulting in more than one solution for cellular intermitotic time, we would like to 

A. B. 
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instead introduce small variations around a primary solution, similar to the distributions we see 

experimentally. There are multiple approaches to solving a system stochastically. Here, we choose 

to employ the Gillespie or stochastic simulation algorithm (SSA). The approach and algorithm are 

outlined in section 2.7.4. The approach is the simplest of the stochastic methods but offers an exact 

solution. We first use the system of differential equations we established for the model to define 

the set of probabilities associated with each reaction. The number of molecules in the system is set 

by Ω, the system size. At a large system size, the stochastic solution approaches the results from 

the ODE solution. In this manner, Ω dictates the amount of noise in the system, with high noise at 

small Ω and low noise at large values. It is useful to examine the effect of molecular noise on 

cellular control systems. Understanding how the control systems operate, and importantly, how 

their regulation can fail, is helpful in developing innovative treatments and therapies. 
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Figure 5.3 Stochastic time course showing a dividing, quiescent, and dying cell. (A) Dividing cell. At 

high model input (high AKT, ERK, and FAK signal), the mitotic module oscillates. Notice the variable 

time between peaks as opposed to the ODE solution. (B) Quiescent cell. At intermediate signal strength, 

cells exist in a non-cycling and non-apoptotic state. (C) Dying cell. At low signal, BAXm is activated, 

signifying the start of apoptosis. 

 

As with the ODE model, the system can exist in three states: at low, intermediate, and high 

signal marked by cell death, quiescence, and active cycling, respectively. We first examined how 

signal strength (through relative AKT, ERK, and FAK levels) affects the behavior of the system. 

Figure 5.3A shows a representative time course at a high signal (AKT = ERK = FAK =1). The 

resulting evolution of the system shows regular oscillatory behavior and low BAXm, an apoptotic 

factor. Notice that the time between peaks, labeled G1 and S-G2-M, are now unequal in contrast 

A. B. 

C. 
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to the ODE solution. The introduced stochastic noise results in a variable intermitotic time. At 

intermediate signal strength (AKT = 0.4, ERK = 1, FAK = 0.4), shown in Figure 5.3B, the mitotic 

circuit can cease to oscillate. This is after the mitotic circuit has already completed one cycle. This 

regime is marked by the system’s ability to enter a quiescent state, where there are no oscillations 

but BAXm has not been activated. The probability that the system will enter such a state is set by 

the Rb-E2F switch, marking the restriction point at the G1/S transition. At low signal (AKT = ERK 

= FAK = 0), Figure 5.3C, BAXm signal is high, signifying cell death. The threshold for cell death 

is set by activation of BH3 by sustained stress signal. As the input strength level is varied, the 

probability that a cell will exist in one of the particular states varies. At the thresholds between 

states, where a molecular switch is located, system noise can play an important factor in the overall 

behavior observed.  

 

5.3. Model – Experiment intermitotic time comparison 

An important feature of the stochastic model is the variable intermitotic time shown in Figure 

5.3A. Phenomenologically, this matches well with experimentally measured intermitotic times. 

However, we were interested in how well the cell fate model captures observed intermitotic time 

distributions. To retrieve intermitotic time distributions, we measured the distance between Cdc20 

peaks to CycE peaks for G1, and from CycE peaks to Cdc20 peaks for S-G2-M in the model. 

Doing so allowed for a direct comparison to the intermitotic times collected experimentally by 

measuring cellular time with FUCCI on and off.  
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We find that the model recapitulates the G1 phase well, matching the overall shape observed 

experimentally. In particular, we note that the model is able to capture the complex bimodal shape 

of erlotinib-treated cells (Figure 5.4A). In the model, as signal strength is decreased, the number 

of cells with longer G1 phase increases, similar to experiment (Figure 5.4B). Examining S-G2-M 

A. 

B. 

Figure 5.4 Intermitotic time comparison between experiment and model. (A) G1 and S-G2-M time 

comparison between experiment and model for treated and untreated DS8 on 55 kPa and 0.2 kPa stiffness 

substrate. (B) Comparison of DS8 erlotinib treated G1 times with model G1 times.  
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distribution we find we can initially match experimental observation through the model (Figure 

5.4A). However, when signal strength is decreased, analogous to drug treatment or softer substrate, 

the S-G2-M time does not change. In the model, S-G2-M time varies by only a small magnitude, 

decreasing slightly with decreased signal.  

 

Table 5.1 KS-test results between experiment and model from Figure 5.4A. 

 G1 S-M 

55 kPa DMSO 0.1521 0.1263 

55 kPa ERL 0.0760 0.0628 

0.2 kPa DMSO 7.4865e-28 6.3821e-17 

0.2 kPa ERL 1.5268e-09 4.3079e-17 

 

5.4. Stochastic protein dynamics  

We next inquired what the underlying molecular cause was for the mitotic time delay predicted 

by our model. The model was run at intermediate input strength (AKT = 0.6, ERK = 0.25, FAK = 

0.6) and molecular evolution windows were separated based upon mitotic time (G1 < 18 hours and 

G1 > 24 hours). All traces were then aligned at the initial mitotic event and included 40 hours 

before and after the event for a total window of 80 hours. There are several interesting observations 

from the molecular averages. We looked for the first evident difference that linked a change in 

signaling to a longer mitotic time. Skp2 has consistent elevated concentration prior to short mitotic 

time. Concomitantly, CDH1 levels are slightly lower for short mitotic time. p21, and its cyclin-

bound pool, show identifiable difference between long and short division. p21 and pp21 are 

elevated in long dividing cells, as are the p21-bound cyclin D, cyclin A, and cyclin B. Cyclin E 
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stands out from this group as the cyclin E-p21 complex has a higher concentration in quickly 

dividing cells. Additionally, the cyclin B-p21 complex peaks after mitosis (Cdc20 peak). The Rb-

E2F switch components show differential behavior as well. The mitotic inhibitor Rb is increased 

in long dividing cells and its phosphorylated state shows decreased levels; fractionally, this means 

an even smaller proportion of inactivated Rb, preventing binding to E2F. E2F has decreased levels 

in long dividing cells at the mitotic event. 
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Figure 5.5 Average particle number for all components of the cell cycle with mitotic time greater than 24 

hours in green and less than 18 hours in purple. All particle traces are aligned at mitosis, marked by the 

dashed line corresponding to the peak in Cdc20. 

