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Chapter 1

Invitation

Is there an equation that describes how tall an elephant grows? Sure; it might look something
like

ẋi =
∑

j,k

∏
j cijkx

njk
j∑

j dijkx
njk
j

− γixi . (1.1)

Many features of biological systems—from obvious characteristics like height, to the com-
plicated failure modes associated with disease—are ultimately due to interactions between
genes. Different genes influence each other’s expression (the number of a gene’s correspond-
ing RNA or proteins that exist in a single cell at some time), for example by interfering with
or enhancing the transcription of the RNA associated with that gene. More colloquially,
different genes turn each other ‘on’ or ‘off’.

Equivalently, we can say that something like elephant height is ultimately determined by
the dynamics of gene networks. We can consider two genes ‘connected’ if they influence each
other’s gene expression in some way, and write down mathematical models that instantiate
this intuition in a quantitatively concrete form.

A classic example is the bistable switch, which describes two genes which inhibit each
other (reduce gene expression) and activate themselves (increase gene expression). A plau-
sible set of equations for this reads

ẋ = kA
xn

cn + xn
− kI

yn

cn + yn
− γxx

ẏ = kA
yn

cn + yn
− kI

xn

cn + xn
− γyy ,

(1.2)

where x denotes the expression level (protein concentration, say) of gene X, y denotes the
expression level of gene Y , kA is the self-activation strength, kI is the mutual inhibition
strength, c is some characteristic concentration threshold that separates low concentrations
from high concentrations, n quantifies how sharp the distinction between high and low con-
centrations is, and γx and γy are degradation rates (these terms must be present since, even
without gene-gene interactions, proteins degrade after some time).

A model like this can be made more complicated or generic, perhaps by including more
terms or by making weaker assumptions about parameters—after all, how much gene X
inhibits gene Y need not be equal to how much gene Y inhibits gene X, or even take the
same functional form. But the point is that we can write these models down as a first pass
at understanding what’s going on. We can analyze them, make predictions, compare them
with experiment, refine them, and so on, in iterative fashion, until we have a satisfactory
description of the dynamics of some gene network of interest.
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The kind of models described by Eq. 1.1 and 1.2 are ordinary differential equation
(ODE) models. They describe deterministic systems; two identically prepared initial states
will always evolve into identical final states after some particular amount of time. But gene
expression is known to be stochastic. In practice, two states that seem to be ‘identically’
prepared may evolve into very different states, because how the numbers of molecules inside
cells change over time is partly random. A more technically useful way of stating this is: we
cannot predict how many RNA or proteins a cell will have, but we can predict the probability
it has this many or that many at some specific time in the future.

This randomness arises, in some sense, because of subtleties associated with defining the
‘state’ of a cell. We count cells as being in the same state if the numbers of certain reference
molecules are the same (e.g. specific RNA or proteins of interest), but we care less about the
motion and number of (for example) all water molecules inside a cell. Because the jostling
about and interactions between every member of the complex soup of molecules inside the
crowded interior of cells affects how the molecules we care about diffuse and interact, we get
randomness mostly in the sense of statistical mechanics—due to incomplete information.

And this randomness can have real consequences. The ODE models above generically
have different attractors / stable states. Once a cell reaches a state where the competition
between forces that increase certain concentrations balance with all of those forces that
decrease those concentrations, its concentrations stop changing entirely. If a perturbation
pushes a cell slightly away from this state, it will return to it relatively quickly. But in
‘noisy’ models of gene regulation, just by chance a cell can be pushed into a completely
different attractor entirely, and make what is called a noise-induced transition. This simple
idea is thought to be used by eukaryotic developmental programs to correct cell fate errors
[1], and by tumor cells to avoid drug treatments by randomly switching between sensitive
and resistant states [2], among other things.

But there is also a completely different reason to care about noise. All things in the
physical world are made of elementary particles (or more precisely, quantum fields), which
can only interact in a small number of ways, and whose behavior over time is completely
governed by the Schrödinger equation. In some sense, the project of understanding all
physical phenomena can in principle be reduced to understanding the Schrödinger equation
in various circumstances.

‘In principle’ may be the operative phrase, here. In practice, it is not necessary to solve
the Schrödinger equation for a collection of 1023 interacting atoms in order to describe the
trajectory of a ball in a weak gravitational field. Nevertheless, just knowing that such a
reduction is in principle possible has lead to important physical insights about everything
from the stability of matter [3, 4] to why systems tend toward thermal equilibrium [5].
More broadly, having a well-understood and well-defined theoretical framework sitting at
the bottom of our hierarchy of models of physics allows us to reason quite clearly think
about what is and is not within the realm of physical possibility.

Is there a grand unified theory of biology? Despite our best hopes, probably not. But
there is something like the Schrödinger equation for gene regulation: an equation sitting at
the bottom of our hierarchy of models, that includes every other model of gene expression
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as a special case. I am talking about the so-called chemical master equation.
The chemical master equation (CME) describes how the probability of observing different

numbers of molecules in some chemical system (e.g. a single cell) changes over time. It is
discrete, because it treats molecule numbers as nonnegative integers rather than continuously
varying concentrations, and stochastic.

A CME is determined by four things:

1. a list of chemical species

2. a list of chemical reactions

3. propensity functions / rate parameters for each chemical reaction

4. initial conditions.

If we think about CME dynamics like a play, to fully specify a model we need to specify its
actors, the possible actions, how frequently each action tends to happen, and how the story
begins.

It is worth making a point of this: all known models of gene regulation can be imagined to
be approximate descriptions of some underlying CME model (see Chapter 2.4). Stochastic
differential equation models can be derived via the chemical Langevin approximation or
by taking the large volume limit (both of which are discussed in Ch. 5). Deterministic
ordinary differential equation models can be derived from taking the low noise, local, or
thermodynamic limits of those models. Boolean networks (deterministic or stochastic) can
be derived by coarse-graining molecule number or concentration states. Markov models with
finitely many states (e.g. each state is a different cell type) can also be derived by grouping
different states together. All roads lead to the CME.

Just as our best physical theories identify which kinds of interactions are ‘fundamental’
(e.g. renormalizable interactions in quantum field theory, or conservative forces in classical
physics) and which can only come about as an approximate description of more complicated
dynamics, so too does the CME offer a strong sense of which kinds of interactions are
‘fundamental’ and which are not. Crudely, monomolecular (involving at most one input
and one output molecule) and bimolecular (involving at most two input and two output
molecules) reactions with elementary propensity functions (see Chapter 2.2) are fundamental,
while other reactions must only be approximate descriptions of some more complex CME.

For an equation that offers a foundational theoretical framework for chemical kinetics
and gene regulation, the CME—and particularly many of its mathematical properties—is
surprisingly poorly studied. Most existing work on the CME focuses on approximating it so
that it reduces to a more tractable model, or simulating it on a computer using variants of
Gillespie’s algorithm [6, 7, 8].
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If we would like the CME to play the same role in gene regulation that the Schrödinger
equation plays in physics, we need to understand it much better. This means that we should:

1. know how to think about it,

2. know how to simplify it, and

3. know how to solve it.

The aim of this thesis is to explore and offer partial progress toward the above three aims.
Particular emphasis will be placed on exploring theoretical properties of the CME, and de-
veloping mathematical tools for working with it. It will turn out that the analogy between
the Schrödinger equation and the CME is quite mathematically deep, and that many theo-
retical tools originally developed for studying the Schrödinger equation (e.g. path integral
representations and ladder operators) are useful in this biological context too.

The structure of this thesis is as follows. In Chapter 2, we will introduce the CME as
a theoretical framework uniquely appropriate for studying fundamental problems in gene
regulation. This partly addresses how to think about the CME, and how to simplify it
to obtain several common types of gene regulation models. In Chapter 3, we will introduce
basic tools for working with the CME, including stochastic simulation methods and a number
of analytic techniques. This covers the broad strokes of what was previously known about
solving the CME.

In the remaining chapters, we introduce new mathematical techniques inspired by quan-
tum mechanics for solving the CME, and obtain the most general solutions yet known. In
Chapter 4, we use the Doi-Peliti path integral method to solve and study monomolecular
reaction networks, a class of systems that are particularly suited to analytic approaches,
and that we will encounter throughout this thesis. Using the same tools, we also formally
treat systems whose reaction list consists of arbitrary combinations of zero and first order
reactions, and obtain perhaps the most general known solution of the CME. In Chapter 5,
we introduce a new state space path integral representation of the CME (distinct from but
complementary to the Doi-Peliti one) and apply it to the problem of justifying continuous
stochastic approximations of discrete stochastic dynamics. In Chapter 6, we show how a
CME model of RNA transcription and splicing (an example of a monomolecular process)
coupled to a switching gene can be solved using ladder operators and Feynman-like diagrams.

In Chapter 7, we show how the same CME models can be efficiently solved numerically
using the path integral introduced in Chapter 5, and apply these efficient implementations
to parameter inference on simulated data. The numerical methods we develop here far
outperform competing methods like finite state projection, which has important implications
for fitting stochastic models to single cell data. Namely, the large speedup in principle allows
one to fit significantly more realistic models of transcription and splicing, and to interrogate
at much higher resolution than before the associated kinetics. Finally, in Chapter 8, we
conclude and reflect on various theoretical challenges related to the CME.
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Chapter 2

Philosophy. Or: the chemical master equation in principle

2.1 On being the right scale

Our goal is to figure out some sort of foundation for gene networks. Ideally, we would like
to use this foundation to understand—in a quantitative fashion—important consequences of
gene regulation, like the ability for one kind of cell to change into another kind of cell, or
the dynamics of transcription and splicing. How should we proceed?

All things are made of elementary particles, so one way to proceed would be to try to
develop a theory of gene networks based on quantum field theory. While this would certainly
be a noble goal, it is also a Sisyphean task par excellence; understanding a proton from first
principles is hard enough. Thinking in terms of nonrelativistic quantum mechanics (electrons
or atoms, perhaps) is not much better, given the well-known difficulties with understanding
ab initio quantum chemistry. It does not take that many atoms to exceed the current
capabilities of the world’s best computers.

If not so fine a scale, at what scale should we work? And what are the most salient
aspects of gene networks? What aspects are so crucially important, that it is absolutely
imperative that we include them in our models? Another way to frame this question is:
what is the state space of the models we are interested in? Do we care about the state of
every electron inside a cell? Do we care about where molecules are? Must we keep track of
every molecule, or only some of them? Do we care only how many molecules there are on
average, or the exact number?

To some extent our decision is arbitrary, as one can always cook up examples where
this or that feature of chemical or biological systems happens to be important. But we can
at least base our decision on something. Consider the following four principles: locality,
experimental accessibility, experimental compatibility, and minimizing arbitrariness.

Locality means that distant things, to good approximation, do not affect our system. For
most purposes, it is sufficient to imagine only one cell and ignore the rest of the universe, or
in practice to imagine just a few molecules in a single cell that interact with one another,
and ignore the remainder. One can imagine a world in which every molecule inside a cell
affected every other molecule, so it must be appreciated that this is a profound and important
property of nature.

Experimental accessibility means that our framework should primarily concern itself with
things that are measurable, or at least measurable in principle. We can count how many
RNA are inside single cells; we cannot count the number of electrons associated with each
RNA molecule. Even if we could, this information is almost certainly irrelevant for gene-
network-scale dynamics. Experimental compatibility means that our framework includes
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or can explain details of gene regulation known to be important. In particular, single cell
experiments have established that discrete molecule number effects, along with the associated
random fluctuations in molecule number, are important. For example, there are only about
10 tetrameric copies of lac repressor proteins per E. coli cell, so fluctuations in this number
can have an outsized effect on lactose utilization [1, 2, 3]. A cell may make a different decision
if there are 5 molecules instead of 10, which means accounting for this fact is qualitatively
important.

Finally, one frustrating aspect of mathematical modeling is the proliferation of arbitrary
choices. If we assumed this instead of that, how might our predictions change? In gene
regulation, where microscopic models must usually be jettisoned in favor of phenomenological
ones that there is some hope of connecting with data, this is particularly annoying; gene-gene
interactions are often assumed to take on certain ad-hoc forms (especially Hill functions),
and models are often made stochastic by tacking white noise terms onto ordinary differential
equation models rather than following a more principled prescription. In quantum field
theory, there is a sense in which the constraints of renormalizability and gauge symmetries
fully constrain fundamental theories; we would like something analogous to be true for our
gene network models.

Given these four principles, what is the right scale for a fundamental theory of gene
regulation? First: by gene regulation, we really mean interactions between molecules that
conspire to effect cell-level changes within a single cell. By the principle of locality, we
can restrict ourselves to thinking about a single cell, or a collection of interacting cells.
When important, environmental perturbations can be taken into account by their effect on
parameters. The principle of experimental accessibility means that we can afford to ignore
extremely fine differences between single cells, like the detailed arrangement of each atom or
electron. For the most part, we can also afford to ignore spatial information (since even if
it is modeled, it is hard to sample enough cells and locations within cells to obtain reliable
spatial distributions), although compartmental information (e.g. whether a transcript is in
the nucleus or the cytoplasm) may be important.

Because one can resolve individual molecules in single cell experiments (e.g. whether a cell
has 10 or 11 RNA of some kind), and because even small differences in molecule number can
matter, the principle of experimental compatibility forces our spatial and temporal scale to
be fine enough to track the behavior of individual molecules. Most importantly, we should
track the number of each molecule we are interested in, and how those numbers change
over time. Usually, only some molecules are important for the logic of a gene regulatory
circuit, and other molecules (or aggregates of molecules, like transcriptional machinery) can
be treated indirectly via their effects on the number or parameters of the observable ones.

Thus far, we have decided to track the number of certain molecules (that are relevant
to gene regulatory logic, like RNA and proteins) within single cells. Our framework should
treat molecule numbers as discrete (nonnegative integers rather than continuous concentra-
tions) and stochastic, with the randomness due to a mixture of quantum and thermal effects
not explicitly modeled. The only remaining question is how to treat the molecule-molecule
interactions that cause molecule numbers to change. By the principle of minimizing arbi-
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trariness, we should avoid introducing interaction functions with many free parameters or
an undetermined functional form.

Here, we can exploit a gift from Gillespie’s seminal work on the microphysical basis
of chemical kinetics [4, 5]. There are three relevant facts: first, real molecules change via
monomolecular or bimolecular chemical reactions, with other kinds of reactions (like trimolec-
ular) being only approximate descriptions; second, the interaction probabilities in each of
these cases are completely determined by microphysical arguments; third, stochastic systems
involving only these kinds of reactions are to good approximation Markovian/‘memoryless’.

This allows us to establish a foundation for gene regulation based on the following model.

1. A system is assumed to have some number N of distinct chemical species (e.g. RNA,
proteins). At any one time, the state of the system is completely specified by a tuple
of nonnegative integers x = (x1, ..., xN) ∈ NN .

2. The state of the system can change with time, and it is assumed that there are only
some number M of ways that it can change. In particular, it is assumed that there are
M possible chemical reactions that can occur, each of which are either monomolecular
(involving at most one input and output) or bimolecular (involving at most two inputs
and two outputs). In a small window of time, there is some probability that any one
of these reactions occurs, and the functional form of these probabilities is completely
determined by microphysical considerations.

3. The future state of the system depends only on its current state.

These restrictions precisely specify the theoretical framework associated with the chemical
master equation (CME), our topic of study for the remainder of this thesis. This is our answer
to the question: ‘what is the right scale for the theoretical foundation of gene regulation?’

We should note that, in practice, these assumptions can be relaxed somewhat. The
CME can deal with ‘effective’ interactions between molecules that do not take one of the
fundamental forms identified by Gillespie, although it should be said that one can usually
identify a ‘fundamental’ system that such effective descriptions approximate in some way. In
similar spirit, the CME can conceive of systems that involve things like continuous species
variables and non-Markovian dynamics—as approximations valid in some possibly singular
limit. As we noted in the previous chapter, one attractive feature of the CME is that is
subsumes all known gene regulation modeling frameworks as special cases, including ordinary
differential equations, Boolean networks, Markov models, and so on. One must merely
identify the appropriate limit for recovering a given approximate description.
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2.2 Whence the chemical master equation?

Let us more precisely describe the chemical master equation framework we motivated in
the previous section. In particular, we would like to ‘derive’ the equation itself given our
assumptions.

Again, assume we have a system with N chemical species and M possible chemical
reactions, whose state is specified by a tuple x = (x1, ..., xN) ∈ NN . Let νj denote the
amount by which the jth reaction changes the state vector x, i.e. reaction j firing causes the
system to change according to x→ x + νj. Denote the probability per unit time of reaction
j firing in the small time window (t, t+ ∆t) by aj(x), where x is the state of the system at
time t.

The central object of our theory is the probability distribution on state space, P (x, t),
which indicates the probability that the system has state x ∈ NN at time t ≥ t0 (where t0
is some initial time which can often arbitrarily be chosen to be zero). In order to have a
well-defined theory, we must be able to quantitatively describe how P (x, t) changes in time.
That is, given how the distribution of observing this or that many molecules looks right now,
how will the distribution look sometime in the future?

Our evolution equation is essentially due to a combination of the conservation of proba-
bility and the Markovian property. For an infinitesimal amount of time ∆t, we have that

P (x, t+ ∆t) = P (x, t) + prob(arrived at x within ∆t)− prob(left x within ∆t) . (2.1)

Because the system is Markovian, the ‘enter’ and ‘exit’ probabilities on the right-hand side
only depend on the state of the system at time t. If the state of the system was different
from x at time t, the only way for it to ‘enter’ the state x within ∆t is for one of the M
chemical reactions to have fired (we are assuming ∆t is sufficiently small that at most one
reaction could have fired). Hence,

prob(arrived at x within ∆t) =
M∑

j=1

prob(reaction j fired within ∆t)

=
M∑

j=1

aj(x− νj)∆t P (x− νj, t)
(2.2)

where we note that, had reaction j fired, the previous state of the system must have been
exactly x−νj. Meanwhile, the probability that the system left the state x within ∆t means
that it began in x, and then one of the M reactions fired. This means that

prob(left x within ∆t) =
M∑

j=1

aj(x)∆t P (x, t) . (2.3)

Putting these together, we have

P (x, t+ ∆t) = P (x, t) + ∆t
M∑

j=1

aj(x− νj)P (x− νj, t)− aj(x)P (x, t) . (2.4)
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Rearranging and taking the small time interval ∆t to zero, we obtain the differential-
difference equation

∂P (x, t)

∂t
=

M∑

j=1

aj(x− νj)P (x− νj, t)− aj(x)P (x, t) . (2.5)

This is the equation we mean when we talk about the chemical master equation. As the
above derivation suggests, it says that the probability of being in state x changes both by the
system entering x (because the system was in a different state, and one of the M chemical
reactions occurred), and by the system leaving x (because the system was in state x, and
one of the M chemical reactions occurred).

As promised, microphysical arguments factor into determining the functional form of the
functions aj(x), which we will henceforth call propensity functions [4, 5]. The following list
exhausts every possible ‘fundamental’ type of reaction, and indicates the propensity function
for each:

Reaction Label Propensity function

∅ c−→ X zeroth order production c

X
c−→ ∅ first order degradation c x

X
c−→ Y first order conversion c x

∅ c−→ X +X zeroth order identical pair production c

∅ c−→ X + Y zeroth order pair production c

X
c−→ X +X first order auto-catalysis c x

X
c−→ X + Y first order translation c x

X
c−→ Y + Z first order splitting c x

X +X
c−→ ∅ second order self-annihilation c

(
x
2

)
= c x(x−1)

2

X +X
c−→ X second order coagulation c

(
x
2

)

X +X
c−→ Y second order self-complexing c

(
x
2

)

X +X
c−→ X + Y second order self-catalyzed conversion c

(
x
2

)

X +X
c−→ Y + Z second order self-collision c

(
x
2

)

X + Y
c−→ ∅ second order annihilation c xy

X + Y
c−→ X second order catalyzed degradation c xy

X + Y
c−→ Z second order complexing c xy

X + Y
c−→ X + Z second order catalytic conversion c xy

X + Y
c−→ X +X second order conformity c xy

X + Y
c−→ Z +W second order collision c xy

Table 2.1: A list of all 19 ‘fundamental’ reaction types and their associated propensity
functions. Each propensity function only depends on one free (real-valued) parameter c > 0,
which quantifies how often that reaction happens. The first three are monomolecular, while
the rest are bimolecular.
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The important thing to notice is that the functional form of each propensity function
only depends on the input molecule numbers, and that they are combinatorial rather than
something more complicated. For example, the degradation reaction’s propensity function is
just counting the number of different molecules that could degrade (x, if that is the current
number of X molecules). Similarly, the self-annihilation propensity function is counting the
number of ways two X molecules could be picked to interact.

To summarize, a fundamental CME model is fully specified by:

• a list of N ≥ 1 chemical species

• a list of M ≥ 1 chemical reactions (drawn from Table 2.1), each of which is associated
with a positive real rate parameter that quantifies how often that reaction happens

• an initial distribution P0(x) (i.e. the initial condition for Eq. 2.5).

2.3 Generic properties of the chemical master equation

What can we say in general about Eq. 2.5, divorced from the particulars of any specific
system? First, it enforces probability conservation by construction, because

∂

∂t

∑

x

P (x, t) =
∑

x

∂P (x, t)

∂t

=
∑

x

M∑

j=1

aj(x− νj)P (x− νj, t)− aj(x)P (x, t)

=
∑

x

M∑

j=1

aj(x)P (x, t)− aj(x)P (x, t)

= 0

(2.6)

where we have obtained the second to last line by reindexing the sum. Hence, if P (x, t)
is normalized at one time, it is normalized for all time. Second, Eq. 2.5 is intimately
related to the standard (deterministic, continuous) mass action prescription for chemical
kinetics. While the CME captures the stochastic / single cell behavior of systems, the
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average trajectory evolves according to

∂〈x〉
∂t

=
∑

x

x
∂P (x, t)

∂t

=
∑

x

x
M∑

j=1

aj(x− νj)P (x− νj, t)− aj(x)P (x, t)

=
M∑

j=1

∑

x

(x + νj)aj(x)P (x, t)− x aj(x)P (x, t)

=
M∑

j=1

νj〈aj(x)〉

(2.7)

which precisely constitute the reaction rate equations for this system. In this way, it is
clear that mass action chemical kinetics is subsumed by the CME, and corresponds to either
population-level averages or some kind of deterministic limit (e.g. the large volume limit
Gillespie describes in [6]).

