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Chapter 1

Introduction

1.1 Motivation

Critical infrastructure systems such as power grids, water distribution systems, telecom-

munication systems, and multi-modal transportation systems provide essential services to

society [7, 8, 9]. However, these systems are rapidly deteriorating due to aging infrastruc-

ture and climate-induced disasters. On average, the infrastructure systems of the United

States scored a D+ in the evaluation by the American Society of Engineers in 2017 [10].

Driven by the development of social economy and advances in technology, the infrastruc-

ture systems are becoming increasingly interdependent, making them more vulnerable to

perturbations due to the propagation of cascading failures [11, 12, 13]. As such, the need

to improve the security and resilience of infrastructure systems has been increasingly em-

phasized by the U.S. government [14].

To this end, an important first step is to quantify the performance of infrastructure sys-

tems before and after a disruptive event in order to improve their resilience, i.e., reduce vul-

nerability and enhance recoverability, which are two of the most critical aspects of system

resilience (Fig. 1.1). However, several challenges emerge in evaluating the vulnerability

and estimating the recovery state of infrastructure systems.

First, historical data about component fragility under different hazards are often lack-

ing due to the rare occurrence of extreme hazardous events, such as earthquakes and severe

storms. Second, the ability to make an accurate estimation of important parameters for

describing the recovery state is often hindered by the lack of empirical data about net-

work recovery state, thereby leading to different levels of uncertainty around the damage

and recovery states at the component and system levels. Neglect or improper characteri-

zation of the uncertainty can result in under- or over-estimation of systemic performance
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as the metrics cannot be obtained within an acceptable level of fidelity or estimated accu-

rately [15, 16, 17]. Therefore, it is critical to develop models that properly characterize such

uncertainty to evaluate component vulnerability and network recovery state under different

types of hazards and given limited data. Third, while the topology of certain individual

real-world infrastructure systems may be available, the data about the interdependencies

across the infrastructure systems are typically not available. This is because 1) collecting

such data requires the coordination of operators from multiple infrastructure systems that

might not always be run by the same utility company, and 2) even if the data have been

collected, utility companies may not share the data due to security concerns. The lack of

such data leads to epistemic uncertainty [18] around the structure of the interdependent

infrastructure systems (IISs). As such, interdependent links across the infrastructure net-

works need to be first evaluated, before the performance assessment of IISs. Finally, the

vulnerability and recoverability of critical infrastructure are dependent on the allocation of

resources to protect network components before a disruption and schedule repair activities

after a disruption. Existing models that integrate protection and restoration have relied on

deterministic optimization methods [19, 20, 21, 22], which only solve a few independent

representative damage scenarios. This may lead to sub-optimal solutions due to aleatory

uncertainty (natural variability [18]) about the disruption.

Table 1.1: Research objectives and their category according to different metrics

Component of resilience Uncertainty Task Objective

Vulnerability Component
damage state

Estimation Assess the serviceability of infrastruc-
ture systems

Vulnerability Network
configuration

Estimation Model the interdependency of infras-
tructure systems

Recoverability Network
recovery state

Estimation Improve the estimation accuracy of re-
covery state

Recoverability N/A Estimation Improve the inference efficiency of the
model for estimating recovery state

Vulnerability
Recoverability

Hazard Optimization Optimize the integrated vulnerability
reduction and recovery enhancement

2



This dissertation aims to address these challenges by developing and applying Bayesian

and stochastic network methods to assess and optimize the resilience of infrastructure sys-

tems, i.e. reduce vulnerability and improve recoverability (Table 1.1). In this chapter,

Section 1.2 briefly introduces the background concepts and methods involved in this dis-

sertation. Section 1.3 details each objective of this dissertation. The organization of this

dissertation is provided in Section 1.4.

1.2 Background

This section first introduces the concept of network resilience. Next, IISs are described

because infrastructure systems are becoming increasingly interconnected. Because 1) in-

frastructure systems operate interdependently yet the data about their interdependence are

lacking and 2) there exist various sources of uncertainty, enhancing the resilience of crit-

ical infrastructure systems requires a multidisciplinary approach, thus we then introduce

the stochastic network methods used to assess and optimize resilience, including stochastic

block model and two-stage stochastic programming.

1.2.1 Network Resilience

The resilience of infrastructure systems is a key element of this dissertation and is

therefore introduced here. First introduced in ecology by Holling [23], the concept of

resilience has triggered significant interest during the past decades in several other fields,

ranging from psychology to engineering [24]. Within the engineering domain, multiple

definitions of resilience have been proposed by different reputable organizations [25, 26,

27] as well as several scholars in the field of engineering resilience analysis [1, 28, 24]. In

many of the definitions, resilience is similarly referred to as “the performance of a system of

networks before, during, and after a disruptive event” [1, 29, 30]. This dissertation adopts

this definition as it lends itself for convenient quantification.

Consider an engineering system with its time-dependent performance denoted by ϕ(t).

3



Depending on the system under study, the metric for quantifying the performance can be

network capacity, maximum flow, flow rate, or network connectivity [2]. As can be seen

from Fig. 1.1, the time-dependent systemic performance can be divided into five stages:

Initially, the system stays at the original stable state with performance level ϕ(t0). Stricken

by the disruptive event e at time te, the system starts to degrade due to reduced or loss

of functionality of components. The systemic performance deteriorates until the maxi-

mum loss is incurred at time td . Then the system enters the disrupted state in which the

preparation activities start, such as identification of impaired components, transportation of

materials and crew for restoration, etc. After a period of time, the system begins to recover

from the disruptive state Sd . The recovery continues until time t f when the system reaches

a new stable state.

Preparedness Recoverability

Time

Degradation

Disruption event: e

t0 te td ts tf

φ(t0)

φ(t)

φ(td)

φ(tf)

S0

Stable original 

state

System 

degradation

Sd

Disrupted 

state

System 

recovery

Sf

Stable 

recovered state

Figure 1.1: System performance over time (adapted from Ref. [1, 2])

Systemic resilience can be calculated as the ratio of recovered performance to the max-

imum loss [1]. Let Rt denote the resilience at time t during the recovery process. Rt can be

computed as

Rt =
ϕ (t|e)−ϕ (ts|e)
ϕ (t0|e)−ϕ (ts|e)

(1.1)
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where t ∈
(
ts, t f

)
; ϕ represent the measure of systems performance or functionality level.

Note that Rt ∈ [0,1] with 1 indicating that the system has been fully recovered from the

disruptive event to the original state.

However, when the system is disrupted by some external disturbances or due to the

malfunction or failure of internal components, it is difficult to describe the state of the

system with mathematical and physical equations due to complex system dynamics or the

lack of data [31].

1.2.2 Interdependent Infrastructure Networks

Interdependent infrastructure networks (i.e., interdependent infrastructure systems) are

comprised of multiple individual networks connected by interdependency links. For ex-

ample, the power network requires gas input from the gas network to generate electricity,

the gas compressors depend on electricity from the power grid to transport gas; pumping

stations in the water distribution network rely on electricity to lift water and power genera-

tors need clean water for cooling purposes (Fig. 1.2). This dissertation primarily considers

those with two individual networks, however, the approach can be extended to accommo-

date additional networks.

Mathematically, G = (G1 ,G2, E12,E21) where G1 = (V1,E1) and G2 = (V2,E2) rep-

resent the individual networks and E12 and E21 represent the interdependency links from

G1 to G2 and those from G2 to G1, respectively. The number of nodes and the number of

links in G are denoted by |V | and |E| respectively. Each of the G1 and G2 is comprised of

multiple supply nodes (S), transmission nodes (T ), demand nodes (D), and the links that

connect them (Fig. 1.3).

The connectivity of a graph can be encoded using the adjacency matrix where rows and

columns are labeled by nodes. Let A|V |×|V | represent the adjacency matrix of the graph.

If there is a link between node i and node j, Ai j = 1, and Ai j = 0 otherwise. Since self-

edges are not possible, we assume Aii = 0, which is a valid assumption for the network
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Figure 1.2: Schematic of interdependent power-gas-water systems [3]
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Figure 1.3: A schematic of abstract interdependent networks (Dash lines represent interde-
pendency links. Nodes labeled with S, T , D represent supply nodes, transmission nodes,
and demand nodes, respectively.)

representing infrastructure systems. For the undirected graphs considered in this study, the

adjacency matrix is symmetric. As an illustrative example, the adjacency matrix for the

interdependent networks in Fig. 1.3 is shown in Fig. 1.4.
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Figure 1.4: Adjacency matrix for the interdependent networks in Fig. 1.3

1.2.3 Stochastic Block Model

The Stochastic block model (SBM) is a probabilistic graphical model for describing and

analyzing the structure of a network [32]. Pioneered by Holland et al. [33], SBM has been

widely used in community detection in social networks [34, 35, 36]. In SBM, the nodes in

a graph are divided into different blocks based on the class membership of the nodes. The

probability of a link between two nodes depends on the blocks (class) to which the nodes

belong. Let z = [z1,z2, ...,z|V |]
T represent the class membership vector and θ represent the

block probability matrix [37], the matrix of probabilities of forming edges between blocks

and within a block (Fig. 1.5).

Formally, SBM is defined as follows [33, 37]:

Definition 1.2.1 (SBM). A is generated according to an SBM with respect to z if and only

if: 1. ∀ i 6= j, Ai j are statistically independent. 2. ∀ i 6= j and i′ 6= j′ with zi=z′i and z j=z′j,

Ai j and Ai j are identically distributed.

Given Definition 1.2.1, the block probability matrix, and the adjacency matrix, the proba-

bility of a link connecting node i in block a and j in block b can be given by Eq. (1.2).
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Figure 1.5: An example of SBM with the corresponding block probability matrix

P
(
Ai j = 1|zi = a,z j = b

)
= θab (1.2)

In Eq. (1.2), θab represents the probability of forming a link between block a and block

b. Equivalently, Ai j|zi = a,z j = b ∼ Bernoulli(θab), meaning that entries of A can be

modeled as statistically independent Bernoulli random variables [38]. Depending on the

available data set, SBM can be applied to a priori setting where the partition of nodes are

predefined and a posteriori setting where the block partition is uncertain [37]. In this study,

SBM is used in the a priori setting.

The SBM offers several computational and application advantages such as the ability

to estimate missing links based on incomplete data [39], the integration of statistical and

network properties, and the flexibility in the analysis of stochastic interdependent links.

However, this model does not consider the heterogeneity of nodes besides their block mem-

bership. In order to account for such heterogeneity, SBM is modified to give a probabilistic

estimate of the presence of interdependency links E12 and E21. The estimation of the prob-

ability of these links can be considered as a regression problem in which node attributes are

the predictors and the probability of Ai j is the response variable. For example, suppose the

class membership and the distance between nodes are used as the predictors, the regression

model is shown in Eq. (1.3).
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P
(
Ai j = 1|z1,z2

)
= f

(
z1,z2,dviv j

)
(1.3)

In Eq. (1.3), dviv j represents the distance between vi and v j. Once the data on other

nodal attributes are available, Eq. (1.3) can be modified to include more predictors, and the

model form can be identified by the use of statistical methods for model selection.

1.2.4 Two-stage Stochastic Programming

Stochastic programming is an optimization approach to deal with decision making

problems under uncertainty where the constraints or objective function are uncertain [40].

The uncertainty is typically characterized by a distribution that is known or can be esti-

mated [41]. This dissertation involves the two-stage stochastic programming to model the

problem, in which the decision makers take some actions before the occurrence of a ran-

dom event, then the second-stage decisions (recourse decisions) are made to reverse the

adverse impact of the random event [41]. A two-stage stochastic program seeks to mini-

mize the cost function of the first-stage decisions x ∈ Rn1 and the expected cost associated

with the second stage decisions y ∈ Rn2 . The two decision epochs are divided by an ran-

dom event, which is modeled using a random vector ω̃ [42]. The optimal policy is a single

first-stage decision and the second stage decisions to take in response to each realization of

the random event [41].

A general two-stage stochastic program is of the following form:

min
x

cT x+E [Q(x,ω)] (1.4a)

s.t. Ax = b (1.4b)

x≥ 0 (1.4c)

where c ∈ Rn1 , b ∈ Rm1 , and A ∈ Rm1×n1 are the known deterministic first-stage vectors

and matrices, respectively. E [·] represents the expectation over ω̃ . Q(x, ω̃) is the optimal
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value of the second-stage problem, which is also called the recourse function. For a specific

realization of the random event ω of ω̃ , Q(x,ω) is defined as:

Q(x,ω) := min
y

d(ω)T y (1.5a)

s.t. T (ω)x+W (ω)y = h(ω) (1.5b)

y≥ 0 (1.5c)

whereW ∈ Rm2×n2 , T ∈ Rm2×n2 , d(ω) ∈ Rn2 , and h ∈ Rm2 are given.

To solve the two-stage program numerically, it is assumed that ω̃ has a finite number

of realizations/scenarios. Let the probability of each scenario be pk(k = 1, ..., |Ω|) and

generate a copy of the second-stage decision variables for each scenario ω ∈ Ω [42], the

equivalent monolithic representation of the two-stage program above, often referred to as

the deterministic equivalent or extensive formulation, is be given by

min cT x +
|Ω|

∑
k=1

pkd (ωk)y(ωk) (1.6a)

s.t. Ax≥ b (1.6b)

T (ω1)x + W (ω1)y(ω1) = h(ω1) (1.6c)

...
...

...

T
(
ω|Ω|

)
x + W

(
ω|Ω|

)
y
(
ω|Ω|

)
= h

(
ω|Ω|

)
(1.6d)

x≥ 0, y(ω)≥ 0, ω ∈Ω (1.6e)

This formulation has a nice structure because once the first-stage decision variables

(complicating variables) are fixed, the problem naturally decomposes into |Ω| independent

small sub-problems [43], rendering the problem easier to solve.
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1.3 Research Objectives

This dissertation aims to assess and enhance the resilience of infrastructure systems

under different sources of uncertainty by developing and applying Bayesian methods and

stochastic network models. To achieve this goal, the research aims to accomplish the fol-

lowing objectives.

1. Assess the serviceability of infrastructure networks under uncertainty about the com-

ponent damaged state in order to reduce the vulnerability against disruptions. A

hierarchical Bayesian updating approach is proposed to evaluate the performance of

network components under aleatory uncertainty and epistemic uncertainty. Then, the

Bayesian updating approach is integrated into the assessment of network serviceabil-

ity based on Monte Carlo simulation (MCS).

2. Improve the estimation accuracy of parameters describing the recoverability of in-

frastructure systems under epistemic uncertainty. To this end, a new class of models

called hierarchical Bayesian kernel models (HBKM) is developed. The performance

of HBKM is validated against the classical models using cross validation with his-

torical data on community recovery from power outages.

3. Improve the inference efficiency of hierarchical Bayesian models for estimating the

recovery state of infrastructure networks. The issue of computational efficiency

arises in large-scale applications of hierarchical models due to the increased number

of parameters Betancourt and Girolami [44]. Therefore, a scalable inference algo-

rithm is developed to learn the hierarchical Bayesian model for count data, which are

commonly encountered in calculating the recovery state of infrastructure systems. By

providing fast yet competitively accurate inference of Bayesian hierarchical models,

the proposed inference algorithm can inform the decision-making about restoration,

especially in power grids where online estimates are required to enable the dynamic

operations.
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4. Model the interdependency across infrastructure networks under epistemic uncer-

tainty, so that the vulnerability and recoverability of IISs can be evaluated with a

higher level of accuracy. Nodal features of infrastructure systems are incorporated in

the formulation of the modified stochastic block model to estimate the likelihood of

interdependent links.

5. Optimize the integrated protection and restoration of IISs, i.e., reduce the vulnera-

bility and increase recoverability from a systemic perspective, with considerations

of uncertainty around disruptive events. The two-stage stochastic programming ap-

proach is leveraged to model the integrated problem of IISs. As the size of the

problem may become too large for large-scale IISs, novel solution techniques are

developed to obtain a good-quality solution within a reasonable amount of time.

The proposed research effort can help decision-makers in utility companies and emer-

gency management agencies to improve the management of infrastructure systems. This

research can eventually contribute to the secure and resilient operations of infrastructure

systems, which are considered critical to social well-being, economic vitality, and national

security [45].

1.4 Organization of the Dissertation

The rest of this dissertation is divided into several chapters, each addressing the research

objectives.

Chapter 2 to Chapter 4 focus on the development and application of hierarchical Bayesian

models as well as efficient Bayesian inference algorithms to improve the performance as-

sessment of critical infrastructure systems. Specifically, Chapter 2 focuses on applying

hierarchical Bayesian model to measure the performance of infrastructure systems under

uncertainty. Component fragility metrics are estimated using the HBM and then integrated

into a system serviceability assessment using Monte Carlo simulation and a shortest-path
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algorithm. By using the Bayesian approach, the performance measures can be dynamically

updated as more data becomes available. Estimating the system serviceability requires

information about the component vulnerability and recoverability. However, making pre-

dictions at the component level presents challenges due to data scarcity. In order to address

these challenges, Chapter 3 presents a novel class of models, hierarchical Bayesian kernel

model (HBKM), to estimate the recovery rate of infrastructure networks in the aftermath

of disruptions under scarce data. The proposed method is tested using cross-validation and

compared with two other models for validation, the hierarchical Bayesian regression model

(HBRM) and the Poisson Generalized Linear Model (GLM). A case study focusing on the

recovery from power outage in Shelby County, Tennessee after the most severe storms since

2007 is presented to illustrate the proposed approach. The inference efficiency of hierar-

chical Bayesian Poisson regression model (HBPRMs) for count data, which are frequently

encountered in estimating the recovery state of infrastructure systems, is considered in

Chapter 4. As the applications of HBPRMs to large-scale datasets calls for more efficient

inference algorithms, a scalable approximate Gibbs sampler (AGS) to learn the HBPRMs

while maintaining the inference accuracy is developed. Numerical experiments on multi-

ple real datasets demonstrate the superior performance of AGS against the state-of-the-art

sampling algorithm, especially in large datasets.

Critical infrastructure systems do not operate individually but are rather interconnected.

Theses interactions are characterized by interdependencies which are bidirectional relation-

ships between two systems. Therefore models need to characterize these interdepndencies

when assessing the performance of infrastructure systems. However, data on interdepen-

dent links is not available. To enable a more holistic approach to the performance assess-

ment of infrastructure systems, Chapter 5 focuses on modeling their interdependencies un-

der uncertainty. The uncertain interdependency links are modeled using a modified SBM,

in which the probability of links between individual systems are estimated by considering

nodal features in addition to the block membership of nodes. Then the modified stochastic
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block model is integrated into the resilience assessment of IISs. Two recovery strategies

based on static and dynamic component importance ranking are developed and compared.

While component importance ranking provides insights towards a decision making pro-

cess, a formal resource allocation model is needed to determine strategies for reducing

vulnerability and improving recoverability. Such decisions about resource allocation for

vulnerability reduction and restoration improvement are typically made sequentially [20].

The separation of vulnerability reduction and restoration improvement decisions can lead

to sub-optimal resilience, Chapter 6 investigates how to optimize the integrated protection

and restoration planning of IISs. With considerations to the uncertainty around disrup-

tions, a two-stage mixed-integer stochastic program is proposed to tackle the integrated

decision-making problem. Specifically, the first stage considers the decisions about which

components to fortify, while the second stage considers decisions concerning the schedule

of repair crews, network flow, restoration sequence of damaged components, etc. Since

binary decision variables are present in the second-stage problem, the proposed two-stage

stochastic program cannot be solved effectively using classical approaches, e.g., the L-

Shaped method (a.k.a. Bender’s decomposition). To address this challenge, novel solution

algorithms are proposed by integrating different meta-heuristics into the iterative regular-

ization method. Synthetic interdependent power-gas networks are employed to illustrate

the proposed two-stage stochastic program and solution techniques.

In Chapter 7, contributions made in this dissertation are summarized and directions for

future work are discussed.
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Chapter 2

Hierarchical Bayesian Approach to Assessing the Serviceability of Infrastructure

Networks Under Uncertainty

2.1 Introduction

Critical infrastructure systems have grown in scale and complexity as a result of urban-

ization and economic development [46]. Critical infrastructure systems are prone to a wide

range of natural (i.e., extreme weather events) and anthropogenic (i.e., man-made attacks)

hazards that make them vulnerable [47]. The U.S. government has placed an emphasis on

protecting critical infrastructure and improving its ability to withstand and recover from

all hazards as it is considered paramount to national security [14]. The protection of criti-

cal infrastructure systems relies on risk-informed decision making to identify strategies for

hardening, emergency response, and restoration. In order to inform such decisions, it is es-

sential to provide a reliable assessment of critical infrastructure system-level performance

under different types of hazards. The challenge lies in the availability of sufficient data to

make accurate estimates of the system performance metrics which include the component

functionality and system serviceability. The proposed method is founded in a hierarchi-

cal Bayesian approach and combined with simulation and network algorithms to address

challenges of data scarcity and uncertainty in the estimation of infrastructure network per-

formance after disasters. While the study in this chapter focuses primarily on assessing the

serviceability of water distribution systems (WDSs) impacted by earthquakes and floods,

the proposed framework can be applied to other types of infrastructure networks, such as

gas networks, oil networks, and power grid, among others, as long as the physical laws in

the respective network are appropriately taken into account.

A water distribution system, which provides clean drinking water and wastewater treat-

ment services, is credited to be one of the most essential infrastructures, especially during
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a disaster when reduced water supply disrupts the emergency response (e.g., fist-aid, fire-

fighting) and residential and industrial activities, among others [48, 49]. Unfortunately,

WDSs have been overlooked and undervalued in the U.S. during the past decade. In 2019,

the American Society of Civil Engineers gave the drinking water and wastewater infras-

tructure in the United States a D and D+, respectively, due to aging infrastructure and

underinvestment. Given insufficient resources, at the current replacement rate of 0.5% per

year, it would take 200 years to replace the entire drinking water system which is 100 years

beyond the system design life [50, 51]. The underinvestment is reflected in the system per-

formance where approximately 240,000 water main breaks occur per year, with research

indicating that as much as 20% - 25% of distributed water is lost due to leakage [52]. In ad-

dition to the performance decrease due to aging and underinvestment, disasters can affect

the performance of WDSs drastically. Among the natural hazards, earthquake and flood

have more impact on the performance of critical infrastructures [53].