 

Using cyclin E, cyclin A, and Cdc20 peaks as markers for G1/S transition, S-G2-M time, and 

the S/M transition respectively, we plotted the limit cycle for the stochastic model and calculated 

the system dwell time at each phase space coordinate. Comparing the slowly dividing and quickly 

dividing cells on separate plots allows us to examine where the system is spending the majority of 

its time and highlights differences in signaling between the two differently behaving states. We 

notice that the slowly dividing cells spend a large fraction of time in low cyclin E, cyclin A, and 

Cdc20 state. This would correspond to extended G1 (quiescence). The path to reach the state is 
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different than the path taken by quickly dividing cells through phase space. For quickly dividing 

cells, Cdc20 remains high as cyclin E increases. The path from cyclin A to Cdc20 peak remains 

nearly the same for both conditions. This method of model visualization could be implemented for 

other complex systems to reveal otherwise less obvious information.  
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Figure 5.6 Limit cycles of quickly and slowly dividing cells. (A) Quickly dividing cells are marked by 

elevated Cdc20 during activation of CycE. (B) Slowly dividing cells show increased dwell time at low 

CycE, low CycA, and low Cdc20. 

 

 

 

A. 

B. 
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5.5. Model p21 inhibition 

In our model, p21 and its cyclin-bound species have distinct evolution profiles for quickly and 

slowly dividing cells. This prompted the hypothesis that mitotic time might depend on p21. We 

tested this hypothesis by performing an in silico knockdown experiment. p21 expression was set 

to 0, and the stochastic model was run. We then compared the distribution of intermitotic time, 

time spent in G1, and time spent in S-G2-M. p21 knockdown results in decreased intermitotic time, 

with a greater proportion of cells populating the primary peak. We found the decreased intermitotic 

time is caused by a decrease in G1 time, associated with a change in Rb-E2F switch behavior. 

Surprisingly, there is no change in S-G2-M time. The association of p21 with cyclin A and cyclin 

B, both components of later stages of the cell cycle, had initially led us to predict S-G2-M variation.  
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Figure 5.7 Model p21 knockdown. (A) Intermitotic time distribution comparison between model p21 

wild-type (WT) and p21 knockout (KO). (B) G1 time distribution comparison between model p21 WT 

and p21 KO. (C) S-G2-M time distribution comparison between model p21 WT and p21 KO. All 

distributions include a KS-test value. 

 

5.6. Fractional proliferation analysis of the stochastic cell fate model 

By including both a mitotic and apoptotic module, we can perform the same fractional 

proliferation analysis undertaken for our experimental studies. The model is run to mimic the 

experimental setup. First, a random starting point along the cell cycle is chosen for each cell based 

upon the ODE solution. Then, the model is run for each cell for 30 simulation hours and each time 

course is checked for division or apoptotic events. If a division occurs, a new cell is added at the 

division time with the same current molecular count as the original cell. If an apoptotic event 

A. B. 

C. 
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occurs, that cell is marked as dead and simulation stops for it. In this manner, we can track the 

change in overall cell number as function of time. We can also retrieve the intermitotic time 

distribution and the death rate, all factors used in fractional proliferation.  

 

 

Figure 5.8 Fractional proliferation analysis of model-derived cells. (A) Lifespan as a function of birth 

time. The model is able to generate cells in a quiescent state marked by prolonged IMT time. (B) IMT 

distribution of model-derived cells. Synthetic data was analyzed using the R package fracprolif. 

 

To increase the number of ‘quiescent’ cells in our experiment, we had to decrease the strength 

of two feedback loops within the model. There exist several positive feedback loops within the 

cell cycle: the first we modified is the self-activation of cyclin E/Cdk2 through its mutual activation 

with phosphatase Cdc25 (positive feedback loop at the G1/S transition) and the second is the self-

activation of cyclinB/Cdk1 through its mutual activation with phosphatase Cdc25 (positive 

feedback loop at the G2/M transition). Figure 5.8A shows representative results of a simulated 

experiment. The model shows several cells reaching the end of the ‘experiment’, and they are 

considered quiescent. Using the change in total cell number and intermitotic time distribution 

shown in Figure 5.8B, we fit the three parameters of the fractional proliferation model. The model 

A. B. 
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fit shows the majority of cells exist within the dividing population with a small increase in 

quiescent population. Comparing untreated DS8 cells on 0.2 kPa substrate to the simulated 

experiment, we observe similar rate terms.  

 

 

Figure 5.9 Fractional proliferation graph of simulated cell behavior. The green curve is total cell number, 

the blue represents dividing cells, and the red represents quiescent cells.  

 

Table 5.2 Comparison of fit fractional proliferation rates between model and experiment. 

Term Model Experiment 

d 0.0198 0.0185 

q 0.0038 0.0052 

a 0.0079 0.0065 
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5.7. Discussion and conclusion  

Fate decision represents an important and common event in cellular behavior. Understanding 

how that choice is made has important implications for our understanding of cancer progression. 

Here, we show that it is possible to use a simplified, molecular model to accurately capture single 

cell behavior and population level dynamics. This model exists as an important middle ground 

between large, all-encompassing molecular models and simplified mathematical schemes 

[100][101]. The former can offer powerful insight if properly tuned, but with vast numbers of 

parameters to estimate, it is difficult to know if the optimal estimation has been achieved. The 

latter may coarse-grain the biological steps too much, losing important system behaviors. In fact, 

the level of detail to include in a model to achieve a particular phenomenon answers important 

questions regarding the signaling topology and overall architecture of the network. We considered 

these tradeoffs when designing our model, taking cues from the prior and ongoing work of 

Goldbeter and colleagues. His original work designing a full, descriptive model of the mammalian 

cell cycle and he subsequently simplified it down to the essential components to achieve 

phenomenologically similar oscillations. This offers important insight into the control scheme of 

the cell cycle. Additionally, it makes testing network connections within the model quicker. We 

use the same approach to begin asking what the necessary components are to reproduce 

experimentally quantified cellular behavior, intermitotic times, death rates, and drug-induced 

proliferation rates, given known signaling input. The problem is inherently multiscale in nature, 

starting with a description of molecular events and eventually describing the change in population.  