Third, essentially all CME models of biological interest have the property that

Pss(x) := lim
t→∞

P (x, t) (2.8)

is well-defined (i.e. the limit exists and is a normalized probability distribution) and does
not depend on the initial condition P0(x). This limiting distribution is called the steady state
distribution, and in most cases this is the object amenable for comparison with experiment.
This is for two reasons: experimental time scales are much longer than typical biological
time scales (and many processes have been going on long before the experiment, and so have
had ample time to equilibrate), so the infinite time limit is a good approximation; and a lack
of sensitivity to initial conditions makes it a more robust model prediction. Mathematically,
the existence of this limit has to do with whether there are reactions that counterbalance
molecule number increases with molecule number decreases, and whether the system can
be separated into two or more non-interacting subsystems. Also, it may not exist if there
are persistent oscillations, e.g. in the case of models of the cell cycle (although in this case
one could define an analogous object by taking the long time limit of the average over an
oscillation period).
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2.4 How the chemical master equation relates to other models

We have mentioned several times how the chemical master equation includes all other known
models of gene regulation as special cases; it is worth specifying in a bit more detail exactly
what we mean. In this section, we will closely examine a few representative relationships.
But in the interest of brevity—the mathematics of these correspondences could easily fill an
entire journal article—others we merely summarize.

It is most helpful to think about how the CME relates to ordinary differential equation
(ODE) models, which are still the models most commonly used in practice. Schematically,
these models often look something like:

ẋ = k
xn

cn + xn
− γx . (2.9)

That is, the concentration x(t) of some molecule changes deterministically in time due to
a combination of gene-gene interactions (usually represented by one or more Hill functions)
and a degradation term. Here, X ‘activates’ itself: k is the self-activation strength, c is the
characteristic concentration threshold dividing ‘high’ levels of x from ‘low’ levels of x, and
n ∈ {1, 2, 3, ...} is the Hill coefficient. γ is the degradation rate.

We encounter two issues in trying to relate Eq. 2.9 to Eq. 2.5, the CME. First, while
the degradation term represents something from our list of ‘fundamental’ reactions (Table
2.1), the Hill function term apparently does not. Second, there is no sign of probability in
this model, and x(t) varies continuously. Let us deal with these problems one at a time.

The Hill function is a phenomenological device usually intended to approximate a more
detailed interaction between molecules. In this case, the meaning of ‘X activates itself’ might
be something like: ‘X proteins reversibly bind to the promoter of the X gene, increasing the
transcription rate of X’. Perhaps this is a cooperative effect; up to n X proteins can bind to
the X promoter, and each additional X protein modifies the transcription rate.

We can instantiate this idea by imagining that the X gene has n+ 1 different states G0,
G1, ..., Gn, each labeled according to how many X proteins are bound to the promoter. We
have the list of chemical reactions

G0 +X
b1f

�
b1r

G1 , G1 +X
b2f

�
b2r

G2 , ... , Gn−1 +X
bnf

�
bnr

Gn

Gi
ki−→ Gi +m

m
kp−→ m+X

m
γm−→ ∅

X
γ−→ ∅

(2.10)

where m denotes the RNA produced by the X gene. In all, we have (i) reversible gene-
protein binding reactions, (ii) transcription, (iii) translation, and (iv) degradation. Each of
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these now represents a fundamental reaction type, and the corresponding set of mass action
ODEs reads

ġ0 = −b1
fg0x+ b1

rg1

ġi = −bi+1
f gix+ bi+1

r gi+1 − birgi + bifgi−1x

ġn = −bnr gn + bnfgn−1x

ṁ =
n∑

i=0

kigi − γmm

ẋ = kpm− γx+
n∑

i=1

−bifgi−1x+ birgi .

(2.11)

This certainly seems more complicated than what we started with—we went from a single
ODE to n + 3! But it turns out that the system described by Eq. 2.11 can indeed be
approximately described by Eq. 2.9, even if it is not obvious at first glance. To go from
one to the other, we must exploit two things: the fact that we are only interested in the
dynamics of x, and time scale separations.

Because we are only interested in the dynamics of x, we can eliminate the other variables
however we like, as long as our elimination procedure can be reasonably well justified. One
idea is to use the quasi steady state approximation. Generally, protein-promoter binding
and transcription events happen somewhat more quickly than the time scales of protein
translation and degradation. From the point of view of protein time scales, in fact, they
can be approximated as equilibrating almost instantaneously. If we assume each of the
protein-promoter binding reactions is approximately at equilibrium, we have

bi+1
f gix = bi+1

r gi+1 =⇒ gi+1 =

(
bi+1
f

bi+1
r

)
gix (2.12)

for all i = 0, 1, ..., n− 1. If we define the coefficients ci via

c0 := 1

ci :=
b1
f

b1
r

· · ·
bnf
bnr

(1 < i ≤ n)
(2.13)

then we can write each gi in terms of x and g0 as

gi = cix
ig0 , (2.14)

meaning that we have successfully eliminated n variables. We can also eliminate g0 by
utilizing the constraint that g0 + g1 + · · ·+ gn = G (i.e. the fraction of genes in each of the
different gene states must sum to the total number of X genes), since

g0 + c1g0x+ · · ·+ cngnx
n = g0

n∑

i=0

cix
i = G

=⇒ gi = G
cix

i

∑n
i=0 cix

i
.

(2.15)
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Applying the quasi steady state approximation to the RNA dynamics is somewhat simpler,
and yields

m =
1

γm

n∑

i=0

kigi =
G

γm

∑
i kicix

i

∑
i cix

i
. (2.16)

Having finally eliminated every variable but x, we find that x satisfies the ODE

ẋ =
Gkp
γm

∑
i kicix

i

∑
i cix

i
− γx . (2.17)

Under certain biologically reasonable assumptions, our complicated-looking rational function
can be reasonably well approximated by a Hill function. In particular, we might suppose
that: (i) transcription is ‘all or nothing’, so that each ki aside from kn is negligible; (ii) the
fully bound gene state Gn is ‘hard to reach’ and ‘hard to leave’, so that each ci with i < n
is very small but cn is large. This leaves us with

Gkp
γm

∑
i kicix

i

∑
i cix

i
≈ Gkp

γm

kncnx
n

1 + cnxn
=
Gkpkn
γm

xn

(1/cn) + xn
(2.18)

which is the desired form modulo parameter redefinitions. But it should be kept in mind that
such an approximation may not always be appropriate. In any case, what we have certainly
learned is that quite a bit of biology can be hidden behind these Hill function terms.

This takes care of the non-fundamental propensity function problem; in essence, the so-
lution is just to consider a different, more biologically grounded problem (usually with many
more variables and parameters). What about the fact that this ODE model is deterministic
and involves a continuous rather than discrete variable? This problem is, surprisingly, more
easily dispatched.

As mentioned earlier, an ODE model either represents population-level averages or single
cell dynamics in a certain limit. Both experimentally and biologically, the limiting behavior
of single cell dynamics is both more relevant and more interesting (that is, in real organisms
we have individual cells interacting, rather than hypothetical average cells interacting). What
is the relevant limit?

It is just this issue that Gillespie treated in his analysis of the chemical Langevin equation
[5], and of associated approximations like the large system volume limit [6]. We will discuss
this in more detail in Chapter 5, but for now let us sketch the core idea.

When we are interested in relatively long time scales, so that many chemical reactions
happen within a ‘small’ amount of time τ , to good approximation we can write

ẋ = f(x) + g(x)[noise] (2.19)

where f(x) and g(x) depend on the CME being considered, and where the [noise] term
usually represents fluctuations that are to good approximation a sum of Gaussian white
noise terms. Especially as the number of x molecules gets larger, these fluctuations are less
and less important compared to the average (deterministic) behavior, which means that an
ODE model is a good approximation.
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That covers the relationship between the CME and ODE models. What about other
kinds of models? Although we emphasized earlier that it is not important for our purposes
to track the spatial locations of individual molecules, the CME subsumes reaction-diffusion
models, which do, as a special case. One can accomplish this by imagining a lattice on which
chemical reactions can happen, and then taking the limit of infinitesimally small lattice
spacing. For example, consider a system of molecules on a one-dimensional lattice that can
randomly (i) diffuse, (ii) degrade, and (iii) be produced from a source at a specific location.
This can be modeled using the CME

∂P (X, t)

∂t
= α [P (..., X0 − 1, ..., t)− P (X, t)]

+
∑

i

D

(∆x)2
[(Xi + 1)P (..., Xi + 1, Xi+1 − 1, ..., t)−XiP (X, t)]

+
D

(∆x)2
[(Xi + 1)P (..., Xi−1 − 1, Xi + 1, ..., t)−XiP (X, t)]

+ γ [(Xi + 1)P (..., Xi + 1, ..., t)−XiP (X, t)]

(2.20)

where P (X, t) is the probability that the system has state X = (..., X−2, X−1, X0, X1, X2, ...)
at time t, i.e. that lattice site i has Xi ∈ N molecules at time t. As it is now, this CME tracks
the probability that the system has any possible number and configuration of molecules
in space. If we think about the diffusion equation as describing distributions of spatial
arrangements, this CME describes the distribution of distributions of spatial arrangements.

Usually, this is much more information than we want. If we are just interested in tracking
how the most typical spatial arrangement of molecules evolves, we can use the mass action
prescription and consider the ODEs

Ẋi =
D

(∆x)2
[Xi+1 − 2Xi +Xi−1] + αδi,0 − γXi . (2.21)

If we rewrite this in terms of the lattice spacing ∆x, we must make the substitutions

i→ i∆x

Xi → X(i∆x)∆x = X(x)∆x .
(2.22)

Then our ODEs read

∂X(x, t)

∂t
=

D

(∆x)2
[X(x+ ∆x, t)− 2X(x, t) +X(x−∆x, t)] + α

δi∆x,0
∆x

− γX(x, t) . (2.23)

Taking the ∆x→ 0 limit yields the partial differential equation (PDE)

∂X(x, t)

∂t
= D

∂2X(x, t)

∂x2
+ αδ(x)− γX(x, t) (2.24)

which is an example of a reaction-diffusion equation. The nice thing about this approach
to reaction-diffusion equations is that we understand exactly how the above equation relates
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to an interpretable microscopic model, and can adjust our derivation to take more features
into account if desired (for example, we could take fluctuations about this distribution into
account as we did in Eq. 2.19).

In a different direction, we can consider the relationship between the CME and very
coarse models, like Boolean networks and Markov models on finitely many states. The
appropriateness of these kinds of approximations is usually determined by the attractor
structure of our CME model, i.e. the regions of state space that will be occupied (in the
long time limit) with high probability.

In the case of Markov models on finitely many states, our coarse graining procedure
essentially lumps together all states sufficiently close to an attractor. For example, one can
model stem cell development as a Markov chain by considering a model involving random
transitions between cell states:

Stem
kf

�
kr

Differentiated . (2.25)

An effective model like this may be appropriate if dynamics are dominated by two attractors
(which biologically correspond to the different cell types), and if transitions between them
happen on reasonable time scales. In principle, given a precise assignment of the microscopic
states x to the macroscopic states ‘Stem’ and ‘Differentiated’, the CME model allows one
to compute kr and kf from first principles. In practice, this is hopelessly difficult, and such
parameters are usually treated as phenomenological numbers to be fit by experiment.

Boolean networks (either their deterministic or stochastic variants) work in much the
same fashion. One lumps together states by treating molecule numbers as either ‘high’ or
‘low’, so that a state space NN reduces1 to a state space 2N . Exactly where to make the
cutoff depends on the details of the dynamics; in the case of a model like Eq. 2.9, the
threshold concentration c would be the canonical choice since it corresponds to the half-max
of the Hill function, and divides the ‘high’ attractor from the ‘low’ attractor. Then, instead
of computing how an ODE changes in time, we create update rules (in either discrete or
continuous time, and either synchronous or asynchronous) that approximately represent our
ODEs or stochastic differential equations. For instance: if x is in the high state, then it will
remain in the high state. If y is in the high state and x is in the high state, then x will
next be in the low state. Such approximations, while crude, are probably necessary if one
wants to examine large networks involving on the order of ten or a hundred genes. They
have the advantage of being easier to compute than CME or ODE models, and much easier
to parameterize.

A summary of some relationships between CME models and other modeling approaches
is presented in Table 2.2. In the next chapter, we will move on to discussing how to work
with the CME in practice—if we cannot actually solve it or use it to compute observables,
all of this high-level discussion will have been in vain.

1Of course, one can make finer divisions of state space, for example by including a ‘medium’ state. This
is just to illustrate the idea.
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Modeling approach Relationship to CME

Non-fundamental terms Arise from approximating a more complicated CME
with fundamental terms, and can often be justified by
appeal to the quasi steady state approximation.

Stochastic differential equations Time scale long enough for many chemical reactions to
happen in a small amount of time τ ; see discussion of
chemical Langevin equation in Chapter 5. Can also
work in terms of a system size expansion, but this is
less reliable.

Ordinary differential equations SDE approximation + large enough molecule numbers
for fluctuations to be negligible.

Reaction-diffusion equations Write down CME for diffusion and reactions on a lat-
tice, consider the corresponding ODEs, and take the
lattice spacing to zero.

Markov models on finitely many
states

Coarse grain system according to attractors, e.g. if a
state x is ‘closest’ to attractor A, identify x with A.
Transition probabilities between coarse grained states
in principle computable from CME.

Boolean networks Coarse grain system according to characteristic concen-
tration thresholds, e.g. if x ≥ c, identify x with the
‘high’ state, or if x < c, identify x with the ‘low’ state.
Approximate CME/SDE/ODE update rules by simpler
Boolean variants. May also approximate time as dis-
crete.

Table 2.2: A summary of the relationships between the CME and other modeling approaches
sketched in this section.
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Chapter 3

Basic tools. Or: the chemical master equation in practice

3.1 First examples

In the previous chapter, we described our underlying philosophy, along with the ontology
of the chemical master equation: it describes systems whose dynamics are discrete and
stochastic, and cannot predict what will happen, but rather what is more or less likely to
happen. It is especially suited for modeling how the numbers of RNA and proteins change
within single cells.

As we described earlier, a CME model is defined by specifying four things:

1. a list of chemical species

2. a list of things that can happen to them

3. parameters/propensity functions that quantify how frequently they happen

4. initial conditions.

If one thinks about the CME dynamics like a play, the chemical species list specifies the
‘actors’, the chemical reaction list specifies the ‘action’, and the parameters specify stage
directions (when and how often different things happen). A simple example of a CME model,
involving two species and three reactions, is pictured in Fig. 3.1. The model describes RNA
that is transcribed, spliced, and degraded.

Actors     List of things that can happen    Parameters/propensities

∅ −→

−→ ∅
−→

production rate: 

splicing rate:

degradation rate:

α

β

γ

Figure 3.1: Requirements for specifying a CME model: a list of chemical species, and a list
of parameterized reactions. Pictured is a model involving RNA transcription, splicing, and
degradation.

This has all been very abstract so far; let us take a look at a few simple examples.
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Example 1: Some simple CME models

The pure birth process:
R1 : ∅ α−→ X (3.1)

• List of chemical species: {X}

• List of reactions: {R1}

• System state: x ∈ {0, 1, 2, ...}

• Propensity functions: a1(x) = α

• Stoichiometry vectors: ν1 = +1

The chemical birth-death process:

R1 : ∅ α−→ X

R2 : X
γ−→ ∅

(3.2)

• List of chemical species: {X}

• List of reactions: {R1, R2}

• System state: x ∈ {0, 1, 2, ...}

• Propensity functions: a1(x) = α, a2(x) = γ x

• Stoichiometry vectors: ν1 = +1, ν2 = −1

Transcription/splicing/degradation (pictured in Fig. 3.1):

R1 : ∅ α−→ X1

R2 : X1
β−→ X2

R3 : X2
γ−→ ∅

(3.3)

• List of chemical species: {X1, X2}

• List of reactions: {R1, R2, R3}

• System state: x = (x1, x2) ∈ N2

• Propensity functions: a1(x) = α, a2(x) = β x1, a3(x) = γ x2

• Stoichiometry vectors: ν1 = (+1, 0), ν2 = (−1,+1), ν3 = (0,−1)
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3.2 Simulating the CME

One way to solve a CME model (and, hence, determine its experimental predictions) is to
simulate it many times, and use the simulation trajectories you found to compute the things
you care about, like averages and probability distributions.

There are several methods for simulating a single stochastic trajectory. The simplest is
the rejection sampling method, which involves taking small time steps of size ∆t and checking
whether or not a reaction happens at each time step (and if so, which one).

Using the fact that our propensity functions tell us the probability that any given reaction
happens within a small amount of time ∆t, we have the following algorithm.

Rejection sampling algorithm

i Generate a uniformly distributed random number r between 0 and 1.

ii If r < a1(x)∆t, the first reaction happens. Update x→ x + ν1, t→ t+ ∆t.
If
∑k−1

j=1 aj(x)∆t ≤ r <
∑k

j=1 aj(x)∆t, reaction k (for some 2 ≤ k ≤ M) happens.
Update x→ x + νk, t→ t+ ∆t.
If r ≥∑M

j=1 aj(x)∆t, no reaction happens. Update t→ t+ ∆t.

iii Repeat.

As one might expect, this algorithm is incredibly wasteful, because for most time steps
(assuming ∆t is sufficiently small) nothing will happen. Is there a better way? Fortunately
there is, thanks to the pioneering work of Gillespie [1, 2, 3]. The core idea of the Gillespie
algorithm is to note that what we’d really like to know is when the next reaction happens,
along with the probability that it is some particular reaction; advancing the system when it
isn’t changing is a waste of time and computational resources.

The first step towards discovering the Gillespie algorithm involves using what we know
so far to write down the probability that no reaction happens in a small amount of time ∆t.
Since aj(x)∆t is the probability that reaction j happens, the probability that no reaction
happens is

1−
M∑

j=1

aj(x)∆t ≈ e−
∑M
j=1 aj(x)∆t (3.4)

where we have used the fact that the left-hand side is equal to the first-order Taylor expansion
of the right-hand side for sufficiently small ∆t. Since no reaction happened in the small time
∆t, x did not change; the probability that no reaction happens in the next small amount of
time ∆t either is

e−
∑M
j=1 aj(x)∆te−

∑M
j=1 aj(x)∆t = e−2

∑M
j=1 aj(x)∆t (3.5)
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i.e. the expression above multiplied by itself. The probability that no reactions happen for
an amount of time τ equal to taking n small time steps (τ = n∆t) is

p(wait τ) = e−
∑M
j=1 aj(x)∆t · · · e−

∑M
j=1 aj(x)∆t = exp

{
−

M∑

j=1

aj(x)τ

}
. (3.6)

We can write this more succinctly by defining

a0(x) :=
M∑

j=1

aj(x) . (3.7)

Now that we know the probability that no reaction happens for some (not necessarily small)
length of time τ , what’s the probability that we have to wait a length of time τ and a
reaction happens within a small amount of time ∆t afterward? In other words, what’s the
chance that we have to wait for a length of time τ until the next reaction?

Since the jth propensity function tells us the probability (per unit time) that reaction j
happens within a small amount of time ∆t, the probability that we have a wait time τ and
the next reaction is reaction j is given by

p(wait τ and j happens next) = aj(x) e−a0(x)τ

=
aj(x)

a0(x)
· a0(x)e−a0(x)τ

= p(choose reaction j) · p(wait until τ)

(3.8)

where the first factor can be interpreted as the probability we pick reaction j to happen
next, and the second factor can be interpreted as the probability that our wait time is τ .

This yields the celebrated Gillespie algorithm: we can simulate our system by drawing
our wait time from the exponential distribution above, and we can draw from a uniform
distribution to determine which reaction fires next.

Although modern random sampling software packages have functions that allow one to
draw from exponential distributions directly, we note that the inverse transform method for
doing this generalizes to more complicated situations (and will be necessary when we consider
time-dependent propensity functions). In particular, if the wait time τ ∼ Exp(a0), then we
can accurately sample τ by drawing a uniformly distributed random variable u ∼ Unif[0, 1]
and computing

τ =
1

a0(x)
log

(
1

u

)
. (3.9)

The formula above comes from inverting the cumulative distribution function for an expo-
nential distribution (i.e. F (τ) = 1 − e−a0τ ). For future reference, we record the Gillespie
algorithm in its entirety below.
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Gillespie algorithm:

i Compute a0(x) :=
∑M

j=1 aj(x).

ii Draw a random number τ ∼ Exp(a0(x)); this is the length of time between the
previous reaction and the next reaction.

iii Draw a random number r ∼ Unif[0, 1]. If 1
a0

∑k−1
j=1 aj ≤ r < 1

a0

∑k
j=1 aj, we say that

reaction j fired. (Interpret
∑0

j=1 aj as zero.)

iv Update the state of the system: (x, t)→ (x + νj, t+ τ).

v Repeat.

Example 2: Simulating the pure death process

Consider the system with just one reaction, a ‘death’ reaction, so that its reaction list reads

X
γ−→ ∅ . (3.10)

This simple model is sometimes used to describe radioactive decay. Assuming γ is time-
independent for simplicity, the propensity function for this system is

a(x) := γ x (3.11)

where x is the current number of X molecules, and the stoichiometry vector is ν = −1. Note
the x-dependence; intuitively, the x-dependence comes from the fact that the death reaction
can’t happen if there are no X molecules left (i.e. a(0) = 0). Similarly, the probability that
at least one molecule disappears within a small amount of time ∆t increases when there are
more molecules present. Let us simulate this system in two ways: first using the rejection
sampling method, and then using the Gillespie algorithm.

Rejection sampling method

Assume that γ = 1, and that our initial number of molecules is x0 = 100. First, we
choose some small time step ∆t; since we will be treating γx∆t as the probability that death
happens in a given time step, we need γx0∆t to be less than 1. We will somewhat arbitrarily
pick ∆t = 0.005, so that γx0∆t = 0.5.

At each time step, we will first compute the probabilities that (i) death happens, and
that (ii) nothing happens. Then we will draw a random number u ∼ Unif[0, 1], and use
that to decide which of the two possibilities happens for that time step. The table below
summarizes the results of the first few steps of an example rejection sampling simulation.
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We have used R(death) to denote the probability region that corresponds to picking that the
death reaction happens, and R(nothing) to denote the probability region that corresponds
to picking that nothing happens.

Step Prev. x R(death) R(nothing) u Result Time x
0 0 100
1 100 0 - 0.5 0.5 - 1 0.948 nothing 0.005 100
2 100 0 - 0.5 0.5 - 1 0.227 death 0.01 99
3 99 0 - 0.495 0.495 - 1 0.594 nothing 0.015 99
4 99 0 - 0.495 0.495 - 1 0.428 death 0.02 98
5 98 0 - 0.49 0.49 - 1 0.764 nothing 0.025 98
6 98 0 - 0.49 0.49 - 1 0.003 death 0.03 97
7 97 0 - 0.485 0.485 - 1 0.357 death 0.035 96
8 96 0 - 0.48 0.48 - 1 0.91 nothing 0.04 96

From this table, we can immediately notice the problem with a rejection sampling ap-
proach: there are a lot of simulation steps where nothing happens! This problem would have
been even worse had we chosen a smaller value for ∆t.