Prior studies on the probabilistic assessment of infrastructure performance during dis-

asters have focused on either (i) the estimation of component functionality (e.g., pipe fail-

ures [54], water main breaks [55]) or (ii) simulating the system’s response to hazard (e.g.,

connectivity-based network models [56]). The uncertainty of the failure estimation of com-

ponents has rarely been considered and integrated directly into the system-level service-

ability assessment. The study in this chapter formally takes into consideration uncertainty

and develops an approach that incorporates a hierarchical Bayesian updating mechanism of

network component fragility into the evaluation of systemic performance of WDSs under

earthquake and flood using Monte Carlo simulation and network algorithms. More specif-

ically, this chapter improves the state-of-the-art in assessing the performance of critical

infrastructure systems by making the following contributions:

1. An approach where both epistemic uncertainty and aleatory uncertainty about com-

ponent failure probability are modeled. In the proposed method, the epistemic un-

certainty is modeled with a distribution whose parameters are also described by a
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distribution.

2. A method that is founded in the hierarchical Bayesian model (HBM) to address cur-

rent challenges of data scarcity, leverage potential availability of data in the future,

and update the probabilistic evaluation of infrastructure performance.

3. A method to incorporate Bayesian updating of fragility formulations of damage to

infrastructure components under earthquake and flood hazard. The updating of com-

ponent fragility is integrated into the serviceability assessment of infrastructure sys-

tems.

2.2 Background

Much of the work done on the performance analysis of WDS focuses on earthquake

and man-made hazards and evaluates component-level and system-level performance sepa-

rately. For instance, at the system level, Wang and O’Rourke [57] simulate the response of

the WDS under seismic hazard where system serviceability is defined as the ratio of satis-

fied demand after the earthquake to total demand before the earthquake. Another study uses

a connectivity-based model to evaluate the seismic vulnerability of WDS based on Monte

Carlo simulation and a shortest-path algorithm [56]. At the component level, Shuang et al.

[58] propose a model to evaluate the nodal vulnerability of WDS under cascading failures

due to intentional attacks. Fewer research studies focus on the mathematical model for the

performance analysis of WDS under flood hazard, even though floods have caused more

damage and fatalities than any other natural hazard in recent years, making it a particularly

destructive and dangerous hazard [59, 60]. Current performance analyses of WDS under

floods are based on HAZUS-MH 1[61, 62]. However, damage to buried pipes is typically

not considered in HAZUS-MH since it is assumed that submergence of these pipes cannot

1HAZUS-MH is a nationally applicable, standardized methodology provided by the Federal Emergency
Management Agency (FEMA) to estimate potential loss from multiple types of hazards (earthquakes, floods,
hurricanes, and tsunamis), and visualize the impact of such hazards [5].
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occur [5]. This assumption can be invalid as reports on the long-term recovery efforts in

the wake of Hurricane Katrina have shown damaged pipe infrastructure in New Orleans for

drinking water and wastewater transport. This finding contradicts the typical risk analysis

assumption that floods do not damage buried critical infrastructure [63].

A challenge in evaluating the post-disruption performance of WDSs is the need for a

large amount of data to estimate parameters such as the component damage state and build

a reasonably accurate model with statistical methods [64, 16, 65]. However, due to the

nature of extreme events and the limited access to buried infrastructure components, data

collection during and after a disruptive event is challenging. As a result, there’s uncer-

tainty about the component vulnerability, network topology, and system serviceability after

a disruption. Uncertainty is categorized as either aleatory or epistemic. While aleatory un-

certainty is generally viewed as irreducible, epistemic uncertainty is associated with model

selection and parameter assumptions, and can be reduced to improve the accuracy of the

model [15, 18]. Failing to account for the epistemic uncertainty in the performance eval-

uation of critical infrastructure systems could lead to biased estimates of the system state,

thereby causing prolonged failures and increased social and economic losses. As such, it is

critical to characterize the uncertainty in the assessment of the serviceability of disrupted

infrastructure systems. In order to address uncertainty, probabilistic models founded in

Bayesian approaches have been developed and widely applied to assess system perfor-

mance, reliability, risk, and resilience of critical infrastructure systems [66, 67, 68, 69, 70].

Bayesian methods allow for uncertainty quantification and integrate direct and indi-

rect sources of information to improve the estimation accuracy [71, 16]. In the case

of WDSs, existing studies that have employed that Bayesian approach are primarily fo-

cused on predicting WDS component failure to support vulnerability assessment of the

WDS [72, 73, 74, 55, 54]. Specifically, Dong et al. [54] apply Bayesian networks to evalu-

ate the vulnerability of flood control infrastructure using node failure probability and failure

cascade susceptibility as the metrics. Additionally, modeling uncertainty has been consid-
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ered by Kabir et al. [55] in a study that integrates Bayesian model averaging and Bayesian

proportional hazard model to predict the failure of water mains. Bayesian updating is

a promising approach under epistemic uncertainty because it updates model parameters

and outputs as relevant data become available. Specifically, hierarchical Bayesian models

(HBMs) are able to integrate information from various sources and adapt to the structure of

data, thereby reducing the variance of estimates [75] and addressing concerns of defining a

prior distribution with a very limited amount of data [16]. HBMs have been widely applied

to risk and reliability analysis of different engineering systems [76, 16, 77, 78, 79, 65].

In particular, Yan and Haimes [16] demonstrated the ability of HBM to improve estimate

accuracy through “strength borrowing” by pooling data from similar and related systems

and applying HBM to handle the lack of data in risk-based system analysis.

While prior work has contributed to advances in system level performance and compo-

nent level probabilistic modeling, few studies have explicitly considered the epistemic un-

certainty around component fragility and its integration into the serviceability assessment

of the entire WDS. This research proposes a Bayesian approach integrated with simulation

and network algorithms to (i) consider the uncertainty in component failure prediction,

and (ii) integrate the component metrics in a system-level performance assessment using

Monte Carlo simulation and shortest-path algorithm. The approach is founded in HBM to

enable updating of system-level performance given updated parameters of component-level

metrics.

2.3 Methodology

This section presents the methodological components of the framework as they apply

to a WDS starting with an overview of failure rate estimation methods and followed by a

detailed description of component failure modeling and network performance evaluation.
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2.3.1 Overview of Failure Rate Estimation Methods

2.3.1.1 Repair Ratio

Repair ratio that is calculated as the ratio between the number of repairs to a unit

length of pipe is commonly used as the indicator for the impact of seismic hazard on

pipelines [48]. In this chapter, the seismic fragility model from the American Lifelines Al-

liance (ALA) [80] is adapted to a more general form shown in Eq. (2.1) in order to model

multiple types of hazards. For earthquake hazard, historical data collected from records

of repairs to service lines and water mains after recorded seismic intensities are generally

used to fit a regression model to estimate RR (per 1,000 feet of pipe length) as a function of

hazard intensity Ic at the site of a component. For seismic intensity, PGV (in/s) is typically

used. Aleatory uncertainty about PGV is represented by a random residual term described

further in Section 2.3.3, so PGV is assumed to be a random variable. Of the collected data,

pipe material, pipe joint type, pipe diameter, and soil condition also impacted the measured

RR values, so a fragility curve modification factor K was defined to scale the final RR re-

sult from the regression model (Eq. (2.1)). HAZUS adopts the linear model from ALA to

estimate the damage to water distribution systems given a seismic intensity from a specific

earthquake scenario [4].

RR = aKIc (2.1)

In Eq. (2.1), a is the regression parameter and Ic is the intensity of the event. The factor K

was originally developed for seismic events and is assumed here to be applicable to flood

hazard as well.

To reflect flood intensity, a random variable h f , measured in units of feet, represents

the standing water depth in a certain location and will reflect Ic in Eq. (2.1). Histori-

cally, HAZUS provides floodplain extent and utilizes flood depth to calculate the damage

to above-ground components such as pumping stations; however, recent studies document
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HAZUS missing as much as 75% of flooded areas when validating the predicted versus

actual flood extent of historical events [81]. The accuracy of this methodology depends on

the accuracy of the flood depth estimates, which is largely determined by the quality of data

that can be collected in the future. Ideally, repair records after major flood events should be

collected and analyzed similarly to the existing methodology for earthquakes. After repair

reports are collected and analyzed, new values for a and K are estimated through regres-

sion analysis to calculate the expected RR from flood events. With no database of records

in existence yet, the initial values for a and K are adjusted from earthquake scenarios for

floods.

The RR calculated from Eq. (2.1) is one of the main parameters used to estimate the

probability of pipe failure. However, equation (2.1) is fit from a relatively small sample of

data points on earthquake events. Additionally, there is no data available on pipe failures

after flood events. The cost of collecting and analyzing such data is high due to sensitivity

and security as well as the rare occurrence of disasters. Therefore, point values are often

used for a and K even though the model itself has a poor fit, especially for large observed RR

values [82]. To address this limitation, epistemic uncertainty is introduced to the variables

a and K and a Bayesian updating approach is used to estimate RR.

2.3.1.2 Bayesian Updating and Hierarchical Bayesian Model

A Bayesian approach follows Bayes’ theorem to update the estimate of the parameters

of interest. Given a prior distribution of parameters (variables), p(θ), and a data likelihood

function, p(D|θ), the posterior density, p(θ|D), is given by Eq. (2.2).

p(θ|D) =
p(θ)p(D|θ)

p(D)
∝ p(θ)p(D|θ) (2.2)

A Bayesian model can be dynamically updated where the prior distribution is iteratively

replaced with the informative posterior distribution obtained using existing data when new

data become available.
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An extension of this approach is the hierarchical Bayesian model (HBM) which con-

siders the uncertainty in the parameters of the prior distribution by adding another layer of

Bayesian inference. Instead of setting a point value to the distribution parameters of θ, a

hyperprior, represented by φ, is used to quantify the uncertainty around θ. According to

the marginal posterior of φ shown in Eq. (2.4), φ is now partially determined by the dataset

rather than being an assumed value [16].

p(θ,φ|D) ∝ p(D|θ)︸ ︷︷ ︸
likelihood

p(θ|φ)︸ ︷︷ ︸
prior

P(φ)︸ ︷︷ ︸
hyperprior

(2.3)

p(φ|D) =
∫

p(θ,φ|D)dθ ∝

∫
p(D|θ)p(θ|φ)P(φ)dθ (2.4)

Since Eq. (2.3) usually does not have a closed-form solution, simulation techniques are

typically leveraged to generate samples of the posterior distributions of interest. Markov

Chain Monte Carlo (MCMC) methods such as the Metropolis-Hastings algorithm, Gibbs

sampling, and Hamilton (or Hybrid) Monte Carlo have been developed to perform sampling

efficiently [83, 84]. MCMC algorithms coupled with the emergence of freely available soft-

ware and inexpensive computing power have led to tremendous advances in Bayesian infer-

ence [85]. In this chapter, Stan, a probabilistic programming language that implements full

Bayesian statistical inference [86], is employed to implement the proposed HBM. For more

details about HBMs and sampling methods for HBMs, readers are referred to Ref. [75] and

references therein.

In order to estimate RR under uncertainty and limited data, the variables a and K are

assumed to be lognormal random variables with uncertain means, λa and λK , that follow a

normal distribution. The standard deviations are assumed to be fixed such that the normal

distribution is weakly-informative [87]. If no prior information is available, the hyperpri-

ors are typically assumed to be weakly-informative distributions to build a more robust

model [88]. Modeling details of the hazard intensity Ic will be covered in Section 2.3.2.

The HBM for estimating RR, visualized in Fig. 2.1 with the corresponding mathematical
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model given by Eq. (2.5) to Eq. (2.10), can be continuously updated with new pipe repair

records to ensure the most accurate parameters are utilized to dynamically inform resource

allocation during a disaster as well as for long-term planning.

RR∼N (µRR,σRR) (2.5)

µRR = aKIc (2.6)

lna∼N (λa,ζa), lnK ∼N (λK,ζK) (2.7)

ln Ic = ln Īc + lnεI, lnεI ∼N (λε ,ζε) (2.8)

λa ∼N (µa,σa), λK ∼N (µK,σK) (2.9)

σRR ∼N (µσ ,σσ ) , ζa ∼N
(
µζ ,σζ

)
, ζK ∼N

(
µζ ,σζ

)
(2.10)
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Figure 2.1: HBM for estimating RR. Circles denote random variables. Squares denote
constants. Shaded nodes denote observations while unshaded ones denote hidden vari-
ables/constants.

2.3.2 Hazard Intensity

The variable Ic from Eq. (2.1) must be determined for each component of the network to

calculate individual failure probabilities. For earthquake scenarios, the hazard intensity Ic
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can be measured in terms of peak ground velocity PGV (cm/s) or peak ground acceleration

PGA (cm/s2). PGA and PGV are estimated from their respective attenuation equation that

models seismic intensity at a site from an earthquake of magnitude Mw and distance from

the epicenter R (km). The attenuation equations for the median PGV and PGA adopted in

previous research are shown in Eqs. (2.11) and (2.12) [56, 82].

log10(PGA) =3.79+0.298× (Mw−6)−0.0536×

(Mw−6)2− log10(R)−0.00135×R
(2.11)

log10(PGV ) =2.01+0.422× (Mw−6)−0.0373×

(Mw−6)2− log10(R)
(2.12)

The median seismic intensity PGV from Eq. (2.12) is used to describe the damage to pipes

(link components) while the median PGA from Eq. (2.11) is used to describe damage to

facilities (node components). The standard deviations of the residuals associated with

Eq. (2.12) and Eq. (2.11) to capture the aleatory uncertainty around seismic intensities

are typically assumed to be a lognormal distribution with a median value equal to 1.0 and

a standard deviation of 60% [56]. The intensity of a seismic event varies across the system

and is usually modeled as a homogeneous two-dimensional stochastic field with a residual

term [89]. The estimation equation for the logarithmic residual of the seismic intensity

(PGA or PGV ) at the site of a component c, denoted by ln Ic, is given by Eq. (2.13) where

Ic represents the mean value of Ic . The autocorrelation function of logarithmic residuals

for the seismic intensities at the site of component ci and c j is given by Eq. (2.14) where

Rc is the distance from the site of component c to the epicenter, the correlation distance b

is the strength of the spatial correlation and is typically assumed to be 30 km [89].

ln(εI) = ln
(

Ic

Ic

)
(2.13)

ρ(ln Ici, ln Ic j) = exp
(
−
||Rci−Rc j ||

b

)
(2.14)
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The flood intensity is measured by flood depth (feet) estimated by the flood depth based

on the digital elevation model (DEM). The elevation of a given location is subtracted from

the maximum water surface elevation along the cross-section of a flood basin. However,

due to the slope of the floodplain and the complexity in flow paths, estimating flood depth

using cross-section maximum flood water elevation is challenging [90]. A more accu-

rate method to generate spatially-explicit floodwater depth is through numerical simulation

given data on the hydrological characteristics and riverine morphology [90]. Hydrology-

based flood map applications include FEMA Flood Maps [91] and the National Weather

Service Inundation Maps [92] from the National Oceanic and Atmospheric Administra-

tion (NOAA). In the study of this chapter, we adopt a simulation-based methodology using

HAZUS. The HAZUS Flood Model uses characteristics such as frequency, discharge, and

ground elevation to model the spatial variation in flood depth and velocity. It is important

to note that HAZUS can underestimate the flood depths by considering the precipitation in

the study region without accounting for cascading effects from upstream rivers. To offset

the underestimation, a longer return period can be considered in HAZUS so that the sim-

ulated flood depths are approximate to observations at the gauges within the study area.

The HAZUS Flood Model is subject to several sources of uncertainty, such as the variation

in channel and floodplain elevation in the Digital Elevation Model (DEMs) and the vari-

ation in floodplain extent and depth in the River Hydraulic Model [93]. To characterize

the resulting uncertainty around the flood depths, a 50% standard deviation is assumed for

estimates of flood depths. To improve the accuracy of these estimates, the average of the

estimates from two simulations can be used. If the flood depth estimates at some compo-

nents of the WDS are missing in one simulation due to the removal of problematic reaches,

the estimates from the second simulation can be used. If the missing values from the two

simulations overlap (The data for these reaches are not available in HAZUS), the mean of

the estimates derived from elevation-based interpolation can be used.
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2.3.3 Component Failure Modeling

Each WDS is represented by a network consisting of nodes and links. Given the hazard

intensity and RR estimates, a probability of failure is derived for each node and link in the

WDS.

2.3.3.1 Node Failure

The physical damage to facilities in a water distribution network such as elevated stor-

age tanks or pumping stations is described with fragility curves and are used in HAZUS [4].

A total of five damage states are defined, including none (ds1), minor (ds2), moderate (ds3),

extensive (ds4), and complete (ds5). As an example, the fragility curve for above-ground

steel tank entering different damage states is shown in Fig. 2.2. In the study of this chapter,

damage state ds5 is adopted.

Figure 2.2: Fragility curve for above-ground steel tank under earthquake [4]. Failure rate
represents the probability of a component reaching a specific damage state given PGA.

The fragility curve is described with a log-normal distribution as a function of PGA

given in Eq. (2.15) where Pv describes the failure probability of each node, λPGA represents

the logarithmic mean of PGA that is measured in the gravitational acceleration g, ζPGA

describes the standard deviation of ln(PGA), and φ (·) is the standard normal cumulative
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distribution function.

Pv (PGA) = φ

(
ln(PGA)−λPGA

ζPGA

)
(2.15)

The intensity of a flood event is described by the flood depth. Flood fragility curves

given the flood depth are typically derived from historical data, damage survey data, or

expert opinions [94]. Since fragility curves of water facilities are not available in the lit-

erature, historical data of the pumping stations (medium/large, above ground) and storage

tanks (all, above ground) from the HAZUS Flood Model technical manual [5] are lever-

aged to fit the fragility curves presented in Fig. 2.3. The two curves are used to evaluate the

failure probability of water facilities in the case study of Shelby County, TN. Note that the

failure probability of the elevated storage tanks is always 0 when the flood depth is under

10 feet. For other types of pumping stations or storage tanks, the fragility curves can be

derived in the same manner.

Figure 2.3: Fragility curve for water facilities under flood

2.3.4 Link Failure

The damage to buried pipes is discussed more generally in Section 2.3.1.1. As the

hazard intensity, PGV or flood depth, varies along a pipe, the pipe is equally divided into

m segments. First, the repair ratio RRi for a segment Li is assessed. Then the number
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of pipe breaks within this segment, n, is modeled using a Poisson distribution as shown

in Eq. (2.16), where ∆Li is the segment length [80]. The failure probability of a pipe,

Pl , complementary to the probability that no breaks occur in all of the pipe segments, is

provided in Eq. (2.17).

PLi[n = k] = exp(−RRi×∆Li)×
(RRi×∆Li)

k

k
(2.16)

Pl = 1− exp

(
−

m

∑
i=1

RRi×∆Li

)
(2.17)

2.3.5 Network Performance

In order to evaluate the serviceability of a water distribution network under a disruption

scenario, a double-loop MCS is employed to generate multiple scenarios. The approach is

illustrated in Fig. 2.4 and follows 9 steps.

1. The natural hazard scenario is generated. For earthquake hazards, the epicenter and

magnitude of the earthquake are defined. For flood scenario, the severity of the event

based on the return period, such as a 100-year or 200-year flood event, is determined.

2. The intensity of the natural hazard, i.e. PGA or PGV for earthquake or the standing

water depth for flood at the location of vulnerable network components, is estimated

respectively.

3. A random vector of correlated hazard intensities for each component is generated.

4. The probability of failure for each component of the network is calculated. HBM is

used to obtain the component failure probability. For simplicity, the components are

assumed to be either fully functional or inoperable.

5. The status of a component under the hazard scenario is determined by comparing

its failure probability to a random number r ∼U(0,1). If the failure probability is
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Figure 2.4: Flowchart of the proposed approach

greater than r, then the component is considered damaged and is removed from the

network and a subgraph of the original network is generated.

6. The functionality of components and network serviceability are evaluated using the

Floyd-Warshall algorithm [95, 96], which finds the shortest path between all pairs of

nodes simultaneously. In this algorithm, the distance between disconnected nodes is
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equal to infinity. If at least one path exists from a demand node to a source node, the

demand node is considered to be functional.

7. Steps 3-6 are performed for N2 times to develop a probability distribution of compo-

nent functionality and the network serviceability.

8. Steps 3-7 are repeated for N1 times to capture the uncertainty in system serviceability

due to the epistemic uncertainty associated with a and K.

9. Once the functionality ratio of the demand nodes is obtained, network serviceability,

s, is evaluated using Eq. (2.18) where Fni is a binary variable describing the func-

tionality of each demand node i (1 indicates functionality and 0 otherwise); Nd is the

total number of demand nodes.

s =
∑

Nd
i=1 Fni

Nd
, s ∈ [0,1] (2.18)

When epistemic uncertainty is introduced in step 7, a distribution of the mean serviceability

of the network is generated rather than a single point estimate of the average serviceability

described in Eq. (2.18). This distribution allows for an understanding of the impact of

uncertain model parameters on the outcome of disruption scenarios.

2.4 Case Study

2.4.1 Test Network

To illustrate the proposed approach, a case study of a real-world WDS in Shelby County,

Tennessee is presented in this section. The WDS (Fig. 2.5) serves approximately one mil-

lion people. The network consists of 6 elevated storage tanks, 9 pumping stations, 34 relay

nodes, and 71 buried water pipes. The relay nodes are the demand nodes while the stor-

age tanks are the supply nodes. Since the relay nodes constitute the branch points where

the water pipes intersect, the damage to these nodes is not considered in the study of this
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chapter. The pipes installed before 1975 were made from cast iron with molten lead joints

(before 1959) or mechanical joints (1959-1975) while the pipes installed after 1975 were

made from ductile iron pipes with slip joints. The pipe diameter ranges from 6 inches to 48

inches [97].