The first step in the process, achieved over many years of biochemical study, was identifying 

the components of the cellular signaling system. After, and concurrent with, component 

identification, many studies have focused on describing how the elements interact. Our work picks 
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up at this point, using the years of prior work to build a literature-based model. Our model 

combines the Goldbeter skeleton model that includes positive feedback leading to bistable 

transitions and combines it with the Rb-E2F bistable switch characterized by Yao et al. [48], [102]. 

Thereby, we include the necessary components and multiple feedback loops necessary for complex 

system behavior.  

An important control mechanism of treatment response was substrate stiffness. We modeled 

stiffness input as FAK activity in our model. FAK both helps set AKT level, measured 

experimentally, and controls the level of p21 through Skp2 activation. p21 in turn binds to cyclin 

complexes, effectively removing them from the available pool to drive the cell cycle. Cyclin-

dependent kinase inhibitors, such as p21, can effectively block the progression of the of the cell 

cycle by changing the dynamics of the Rb-E2F switch [103]. By including the mechanism of 

molecular bistable switches, we were able to construct a system that exists in three regimes: a high 

signal actively oscillating state, an intermediate signal quiescent steady state, and low signal 

apoptotic steady state.  

We characterized the nature of the oscillations and inquired if a simple, molecular model can 

capture the intermitotic time distributions observed experimentally. The stochastic model 

accurately recapitulates the trends of our experimental results. Comparing the distributions of 

experimental G1 and S-G2-M to those of the model, we find the same right-skewed distribution 

for G1 and more Gaussian distribution for S-G2-M. The model captures the signal-dependent shift 

of G1, with mean time shifting rightward as signal decreases. Surprisingly, we find the same 

multimodal structure present in our model results as seen in our experiments.  

The existence of such structures has been noted historically as ‘cell cycle quantization’ and 

been found across eukaryotic species [95], [104], [105]. Prior work has focused on describing these 
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structures in yeast mutant cells (wee1- cdc25Δ) [94]. Our work builds upon these studies, 

demonstrating that if positive feedback loops that accelerate the G2/M transition are weak, then 

cells can revert back to G2, effectively adding a quantized amount of time to the cell cycle. Instead 

of extended G2-M mitotic time, we find a quantized G1 time that is dependent on signal strength. 

This leads to questions of the similarity between the circuits and how a change in signal strength 

leads to complex oscillations. We find the quantization is the result of the coupling of multiple 

oscillatory circuits within the cell cycle.  

We further note that the slowly and quickly dividing states are transient within our model and 

a result of molecular noise, rather than a specific genetic expression level. We compare the 

molecular evolution profiles of the two groups and find interesting differences between the two. 

The first feature we point out is a consistently decreased level of Skp2 signaling in long cycling 

cells. When Skp2 is low, inhibition of p21 is also low, leading to a quicker cell cycle. Skp2 has 

been shown to be necessary for the degradation of cyclin-dependent kinase inhibitor (CKI) for 

proper cell cycle progression [106]. Our model further supports experimental findings by Meyer 

et al. showing the proliferation-quiescence decision is dependent on Cdk2 activity at mitotic exit 

[107]. We model cyclin E in complex with Cdk2 and observe increased activity of the complex at 

mitosis for quickly dividing cells. It is difficult to say our model is dependent on the activity of 

one protein at a specific point in time to cause a specific outcome. The entire state of the system, 

the molecular count, at a specific time is what dictates the evolution of our system. However, we 

can say, given a set of molecular counts, the likelihood of the model behaving a certain way.  

As a means of further testing our model, we examine the effects of what would be the 

experimentally analogous process of p21 knockout. By setting the p21 synthesis to 0, we can 

compare model dynamics to our ‘wildtype’ experiment. We see that with p21 knockout, there is a 
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large increase in quickly dividing cells. The change in intermitotic dynamics comes from a 

shortened time in G1, as opposed to S-G2-M. We find this surprising since p21 interacts with all 

cyclin complexes. The role of p21 in cell cycle progression can be further explored by changing 

its association and dissociation constant with the cyclin family. An interesting note is that the 

cyclin E/p21 complex is the only cyclin/p21 associated complex that shows a greater molecule 

count that correlates to quickly dividing cells. 

With the model established, we can begin to compare directly how changes at the molecular 

level manifest as overall cell population changes. This is an important link that could enable 

molecular measurements to be used as predictors of treatment outcome. Additionally, 

understanding cellular control mechanisms can provide insight into novel mechanisms and drug 

targets.  

 

5.8. Future studies 

Our results suggest our model contains enough detail to be able to reproduce complex cellular 

behavior. We seek to continue testing the limits of the model as we extend it further by including 

additional components. We envision the following next steps: 

 

5.8.1. PySB implementation  

The first step in future computational studies will be transferring the model and approach to 

PySB and Python. PySB offers a unified framework for building a rule-based model with the idea 

of creating reusable, modular signaling fragments [108]. Doing so would allow us to use already 

established modules and to examine their effects on cell fate decision. It would also be helpful to 

split the cell cycle into its component oscillating circuits. Additionally, it would allow us to easily 
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examine the importance of the strength of the coupling between circuits and the effect on 

population response.  It has been previously shown how weak coupling can lead to complex mitotic 

oscillations[109].  Python also offers easily programmable cost functions, allowing us to quickly 

match data as we add additional modules.  

 

5.8.2. Additional modules and signaling pathways 

There exist a multitude of factors that influence the cell cycle and apoptotic pathway, including 

factors that directly link the two [110], [111]. It would be insightful to examine how such a link 

affects both signaling pathways and how the connection can be modulated to favor a particular 

behavior. Signaling upstream of AKT and ERK are additional modules we would like to examine. 

There have been recent suggestions of oscillatory behavior in both AKT and ERK [112], [113]. 