Gillespie algorithm

Assume again that γ = 1 and x0 = 100. The Gillespie algorithm does not require us to
choose a step size ∆t.

This time, each step of the simulation requires us to decide one thing: how long until
the next reaction. Because our model has only one reaction, the next reaction is always
guaranteed to be death. In order to decide when the next reaction happens, we draw a
random number u ∼ Unif[0, 1], and compute

τ =
1

γ x
log

(
1

u

)
. (3.12)

Notice that τ = ∞ when x = 0; in other words, we must wait an infinitely long amount of
time for the next reaction to happen when x = 0. This is as intended, because no more death
reactions are possible when there are no more molecules left. The table below summarizes
the results of the first few steps of an example Gillespie algorithm run.
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Step Prev. x u Wait time Time x
0 0 100
1 100 0.948 0.001 0.001 99
2 99 0.227 0.015 0.016 98
3 98 0.594 0.005 0.021 97
4 97 0.428 0.009 0.03 96
5 96 0.764 0.003 0.032 95
6 95 0.003 0.062 0.094 94
7 94 0.357 0.011 0.105 93
8 93 0.91 0.001 0.106 92

Because something is guaranteed to happen during each step of the Gillespie algorithm,
this approach tends to run much faster in practice. Sample results for each approach are
pictured below: as expected, they agree with each other.
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Pure death process Gillespie simulation

3.2.1 Simulating CMEs with time-dependent parameters

The Gillespie algorithm also works given reactions with time-dependent parameters, although
working with them slightly more complicated. In that case, the waiting time distribution
reads

p(τ) = a0(x, t+ τ) exp

{
−
∫ t+τ

t

a0(x, t′) dt′
}
, (3.13)

which we can learn by slightly generalizing the previous argument.
Since we are assuming the propensity functions aj(x, t

′) are time-dependent, this waiting
time distribution will typically not be a simple exponential distribution. In fact, the integral
that appears in the argument of the exponential is generally not possible to evaluate in closed
form.
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But, in principle, we can use the inverse transform trick we described above to sample
this distribution. This time, we must invert the cumulative distribution function for this
more complicated distribution, which reads

F (τ) = 1− exp

{
−
∫ t+τ

t

a0(x, t′) dt′
}
. (3.14)

Doing so, we can draw a u ∼ Unif[0, 1] and find the value of τ that satisfies

∫ t+τ

t

a0(x, t′) dt′ = log

(
1

u

)
. (3.15)

Numerically, this can be done using ‘shooting’-type methods, where several values of τ are
tried. As the name implies, if the value you tried is too high, adjust the next trial value to be
smaller; if the value you tried it too small, adjust the next trial value to be larger. Eventually,
you should find a value of τ that is correct up to a desired error tolerance. But there may
be other methods that work faster when more is known about the time-dependence of the
propensity functions.

For future reference, we record the Gillespie algorithm for time-dependent reaction rates
below.

Gillespie algorithm (time-dependent reaction rates):

i Draw a random number r1 ∼ Unif[0, 1]. Find the value of τ that satisfies

∫ t+τ

t

a0(x, t′) dt′ = log

(
1

r1

)
. (3.16)

This is the length of time between the previous reaction and the next reaction.

ii Draw a random number r ∼ Unif[0, 1].
If 1

a0(t+τ)

∑k−1
j=1 aj(t+ τ) ≤ r < 1

a0(t+τ)

∑k
j=1 aj(t+ τ), we say that reaction j fired.

iii Update the state of the system: (x, t)→ (x + νj, t+ τ).

iv Repeat.
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3.3 The CME as a matrix equation

Using variants of the Gillespie algorithm presented in the previous section, we can simulate
any CME we like in order to determine how a system will behave. But this may be compu-
tationally expensive or slow, and it would be nice to have alternative methods that do not
depend on simulations. The most naive approach to working with the CME is treating it as
a matrix ODE. This works perfectly well when the system’s state space is finite, as in the
case of the gene that randomly switches between two states:

G1
k21−−→ G2

G2
k12−−→ G1

(3.17)

whose dynamics are described by the CME

∂P (1, t)

∂t
= − k21P (1, t) + k12P (2, t)

∂P (2, t)

∂t
= k21P (1, t)− k12P (2, t)

(3.18)

where P (1, t) is the probability that the gene is in state 1 at time t, and P (2, t) is the
probability that the gene is in state 2 at time t. If we define the state vector

~P (t) :=

(
P (1, t)
P (2, t)

)
, (3.19)

then we can write the CME in the form

~̇P = H ~P , (3.20)

where H is the matrix

H :=

(
−k21 k12

k21 −k12

)
. (3.21)

By analogy with quantum mechanics, we will call this matrix the Hamiltonian, or the Hamil-
tonian operator. We will have much more to say about this system in Chapter 6, but for
now we will just point out that it can be solved using a variety of conventional methods. For
example, we can exponentiate H to find ~P (t), or we can diagonalize H and write down a
solution in terms of its eigenvectors. If we are only interested in the steady state solution, as
is often the case, we can use something like Gaussian elimination to compute the nullspace
of H.

What if the state space of one’s system is not finite (which is true most of the time)? For

the sake of concreteness, consider the birth-death process (∅ α−→ X, X
γ−→ ∅), whose CME

reads

∂P (x, t)

∂t
= α [P (x− 1, t)− P (x, t)] + γ [(x+ 1)P (x+ 1, t)− xP (x, t)] . (3.22)
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The infinite-dimensional matrix H in this case is

H =




−α γ
α −α− γ 2γ

α −α− 2γ 3γ
. . .


 . (3.23)

One thing we could try would be to choose some cutoff state C, and approximate the so-
lution P (x, t) by treating H like an (C + 1) × (C + 1) matrix. For C sufficiently large (in
particular, somewhat larger than where most of the support of the probability distribution
is concentrated), we would expect this approximation to work fairly well. In the case of
the birth-death process, and other processes whose molecule numbers do not tend to in-
crease without bound, this approach does work well. In the case of something like the pure
birth process, it will not, because there will always be some time after which most of the
probability distribution is concentrated at states y > C.

This idea, plus a few technical tricks for carefully estimating the error introduced by the
approximation, is the basis of the finite state projection approach [4, 5, 6] to solving the
CME. Introduce a cutoff for state space, then solve using standard matrix ODE methods
(especially sparse matrix exponentiation algorithms, which apply because H tends to consist
mostly of zeros). The problem is that the method does not scale well as one considers larger
state spaces. If there are N chemical species, one needs N cutoffs C1, ..., CN , and the size of
the matrix will be (C1 + 1)× · · · × (CN + 1); if each Ci is on the order of ten or a hundred,
this number gets large very quickly. While there are various ideas for optimizing finite state
projection algorithms, the fundamental limitation for treating H like a matrix remains the
sheer computational expense of dealing with very large matrices.

3.4 Conventional analytic approaches to solving the CME

We may as well face up to the fact that H is infinite-dimensional, and try to develop methods
that respect this fundamental feature of the CME. Just as there are methods for solving PDEs
other than discretization, we would like analogous theoretical methods for solving the CME.
In this section, we will illustrate a few approaches in the context of the birth-death process,
whose CME is Eq. 6.29.

3.4.1 Method of guessing

Much of what we know about how to solve differential equations comes from systematic
guessing—and the method can also work here. It works best for finding the steady state
probability distribution Pss(x), which is governed by the equation

0 = α [Pss(x− 1)− Pss(x)] + γ [(x+ 1)Pss(x+ 1)− xPss(x)] . (3.24)
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Rearranging, we have the simple recurrence relation

Pss(x+ 1) =

(
x+ α

γ

)
Pss(x)− α

γ
Pss(x− 1)

(x+ 1)
(3.25)

whose beginning (x = 0) looks like

Pss(1) =
α

γ
P (0) . (3.26)

Continuing iteratively, we can find

Pss(2) =
(α/γ)2 P (0)

2
, Pss(3) =

(α/γ)3 P (0)

3 · 2 , ... (3.27)

This suggests the ansatz

Pss(x) = (const.)
(α/γ)x

x!
(3.28)

which substitution into Eq. 3.25 shows is correct. Normalizing so that the total probability
is 1, we obtain a Poisson distribution:

Pss(x) =
(α/γ)x e−α/γ

x!
. (3.29)

This method for computing Pss works quite well when one is considering relatively simple one-
dimensional (i.e. one species) systems. For systems involving more species, the recurrence
relation will likely be hard to solve, so one must make a bold guess and hope for the best.

Knowing that the steady state distribution of the birth-death process is Poisson may lead
us to boldly extrapolate, and try a function

Pss
?
=
µ(t)xe−µ(t)

x!
(3.30)

for solving the full distribution. Substituting into Eq. 6.29 and simplifying yields the con-
straint

µ̇ = α− γµ (3.31)

from which we obtain that

µ(t) = µ0e
−γt +

α

γ

(
1− e−γt

)
. (3.32)

So we have solved Eq. 6.29 for at least some initial conditions (e.g. P0(x) = δx,0, which is
a degenerate Poisson distribution and corresponds to µ0 = 0), but we have not solved it in
general. The general form of the solution for arbitrary initial conditions, even for a problem
this simple, is hard to guess.
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3.4.2 Method of generating functions

Suppose we want a more principled approach. One idea is to convert the differential-
difference equation into something more familiar, like a PDE. This can be done by considering
the generating function

ψ(z, t) :=
∞∑

x=0

P (x, t)zx (3.33)

where z ∈ C. If we can compute ψ(z, t) for z = eiθ (that is, for z on the complex unit circle),
then we can compute P (x, t) via an inverse Fourier transform, since

∫ ∞

−∞

dθ

2π
e−iθxψ(θ, t) =

∑

y

P (y, t)

∫ ∞

−∞

dθ

2π
e−iθ(x−y) =

∑

y

P (y, t)δ(x− y) = P (x, t) (3.34)

where we have used the usual integral representation of the Dirac delta function. Substituting
the definition of the generating function into Eq. 6.29 and simplifying yields the PDE

∂ψ(z, t)

∂t
= α(z − 1)ψ(z, t)− γ(z − 1)

∂ψ(z, t)

∂z
. (3.35)

This can be solved using techniques like the method of characteristics, which supposes that
the solution lies along some parameterized curve, so that ψ(z, t) = ψ(Z(s), T (s)) for some
value of s. Suppose this were true, and that

dψ

ds
=
∂ψ

∂T

∂T

∂s
+
∂ψ

∂Z

∂Z

∂s
=
∂ψ

∂T
+
∂ψ

∂Z
γ(z − 1) . (3.36)

Then our PDE becomes
dψ

ds
= α(Z(s)− 1)ψ , (3.37)

which is relatively simple to solve. The constraints in Eq. 3.36 force

∂T

∂s
= 1

∂Z

∂s
= α(Z − 1) .

(3.38)

Solving for T (s) and Z(s), we find

T (s) = s

Z(s)− 1 = Ceγs
(3.39)

where C is an arbitrary constant, and we have arbitrarily chosen T (0) = 0. Since t = T (t),
T (0) corresponds to t = 0, so s ∈ [0, t]. We must also have Z(s = t) = z, so that (z, t) =
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(Z(s = t), T (s = t). Going back to Eq. 3.37, pushing forward yields

dψ

ψ
= αCeγs

=⇒
∫ t

0

dψ

ψ
ds = αC

∫ t

0

eγsds

=⇒ log
ψ(Z(t), T (t))

ψ(Z(0), T (0))
=
α

γ
C
[
eγt − 1

]
=
α

γ
(Z(t)− 1)e−γt

[
eγt − 1

]

=⇒ ψ(z, t) = ψ(Z(0), 0) exp

{
α

γ
(z − 1)

(
1− e−γt

)}
.

(3.40)

The initial condition for the generating function depends on the initial condition for P (x, t);
because we can construct the solution for P (x, t) provided that we know the transition
probability P (x, t;x0, 0) for arbitrary x0 ∈ N, let us try to compute the transition probability
by supposing P0(x) = δx,x0 , so that ψ(z, 0) = zx0 . Finally, we have

ψ(z, t) = Z(0)x0 exp

{
α

γ
(z − 1)

(
1− e−γt

)}

=
[
1 + (z − 1)e−γt

]x0 exp

{
α

γ
(z − 1)

(
1− e−γt

)}
.

(3.41)

In order to recover P (x, t), we can either perform an inverse Fourier transform or match
coefficients (i.e. P (x, t) corresponds to the coefficient of zx in Eq. 3.41). Because this
problem is relatively simple, let us do the latter. We have

ψ(z, t) =
[
(1− e−γt) + ze−γt

]x0 exp

{
α

γ
(z − 1)

(
1− e−γt

)}

= e−
α
γ (1−e−γt)

x0∑

k=0

(
x0

k

)[
1− e−γt

]x0−k [e−γt
]k ∞∑

n=0

[
α
γ

(1− e−γt)
]n

n!
zn+k .

(3.42)

Cleverly reindexing and rearranging the sums, we obtain

ψ(z, t) = e−
α
γ (1−e−γt)

min(x,x0)∑

k=0

(
x0

k

)[
1− e−γt

]x0−k [e−γt
]k ∞∑

x=0

[
α
γ

(1− e−γt)
]x−k

(x− k)!
zx

=
∞∑

x=0

zx e−
α
γ (1−e−γt)

min(x,x0)∑

k=0

(
x0

k

)[
1− e−γt

]x0−k [e−γt
]k
[
α
γ

(1− e−γt)
]x−k

(x− k)!
,

(3.43)

so that our final answer for the transition probability is

P (x, t;x0, 0) = e−
α
γ (1−e−γt)

min(x,x0)∑

k=0

(
x0

k

)[
1− e−γt

]x0−k [e−γt
]k
[
α
γ

(1− e−γt)
]x−k

(x− k)!
. (3.44)
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As a sanity check, we note that if x0 = 0 (so that the initial condition is a degenerate Poisson
distribution), we recover a Poisson distribution with a mean given by Eq. 3.32 with µ0 = 0.

At this point, we should make several observations. First, despite the birth-death process
being ostensibly the simplest nontrivial and biologically relevant example of a CME model,
finding its complete time-dependent solution was not simple. We shall have more to say
about finding finding analytic solutions to the CME (e.g. in Chapter 4), but our difficulties
here do not bode well for more realistic problems involving more than one species and more
complicated interactions between species. Second, it would have been much easier to find
the steady state solution; starting from Eq. 3.35, we could have set ∂ψ/∂t = 0 and solved

∂ψss(z)

∂z
=
α

γ
ψss(z) (3.45)

quickly to recover the Poisson distribution answer. That steady state solutions are signifi-
cantly easier to find is also a generic fact about solving the CME.

Overall, this is the most widely used method, and it is generally effective (at least, for
sufficiently simple systems that are amenable to an analytic approach in the first place).
If one does not have a good guess prepared, trying to solve (or approximately solving) a
generating function PDE like Eq. 3.35 is a good thing to try.

3.4.3 Method of Poisson representation

This method is closely related to the previous one, in the sense that it also involves converting
the CME to a possibly more tractable PDE. The idea [7, 8, 9] is that we try to write P (x, t)
as a superposition of (typically infinitely many) Poisson distributions, i.e.

P (x, t) =

∫ ∞

0

dz
zx

x!
e−zq(z, t) (3.46)

for some function q(z, t). We convert Eq. 6.29 into an equation describing the time evolution
of q(z, t), solve for q(z, t), and then Eq. 3.46 provides our solution for P (x, t). Given a
sufficiently well-behaved q(x, t), we may also hope to manipulate Eq. 3.46 to get rid of the
integral, so that our solution is even simpler-looking. Note that

P (x− 1, t) =

∫ ∞

0

zx−1

(x− 1)!
e−zq(z, t)

=

∫ ∞

0

∂

∂z

[
zx

x!

]
e−zq(z, t)

=

∫ ∞

0

zx

x!

[
− ∂

∂z

(
e−zq(z, t)

)]

=

∫ ∞

0

zx

x!
e−z
[
q(z, t)− ∂q(z, t)

∂z

]
.

(3.47)
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In other words, in converting the CME into an equation for q(z, t), we can substitute P (x−
1, t)→ q − ∂q

∂z
. By similar computations, we have:

P (x− 1, t)− P (x, t)→ −∂q(z, t)
∂z

(x+ 1)P (x+ 1, t)− xP (x, t)→ q(z, t) + z
∂q(z, t)

∂z
,

(3.48)

so q(z, t) satisfies the PDE

∂q(z, t)

∂t
= −α∂q(z, t)

∂z
+ γ

(
q(z, t) + z

∂q(z, t)

∂z

)
, (3.49)

which we can rewrite as

1

γ

∂q(z, t)

∂t
− (z − µ)

∂q(z, t)

∂z
= q(z, t) . (3.50)

This is another PDE we can solve by the method of characteristics. Suppose q(z, t) =
q(Z(s), T (s)), and obtain the constraints

∂T (s)

∂s
=

1

γ

∂Z(s)

∂s
= µ− Z(s)

(3.51)

which we can easily solve to find

T (s) =
s

γ

Z(s) = Z0e
−s + µ

(
1− e−s

) (3.52)

where we have arbitrarily chosen T (0) = 0, and Z0 is an arbitrary constant. Since T (s =
γt) = t, we must have Z(s = γt) = z. Also, if we the time corresponding to our initial
condition is zero, we have s ∈ [0, γt]. Continuing on,

dq

ds
= γq

=⇒
∫ γt

0

dq

q
=

∫ γt

0

ds

=⇒ log
q(z, t)

q(Z(0), 0)
= γt

=⇒ q(z, t) = q(Z(0), 0)eγt .

(3.53)

Noting that

z = Z(γt) = Z0e
−γt + µ

(
1− e−γt

)
=⇒ Z0 = eγt

[
z − µ

(
1− e−γt

)]
, (3.54)
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all we have to do is determine q(z, 0) based on our initial condition. Assuming we are
interested in the transition probability P (x, t;x0, 0), we want P0(x) = δx,x0 . But it is not
obvious how to satisfy

δx,x0 =

∫ ∞

0

dz
zx

x!
e−zq(z, 0) . (3.55)

An inspired choice turns out to be

q(z, 0) =

∫ ∞

−∞

dp

2π
(1 + ip)x0e−izp (3.56)

since

δx,x0 =

∫ ∞

0

dz

∫ ∞

−∞

dp

2π

zx

x!
(1 + ip)x0e−izp−z (3.57)

is an integral representation of the Kronecker delta function (incidentally, it is one we will
use later in Chapter 4). Then our solution for q(z, t) becomes

q(z, t) = eγt
∫ ∞

−∞

dp

2π
(1 + ip)x0e−iZ(0)p

= eγt
∫ ∞

−∞

dp

2π
(1 + ip)x0e−ie

γt[z−µ(1−e−γt)]p .

(3.58)

Hence, using Eq. 3.46,

P (x, t;x0, 0) = eγt
∫ ∞

0

dz
zx

x!
e−z
∫ ∞

−∞

dp

2π
(1 + ip)x0e−ie

γt[z−µ(1−e−γt)]p . (3.59)

In this case, we can manipulate the integral to simplify it. Change variables to

w := eγt
[
z − µ

(
1− e−γt

)]
(3.60)

so that dw = eγtdz, and our expression becomes

P (x, t;x0, 0) = e−µ(1−e−γt)
∫ ∞

wmin

dw
[e−γtw + µ(1− e−γt)]x

x!
e−e

−γtw
∫ ∞

−∞

dp

2π
(1 + ip)x0e−ipw

(3.61)
where wmin := −µ (eγt − 1) ≥ 0. We can use a trick to write

∫ ∞

−∞

dp

2π
(1 + ip)x0e−ipw = ew

∫ ∞

−∞

dp

2π
(1 + ip)x0e−(1+ip)w

= ew
(
− ∂

∂w

)x0
∫ ∞

−∞

dp

2π
e−ipw

= ew
(
− ∂

∂w

)x0

e−wδ(w) .

(3.62)
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Integrating by parts, we have

e−µ(1−e−γt)
∫ ∞

wmin

dw
1

x!

(
∂

∂w

)x0 {[
e−γtw + µ(1− e−γt)

]x
e(1−e−γt)w

}
e−wδ(w)

= e−µ(1−e−γt)
x∑

k=0

(
x

k

)(
e−γt

)k [
µ(1− e−γt)

]x−k 1

x!

∫ ∞

wmin

dw
1

x!

(
∂

∂w

)x0 {
wke(1−e−γt)w

}
e−wδ(w) .

(3.63)

Since
∫ ∞

wmin

dw
1

x!

(
∂

∂w

)x0 {
wke(1−e−γt)w

}
e−wδ(w) =

x0!

(x0 − k)!

[(
1− e−γt

)]x0−k (3.64)

provided k ≤ x0, and zero otherwise, our final answer is

P (x, t;x0, 0) = e−µ(1−e−γt)
min(x,x0)∑

k=0

(
x

k

)(
e−γt

)k [
µ(1− e−γt)

]x−k 1

x!

x0!

(x0 − k)!

[(
1− e−γt

)]x0−k

(3.65)

which is the same as Eq. 3.44. One thing we should note is that, while it was not that hard
to derive Eq. 3.59, converting it into a more useful form was tedious. This seems to be a
generic feature of various methods for solving the CME.

3.4.4 Method of eigenfunction expansion

This method should be familiar from the study of PDEs. The idea is that we find the
eigenfunctions of H, expand the solution in terms of them (yielding a Fourier-like series),
and exploiting some kind of orthogonality property of the eigenfunctions to compute the
coefficients of the solution (a la exploiting the orthogonality of sines and cosines to compute
Fourier coefficients).

Eigenfunction expansion can work, as we will see shortly, but oftentimes trying to find
eigenfunctions is no less difficult than solving the full problem. Even if it is, one can run
into issues in computing the Fourier-like coefficients of the solution if one has not established
an orthogonality property satisfied by the eigenfunctions. And even if the method works, it
may be because one happens to get lucky, and identify the eigenfunctions as a known class
of special functions (as we are about to see). In case it is not clear, this method is often
cumbersome and hard to generalize.