Figure 2.5: WDS of Shelby County [5]

2.4.2 Natural Hazard Scenario

2.4.2.1 Earthquake

The study area is earthquake-prone because the New Madrid Seismic Zone is centered

northwest to Shelby County. The maximum probable earthquake with an exceedance prob-

ability of 2% in 50 years centers at 35.3 N and 90.3 W [98]. The distance of the WDS

components to the epicenter for the maximum probable earthquake ranges from 20 km

to 65 km, with a mean value of approximately 40 km. Once the earthquake scenario is

defined, the median PGA at a point is solely dependent on the distance to the epicenter.

Therefore, the median PGA contours in Shelby County with the default data in HAZUS

given the earthquake scenario above show a rippling shape (Fig. 2.6), decreasing gradually
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from the highest value of approximately 0.6 in the northwest corner to the lowest value of

around 0.3 in the southeast corner.

2.4.2.2 Flood Hazard Scenario

Shelby County borders the Mississippi River on the west, and several smaller rivers

run across the county. As such, Shelby County is particularly vulnerable to flooding. The

blue area in Fig. 2.7 shows the 100-year HAZUS-derived flood zone. In order to match the

100-year flood based on the records of river crests in Memphis [99], a 1000-year flood is

simulated in HAZUS.

2.4.3 Results

2.4.3.1 Serviceability Assessment

The serviceability assessment is performed following the approach presented in Sec-

tion 2.3.5. The correlation distance b is set to 30 km for earthquakes while correlation is

not considered in calculating the flood depth at different sites of network components. For

Figure 2.6: Functionality of relay node and failure probability of storage tanks and pumping
station vs. median PGA in Shelby County
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damage caused by earthquakes and assuming a damage state ds5, λPGA =ln(1.5) is used

for both water storage tanks and pumping stations, and ζPGA =0.6 is used for water stor-

age tanks and ζPGA = 0.8 for pumping stations [4]. In calculating the repair rate of water

pipes under seismic activities, µK = ln(0.5) and µa = ln(0.00187) are assumed based on

the point estimate K = 0.5 and a = 0.00187 from ALA. For the damage caused by flood,

µK = ln(0.5) is also assumed and the coefficient µa is assumed to be ln(0.001) so that

the magnitude of the failure probability of water pipes under flood is close to that under

earthquake. Given no prior information, standard deviations, ζa, ζK , σa, and σK are set to

be 5 to make the respective distribution weakly informative [100]. These assumptions are

crude due to the lack of data on RR under flood hazard. Once new data about RR become

available, the assumptions can be modified to make the distributions more informative.

Figure 2.7: Failure probability of water distribution facility and functionality ratio of relay
nodes under flood (The blue area is the flood zone)

In the simulation, N1 and N2 are set to 1000, therefore a total of 1.0× 106 simulation

runs are performed to obtain the mean functionality ratio of each relay node under earth-

quake and flood hazard. As the component fragility is distinct under earthquake and flood

events, the distribution of functionality ratio under different hazards are disparate. Fig-

ure 2.8 indicates that the functionality ratios of relay nodes are much higher under flood
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Figure 2.8: Component functionality ratio under (a) earthquake and (b) flood

than under earthquake. Under seismic hazard, the functionality ratios range between 0.4

and 0.9 while under flood, most of the functionality ratios are close to 1.0. The reason is

that the components are more vulnerable to seismic hazard than to flooding because dur-

ing a flood event, components located at high altitude are not inundated (Fig. 2.7) while

under an earthquake event, all the components are subject to the impact of seismic waves

(Fig. 2.6). In particular, node 28 has a low functionality ratio under both hazards because

it is only accessible from one water pipe and it is far from the water storage tanks. In

comparison, node 46 and node 47 have higher functionality ratios because they are close

to storage tanks. However, node 47 has the lowest functionality ratio under flood hazard

because it is closely located to the river and it is accessible through only one water pipe. As
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such, node functionality is dependent on the fragility of nodes and on the topology of the

system. These observations indicate that system topology is more important in determin-

ing the functionality ratio under seismic hazard while component fragility is the dominant

factor under flood hazard.

The respective probability density function (PDF) of the mean serviceability ratio under

earthquake and under flood is presented in Fig. 2.9. This matches the results of functionality

ratio as the mean serviceability ratio is much higher under flood than under earthquake.

Compared to the PDF under earthquake, the PDF under flood is narrow. This small variance

is due to the fact that only a small portion of components fail under flood, leading to a small

number of different subgraphs constructed by removing inoperable nodes and links in the

MCS.
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Figure 2.9: PDF of the mean serviceability ratio under earthquake (a) and flood (b)

2.4.3.2 Node Importance Analysis

Node importance analysis is a crucial step in infrastructure management as critical

nodes functionality can significantly impact the serviceability of the entire network [101],

thereby guiding decision-making on resource allocation and prioritization of repair activ-

ities when multiple nodes are disrupted [69, 102]. To obtain the component importance

ranking, a method based on Kullback-Leibler (KL) divergence [103] is adopted. KL di-

vergence is often used as a measure of dissimilarity between two probability distributions

35



in information theory [104]. In this chapter, KL divergence is applied to calculate compo-

nent importance based on the probability distributions of network serviceability obtained

by changing the component functionality. A sample of the distribution of network service-

ability is generated through the proposed simulation approach and KL divergence from

one discrete probability distribution, P, to another discrete probability distribution Q, is

used as shown in Eq. (2.19), where T is the number of possible values for the two discrete

distributions; P(i) and Q(i) are the i-th probability mass in their respective distribution.

DKL(P‖Q) =−
T

∑
i=1

P(i) log
Q(i)
P(i)

(2.19)

The importance of a component is equal to the KL divergence between the probability

distributions of the network serviceability before and after deleting that component, de-

noted as S0 and Sc, respectively. The importance of component i, denoted by wci , can be

computed according to Eq. (2.20).

wci = DKL(S0‖Sci) (2.20)

When the importance of nodes that represent storage tanks and pumping stations is

evaluated using MCS, each node is removed individually to reveal its contribution to the

decrease in the network serviceability. The steps for ranking components based on KL

divergence are summarized in Algorithm 1.

36



Algorithm 1: Rank components based on KL divergence
1: Run the double-loop MCS to generate the initial distribution of system serviceability

S0 given all components with the respective failure probability

2: for i = 1 to N do

3: Remove node i

4: Run the double-loop MCS to obtain the serviceability distribution Sci

5: Calculate component importance with Eq. (2.20)

6: end for

7: Sort wc1 to wcN in descending order
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Figure 2.10: Node importance under earthquake (a) and flood (b)

The results in Fig. 2.10 show that the ranking of node importance under earthquake is

different from that under flood. Under earthquake, nodes 13 and 1 have the highest influ-

ence on the overall system serviceability while node 2, 12, and 3 have the least influence on

the serviceability. Under flood hazard, node 14 is by far the most important to the system

serviceability. Node 4-10, 12 and 13 have a trivial impact on the serviceability.
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2.5 Summary

This chapter presents a Bayesian updating framework, including a HBM for network

component failure rate, to assess the impact of natural hazards on infrastructure networks.

The uncertainty about component fragility due to data scarcity and randomness in hazard

intensities is measured using Bayesian updating models. Uncertainties about components

are propagated to the system level using MCS to assess the network serviceability under

the impact of different types of hazards. The proposed framework is illustrated with a case

study of a real-world WDS in Shelby County, Tennessee. The results indicate that the WDS

performs differently under different hazard scenarios. The network is more vulnerable to

earthquake hazard than flood hazard. Further, component functionality is driven by network

topology under earthquake hazard whereas under flood hazard component vulnerability is

more important. The difference is also reflected in the ranking of node importance under

the two hazard scenarios. The ranking of components can be used by utility managers and

emergency responders to inform the allocation of resources in disaster preparedness and

response.
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Chapter 3

Hierarchical Bayesian Kernel Method for Quantifying Resilience Under Small Data

3.1 Introduction

In the aftermath of a natural disaster, a loss in the functionality of infrastructure sys-

tems can severely disrupt the infrastructure systems and the daily life of customers they

served. Effective management of recovery requires accurate estimation of resilience met-

rics which allows for informed allocation of resources before, during, and after a disaster,

in order to reduce the loss caused by hazards that hit the infrastructure systems. As such,

quantifying the recoverability of such services is therefore highly critical to the recovery of

infrastructure systems.

As is stated in Chapter 1, the capacity to recover from the occurrence of a disruptive

incident is an important component of system resilience. In order to accurately quantify the

recoverability of infrastructure systems, it is important to identify metrics of evaluation and

their corresponding definitions. Definitions of full recovery vary in the literature, however,

they can be summarized into three categories, (a) returning to “pre¬-disaster” conditions,

(b) attaining what would have occurred ‘without’ the disaster, or (c) reaching a new sta-

ble state that may be different from either of these [105]. In this chapter, full recovery,

depending on the type of disasters, type of indicators, and characteristics of communities,

is defined as either returning to pre-disaster conditions or reaching a new state that can be

better or worse than the pre-disaster conditions.

To date, although various metrics have been developed to measure the post-disaster

recovery for different types of hazards, little research has been conducted to apply them

to quantifying post-disaster recovery. Liu et al. [106] develop an approach to assess the

recovery of infrastructure systems from earthquakes considering four dimensions (popu-

lation, economic, building, and infrastructure) by extending the concepts of the resilience
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triangle, yet the method presented in their work is qualitative as the recovery is expressed

using a score. The work presented in this chapter constitutes a first step in the quantifica-

tion of resilience of infrastructure systems in which the recovery metrics are measured as a

function of time or number of people impacted.

A common issue in estimating the metrics for the recovery of infrastructure systems is

the lack of recovery data from historical events. Traditional statistical learning tools rely

on large datasets in order to provide robust estimates with a high level of accuracy [16]. As

such, scarce data situations result in challenges in measuring and predicting resilience met-

rics within an acceptable level of accuracy using existing statistical models. In this chapter,

the rate of recovery in the aftermath of a disaster is used as the metric for resilience. This

metric has been defined and used as a key indicator of measuring the recovery of infrastruc-

ture systems in prior studies on disaster [106]. This work develops a new statistical learning

method, the hierarchical Bayesian kernel model (HBKM), which integrates the Bayesian

property of improving predictive accuracy as data are dynamically obtained, the kernel

function that can make nonlinear data more manageable, and the hierarchical property of

borrowing information from different sources in scarce and diverse data situations which

are common in disaster scenarios. This method is applied to quantifying the recovery rate

from power outages and is compared to other statistical methods for validation.

The objective of this chapter is to improve the estimation of the recovery state of in-

frastructure systems under scarce data situations by developing a novel statistical model.

Cross-validation techniques are employed to validate the new model against classical mod-

els. In particular, the log-likelihood and Root Mean Squared Error (RMSE) are used as the

metrics for predictive accuracy. An illustrative case study is presented in which the models

are applied to power recovery data collected from five of the most severe storms that ever

hit Shelby County in Tennessee since 2007.
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3.2 Preliminaries

3.2.1 Hierarchical Bayesian Methods

Hierarchical methods are comprised of multiple parameters that are representative of

the structure of the problem or the data whereby a joint probability model for these param-

eters is used to reflect their dependence [75]. More specifically, in order to estimate the

parameters of interest, hierarchical Bayesian (HB) methods employ a multi-level model in

which Bayes’ theorem is utilized to integrate the sub-models under each level with the data

to account for the uncertainty of the parameters of interest [107]. The result of this inte-

gration is the posterior distribution, which is a two-level HB model that can be represented

graphically with Fig. 3.1 or mathematically with Eq. (3.1)

p
(
θ j|φ ,y j

)
=

p
(
y j|φ ,θ j

)
p
(
θ j,φ

)
p
(
φ ,y j

) , (3.1)

where φ represents the hyper parameter. y j represents one group of data that follows a dis-

tribution with parameter θ j. Each θ j in the prior is described by a hyperprior distribution

with a set of hyperparameters, denoted as φ . Note that the distributions of different groups

of data y j depend on φ only through θ j. In the non-hierarchical model, φ is assumed to

be deterministic and known, and it is represented by one value. In the hierarchical model,

however, the uncertainty of φ is considered and accounted for using a probability distribu-

tion. This multi-level structure reduces the subjectivity of making assumptions about the

priors by assigning a distribution to the prior parameter and updating it with observed data.

The hyperpriors are typically specified by using expert elicitation, incorporating existing

information, or using a proper non-informative distribution. Further details on specifying

prior distributions can be found in Ref. [87].

HB models offer several advantages over non-hierarchical models. First, HB models

have enough parameters to fit the data well, thereby avoiding problems of overfitting and
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Figure 3.1: Graphical Representation of a HB model.

improving prediction accuracy [75]. Additionally, HB models are flexible in combining

information across different groups of data. As such, HB models are widely employed in

probabilistic risk analysis. This feature of HB models is referred to as “strength borrowing”

and can be demonstrated using analytical derivations of the posterior calculations of the

parameters [16]. Suppose θ j cannot be obtained within an acceptable level of confidence

due to data scarcity. HB models address this problem by borrowing strength from data

collected from a similar subset of the hierarchical structure. All θ j’s are governed by the

same underlying distribution which will be updated with the entire dataset y. Consequently,

the posterior distribution of θ j does not depend solely on the direct data point y j, but also

the commonly updated hyperprior, as can be seen from Eq. (3.2) [16].

p
(
θ j|φ ,y

)
=

p
(
y|φ ,θ j

)
p
(
θ j,φ

)
p(φ ,y)

∝ p
(
y j|φ ,θ j

)
p
(
θ j,φ

)
= p

(
y j|θ j

)
p
(
θ j|φ

)
p(φ)

(3.2)

While the HB method is powerful, the solution techniques are often computationally

intensive, especially when the hierarchical models are too complicated to generate a closed

form of posterior distributions. As such, MCMC methods help in these situations to utilize

HB models by replacing the analytical solution with repetitive calculations that computers
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can perform over a large number of iterations [107]. Recent advancement in computational

tools and efficiency of Monte Carlo algorithms resulted in HB models becoming more

applicable and popular [108]. In this chapter, Rstan, a package in R for Bayesian modeling

and inference [100], is employed to infer the HB models that are considered in the case

study.

3.2.2 Bayesian Kernel Models

Bayesian kernel methods are a class of models in which kernel functions are integrated

with Bayesian analysis, producing probabilistic rather than deterministic estimates of the

parameter of interest, and thus accounting for uncertainty in the underlying data [109]. The

approach was first developed in machine learning with the Gaussian kernel model which

assumes a Gaussian prior for the response variable [110]. The covariance matrix is used as

the kernel matrix.

Extensions of the Gaussian kernel model to non-Gaussian cases make the Bayesian ker-

nel model applicable to a wider range of problems. Montesano and Lopes [111] develop the

beta kernel model that uses a beta distribution as the conjugate prior distribution to predict

the probability of a robot successfully grasping an object. MacKenzie et al. [109] highlight

two issues associated with Gaussian kernel models in binary classification, imbalanced

datasets, and longitudinal datasets. Specifically, the complexity of Gaussian kernel mod-

els limits their ability to update parameters quickly as new data become available. They

improve and generalize the beta Bayesian kernel model to deal with heavily imbalanced

datasets by adding weights to the kernel matrix in the computation of the posterior. It is

found that the beta kernel model consistently outperforms the Relevance Vector Machine

(RVM) and LASVM (an incremental learning version of Support Vector Machine) if 50

or fewer data points are available, and the model frequently performs better than the RVM

and LASVM even if more data are available [109, 112].

Baroud et al. [113] develop the Poisson Bayesian kernel model that integrates prior
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information from experts’ domain knowledge and historical data to calculate the probability

distribution of the rate of occurrence of a particular event. The model assumes that the rate

of occurrence λ , which has a Poisson likelihood function, follows a Gamma(α , β ) prior

distribution. Because Gamma distribution is a conjugate prior for the Poisson distribution,

the posterior distribution of λ is still a Poisson distribution. The posterior of λ is estimated

based on the kernel matrix that measures the similarities of the attributes between the test

data (new data) and the training data (historical data). The kernel function is represented by

K j which is the ntest
j ×ntrain

j kernel matrix for the j-th group of data, yj is a ntrain
j ×1 vector

containing the output data associated with ntrain
j observations of X , and Vj is an ntrain

j × 1

vector of ones. The posterior distribution of λ is then Gamma (α
′
j, β

′
j) with the parameters

of the posterior computed using Eqs. (3.3) and (3.4).

α
′
j =Kjyj +α j (3.3)

β
′
j =KjVj +β j (3.4)

With the kernel matrix, the posterior of λ is estimated based on the similarities of the

attributes between the new data point and the training data (historical data). The parameters

α j and β j in the prior distribution of λ are deterministic and are determined based on

expert elicitation or empirically using the method of moments. A graphical representation

of the Bayesian kernel model is given in Fig. 3.2. In this graphical representation (and all

graphical representations shown thereafter in this research), the directed arrows represent

direct influence between the nodes, the square nodes represent deterministic values, and the

round nodes represent probabilistic variables. For this particular Poisson Bayesian kernel

model displayed in Fig. 3.2, the dataset y is divided into J groups with n j data points in

each of them. Within the j-th group, yi j is governed by λi j whose posterior distribution

is determined by parameters α j and β j and the kernel matrix K. The kernel matrix is

calculated using the value of predictors and the tuned kernel parameter σ j of each group.
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Figure 3.2: Graphical representation of the Bayesian kernel model

Later, Baroud [114] conducted a comparative analysis of the Poisson Bayesian ker-

nel model, Poisson and Negative Binomial generalized linear model using the several

goodness-of-fit and prediction accuracy metrics. The results show that Poisson Bayesian

kernel model appears to be a good model for prediction purposes when the data set is small

with a small number of predictors.

j j
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Figure 3.3: Graphical representation of the hierarchical Bayesian kernel model
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3.3 Methodology

3.3.1 Hierarchical Bayesian Kernel Model

HBKM integrates the HB model with the kernel function in order to allow for strength

borrowing and to incorporate attribute information [17]. Compared to the Bayesian Kernel

Model (BKM), the HBKM improves the accuracy of the estimation of α j and β j in the

prior distribution of λ by describing them using an extra layer of Bayesian updating. As a

result, the values of α j and β j are probabilistic and are estimated using the corresponding

full dataset. The graphical representation of HBKM is shown in Fig. 3.3 where α j and β j

are shown in a round node to indicate that they are random parameters described by the

same hyperprior φ , whereas in Fig. 3.2, α j and β j are shown in a square node to indicate

that they are scalars. Note that the dataset does not necessarily need to be grouped in the

BKM because α j and β j are a scalar.

The HB model used to obtain the updated hyperparameters in HBKM is given in

Eq. (3.5) where φ represents the common hyperprior following a half-Cauchy distribution.

yi j ∼ Pois(λi j), i = 1,2, ...,n j, j = 1,2, ...,J

λi j ∼ Gamma(α j, β j)

α j ∼ Cauchy(0, 5), β j ∼ Cauchy(0, 5) (α j > 0, β j > 0)

(3.5)

The radial basis function is chosen to be the kernel function given by Eq. (3.6)

K
(

xtest
i j ,xtrain

i j

)
= e
−
‖xtest

i j −xtrain
i j ‖

2

2σ2
j (3.6)

where xtrain
i j and xtest

i j represent the i-th data points in the training set and test set of the j-th

group, respectively. This function is widely used as it generates a kernel matrix with (i) all

elements within zero and one, which facilitates the interpretation of a similarity measure

between the attributes of data points, (ii) full rank [110], and (iii) only one free parameter

46



to be tuned to the optimal value, hence reducing computation time [114]. The parameter

σ j in the kernel function is tuned by maximizing the log-likelihood function given by

L
( ∧

λ j

)
=

n j

∑
i=1

[
yi ln

( ∧
λ j

)
−
∧
λ j− ln(yi!)

]
(3.7)

where the final term can be ignored in the tuning process since it does not depend on the

parameter of interest.

In the hierarchical version of the Poisson Bayesian kernel model, Eqs. (3.3) and (3.4)

become Eqs. (3.8) and (3.9) respectively

α
′
j =Kjy j +α

∗
j (3.8)

β
′
j =KjVj +β

∗
j (3.9)

where α∗j and β ∗j now represent the mean values of the updated distributions of α j and β j,

respectively.

3.4 Case Study

3.4.1 Data Description

The proposed model is applied to a case study in which the resilience of the power

system is defined as the number of customers without power. The goal is to model the

stochastic recovery of an infrastructure system as a function of time after a storm. The

models are applied to assessing the recovery from power outages in Shelby County, Ten-

nessee. The entire population of Shelby County is served by the main utility company

serving approximately 500,000 customers is Memphis Light, Gas, and Water (MLGW),

the largest three-service municipal utility in the the U.SUSA. Shelby County, which in-

cludes Memphis, the second largest city in Tennessee, is vulnerable to hazards including

earthquakes, flooding, and storms. Assessing the recoverability of infrastructure systems
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Figure 3.4: data on power recovery rate for the five most severe storms

can assist local agencies and the utility in protecting customers against adverse impacts

of disasters by improving preparedness for future events. In this case study, the recov-

erability of power after storms will be explored to assist the utility company in recovery

management.

Power outage data are collected from MLGW news releases which are posted on the

company’s website and updated intermittently during and after a storm. The dataset in-

cludes the number of people without power given the time after each of the 15 documented

storms that hit Shelby from 2007 to 2017. In the present study, data from the five most

intense storms, referred to as S1, S2, S3, S4, and S5, are chosen to be analyzed using the

different models.

Figure.3.4 illustrates the recovery rate of power in Shelby Count after each of the five

storms considered in this case study. As noted earlier, the proposed method is applicable

to any definition of recovery rate. In this specific example, the original data on the number

of people without power at the given time is translated into the number of people without

power per thousand, then the model yields the predicted number of people without power

per thousand at the desired time, and the recovery rate is calculated as 1−C/1000 where

C represents the number of customers without power obtained from the model. Note that

after S1 and S2, the two strongest storms, the power system took almost double the time
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to achieve full recovery. Table 3.1 summarizes the initial number of people without power

after each storm as well as the number of recorded data points on the recovery process.