Examining the effects of an oscillatory circuit upstream of the cell cycle could add significant 

value to our current system. In recent years, there has been an increase in live-cell protein reporters. 

Incorporating these novel tools would allow for improved kinetic data that could help refine the 

model. An example of one such tool is the Cdk2 reporter used by Meyer et al. [107]. 

 

5.8.3. Drug Synergy 

Combination targeted therapy has seen increased efficacy in NSCLC treatment compared 

single drug treatments [114]. Most patients develop drug resistance to first- generation TKIs 

(erlotinib, gefitinib). Common modes of resistance include TK domain mutation (T790M), MET 

amplification, and RAS mutation [115], [116]. Next steps would include how MET amplification 

and RAS mutation change signaling upstream of the cell cycle machinery and how those changes 

alter cell fate decision. As the model is capable of mimicking cell population behavior, we see its 
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possible use as an aid to define drug synergy. Recent work in the Quaranta laboratory has 

focused on defining the synergistic effects of drug combination therapy [117]. Essentially, an in 

silico dose-response experiment of multiple drug combinations could be run.  

 

5.9. Methods 

 

5.9.1. Statistical methods 

To determine whether two distributions were indistinguishable we used the two-sample 

Kolmogorov-Smirnoff test. This test determines the probability that two sets of data are sampled 

from the same distribution, and P < 0.05 was assumed to be statistically significant evidence that 

the two data sets are drawn from different distributions. 

 

5.9.2. Cell fate model pseudo-code 

All models were written and run in MATLAB. To derive cell population behavior from the 

stochastic cell cycle and apoptotic modules we perform the following steps: 

1. Initialize the system by running the full ODE Cell Fate Model with proper AKT, ERK, and 

FAK levels as input strength. For drug treated cells, this corresponds to initial seeding and 

growth prior to treatment. 

2. Select a random starting point for each cell along the ODE solution and convert from 

concentration to molecule number. If cells in the model are drug treated, levels of AKT, 

ERK, and FAK are changed. 

3. Run the Gillespie algorithm on each cell with the end state as the initial condition for 30 

computational hours. 
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4. Check for division or death events within the 30-hour window. Add a cell at the time of 

division with initial conditions set equal to the original cell at the mitotic point. Stop 

running for cells that have an apoptotic event. 

5. Update the overall cell count and repeat from step 3. 

 

5.9.3. Fractional proliferation  

Fractional proliferation analysis was performed as in the previous chapter using the available 

R package fracprolif.  
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CHAPTER VI 

 

6. Conclusion and Final Remarks 

 

Overall, the broad goal of this work was to examine how external stimuli (presence of drug 

and substrate stiffness) are integrated by the cell into a fate decision. We built a literature-based 

model to understand how the decision is made and, ultimately, how a population of cells will 

behave. This work first focuses on examining experimental studies of the effect of cancer cell 

microenvironment on chemotherapeutic response and connecting those results with changes in key 

regulators of the mitotic and apoptotic processes within the cell. We build a literature-based 

molecular-level model to make the connection. Using the model as a tool, we can query the 

components and system topology necessary to produce complex cellular phenomena. The work 

helps establish the mathematical framework for understanding cellular signaling pathways. By 

understanding the mathematical rules that produce complex cellular responses, novel treatments 

can be developed more quickly in addition to adding insight into the underlying biology.  

We used an EGFR mutated non-small cell lung cancer cell line, PC9, as a model system. It 

offers an opportunity to practically apply newly developed understanding of cellular signaling 

regulation to develop improved treatment options. In the past, targeted therapy of EGFR has been 

a successful initial treatment for patients with non-small cell lung cancer. The disease, however, 

will generally progress as the tumors become resistant. One cause of resistance is linked to 

heterogeneity of cell fates in response to drug treatment. Underlying fate decision, and ultimately 

population response, is the complex signaling network of the cell. To understand the dynamics of 

a drug response, it is necessary to determine how an external stimulus is integrated into a fate 
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decision – in our case either division, apoptosis, or quiescence – and how perturbations in the 

signaling network alter that decision process. Prior work has shown that variable expression of 

cMet correlates with cell response. In this study, we find that extracellular matrix (ECM) stiffness 

also modulates proliferation behavior and the distribution of cell fates. Using these results, we 

have built a stochastic model capable of accurately predicting population dynamics – validated by 

in vitro evaluation of PC9 sublines. The model and its assessment of cell fate decision processes 

could be a useful tool for quantitative prediction of drug response.  

In this work, we experimentally examined the role of microenvironment in cell response to 

treatment. We focused on characterizing PC9 response to targeted therapy. We used previously 

described metrics, primarily the drug induced proliferation (DIP) rate and intermitotic time, to 

define cell response. Experimental results were then used to refine and validate predicted outputs 

from the molecular model. We have measured the DIP rate of PC9 with varying substrate stiffness, 

drug treatment, and sensitivity. We found that a soft substrate leads to a decreased DMSO growth 

rate and increased erlotinib sensitivity in a cell line dependent manner. We have recorded changes 

in G1 and S-G2-M time distributions with varying substrate stiffness, drug treatment, and cell line. 

Our results show that erlotinib treatment strongly affects G1 timing, whereas substrate stiffness 

primarily impacts S-M time. We have recorded phosphorylated and total protein levels through 

Western blot densitometry of key signaling proteins within the model. Erlotinib drastically 

decreases ERK signaling and moderately affects AKT. Stiffness impacts AKT signaling with no 

discernable effect on ERK and strongly modulates FAK activation.  

We next surveyed the extent of treatment response that is captured by known minimal protein 

network models. We have developed a stochastic model of tumor cell population dynamics as a 

function of experimentally measurable inputs including local drug concentration, cMet expression, 
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and substrate stiffness. The model is motivated by our experimental results examining the DIP rate 

of PC9 sublines under erlotinib treatment. The model is built around three modules. The first, 

based upon the work of Goldbeter et al., governs the activation of cyclin-dependent kinases 

(CDKs) and subsequently, proliferation. The second module controls apoptosis and is comprised 

of the BCL-2 family of proteins. Finally, we have included a direct mapping between initial cell 

surface signal (EGFR, cMet, integrins) and AKT and ERK that drive the previous two modules. 