Consider again the birth-death process, and suppose that we already know that the
steady state distribution is Poisson with mean µ := α/γ. The first step of this method is to
write

P (x, t) = Q(x, t)Pss(x) (3.66)

and substitute this ansatz into the CME, Eq. 6.29. Doing so, we find

∂Q(x, t)

∂t
= α [Q(x+ 1, t)−Q(x, t)] + γx [Q(x− 1, t)−Q(x, t)] (3.67)
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which is a sort of mirror image of the CME (notice especially how the x+ 1 terms and x− 1
terms swapped relative to the parameters they were next to in Eq. 6.29). Now, since we are
looking for eigenfunctions, we write

Q(x, t) = QE(x)e−Et , (3.68)

and substitute to find

− EQE(x) = α [QE(x+ 1)−QE(x)] + γx [QE(x− 1)−QE(x)] . (3.69)

At this point, we have two tasks: find the allowed values of E, and determine each of the
functions QE(x). Let us deal with the allowed values of E first. Because the long time limit
of the system’s dynamics exists, we need E > 0 (otherwise, Eq. 3.68 would blow up as we
take t→∞). Because, additionally, the long time limit of P (x, t) is a Poisson distribution,
we know that all moments exist. This should also be true of the eigenfunctions of H, the
functions QE(x)Pss(x).

One way to study this constraint is to consider the function

φ(z) :=
∞∑

x=0

(µz)x

x!
QE(x)e−µ (3.70)

analogous to the generating function we defined earlier, but with extra factors to make the
function on the inside match the Poisson distribution when z = 1. The purpose of introducing
this function, as with introducing the generating function before, is to convert Eq. 3.69 to a
more manageable PDE, and also to check to see if our finite moments constraint is satisfied.
When we take z derivatives of φ and set z = 1, we recover factorial moments:

〈x(x−1) · · · (x−k+1)〉 =
∂kφ(z)

∂zk

∣∣∣∣
z=1

=
∞∑

x=0

[x(x− 1) · · · (x− k + 1)]
µx

x!
QE(x)e−µ . (3.71)

After some algebra, we can find that φ(z) satisfies the PDE

E

γ
φ(z) = (z − 1)

(
∂φ(z)

∂z
− µφ(z)

)
(3.72)

which we can solve to find
φ(z) = eµ(z−1)(z − 1)E/γ (3.73)

where the arbitrary constant has been fixed to make the E = 0 case correspond to the
total probability of a Poisson distribution when z = 1 (i.e. φ(1) = 1). Now we can notice
something important: unless E/γ is a nonnegative integer, not all factorial moments will be
finite, because taking sufficiently many derivatives and setting z = 1 yields

∂kφ(z)

∂zk

∣∣∣∣
z=1

∼ 1

(z − 1)k−E/γ

∣∣∣∣
z=1

=∞ . (3.74)
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Hence, it must be that E/γ is a nonnegative integer, i.e. that the allowed energies are

En = γ n (3.75)

for n ∈ N. Because we have a countably infinite number of allowed energies, we can relabel
QE(x)→ Qn(x). Now we can proceed in two ways. Either we analyze our solution for φ(z)
(Eq. 3.73) to extract the functional form of Qn(x), which we could do to find that

Qn(x) = Cn(x, µ) =
n∑

k=0

(
n

k

)
(−1)n−kµ−k x(x− 1) · · · (x− k + 1) (3.76)

where Cn(x, µ) is the nth Charlier polynomial. Alternatively, we could substitute En = γn
into Eq. 3.69, and use prior special functions knowledge to notice that the recurrence relation
we obtain is satisfied by the Charlier polynomials. Either way, we have eigenfunctions Pn(x)
given by

Pn(x) ∝ Qn(x)Pss(x) = Cn(x, µ)Pss(x) . (3.77)

The Charlier polynomials satisfy an orthogonality property

∞∑

x=0

Cn(x, µ)Cm(x, µ)
µxe−µ

x!
= δn,m

n!

µn
(3.78)

which we could either prove ourselves, or look up. Finally, we can write the general solution
for P (x, t) as an eigenfunction expansion

P (x, t) =
∞∑

n=0

dnCn(x, µ)Pss(x)e−γnt (3.79)

whose coefficients are determined by the initial condition P (x, 0) = P0(x). By the orthogo-
nality property, we have

dn =
µn

n!

∞∑

x=0

Cn(x, µ)P0(x) . (3.80)

If we are interested in the transition probability P (x, t;x0, 0) again, then we choose P0(x) =
δx,x0 and find that

P (x, t;x0, 0) =
∞∑

n=0

µn

n!
Cn(x0, µ)Cn(x, µ)Pss(x)e−γnt . (3.81)

While this formula looks superficially different from our earlier solution (Eq. 3.44), one can
use properties of Charlier polynomials to show that they are actually the same.

It seems like a fairly generic feature of the CME that the eigenfunctions of H will be
discrete orthogonal polynomials times the steady state distribution. One also generally
expects that the eigenvalues λn of H (or equivalently, the allowed energies En = −λn) are
determined by the characteristic time scales of the problem—the degradation rate time scale
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fixed by γ, in this case. But in general, the eigenvalues need not be equally spaced as they
were here. In analyzing simple examples of bimolecular reaction networks, one quickly finds
examples of systems with En ∼ n2.

Again, we should emphasize that we would have been severely handicapped had we not
been able to identify the functions Qn as the Charlier polynomials and been able to draw
on the associated body of special functions knowledge. For a more complicated problem,
whose answer does not yield a known family of orthogonal polynomials, one must prove all
of their necessary properties from scratch in order to work with them. For example, it is a
nontrivial task to derive the orthogonal polynomial properties necessary to show that our
eigenfunction expansion agrees with Eq. 3.44.

3.5 Exotic analytic approaches to solving the CME

In the previous section, we described several typical analytic approaches to solving the CME.
In this section—and the rest of this thesis—we will explore the use of a few ‘exotic’ ones,
inspired by theoretical tools from quantum mechanics, that have various appealing features.

3.5.1 Path integrals

One of our primary tools will be the path integral, which expresses probability distributions
P (x, t) in terms of an infinite number of integrals. While this seems like it would not
making solving the problem any easier, there are various tricks for evaluating these integrals,
and there is one important advantage over a number of other methods: supposing one can
evaluate these integrals, solving for P (x, t) becomes relatively mechanical. Unlike in the
case of eigenfunction expansion, for example, we do not need any a priori special functions
knowledge to help us along. We only have to compute (usually relatively simple) integrals.

In this thesis, we will actually encounter several different kinds of path integrals: state
space path integrals, and coherent state path integrals. State space path integrals express
P (x, t) in terms of all possible paths through state space, while coherent state path integrals
express P (x, t) as a superposition of distributions in some reference class. In the case of
the CME, it is useful to try expressing P (x, t) as a superposition of infinitely many Poisson
distributions. This is the essence of the Doi-Peliti path integral approach, which is equivalent
to the Poisson representation approach we described earlier. Of course, we need not restrict
ourselves to Poisson distributions only; perhaps other distributions are better suited to
certain problems.

Let us briefly review the idea of the (state space) path integral from quantum mechanics.
The coherent state path integral from quantum mechanics, used to do things like write down
a path integral description of spins, is similar in spirit if not in detail, so we will not discuss
it here.
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For simplicity, consider a single particle in one dimension subject to a (time and momentum-
independent) potential V on the infinite line (−∞,∞). The Schrödinger equation reads

i~
∂ψ(x, t)

∂t
= Ĥψ(x, t)

=

[
p̂2

2m
+ V (x̂)

]
ψ(x, t)

= − ~2

2m

∂2ψ(x, t)

∂x2
+ V (x)ψ(x, t) ,

(3.82)

where Ĥ is the Hamiltonian operator, p̂ is the momentum operator, and x̂ is the position
operator. In Dirac’s bra-ket notation, the Schrödinger equation reads

i~
∂

∂t
|ψ〉 = Ĥ |ψ〉 , (3.83)

which can be formally solved via

|ψ(tf )〉 = e−
i
~ Ĥ(tf−t0) |ψ(t0)〉 (3.84)

where |ψ(t0)〉 is the system’s state at initial time t0, and |ψ(tf )〉 is the system’s state at a
later time tf . To construct the path integral, two ‘resolutions of the identity’ are required:

1 =

∫ ∞

−∞
dx |x〉 〈x| (3.85)

1 =
1

2π~

∫ ∞

−∞
dp |p〉 〈p| . (3.86)

The formal solution can be rewritten suggestively by inserting many position eigenket reso-
lutions of the identity (Eq. 3.85):

|ψ(tf )〉 =e−
i
~ Ĥ∆te−

i
~ Ĥ∆t · · · e− i

~ Ĥ∆t |ψ(t0)〉

=

∫
dx0dx1 · · · dxN |xN〉

× 〈xN |e−
i
~ Ĥ∆t|xN−1〉 〈xN−1|e−

i
~ Ĥ∆t|xN−2〉

× · · · 〈x1|e−
i
~ Ĥ∆t|x0〉 〈x0|ψ(t0)〉 ,

(3.87)

where ∆t = (tf − t0)/N . Then each small time propagator matrix element can be evaluated
with the help of the momentum eigenket resolution of the identity (Eq. 3.86). The key part
of the calculation is evaluating matrix elements like these:

〈xj+1|p̂2|xj〉 =
1

2π~

∫ ∞

−∞
dp 〈xj+1|p̂2|p〉 〈p|xj〉

=
1

2π~

∫ ∞

−∞
dp p2 〈xj+1|p〉 〈p|xj〉

=
1

2π~

∫ ∞

−∞
dp p2e

i
~p(xj+1−xj) .

(3.88)
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The rest of the calculation is fairly straightforward. If we take |ψ(t0)〉 = |x0〉 for some x0 ∈ R,
then we obtain a phase space path integral representation of ψ(x, tf ;x0, t0) := 〈x|ψ(tf )〉 that
reads

ψ = lim
N→∞

∫
dx1dp1

2π~
· · · dxN−1dpN−1

2π~
dpN
2π~

exp

{
i

~

N∑

j=1

pj(xj − xj−1)−
[
p2
j

2m
+ V (xj−1)

]
∆t

}

(3.89)
where xN := x. This path integral is often written in the schematic form [10]

ψ(x, tf ;x0, t0) =

∫
D[x(t)]D[p(t)] exp

{
i

~
S[x, p]

}

S[x, p] =

∫ tf

t0

dt p(t)ẋ(t)− p(t)2

2m
− V (x(t)) .

(3.90)

One can integrate out the momentum variables in Eq. 3.89 to arrive at the usual configura-
tion space path integral

ψ(x, tf ;x0, t0) = lim
N→∞

∫
dx1 · · · dxN−1

( m

2πi~∆t

)N/2
exp

{
i

~
∆t

N∑

j=1

m

2

(
xj − xj−1

∆t

)2

− V (xj−1)

}

(3.91)
which has schematic form [11]

ψ(x, tf ;x0, t0) =

∫
D[x(t)] exp

{
i

~
S[x(t)]

}

S[x] =

∫ tf

t0

dt
1

2
mẋ(t)2 − V (x(t)) .

(3.92)

The interpretation is that one is summing over all paths satisfying x(t0) = x0 and x(tf ) = x.
For exact calculations, the discrete form of the phase space path integral (Eq. 3.89) is most
useful. For example, let us try to solve for the propagator ψ := ψ(x, t;x0, t0) of a free particle,
which has V = 0. The path integral reads

ψ = lim
N→∞

∫
dx1dp1

2π~
· · · dxN−1dpN−1

2π~
dpN
2π~

exp

{
i

~

N∑

j=1

pj(xj − xj−1)− ∆t

2m
p2
j

}
. (3.93)

We should do the integrals over the position variables xj first; if we integrated out the mo-
mentum variables first, we would just recover the configuration space path integral. And as a
general rule, configuration space path integral calculations are somewhat harder. Collecting
terms involving xj, we have integrals

∫ ∞

−∞

dxj
2π~

e
i
~xj(pj−pj+1) = δ(pj − pj+1) (3.94)
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for j = 1, ..., N − 1. Enforcing the delta function constraints, we have

ψ = lim
N→∞

∫ ∞

−∞

dpN
2π~

exp

{
i

~
pN(x− x0)− (t− t0)

2m
p2
N

}
. (3.95)

where we can drop the limit since N is now just a label. Doing this simple Gaussian integral,
we obtain

ψ(x, t;x0, t0) =

√
m

2π~i(t− t0)
exp

{
im(x− x0)2

2~(t− t0)

}
. (3.96)

In general, path integrals that can be reduced to Gaussian integrals (like this one, and the
harmonic oscillator) are easy to solve; problems involving more complicated functions may
be solvable, but require various tricks.

Derivations of path integral representations of the CME analogous to the quantum me-
chanics derivation above are given in Chapter 4 and Chapter 5. See the appendix to Chapter
5 for elementary CME path integral calculations along the lines of the free particle problem
we just solved. See Chapter 4 and Chapter 7 for detailed path integral derivations of the
solutions of various CMEs involving monomolecular processes.

3.5.2 Ladder operators

Consider the Schrödinger equation of the one-dimensional harmonic oscillator, which in
Hilbert space reads (in units where ~ = m = 1)

i
∂

∂t
|ψ〉 = Ĥ |ψ〉 =

[
p̂2

2
+

1

2
ω2x̂2

]
|ψ〉 . (3.97)

The idea behind a ladder operator solution [12] to this problem is to try and ‘factor’ the
Hamiltonian. This can be done by defining the operators

Â :=

√
ω

2

(
x̂+

i

ω
p̂

)

Â† :=

√
ω

2

(
x̂− i

ω
p̂

) (3.98)

which can be shown to satisfy the canonical commutation relation [Â, Â†] = 1. In terms of
them, it turns out that we can write the Hamiltonian operator Ĥ as

Ĥ = ωÂ†Â+
ω

2
. (3.99)

This decomposition has various extremely useful consequences—and in some sense, the os-
cillator is ‘solved’ once one identifies these operators, and how to write the Hamiltonian in
terms of them. In particular, we immediately have that

[Ĥ, Â] = −ωÂ
[Ĥ, Â†] = ωÂ†

(3.100)
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which can be used to determine the eigenvalues and eigenstates of Ĥ. In particular, they can
be used to show that if |ψE〉 is an eigenstate with energy E, then Â† |ψE〉 is an eigenstate
with energy E + ω, since

ĤÂ† |ψE〉 =
{
Â†Ĥ + [Ĥ, Â†]

}
|ψE〉

= (E + ω)Â† |ψE〉 .
(3.101)

Similarly, Â |ψE〉 is an eigenstate of Ĥ with energy E − ω when |ψE〉 is an eigenstate with
energy E. This means that, given one eigenstate, we can use the ladder operators to construct
many other eigenstates with different energies. Unless there is ‘ ground state’ |ψ0〉 for which

Â |ψ0〉 = 0 (3.102)

we would be able to use the lowering operator Â to create eigenstates of arbitrarily negative
energy, which is not physical. This is also true if there are eigenstates that are ‘off’ the
ladder, in the sense of not being of the form (Â†)n |ψ0〉 for some n ∈ N (since the ground
state turns out to be unique). By a routine computation, we can find that the energy of the
ground state is given by E0 = ω

2
. Hence, the eigenvalues and eigenstates of Ĥ are given by

En = ω

(
n+

1

2

)

|ψn〉 = (Â†)n |ψ0〉 .
(3.103)

From here, one can write the full solution for |ψ(t)〉 by writing it as an expansion in the
eigenkets, computing coefficients by exploiting their orthonormality. To get the position
space wave function, we could identify the position space ground state as a Gaussian, and
thus find that the eigenfunctions are Hermite polynomials times a Gaussian. Even aside
from just getting the solution, the ladder operators turn out to be useful for deriving various
properties of it; for example, they allow the computation of moments, which normally can
involve tedious integration, into simple algebra.

The availability of ladder operators as a solution technique depends highly on the struc-
ture of the problem. It is most suited when the eigenvalues of the Hamiltonian are linearly
spaced. Although there are not many quantum mechanical problems that satisfy this prop-
erty, it will turn out that there are many chemical kinetics problems that do. These include
the monomolecular processes that we first study in Chapter 4, and many processes involving
only first order reactions. See Chapter 6 for the application of ladder operators to solving
CME models of RNA transcription and splicing. The extent to which a ladder operator
approach may prove useful in exactly solving very complicated CMEs is not yet known.
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Chapter 4

Path integral representations of the chemical master equation.
I: The Doi-Peliti coherent state path integral

How can we solve the CME? This chapter introduces the Doi-Peliti path integral technique
as a fairly general solution method, and uses it to derive the most general known solution of
the CME. This is the first of two chapters that introduce path integral methods; this method
was previously known, while next chapter’s method is new. Although this is not discussed
in detail, it turns out that they are ‘equally powerful’ in some sense, and that the results in
this chapter can also be derived using the other path integral method.

Abstract: The chemical master equation (CME) is a fundamental description of interacting

molecules commonly used to model chemical kinetics and noisy gene regulatory networks. Exact

time-dependent solutions of the CME—which typically consists of infinitely many coupled differ-

ential equations—are rare, and are valuable for numerical benchmarking and getting intuition for

the behavior of more complicated systems. Jahnke and Huisinga’s landmark calculation of the

exact time-dependent solution of the CME for monomolecular reaction systems is one of the most

general analytic results known; however, it is hard to generalize, because it relies crucially on

properties of monomolecular reactions. In this paper, we rederive Jahnke and Huisinga’s result

on the time-dependent probability distribution and moments of monomolecular reaction systems

using the Doi-Peliti path integral approach, which reduces solving the CME to evaluating many

integrals. While the Doi-Peliti approach is less intuitive, it is also more mechanical, and hence

easier to generalize. To illustrate how the Doi-Peliti approach can go beyond the method of Jahnke

and Huisinga, we also find an explicit and exact time-dependent solution to a problem involving

an autocatalytic reaction that Jahnke and Huisinga identified as not solvable using their method.

We also find a formal exact time-dependent solution for any CME whose list of reactions involves

only zero and first order reactions, which may be the most general result currently known.

This chapter is currently under review at the Journal of Mathematical Biology as
“Solving the chemical master equation for monomolecular reaction

systems analytically: a Doi-Peliti path integral view ”
[Vastola (2021)] arXiv link
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4.1 Introduction

The chemical master equation (CME) provides a fundamental description of well-mixed
molecules interacting with each other via a set of chemical reactions [1, 2, 3, 4, 5, 6, 7]. It
models dynamics that are discrete (the state of the system is a set of nonnegative integers)
and stochastic (chemical reactions occur with some probability). The CME has recently
enjoyed tremendous success as a framework for understanding noisy single cell data [8, 9,
10, 11, 12, 13, 14], particularly in simple model organisms like yeast where techniques like
single-molecule Fluorescence in situ Hybridization (smFISH) allow RNA molecule numbers
to be counted accurately [15, 16, 17]. Outside of cell and molecular biology, master equations
have been successfully used to model population dynamics [18, 19, 20], traffic [21, 22, 23],
and gas phase chemical kinetics [24, 25, 26], among other things.

Although it is very useful for defining discrete stochastic models, the CME generally
cannot be solved directly. One typically resorts to an approximate approach, like using
Gillespie’s algorithm [27, 28] to extract information from many brute force simulations, or
using finite state projection [29, 30, 10], or partitioning the system (e.g. low versus high
copy number, slow versus fast time scale) [31, 32, 33, 34, 35, 36], or solving a continuous
approximation to the CME like the chemical Langevin equation [3, 37, 38, 39].

Unsurprisingly, exact time-dependent solutions (as opposed to steady state solutions) of
the CME are particularly rare, and have only been computed for specific cases. McQuarrie
[1] describes some of the early attempts: in 1940, Max Delbrück evaluated the CME for the
autocatalytic reaction S → S+S [40]; in 1954, Renyi solved the binding reaction A+B → C
[41]; in 1960, Ishida solved the death reaction S → ∅ and presented the first CME solution
with time-dependent rates [42]; in 1963 and 1964, McQuarrie et al. solved many simple
systems (including A + A → B and A + B → C) using the method of generating functions
[43, 44].

The situation did not change appreciably until Jahnke and Huisinga’s landmark paper
[45], more than forty years later. Their 2007 paper constituted a major advance in our
collective understanding of the CME; they were able to solve the CME for a system with
an arbitrary number of species experiencing an arbitrary number of reactions whose rates
have arbitrary time-dependence, provided that the reactions consisted of some combination
of birth (∅ → Sk), death (Sj → ∅), and conversion (Sj → Sk)

1. The shocking generality
of their result, as well as the explicitness of the solution they wrote down (in Theorem 1 of
that paper), was powerful.

Since 2007, there have been few new results of the same generality. Reis et al. [46]
extend Jahnke and Huisinga’s result by considering hierarchical first-order reaction networks
(which allow a certain subset of first-order reactions that is strictly larger than the set of
monomolecular reactions). However, there has not been (for example) any result on the
solution to general first-order reactions, or general bimolecular reactions. At present, even
finding the exact solutions of simple systems that involve bimolecular reactions is nontrivial:

1These systems are called “monomolecular” because all allowed reactions have at most one molecule as
input, and at most one molecule as output.
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the work of Laurenzi (A + B ↔ C) [47], as well as Arslan and Laurenzi (A + B ↔ A + A)
[48] are two examples.

One drawback of Jahnke and Huisinga’s paper is that it essentially relied on guessing the
solution. It was well-known that Poisson and multinomial distributions solved the CME in
special cases, and that these distributions had certain desirable properties (e.g. a Poisson
distribution stays a Poisson distribution, and a multinomial distribution stays a multinomial
distribution; see Sec. 3 of their paper). To derive their Theorem 1, these properties were
exploited, along with the fact that only monomolecular reactions were considered. Of course,
their method completely breaks down for a system that is only slightly more complicated;
as they point out in Sec. 6, adding an autocatalytic reaction S → S + S to a system they
can easily solve manages to make it beyond the scope of their results.

Hence, it would be nice if there was a method to obtain their classic result that did not
rely on systematic guessing. In this paper, we offer the Doi-Peliti path integral approach to
solving the CME as one such method. The Doi-Peliti approach allows one to ‘turn the crank’,
so to speak, and generate a time-dependent solution of the CME through a straightforward
but difficult calculation. Importantly, it is system-agnostic: one does not need to know
properties like ‘Poisson distributions stay Poisson’, or assume the solution takes a certain
form.

Doi-Peliti field theory—which emerged from the pioneering papers of researchers like Doi
[49, 50], Peliti [51, 52, 53], and Grassberger [54, 55, 56, 57]—reframes solving the CME as
a field theory problem. This enables the use of powerful approximation schemes, like the
renormalization group and diagrammatic perturbation theory [58, 59, 60, 61, 62, 63, 64, 65].
While Doi-Peliti field theory is still somewhat obscure in mathematical biology, it has seen
the occasional application: e.g. to understand population dynamics given colored noise [66],
age dependent branching processes [67, 68], and large deviations in gene regulatory networks
[69, 20]. Although not Doi-Peliti, a qualitatively similar path integral has been used to solve
the CME for a multistep transcription and translation process [70].