Table 3.1: Initial number of people without power and size of data set in each storm

Storm Initial number of people without power Number of data points

S1 (May 2017) 188000 14
S2 (June 2009) 133000 9
S3 (April 4th,2011) 63500 6
S4 (April 19th, 2011) 64000 6
S5 (August 2015) 67842 6

Since RStan does not support missing values in the data matrix, non-linear interpolation

is used to impute the missing data points and ensure that all data subsets have the same

structure and size. The non-linear interpolation is based on the exponential or logarithmic

model fitted for each subset of data representing one storm. Gaussian noise is added to each

interpolated data point in order to minimize the sensitivity of the model performance to the

interpolation approach and to have the imputed data conform closely to reality where the

observations will usually fluctuate around a true model. The mean of the Gaussian noise is

0 and the standard deviation is 10% of the fitted value.

3.4.2 Comparative Analysis

In order to investigate the performance of HBKM, a comparative analysis is conducted

where the proposed method model is compared with two other statistical models, GLM and

HBRM. The assessment is carried using cross-validation, where a subset of the data is held

out while the models are fitted to the rest of the data and then tested on the held out test set.

Poisson GLM is a classical approach to deal with count data such as the occurrence rate of

an incident. Each data point of y is fit with a Poisson distribution, and the value of y given

new attribute information is estimated using the mean rate of occurrence λ . The mean

rate λ is thus the parameter of interest and the log of λ is expressed as a linear function

of predictors, x. In the case of one predictor, the coefficients θ0 and θ1 in the model are
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assumed deterministic and are calculated using Least Squared Method. Note that the data

points are fully independent and need not to be grouped in GLM. For the convenience

of comparison to the previous two models, the data are still considered as grouped in the

graphical representation of the GLM. The corresponding equation is given by

yi j ∼ Pois
(
λi j
)
, i = 1,2, ...,n j, j = 1,2, ...,J (3.10)

log
(
λi j
)
= θ0 +θ1xi j (3.11)

The other model used in the comparison is HBRM. This model, expressed as in Eq. (3.12)

where n j is the number of data points in j-th group of data set, also assumes that the log of

mean rate is related to predictors, x, through a linear relationship. However, the coefficients

in the log-linear function are assumed to be probabilistic and follow a non-informative

normal distribution. Half-Cauchy(0,5), a weakly-informative distribution recommended

by Gelman et al. [87], is used to model the hyperparameters. The coefficients θ j in the

log-linear model for the rates in different groups of data set vary according to each group.

The coefficients are indirectly correlated through the common hyperprior, and the intercept

θ0 remains unchanged in all the groups. MCMC is used employed to compute the posterior

distribution of the parameters.

yi j ∼ Pois
(
λi j
)
, i = 1,2, ..., I, j = 1,2, ...,J (3.12a)

log
(
λi j
)
= θ0 +θ jxi j (3.12b)

θ0 ∼ N (µ0,τ0) ,θ j ∼ N (µ1,τ1) (3.12c)

µ0 ∼ N(0,5),µ1 ∼ N(0,5) (3.12d)

τ0 ∼ Cauchy(0,5),τ1 ∼ Cauchy(0,5) (τ0 > 0,τ1 > 0) (3.12e)
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3.4.3 Performance Assessment

In this case study, the cross-validation technique is used adopted to evaluate the out-of-

sample predictive error. More specifically, 35% of the data are used as the training set, 35%

as the tuning set to optimize the parameter in the kernel function, and 30% is used as the test

set, the. The samples are randomly selected over 100 iterations. In performing MCMC for

the HB models, four chains are deployed with 3000 iterations in each chain where 30% of

the iterations are for warmup and 70% are for sampling. All the models are also compared

to having no model (null model), which simply uses the mean value of the in-sample data

set, i.e. the training and tuning set in each group, as the out-of-sample predictions for the

test set in each group. Four model performance metrics are computed: (i) log-likelihood,

(ii) RMSE, (iii) relative frequency of the highest log-likelihood, (iv) the relative frequency

of the lowest RMSE across all iterations. The mean, Probability Density Function (PDF),

and Cumulative Density Function (CDF) of the RMSE and log-likelihood are used utilized

to compare the performance of each model. In evaluating the models based on the CDF

of the log-likelihood and RMSE, second-order stochastic dominance (SSD) is applied to

compare the distribution of the values of these metrics. SSD provides a comprehensive

technique to compare CDFs. For two random variables X and Y with corresponding CDF

FX and FY , if FX ≤ FY (s) holds for any real number s ∈R, then X has first-order stochastic

dominance over Y , denoted as Y≺X . However, if Eq.(3.13) holds, then X has second-order

stochastic dominance over Y, denoted as Y≺2X .

∫ t

−∞

FX (s)ds≤
∫ t

−∞

FY (s)ds (3.13)

In the domain of risk-based decision making, a rational risk-averse decision-maker,

who prefers the expectation of a random return E(X) to the random return X itself [115],

will choose the alternative that leads to X if a higher value of X is preferred and Y≺X

or Y≺2X . To see why the first-order and second-order stochastic dominance imply risk-
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aversion, interested readers are referred to Ref. [116]. In evaluating the predictive accuracy

of the models considered in the case study, the model for which the CDF is dominated by

the other models’ CDFs of RMSE is the best since a smaller RMSE is preferred.

3.4.4 Results

3.4.4.1 Model Accuracy

The proposed model in this research will ultimately be utilized by disaster responders

and decision-makers to understand how communities respond to and recover from disasters.

As such, model should provide a high predictive accuracy whereby it is possible to forecast

the recovery trajectory of an infrastructure system given information on the storm intensity

depicted in this work by its length. This section investigates the predictive accuracy and

computational time of the models using the power outage recovery data of Shelby County.

Two evaluation metrics, the log-likelihood and Root Mean Squared Error (RMSE), are

computed using the cross-validation approach outlined earlier. One iteration of the cross-

validation uses 8400 samples to build the posterior distribution and calculates one value for

each the RMSE and log-likelihood is calculated using the mean of the posterior distribution

as a point estimate. The mean of 100 values of log-likelihood and the mean of 100 values

of RMSE for the models considered are shown in Table 3.2 and the PDFs and CDFs of the

two metrics for the models are provided in Fig. 3.5 and Fig. 3.6, respectively.

As can be observed from Table 3.2, for the Shelby County power recovery data, all

three models exhibit much higher prediction accuracy than the null model with HBKM

providing the best mean predictive accuracy. Specifically, HBKM has an average RMSE

of 82.2, whereas HBRM and GLM have an average RMSE of 92.1 and 99.3, respectively.

Having no model yields the largest mean RMSE.

While mean values of the evaluation metrics provide a general idea of the performance

of the models, a more comprehensive and thorough way to assess these metrics across

methods is to evaluate their distributions. From the CDFs of log-likelihood shown in Fig-
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(a)

(b)

Figure 3.5: (a) PDF and (b) CDF of the log-likelihood for each model

ure 3.5, it can be seen that having a model outperforms the “no model” option because

higher values of CDF are preferred and the CDFs of log-likelihood for the three models

has first order dominance over the CDF of log-likelihood for “no model” (i.e., the CDF of

log-likelihood for the “no model” is consistently larger than that of the other three models).

However, differentiating between the three models’ overall performance is not trivial and

cannot be done visually. Fig. 8 displays the plots of the PDF and CDF for the RMSE

of each model. GLM produces the lowest variance in the values of RMSE while HBRM

has the largest variance. Similarly to the log-likelihood distributions, the CDFs of RMSE

shows that having a model outperforms the “no model” because high values of RMSE are
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(a)

(b)

Figure 3.6: (a) PDF and (b) CDF of the RMSE for each model

not preferred and “no model” first-order stochastically dominates the three models (i.e., the

CDF of “no model” is consistently smaller than that of the other models). However, among

the three models, the dominance changes as a function of the value of RMSE whereby

GLM dominates for values less than 100 while HBRM dominates otherwise.

In order to compare the overall performance of the models across all possible values

of RMSE and log-likelihood, it is necessary to examine the integral of their CDF to deter-

mine the second order stochastic dominance. Figure 3.7 display the integral of the CDF

of log-likelihood and RMSE. The integral of the CDF of the log-likelihood of HBKM is

consistently smaller than that of HBRM and GLM, as a result, HBKM has second-order
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Table 3.2: Comparison of mean prediction accuracy

Metric HBKM HBRM GLM No model

Log-likelihood 25120 24559.3 24900.5 23059.9
RMSE 82.2 92.1 99.3 240.8

dominance over the other models and is hence preferred. The integral of the CDF of RMSE

for HBKM is larger than that of HBRM and GLM for values for RMSE that are larger than

200. As such, HBRM and GLM have second-order stochastic dominance over HBKM for

large values of RMSE, indicating that while HBRM is more accurate for small values of er-

ror, HBKM obtains a better performance in terms of keeping the error within an acceptable

range.

In addition to prediction accuracy, the computation time of the different models is ex-

amined. Specifically, the mean computation time for one iteration of each model averaged

over 50 realizations is provided in Table. 3.3. It is clear that GLM and having “no model”

provide the fastest computation results while the MCMC simulation for the hierarchical

models takes a much larger amount of time. HBRM is the most computationally inten-

sive method requiring slightly less than one minute on average for each iteration, while

HBKM provides similar if not better predictive results for a significantly smaller amount

of time. When such models are scaled up to larger systems and interconnected networks,

the computation time will make a significant difference in the choice of the model.

Table 3.3: Comparison of average computational time

Model Average computational time (s) Standard deviation (s)

HBKM 34.6 0.5
HBRM 75.9 14.7
GLM 0.0033 0.0043

No model 0.0004 0.0031

Finally, the frequencies of achieving the best prediction out of the 100 iterations in

the hold-out cross-validation are plotted in Fig. 3.8. According to this measure, HBRM
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(a)

(b)

Figure 3.7: Integral of the CDF of (a) log-likelihood and (b) RMSE

provides the highest frequency of the best predictive accuracy metrics, i.e., smallest RMSE

and largest log-likelihood, followed by HBKM, both outperforming GLM.

Overall, disaster responders’ choice of model for carrying out the predictive analyt-

ics for the resilience of infrastructure systems will depend on a number of factors such as

the model performance, the decision-maker’s risk attitude, and the implementation of the

model as a predictive and decision support tool. A decision-maker’s risk attitude might

impact the weight they place on prediction error as opposed to computation time or in-

terpretability. While HBKM can be outperformed in a few instances by HBRM, HBKM

requires less computational effort with little difference in the accuracy metrics.
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Figure 3.8: Comparison of the frequency of achieving the best performance

3.4.4.2 HBKM Model Outcome and Interpretation

In this subsection, possible model outcomes of the HBKM are discussed that would be

helpful for a stakeholder when performing risk-based decision making post-disaster.

Figure 3.9 provides an example of the predictions of the recovery rate by the HBKM as

a function time after a storm. The recovery rate for each storm is calculated by dividing the

number of people who restore power at a given time by the initial number of people without

power. At each point in time, a probability distribution of the possible number of customers

regaining power is generated which provides the decision-maker with a range of values to

consider for planning and recovery strategies. For illustration purposes, the predictions of

storms S1 and S4 are presented. The predicted values follow a Poisson distribution with the

predicted mean and observed values highlighted. From the distribution of predicted values,

it can be observed that at the early stages of recovery after a storm, when the number

of people without power is large, the predicted values have a relatively flat distribution,

indicating a high uncertainty in the posterior distribution. As the infrastructure system is

recovering and the number of people without power decreases, the predicted values get

closer to the observed values and the posterior distributions become narrower, indicting

57



0 50 100 150 200

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time after a storm (Hours)

R
e
c
o
v
e
ry

 r
a
te

Predicted value in S1

Observed value in S1

95% confidence interval

0.6 0.8 1.0 1.2 1.4

0
.6

0
.8

1
.0

1
.2

1
.4

  prediction  

1

1

   prediction interval  prediction interval 

(a)

0 20 40 60 80

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Time after a storm (Hours)

R
e
c
o
v
e
ry

 r
a
te

Predicted value in S4

Observed value in S4

95% confidence interval

0.6 0.8 1.0 1.2 1.4

0
.6

0
.8

1
.0

1
.2

1
.4

  prediction  

1

1

   prediction interval  prediction interval 

(b)

Figure 3.9: Comparison between observed values and predicted values by HBKM given
time after a storm for (a) S1 and (b) S4 (The error bar represents the 95% confidence
interval of a predicted value).

lower uncertainty in the predictions. Please note that the reduction of uncertainty around

the predicted recovery rate in Poisson HBKM is due to the property of Poisson distribution

since this distribution has a higher variance for a higher mean. However, investigating

how the uncertainty of the predicted recovery rate changes over time will require applying

other HBKMs whose likelihood distribution does not have a lower variance for a lower

mean. The development of other HBKMs that employ non-conjugate priors is a direction

of future work.

Using hold-one-out cross-validation, the observed and predicted values are plotted for

all five storms in Fig. 3.10. Again, HBKM outperforms other models. Specifically, when
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(c) (d)

Figure 3.10: Comparison between predicted values and observed values for all storms. (a)
HBKM (b) HBRM. (c) GLM. (d) No model.

compared to the results of other models, HBKM provides very accurate predictions when

the recovery rate is larger than 40%. For smaller values of the rate of the recovery rate, the

model has a tendency to overestimate the true value due to an underestimation of the num-

ber of people without power. However, recall from the previous section that HBKM out-

performs all other models for larger values of RMSE, suggesting that in cases where there

is a certain discrepancy between the observed and predicted value, the proposed model is

still more accurate than the other statistical models considered in the analysis.

By providing an accurate estimate of the recovery rate of a certain infrastructure system,

HBKM can be a powerful tool for utility companies and disaster responders in general. For

utility companies, this model can help to (i) reduce the cost of investment in operations and

maintenance by reducing call center volumes and managing vegetation along power lines,

(ii) improve customer satisfaction by providing more accurate information to customers on
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estimates of recovery, (iiiI) and more importantly, optimize the allocation of repair crews

using accurate estimations of restoration time and the additional number of crews required

through “mutual aid agreements” to ensure rapid restoration of electrical power to the af-

fected areas [117]. Insufficient crews required due to an underestimation of the recovery

rate will lead to prolonged recovery that increases the economic loss of the utility com-

pany. However, an overestimation of the recovery rate will also increase the cost on the

part of the utility companies since they need to pay more for extra crews and logistics. The

importance of accurate estimation of the number of crews required can be demonstrated

numerically through an example (adapted from Ref. [118]). Suppose 30 components of an

electric power system break down and 3000 residential customers lose power as a result.

The utility managers need to decide on the number of additional repair crews required, apart

from the three crews of their own. The cost of the three crews of their own is $5,000 per

day and the cost of additional crews and logistics combined per day is given by Eq. (3.14):

fc (na) =

 $10,000, na= 1,2,3

$10,000+$5,000(na−3) , 4≤ na ≤ 10
(3.14)

where na represents the number of additional crews and the maximum number of addi-

tional crews is 10. Next, for simplicity of demonstration, full restoration is assumed to be

achieved in 10 days with the three original crews. That is, one crew can restore power to

an average of 100 customers per day. However, the efficiency of additional crews is lower

than the original crews and will decline with the increase in the number of additional crews.

The efficiency of one additional crew fe, defined by the number of customers that they can

restore power to per day, is given by Eq. (3.15):

fe (na) = 100−5na, 1≤ na ≤ 10 (3.15)
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With na+3 crews, the total time of full recovery is T days, which is given by Eq. (3.16):

T (na) =

⌈
3,000

3×100+na fe (na)

⌉
, 0≤ na ≤ 10 (3.16)

The expected loss of losing power for a residential customer per day is $100. Cus-

tomers’ loss L is calculated by the sum of customers’ loss one each day during the entire

recovery process. In the total T days of recovery, the total of customers’ loss is given by

Eq. (3.17):

L(na) = 100×{3000T (na)− [3×100+na fe (na)] [1+2+ · · ·+(T (na)−1)]} (3.17)

Adding customers’ loss and the cost of crews and logistics yields the total cost of re-

covery Ct , which is given by Eq. (3.18):

Ct (na) = [ fc (na)+5,000]T (na)+L(na) (3.18)

The change of total cost relative to the change of the number of additional crews is

depicted in Fig. 3.11. It can be observed that the optimal number of additional crews is 7

in this example.

After identifying the optimal number of additional crews, the error in estimating the

optimal number of additional crew can be calculated as Eq. (3.19):

ε (%) =
ne−noptm

noptm
×100 (3.19)

where ne represents the estimated number of additional crews; noptm represents the optimal

number of additional crews. Then, the extra cost of recovery is calculated by the difference

between the real cost and the minimum cost. Figure 3.12 displays the change in the extra

cost of recovery relative to the change of the error in estimating the number of additional
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Figure 3.11: The relationship between the total cost of recovery and the number of addi-
tional crews

crews. Note that the negative error means underestimation while the positive error means

overestimation. It can be observed from Fig. 3.12 that the accurate estimation of the number

of additional crews has a great influence over the total cost of recovery: If the number is

underestimated by around 40%, the extra cost will be approximately $10,000. Therefore,

the ability to accurately predict the recovery rate can help minimize the overall cost of

recovery by dynamically estimating the number of recovery crews needed as a function of

time after a storm.
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Figure 3.12: The relationship between the extra cost of recovery and the error in estimating
the number of additional crews
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The accurate estimation of recovery rate is also of great concern to decision-makers in

government agencies because such disasters can cause tremendous economic loss and great

inconvenience to residents and even heavy casualties in the affected areas. For example,

Hurricane Ike caused a power outage that lasted from a few days to several weeks, affecting

more than 2.8 million customers in the Greater Houston Area [119]. During Hurricane

Irma, the dysfunction of the air conditioning system of a nursing home in Florida caused

by the prolonged power failure led to the death of eight elderly [120].

3.5 Summary

Natural hazards can severely damage infrastructure systems and disrupt the activities of

the customers they serve. In the management of infrastructure systems, the accurate estima-

tion of the recovery rate is important to help responders and planners optimize the resource

allocation during the recovery process and planning investments to improve the resilience

against future disruptions. In this chapter, a new model, the hierarchical Bayesian kernel

model, is proposed to predict the recovery rate of communities when data are lacking. This

method addresses the problem of data scarcity by borrowing information from other similar

subsets of the data and improves the estimation of parameters by assigning a distribution

to the prior parameter that is updated using the entire dataset. The HBKM is compared to

HBRM, the classical GLM, and the null model using recovery data on power outages from

five of the largest storms that have hit Shelby County in Tennessee since 2007. HBKM

yields the highest out-of-sample predictive accuracy on average. While HBRM achieves

the highest frequency of yielding the highest log-likelihood and lowest RMSE, the pro-

posed HBKM in this work requires less computation time while offering higher overall

predictive accuracy as the error distribution of HBKM has a shorter tail compared to the

error distribution of HBRM.
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Chapter 4

Scalable Inference in Hierarchical Bayesian Model for Grouped Count Data

4.1 Introduction

Estimating the state of infrastructure systems, which is critical to infrastructure man-

agement in the aftermath of human-induced or natural hazards, often involves count data [?

]. For example, power outage rate is commonly calculated with the number of customers

who have regain power in a particular area after severe storms [65]. In gas or water dis-

tribution systems, the estimation of pipe repair rate requires the number of pipe breaks

within a time period [121]. Hierarchical Bayesian Poisson regression models (HBPRMs)

can be employed to analyze count data [122], especially when the dataset comes in groups.

As a hierarchical Bayesian approach, HBPRMs offer the flexibility to capture the com-

plex hierarchical structure of the count data, thereby improving the estimation accuracy of

parameters for each group (e.g., areas, experiments, and events) [123, 124]. More specif-

ically, this class of model can account for the individual- and group-level variations in

estimating the parameters of interest and the uncertainty around the estimation of hyperpa-

rameters [125, 126, 75]. However, the flexibility of hierarchical models to capture the com-

plex interactions in the data comes with a high computational cost because all the model

parameters need to be estimated jointly [44, 127]. Furthermore, in big data settings, the

dataset may be structured in many levels or groups [128], thus the hierarchical model may

involve a large number of parameters to learn, which further increases the computational

load. Consequently, HBPRMs demand more efficient inference algorithms.

By far the most popular algorithm for parameter estimation in hierarchical Bayesian (or

in general Bayesian) model is Markov chain Monte Carlo (MCMC). MCMC algorithms ob-

tain samples from a target distribution by constructing a Markov chain (irreducible and ape-

riodic) in the parameter space that has precisely the target distribution as its stationary dis-
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tribution. This class of algorithms provide a powerful tool to obtain posterior samples when

the exact full posterior distributions are only known up to a constant and direct sampling is

not possible. However, one drawback of standard MCMC algorithms, such as Metropolis-

Hastings algorithm (MH), is that they suffer from slow mixing [129, 130, 131], requiring

a large number of Monte Carlo samples that grow with the dimension and complexity of

the dataset [132]. Since practitioners often do not have researchers’ luxury of running an

MCMC chain for days to collect a large enough number of posterior samples [133], the ap-

plication of standard MCMC algorithms to learn HBPRMs or other hierarchical Bayesian

models for large datasets is significantly limited.

In remedy of the issue above, we propose an approximate Gibbs sampler to specifically

infer HBPRMs in a computationally efficient way. The basic idea is to replace complex dis-

tributions that lead to a computational bottleneck with an analytical approximation based

on conjugacy, such that sampling from the approximate distributions is significantly faster

than from the original. Recent studies that use analytical approximation by exploiting

conjugacy to accelerate MCMC-based inference in hierarchical Bayesian models include

Refs. [127, 134]. Dutta et al. [127] use conjugacy to improve inference efficiency in large

and complex hierarchical models. They show that the approximation by making use of

conjugacy can be utilized even though the original hierarchical model is not fully con-

jugate. As an example in their study, the approximate full conditional distributions are

derived when the likelihood function is a gamma distribution while the prior for the param-

eters are assumed to be multivariate normal and inverse Wishart distribution respectively.