The model has three regimes of response including a proliferative state, an apoptotic state, and a 

quiescent state based upon the initial signal. We have built a model that can integrate external cues 

(e.g. matrix stiffness, growth factors) into a cell fate decision by combining existing models in the 

literature. We inform our model with our experimental results. The model recapitulates the overall 

population dynamics, measured both in DIP rate and intermitotic time distribution. Interestingly, 

it even captures complex behavior such as period doubling events.  

This work demonstrates the capacity of a systems biology approach highlighted in section 2.8. 

We have refined a molecular model of cell fate decision to capture complex cellular phenomena. 

A major portion of the power of a systems biology approach comes from developing a 

mathematical formalism to express complex systems. With such a formalism comes questions of 

broader applications. Now that we are beginning to understand how the signaling within a cell 

functions, where else can we apply the knowledge? A clear extension is the application to synthetic 

biology. Synthetic biology is a broad field that seeks to design novel biological components and 

systems. Such applications include diagnostic circuits for detection, treatment, and disease 

prevention [114]–[116]. Another future direction is investigation of the scalability of the molecular 

system principles. Do the same control rules apply at a cellular or larger scale? Applying the 
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principles gathered from molecular signaling analyses could yield insight into other biological 

systems and complex control systems in general.  

 

 

  



111 

 

Appendix 

 

A. Michaelis-Menten parameter values and initial conditions 

The initial conditions and parameter values that were used in the ODE and stochastic solution 

of the Michaelis-Menten equation: 

 

Table A.1 Model parameters 

Variable Value 

kf 2 

kr 1 

kcat 1.5 

 

Initial conditions: [S] = 8, [E] = 4, [ES] = 0, [P] = 0. 
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B. Rb-E2F switch ODEs, parameter values, and initial conditions 

The variables with biological description, differential equations, parameter values, and initial 

conditions used to model the Rb-E2F switch adapted from [48]. The model was implemented 

using MATLAB and solved with ode23 solver.  

 

 

Table B.1 Model variables. 

Variable Description 

S Serum; growth signals 

M Myc 

E E2F 

CD CycD 

CE CycE 

R RB 

RP Phosphorylated Rb 

RE Rb-E2F complex 

 

 

 

Table B.2 Equations for mathematical model of Rb-E2F pathway. 

𝑑[𝑀]

𝑑𝑡
=
𝑘𝑀[𝑆]

𝐾𝑆 + [𝑆]
− 𝑑𝑀[𝑀] (B.1) 

𝑑[𝐶𝐷]

𝑑𝑡
= 𝑘𝐸 (

𝑀

𝐾𝐸 + [𝑀]
) (

[𝐸]

𝐾𝐸 + [𝐸]
) +

𝑘𝑏[𝑀]

𝐾𝑀 + [𝑀]
+
𝑘𝑝1[𝐶𝐷][𝑅𝐸]

𝐾𝐶𝐷 + [𝑅𝐸]
+
𝑘𝑃2[𝐶𝐸][𝑅𝐸]

𝐾𝐶𝐸 + [𝑅𝐸]

− 𝑑𝐸[𝐸] − 𝑘𝑅𝐸[𝑅][𝐸] 

(B.2) 

𝑑[𝐶𝐷]

𝑑𝑡
=
𝑘𝐶𝐷[𝑀]

𝐾𝑀 + [𝑀]
+
𝑘𝐶𝐷𝑆[𝑆]

𝐾𝑆 + [𝑆]
− 𝑑𝐶𝐷[𝐶𝐷] (B.3) 
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𝑑[𝐶𝐸]

𝑑𝑡
=
𝑘𝐶𝐸[𝐸]

𝐾𝐸 + [𝐸]
− 𝑑𝐶𝐸[𝐶𝐸] (B.4) 

𝑑[𝑅]

𝑑𝑡
= 𝑘𝑅 +

𝑘𝐷𝑃[𝑅𝑃]

𝐾𝑅𝑃 + [𝑅𝑃]
− 𝑘𝑅𝐸[𝑅][𝐸] −

𝑘𝑃1[𝐶𝐷][𝑅]

𝐾𝐶𝐷 + [𝑅]
−
𝑘𝑃2[𝐶𝐸][𝑅]

𝐾𝐶𝐸 + [𝑅]
− 𝑑𝑅[𝑅] (B.5) 

𝑑[𝑅𝑃]

𝑑𝑡
=
𝑘𝑃1[𝐶𝐷][𝑅]

𝐾𝐶𝐷 + [𝑅]
+
𝑘𝑃2[𝐶𝐸][𝑅]

𝐾𝐶𝐸 + [𝑅]
+
𝑘𝑃1[𝐶𝐷][𝑅𝐸]

𝐾𝐶𝐷 + [𝑅𝐸]
+
𝑘𝑃2[𝐶𝐸][𝑅𝐸]

𝐾𝐶𝐸 + [𝑅𝐸]
−

𝑘𝐷𝑃[𝑅𝑃]

𝐾𝑅𝑃 + [𝑅𝑃]

− 𝑑𝑅𝑃[𝑅𝑃] 

(B.6) 

𝑑[𝑅𝐸]

𝑑𝑡
= 𝑘𝑅𝐸[𝑅][𝐸] −

𝑘𝑃1[𝐶𝐷][𝑅𝐸]

𝐾𝐶𝐷 + [𝑅𝐸]
−
𝑘𝑃2[𝐶𝐸][𝑅𝐸]

𝐾𝐶𝐸 + [𝑅𝐸]
− 𝑑𝑅𝐸[𝑅𝐸] (B.7) 

 

Table B.3 Model parameters. 