We will use Doi-Peliti field theory to rederive Jahnke and Huisinga’s Theorem 1. More-
over, in order to show that the Doi-Peliti path integral approach is strictly more powerful
than the one used by Jahnke and Huisinga, we use it to exactly solve a problem they said
their method could not, as well as a far more general problem (the CME whose list of reac-
tions consists of any combination of zero and first order reactions). We solve these additional
problems in complete generality, and obtain exact time-dependent solutions assuming rates
with arbitrary time-dependence.

The paper is organized as follows. In Sec. 4.2, we state the problems we will solve, as
well as our main results on their solutions. This includes reviewing the monomolecular CME
and Jahnke and Huisinga’s solution of it. In Sec. 4.3, we review the generating function
formulation of the CME, and develop the basic machinery of the Doi-Peliti approach to
solving the differential equation satisfied by the generating function. This includes intro-
ducing several important concepts (including coherent states and two inner products) and
constructing the Doi-Peliti path integral. We also describe how information like transition
probabilities, moments, and (the usual) generating functions can be extracted from the (bra-
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ket) generating function. Sec. 4.4 through 4.6 contain the Doi-Peliti calculations that back
up our main results, with each section focusing on one of the problems introduced in Sec.
4.2: (i) monomolecular systems, (ii) one species birth-death-autocatalysis, and (iii) arbitrary
combinations of zero and first order reactions. Sec. 4.7 describes an alternative view of the
propagator, the central object to be calculated in the Doi-Peliti approach; in particular, we
show that our results can also be derived by solving a certain partial differential equation
(PDE) using the method of characteristics. Finally, in Sec. 7.6, we discuss the merits and
drawbacks of the Doi-Peliti approach to solving the CME, and speculate on how it could be
further utilized.

4.2 Problem statements and main results

In this section, we introduce in detail the specific problems we will solve, and we present our
main results regarding their solutions. If the reader is only interested in the answers, and not
how they were obtained, then in some sense the rest of the paper is irrelevant; the validity of
any given solution can usually be checked by tedious but straightforward substitution into
the CME.

We present results for several systems, in order of increasing complexity: the chemical
birth-death process, monomolecular reactions, single species birth-death-autocatalysis, and
arbitrary combinations of zero and first order reactions with arbitrarily many species. While
the chemical birth-death process is a kind of monomolecular reaction system, we include
it here to give mathematicians new to the CME a toy example (that can be stated with
minimal notational baggage) of the kind of results we are seeking.

4.2.1 The chemical birth-death process as a prototype

The chemical birth-death process is simple enough to be biologically relevant (it can be
used to model how the number of a single type of mRNA or protein in a single cell changes
stochastically with time in the absence of significant regulation [6, 7, 71]), but complicated
enough to have nontrivial dynamics (the number of molecules does not increase without
bound or shrink to zero in the long time limit, allowing there to exist a Poisson-like steady
state probability distribution). It is linear (in several distinct but related senses of the word),
allowing its associated CME to be exactly solved via a variety of methods (e.g. separation
of variables and ladder operators [72], and via a path integral different from the one we will
discuss here [39]).

It is characterized by the chemical reactions

∅ k−→ S

S
γ−→ ∅

(4.1)
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where k(t) and γ(t) parameterize the small time birth and death rates, respectively2. The
time-dependence of these parameters is allowed to be arbitrary as long as they both remain
nonnegative for all times. The corresponding CME reads

∂P (x, t)

∂t
= k(t) [P (x− 1, t)− P (x, t)]

+ γ(t) [(x+ 1)P (x+ 1, t)− xP (x, t)]
(4.2)

where P (x, t) is the probability that the state of the system is x ∈ N := {0, 1, 2, ...} at time
t ≥ t0. We are particularly interested in the transition probability P (x, t; ξ, t0), i.e. the
solution of Eq. 4.2 whose probability distribution is initially certain (P (x, t0) = δ(x− ξ) for
some ξ ∈ N); if the transition probability is known, the solution to Eq. 4.2 for an arbitrary
initial distribution P0(x) can be written

P (x, t) =
∞∑

y=0

P (x, t; y, t0)P0(y) . (4.3)

In practice, we are also interested in several other properties of the solution. In particular, we
are interested in the long time behavior described by the steady state probability distribution

Pss(x) := lim
t→∞

P (x, t; ξ, t0) , (4.4)

moments like

〈x(t)〉 :=
∞∑

x=0

xP (x, t)

〈x(t)[x(t)− 1]〉 :=
∞∑

x=0

x(x− 1)P (x, t) ,

(4.5)

and the real or complex-valued probability generating function

ψ(g, t) :=
∞∑

x=0

P (x, t) gx , (4.6)

whose derivatives correspond to various moments of interest. In fact, knowing the generating
function is equivalent to knowing P (x, t), and its time evolution is described by a PDE
analogous to the CME:

∂ψ(g, t)

∂t
= k(t)[g − 1]ψ(g, t)− γ(t)[g − 1]

∂ψ(g, t)

∂g
. (4.7)

2In particular, if the system has x molecules of species S at time t, the probability that the birth reaction
happens in a window of time [t, t+ ∆t) is approximately k(t)∆t, and the probability that the death reaction
happens is approximately γ(t)x∆t. See Gillespie [3] for more details on the interpretation of and formalism
underlying the CME.
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The initial condition corresponding to P (x, t0) = δ(x− ξ) is ψ(g, t0) = gξ, as can be verified
using the definition of ψ. We can also take its long time limit, which we will denote by
ψss(g).

The main result for the chemical birth-death process is the following.

Theorem 1 (Chemical birth-death process). Let λ(t) and w(t) be the solutions of

λ̇ = k − γλ , λ(t0) = 0

ẇ = −γw , w(t0) = 1 .
(4.8)

Then if P (x, t0) = δ(x− ξ) for some ξ ∈ N, we have:

i.

P (x, t; ξ, t0) =

min(x,ξ)∑

k=0

λ(t)x−ke−λ(t)

(x− k)!

(
ξ

k

)
w(t)k[1− w(t)]ξ−k (4.9)

ii.
〈x(t)〉 = ξw(t) + λ(t) (4.10)

iii.
〈x(t)[x(t)− 1]〉 = w(t)2ξ(ξ − 1) + 2λ(t)w(t)ξ + λ(t)2 (4.11)

iv.
ψ(g, t) = [1 + (g − 1)w(t)]ξ e(g−1)λ(t) (4.12)

Proof. All results can be obtained independently of one another using the Doi-Peliti approach
described in the following sections. Alternatively, one can verify directly that P (x, t; ξ, t0)
satisfies Eq. 4.2 or that ψ(g, t) satisfies Eq. 4.7, and then obtain the rest of the results by
brute force calculation.

These results simplify tremendously in the long time limit if k and γ are time-independent,
essentially because P (x, t) reduces to a Poisson distribution regardless of one’s choice of initial
distribution P (x, t0).

Corollary 1 (Long time behavior of chemical birth-death process). Let k and γ be time-
independent, and define µ := k/γ. In the long time limit, we have:

i.

Pss(x) =
µxe−µ

x!
(4.13)

ii.
〈x〉 = µ (4.14)

iii.
〈x[x− 1]〉 = µ2 (4.15)
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iv.
ψss(g) = e(g−1)µ (4.16)

Proof. Take the t→∞ limit of the previous results, noting that w(t)→ 0 and λ(t)→ µ.

Results on the chemical birth-death process are far from new. Still, we ask the reader
to keep these results in the back of their mind as we go on to discuss the analogous results
for more complicated systems. Because the chemical birth-death process is so fundamental,
more complicated results often reduce to these in the appropriate limit.

4.2.2 Monomolecular results

Heuristically, monomolecular reaction systems are the minimal multi-species generalization
of the chemical birth-death process. Like the chemical birth-death process, they exhibit a
certain kind of linearity; we will see that their solutions are completely determined by a
system of linear ordinary differential equations (ODEs).

Let us define them. Consider a system with n chemical species S1, ..., Sn, whose reaction
list reads

Sj
cjk−→ Sk j 6= k

∅ c0k−→ Sk k = 1, ..., n

Sj
cj0−→ ∅ j = 1, ..., n

(4.17)

i.e. all possible monomolecular reactions (birth, death, and conversion) are allowed3. Note
that the rates are allowed to have arbitrary time-dependence as long as cjk(t) ≥ 0 for all j, k
and all times t ≥ t0. The corresponding CME reads

∂P (x, t)

∂t
=

n∑

k=1

c0k(t) [P (x− εk, t)− P (x, t)]

+
n∑

k=1

ck0(t) [(xk + 1)P (x + εk, t)− xkP (x, t)]

+
n∑

j=1

n∑

k=1

cjk(t) [(xj + 1)P (x + εj − εk, t)− xjP (x, t)]

(4.18)

where P (x, t) is the probability that the state of the system is x := (x1, ..., xn)T ∈ Nn at
time t ≥ t0, and where εk is the n-dimensional vector with a 1 in the kth place and zeros
everywhere else.

The exact solution to Eq. 4.18, given the initial condition P (x, t0) = δ(x − ξ) for some
vector ξ := (ξ1, ..., ξn)T ∈ Nn, is reported in Theorem 1 of Jahnke and Huisinga [45]. In
order to state their solution, we will need some notation.

3The one exception is the trivial conversion reaction Sk → Sk, which is disallowed because including it
would be pointless. To ease notation (i.e. to avoid writing j 6= k many times), we follow Jahnke and Huisinga
and define ckk := 0 for all k = 1, ..., n.
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Define the matrix A(t) and vector b(t) by

Ajk(t) := ckj(t) for j 6= k ≥ 1

Akk(t) := −
n∑

j=0

ckj(t) for 1 ≤ k ≤ n

b(t) :=
(
c01(t) c02(t) · · · c0n(t)

)T
.

(4.19)

The deterministic reaction rate equations corresponding to our reaction list can be written
in terms of A(t) and b(t) as

ẋ = A(t)x + b(t) . (4.20)

Because Eq. 4.20 is linear, the solution with initial condition ξ = (ξ1, ..., ξn) can be written
as

x(t) =
n∑

k=1

ξkw
(k)(t) + λ(t) (4.21)

where the vectors w(1)(t), ...,w(n)(t) and λ(t) are defined as

ẇ(k) = A(t)w(k) , w(k)(t0) = εk

λ̇ = A(t)λ+ b(t) , λ(t0) = 0 .
(4.22)

As we will shortly observe, the solution to the deterministic reaction rate equations is inti-
mately related to the solution of the CME (at least for monomolecular reactions).

Now define the 1-norm of a vector x as

|x| :=
n∑

k=1

|xk| . (4.23)

Define, because they will appear throughout this paper, multi-dimensional generalizations
of powers, factorials, sums, integrals, and derivatives:

vx := vx1
1 · · · vxnn

x! := x1! · · ·xn!

∑

x

:=
∞∑

x1=0

· · ·
∞∑

xn=0∫
dx :=

∫
dx1 · · ·

∫
dxn

(
d

dz

)x

:=

(
d

dz1

)x1

· · ·
(

d

dzn

)xn
.

(4.24)

Using the above shorthand, we can define the product Poisson distribution as

P(x,λ) :=
λx1

1

x1!
· · · λ

xn
n

xn!
e−|λ| =

λx

x!
e−|λ| , (4.25)
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the multinomial distribution as

M(x, N,w) :=
N ! [1− |w|]N−|x|

(N − |x|)!
wx1

1

x1!
· · · w

xn
n

xn!
if |x| ≤ N and x ∈ NN

=
N ! [1− |w|]N−|x|

(N − |x|)!
wx

x!
if |x| ≤ N and x ∈ NN ,

(4.26)

and the convolution of two probability distributions as

P1(x) ? P2(x) :=
∑

z

P1(z)P2(x− z) =
∑

z

P1(x− z)P2(z) (4.27)

where the sum is over all z ∈ Nn such that x− z ∈ Nn. As in the one-dimensional case, we
can also define the probability generating function

ψ(g, t) :=
∑

x

P (x, t) gx (4.28)

which satisfies the PDE

∂ψ(g, t)

∂t
=

n∑

k=1

c0k(t) [gk − 1]ψ(g, t)

−
n∑

k=1

ck0(t) [gk − 1]
∂ψ(g, t)

∂gk

+
n∑

j=1

n∑

k=1

cjk(t) [gk − gj]
∂ψ(g, t)

∂gj
.

(4.29)

With all of that notation defined, we are ready to state the main result for monomolecular
reaction systems, which was originally proved by Jahnke and Huisinga4.

Theorem 2 (Jahnke-Huisinga monomolecular). Let λ(t) and w(t) be the solutions of

λ̇ = A(t)λ+ b(t) , λ(t0) = 0

ẇ(k) = A(t)w(k) , w(k)(t0) = εk .
(4.30)

Then if P (x, t0) = δ(x− ξ) for some ξ ∈ Nn, we have:

i.
P (x, t; ξ, t0) = P(x,λ(t)) ?M(x, ξ1,w

(1)(t)) ? · · · ?M(x, ξn,w
(n)(t)) (4.31)

ii.

〈xj(t)〉 =
n∑

k=1

ξkw
(k)
j (t) + λj(t) (4.32)

4The generating function was not directly computed by them, but is essentially trivial to compute given
their results.
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iii.

Cov(xj, x`) =

{∑n
k=1 ξkw

(k)
j

[
1− w(k)

j

]
+ λj j = `

−∑n
k=1 ξkw

(k)
j w

(k)
` j 6= `

. (4.33)

iv.

ψ(g, t) =
n∏

k=1

[
1 + (g − 1) ·w(k)(t)

]ξk
e(g−1)·λ(t) (4.34)

Proof. All results can be obtained independently of one another using the Doi-Peliti approach
described in the following sections. Alternatively, one can verify directly that P (x, t; ξ, t0)
satisfies Eq. 4.18 or that ψ(g, t) satisfies Eq. 4.29 with the correct initial condition, and
then obtain the rest of the results by brute force calculation.

4.2.3 Birth-death-autocatalysis results

In section 6 of their classic paper [45], Jahnke and Huisinga solve the CME corresponding
to the autocatalytic reaction S → S + S exactly; however, they note that adding birth and
death reactions yields a system not amenable to their approach. In this section, we present
the exact time-dependent solution to this problem, whose reactions read

∅ k−→ S

S
γ−→ ∅

S
c−→ S + S

(4.35)

where the parameters controlling the rates of birth, death, and autocatalysis are all allowed
to have arbitrary time-dependence as long as they are nonnegative for all times. The CME
reads

∂P (x, t)

∂t
= k(t) [P (x− 1, t)− P (x, t)]

+ γ(t) [(x+ 1)P (x+ 1, t)− xP (x, t)]

+ c(t) [(x− 1)P (x− 1, t)− xP (x, t)]

(4.36)

where P (x, t) is the probability that the state of the system is x ∈ N at time t ≥ t0.
Meanwhile, the PDE satisfied by the probability generating function ψ reads

∂ψ(g, t)

∂t
= k(t)[g − 1]ψ(g, t)− γ(t)[g − 1]

∂ψ(g, t)

∂g

+ c(t)[g − 1]g
∂ψ(g, t)

∂g
.

(4.37)

Our main result on the solution of this system is the following.
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Theorem 3 (Birth-death-autocatalysis). Let q(s) and w(s) be the solutions of

q̇ = [c(t− s+ t0)− γ(t− s+ t0)] q(s) + ic(t− s+ t0) q(s)2 , q(t0) = pf

ẇ = [c(t− s+ t0)− γ(t− s+ t0)] w(s) , w(t0) = 1
(4.38)

for arbitrary pf ∈ R, which can be explicitly written as

q(s) =
w(s)

1
pf
− i
∫ s
t0
c(t− t′ + t0)w(t′) dt′

w(s) = e
∫ s
t0
c(t−t′+t0)−γ(t−t′+t0) dt′

.

(4.39)

Then if P (x, t0) = δ(x− ξ) for some ξ ∈ N, we have:

P (x, t; ξ, t0) =
1

2π

∫ ∞

−∞
dpf

[1 + iq(t)]ξ e
i
∫ t
t0
k(t−s+t0)q(s)ds

(1 + ipf )x+1

ψ(g, t) =

[
1 +

w(t)
1
g−1
−
∫ t
t0
c(t− t′ + t0)w(t′) dt′

]ξ
×

× exp

{∫ t

t0

k(t− s+ t0)w(s)
1
g−1
−
∫ s
t0
c(t− t′ + t0)w(t′) dt′

ds

}
.

(4.40)

Moreover, if the parameters k, γ, and c are all time-independent and non-zero, the function
w(s) is explicitly

w(s) = e(c−γ)(s−t0) (4.41)

and the transition probability can be rewritten as

P =

( γ
c
− 1

γ
c
− w

)k/c
(1− w)x−ξ(
γ
c
− w

)x ×

×
ξ∑

j=0

(
ξ

j

)
(j + k/c)x

x!

[
1− γ

c
w
]ξ−j

[
w
(
γ
c
− 1
)2

γ
c
− w

]j (4.42)

where (y)x := (y)(y + 1) · · · (y + x − 1) is the Pochhammer symbol/rising factorial. The
generating function in this case reduces to

ψ(g) =

[
1 + (g − 1) c−γw

c−γ

1− (g − 1) c(w−1)
c−γ

]ξ
1

[
1− (g − 1) c(w−1)

c−γ

]k/c . (4.43)

Proof. The transition probability and probability generating function can be obtained inde-
pendently of one another using the Doi-Peliti approach described in the following sections.
Alternatively, one can verify directly that the probability generating function solves Eq. 4.37,
and use the definition of the generating function to find the transition probability. Because
the expression for the transition probability is somewhat complicated, verifying it directly is
not recommended.
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It is expected that this solution reduces to familiar distributions in certain limits; in
particular, as Jahnke and Huisinga originally point out, it should interpolate between a
binomial distribution, a Poisson distribution, and a negative binomial distribution. Indeed
it does, with these special cases corresponding to the k = c = 0 (pure death), γ = c = 0
(pure birth), and k = γ = 0 (pure autocatalysis) limits, respectively. We formalize this in
the following corollary.

Corollary 2 (Limiting behavior of the birth-death-autocatalysis transition probability).
The transition probability P (x, t;x0, t0) becomes (i) binomial in the limit that k = c = 0, (ii)
Poisson in the limit that γ = c = 0, and (iii) negative binomial in the limit that k = γ = 0.
That is,

lim
k,c→0

P (x, t;x0, t0) =

(
ξ

x

)
[w(t)]x [1− w(t)]ξ−x (4.44)

for x ≤ ξ and 0 otherwise, i.e. a binomial distribution;

lim
γ,c→0

P (x, t;x0, t0) =
λ(t)x−ξe−λ(t)

(x− ξ)! (4.45)

for x ≥ ξ and 0 otherwise, i.e. a (shifted) Poisson distribution; and

lim
k,γ→0

P (x, t;x0, t0) =

(
x− 1

ξ − 1

)
[w(t)]ξ [1− w(t)]x−ξ (4.46)

which is nonzero only for x ≥ ξ. As Jahnke and Huisinga note in their Sec. 6, this is a
shifted negative binomial distribution.

Proof. These limits can be taken directly, and are relatively straightforward; see Sec. 4.5 for
the calculations.

It is also true that the solution of this problem reduces to a birth-death process in the
c→ 0 limit (i.e. the limit in which autocatalysis no longer happens). This limit is harder to
take properly (it is not clear how to take it using P (x, t;x0, t0), so the generating function
must be used), and the resulting distribution is less special than the Poisson, binomial, or
negative binomial distributions, but it is still interesting; for these reasons, we formalize it
as its own corollary below.

Corollary 3 (No autocatalysis limit reduces to birth-death). In the c → 0 limit, the tran-
sition probability P (x, t;x0, t0) and generating function ψ(g, t) reduce to the ones for the
chemical birth-death process described in Theorem 1.

Proof. The easiest way to do this is to show that the generating functions correspond in the
c→ 0 limit. Because this is straightforward, we will not show the calculation explicitly.

If autocatalysis happens tends to happen more frequently than degradation (i.e. if c > γ),
the number of molecules almost surely blows up to infinity in the long time limit. However, if
degradation tends to overtake autocatalysis (i.e. if γ > c), then the steady state distribution
exists and is nontrivial.
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Corollary 4 (Long time behavior of birth-death-autocatalysis). Let k, γ, and c be time-
independent, and suppose that γ > c. In the long time limit, we have:

Pss(x) =

(
γ − c
γ

)k/c
(
c
γ

)x

x!

(
k

c

)

x

ψss(g) =

(
γ − c
γ

)k/c
1

[
1− cg

γ

]k/c .
(4.47)

Moreover, these reduce to the Pss and ψss for the chemical birth-death process in the c → 0
limit, i.e.

(
γ − c
γ

)k/c
(
c
γ

)x

x!

(
k

c

)

x

→ µx

x!
e−µ

(
γ − c
γ

)k/c
1

[
1− cg

γ

]k/c → e(g−1)µ .

(4.48)

Proof. The simplest way to find Pss is to solve the steady state CME directly (i.e. set
∂P/∂t = 0 and solve the resulting recurrence relation). Alternatively, noting that w → 0,
one can straightforwardly take the t→∞ limit of our result from Theorem 3. The c→ 0 is
also easy to take.

4.2.4 Zero and first order reactions

While obtaining the solution to the birth-death-autocatalysis system is certainly interesting,
the problem itself is quite special: it is one-dimensional, and involves only three chemical
reactions. What else can the Doi-Peliti approach be used to solve? What kind of sets of
chemical reactions are tractable?

The full potential of the Doi-Peliti approach is not clear. As a partial answer to this
question, however, we offer a result of somewhat shocking generality: a formal solution to
the CME of any system whose reaction list only contains zero and first order reactions. By
zero order reactions, we mean reactions like

∅→ Sk

∅→ Sk + S`

∅→ Sk + S` + Sr

∅→ Sk + S` + Sr + · · ·

(4.49)

and so on, i.e. reactions requiring no molecules as input. By first order reactions, we mean
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reactions like

Sj → ∅
Sj → Sk

Sj → Sk + S`

Sj → Sk + S` + Sr

Sj → Sk + S` + Sr + · · ·

(4.50)

and so on, i.e. reactions requiring exactly one molecule as input. The birth reactions
described in the previous sections are examples of zero order reactions, while the death
and conversion reactions are examples of first order reactions. Other biologically relevant
examples of first order reactions include catalytic production (Sj → Sj + Sk, j 6= k) and
splitting (Sj → Sk + S`, j 6= k, j 6= `).