Berman [134] derives a Gaussian approximation to the conditional distribution of the nor-

mal random effects in hierarchical Bayesian binomial model (HBBM) using Taylor series

expansion, such that Gibbs sampling can be applied to infer the HBBM more efficiently.

Another study similar in spirit but not about hierarchical model is conducted by Chan and

Vasconcelos [135] in which the data likelihood is approximated by Gaussian distribution

to allow for faster inference of regression parameters in the Bayesian Poisson model for
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crowd counting.

In this chapter, we focus specifically on accelerating the inference in HBPRMs for

count data. The contributions of this chapter are twofold. First, we derive the closed-

form approximation to the complex conditional posterior of the parameters and develop the

approximate Gibbs sampler (AGS) algorithm to efficiently infer a general HBPRM using

the approximate Markov chain while maintaining the inference accuracy. Therefore, the

AGS enables one to use HBPRMs in large-scale applications. Second, we conduct multiple

numerical experiments to demonstrate the performance of AGS against the start-of-the-art

sampling algorithm.

4.2 Methodology

4.2.1 Hierarchical Bayesian Poisson Regression Model

Without loss of generosity, we consider a general HBPRM in which the coefficient for

each covariate varies with the group (Eq. (4.1) to Eq. (4.5)). This model is applicable to

count datasets in which the counts can be divided into multiple groups based on the covari-

ates. Let D = {X,y} be the dataset where X ∈ RN×K, y ∈ ZN
∗ where Z∗ denotes the set

of non-negative integers. An HBPRM assumes that each count, yi j, follows a Poisson dis-

tribution. Then the log of each count is linearly linked to the covariates. In the hierarchical

Bayesian paradigm, each of the parameters (regression coefficients) in the linear function

follows a prior distribution with hyperparameter(s). A prior distribution is additionally

specified on the hyperparameter(s) referred to as the hyperprior. Note that the hyperprior is

shared among the parameters for the same covariate of all groups, thereby inducing depen-

dency among the parameters that are dependent on the hyperprior [75]. When the variance

of the hyperprior is reduced to zero, the hierarchical model is reduced to a non-hierarchical

model. The mathematical formulation of the HBPRM is

yi j|λi j ∼ Pois(λi j), for i = 1, ...,n j, j = 1, ...,J, (4.1)
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logλi j =
K

∑
k=1

w jkxi jk, for i = 1, ...,n j, j = 1, ...,J, k = 1, ...,K, (4.2)

w jk|µwk ,σ
2
wk
∼ N(µwk ,σ

2
wk
), for j = 1, ...,J, k = 1, ...,K, (4.3)

µwk |m,τ2 ∼ N(m,τ2), for k = 1, ...,K, (4.4)

σ
2
wk
|a,b∼ IG(a,b), for k = 1, ...,K. (4.5)

where yi j is the i-th count within group j with an estimated mean of λi j. n j is the number of

data points in group j, w jk is the regression coefficient of covariate k, xi jk the i-th value in

group j of covariate k. The prior for the coefficient of each covariate, µwk , is assumed to be a

Gaussian distribution (N) while the prior for the variance, σ2
wk

, is assumed to be an inverse-

gamma distribution (IG). The Gaussian and inverse-gamma distribution are specified as

the prior for the mean and the variance respectively, such that we can exploit conditional

conjugacy for analytical and computational convenience.

4.2.2 Inference

Give an HBPRM for analyzing an observed count dataset structured with multiple

groups, D , the task is to estimate the joint posterior density distribution of all the parame-

ters, which is only known up to a constant. Writing

Θ=
{

w11, ...,w jk, ...,wJK; µw1, ...,µwK ;σ
2
w1
, ...,σ2

wK

}
,

the joint posterior factorizes as

p(Θ|y,X)∝

J

∏
j=1

n j

∏
i=1

Pois

(
yi j|

K

∑
k=1

xi jkw jk

)
K

∏
k=1

N
(
w jk|µwk ,σ

2
wk

)
N
(
µwk |m,τ2)IG(σ2

wk
|a,b

)
.

(4.6)

However, sampling from the joint posterior is hardly an easy task because it does not admit

a closed-form expression. Although the MH algorithm can be applied, the need to judi-

ciously tune the step size for the desired acceptance rate often repel users from using this
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algorithm [136, 137]. In comparison, Gibbs sampler is more efficient and does not require

any tuning of the proposal distribution, therefore it has been used for Bayesian inference

in a wide range of applications [138, 139]. Classical Gibbs sampling requires a condi-

tional conjugate posterior distribution of each parameter (or block of parameters). The full

conditional posteriors for implementing the Gibbs sampler are

p
(
w jk|−

)
∝

n j

∏
i=1

Pois

(
yi j|

K

∑
k=1

xi jkw jk

)
N
(
w jk|µwk ,σ

2
wk

)
, (4.7)

p(µwk |−) ∝ N
(
w1k, ...,wJk|µwk ,σ

2
wk

)
N
(
µwk |m,τ2), (4.8)

p
(
σ

2
wk
|−
)

∝ N
(
w1k, ...,wJk|µwk ,σ

2
wk

)
IG
(

σ
2
wk
|a
2
,
b
2

)
. (4.9)

where p(·|−) represents the conditional posterior of a parameter of interest given the re-

maining parameters and the data. Due to the Gaussian-Gaussian and Gaussian-inverse-

gamma conjugacy, Eq. (4.8) and Eq. (4.9) have an analytical expression [140]

p(µwk |−) ∝ N

µwk

∣∣∣∣∣∣∣∣∣
1

1
τ2 +

J
σ2

wk

m
τ2 +

J
∑
j=1

w jk

σ2
wk

 ,
1

1
τ2 +

J
σ2

wk

 (4.10)

p
(
σ

2
wk
|−
)

∝ IG

σ
2
wk

∣∣∣∣a+ J
2

,

b+
J
∑
j=1

(
w jk−µwk

)2

2

 (4.11)

However, Eq. (4.7) does not admit an analytical solution because the Poisson likelihood is

not conjugate to the Gaussian prior. One may resort to other algorithms, such as slice sam-

pling [141], adaptive-rejection sampling [142], and Metropolis-within-Gibbs algorithm [143],

to infer p
(
w jk|−

)
, but those algorithms introduce an additional computational cost. In-

stead, we employ a Gaussian approximation to the Poisson likelihood given in Eq. (4.7) to

obtain a closed-form solution to the conditional posterior of coefficients. With the closed-

form solution, the complex inference of regression coefficients can be simplified to save

computational resources. Reducing the computational cost of sampling from p
(
w jk|−

)
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is critical for datasets with a large number of groups because the number of regression

coefficients, J×K, can be significantly larger than the number of prior parameters, 2K.

4.2.3 Gaussian Approximation to Log-gamma Distribution

Consider a gamma random variable z with probability density function (pdf) given by

p(z|α,β ) =
zα−1e− z

β

Γ(α)β α
, α > 0, β > 0, (4.12)

where Γ(·) is the gamma function. α and β are the location parameter and the scale param-

eter respectively. Then the random variable, lnz∈R, follows a log-gamma distribution. The

mean and variance of log-gamma distribution are calculated by Eq. (4.13) and Eq. (4.14)

respectively [144], which are given as

µz = ψ0 (α)+ lnβ (4.13a)

=−γ +
∞

∑
n=1

(
1
n
− 1

n+α−1

)
+ lnβ (4.13b)

=−γ +
α−1

∑
n=1

1
n
+ lnβ , (4.13c)

σ
2
z = ψ1 (α) (4.14a)

=
∞

∑
n=0

1

(α +n)2 (4.14b)

=
π2

6
−

α−1

∑
n=1

1
n2 . (4.14c)

In Eq. (4.13a) and Eq. (4.14a), ψ0(·) and ψ1(·) are the zeroth and the first order of polygamma

functions respectively [145]. In Eq. (4.13b) and Eq. (4.13c), γ is the Euler-Mascheroni con-

stant [146].

For large values of α , log-gamma distribution can be approximated by a Gaussian dis-

tribution [135, 147], i.e.
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lnz|α,β ∼ N (ψ0 (α)+ lnβ ,ψ1 (α)) . (4.15)

Setting α = y ∈ Z+ and β = 1, Eq. (4.15) becomes

lnz|y,1∼ N (ψ0 (y) ,ψ1 (y)) . (4.16)

Similarly, plugging in α = y and β = 1 and Γ(n) = (n−1)! for n∈Z+, Eq. (4.12) becomes

p(z|y,1) = zy−1e−z

(y−1)!
. (4.17)

Using the “change of variable” method and substituting lnz with v, we obtain the pdf of

ν [135]

p(ν |y,1) = p(z = eν |y,1) ∂eν

∂ν
(4.18)

=
1

(y−1)!
eνye−eν

. (4.19)

Using Eq. (4.16) yields

1
(y−1)!

eνye−eν

≈ N (ψ0 (y) ,ψ1 (y)) . (4.20)

4.2.4 Closed-form Approximate Conditional Posterior Distribution

In the conditional posterior of coefficient w jk given by Eq. (4.7), the likelihood function

is

n j

∏
i=1

Pois

(
yi j|

K

∑
k=1

w jkxi jk

)
=

n j

∏
i=1

1
yi j(yi j−1)!

eνi jyi je−eνi j
. (4.21)

Applying the approximation given by Eq. (4.20) yields

n j

∏
i=1

Pois

(
yi j|

K

∑
k=1

w jkxi jk

)
≈

n j

∏
i=1

1
yi j

N
(
ψ0
(
yi j
)
,ψ1

(
yi j
))
. (4.22)

Plugging in Eq. (4.22) into Eq. (4.7) we get
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p
(
w jk|−

)
∝ exp

[(
w jk−µwk

)2

−2σ2
wk

]
n j

∏
i=1

exp


[

K
∑

k=1
xi jkw jk−ψ0

(
yi j
)]2

−2ψ1
(
yi j
)

 (4.23)

= exp


(
w jk−µwk

)2

−2σ2
wk

+
n j

∑
i=1

[
K
∑

k=1
xi jkw jk−ψ0

(
yi j
)]2

−2ψ1
(
yi j
)

 . (4.24)

As the product of two Gaussians is still Gaussian, the posterior can also be written as

p
(
w jk|−

)
∝ exp

[(
w jk− µ̂w jk

)2

σ̂2
w jk

]
, (4.25)

where µ̂w jk and σ̂2
w jk

are the mean and variance of the approximate Gaussian posterior.

Now we employ the “completing the squares” technique to find µ̂w jk and σ̂2
w jk

. Note

that terms that do not impact w jk are regarded as a constant, i.e. Ci (i = 1, ...,4) in the

following equations. We start by writing Eq. (4.23) as

p
(
w jk|−

)
∝ exp


(
w jk−µwk

)2

−2σ2
wk

+
n j

∑
i=1

[
xi jkw jk +

K
∑

h=1,h 6=k
xi jhw jh−ψ0

(
yi j
)]2

−2ψ1
(
yi j
)


. (4.26)

Let A be the exponent in Eq. (4.26) and we have

A =

(
w jk−µwk

)2

−2σ2
wk

+
n j

∑
i=1

[
xi jkw jk +

K
∑

h=1,h6=k
xi jhw jh−ψ0

(
yi j
)]2

−2ψ1
(
yi j
) (4.27)

=

(
w jk−µwk

)2
n j

∑
i=1

ψ1
(
yi j
)
+σ2

wk

n j

∑
i=1

[
xi jkw jk +

K
∑

h=1,h6=k
xi jhw jh−ψ0

(
yi j
)]2

−2σ2
wk

n j

∑
i=1

ψ1
(
yi j
) . (4.28)

Expanding the squares yields
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A =

n j

∑
i=1

ψ1
(
yi j
)
w2

jk−2µwk

n j

∑
i=1

ψ1
(
yi j
)
w jk +

n j

∑
i=1

ψ1
(
yi j
)
µ2

wk

−2σ2
wk

n j

∑
i=1

ψ1
(
yi j
) +

σ2
w j

n j

∑
i=1

[
x2

i jkw2
jk−2xi jkψ0

(
yi j
)

w jk +2xi jk
K
∑

h=1,h6=k
xi jhw jhw jk +C1

]

−2σ2
wk

n j

∑
i=1

ψ1
(
yi j
) . (4.29)

Grouping the terms that impact w2
jk and w jk respectively, we have

A =

[
σ2

wk

n j

∑
i=1

x2
i jk +

n j

∑
i=1

ψ1
(
yi j
)]

w2
jk

−2σ2
wk

n j

∑
i=1

ψ1
(
yi j
) +

−2

{
µwk

n j

∑
i=1

ψ1
(
yi j
)
+σ2

wk

n j

∑
i=1

xi jk

[
ψ0
(
yi j
)
−

K
∑

h=1,h6=k
xi jhw jh

]}
w jk +C2

−2σ2
wk

n j

∑
i=1

ψ1
(
yi j
) . (4.30)

Dividing the numerator and denominator by the coefficient of the quadratic term, we get

A =

w2
jk−2

µwk

n j
∑

i=1
ψ1(yi j)+σ2

wk

n j
∑

i=1
xi jk

[
ψ0(yi j)−

K
∑

h=1,h 6=k
xi jhw jh

]

σ2
wk

n j
∑

i=1
x2

i jk+
n j
∑

i=1
ψ1(yi j)

w jk +C3

−2
σ2

w j

n j
∑

i=1
ψ1(yi j)

σ2
wk

n j
∑

i=1
x2

i jk+
n j
∑

i=1
ψ1(yi j)

(4.31)

=

w jk−
µwk

n j
∑

i=1
ψ1(yi j)+σ2

wk

n j
∑

i=1
xi jk

[
ψ0(yi j)−

K
∑

h=1,h 6=k
xi jhw jh

]

σ2
wk

n j
∑

i=1
x2

i jk+
n j
∑

i=1
ψ1(yi j)


2

−2
σ2

wk

n j
∑

i=1
ψ1(yi j)

σ2
wk

n j
∑

i=1
x2

i jk+
n j
∑

i=1
ψ1(yi j)

+C4. (4.32)

Using Eq. (4.32), Eq. (4.26) becomes
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p
(
w jk|−

)
∝ exp



w jk−
µwk

n j
∑

i=1
ψ1(yi j)+σ2

wk

n j
∑

i=1
xi jk

[
ψ0(yi j)−

K
∑

h=1,h 6=k
xi jhw jh

]

σ2
wk

n j
∑

i=1
x2

i jk+
n j
∑

i=1
ψ1(yi j)


2

−2
σ2

wk

n j
∑

i=1
ψ1(yi j)

σ2
wk

n j
∑

i=1
x2

i jk+
n j
∑

i=1
ψ1(yi j)


. (4.33)

Completing the squares we get

µ̂w jk =

µwk +σ2
wk

n j

∑
i=1

xi jk

ψ1(yi j)

[
ψ0
(
yi j
)
−

K
∑

h=1,h6=k
xi jhw jh

]

σ2
wk

n j

∑
i=1

x2
i jk

ψ1(yi j)
+1

, (4.34)

σ̂
2
w jk

=
σ2

wk

σ2
wk

n j

∑
i=1

x2
i jk

ψ1(yi j)
+1

. (4.35)

Now that the full conditional posterior distributions can be expressed analytically, we

can construct the approximate Gibbs sampler (Algorithm 2) to obtain posterior samples of

the parameters in HBPRM efficiently.

Algorithm 2: Approximate Gibbs sampler
Input: X , y, # of samples as warmup N0, # of desired samples N1.
Output: Desired posterior samples, µ

(i)
k ,σ

2(i)
k ,w(i)

jk , for i = 1, ...,(N0 +N1).

1: Define initial sample, µ
(0)
k ,σ

2(0)
k ,w(0)

jk .
2: for i = 2 to N0 +N1 do
3: for k = 1 to K do
4: Sample hyperparameter µ

(i)
k according to Eq. (4.10).

5: Sample hyperparameter σ
2(i)
k according to Eq. (4.11).

6: for j = 1 to J do
7: Sample each parameter w(i)

jk according to Eq. (4.25).
8: end for
9: end for

10: end for
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4.3 Experiments

To illustrate the proposed AGS, we compare the performance of AGS and NUTS under

different real count datasets. Details about each of these datasets are presented below.

4.3.1 Data Description

Synthetic data: The synthetic datasets are generated according to the following model:

x1 ∼ Unif(0.1,2) , (4.36a)

x2 ∼ Unif(0.1,1) , (4.36b)

x3 ∼ Unif(0.1,0.5) , (4.36c)

x4 ∼ Unif(1,10) , (4.36d)

x5 ∼ Unif(0.5,5) , (4.36e)

x6 ∼ Unif(10,100) , (4.36f)

n j ∼ Unif
(

104,106
)
, j = 1, ...,J (4.36g)

w jk ∼N (0.001,0.001) , j = 1,2, ...,J,k = 1, ...,K (4.36h)

yi j =
(

ew
T X
)

norm
n j, j = 1, ...,J. (4.36i)

where (·)norm represents min-max normalizing function. We generated 15 synthetic datasets

(S1, ..., S15) with varying number of data points Nd , number of covariates Nc, and number

of groups Ng (see Table 4.1).

Power outage data: The power outage data includes 11 datasets (denoted by P1, ...,

P11) that were recorded after 11 disruptive events. Covariates in each dataset include pre-

cipitable water vapor (kg·m−2), 10-meter northward wind speed (m/s), 10-meter eastward

wind speed (m/s), surface pressure (Pa), time of measurement (h). The response variable is

the outage count at each time of measurement following each of the disruptive events.

Covid-19 test data: The Covid-19 test dataset is obtained from Ref. [148]. This dataset
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includes the days, t, after exposure to Covid-19 in each study. The response variable is

the number of patients who tested positive. The total number of test cases is 380 while

the number of studies after removing the zero count is 298. The test cases are grouped by

studies and the total number of studies is 11. Following Ref. [148], the exposure is assumed

to have occurred five days before symptom onset and log(t), log(t)2, log(t)3 are used as

the covariates.

Bike sharing data: The bike sharing data are available from UC Irvine Machine Learn-

ing Repository [149, 150]. The bike sharing data include daily bike rental counts for 729

days, normalized temperature, normalized humidity, and casual bike rentals. The daily

dataset is grouped by whether or not the bike rental occurs in a working day.

4.3.2 Experimental Setup

In the HBPRM for the count datasets listed above, we employ N(0,1) [100] and IG(1,1)

as a weakly-informative prior for µw and σ2
w respectively. The competing algorithm con-

sidered is No-U-Turn sampler (NUTS), an extension to Hamiltonian Monte Carlo (HMC)

algorithm [129] that frees users from tuning the proposals [151]. In the numerical experi-

ments, NUTS is implemented with Stan [100, 152]. Numbers are averaged over 4 runs of

10000 iterations for each algorithm, discarding the first 5000 samples as warm-up (burn-in).

We compare AGS with NUTS in terms of average sampling time per 1000 iterations (Ts),

sampling efficiency (Es), R2, and Root Mean Square Error (RMSE). Sampling efficiency

is quantified as the mean effective sampler size (ESS) over the average sampling time per

1000 iterations. ESS is calculated according to Ref. [75, Chapter 11]. All the experiments

are implemented with R (version 3.6.1) [153] on a Windows 10 desktop computer with a

3.40 GHz Intel Core i7-6700 CPU and 16.0 GB RAM.
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Table 4.1: Performance of NUTS and AGS under different simulated datasets

Dataset
Characteristics Ts (s) Es R2 RMSE
Nd Nc Ng NUTS AGS NUTS AGS NUTS AGS NUTS AGS

S1 200 2 10 1.51 0.96 649.28 33.46 0.9390 0.9450 6500 6191
S2 400 2 10 2.66 0.98 373.46 34.99 0.9430 0.9500 5823 5455
S3 800 2 20 5.05 1.63 195.21 18.63 0.9576 0.9626 3526 3310
S4 200 3 10 5.76 1.25 170.39 5.28 0.9614 0.9660 4235 3976
S5 400 3 10 16.63 1.29 59.78 2.03 0.9683 0.9710 3450 3305
S6 800 3 20 40.53 2.44 24.30 1.80 0.9677 0.9719 3993 3728
S7 200 4 10 7.64 1.63 129.25 1.59 0.9716 0.9760 2955 2718
S8 400 4 10 23.72 1.94 41.69 1.50 0.9639 0.9701 4406 4012
S9 800 4 20 45.00 3.31 21.99 0.49 0.9740 0.9770 2958 2790

S10 200 5 10 12.12 2.06 81.26 0.70 0.9574 0.9631 4941 4593
S11 400 5 10 24.70 2.41 39.68 0.49 0.9782 0.9826 2514 2245
S12 800 5 20 64.00 4.12 15.44 0.27 0.9767 0.9804 3446 3157
S13 200 6 10 14.66 2.44 67.49 0.23 0.9817 0.9876 2720 2721
S14 400 6 10 42.01 2.63 20.17 0.24 0.9922 0.9948 1339 1128
S15 800 6 20 93.20 4.97 8.44 0.17 0.9910 0.9940 1994 1629

4.3.3 Results

The performance of NUTS and AGS under different datasets are summarized in Ta-

ble 4.1 (simulated datasets) and Table 4.2 (real datasets). It can be observed that under

both the simulated and real datasets AGS outperforms NUTS in the average sampling time,

especially when the size of the datasets is large. Depending on the dataset, AGS can of-

fer one to two orders of magnitude speedup of inference efficiency against NUTS while

achieving competitive inference accuracy measured by R2 and RMSE. However, AGS suf-

fers from low ESS, therefore the sampling efficiency of AGS is significantly lower than

that of NUTS in almost all the datasets, even though the sampling speed of AGS is much

faster than NUTS.