Rate Constants Parameter values, sources, and notes 

𝑘𝐸 0.4 µM/hr 

These values were adjusted together so that: 

(1) The maximum E2F level is higher than the maximum CycD  

      level (based on our experimental observations) 

(2) E2F activation threshold is about 1% serum 

(3) The simulated E2F level will be around the corresponding 

Michaelis-Menten parameter (𝐾𝐸) 

𝑘𝑀 1.0 µM/hr 

𝑘𝐶𝐷 0.03 µM/hr 

𝑘𝐶𝐷𝑆 0.45 µM/hr 

𝑘𝑅 0.18 µM/hr 

𝑘𝑅𝐸 180 µM/hr 

𝑘𝑏 0.003 µM/hr 

𝐾𝑆 0.5 µM/hr 

𝑘𝐶𝐸 0.35 µM/hr Assumed to be similar to 𝑘𝐸𝐹 

𝑑𝑀 0.7/hr Myc half-life = 60 min 

𝑑𝐸 0.25/hr E2F half-life = 2~3 hr 

𝑑𝐶𝐷 1.5/hr CycD half-life = 25~30 min 

𝑑𝐶𝐸 1.5/hr CycE half-life = 30 min 

𝑑𝑅 0.06/hr Rb half-life = 12 hours 

𝑑𝑅𝑃 0.06/hr Assumed to be the same as 𝑑𝑅 

𝑑𝑅𝐸 0.03/hr Rb-E2F half-life = 6 hours: The Rb-E2F complex assumed to be 

more stable than Rb alone 

𝑘𝑃1, 𝑘𝑃2 18/hr Typical value phosphorylation rate constant is 3600/hr 

𝑘𝐷𝑃 3.6 µM/hr Typical value for dephosphorylation rate assuming a constant 

phosphatase concentration is 720 μM/hr 

𝐾𝑀 0.15 µM/hr Estimated based on measured Myc/Max –DNA dissociation 

constant 
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𝐾𝐸 0.15 µM/hr Assumed to be the same as 𝐾𝑀 

𝐾𝐶𝐷 0.92 µM/hr Experimentally measured 

𝐾𝐶𝐸 0.92 µM/hr Assumed to be the same as CycD 

𝐾𝑅𝑃 0.01 µM/hr Typical value for Michaelis-Menten parameter for 

dephosphorylation 

Initial conditions: [Rb] = 0.55 µM; [Rbp] = [E2F] = [Myc] = [CycD] = [CycE] = 0 µM 
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C. Mitotic oscillating circuit ODEs, parameter values, and initial conditions 

The variables with biological description, differential equations, parameter values, and initial 

conditions used to model cell cycle adapted from [56]. The model was implemented using 

MATLAB and solved with ode23 solver.  

Table C.1 Model variables. 

Variable Description 

Mda Cyclin D/Cdk4-6 complex 

E2F Transcription factor E2F 

Me Cyclin E/Cdk2 complex 

Ma Cyclin A/Cdk2 complex 

Mb Cyclin B/Cdk2 complex 

Cdc20 Protein that belongs to the anaphase-promoting complex (APC) 

aMd reaches steady state quickly, effectively becoming a constant. 

 

Table C.2 Equations for the Goldbeter skeleton model. 

𝑑[𝑀𝑑]

𝑑𝑡
= 𝑣𝑠𝑑 (

𝐺𝐹

𝐾𝑔𝑓 + 𝐺𝐹
) − 𝑉𝑑𝑑 (

𝑀𝑑

𝐾𝑑𝑑 +𝑀𝑑
) (C.1) 

𝐸2𝐹

𝑑𝑡
= 𝑉1𝑒2𝑓 (

(𝐸2𝐹𝑡𝑜𝑡 − 𝐸2𝐹)

𝐾1𝑒2𝑓 + (𝐸2𝐹𝑡𝑜𝑡 − 𝐸2𝐹)
) (𝑀𝑑 +𝑀𝑒) − 𝑉2𝑒2𝑓 (

𝐸2𝐹

𝐾2𝑒2𝑓
+ 𝐸2𝐹)𝑀𝑎 (C.2) 

𝑑[𝑀𝑒]

𝑑𝑡
= 𝑣𝑠𝑒𝐸2𝐹 − 𝑉𝑑𝑒𝑀𝑎 (

𝑀𝑒

𝐾𝑑𝑒 +𝑀𝑒
) (C.3) 

𝑑[𝑀𝑎]

𝑑𝑡
= 𝑣𝑠𝑎𝐸2𝐹 − 𝑉𝑑𝑎𝐶𝑑𝑐20(

𝑀𝑎

𝐾𝑑𝑎 +𝑀𝑎
) (C.4) 

𝑑[𝑀𝑏]

𝑑𝑡
= 𝑣𝑠𝑏𝑀𝑎 − 𝑉𝑑𝑏𝐶𝑑𝑐20(

𝑀𝑏

𝐾𝑑𝑏 +𝑀𝑏
) (C.5) 
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𝑑[𝐶𝑑𝑐20]

𝑑𝑡
= 𝑉1𝑐𝑑𝑐20𝑀𝑏 × (

(𝐶𝑑𝑐20𝑡𝑜𝑡 − 𝐶𝑑𝑐20)

𝐾1𝑐𝑑𝑐20 + (𝐶𝑑𝑐20𝑡𝑜𝑡 − 𝐶𝑑𝑐20)
)

− 𝑉2𝑐𝑑𝑐20 (
𝐶𝑑𝑐20

𝐾2𝑐𝑑𝑐20 + 𝐶𝑑𝑐20
) 

(C.6) 

Md =
𝐾𝑑𝑑𝑣𝑠𝑑𝐺𝐹 (𝐾𝑔𝑓 + 𝐺𝐹)⁄

𝑉𝑑𝑑 − (𝑣𝑠𝑑𝐺𝐹 (𝐾𝑔𝑓 + 𝐺𝐹)⁄ )
 (C.7) 

 

 

Table C.3 Key model parameters. 