The list of all possible zero and first order reactions also includes many reactions that
are almost certainly not biologically relevant—for example, the reaction where one molecule
splits into exactly one hundred molecules with no intermediate splitting.

The CME of this system is somewhat tedious to write down, so we will instead note that
the PDE satisfied by the generating function can be written in the form

∂ψ(g, t)

∂t
=
∑

ν1,...,νn

αν1,...,νn(t) (g1 − 1)ν1 · · · (gn − 1)νn ψ(g, t)

+
∑

k

∑

ν1,...,νn

βkν1,...,νn
(t) (g1 − 1)ν1 · · · (gn − 1)νn

∂ψ(g, t)

∂gk

(4.51)

where the precise form of the coefficients αν1,...,νn(t) and βjν1,...,νn
(t) are determined by the

details of one’s list of reactions. Our main result for this class of systems is the following.

Theorem 4 (Arbitrary combinations of zero and first order reactions). Let q(s) be the
solution of

q̇j(s) = −i
∑

ν1,...,νn

βjν1,...,νn
(t− s+ t0) [iq1(s)]ν1 · · · [iqn(s)]νn , qj(t0) = pfj (4.52)

for some pf ∈ Rn, with s ∈ [t0, t]. Then if P (x, t0) = δ(x− ξ) for some ξ ∈ Nn, we have

P =

∫

Rn

dpf

(2π)n
[1 + iq(t)]ξ e

∫ t
t0

∑
αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds

(1 + ipf )x+1
(4.53)

for the transition probability, and

ψ(g, t) = [1 + iq(t)]ξ×
× e

∫ t
t0

∑
αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds

∣∣∣
pf=−i(g−1)

(4.54)

for the probability generating function.
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Proof. In principle, the transition probability or generating function could be verified by
substitution directly; however, this seems very difficult. A better way is discussed in Sec.
4.7.

In some sense all other results in this paper are corollaries of this result; still, it is helpful
to study the simpler cases in their own right, both to double-check the correctness of this
more general result, and to develop a sense for how to derive these solutions.

While this result is perhaps shockingly general, it is also incredibly formal. For most
systems of interest, it is likely that reducing the problem of solving the CME (an infinite
number of coupled linear ODEs) to the problem of solving n coupled nonlinear ODEs is not
much of an improvement. However, in some cases legitimate simplification seems possible:
monomolecular systems and the birth-death-autocatalysis system addressed in the previous
two theorems are clearly examples. It is not clear whether there are large classes of more
complicated systems for which the ODEs given by Eq. 4.52 are solvable, but searching for
them seems like a promising avenue for future research on solving the CME.

While we have not pursued this question, it is also possible that solving these ODEs
numerically could yield new insights for efficiently solving the CME on computers.

4.3 Reframing the problem and basic Doi-Peliti formalism

4.3.1 A brief digression on notation

Although it is not normally used in the study of stochastic processes, it is the author’s
strong belief that the bra-ket notation originally developed for quantum mechanics is most
appropriate here. Because this notation makes it harder for most mathematicians to read
this paper, here we will briefly argue why this is necessary. The reader who wishes to review
the basics of bra-ket notation, and see how it compares to more standard mathematical
notation for things like vector spaces and inner products, should refer to Appendix 4.A.

Given that the problems we are attempting to solve are quite complicated, carefully
choosing notation is important; a bad choice of notation would clutter our already compli-
cated arguments, making them nearly impossible to understand. We would like notation that
(i) generalizes cleanly to complicated systems in arbitrarily many dimensions; (ii) simplifies
the construction of the Doi-Peliti path integral; and (iii) is suggestive of the operations we
want to take, and not suggestive of operations that are not valid.

Let us say more about each heuristic requirement:

1. Generalizes: We will usually work with systems for which there are n distinct chemical
species, where n ≥ 1 is some positive integer. In the next section, we will see that this
forces us to work in a Hilbert space where each basis vector can be identified with an
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element of Nn. We will eventually need notation for each basis vector, as well as for
sums over Nn, integrals over Rn, and eigenvectors with eigenvalues z ∈ Cn. Denoting
basis vectors, eigenvectors, and things like sums and integrals cleanly in arbitrarily
many dimensions is easy using bra-ket notation.

2. Simplifies: Constructing the Doi-Peliti path integral involves using many identity
operators/resolutions of the identity (see Sec. 4.3.5). This is cleanest with bra-ket
notation, and using alternative notation obfuscates these steps.

3. Suggestive/not confusing: We will have to compute many inner products, as well as
different kinds of inner products. Bra-ket notation allows them to be denoted simply,
e.g. the inner product of |x〉 and |y〉 is 〈x|y〉. If we used generating function notation,
where we have gx instead of |x〉 and gy instead of |y〉, we would have to define strange
operations like gx · gy = x!δ(x − y). Moreover, this notation suggests operations like
gxgy = gx+y are valid, although they are not. Vector notation (using e.g. ex and ey to
denote basis vectors) would be somewhat confusing, because we are already considering
vectors like x ∈ Nn to denote particular states of our system.

Aside from issues of notation, there is a ‘deeper’ reason this path integral requires special
notation, whereas for others (see e.g. [69]) standard notation and a Chapman-Kolmogorov-
based argument suffices. Most of the time, when path integrals are applied to stochastic
processes or mathematical biology, what one is really doing is applying the Chapman-
Kolmogorov equation many times. This has the interpretation that one is imagining all
possible paths from one state to another state and appropriately discretizing them.

This kind of path integral is qualitatively different. It involves expanding an abstract ob-
ject (rather than the transition probability itself) in terms of coherent states (which we will
define later), which are themselves kind of abstract Poisson-like distributions. There does
not seem to be the same obvious interpretation linking this path integral to the Chapman-
Kolmogorov equation, or to all possible paths through state space (the space of all possible
configurations of the system, i.e. Nn for a system with n distinct chemical species).

4.3.2 Hilbert space, the generating function, and basic operators

In order to apply the Doi-Peliti technique, we first need to rewrite the CME in terms of
states and operators in a certain Hilbert space. Consider an infinite-dimensional Hilbert
space spanned by the |x〉 states/basis vectors (where x = (x1, ..., xn)T ∈ Nn), in which an
arbitrary state |φ〉 is written

|φ〉 =
∞∑

x1=0

· · ·
∞∑

xn=0

c(x) |x〉 (4.55)

for some generally complex-valued coefficients c(x). These states can be added and multiplied
by (complex) scalars in the usual way. There is one basis vector for every possible state
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of the system (recall that the state space of the system is Nn), e.g. |00 · · · 0〉, |01 · · · 0〉,
|20, 45, 1, · · · 10〉, and so on; one interpretation of these objects is that they encode a certain
generalization of probability distributions on the state space, given that they assign every
x ∈ Nn a complex number.

It should be noted that the basis vectors cannot be combined since they represent distinct
directions in the Hilbert space, i.e. |x〉 + |y〉 6= |x + y〉. We will denote the zero vector by
0, which we emphasize for clarity’s sake is distinct from the basis vector |0〉 (e.g. |0〉+ 0 =
|0〉). The relevant inner products (without which this would just be a vector space) will be
described in a few sections.

To ease notation, we remind the reader that we will write

∑

x

:=
∞∑

x1=0

· · ·
∞∑

xn=0

. (4.56)

The state we are principally interested in is the generating function, which is essentially the
function ψ(g, t) described earlier, but using different notation. For more information on their
correspondence, see Appendix 4.A.

Definition 1. The generating function is defined to be the state

|ψ(t)〉 :=
∑

x

P (x, t) |x〉 (4.57)

where P (x, t) is some solution to the CME (i.e. its precise form depends on the chosen initial
condition P (x, t0)).

For the rest of this paper, we will only be concerned with the case where P (x, t0) =
δ(x− ξ) for some ξ ∈ Nn, so we will always assume that |ψ(t0)〉 = |ξ〉.

Because the generating function |ψ(t)〉 depends on P (x, t), whose dynamics are controlled
by the CME, |ψ(t)〉 also has dynamics; we can write the equation controlling them (its
‘equation of motion’) in the form

∂ |ψ〉
∂t

= Ĥ |ψ〉 (4.58)

where the Hamiltonian operator Ĥ is a linear operator whose precise form depends on the
CME. For the reader familiar with quantum mechanics, this is analogous to the equation of
motion for a quantum mechanical state. In any case, it is this equation that we will solve
instead of the CME.

It may or may not be helpful for the reader to think of Ĥ as a (possibly infinite-
dimensional) matrix. Although it is infinite-dimensional in essentially every case we care
about in this paper, it would literally be a matrix if we were solving a CME with a finite
state space. One example of a problem with a finite state space is the pure conversion process
(A ↔ B), which involves A molecules and B molecules randomly converting between each
other; it has a finite state space because the total number of molecules remains constant.

Pressing the analogy between Ĥ and matrices, we have the usual formal solution for the
generating function |ψ(t)〉 in terms of the (time-ordered) exponential of Ĥ.
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Proposition 1 (Formal solution for the generating function). The equation of motion for
the generating function |ψ(t)〉 (Eq. 4.58) has the formal solution

|ψ(t)〉 = T̂ e
∫ t
t0
Ĥ(t′)dt′ |ψ(t0)〉

=
∞∑

j=0

1

j!

∫ t

t0

· · ·
∫ t

t0

T̂
[
Ĥ(t1) · · · Ĥ(tn)

]
dt1 · · · dtn

= 1 +

∫ t

t0

Ĥ(t1)dt1 +
1

2

∫ t

t0

∫ t

t0

T̂
[
Ĥ(t1)Ĥ(t2)

]
dt1dt2 + · · ·

(4.59)

where T̂ is the time-ordering symbol, whose action on a product of operators is defined to be

T̂
[
Â1(t)Â2(t′)

]
:=

{
Â1(t)Â2(t′) t ≥ t′

Â2(t′)Â1(t) t < t′
. (4.60)

Proof. Substitute this expression for the generating function directly into Eq. 4.58. While
the presence of the time-ordering symbol makes this more subtle than it would be in the
case of a time-independent Hamiltonian (i.e. in the case where the reaction parameters were
all time-independent), this exercise is standard, so we will not go through this in detail.

Corollary 5. For time-independent Ĥ, the above formal solution reduces to

|ψ(t)〉 = eĤ(t−t0) |ψ(t0)〉 . (4.61)

Proof. One can either show that this solves the equation of motion directly, or simplify the
result above.

Fortunately, we will never have to work with a time-ordered exponential of operators
directly. The first salient consequence of the formal solution for us is that

|ψ(t+ ∆t)〉 ≈
[
1 + Ĥ(t)∆t

]
|ψ(t)〉 (4.62)

for sufficiently small ∆t, with the approximation becoming exact in the ∆t→ 0 limit. Notice
that this also matches what we would find by naively approximating the time derivative with
a finite difference in Eq. 4.58.

This formal solution motivates defining the time evolution operator, which carries the
solution at time t1 (the state |ψ(t1)〉) to the solution at time t2 (the state |ψ(t2)〉).
Definition 2. The time evolution operator Û(t2, t1) is defined as

Û(t2, t1) := T̂ e
∫ t2
t1
Ĥ(t′)dt′

=1 +

∫ t2

t1

Ĥ(s1)ds1 +
1

2

∫ t2

t1

∫ t2

t1

T̂
[
Ĥ(s1)Ĥ(s2)

]
ds1ds2 + · · ·

(4.63)

for any two times t1 ≤ t2. In terms of the time evolution operator, the formal solution for
|ψ(t)〉 can be written

|ψ(t)〉 = Û(t, t0) |ψ(t0)〉 . (4.64)
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The second salient consequnce of Proposition 1 is that this operator has an important
composition property.

Proposition 2 (Composition property of the time evolution operator). The time evolution
operator Û has the property that

Û(t2, t1) = Û(t2, t
′)Û(t′, t1) (4.65)

for any time t′ with t1 ≤ t′ ≤ t2.

Proof. This is most easily seen using the infinite series form of the time evolution operator
Û , by expanding both sides and showing that they match at each order.

Because we are interested in the dynamics of the generating function |ψ(t)〉, we need to
introduce operators to act on it. In particular, we introduce the creation and annihilation
operators, which we will later use to write the Hamiltonian operator.

Definition 3. Define the annihilation and creation operators âj and π̂j for all j = 1, ..., n
as the operators whose action on a basis vector |x〉 is

âj |x〉 = xj |x− εj〉
π̂j |x〉 = |x + εj〉

(4.66)

where we remind the reader that εj is the n-dimensional vector with a 1 in the jth place and
zeros everywhere else.

It is easy to show that these operators satisfy the commutation relations analogous to
those seen in quantum mechanics (for example, in the ladder operator treatment of the
harmonic oscillator [73], or in the canonical quantization approach to quantum field theory
[74]). These properties will be used in calculations a few times throughout this paper.

Proposition 3. Recall that, for two operators Â1 and Â2, their commutator is defined to be
[Â1, Â2] := Â1Â2 − Â2Â1. The creation and annihilation operators satisfy the commutation
relations

[âj, π̂k] = δ(j − k) , [âj, âk] = [π̂j, π̂k] = 0 . (4.67)

Proof. Use their definitions to straightforwardly show this.

In essence, the Doi-Peliti approach to solving Eq. 4.58 involves using many coherent
state ‘resolutions of the identity’ (a phrase we will define shortly) to rewrite Eq. 4.59 as a
coherent state path integral. Once that path integral is evaluated, quantities like moments
and P (x, t) can be recovered by manipulating the path integral solution in specific ways. In
order to follow this prescription, we will need to define coherent states, define inner products,
and construct associated resolutions of the identity; that is our next task.
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4.3.3 Coherent states

Because we will be expressing the Hamiltonian operator in terms of creation and annihilation
operators, it is convenient to work in terms of states that behave simply when acted upon
by these operators. These are the so-called coherent states, which are often used to study
the semiclassical limit of quantum mechanics. Here, we will only care about them for their
algebraic properties; while their biological meaning is not completely obscure (they are es-
sentially states that correspond to Poisson distributions), thinking about it is not necessary
in what follows.

Definition 4. Let z = (z1, ..., zn)T ∈ Cn. A coherent state is a state

|z〉 :=
∑

y

c(y) |y〉 (4.68)

satisfying

âj |z〉 = zj |z〉 for all j = 1, ..., n
∑

y

c(y) = 1 (4.69)

i.e. it is an eigenstate of all annihilation operators âj, and it has a specific normalization.

By imposing the eigenstate constraint on an arbitrary state, it is straightforward to
determine the coefficients c(y) explicitly. Coherent states can also be written in terms of a
specific combination of creation operators acting on the ‘vacuum’ state |0〉. We make these
statements more precise in the following proposition.

Proposition 4. The coherent state |z〉 can explicitly be written in the following two equiva-
lent forms:

i.

|z〉 =
∑

y

zy1

1 · · · zynn
y1! · · · yn!

e−(z1+···+zn) |y〉 =
∑

y

zy

y!
e−z·1 |y〉 (4.70)

ii.

|z〉 =
∑

y

[z1(π̂1 − 1)]y1 · · · [zn(π̂n − 1)]yn

y1! · · · yn!
|0〉 = ez·(π̂−1) |0〉 (4.71)

where π̂ := (π̂1, ..., π̂n)T .

Proof. Showing (i) is straightforward. To show (ii), first note that [âj, (π̂j−1)y] = y(π̂j−1)y−1

for all y ∈ N, a useful commutator result that can be proved by induction. Using this, along
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with the facts that âj commutes with π̂k for k 6= j and the π̂k all commute with each other,
we have

âj |z〉 = ez·(π̂−1)−zj(π̂j−1)

∞∑

yj=0

z
yj
j

yj!
âj(π̂j − 1)yj |0〉

= ez·(π̂−1)−zj(π̂j−1)

∞∑

yj=0

z
yj
j

yj!

{
(π̂j − 1)yj âj + yj(π̂j − 1)yj−1

}
|0〉

= zj e
z·(π̂−1)−zj(π̂j−1)

∞∑

yj=1

z
yj−1
j (π̂j − 1)yj−1

(yj − 1)!
|0〉

= zj |z〉 .

(4.72)

Hence, this expression satisfies the eigenstate constraint. Noting that eigenstates are unique
up to a proportionality constant, to show that it satisfies the normalization constraint (and
hence is the same as the expression given by (i)), observe that

ez·(π̂−1) |0〉 =
∑

y

zy1

1 · · · zynn [(−1)y1+···+yn + · · · ]
y1! · · · yn!

|0〉

= e−z·1 |0〉+ · · ·
(4.73)

i.e. the coefficient of |0〉 is e−z·1, because every other term in the above expansion contains a
creation operator. Because this is the same as the coefficient of |0〉 in (i), we have equivalence.

In what follows, we will generally reserve the letters z and p for coherent states.

4.3.4 Inner products

Now we will define two inner products on our Hilbert space: the exclusive product, and the
Grassberger-Scheunert product. Both were introduced by Grassberger and Scheunert in a
1980 paper that clearly describes their motivation and properties [54]; we are calling their
“inclusive” inner product the Grassberger-Scheunert product to recognize their contribution.

Briefly, the exclusive product is useful for computing P (x, t), while the Grassberger-
Scheunert product is useful for simplifying path integral calculations (specifically, we avoid
having to perform a “Doi shift” [75, 76]; see Eq. 3.4 of Peliti [51] for an example of the Doi
shift) and computing moments. We will use both inner products in solving the CME.

In this section and the following sections, the reader should keep in mind that 〈x|Â(t)|y〉,
where Â(t) is some possibly time-dependent operator, means the same as 〈ex, Â(t)ey〉 in more
standard notation. See Appendix 4.A for more details.

Definition 5. Let |x〉 and |y〉 be basis vectors. Their exclusive product is defined to be

〈x|y〉ex := x! δ(x− y) . (4.74)
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Extending this by linearity, define the exclusive product of two arbitrary states |φ1〉 and |φ2〉
as (c.f. Eq. 4.55)

〈φ2|φ1〉ex =
∑

x

x! c∗2(x)c1(x) . (4.75)

Definition 6. Let |x〉 and |y〉 be basis vectors, and define â := (â1, ..., ân)T . Their Grassberger-
Scheunert product is defined to be

〈x|y〉 := 〈x|eπ̂·1eâ·1|y〉ex =
∑

k

x! y!

(x− k)! (y − k)! k!
(4.76)

where the sum on the right is over all values of k ∈ Nn with kj ≤ min(xj, yj) for all j =
1, ..., n. Extending this by linearity, define the Grassberger-Scheunert product of two arbitrary
states |φ1〉 and |φ2〉 as

〈φ2|φ1〉 = 〈φ2|eπ̂·1eâ·1|φ1〉ex . (4.77)

While it is not obvious just from looking at them, it is straightforward to show that the
operator-based and sum-based definitions are equivalent (see Grassberger and Scheunert [54]
and the appendix to Peliti [51]).

The primary reason these inner products are useful to define is that the creation and
annihilation operators behave well under Hermitian conjugation with respect to them.

Proposition 5 (Hermitian conjugates of creation and annihilation operators). Let |x〉 and
|y〉 be basis vectors. With respect to the exclusive product, âj and π̂j are Hermitian conjugates
of each other for all j = 1, ..., n, i.e.

(âj)
† = π̂j

〈x|âj|y〉ex = 〈y|π̂j|x〉ex .
(4.78)

With respect to the Grassberger-Scheunert product, the Hermitian conjugate of âj is

(âj)
† = π̂j − 1 (4.79)

for all j = 1, ..., n, i.e.
〈x|âj|y〉 = 〈y|π̂j − 1|x〉 . (4.80)

Proof. Showing that π̂j and âj are Hermitian conjugates with respect to the exclusive product

is straightforward given their definitions, so we will show that (âj)
† = π̂j − 1 with respect to

the Grassberger-Scheunert product.
Recall the result mentioned in the proof of Proposition 4 that [âj, (π̂j−1)y] = y(π̂j−1)y−1

for all y ∈ N. Using just the same argument, one can show [âj, π̂
y
j ] = y(π̂j)

y−1 for all y ∈ N.
This, in turn, can be used to prove that

eπ̂j âj = (âj − 1)eπ̂j . (4.81)
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Let |x〉 and |y〉 be arbitrary basis vectors. Now we can say that

〈x|âj|y〉 = 〈x|eπ̂·1eâ·1âj|y〉ex
= 〈x|eπ̂j âj eπ̂·1−π̂jeâ·1|y〉ex
= 〈x|(âj − 1)eπ̂j eπ̂·1−π̂jeâ·1|y〉ex
= 〈x + εj|eπ̂·1eâ·1|y〉ex − 〈x|eπ̂·1eâ·1|y〉ex
= 〈x + εj|y〉 − 〈x|y〉

(4.82)

where we have used the fact that π̂j and âj are Hermitian conjugates with respect to the
exclusive product in the next to last step. But this is the same as

〈y|π̂j − 1|x〉 = 〈y|x + εj〉 − 〈y|x〉 (4.83)

because the Grassberger-Scheunert product of two basis vectors is symmetric. Hence, âj and
π̂j − 1 are Hermitian conjugates with respect to the Grassberger-Scheunert product.

Now let us compute some inner products that we will use later.

Proposition 6 (Useful inner products). Let |x〉 be a basis vector, and let |z〉 and |p〉 be
coherent states. Then

i.
〈x|z〉ex = zxe−z·1 (4.84)

ii.
〈x|z〉 = (1 + z)x (4.85)

iii.
〈p|z〉ex = ep

∗·z−(p∗+z)·1 . (4.86)

iv.
〈p|z〉 = ep

∗·z (4.87)

Moreover, we remind the reader that other results (e.g. 〈z|x〉 = (1 + z∗)x) can be obtained
from the above ones by taking a complex conjugate.

Proof. First, the exclusive product of a basis state |x〉 with a coherent state |z〉 is

〈x|z〉ex =
∑

y

zy

y!
e−z·1 〈x|y〉ex =

∑

y

zy

y!
e−z·1 x! δxy = zxe−z·1 . (4.88)

Next, the Grassberger-Scheunert product of a basis state |x〉 with a coherent state |z〉 is

〈x|z〉 = 〈x|eπ̂·1eâ·1|z〉ex
=ez·1 〈x|eπ̂·1|z〉ex
=e(z+1)·1 〈x|e(z+1)·(π̂−1)|0〉ex
=e(z+1)·1 〈x|z + 1〉ex
= (1 + z)x

(4.89)
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where we have used that |z〉 is an eigenstate of the annihilation operators âj, the operator
representation of |z〉 from Proposition 4, and Eq. 4.88. The exclusive product of two coherent
states is

〈p|z〉ex =
∑

y

(p∗)y

y!
e−p

∗·1 〈y|z〉ex =
∑

y

(p∗)y zy

y!
e−(p∗+z)·1 = ep

∗·z−(p∗+z)·1 . (4.90)

Finally, the Grassberger-Scheunert product of two coherent states is

〈p|z〉 = 〈p|eπ̂·1eâ·1|z〉ex = e(p∗+z)·1 〈p|z〉ex = ep
∗·z (4.91)

where we have used Eq. 4.90.