As the scalability of algorithms is crucial for large-scale hierarchical data, we show the

average sampling time of the two algorithms for different sized simulated and real datasets

in Fig. 4.1. Empirically, the sampling time of both samplers grows with the size of dataset,

but when compared to NUTS, the increase in the sampling time of AGS is significantly

lower, suggesting great scalability.
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Table 4.2: Performance of NUTS and AGS under different real datasets

Dataset
Characteristics Ts (s) Es R2 RMSE
Nd Nc Ng NUTS AGS NUTS AGS NUTS AGS NUTS AGS

P1 3817 5 56 885.65 15.76 1.12 1.25 0.9730 0.9801 13558 11621
P2 2467 5 50 652.87 13.71 1.50 0.62 0.9873 0.9884 1446 1384
P3 1548 5 35 387.47 9.41 2.54 0.92 0.9850 0.9870 1974 1833
P4 632 5 26 165.73 6.67 5.94 0.46 0.9923 0.9918 1327 1373
P5 520 5 16 135.16 4.31 7.27 1.85 0.9934 0.9940 3473 3312
P6 421 5 17 118.73 4.54 8.25 2.68 0.9908 0.9918 2526 2387
P7 375 5 23 39.86 5.76 24.75 2.41 0.9459 0.9355 3574 3903
P8 247 5 10 8.75 2.78 111.91 2.38 0.9744 0.9729 795 818
P9 157 5 8 5.48 2.24 179.87 4.07 0.9964 0.9967 803 766

P10 115 5 6 4.49 1.72 218.17 6.75 0.9869 0.9915 7715 6222
P11 63 5 4 5.49 1.25 177.38 0.92 0.9356 0.9027 251 308

Bike share 729 3 2 9.09 0.98 109.54 24.75 0.6743 0.6292 1101 1175
Covid test 298 3 11 34.60 2.59 28.57 18.54 0.8517 0.8582 2.53 2.47
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Figure 4.1: Scalability of NUTS and AGS on (a) real datasets and (b) simulated datasets.
The size of a dataset is calculated by Nd×Nc.

4.4 Summary

in this chapter, we propose a scalable approximate Gibbs sampling algorithm for the

HBPRM for grouped count data, which can be applied to estimate the system recovery

state. Our algorithm builds on the approximation of data-likelihood with Gaussian distri-

bution such that the conditional posterior for coefficients have a close-form solution. Em-

pirical evaluations show that the proposed algorithm outperforms the state-of-the-art sam-
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pling algorithm, NUTS, in inference efficiency. The improvement in efficiency is greater

for larger datasets, suggesting good scalability. Due in part to the Gibbs updates, the AGS

trades off greater accuracy for slower mixing Markov chains, leading to a much lower effec-

tive sample size and therefore lower sampling efficiency [154]. However, when sampling

time is of great concern to model users, AGS might be the only feasible option. As the

approximation quality improves with larger counts, our algorithm works better for count

datasets in which the counts are large, such as power recovery datasets.
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Chapter 5

Modeling Interdependencies of Infrastructure Systems Using Stochastic Block Models

5.1 Introduction

Modern society depends on critical infrastructure for security, safety, health, and over-

all well-being. Recent changes in social and economic development as well as advances

in technology have led to increasing interdependent connections between critical infras-

tructure systems [155]. On one hand, these interdependencies can enhance the overall ef-

ficiency and robustness of these systems under normal operations by providing a platform

for information, services, and product sharing. On the other hand, highly connected critical

infrastructure can be more vulnerable to hazards whereby a disruptive event in one system

can result in cascading failures across other connected infrastructure systems [11, 12, 13].

As such, interdependencies among infrastructures must be taken into account to understand

the operational characteristics of infrastructure systems [156] and to inform operations and

design of robust and resilient systems. One of the major challenges in evaluating the impact

of disruptive events on IISs lies in understanding the influence of multiple interdependen-

cies on the systemic performance after a disruption.

Rinaldi et al. [157] define interdependency as “the bidirectional relationship between

two infrastructures through which the state of each infrastructure influences or is correlated

to the state of the other.” After formalizing the concept of interdependency, Rinaldi et al.

[157] propose four principal classes of interdependencies: 1) physical interdependency,

when energy or materials flow between two systems; 2) cyber interdependency, when in-

formation is transmitted between systems; 3) geographic interdependency, when the state

of one system can be altered due to spatial proximity of another system; 4) logical inter-

dependency, when two systems influence each other via a mechanism that is not based on

physical, cyber, or geographic connection. Although other classifications have also been
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proposed [158, 159, 160, 161], the study in this chapter employs the classification proposed

by [157] as the proposed approach can be directly extended to other types of interdepen-

dencies [21] which can be found in Ref. [8]. Modeling the resilience or recovery of IISs

has been extensively studied [162, 160, 163, 164, 165, 166, 167, 168]. In most studies, IISs

are often modeled in a deterministic way by establishing interdependency links first and

then evaluating the systemic performance. These links are established between randomly

generated nodes [169], or based on either degree centrality [165] or spatial proximity (min-

imum Euclidean distance) [170, 164, 171, 21, 30]. One approach to assessing resilience

under uncertainty is the use of Bayesian networks (BNs), such as Refs. [172, 173, 174].

The majority of studies that use BNs examine a single network instead of multiple interde-

pendent networks. Furthermore, BNs are an acyclic graphical model and thus have great

difficulty in handling the bi-directional relationship in interdependent networks.

The majority of existing studies do not consider the uncertainty associated with the

interdependency between the networks and few studies can be found in the literature that

address dynamic and uncertain interdependencies. Full knowledge of interdependencies

across infrastructure networks, despite its key importance, is often not available due to the

lack of data [175]. Therefore the topology of IISs is subject to uncertainty. Neglect or

improper characterization of this uncertainty can lead to underestimation or overestimation

of system performance as the metrics cannot be assessed within an acceptable level of

fidelity [176, 17].

The objective of this chapter is to model the uncertainty and dynamics of interdependen-

cies after the disruption in order to guide restoration strategies. The specific contributions

of this chapter are listed below.

1. The application of statistical network models to evaluate uncertain network interde-

pendencies. Specifically, the use of stochastic block models provides a probabilistic

characterization of interdependency links between infrastructure networks.

2. A formulation for estimating the likelihood that an interdependency link exists using
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multiple predictors to represent major factors influencing the presence of interde-

pendency links. To avoid zero values in normalizing the variables that will be used

in the denominator, a variant of min-max normalization called truncated min-max

normalization is developed.

3. A network recovery strategy based on the dynamic ranking of component impor-

tance. Network restoration based on dynamic component ranking results in a faster

recovery of IISs when compared to static ranking.

The remainder of this chapter is outlined as follows: In Section ??, we introduce the

mathematical representation of stochastic block model (SBM). Section 5.2 outlines the

approach to assessing the resilience of IISs along with two restoration strategies based on

static and dynamic component importance ranking. In Section 5.3, the proposed method is

illustrated using interdependent water and power networks. Finally, Section 5.4 provides

the conclusion along with a discussion for future work.

5.2 Methodology

5.2.1 Estimation of Interdependency Between Networks

The study in this chapter assumes that the interdependency links connect the demand

node of one network to a supply node in another network. This assumption is realistic

for many real-world IISs. For example, in interdependent water and power network, the

interdependency links are established as follows:

1. The end-user node (demand node) in the water network and the power station (supply

node) in the power network that requires water for generating steam.

2. The end-user node (demand node) in the power network and the pumping station

(supply node) in the water network that requires electric power [21].
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In order to model the uncertainty of interdependencies across IISs, interdependency

links are estimated probabilistically. The model shown in Eq. (5.1) is proposed to evaluate

the probability an interdependency link exists based on a set of nodal attributes. These

attributes can represent the physical, economic, and social characteristics of the networks.

The attributes considered in this chapter account for the distance between the networks,

the number of customers served by the nodes, and the vulnerability of the customers rep-

resented with the Social Vulnerability Index (SoVI). Distance is used as a predictor as

distance-based features are found to be significant in estimating the missing link [177].

The model includes the number of customers (modeled using the population) since dis-

rupted components serving a large number of customers might be given higher priority

during the restoration. The third predictor, SoVI, was originally developed to identify

the characteristics of the population that render social communities vulnerable to external

disturbances [178]. It is calculated based on a large number of factors, including socioeco-

nomic status, age, house type, education level, race, among others. SoVI values range from

0 to 1 with higher values indicating a higher level of vulnerability. Social vulnerability

can inform underlying and intangible interdependency links that would guide restoration

activities to achieve community resilience by prioritizing vulnerable customers who might

disproportionately suffer more damage from disruptions [179, 180].

P(Ai j = 1) = β0 +β1×d−1
viv j

+β2× pvnd +β3× svnd (5.1)

In Eq. (5.1), Ai j = 1 indicates the presence of an interdependency link between vi and v j

(vi and v j belong to different individual networks). βi (i = 1,2,3) represents the regression

coefficient, pvnd represents the population served by the parent node of the interdependency

link on which the dependent (child) node relies, and svnd represents the SoVI of the census

tract where the parent node is located. Note that both dviv j and pvnd should be normalized

before they are used in the model and the obtained probabilities should also be normalized

such that they sum to one. The model can be conveniently refined when data about real-
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world interdependency links and nodal attributes are available.

Since the reciprocal of the distance between nodes is used in Eq. (5.1), zero values must

be avoided in the normalized distance. To this end, the min-max normalization is modified

(Eq. (5.2)) to scale the distance data to the range
[

α

1+α
,1
]
. As α

1+α
should approach zero,

a small value of α is preferred, i.e. α � 1. Therefore, α

1+α
≈ α , indicating that the

normalized data have an approximate lower bound equal to α .

x
′
=

x− xmin +α (xmax− xmin)

(1+α)(xmax− xmin)
(5.2)

In Eq. (5.2), x represents the data to be normalized and x
′
represents data after normal-

ization. This variant of min-max normalization can be referred to as truncated min-max

normalization.

5.2.2 Component Importance Ranking and Restoration

In the study of this chapter, the sequence of infrastructure network restoration is deter-

mined according to the ranking of components. Resilience-based component importance

ranking can help inform resource allocation and prioritization of repair activities when mul-

tiple components are damaged [69]. The importance is quantified by the relative resilience

improvement of the interdependent networks after each component is restored individu-

ally. Two restoration sequences are proposed, the first one is based on static ranking and

the second one is based on dynamic ranking. In the case of static ranking, the damaged

components to be repaired are ranked only once before the start of recovery, therefore the

benchmark for resilience improvement is the resilience of the IISs at the disrupted state

R(td). The importance of a component can be calculated using Eq. (5.3).

Ici =
Rci(td)−R(td)

R(td)
(5.3)

In Eq. (5.3), Ici represents the importance of component i, Rci(td) represents the re-

silience of the IISs after component i is restored at time td before initiating recovery activi-
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ties. The damaged components are then restored sequentially according to the ranking.

In the case of dynamic ranking, the damaged components are ranked at every time

step until all the components are restored. At the time t, the benchmark for resilience

improvement is R(t). Accordingly, the dynamic component importance can be computed

using Eq. (5.4).

Ici(t) =
Rci(t)−R(t)

R(t)
, t ∈ (td, t f ) (5.4)

In Eq. (5.4), Ici(t) is the importance of component i at time t and Rci(t) is the resilience

of the IISs after component i is restored at time t. When t = td , Eq. (5.4) becomes Eq. (5.3),

meaning that static importance ranking is simply the initial dynamic importance ranking

of all the damaged components. The steps for dynamic component importance ranking,

coupled with component restoration, are summarized in Algorithm 3.

Algorithm 3: Dynamic component importance ranking for resilience assessment
Input: Adjacency matrix, node type, node coordinates, component failure probability, etc.
Output: The resilience over the restoration process R(t), t ∈ (td, t f ).

1: Compute the initial resilience R(td).
2: for t = 1 to T do . T : time needed to restore all the damaged components
3: for i = 1 to Nr

t do . Nr
t : # of remaining damaged components at time t

4: Rank the remaining components based on the importance calculated by
Eq. (5.4).

5: Return the resilience after restoring the component with the highest importance,
ct .

6: end for
7: Remove the component ct from the list of remaining components.
8: Calculate the resilience according to Eq. (5.5) and record it as R(t).
9: end for

5.2.3 Resilience Assessment of Interdependent Networks

Network performance is determined by the ratio of the number of functional demand

nodes to the total number of demand nodes of each network. The resilience of the inter-

dependent networks is calculated as the weighted average of the resilience of individual
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networks, Eq. (5.5).

R(t) =
K

∑
k=1

wk
nk

t −nk
d

nk
0−nk

d
, t ∈ (td, t f ) (5.5)

In Eq. (5.5), K is the number of infrastructure networks. wk is the weight for individual

network k with
K
∑

k=1
= 1. nk

t , nk
d , and nk

0 represent the number of functional demand nodes of

network k at time t, td , and t0, respectively.

As a network component in real-world IISs can lose functionality due to (i) direct phys-

ical damage caused by the disruptive event or (ii) loss of necessary supply from the com-

ponents of other networks, the following definitions are proposed to differentiate between

the two cases.

Definition 5.2.1. A network component is operable if the physical entity represented by the

component is not damaged by the disruptive event.

Definition 5.2.2. A network component is functional if the component is operable and can

receive supply from other components to maintain functionality.

In a single network, we assume that an operable demand node is functional as long as it

is connected to a functional supply node according to the two definitions, so the function-

ality of a demand node can be evaluated using shortest path algorithms, such as Dijkstra’s

algorithm [181], and Floyd-Warshall algorithm [95]. The Floyd-Warshall algorithm is used

because it can find the shortest path between all pairs of nodes simultaneously. However,

in interdependent networks, the functional supply node in an individual network, for ex-

ample, G1, must also be connected to a demand node in the other network G2, as shown in

Fig. 1.3. The following theorem shows the conditions that must be satisfied for a node to

be functional in interdependent networks.

Proposition 5.2.1. In undirected interdependent networks represented by the underlying

graph G, a demand node v is functional if v is contained in an operable cycle that consists

of at least one interdependency link or if v is connected to such a cycle.
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Proof of Proposition 5.2.1. Define that a path or cycle is operable if all the nodes and edges

they contain are operable. For the sake of contradiction, assume that a demand node vx of

G1 can be functional even if (a) no operable cycles that contains interdependency links exist

in G, or (b) the demand node is neither a part of nor connected to such a cycle. In case (a),

since vx is functional, there must exist an operable path from vx to a supply node in G1. Let

P be the longest functional path that starts from vx. Since vx is functional, the supply node

closest to vx in G1 must be adjacent to a functional demand node in G2. Following this

logic, P must be made up of D-T-S paths that connect a demand node, transmission node,

and supply node by sequence, such as P1,P2, . . . ,Pn in Fig. 5.1. Note that by definition,

repeated nodes are not allowed in P otherwise a cycle will be complete. Let vy be the

endpoint of the last D-T-S path in P. Because vy is the endpoint, it does not receive supply

from the demand node of another network, so vy is not functional, contradicting that P is

functional. In case (b), suppose a functional demand vx is connected to some supply node

vz in G1 and vz is not part of any cycle that consists of an interdependency link. Using the

same logic of case (a), vz will not be functional, leading to a contradiction. �

𝐷

𝑇

𝑆

𝐷

𝑇

𝑆

𝐷

𝑇

𝑆

…

P
1

P
2

P
3

P
4

𝐷

𝑇

𝑆

𝐷

𝑇

𝑆

P
n

Figure 5.1: Assumed functional longest path in interdependent networks without cycles

Based on this sufficient condition, a key step to determine the functionality of a node is to

detect functional cycles in the interdependent networks. Building on the Depth First Search

(DFS) [182] algorithm for detecting cycles in graphs and the Floyd-Warshall algorithm

for checking connectivity, the steps for detecting the functional nodes in interdependent

networks are provided in Algorithm 4.
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Algorithm 4: Identification of functional nodes
Input: Adjacency matrixA of the interdependent networks
Output: An array that contains the ID of functional nodes

1: Apply DFS to detect cycles.
2: Select cycles that contain at least one interdependency link (The start node and end

node belong to different individual networks).
3: Apply the Floyd-Warshall algorithm to find the distance from all nodes to the nodes

contained in the selected cycles.
4: If the distance value is greater than zero, then the corresponding node is functional;

otherwise, the node is not functional.

Once the functional nodes are detected, the resilience of the interdependent networks

at time t is obtained using Eq. (5.5). Considering the uncertainty of interdependency links

and the failure of network components, the process for assessing the resilience of interde-

pendent networks is proposed as follows:

1. Import data on the interdependent networks, including the adjacency matrix, dis-

tance between nodes (normalized), population of the census tract where each node is

located (normalized), and SoVI, among others.

2. Estimate interdependency links based on Eq. (5.1).

3. Draw samples of interdependency links according to their respective probabilities.

4. Define disruption scenario and calculate the disruption intensity at the site of each

network component.

5. Calculate failure probability of each network component (including the estimated in-

terdependency links) using empirical equations from HAZUS, a standardized method-

ology provided by the Federal Emergency Management Agency (FEMA) to estimate

potential losses from multiple types of hazards [4]. For simplicity, components are

assumed to be inoperable once they are damaged, i.e., partial functionality is not

considered.

6. Generate a sufficient number of network configurations, i.e., the possible network

topology after the damage of a subset of components by the disruptive event e ac-
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cording to different probabilities. The randomness of the network configurations can

be modeled by first comparing a random vector u (u ∼U(0,1)) to the vector con-

taining the failure probability of each component, and then, if the failure probability

of a certain component is greater than the random number drawn from U(0,1), the

component is assumed to be inoperable.

7. Generate new interdependency links if the links or nodes on the interdependency

links are damaged. New interdependency links are considered to account for the

interdependency that emerges in the aftermath of the disruption.

8. Rank components based on the static ranking or dynamic ranking (Algorithm 3).

9. Restore one component and record resilience at each time step t.

5.3 Case Study

5.3.1 Data Description

The system of two interdependent power and water networks shown in Fig. 5.2 is used

to illustrate the proposed model in this chapter. The water distribution network includes six

elevated storage tanks, nine pumping stations, thirty-four intermediate delivery nodes, and

seventy-one water pipes while the power network (modified from Ref. [183]) consists of

fourteen gate stations, twenty-three 23-kV substations and twenty-two 12-kV substations,

respectively. Gate stations and pumping stations are considered to be the supply facili-

ties, 23-kv substations and storage tanks as transmission facilities, and 12-kv substations

and intermediate delivery nodes as demand facilities. It should be noted that intermediate

delivery nodes are the intersection points of water pipes and they are assumed to be un-

damaged after earthquakes since there do not exist large-scale facilities at the site of these

nodes. In this case study, physical interdependency is considered since pumping stations

rely on the 12-kv substations for power supply [184] while the gate stations require clean

water to generate high-pressure steam to drive the turbines. Note that the power stations
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may rely on the river nearby instead of the water distribution network for water to be used

for cooling purposes [171].

Data on the population and SoVI at the census tract level where each node of the inter-

dependent networks is located are publicly available through the Census Bureau [185] and

Centers for Disease Control and Prevention [186], respectively.

Figure 5.2: Interdependent water and power networks of Shelby County, TN

5.3.2 Results

5.3.2.1 Disruption Intensity and Component Fragility

The disruptive event considered in this case study is a hypothetical earthquake. An

earthquake centered at (35.3 N, 90.3 W ) (the maximum probable earthquake [98]) is used

to calculate the seismic intensity at the site of each component. In calculating the failure

probability of each component given the earthquake scenario, the fragility curve of power

and water network facilities under earthquakes is adapted from HAZUS. In HAZUS, five
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damage states are defined: none (ds1), minor (ds2), moderate (ds3), extensive (ds4), and

complete (ds5). Each damage state corresponds to one component fragility curve. This

case study adopts the damage state ds5. More details on the determination of seismic

intensities at the site of network components and the failure probability of components can

be found in the Earthquake Model Technical Manual [187]. Components of the power

network are assumed to respond in a similar way as water network to seismic events. This

assumption can be relaxed when data about the fragility of power network components

become available.

5.3.2.2 Interdependency Links

The estimated parameters of the probabilistic model for interdependency links from

Eq. (5.1) are β0 = 0, β1 = 0.5, β2 = β3 = 0.25, α = 0.01. For one particular node in

each network, the probabilities of interdependency links between this node and compo-

nents from the other network are shown in Fig. 5.3 and Fig. 5.4. Specifically, the likelihood

of an interdependency link is described by the probability using the estimation model from

Eq. (5.1) under two scenarios. The first scenario only considers the physical interdepen-

dence by including the distance as the sole predictor, while the second scenario incorpo-

rates social aspects such as population and SoVI besides the distance. It is noted that the

interdependency links with the highest probability of occurrence are different under the

two scenarios, especially in Fig. 5.4 where the two rankings of power nodes are entirely

different. In addition, the distribution for these probabilities of all possible links becomes

a bit flatter when social aspects are considered. The reason is that the ranking of nodes

based on the population or SoVI is strikingly different from that based on the distance. The

change in the probability of interdependency links after including the social attributes in-

dicates that the social aspects do not differentiate between possible interdependency links

like the geographical distance does. Collecting additional information allows for a more

comprehensive model with additional predictors to identify the contributing factors to the
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existence of an interdependency link.

(a)

(b)

Figure 5.3: Probability of interdependency links between water nodes and gate stations. (a)
With population and SoVI. (b) Without population and SoVI

5.3.2.3 Resilience Assessment

Without loss of generality, this chapter assumes that the water network and power

network weigh equally in calculating the resilience of the interdependent networks, thus

wk = 1
2 with K = 2. Due to the probabilistic failure of network components, each of the

possible network structures generated by each estimation of interdependency links can have

a myriad of new network structures at time td after the disruption. To characterize the ran-

domness in the network structure at time td , 100 simulation runs are used to obtain the

mean value and the range of resilience for each potential scenario of interdependency links

between the networks. During the recovery process, it is assumed that one component can
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(a)

(b)

Figure 5.4: Probability of interdependency links between power nodes and pumping sta-
tions. (a) With population and SoVI. (b) Without population and SoVI

be restored at each time step, which can be modified to represent other possible restoration

strategies. The resilience curves from the disrupted stage to the new stable stage under

different seismic intensities (Fig. 5.5) show the response of different network structures to

the same disruptive event.