Rate Constants Parameter values, sources, and notes 

Cdc20tot 5 µM Total concentration of the protein Cdc20 

E2Ftot 3 µM Total concentration of the transcription factor E2F 

GF 1 µM Growth factor 

𝐾𝑑𝑎 0.1 µM Michaelis constant for the degradation, activated by Cdc20, of cyclin 

A/Cdk2  

𝐾𝑑𝑏 0.005 µM Michaelis constant for the degradation, activated by Cdc20, of cyclin 

B/Cdk1  

𝐾𝑑𝑑 0.1 µM Michaelis constant for the degradation of cyclin D/Cdk4–6  

𝐾𝑑𝑒 0.1 µM Michaelis constant for the degradation of cyclin E/Cdk2  

𝐾𝑔𝑓 0.1 µM Michaelis constant for synthesis of the cyclin D/Cdk4–6 complex 

induced by growth factor 

𝐾1𝑐𝑑𝑐20 1 µM Michaelis constant for Cdc20 activation through phosphorylation by 

cyclin B/Cdk1  

𝐾2𝑐𝑑𝑐20 1 µM Michaelis constant for Cdc20 inactivation through dephosphorylation 

𝐾1𝑒2𝑓 0.01 µM Michaelis constant for E2F activation by cyclin D/Cdk4–6 and cyclin 

E/Cdk2 complexes 

𝐾2𝑒2𝑓 0.01 µM Michaelis constant for E2F inactivation by the cyclin A/Cdk2 

complex 

𝑉𝑑𝑎 0.245/hr Rate constant for the degradation of the cyclin A/Cdk2 complex by 

the protein Cdc20 

𝑉𝑑𝑏 0.28/hr Rate constant for the degradation of the cyclin B/Cdk1 complex by 

the protein Cdc20 

𝑉𝑑𝑑 0.245/hr Maximum degradation rate of cyclin D/Cdk4–6 complex 

𝑉𝑑𝑒 0.35/hr Rate constant for the degradation of cyclin E/Cdk2 by cyclin A/Cdk2 

𝑣𝑠𝑎 0.175/hr Rate constant for synthesis of cyclin A/Cdk2 induced by the 

transcription factor E2F 
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𝑣𝑠𝑏 0.21/hr Rate constant for synthesis of cyclin B/Cdk1 induced by cyclin 

A/Cdk2 

𝑣𝑠𝑑 0.21/hr Rate constant for synthesis of cyclin D/Cdk4–6 induced by growth 

factor GF 

𝑣𝑠𝑒 0.21/hr Rate constant for synthesis of cyclin E/Cdk2 induced by the 

transcription factor E2F  

𝑉1𝑐𝑑𝑐20 0.21/hr Rate constant for activation of Cdc20 through phosphorylation by 

cyclin B/Cdk1  

𝑉2𝑐𝑑𝑐20 0.35 µM//hr Maximum rate constant for inactivation of Cdc20 through 

dephosphorylation 

𝑉1𝑒2𝑓 0.805/hr Rate constant for activation of E2F by cyclin D/Cdk4–6 and cyclin 

E/Cdk2 complexes 

𝑉2𝑒2𝑓 0.7/hr Rate constant for inactivation of E2F by the cyclin A/Cdk2 complex  
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D. Cell fate decision parameter values and initial conditions 

The parameter and initial conditions used to for the cell fate model. Parameter were set from 

the original model and varied to match experimental data. 

 

Table D.1 Cell fate model parameters.  

Rate Constants Description 

Ω 200 106 L/NA System size for stochastic simulations used to convert 

from concentration in the ODE system to molecule count 

in the stochastic system 

s   0.37  Global scaling parameter 

G1 – Rb-E2F switch  

kE   0.4 /h Rate constant for E2F synthesis through autoactivation 

kM   0.13 /h Rate constant for Myc synthesis through AKT pathway 

kCD   0.03 /h Rate constant for cyclin D activation from Myc 

kCDS   0.23 /h Rate constant for cyclin D activation through AKT 

pathway 

kR   0.18 μM/h Basal Rb synthesis rate 

kRE   180 /μM h E2F – Rb binding constant 

kb   0.003 μM/h Rate constant for E2F through Myc 

KS   0.5 μM Michaelis constant for Myc synthesis through AKT 

pathway 

dM   0.6 /h First-order rate constant for non-specific Myc 

degradation 

dE   0.25 /h First-order rate constant for non-specific E2F 

degradation 

dCD   2 /h First-order rate constant for non-specific cyclin D 

inactivation 

dR   0.06 /h First-order rate constant for non-specific Rb degradation 

dRP   0.06 /h First-order rate constant for non-specific pRb 

degradation 

dRE   0.03 /h First-order rate constant for non-specific Rb-E2F 

degradation 

kP1   18 μM/h Rate constant for Rb phosphorylation through cyclin D 

kP2   18 μM/h Rate constant for Rb phosphorylation through cyclin E 

kDP   3.6 μM/h Rate constant for pRb dephosphorylation 

KM   0.13 μM Michaelis constant for E2F synthesis through Myc 

KE   0.1 μM Michaelis constant for E2F synthesis through 

autoactivation 

KCD   0.92 μM Michaelis constant for Rb-E2F dissociation from cyclin 

D mediated Rb phosphorylation 
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KCE   0.92 μM Michaelis constant for Rb-E2F dissociation from cyclin 