4.3.5 Resolution of the identity

The phrase ‘resolution of the identity’ refers to a useful way to write the identity operator. In
our case, we would like to write the identity operator in terms of coherent states, which will
allow us to construct the Doi-Peliti path integral. The relevant proposition, using coherent
states and the Grassberger-Scheunert product, is the following.

Proposition 7 (Identity operator in terms of coherent states). Let |x〉 be a basis vector,
and |z〉 and |−ip〉 be coherent states. Then

|x〉 =

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
|z〉 〈−ip|x〉 e−iz·p (4.92)

i.e.

1 =

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
|z〉 〈−ip| e−iz·p (4.93)

is the identity operator (because the relationship holds for basis vectors, it holds for all states
by linearity).

Proof. To establish Eq. 4.93, first observe that

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
|z〉 〈−ip|x〉 e−iz·p

=

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
|z〉 (1 + ip)x e−iz·p

=
∑

y

1

y!
|y〉
∫

[0,∞)n
dz zy

∫

Rn

dp

(2π)n
(1 + ip)x e−z·(1+ip)

=
∑

y

1

y!
|y〉
∫

[0,∞)n
dz zy

(
− d

dz

)x ∫

Rn

dp

(2π)n
e−z·(1+ip)

(4.94)
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for all basis kets |x〉, where we remind the reader of the shorthand
(
d

dz

)x

:=

(
d

dz1

)x1

· · ·
(

d

dzn

)xn
(4.95)

used to ease notation. Integrate the last line of Eq. 4.94 by parts to obtain

∑

y

1

y!
|y〉
∫

[0,∞)n
dz

(
d

dz

)x

[zy] e−zδ(z)

=
∑

y

1

y!
|y〉 x! δ(y − x)

= |x〉

(4.96)

which confirms that Eq. 4.93 is a resolution of the identity.

We can use the coherent state resolution of the identity (Eq. 4.93) we just constructed
to rewrite our formal solution for |ψ(t)〉 (Eq. 4.59). Applying it twice, we have the following
result.

Corollary 6 (Generating function in terms of coherent states). The generating function can
be written in the form

|ψ(t)〉 =

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
∣∣zf
〉 〈
−ipf

∣∣Û(t, t0)
∣∣z0
〉 〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf . (4.97)

Proof. Apply Proposition 7 to the formal solution for |ψ(t)〉 (c.f. Eq. 4.64) twice.

The object that appears in the middle of this expression is sufficiently important that it
deserves its own name.

Definition 7. The propagator is defined as the matrix element

U(ipf , t; z0, t0) :=
〈
−ipf

∣∣Û(t, t0)
∣∣z0
〉
. (4.98)

where
∣∣−ipf

〉
and |z0〉 are coherent states, and Û(t, t0) is the time evolution operator. Usu-

ally, we will refer to it using the abbreviated notation U(ipf , z0).

Now we will construct a coherent state path integral expression for the propagator—this
is one of the most important equations in this paper, as it forms the basis of Doi-Peliti path
integral calculations.

Proposition 8 (Path integral expression for the propagator). The propagator U(ipf , t; z0, t0)
is equal to the path integral

U = lim
N→∞

∫ N−1∏

`=1

dz`dp`

(2π)n
exp

{
N−1∑

`=1

−ip` · (z` − z`−1) + ∆t H(ip`, z`−1, t`−1)

+∆t H(ipf , zN−1, t`−1) + ipf · zN−1
}

(4.99)
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where ∆t := (t− t0)/N and the Hamiltonian kernel H is defined as

H(ip, z, t) := 〈−ip|Ĥ(t)|z〉 e−ip·z (4.100)

where |−ip〉 and |z〉 are coherent states with p, z ∈ Rn.

Proof. First write the time evolution operator U(t, t0) as a product of many time evolution
operators using the composition property (Eq. 4.65):

Û(t, t0) = Û(t, tN−1)Û(tN−1, tN−2) · · · Û(t1, t0) (4.101)

where t` := t0 + `∆t for ` = 0, ..., N , and ∆t := (t− t0)/N . Now insert (N − 1) resolutions
of the identity to write

U =

∫ N−1∏

`=1

dz`dp`

(2π)n
〈
−ipf

∣∣Û(t, tN−1)
∣∣z`−1

〉
· · ·
〈
−ip1

∣∣Û(t1, t0)
∣∣z0
〉
e−i

∑N−1
`=1 p`·z` . (4.102)

To arrive at our desired path integral, all we must do is compute the matrix elements in the
above equation. Assuming that N is large enough that ∆t is very small, we have that

Û(t`, t`−1) ≈ 1 + Ĥ(t`−1)∆t (4.103)

i.e. Û is equal to its first order Taylor expansion. Moreover, this inequality becomes exact
in the N →∞ limit. Using this,

〈
−ip`

∣∣Û(t`, t`−1)
∣∣z`−1

〉
≈ eip

`·z`−1

+ ∆t
〈
−ip`

∣∣Ĥ(t`−1)
∣∣z`−1

〉
. (4.104)

By the definition of the Hamiltonian kernel,

〈
−ip`

∣∣Û(t`, t`−1)
∣∣z`−1

〉
≈ eip

`·z`−1 [
1 +H(ip`, z`−1, t`−1)∆t

]

≈ eip
`·z`−1+∆tH(ip`,z`−1,t`−1)

(4.105)

where we have again used the fact that ∆t is small. Putting all of these matrix elements
together, our final coherent state path integral expression for U(ipf , z0) reads

U = lim
N→∞

∫ N−1∏

`=1

dz`dp`

(2π)n
exp

{
N−1∑

`=1

−ip` · (z` − z`−1) + ∆t H(ip`, z`−1, t`−1)

+∆t H(ipf , zN−1, t`−1) + ipf · zN−1
}

(4.106)

where the N → ∞ limit must be taken so that the approximation we made in Eq. 4.103
becomes exact.
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4.3.6 Grassberger-Scheunert creation operators

As we noted in Sec. 4.3.4, the Hermitian conjugate of the annihilation operator âj with
respect to the Grassberger-Scheunert product is π̂j−1 for all j = 1, ..., n. Motivated by this,
we define the Grassberger-Scheunert creation operators.

Definition 8. The Grassberger-Scheunert creation operators are defined to be

â+
j := π̂j − 1 (4.107)

for all j = 1, ..., n.

In the rest of the article, we will take ‘creation operator’ without qualification to mean
one of these operators.

All Hamiltonians we consider may be expressed in terms of creation operators and an-
nihilation operators. For example, the Hamiltonian operator corresponding to the chemical
birth-death process (c.f. Sec. 4.2.1) can be shown to read

Ĥ = k(t)â+ − γ(t)â+â (4.108)

which is a specific case of a result we derive later (see Sec. 4.4). Note that this expression is
‘normal ordered’—all creation operators are to the left of all annihilation operators. For all
(possibly time-dependent) operators Â(t) in this form, i.e.

Â(t) :=
∑

ν1,...,νn,ρ1,...,ρn

dν1,...,νn
ρ1,...,ρn

(t) (â+
1 )ν1 · · · (â+

n )νn(â1)ρ1 · · · (ân)ρn , (4.109)

coherent state matrix elements are easily evaluated by exploiting that (âj)
† = â+

j and that
the coherent states are eigenstates of the annihilation operators. The particular result is the
following.

Proposition 9 (Coherent state matrix elements of normal ordered operators). Let |z〉 and
|p〉 be coherent states, and Â(t) be an arbitrary (possibly time-dependent) operator that is
normal ordered (i.e. all creation operators are to the left of all annihilation operators). The
coherent state matrix element 〈p|Â(t)|z〉 can be evaluated to be

〈p|Â(t)|z〉 = ep
∗·z

∑

ν1,...,νn,ρ1,...,ρn

dν1,...,νn
ρ1,...,ρn

(t) (p∗1)ν1 · · · (p∗n)νn(z1)ρ1 · · · (zn)ρn . (4.110)

Proof. Use the linearity of the inner product to take the sum out, then use the facts that
(âj)

† = â+
j , âk |z〉 = zk |z〉, and 〈p| â+

k = p∗k 〈p|. Finally, note that 〈p|z〉 = ep
∗·z.

We will use this result in the calculation sections to derive many Hamiltonian kernels.
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4.3.7 Probability distribution and moments

We need some way to extract information (like the transition probability P (x, t) or factorial
moments) from the generating function |ψ(t)〉. It turns out that we can achieve this using
the exclusive product [51] and Grassberger-Scheunert product [54].

Proposition 10 (Extracting transition probabilities and moments from the generating func-
tion). Transition probabilities can be obtained from the generating function using the exclu-
sive product, and factorial moments can be obtained from the generating function using the
Grassberger-Scheunert product and the annihilation operators. In particular,

P (x, t) =
〈x|ψ(t)〉ex

x!
(4.111)

and

〈xj(t)〉 = 〈0|âj|ψ(t)〉
〈xj(t)xk(t)〉 = 〈0|âj âk|ψ(t)〉

〈xj(t)[xj(t)− 1]〉 = 〈0|â2
j |ψ(t)〉

〈xj(t)[xj(t)− 1][xj(t)− 2]〉 = 〈0|â3
j |ψ(t)〉 .

(4.112)

Proof. By the definition of the exclusive product,

〈x|ψ(t)〉ex
x!

=
∑

y

P (y, t)
〈x|y〉ex

x!
=
∑

y

P (y, t)δ(x− y) = P (x, t) . (4.113)

By the explicit definition of the Grassberger-Scheunert product of two basis vectors (c.f. Eq.
4.76), note that 〈0|x〉 for all x ∈ Nn. Then

〈0|âj|ψ(t)〉 = 〈0|
∑

x

P (x, t)âj |x〉

= 〈0|
∑

x

P (x, t)xj |x− εj〉

=
∑

x

P (x, t)xj 〈0|x− εj〉

=
∑

x

xjP (x, t)

= 〈xj(t)〉 .

(4.114)

The other expectation value formulas can be demonstrated in a similar fashion.

With this done, we have all of the machinery necessary to solve the problems identified
in Sec. 4.2.
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4.4 Monomolecular calculations

In this section, we present the calculations relevant to proving the formulas from Theorems
1 and 2 using the Doi-Peliti approach. First, we derive the Hamiltonian operator and use
it to compute the Hamiltonian kernel. Then we evaluate the path integral expression for
the propagator U(ipf , z0). Finally, we use the explicit form of the propagator to derive
the transition probability and several moments. We do not explicitly show how to compute
the generating function directly from the propagator, because it is very similar to the other
calculations.

4.4.1 The Hamiltonian operator and Hamiltonian kernel

We would like an equation equivalent to the CME (Eq. 4.18) that is satisfied by the gener-
ating function |ψ(t)〉 (Eq. 6.32). Doing so involves a straightforward calculation, which we
spell out here for the sake of illustration.

Lemma 1. The Hamiltonian operator corresponding to the monomolecular CME (Eq. 4.18)
is

Ĥ =
n∑

k=1

c0k(t) [π̂k − 1]−
n∑

k=1

ck0(t) [π̂k − 1] âk

+
n∑

j=1

n∑

k=1

cjk(t) [π̂k − π̂j] âj .
(4.115)

Proof. First, take the time derivative of |ψ(t)〉:

∂ |ψ〉
∂t

=
∑

x

∂P (x, t)

∂t
|x〉

=
∑

x

{
n∑

k=1

c0k(t) [P (x− εk, t)− P (x, t)]

+
n∑

k=1

ck0(t) [(xk + 1)P (x + εk, t)− xkP (x, t)]

+
n∑

j=1

n∑

k=1

cjk(t) [(xj + 1)P (x + εj − εk, t)− xjP (x, t)]

}
|x〉

(4.116)
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where we have used Eq. 4.18. Reindex the sums over x so that this expression reads

∂ |ψ〉
∂t

=
∑

x

{
n∑

k=1

c0k(t) [ |x + εk〉 − |x〉 ]

+
n∑

k=1

ck0(t) [ xk |x− εk〉 − xk |x〉 ]

+
n∑

j=1

n∑

k=1

cjk(t) [ xj |x− εj + εk〉 − xj |x〉 ]

}
P (x, t) .

(4.117)

Using the creation and annihilation operators we defined earlier, the right-hand side can be
written as

∑

x

{
n∑

k=1

c0k(t) [ π̂k − 1 ] +
n∑

k=1

ck0(t) [ âk − π̂kâk ]

+
n∑

j=1

n∑

k=1

cjk(t) [ âjπ̂k − π̂j âj ]

}
P (x, t) |x〉

=

{
n∑

k=1

c0k(t) [ π̂k − 1 ] +
n∑

k=1

ck0(t) [ âk − π̂kâk ]

+
n∑

j=1

n∑

k=1

cjk(t) [ âjπ̂k − π̂j âj ]

}
|ψ(t)〉 .

(4.118)

Comparing this with the definition of the Hamiltonian operator (c.f. Eq. 4.58), we have our
result.

The Hamiltonian can be written more compactly in terms of the Grassberger-Scheunert
creation operators:

Corollary 7. In terms of the Grassberger-Scheunert creation operator, the Hamiltonian is

Ĥ =
n∑

k=1

c0k(t)â
+
k −

n∑

k=1

ck0(t)â+
k âk +

n∑

j=1

n∑

k=1

cjk(t)
[
â+
k − â+

j

]
âj . (4.119)

Proof. Start with the result above and make the identification â+
j = π̂j − 1.

Note that this expression is ‘normal ordered’—all creation operators are to the left of
all annihilation operators. This allows us to use Proposition 9 to compute the Hamiltonian
kernel.
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Corollary 8. The Hamiltonian kernel for the monomolecular CME is

−iH(ip`, z`−1, t`−1) =
n∑

k=1

c0k(t`−1)p`k −
n∑

k=1

ck0(t`−1)p`kz
`−1
k

+
n∑

j=1

n∑

k=1

cjk(t`−1)
[
p`k − p`j

]
z`−1
j .

(4.120)

Proof. Make the identifications â+
j → ip`j and âj → z`−1

j in the Hamiltonian above.

4.4.2 Evaluating the propagator path integral

In this section, we will evaluate the path integral expression for the propagator U(ipf , z0)
(Eq. 4.99) given our specific dynamics, which are captured by the Hamiltonian kernel H
(Eq. 4.120).

Lemma 2 (Monomolecular propagator). The propagator for the monomolecular system is

U(ipf , z0) = eip
f ·z(t) (4.121)

where

z(t) :=
n∑

k=1

z0
kw

(k)(t) + λ(t) (4.122)

with w(k)(t) and λ(t) as defined in Theorem 2.

Proof. Begin with the path integral expression for U (Eq. 4.99). Let us first integrate over
the p`k (where ` ∈ {1, ..., N − 1} and k ∈ {1, ..., n}). For fixed ` and k, these integrals look
like

∫ ∞

−∞

dp`k
2π

exp

{
−ip`k

[
(z`k − z`−1

k )−∆t

(
c`−1

0k − c`−1
k0 z`−1

k +
n∑

j=1

c`−1
jk z

`−1
j − c`−1

kj z
`−1
k

) ]}

(4.123)
where c`−1

jk is shorthand for cjk(t`−1). Using the usual integral representation of the Dirac
delta function, these integrals are easily done to obtain n · (N−1) delta function constraints:

δ

[
(z`k − z`−1

k )−∆t

(
c`−1

0k − c`−1
k0 z`−1

k +
n∑

j=1

c`−1
jk z

`−1
j − c`−1

kj z
`−1
k

) ]
. (4.124)

Fortunately, that is exactly how many integrals we have left to do. Notice that the constraints
force

z`k = z`−1
k + ∆t

(
c`−1

0k − c`−1
k0 z`−1

k +
n∑

j=1

c`−1
jk z

`−1
j − c`−1

kj z
`−1
k

)
(4.125)
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which exactly corresponds to taking an Euler time step given the deterministic dynamics
described by the reaction rate equations, Eq. 4.20. What remains of our calculation is to
evaluate

U = lim
N→∞

exp
{

∆t H(ipf , zN−1, t`−1) + ipf · zN−1
}

(4.126)

given Eq. 4.125, the constraint on zN−1 relating it (via (N − 1) Euler time steps) to z0. We
have

ipf · zN−1 + ∆t H(ipf , zN−1, t`−1)

=i
n∑

k=1

pfk

{
zN−1
k + ∆t

[
cN−1

0k − cN−1
k0 zN−1

k +
n∑

j=1

cN−1
jk zN−1

j − cN−1
kj zN−1

k

]}

=i
n∑

k=1

pfkz
N
k

(4.127)

where we define zNk as the result of taking N time steps of length ∆t according to Eq. 4.125
given the initial condition z0

k. In the N →∞ limit, zNk → zk(t), where zk(t) is defined as the
kth component of the solution to Eq. 4.20. As described in Sec. 4.2, z(t) can be decomposed
in terms of λ(t) and the w(k)(t).

While it may seem that this path integral calculation was completely trivial, that is
mostly because we put in the legwork to define and characterize the Grassberger-Scheunert
product beforehand. Had we used the exclusive product to construct our path integral, we
would either have to perform a hard to justify Doi shift, or deal with extra terms after
enforcing the delta function constraints.

Now that we have computed the propagator U(ipf , z0), we can relate it to the generating
function |ψ(t)〉 using Corollary 6. Then, using Proposition 10, the generating function can
be used to compute P (x, t) and various moments. Because the transition probability and
moment calculations are somewhat involved, we first present them for the one species system
(i.e. the chemical birth-death process).

4.4.3 One species transition probability derivation

Lemma 3 (One species monomolecular transition probability). For the single species monomolec-
ular system (i.e. the chemical birth-death process), the transition probability P (x, t; ξ, t0) is

P =

min(x,ξ)∑

k=0

[
λ(t)x−ke−λ(t)

(x− k)!

] [(
ξ

k

)
w(t)k[1− w(t)]ξ−k

]

= P(x, λ(t)) ?M(x, ξ, w(t))

(4.128)

where w(t) and λ(t) are as defined in Theorem 1.
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Proof. Recall that, since P (x, t0) = δ(x− ξ) for some ξ ≥ 0,

|ψ(t0)〉 = |ξ〉 . (4.129)

Using Eq. 4.111 and Eq. 4.97, we have

P (x, t; ξ, t0) =
1

x!

∫
dzfdpf

2π

dz0dp0

2π

〈
x
∣∣zf
〉
ex
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0z0−ipf zf

=
1

x!

∫
dzfdpf

2π

dz0dp0

2π

(
zf
)x
e−z

f

eip
f z(t)(1 + ip0)ξ e−ip

0z0−ipf zf .

(4.130)

The integral over pf is easily done:

∫ ∞

−∞

dpf

2π
eip

f [z(t)−zf ] = δ(z(t)− zf ) . (4.131)

Enforcing the delta function constraint removes the integral over zf . Since z(t) = z0w(t) +
λ(t),

P =
1

x!

∫
dz0dp0

2π

[
z0w(t) + λ(t)

]x
e−[z0w(t)+λ(t)] (1 + ip0)ξ e−ip

0z0

=
e−λ(t)

x!

∫
dz0dp0

2π

[
z0w(t) + λ(t)

]x
ez

0[1−w(t)] (1 + ip0)ξ e−z
0[1+ip0] .

(4.132)

This can be rewritten as

P =
e−λ(t)

x!

∫
dz0dp0

2π

[
z0w(t) + λ(t)

]x
ez

0[1−w(t)]

(
− d

dz0

)ξ
e−z

0[1+ip0]

=
e−λ(t)

x!

∫
dz0dp0

2π

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]x
ez

0[1−w(t)]
}
e−z

0[1+ip0]

(4.133)

where we integrated by parts in the second step. The p0 integral can now be done:

∫ ∞

−∞

dp0

2π
e−ip

0z0

= δ(z0) . (4.134)

We now have

P =
e−λ(t)

x!

∫ ∞

0

dz0

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]x
ez

0[1−w(t)]
}
e−z

0

δ(z0) . (4.135)

If we can evaluate the derivative, then we can easily evaluate the integral using the delta
function. Using the binomial theorem,

[
z0w(t) + λ(t)

]x
=

x∑

k=0

(
x

k

)
w(t)kλ(t)x−k

(
z0
)k

. (4.136)
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Since
(
z0
)k
ez

0[1−w(t)] =
∞∑

j=0

(z0)
j+k

[1− w(t)]j

j!
, (4.137)

the derivative of a specific term is

(
d

dz0

)ξ {(
z0
)k
ez

0[1−w(t)]
}

=
∞∑

j=0

(j + k)(j + k − 1) · · · (j + k − ξ + 1) (z0)
j+k−ξ

[1− w(t)]j

j!
.

(4.138)
When enforcing the delta function constraint that z0 = 0, all terms will disappear from this
series except for the constant term. The constant term is the term with j + k = ξ, which
reads

ξ!

(ξ − k)!
[1− w(t)]ξ−kθ(ξ − k) (4.139)

where the step function θ, defined as

θ(ξ − k) :=

{
1 k ≤ ξ

0 k > ξ
(4.140)

must be there since the result will be zero if k > ξ. Hence,

P =
e−λ(t)

x!

x∑

k=0

(
x

k

)
w(t)kλ(t)x−k

ξ!

(ξ − k)!
[1− w(t)]ξ−kθ(ξ − k)

= e−λ(t)

min(x,ξ)∑

k=0

(
ξ

k

)
w(t)kλ(t)x−k

1

(x− k)!
[1− w(t)]ξ−k

=

min(x,ξ)∑

k=0

[
λ(t)x−ke−λ(t)

(x− k)!

] [(
ξ

k

)
w(t)k[1− w(t)]ξ−k

]

= P(x, λ(t)) ?M(x, ξ, w(t))

(4.141)

as desired.

4.4.4 General transition probability derivation

Lemma 4 (Monomolecular transition probability). For the general monomolecular system,
the transition probability P (x, t; ξ, t0) is

P = P(x,λ(t)) ?M(x, ξ1,w
(1)(t)) ? · · · ?M(x, ξn,w

(n)(t)) (4.142)

where λ(t) and the w(j)(t) are as defined in Theorem 2.

Proof. The general case proceeds analogously to the one species case. The main difference
is that we must do the appropriate multivariable generalization of each of the steps in the
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previous subsection (e.g. use the multinomial theorem instead of the binomial theorem).
Since P (x, t0) = δ(x− ξ),

|ψ(t0)〉 = |ξ〉 . (4.143)

Using Eq. 4.111 and Eq. 4.97,

P (x, t; ξ, t0) =
1

x!