Throughout the recovery process, the mean value, lower bound, and upper bound of re-

silience based on dynamic ranking is greater than or equal to those based on static ranking.

Dynamic ranking yields a more rapid recovery process and improved resilience in the early

stage of restoration. Further, the overall range under the static ranking approach is much

larger than the dynamic ranking approach. This outcome suggests that accounting for the

dynamic nature of interdependencies by updating the ranking of components at each time

step given the new configuration of the network is critical to improving the resilience of

these systems.
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(a) (b)

(c) (d)

Figure 5.5: Resilience curves with lower/upper bounds under different seismic intensities.
(a) Magnitude=5.0. (b) Magnitude=6.0. (c) Magnitude=7.0. (d) Magnitude=8.0.

5.4 Summary

The interdependency links across infrastructure networks are uncertain and can change

over time in response to disruption, restoration activities, and reconfiguration of infrastruc-

ture networks. As such, modeling the resilience of IISs should account for the inherent

uncertainty and dynamic behavior of interdependency links after a disruption. The out-

come of this work is a data-driven stochastic method that estimates the likelihood that an

interdependency link exists based on the behavior of the networks after a disruption. The

calculation of the probability of an interdependency link incorporates multiple predictors

describing geographic proximity, physical connection, and social impact. It is therefore

possible to predict how interdependency links emerge and disappear during and after a dis-

ruption. Given this additional information on infrastructure network behavior, restoration
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strategies can be adapted in real time following a dynamic ranking process for the most im-

portant components. In addition, this approach provides the ability to identify factors that

impact the existence and strength of an interdependency link. This work expands on ex-

isting studies of IISs where only geographic and physical interdependence are considered

[170, 171, 30]. For example, the incorporation of SoVI in the estimation of interdepen-

dency links and consequent dynamic ranking of components significantly improves the

resilience of IISs by decreasing the restoration time after a disruption. The restoration ac-

tivities in this case are informed by the updated prioritization of components based on the

needs of the communities measured here by SoVI.

This chapter presents a new approach founded in Stochastic Block Models to capture

the uncertainty associated with interdependency links of IISs. The approach is flexible that

it can be generalized to other types of IISs and the probability of interdependency links can

incorporate additional and different factors and variables. For example, in order to capture

other sources of uncertainty such as the success of the restoration or secondary failures,

the probability of an interdependency link or the reconfiguration of the networks can be

dependent on stochastic variables describing these phenomena. The results from the case

study on the interdependent water and power networks of Shelby County, Tennessee show

that estimation of the presence of interdependency links based on the distance between

network components can be significantly different from the estimation based on distance,

population, and SoVI. This work demonstrates the importance of evaluating uncertain inter-

dependency links by comparing two restoration strategies, one based on dynamic ranking

given updates on the dynamic behavior of interdependencies and the other is static. The

recovery based on dynamic component importance ranking results in faster restoration and

improved resilience.
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Chapter 6

Two-stage Stochastic Programming Approach for Integrated Protection and Restoration of

Interdependent Infrastructure Networks

6.1 Introduction

Extreme events and disasters pose a tremendous risk on the stability, security, and pros-

perity of a nation’s economy, particularly because of their severe adverse impact on crit-

ical infrastructures (CIs). Recent enormous property, life, and economic loss incurred by

hurricanes, such as Hurricane Irma and Hurricane Harvey in 2017, are among the prime

examples. Due to the vulnerability of CIs against extreme events, there is increasing em-

phasis on enhancing the safety and resilience (recoverability) of CIs to hedge risks against

the largely uncertain disruptions [188, 189, 190, 191].

The restoration of infrastructure networks in disruptive situations can be improved

through network hardening or reconfiguration before the occurrence of extreme events.

Large-scale network reconfiguration is usually not an option due to the prohibitive cost and

excessively long time required [192]. Further, designing an efficient network hardening

strategy can be a challenge as well because the perfect information about extreme events

is almost impossible to come by since those extreme events are random by nature and em-

pirical data about those events are often lacking. Thus, in order to improve the restoration

under a limited budget, it is critical to integrate the protection and restoration of IISs.

Integrating protection and restoration decisions for IISs has drawn considerable atten-

tion from scholars and has been demonstrated to enhance the resilience of infrastructure

networks [189, 19, 20, 21, 22].In particular, Nurre et al. [19] consider the integrated net-

work design and restoration scheduling problem following an extreme event. The decision

variable including components to install into a network and scheduling the installation

to maximize the cumulative weighted network flow over the time horizon of planning.
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In a companion study, Cavdaroglu et al. [20] extend the model to optimize the restora-

tion planning and scheduling decisions of IISs with the objective of minimizing the total

cost incurred over the horizon. Considering multiple types of interdependencies, González

et al. [21] introduce the interdependent network design problem for optimal reconstruc-

tion strategy. However, the scheduling of repair crews and the uncertainty around the dis-

ruption are not taken into account. Considering the balance between the protection and

restoration before and after a disruption, Ghorbani-Renani et al. [22] propose a tri-level

protection-interdiction-restoration model to enhance the resilience of multiple interdepen-

dent networks for the worst-case scenario of disruption.

With the exception of recent work by Fang and Zio [189], few recent studies have

considered the uncertainty around disruptions on the IISs. Fang and Zio [189] propose a

two-stage adaptive two-stage robust optimization model for resilience enhancement con-

sidering the most-likely worse-case scenario of network failure. In their study, the first

stage problem incorporates protection decision variables while the second stage consid-

ers decision variables concerning component restoration state, supply, and network flow.

However, the scheduling of repair crews is not incorporated and a very limited number of

scenarios are considered.

In this chapter, a stochastic programming approach is proposed to optimize the restora-

tion of a coupled power-gas network. Specifically, a two-stage, mixed-integer stochastic

program is developed with the objective of minimizing the total cost of protection before

the disruption and post-disruption restoration cost. The stochastic model can characterize

the uncertainty around the impact of disruptive events from possible multiple hazard types.

The first stage decisions seek to provide the optimal protection strategy of the coupled

networks while the second stage decisions are made to enhance the recoverability of the

couple networks. In the proposed program, interdependencies are modeled through link-

ing variables and logical constraints. We consider interdependent power and gas networks

(IPGNs) in formulating the model because IPGNs have been increasingly important in the
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U.S. during recent years due to the robust supply of low-priced natural gas, increased ef-

ficiency, high operational flexibility and low carbon footprint [193, 194, 195]. In IPGNs,

compressors in the natural gas network may depend on the power grid for electricity while

the power grid requires natural gas to fuel the gas-fired power generators [196].

The stochastic programming approach has been widely applied to planning and restora-

tion management of IISs under uncertainty. Typically, the sample average approximation

method is applied to obtain an approximate solution [197] with a reasonable level of ac-

curacy. However, as the number of scenarios increases, the problem can be computation-

ally challenging to solve because the number of second-stage decision variables can be

very large even for interdependent networks of modest size. The solution methods used in

the aforementioned studies, such as the tailored covering decomposition in Ref. [22] and

the adapted nested cutting plane decomposition in Ref. [189], may not be applicable to

networks of large scale since those methods have only been tested on cases with limited

worse-case scenarios in the respective studies. In this chapter, we integrate meta-heuristics

and iterative regularization techniques [198] to solve the problem under a significantly large

number of scenarios.

The contributions of this section are threefold. First, we formulate a two-stage stochas-

tic mixed-integer program to identify the optimal decisions on the protection and restoration

of IISs under uncertainty around the disruptive events. Unlike Ref. [189], we also integrate

decisions on the scheduling of repair crews in the second stage. Therefore, our model can

be employed to assist managers in utility companies in designing the optimal schedule for

repair crews. Note that although we illustrate the proposed methodology on interdependent

power and gas networks, this framework can be applied to some other types of IISs, such

as interdependent power-water networks. Second, we propose solution methods based on

meta-heuristics and iterative regularization that can provide high quality solution to the

two-stage mixed-integer program within a reasonable amount of time. Third, the compu-

tational results presented in the computational experiments demonstrate the value of the
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solution obtained by the stochastic program.

6.2 Integrated Protection and Restoration of Interdependent Infrastructure Systems

This section presents a two-stage mixed-integer stochastic program for the protection

and restoration of IISs under uncertain disruptions. We refer to the associated problem as

the integrated protection and restoration of interdependent infrastructure networks (IPRIN)

problem.

6.2.1 Problem description

IISs are model as a set of networks (e.g., Fig. 1.3) consisting of nodes (vertices) and

links (directed edges). The movement of resources is modeled as network flow along the

links. Formally, IISs M consist of a set of |M | different networks. Each network m ∈

M is represented by a directed graph G = (N m,A m), where N m and A m denote the

node set and arc set of network m, respectively. The nodes can be categorized into supply

nodes Ns, transmission nodes Nt , and demand nodes Nd . The arc set A m→l represents

network l’s dependence on network m. Each component (node or link) is associated with

a capacity, protection cost, restoration cost, and restoration time. Since the components in

IISs are subject to damage from disruptive events, utility companies that run the IISs need

to fortify the components before the disruptive event (first stage) and restore the damaged

components after the disruption (second stage) in order to minimize the total cost incurred

during the restoration. Specifically, first stage decisions (a.k.a there-and-now decisions)

involves choosing the components to be hardened under the budget limit B, which can be

modeled with a binary variable x. For example, xm
i indicates that node i ∈N m is chosen

to be hardened. The realization of the disruption is modeled with a binary variable β

indicating whether or not the respective component is damaged by the disruption. After the

disruption, restoration of the damaged IISs is initiated to repair the damaged components

so that the service can be restored as soon as possible. In this stage, the decisions are to
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jointly plan the supply at each supply node q, the flow on each arc ( f for intra-links or h

for interdependent links), and the schedule of repair crews (v). The finite planning horizon

is divided into discrete time periods, given by the set T . However, due to the randomness

of disruptions, decision-makers do not have information about the disruption scenario. As

such, the second stage decisions are not made until the disruption occurs and the second

stage decisions are coupled with the first-stage decisions. Typically, the randomness about

the disruption can be modeled with a large number of scenarios generated using Monte

Carlo simulation of disruption. Note that when the first-stage decision variables, referred to

as complicating variables, are fixed, the problem naturally decomposes into scenarios [43].

Now the problem is to minimize the expected total cost over all possible scenarios. This

problem can be formulated as a two-stage mixed-integer stochastic program with complete

mixed-integer recourse because the second-stage problem is feasible for all possible first-

stage decisions [199, 200].

6.2.2 Problem Assumptions

The underlying assumptions in the model for the IPRIN problem are listed below.

1. Network components are damaged at the end of the first stage and restoration is

initiated immediately at the beginning of the second stage.

2. Hardened components will be protected from the damage.

3. A repair crew can only work on a single disrupted component at a time. The repair

crew has to work continuously on one component until it is fully repaired.

4. Damaged components will not be functional until they are fully repaired.

5. The direction of power flow can be reversed during the restoration.

6. Electric power generators can also receive supply from other power generators.
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6.2.3 Notations

The following notations are used to facilitate the introduction of the proposed two-stage

stochastic program.

Indices and index sets

M the set of networks.

T the set of time periods, T = {1, . . . ,T}.

N m the set of nodes in network m.

A m the set of arcs in network m, k = (i, j) ∈A , i, j ∈N .

A m→l the set of dependency arcs, m, l ∈M .

Ω the set of scenarios.

Parameters

um
k arc capacity of arc k ∈A m.

uml
k arc capacity of arc k ∈A m→l .

dm
it demand of node i ∈N m at time t ∈T

q̄m
i supply capacity of node i ∈N m.

τ
r,m
i required recovery time of node i ∈N m.

τ
r,m
k required recovery time of arc k ∈A m.

cr,m
i cost per time period to repair node i ∈N m.

cr,m
k cost per time period to repair arc k ∈A m.

cs,m
it cost per unit for unmatched demand at node i ∈N m at time t ∈T .

c f ,m
k cost per unit for flow on arc k ∈A m.

ch,m
i hardening cost for node i ∈N m.

ch,m
k hardening cost for arc k ∈A m.

B total budget allocated for hardening.

Rm the number of repair crews.
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pω probability of scenario ω ∈Ω occurring.

β mω
i


1 if node i ∈N m fails under scenario ω ∈Ω,

0 otherwise.
.

β mω
k


1 if arc k ∈A m fails under scenario ω ∈Ω,

0 otherwise.
.

αml flow conversion rate from network m to l.

Decision variables

xm
i indicator whether node i ∈N m is hardened.

xm
k indicator whether arc k ∈A m is hardened.

ymω
it indicator whether a repair crew start repairing at node i ∈N m at time t ∈T .

under scenario ω ∈Ω.

ymω
kt indicator whether a repair crew starts repairing at arc k ∈A m at time t ∈T

under scenario ω ∈Ω.

zmω
it indicator whether node i ∈N m functions at time t ∈T ∪{0} under scenario ω ∈Ω.

zmω
kt indicator whether arc k ∈A m functions at time t ∈T ∪{0} under scenario ω ∈Ω.

vmω
it indicator whether a repair crew is working at node i ∈N m at time t ∈T

under scenario ω ∈Ω.

vmω
kt indicator whether a repair crew is working at arc k ∈A m at time t ∈T

under scenario ω ∈Ω.

wmω
it indicator whether node i ∈N m is repaired by time t ∈T under scenario ω ∈Ω.

wmω
kt indicator whether arc k ∈A m is repaired by time t ∈T under scenario ω ∈Ω.

f mω
kt flow on arc k ∈A m at time t ∈T under scenario ω ∈Ω.

hm→l,ω
kt flow on arc k ∈A m→l at time t ∈T under scenario ω ∈Ω.

qmω
it supply at node i ∈N m at time t ∈T under scenario ω ∈Ω.

smω
it unmet demand at node i ∈N m at time t ∈T under scenario ω ∈Ω.

101



6.2.4 Mathematical Model

The extensive formulation (deterministic equivalent) of the IPRIN based on the two-

stage stochastic programming approach is presented as follows:

min ∑
ω∈Ω

pω

 ∑
m∈M

∑
t∈T

 ∑
i∈N m

d

cs,m
it smω

it + ∑
i∈N m

cr,m
i vmω

it + ∑
k∈A m

(
c f ,m

k f mω
kt + cr,m

k vmω
kt

)+
[

∑
i∈N m

cr,m
i τ

r,m
i (1− zmω

iT )+ ∑
k∈A m

cr,m
k τ

r,m
k (1− zmω

kT )

]})
(6.1a)

s.t. ∑
m∈M

(
∑

i∈N m
ch,m

i xm
i + ∑

k∈A m
ch,m

k xm
k

)
≤ B (6.1b)

∑
k=(i, j)∈A m

f mω
kt − ∑

k=( j,i)∈A m

f mω
kt + ∑

l∈M
∑

k=(i, j)∈A m→l

hm→l,ω
kt = qm

it + smω
it −dm

i

∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1c)

f mω
kt ≤ um

k zmω
kt ∀m ∈M ,k ∈A m, t ∈T ,ω ∈Ω (6.1d)

f mω
kt ≤ um

k zmω
it ∀m ∈M ,k ∈A m, t ∈T ,ω ∈Ω (6.1e)

hm→l,ω
kt ≤ um→l

k zmω
it ∀m, l ∈M ,k = (i, j) ∈A m→l, t ∈T ,ω ∈Ω (6.1f)

qmω
it = ∑

l∈M
∑

k=( j,i)∈A l→m

αmlh
l→m,ω
kt

∀m ∈M , i ∈N m∩{i′ | ∃ l ∈M ,( j, i′) ∈A l→m}, t ∈T ,ω ∈Ω (6.1g)

vmω
it =

t

∑
t ′=t−τ

r,m
i +1

ymω

it ′ ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1h)

vmω
kt =

t

∑
t ′=t−τ

r,m
k +1

ymω

kt ′ ∀m ∈M ,k ∈A m, t ∈T ,ω ∈Ω (6.1i)

∑
i∈Nm

vmω
it + ∑

k∈Am

vmω
kt ≤ Rm ∀m ∈M , t ∈T ,ω ∈Ω (6.1j)

wmω
it =

t−τ
r,m
i

∑
t ′=1

ymω

it ′ ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1k)

wmω
kt =

t−τ
r,m
k

∑
t ′=1

ymω

kt ′ ∀m ∈M ,k ∈A m, t ∈T ,ω ∈Ω (6.1l)
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zmω
it ≤ zmω

it−1 +wmω
it ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1m)

zmω
kt ≤ zmω

kt−1 +wmω
kt ∀m ∈M , i ∈A m, t ∈T ,ω ∈Ω (6.1n)

zmω
i0 ≤ (1−β

mω
i )+ xm

i ∀m ∈M , i ∈N m,ω ∈Ω (6.1o)

zmω
k0 ≤ (1−β

mω
k )+ xm

k ∀m ∈M ,k ∈A m,ω ∈Ω (6.1p)

zmω
it ≥ zmω

it−1 ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1q)

zmω
kt ≥ zmω

kt−1 ∀m ∈M , i ∈A m, t ∈T ,ω ∈Ω (6.1r)

0≤ smω
it ≤ dm

it ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1s)

0≤ qmω
it ≤ q̄m

i ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1t)

f mω
kt ≥ 0 ∀m ∈M ,k ∈A m, t ∈T ,ω ∈Ω (6.1u)

hm→l,ω
kt ≥ 0 ∀m ∈M ,k ∈A m→l, t ∈T ,ω ∈Ω (6.1v)

xm
i ∈ {0,1} ∀m ∈M , i ∈N m (6.1w)

xm
k ∈ {0,1} ∀m ∈M ,k ∈A m (6.1x)

ymω
it ,zmω

it ,wmω
it ,vmω

it ∈ {0,1} ∀m ∈M , i ∈N m, t ∈T ,ω ∈Ω (6.1y)

ymω
kt ,zmω

kt ,wmω
kt ,vmω

kt ∈ {0,1} ∀m ∈M ,k ∈A m, t ∈T ,ω ∈Ω (6.1z)

In model (6.1), we minimize the expected total cost, including flow costs, repairing

costs, slack penalty costs, and penalty on components being unrepaired at the end of the

time horizon over all disruption scenarios. Constraint (6.1b) limits the first-stage cost

within the budget. We set the budget to be smaller than the amount required to harden

all components, in order to prevent trivial solutions. Constraint (6.1c) imposes the flow

conservation for nodes. Constraints (6.1d) and (6.1e) relate the network flow decision vari-

ables with the functionality status of arcs. Constraint (6.1f) mandates that node j in a

network l, which depends on node i in network m, will not be functional until node i is

restored. Constraint (6.1g) couples different networks by flow conversion and ensures that

the converted flow from network l to a supply node in network m is equal to the supply
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at the node. The term N m∩{i′ | ∃ l ∈M ,( j, i′) ∈ A l→m} represents the set of nodes in

network m that depend on the supply from network l. Constraints (6.1h) and (6.1i) enforce

that a component will not be operational until it is restored by the crew. Constraint (6.1j)

caps the number of repair crews. Constraints (6.1k) and (6.1l) ensure that a component will

be restored by a time period after a repair crew has worked on it for the required number of

time periods. Constraints (6.1m) to (6.1n) ensures that a component will not be functional

until it is repaired. Constraints (6.1o) and (6.1p) state the effect of hardening decisions and

the disruption to the initial functionality status of components. That is, hardened compo-

nents will remain functional after the disruption and components that are not hardened will

not be functional if they are damaged by the disruptive event. Constraints (6.1q) to (6.1z)

state the nature of the decision variables. The number of decision variables in model (6.1)

is {
2(|N |+ |A |)+

(
6|N |+2|A |+ |A m→l|

)
|T |

}
|M ||Ω|

while the number of constraints is

1+(|N |+ |A |) |M |(1+ |Ω|)+
{

1+2|A m→l|+ |N l→m
d |+11(|N |+ |A |)

}
|M ||T ||Ω|

where N l→m
d represents the term N m∩{i′ | ∃ l ∈M ,( j, i′) ∈A l→m}.

6.3 Solution Technique

The proposed two-stage stochastic program can be computationally challenging to solve

because the number of second-stage decision variables can be very large even for interde-

pendent networks of modest size. In our experience, off-the-shelve solvers (e.g., Gurobi)

can typically solve instances with less than 100 scenarios (limited by RAM size of a com-

puter), but a practical instance can have thousands of scenarios. Therefore, we develop

a novel approach based on the iterative regularization technique to obtain a near-optimal

solution with a reasonable amount of time.
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Algorithm 5: Random walk iterative regularization

Input: m, ρ , maximum number of iterations κmax, and |Ω| failure scenarios.
Output: ĝ, the LUB on the optimal objective value of model (6.1) under |Ω| scenarios.

1: Set ĝ to a significantly large value. . Initialize ĝ
2: Solve model (6.1) under m randomly chosen scenarios to obtain the current candidate

solutionX∗ and let X̂ ←X∗. . Initialize X̂
3: while κ ≤ κmax do
4: Solve model (6.2) under m randomly chosen scenarios to obtain X∗ and let X̂ ←
X∗.