E mediated Rb phosphorylation 

KRP   0.01 μM Michaelis constant for pRb dephosphorylation 

KMY  0.1 μM Michaelis constant for Myc synthesis through ERK 

pathway 

kEMY   0.15 μM/h Rate constant for Myc synthesis through ERK pathway 

kED   0.22 μM/h Rate constant for cyclin D activation through ERK 

pathway 

p21 – CKI control  

Vdskp2   1.1 μM/h Rate constant for Skp2 degradation through Cdh1 

V1p21   100 μM/h Rate constant for p21 phosphorylation from cyclin E 

V2p21   0.1 μM/h Rate constant for pp21 dephosphorylation 

Vdp21p   5 μM/h Rate constant for pp21 degradation from Skp2 

V1cdh1   1.25 μM/h Rate constant for Cdh1 activation 

V2cdh1   8 μM/h Rate constant for Cdh1 inactivation through cyclin A and 

cyclin B 

vs1p21   0.5 μM/h Rate constant for basal p21 synthesis 

vs2p21   0.1 μM/h Rate constant for p21 synthesis through E2F 

K1cdh1   0.1 μM Michaelis constant for Cdh1 activation 

K2cdh1   0.1 μM Michaelis constant for Cdh1 inactivation through cyclin 

A and cyclin B 

Kdp21p   0.1 μM Michaelis constant for pp21 degradation through Skp2 

Kdp21skp2   0.1 μM Michaelis constant for pp21 degradation through pp21 

interaction with Skp2 

Kcdh1   0.4 μM Michaelis constant for Skp2 degradation from Cdh1 

Kdskp2   0.5 μM Michaelis constant for Skp2 degradation from Skp2 with 

Cdh1 

Kde   0.1 μM Michaelis constant for cyclin E inactivation from Skp2 

K1p21   0.5 μM Michaelis constant for p21 phosphorylation from cyclin 

E 

K2p21   0.5 μM Michaelis constant pp21 dephosphorylation 

kddp21   0.06 /h First order rate constant for non-specific p21 degradation 

kddskp2   0.005 /h First order rate constant for non-specific Skp2 

degradation 

kc1   3 /μM h Association constant for cyclin D and p21 

kc2   1 /h Dissociation constant for cyclin D and p21 

kc3   8 /μM h Association constant for cyclin E and p21 

kc4   2 /h Dissociation constant for cyclin E and p21 

kc5   5 /μM h Association constant for cyclin A and p21 

kc6   1 /h Dissociation constant for cyclin A and p21 

kc7   0.12 /μM h Association constant for cyclin B and p21 

kc8   0.2 /h Dissociation constant for cyclin B and p21 

VFp   1.5 μM/h Rate constant for p21 phosphorylation from FAK 

KFp   0.1 μM Michaelis constant for p21 phosphorylation from FAK 

kCDF   0.21 μM/h Rate constant for cyclin D activation from FAK 
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KDF   0.8 μM Michaelis constant for cyclin D activation from FAK 

a   0.8 μM/h basal term for activation of cyclin E/Cdk2 (without PF 

loop = 0) 

S-G2-M  

Cdc20tot   1 μM Total concentration of Cdc20 

cdh1tot   1 μM Total concentration of Cdh1 

CycEtot   1 μM Total concentration of cyclinE/Cdk2 

CycAtot   1 μM Total concentration of cyclinA/Cdk2 

CycBtot   1 μM Total concentration of cyclinB/Cdk1 

K1E2F   1 μM Michaelis constant for E2F activation by cyclinD/Cdk4-6 

and cyclinE/Cdk 2 complexes 

K2E2F   0.5 μM Michaelis constant for E2f inactivation by cyclinA/Cdk2 

complex 

K1Me   0.1 μM Michaelis constant for cyclinE/Cdk2 activation by E2F 

K2Me   0.1 μM Michaelis constant for cyclinE/Cdk2 inactivation by 

cyclinA/Cdk2 

K1Ma   0.5 μM Michaelis constant for cyclinA/Cdk2 activation by E2F 

K2Ma   0.1 μM Michaelis constant for cyclinA/Cdk2 inactivation by 

Cdc20 

K1Mb   0.1 μM Michaelis constant for cyclinB/Cdk1 activation by 

cyclinA/Cdk2 

K2Mb   0.1 μM Michaelis constant for cyclinB/Cdk1 inactivation by 

Cdc20 

K1cdc20   0.1 μM Michaelis constant for Cdc20 activation through 

phosphorylation by cyclinB/Cdk1 

K2cdc20   0.1 μM Michaelis constant for Cdc20 inactivation through 

dephosphorylation 

Kie   0.2 μM Michaelis constant for cyclinB/Cdk1 inactivation by 

cyclinE/Cdk2, representing the indirect effect of the 

DNA replication checkpoint 

V1cdc20   1.8 μM/h Rate constant for activation of Cdc20 through 

phosphorylation by cyclinB/Cdk1 

V2cdc20   0.6 μM/h Rate for inactivation of Cdc20 through 

dephosphorylation 

V1E2F   0.4 μM/h Rate constant for activation of E2F by cyclinD/Cdk4-6 

and cyclinE/Cdk2 complex 

V2E2F   0.7 μM/h Rate constant for inactivation of E2F by cyclinA/Cdk2 

complex 

V1Me   0.9 μM/h Rate for activation of cyclinE/Cdk2 by E2F 

V2Me   1.6 μM/h  Rate constant for inactivation for cyclinE/Cdk2 by 

cyclinA/Cdk2 

V1Ma   0.6 μM/h Rate constant for activation of cyclinA/Cdk2 by E2F 

V2Ma   0.6 μM/h Rate constant for inactivation of cyclinA/Cdk2 by Cdc20 

V1Mb   1 μM/h Rate for activation of cyclinB/Cdk1 by cyclinA/Cdk2 

V2Mb   0.8 μM/h Rate constant for inactivation of cyclinB/Cdk1 by Cdc20 
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b  0.8 μM/h basal term for activation of cyclin B/Cdk2 (without PF 

loop = 0) 

Positive feedback loops on the G1/S and G2/M transitions 

b1   1 term representing the self-activation of cyclinE/Cdk2 

through the mutual activation between cyclinE/Cdk2 and 

its phosphatase Cdc25(PF loop in the G1/S transition) 

b2   1  term representing the self-activation of cyclinB/Cdk1 

through mutual activation between cyclin B/cdk1 and its 

phosphatase cdk25(PF loop in the G2/M transition) 

K_ib   0.5  Inhibition constant for Wee1 inactivation by cyclin 

B/Cdk1 (mutual inhibition of Wee1 and Cdk1 creates a 

PF loop in the G2/M transition) 

 

 

Table D.2 Cell fate starting conditions 

Skp2 0.0758 

p21 0.01795 

pp21 0.0304 

Cdh1 0.0868 

Myc 0.358 

CycD 0.246 

CycDp21 0.0114 

Rb 0.2096 

pRb 0.562 

E2F 0.0663 

RbE2F 0.659 

CycE 0.0823 

CycEp21 0.006 

CycA 0.0781 

CycAp21 0.011 

CycB 0.2 

CycBp21 0.002 

Cdc20 0.367 

BAX 0.992 

BAXmBCL2  0.0073 

BH3 0.004 

BH3BCL2 0.199 
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