5: Solve model (6.1) under |Ω| scenarios withX fixed to X̂ to obtain the optimal
6: objective value g∗.
7: if g∗ < ĝ then
8: ĝ← g∗ . Update the best-so-far objective value
9: end if

10: κ ← κ +1
11: end while

6.3.1 Iterative Regularization

Because a direct solution to the approximate problem in model (6.1) can still be chal-

lenging as the number of scenarios can be explosively large. We solve multiple small-sized

problems to obtain plausible optimal solutions to the first-stage decisions x̂, then solve the

original problem under a large number of scenarios with the first stage decisions fixed to

the most plausible optimal solution obtained, which gives an upper bound of the original

model under a large number of scenarios. The lowest optimal objective value obtained by

conducting this solution technique multiple times is the least upper bound (LUB). To ex-

ploit the solutions obtained from each smaller-size problem, the regularization technique is

employed to impose a penalty on deviation from the previous candidate optimal solution to

the first-stage problem [198]. The regularized model is given as

min (6.1a)+ρ ∑
m∈M

(
∑

i∈N m
|xm

i − x̂m
i |+ ∑

k∈A m
|xm

k − x̂m
k |

)
(6.2a)

s.t. (6.1b) to (6.1z) (6.2b)
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In model (6.2), ρ > 0 represents the regularization strength. A larger value of ρ indicates

heavier regularization, leading to a smaller deviation of the new candidate solution from

the current solution. Note that the constraints in model (6.2) are the same as model (6.1).

The iterative regularization algorithm is given by Algorithm 5. To simplify the notation,

we use X̂ to represents the incumbent solution.

Algorithm 6: SA iterative regularization

Input: m, ρ , maximum number of iterations κmax, |Ω| failure scenarios, initial temperature
tp0, and final temperature tp1.

Output: ĝ, the LUB on the optimal objective value of model (6.1) under |Ω| scenarios.
1: Set ĝ to a significantly large value. . Initialize ĝ
2: Solve model (6.1) under m randomly chosen scenarios to obtain the current candidate

solutionX∗ and let X̂ ←X∗. . Initialize X̂
3: while κ ≤ κmax do
4: Solve model (6.2) under m randomly chosen scenarios to obtainX∗.
5: Solve model (6.1) under |Ω| scenarios withX fixed toX∗ to obtain the optimal
6: objective value g∗.
7: if g∗ < ĝ then
8: ĝ← g∗ . Update the best-so-far objective value
9: f lag← true

10: else . Accept the worse candidate solution with a probability
11: Calculate the acceptance probability Pr according to Eq. (6.3).
12: if pa ≥ rand (0,1) then
13: f lag← true
14: end if
15: end if
16: if f lag = true then
17: X̂ ←X∗ . Accept the new candidate solution
18: end if
19: tp← tp×

(
Tp1
Tp0

)1/κmax
. Reduce temperature

20: κ ← κ +1
21: end while

In the hope of improving the solution quality, we integrate two search techniques into

the iterative regularization scheme. The first one is Simulated Annealing (SA), a meta-

heuristic technique for approximating the global optima of a cost function with multiple

local optima by emulating annealing in metallurgy [201]. Physical annealing is the process

of slowly cooling a heated solid to a state of minimum energy according to a particular
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cooling schedule [202]. A key feature of the SA algorithm is that it can escape from

local minima by allowing hill-climbing moves (moves to a worse solution) probabilistically

according to the Metropolis criterion [203]. The acceptance probability is higher when the

temperature tp is higher, allowing the algorithm to explore more of the search space. The

acceptance probability of a hill-climbing move is given by

Pr (∆E) = e−
∆E
tp , (6.3)

where ∆E represents the energy difference, i.e. the change in the cost function of the

optimization problem under study. For a more details explanation of the SA algorithm,

interested readers are referred to Refs. [202, 203].

The iterative regularization algorithm with a SA step in determining the acceptance of a

new candidate solution is given by Algorithm 6. In this algorithm, we adopt the geometric

cooling schedule where the temperature decreases by a constant factor [203].

We also consider another technique from meta-heuristics, exploration and exploita-

tion [204], to find the approximate optimal objective value of the extensive formulation.

Exploration means searching for unknown but promising solutions globally while exploita-

tion ensures that the solution algorithm exploits the best-so-far solutions by searching in the

vicinity of those solutions (local search). In the case of the iterative regularization, we use

the original model (no regularization) during the exploration stage such that the solution

algorithm can examine the solution space globally. The regularized model is used in the ex-

ploitation stage to find candidate optimal solutions around the promising solution obtained

during the exploration stage. The iterative regularization scheme with the exploration and

exploitation technique is described in Algorithm 7.
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Algorithm 7: EE iterative regularization

Input: m, ρ , the maximum number of iterations κmax, |Ω| failure scenarios, number of
iterations for exploration κE .

Output: ĝ, the LUB on the optimal objective value of model (6.1) under |Ω| scenarios.
1: Set ĝ to a significantly large value. . Initialize ĝ
2: while κ ≤ κmax do
3: if κ ≤ κE then . Exploration stage: no regularization
4: Solve model (6.1) under m randomly chosen scenarios to obtain the current

candidate
5: solution to the first stage problemX∗.
6: Solve model (6.1) under |Ω| scenarios withX fixed toX∗ to obtain the optimal
7: objective value g∗.
8: else . Exploitation stage: regularization is used
9: Solve model (6.2) under m scenarios withX fixed to X̂ to obtainX∗.

10: Solve model (6.1) under |Ω| scenarios withX fixed toX∗ to obtain the optimal
11: objective value g∗.
12: end if
13: if g∗ < ĝ then
14: ĝ← g∗ . Update the best-so-far objective value
15: X̂ ←X∗ . Update the incumbent solution
16: end if
17: κ ← κ +1
18: end while

6.4 Computational Experiments

6.4.1 Experimental Setup

The methodology is illustrated through computational experiments about synthesized

49-node interdependent power and gas networks. The computational experiments in this

chapter are implemented in Julia/JuMP 0.21.2 [205, 206] on a Windows 10 desktop com-

puter with a 3.40 GHz Intel Core i7-6700 CPU and 16.0 GB RAM. The models are solved

with Gurobi 9.0.2 [207]. Relative MIPGap is set to 1.0×10−3.

The time horizon |T | is set to 40 for the 49-node network. Each time period represents

a 12-hour window. The number of repair crews is assumed to be 13 in the power network

and 11 in the gas network. The hardening cost, restoration cost, and repair time of each

component are estimated from various online data sources and literature with reasonable
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assumptions.

Table 6.2: Cost and restoration time for different components. Units for cost and time are
1× 105 USD and 4 hours, respectively. Power flow is measured by MW while gas flow
is measured by MMCM/d. “∗” indicates that the value is adapted from the reference. “-”
indicates assumed value.

Parameters Value Reference
Cost of hardening a demand node 0.70 [208]
Cost of repairing a demand node per time period 0.28 [209]
Cost of hardening a supply node 6.00 -
Cost of repairing a supply node per time period 1.50 -
Cost of hardening an arc 3.60 -
Cost of repairing an arc per time period 1.20 -
Power generation cost 27.78 [210]
Gas cost 3944.46 [211]
Penalty on unmet power load 277.80 -
Penalty on unmet gas demand 39444.60 -
Time required to repair a demand node 5.00 [212]∗

Time required to repair a supply node 8.00 -
Time required to repair an arc 6.00 -
Power to gas conversion factor 3.29 [213]
Gas to power conversion factor 172.47 [214]
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Figure 6.1: Fragility curve for different types of components

The disruptive event we consider for the numerical is hurricane. The wind fragility

curves from Ref. [215] are used to determine the failure probability of a component af-

fected by the hurricane (Fig. 6.1). Note that arcs in the gas network (gas pipelines) remain

functional in all scenarios since the majority of pipelines are buried underground and are
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not affected by the storms. Sustained wind speed is assumed to follow a Gaussian distri-

bution with the mean equal to 44.8 m/s (approximately 100 mph), a typical value observed

during a Category Two hurricane [216].

Due to the lack of information about the Euclidean distance between the components,

we use the topological distance to determine the correlation between the failure probability

of components according to Eq. (6.4):

ρi j =



0.3, d = 1

0.2, d = 2

0.1, d = 3

0, d ≥ 4

(6.4)

6.4.2 Test Networks

The test network we use for the computational experiments is 49-node interdependent

power and gas networks (Fig. 6.2) that consist of the IEEE RTS 24-bus test system [217]

coupled with a 25-node gas network [6]. Gas-fired generators G1 to G4 depend on the

supply from gas nodes J18, J13, J24, and J19 in gas network, respectively. The compressor

at gas supply node J1 relies on the electricity from power node K22. The power flow is

obtained by solving the DC optimal power flow model and the gas flow is calculated based

on the diameter of pipelines and gas flow speed (100 m/s) [218]. The total demand in each

network is assumed to be 65% of the total generation capacity. The demand and supply

in gas network are scaled down 5 times so that the undamaged interdependent power-gas

network has a feasible flow without unmet demand. For simplicity, we assume that the

composition of the natural gas remains unchanged through the entire gas network so that

the gas to power conversion factor is the same throughout the entire gas network. We also

assume that the power generation cost is the same at all the generators.
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Figure 6.2: Schematic of 49-node interdependent power-gas networks (adapted from
Ref. [6]). The power-gas networks are generated by coupling the IEEE RTS 24-bus test
system (left) with a 25-node gas network (right) through gas-powered generators (G1 to
G4) and an electric-powered compressor (C1).

6.4.3 Results

6.4.3.1 Performance of the Solution Techniques

We first examine the impact of the penalty strength ρ on the optimal objective value

under different solution algorithms. The number of scenarios for model (6.1) of smaller

scale m is 30 and the number of scenarios for the original model |Ω| is 3000. We run

the three solution algorithms for κmax = 20 times to obtain the optimal objective value. It

can be observed in Fig. 6.3 that as ρ increases, the optimal objective obtained by iterative

regularization based on EE descends stepwise towards a relatively wide valley and then

ascends shapely. In comparison, the objective values obtained by iterative regularization

based on SA and RW fluctuate, leading to several local minima in the space of ρ . The

optimal objective values obtained by RW overlap with that by SA at multiple values of ρ ,

including the minimum values when ρ ∈ [7×104,8×104], but other than the overlapping

points, SA consistently outperforms RW. Since the optimal objective values for the three
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Figure 6.3: Trend of the optimal objective value over values of ρ for different algorithms

algorithms are all obtained at ρ ∈ [7×104,8×104], ρ = 8×104 will be used when iterative

regularization is employed in the rest of the computational experiments.

From the trend of the optimal objective value for the three algorithms depicted in

Fig. 6.4, we can also see that the optimal objective values obtained by the three algo-

rithms descend stepwise. The optimal objective values are achieved by iteration 15, so

15 iterations can be used. The trend of the optimal objective value obtained by iterative

regularization based on SA and RW are almost identical except when the iteration number

exceeds 15 at ρ = 10×104 or ρ = 11×104, thus SA-based algorithm is more likely to lead

to better solutions given the same number of iterations. The EE-based iterative regulariza-

tion algorithm descends to lower optimal objective value than SA- or RW-based iterative

regularization. Also, due to the insensitivity of EE-based iterative regularization algorithm

to the changes in ρ at the valley (Fig. 6.3), this algorithm is chosen to obtain the optimal

objective value in the subsequent computational experiments where iterative regularization

is employed.

The solution time for the three algorithms when ρ = 8× 104 are summarized in Ta-

ble 6.3. We can observe that the solution times for the algorithms by the end of each

iteration are very close to each other, with the total time for 20 iterations between 2.89 to
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Figure 6.4: Trend of the optimal objective value over iterations for different algorithms

2.94 hours and the average time for one iteration of approximately 0.15 hour. The solution

time for each algorithm when ρ takes other values is omitted here because the solution time

varies little with the value of ρ .

Table 6.3: Solution time for each algorithm

Iter.
Time (hrs)

SA EE RW

1 0.16 0.15 0.15
4 0.59 0.58 0.58
8 1.17 1.16 1.18

12 1.76 1.74 1.77
16 2.33 2.32 2.34
20 2.90 2.89 2.94

6.4.3.2 Network Hardening Budget

We next explore the impact of the budget for network hardening B on the optimal objec-

tive value ĝ of the IPRIN problem. The optimal objective values are obtained by iterative
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regularization with EE where the number of scenarios for model (6.1) of smaller scale m

is 30, the number of scenarios for original model |Ω| is 3000, and the number of iterations

κmax is 20. The optimal objective value ĝ for different values of budget B is depicted in

Fig. 6.5. It can be observed that as the budget increases from zero, the optimal objective

value first decreases rapidly. When the budget grows over around $1.2×107, the decrease

in the optimal objective value slows down until it eventually levels off from B = 3.0×107

onwards since the budget is large enough to harden all the components. It is worthwhile to

note that when the budget is lower than approximately $1.2×107, the relationship between

the optimal objective value and the budget is approximately linear, indicating that every

unit increase in the budget for hardening will lead to 0.7761 unit decrease in the total cost

at the restoration stage.
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Figure 6.5: Optimal objective value ĝ for different budgets for network hardening budget B

6.4.3.3 Expected Value of Perfect Information

To evaluate the benefits of the proposed approach, we compare the solution to the

stochastic program (SP), i.e. the here-and-now solution, to the wait-and-see solution (WS).

WS is obtained by solving the deterministic problem under each scenario independently as

if decision-makers can wait and see the realization of the disruptive event. The difference
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between SP and WS is referred to as the expected value of perfect information (EVPI),

which measures the value of complete (and accurate) forecast for the future [219, 40]. For-

mally, WS is calculated by [40]

WS = Eω

[
min
X

g(X,ω)

]
(6.5a)

= Eω

[
g
(
X̄ (ω) ,ω

)]
(6.5b)

where g(·) represents the objective function and X̄ (ω) represents the optimal solution to

the first stage decisions after the realization of a particular scenario. In this analysis, we

use |Ω| = 3000 scenarios to estimate the value of WS and SP. SP is estimated as the LUB

among the 20 upper bounds obtained by feeding the solution to model (6.1) under 200

scenarios to model (6.1) under 3000 scenarios. The EPVI is found to be

EVPI = SP−WS = 13,571,256−10,395,870 = 3,175,386 (6.6)

The EVPI is approximately 23.4% of the SP. This implies that a decision maker would be

ready to pay $3,078,544 to collect perfect information about the damage of the disruptive

event to the interdependent power and gas networks.

6.5 Summary

Accounting for the uncertainty around human-induced or natural disastrous events is

important to achieve the optimal protection and restoration planning of infrastructure sys-

tems. This chapter proposes a two-stage mixed-integer stochastic programming approach

to solve the problem of combining disaster preparation and restoration decisions to enhance

the protection and restoration planning of IISs. Novel solution algorithms that integrate

random walk, SA, exploration and exploitation techniques and iterative regularization are

devised to achieve a near-optimal solution within a reasonable amount of time for rela-
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tively large-scale IISs. Results show that the EE-based iterative regularization outperforms

the other two algorithms in finding the LUB. Managerial insights for the interdependent

infrastructure networks are presented, including the the expected value of the perfect infor-

mation and impact of the budget for network hardening on the optimal objective value.
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Chapter 7

Summary and Future Work

7.1 Summary of Contributions

The overall objective of this dissertation is to develop and apply Bayesian models,

stochastic network modeling and optimization models to assess and improve the resilience

of complex infrastructure systems, particularly interdependent systems. The various con-

tributions made in this dissertation are summarized below.

Hierarchical Bayesian model for the serviceability assessment of infrastructure

systems under uncertainty. First, this dissertation develops a method based on HBM to

address the challenge due to data scarcity and leverages potential availability of data in the

future to provide an updated probabilistic evaluation of infrastructure performance. Sec-

ond, this dissertation proposes an approach where both epistemic uncertainty and aleatory

uncertainty about component failure probability are modeled. In the proposed method, the

epistemic uncertainty is modeled with a distribution whose parameters are also described

by a distribution. The Bayesian updating approach is integrated into the Monte Carol sim-

ulations for evaluating the serviceability of infrastructure networks.

Hierarchical Bayesian kernel regression model. First, a novel model, hierarchical

Bayesian kernel model (HBKM), is proposed. This model can 1) improve the estimation

accuracy of parameters under small data due to 1) its ability to “borrow strength” across

different but similar groups of datasets, and 2) reduce the subjectivity of assigning a point

estimate to prior parameters by replacing the point estimate with a hyperprior that is up-

dated using the entire dataset. As a Bayesian approach, this model can provide a probabilis-

tic estimate of the parameters of interest, which is highly useful for decision making under

certainty or probabilistic risk analysis. Second, this dissertation validates the HBKM on

the historical power outage data and multiple synthetic grouped count data against compet-
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itive models, including generalized linear model, Gaussian process regression, and kernel

regression. HBKM can outperform other models on some of the simulated datasets de-

pending on 1) the relationship between the response variables and the predictors and 2) the

number of data points in each group and the number of groups.

Scalable inference of hierarchical Bayesian regression model for grouped count

data. First, a hierarchical Bayesian regression model for grouped count data is proposed.

The proposed model is learned using a new scalable approximate Gibbs sampler that targets

relatively high-dimensional posterior distributions. The data likelihood is approximated

with a Gaussian distribution to obtain closed-form full conditional posterior distribution of

coefficients. To improve the convergence quality of posterior samples of the coefficients,

i.e. reduce the approximation error as much as possible, we derive the exact mean and

variance of the approximate Gaussian distribution rather than using the approximate mean

and variance. Second, we validate the approximate Gibbs samplers against the state-of-

the-art sampler, the No-U-Turn-Sampler (NUTS), on multiple grouped count datasets. The

approximate Gibbs sampler can achieve slightly higher inference accuracy and faster speed

than NUTS, particularly for large datasets.

Modeling interdependencies using the stochastic block model. The first contribu-

tion is that a modified stochastic block model is proposed to evaluate uncertain network

interdependencies. Specifically, the use of stochastic block models provides a probabilistic

characterization of interdependency links between infrastructure networks. Second, this

dissertation proposes a formulation for estimating the likelihood that an interdependency

link exists using multiple predictors to represent major factors influencing the presence of

interdependency links. To avoid zero values in normalizing the variables that will be used

in the denominator, a variant of min-max normalization called truncated min-max normal-

ization is developed.

Two-stage stochastic program for the protection and restoration of IISs. First, a

two-stage stochastic mixed-integer program is developed to optimize the decisions on the
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integrated protection and restoration of interdependent critical infrastructure systems under

uncertainty around the disruptive events. To the best of our knowledge, our study is the first

effort in the literature to formulate this integrated protection and restoration of interdepen-

dent infrastructure networks under uncertainty. Second, We solve the proposed two-stage

mixed-integer program for relatively large interdependent networks by integrating iterative

regularization into the classic sampling average approach. The original model with a rela-

tively small number of scenarios is first solved to obtain a plausible optimal solution. The

quality of the plausible optimal solution is improved by iteratively solving the regularized

model with an increasing number of scenarios within the allowed solution time. Thus, this

method is able to provide a sufficiently high-quality solution to the integrated model within

a reasonable amount of time. Third, the numerical analysis based on realistic case stud-

ies demonstrates the value of the stochastic model and the effectiveness of the proposed

solution method. The proposed model can serve as a useful tool to inform the protection

decisions of IISs.

7.2 Future Work

The following directions for future research are identified based on the work presented

in this dissertation.

Hierarchical Bayesian Model for the Serviceability Assessment of Infrastructure

Systems. Future directions of this research effort can focus on refining the model for esti-

mating the failure probability of components under the flood hazard using new data, which

can be collected from repair records or through the use of sensing technologies that provide

real-time detection of pipe failures or leakages [220]. Another direction for further research

is to incorporate interdependencies among infrastructure systems into the Bayesian updat-

ing framework for assessing the serviceability because WDSs are often coupled with the

power grids [8]. For example, flooding caused by water pipe breaks can damage closely

located power distribution facilities, which may cause the pumping stations to fail due to
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loss of power supply. As such, the interdependency-related failure should be included to

provide a comprehensive assessment of the serviceability of water distribution systems.

Hierarchical Bayesian Kernel Model. The proposed HBKM model can be a useful

tool for utilities and disaster responders to understand the response mechanism of a certain

infrastructure network and plan accordingly. As the ultimate goal of this part of the dis-

sertation is to model the recovery process of infrastructure networks and communities as a

function of different infrastructure and social characteristics, future work can incorporate

additional information such as demographic data to evaluate the impact of social vulnera-

bility on the recovery process and assess the performance of HBKMs in multiple regression

where a set of covariates will be utilized to build the models.

Scalable inference of hierarchical Bayesian models. As the proposed inference al-

gorithm based on approximate Gibbs is not applicable to datasets with zero counts, future

work will explore scalable inference in hierarchical Bayesian models for zeros-inflated

count data.

Modeling Interdependencies Using Probabilistic Network Models. A limitation of

modeling interdependency using the adapted stochastic block model is that topology-based

metrics for resilience provide a basic understanding of the dynamics of ICIs after disruptive

events. Future work can consider building a full network flow model for a more accurate

representation of the performance and behavior of ICI after a disruption under uncertainty.

Additionally, incorporating more nodal attributes in the probabilistic model for estimating

interdependency links will help with the interpretation of the model.

Stochastic Programming Approach for the Protection and Restoration of Infras-

tructure Networks. There are several possible extensions of this work. First, the stochastic

formulation can be improved by incorporating the uncertainty around repair times into the

model. Future work can also consider small-scale network reconfiguration, e.g. installing

temporary power lines in the power system, to accelerate the restoration. Furthermore, as

additional disruptions may occur before the infrastructure systems are fully restored, e.g. a
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second winter storm can strike infrastructure networks not long after they are damaged by

the first, the current formulation can be extended into a multi-stage stochastic program to

solve the corresponding decision making problem under uncertainty.

Due to the complexity of the study required for each objective in this dissertation, the

tasks of estimation and the task of optimization for enhancing the resilience of infrastruc-

ture systems are performed separately. This decoupled approach is the standard paradigm

in many analytics problems, in which the estimation or prediction of unknown parame-

ters from machine learning models are not appropriately integrated into the downstream

optimization problems [221]. However, one can adopt the smart “Predict, then Optimize”

(SPO) approach in which the machine learning models are trained to minimize the decision

error rather than the prediction/estimation error [221]. By following the SPO paradigm,

long-term research can investigate integrating Bayesian methods or other machine learn-

ing methods for estimating recovery state into a multi-stage stochastic program or Markov

decision process for optimizing decisions about preparedness and restoration, so that the

resilience of infrastructure systems under uncertainty can be further enhanced.
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