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
〈
x
∣∣zf
〉
ex
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf

=
1

x!

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
(
zf
)x
e−z

f ·1 eip
f ·z(t)(1 + ip0)ξ e−ip

0·z0−ipf ·zf .

(4.144)

The integrals over pf1 , ..., p
f
n yield delta functions:

∫
dpf

(2π)n
eip

f ·[z(t)−zf ] = δ(z1(t)− zf1 ) · · · δ(zn(t)− zfn) = δ(z(t)− zf ) . (4.145)

Enforcing the delta function constraints removes the integrals over zf1 , ..., z
f
n. Using Eq.

4.122,

P =
1

x!

∫
dz0dp0

(2π)n

[
n∑

k=1

z0
kw

(k) + λ

]x
e−[

∑n
k=1 z

0
kw

(k)+λ]·1 (1 + ip0)ξ e−ip
0·z0

=
e−|λ(t)|

x!

∫
dz0dp0

(2π)n

[
n∑

k=1

z0
kw

(k) + λ

]x
e
∑n
k=1 z

0
k(1−|w(k)|) (1 + ip0)ξ e−z

0·[1+ip0] .

(4.146)

Reusing the notation we used earlier to denote many derivatives with respect to each variable
(Eq. 4.95), we can rewrite this result as

P =
e−|λ(t)|

x!

∫
dz0dp0

(2π)n

[
n∑

k=1

z0
kw

(k) + λ

]x
e
∑n
k=1 z

0
k(1−|w(k)|)

(
− d

dz0

)ξ
e−z

0·[1+ip0]

=
e−|λ(t)|

x!

∫
dz0dp0

(2π)n

(
d

dz0

)ξ{[ n∑

k=1

z0
kw

(k) + λ

]x
e
∑n
k=1 z

0
k(1−|w(k)|)

}
e−z

0·[1+ip0]

(4.147)

where we integrated by parts many times in the second step. The p0
1, ..., p

0
n integrals can now

be done: ∫
dp0

(2π)n
e−ip

0·z0

= δ(z0
1) · · · δ(z0

n) = δ(z0) . (4.148)

We now have

P =
e−|λ(t)|

x!

∫
dz0

(
d

dz0

)ξ{[ n∑

k=1

z0
kw

(k) + λ

]x
e
∑n
k=1 z

0
k(1−|w(k)|)

}
e−z

0·1δ(z0) . (4.149)
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If we can evaluate the derivative, then we can easily evaluate the integral using the delta
function. Recall that[

n∑

k=1

z0
kw

(k) + λ

]x
=

[
n∑

k=1

z0
kw

(k)
1 + λ1

]x1

· · ·
[

n∑

k=1

z0
kw

(k)
n + λn

]xn
. (4.150)

Using the multinomial theorem,
[

n∑

k=1

z0
kw

(k)
j + λj

]xj
=

∑

vj1+···vjn+1=xj

(
xj

vj1 · · · vjn+1

)[
z0

1w
(1)
j

]vj1 · · ·
[
z0
nw

(n)
j

]vjn
[λj]

vjn+1
(4.151)

for each j = 1, ..., n. Write |v`| := v1
` + · · · + vn` . Putting these multinomial expansions

together, our integral now involves computing n expressions of the form
(

d

dz0
`

)ξ` {[
z0
`

]|v`| ez0
` (1−|w(`)|)

}∣∣∣∣∣
z0
`=0

=
ξ`!

(ξ` − |v`|)!
(
1− |w(`)|

)ξ`−|v`|
θ(ξ` − |v`|) (4.152)

where we have used the result from earlier (Eq. 4.139) to evaluate it. When enforcing the
delta function constraint that z0

` = 0 for all ` = 1, ..., n, we get

e−|λ(t)|

x!

∑

vjk

{
n∏

j=1

(
xj

vj1 · · · vjn+1

)[
w

(1)
j

]vj1 · · ·
[
w

(n)
j

]vjn
[λj]

vjn+1
ξj!

(ξj − |vj|)!
(
1− |w(j)|

)ξj−|vj |
θ(ξj − |vj|)

}

(4.153)
for P . This is the final result, but let us rewrite it so that we recover the result from Theorem
1 (Eq. 4.31) of Jahnke and Huisinga’s paper. Note that

e−|λ(t)|
n∏

j=1

[λj]
vjn+1

vjn+1!
=
λ(t)vn+1

vn+1!
e−|λ(t)| = P(vn+1,λ(t)) . (4.154)

Also,

ξk!
(
1− |w(k)|

)ξk−|vk|

(ξk − |vk|)!
θ(ξk − |vk|)

n∏

j=1

[
w

(k)
j

]vjk

vjk!

=
ξk!
(
1− |w(k)|

)ξk−|vk|

(ξk − |vk|)!
θ(ξk − |vk|)

[
w(k)

]vk
vk!

=M(vk, ξk,w
(k)) .

(4.155)

We are left with

P =
∑

vjk

P(vn+1,λ(t)) M(v1, ξ1,w
(1)) · · ·M(vn, ξn,w

(n))

=
∑

vjk

P(x− v1 − · · · − vn,λ(t)) M(v1, ξ1,w
(1)) · · ·M(vn, ξn,w

(n))

= P(x,λ(t)) ?M(x, ξ1,w
(1)(t)) ? · · · ?M(x, ξn,w

(n)(t))

(4.156)
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which matches Eq. 4.31.

If we wanted to compute the moments of P (x, t), we could just use Eq. 4.31 and carry out
the calculation directly; however, the Doi-Peliti approach offers a way to compute moments
which bypasses P (x, t) completely. In other words, if we are only interested in moments,
the work from the previous section is unnecessary. Instead, we can use Proposition 10. As
with the previous calculation, we will warm up with the one species case before treating the
multi-species case.

4.4.5 One species moments derivation

Lemma 5 (One species monomolecular moments). For the single species monomolecular
system (i.e. the chemical birth-death process), the first and second factorial moments are

〈x(t)〉 = ξw(t) + λ(t)

〈x(t)[x(t)− 1]〉 = w(t)2ξ(ξ − 1) + 2λ(t)w(t)ξ + λ(t)2 (4.157)

where w(t) and λ(t) are as defined in Theorem 1.

Proof. Using Eq. 4.112,

〈x(t)〉 = 〈0|â|ψ(t)〉

=

∫
dzfdpf

2π

dz0dp0

2π

〈
0
∣∣â
∣∣zf
〉
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0z0−ipf zf

=

∫
dzfdpf

2π

dz0dp0

2π
zf eip

f z(t)(1 + ip0)ξ e−ip
0z0−ipf zf .

(4.158)

The pf , zf , and p0 integrals can be done as in Sec. 4.4.3, leaving

〈x(t)〉 =

∫ ∞

0

dz0

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]
ez

0
}
e−z

0

δ(z0) . (4.159)

The derivative is easily evaluated, and we obtain

〈x(t)〉 =

∫ ∞

0

dz0
[
ξw(t)ez

0

+ z(t)ez
0
]
e−z

0

δ(z0) = ξw(t) + λ(t) (4.160)

which is just the solution to the one species reaction rate equation with x(t0) = ξ, just as
expected. The second factorial moment can be computed in similar fashion:

〈x(t)[x(t)− 1]〉 = 〈0|â2|ψ(t)〉

=

∫
dzfdpf

2π

dz0dp0

2π

(
zf
)2

eip
f z(t)(1 + ip0)ξ e−ip

0z0−ipf zf

=

∫ ∞

0

dz0

(
d

dz0

)ξ {[
z0w(t) + λ(t)

]2
ez

0
}
e−z

0

δ(z0)

= w(t)2ξ(ξ − 1) + 2λ(t)w(t)ξ + λ(t)2 .

(4.161)

Higher factorial moments can be computed in exactly the same way.
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4.4.6 General moments derivation

Unlike in the one species case, there are many first moments: 〈x1(t)〉 , ..., 〈xn(t)〉. There are
also many second moments. To summarize them usefully, we compute the covariance matrix
elements (i.e. Cov(xj, x`) := 〈xj(t)x`(t)〉 − 〈xj(t)〉〈x`(t)〉 for all pairs of j and `).

Lemma 6 (Monomolecular moments). For the general monomolecular system, the first mo-
ments, second factorial moments, and covariance matrix elements are given by

〈xj(t)〉 =
n∑

k=1

ξkw
(k)
j (t) + λj(t) j = 1, ..., n

〈xjx`〉 =
n∑

k=1

n∑

k′=1

ξkξk′w
(k)
j w

(k′)
`

+
n∑

k=1

ξk

[
w

(k)
j λ` + w

(k)
` λj − w(k)

j w
(k)
`

]
+ λjλ` j 6= `

〈xj(t)[xj(t)− 1]〉 =
n∑

k=1

n∑

k′=1

ξkξk′w
(k)
j w

(k′)
j

+
n∑

k=1

ξk

[
2w

(k)
j λj −

(
w

(k)
j

)2
]

+ λ2
j j = 1, ..., n

Cov(xj, x`) =

{∑n
k=1 ξkw

(k)
j

[
1− w(k)

j

]
+ λj j = `

−∑n
k=1 ξkw

(k)
j w

(k)
` j 6= `

(4.162)

where λ(t) and the w(j)(t) are as defined in Theorem 2.

Proof. Picking a specific xj and using Eq. 4.112, we have

〈xj(t)〉 = 〈0|âj|ψ(t)〉

=

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
〈
0
∣∣âj
∣∣zf
〉
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf

=

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
zfj e

ipf ·z(t)(1 + ip0)ξ e−ip
0·z0−ipf ·zf .

(4.163)

The pf , zf , and p0 integrals can be done as in Sec. 4.4.4, yielding

〈xj(t)〉 =

∫
dz0

(
d

dz0

)ξ{[ n∑

k=1

z0
kw

(k)
j + λj

]
ez

0·1
}

e−z
0·1δ(z0)

=
n∑

k=1

ξkw
(k)
j (t) + λj(t)

(4.164)

which is the jth component of the solution to Eq. 4.20 with x(t0) = ξ.
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Let us compute 〈xj(t)x`(t)〉 for j 6= `. To start off,

〈xj(t)x`(t)〉 = 〈0|âj â`|ψ(t)〉

=

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
〈
0
∣∣âj â`

∣∣zf
〉
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf

=

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
zfj z

f
` e

ipf ·z(t)(1 + ip0)ξ e−ip
0·z0−ipf ·zf .

(4.165)

Proceeding as we just did, we obtain

〈xjx`〉 =

∫
dz0

(
d

dz0

)ξ{[ n∑

k=1

z0
kw

(k)
j + λj

][
n∑

k′=1

z0
k′w

(k′)
` + λ`

]
ez

0·1
}

e−z
0·1δ(z0)

=
n∑

k=1

n∑

k′=1

ξkξk′w
(k)
j w

(k′)
` +

n∑

k=1

ξk

[
w

(k)
j λ` + w

(k)
` λj − w(k)

j w
(k)
`

]
+ λjλ` .

(4.166)

For the similar case j = `, we obtain

〈xj(t)[xj(t)− 1]〉 =

∫
dz0

(
d

dz0

)ξ




[
n∑

k=1

z0
kw

(k)
j + λj

]2

ez
0·1



 e−z

0·1δ(z0)

=
n∑

k=1

n∑

k′=1

ξkξk′w
(k)
j w

(k′)
j +

n∑

k=1

ξk

[
2w

(k)
j λj −

(
w

(k)
j

)2
]

+ λ2
j .

(4.167)

Putting these results together, we find that the covariance of xj and x` is

Cov(xj, x`) =

{∑n
k=1 ξkw

(k)
j

[
1− w(k)

j

]
+ λj j = `

−∑n
k=1 ξkw

(k)
j w

(k)
` j 6= `

. (4.168)

Hence, we have recovered the moment results from Sec. 4.2 of Jahnke and Huisinga.

4.5 Birth-death-autocatalysis calculations

In this section, we present the calculations relevant to proving the formulas from Theorem
3 on the birth-death-autocatalysis system. First, we present the Hamiltonian operator and
kernel. Then we evaluate the path integral expression for the propagator U(ipf , z0). Finally,
we use the explicit form of the propagator to derive the transition probability, and several
interesting limiting forms of it. We do not explicitly show how to compute the generating
function directly from the propagator, because it is very similar to the other calculations.
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4.5.1 Evaluating the propagator

We can straightforwardly go from the CME (Eq. 4.36) to the Hamiltonian operator and
Hamiltonian kernel.

Lemma 7. The Hamiltonian operator corresponding to the birth-death-autocatalysis CME
(Eq. 4.36) is

Ĥ = â+
[
k + (c− γ)â+ c â+â

]
. (4.169)

Proof. Starting with Eq. 4.36, follow the argument from Lemma 1, and then substitute in
the Grassberger-Scheunert creation operator.

Corollary 9. The Hamiltonian kernel for the birth-death-autocatalysis CME is

H(ip, z, t) = ip [k + (c− γ)z]− c p2z . (4.170)

Proof. Make the identifications â+ → ip and â→ z in the Hamiltonian above.

Now we must compute the propagator, a calculation which turns out to be somewhat
involved.

Lemma 8 (Birth-death-autocatalysis propagator). The propagator for the birth-death-autocatalysis
system is

U(ipf , z0) = exp

{
iz0q(t) + i

∫ t

t0

k(s)q(t− s+ t0) ds

}
(4.171)

where q(s) is as in Theorem 3.

Proof. The path integral expression for the propagator U(ipf , z0) is

U = lim
N→∞

∫ N−1∏

`=1

dz`dp`
2π

exp

{
N−1∑

`=1

−ip`(z` − z`−1) + ∆tH(ip`, z`−1, t`−1)

+∆tH(ipf , zN−1, t`−1) + ipfzN−1}
(4.172)

where we have used slightly different notation than before since there is only one chemical
species. In order to evaluate this path integral, first integrate over each z`, and then integrate
over each p`. Collecting terms containing z`, the integral over each z` looks like

∫ ∞

0

dz`
2π

exp
{
z`
[
−c`∆t p2

`+1 + i(c` − γ`)∆t p`+1 − i(p` − p`+1)
]}

=
1

2πi

1

(p` − p`+1)−∆t
[
(c` − γ`) p`+1 + ic` p2

`+1

] .
(4.173)

The integrals over p` can now be done—but they must be done in a specific order. Do the
integral over pN−1, then pN−2, and so on, until the integral over p1 has been done. Each of
these integrals is schematically

1

2πi

∫ ∞

−∞
dp`

f(p`)

(p` − p`+1)−∆t
[
(c` − γ`) p`+1 + ic` p2

`+1

] (4.174)
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where the function f(p`) has no poles. This means that each integral can be evaluated using
Cauchy’s integral formula, so that the net effect of doing them is to enforce the (N − 1)
constraints

p` = p`+1 + ∆t
[
(c` − γ`) p`+1 + ic` p

2
`+1

]
(4.175)

on the p` for ` = 1, ..., N − 1. There are no more integrals to do, so all that remains is to
evaluate what’s left of the propagator using these constraints. Eq. 4.175 looks like an Euler
time step, although it is ‘backwards’—we go from p`+1 to p` instead of the other way around.
Define qN−` := p` so that it reads

qN−` = qN−`−1 + ∆t
[
(c` − γ`) qN−`−1 + ic` q

2
N−`−1

]
. (4.176)

Choosing ` = N − n, we find

qn = qn−1 + ∆t
[
(cN−n − γN−n) qn−1 + icN−n q

2
n−1

]
. (4.177)

This corresponds to dynamics

q̇(s) = [c(t− s+ t0)− γ(t− s+ t0)] q(s) + ic(t− s+ t0) q(s)2 (4.178)

where s ∈ [t0, t] and q(t0) = pf . As can be verified by substitution, Eq. 4.178 is solved by

q(s) =
w(s)

1
pf
− i
∫ s
t0
c(t− t′ + t0)w(t′) dt′

(4.179)

where w(t) is the solution to

ẇ(s) = [c(t− s+ t0)− γ(t− s+ t0)] w(s) (4.180)

with w(t0) = 1 (c.f. Eq. 4.30), i.e.

w(s) = e
∫ s
t0
c(t−t′+t0)−γ(t−t′+t0) dt′

. (4.181)

The continuous limit of Eq. 4.175 is then p(s) := q(t−s+t0). With that done, the propagator
with most terms integrated out reads

U(ipf , z0) = lim
N→∞

exp

{
i
N−1∑

`=1

k`−1p` ∆t+ ip1z0 + ∆t
[
ip1(c0 − γ0)z0 − c0p

2
1z0

]
}

. (4.182)

The term on the right is just another Euler time step, so we can write it as

iz0

{
p1 + ∆t

[
p1(c0 − γ0)− c0p

2
1

]}
= iz0p0 (4.183)

where we define
p0 := p1 + ∆t

[
p1(c0 − γ0)− c0p

2
1

]
. (4.184)
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In the limit as N →∞, p0 → p(t0) = q(t). The term on the left is just a Riemann sum:

N−1∑

`=1

k`−1p` ∆t ≈
∫ t

t0

k(s)p(s) ds =

∫ t

t0

k(s)q(t− s+ t0) ds . (4.185)

Hence, our final answer for the propagator U is

U(ipf , z0) = exp

{
iz0q(t) + i

∫ t

t0

k(t− s+ t0)q(s) ds

}
(4.186)

where we have reparameterized the integral on the right to swap s and (t− s+ t0).

As an aside, we note that this calculation closely resembles the Martin-Siggia-Rose-
Janssen-De Dominicis path integral computation from our earlier paper [77]: in particular,
many applications of Cauchy’s integral formula and another ‘backwards’ Euler time step
constraint are both involved.

4.5.2 Deriving the transition probability

As in Sec. 4.4.3 and 4.4.4, we will use the propagator derived in the previous section to
derive an expression for the transition probability P (x, t; ξ, t0).

Lemma 9 (Birth-death-autocatalysis transition probability). For the birth-death-autocatalysis
system, the transition probability P (x, t; ξ, t0) is

P (x, t; ξ, t0) =
1

2π

∫ ∞

−∞
dpf

[1 + iq(t)]ξ e
i
∫ t
t0
k(t−s+t0)q(s)ds

(1 + ipf )x+1
(4.187)

where q(s) is as in Theorem 3.

Proof. Since P (x, t0) = δ(x− ξ), we have |ψ0〉 = |ξ〉. Using Eq. 4.111 and Eq. 4.97,

P (x, t; ξ, t0) =
1

x!

∫
dzfdpf

2π

dz0dp0

2π
〈x|zf〉ex U(ipf , z0) 〈−ip0|ψ(t0)〉 e−ip0z0−ipf zf

=
1

x!

∫
dzfdpf

2π

dz0dp0

2π
(zf )

x e−zf eiz0q(t)+i
∫ t
t0
k(t−s+t0)q(s) ds

(1 + ip0)ξ e−ip0z0−ipf zf .

(4.188)

The integral over z0 is ∫ ∞

0

dz0

2π
e−iz0[p0−q(t)] =

1

2πi

1

p0 − q(t)
. (4.189)

The integral over p0 can be performed using Cauchy’s integral formula:

1

2πi

∫ ∞

−∞
dp0

(1 + ip0)ξ

p0 − q(t)
= [1 + iq(t)]ξ . (4.190)
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The integral over zf can be recognized as a Laplace transform:

∫ ∞

0

dzf (zf )
x e−zf [1+ipf ] =

x!

(1 + ipf )
x+1 . (4.191)

Putting these together, we obtain the desired result.

We will leave our solution in this form, since it is difficult to evaluate the contour integral
without knowing the explicit time-dependence of the rates. In the next few sections, we will
examine a few special cases.

4.5.3 Time-independent rates

Lemma 10 (Birth-death-autocatalysis transition probability for time-independent rates).
Suppose the parameters k, γ, and c are all time-independent and non-zero. Then the transi-
tion probability can be rewritten as

P =

( γ
c
− 1

γ
c
− w

)k/c
(1− w)x−ξ(
γ
c
− w

)x ×

×
ξ∑

j=0

(
ξ

j

)
(j + k/c)x

x!

[
1− γ

c
w
]ξ−j

[
w
(
γ
c
− 1
)2

γ
c
− w

]j (4.192)

where (y)x := (y)(y+1) · · · (y+x−1) is the Pochhammer symbol/rising factorial, and where
w(t) = e−(γ−c)(t−t0).

Proof. In this case, q(t) reads

q̇ = [c− γ] q + ic q2

q(t) =
e(c−γ)T

1
pf
− i c

c−γ [e(c−γ)T − 1]
=

w(t)
1
pf
− i c

c−γ [w(t)− 1]

(4.193)

where T := t− t0. We have

∫ t

t0

q(s) ds =
i

c
log

{
1− ic

c− γ
[
e(c−γ)T − 1

]
pf

}
(4.194)

so that the convolution term from the propagator reads

e
ik

∫ t
t0
q(s) ds

=
1

[
1− ic

c−γ [e(c−γ)T − 1] pf

]k/c =
1

[1− iB(t)pf ]
k/c

(4.195)

where we define
B(t) :=

c

c− γ [w(t)− 1] . (4.196)
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It is important to note that Eq. 4.195 has no poles in the upper half-plane (the region around
which we are integrating), regardless of whether c− γ > 0, c− γ < 0, or c = γ. Next,

1 + iq(t) = 1 +
iw(t)pf

1− iB(t)pf
=

[
1− w(t)

B(t)

]
+
w(t)

B(t)

1

[1− iB(t)pf ]
(4.197)

so that

[1 + iq(t)]ξ =

ξ∑

j=0

(
ξ

j

)[
1− w(t)

B(t)

]ξ−j (
w(t)

B(t)

)j
1

[1− iB(t)pf ]
j . (4.198)

Putting all these results together, our expression for the transition probability is

P =

ξ∑

j=0

(
ξ

j

)[
1− w(t)

B(t)

]ξ−j (
w(t)

B(t)

)j
1

x! ix

{
x!

2πi

∫ ∞

−∞
dpf

1

[1− iB(t)pf ]
j+k/c

1

(pf − i)x+1

}
.

(4.199)
Since

dx

dpxf

[
1

[1− iB(t)pf ]
j+k/c

]

p=i

=
ixB(t)x

[1 +B(t)]j+k/c+x

(
j +

k

c

)(
j +

k

c
+ 1

)
· · ·
(
j +

k

c
+ x− 1

)

(4.200)
we have

P =

ξ∑

j=0

(
ξ

j

)[
1− w(t)

B(t)

]ξ−j (
w(t)

B(t)

)j
(j + k/c)x

x!

B(t)x

[1 +B(t)]j+k/c+x

=

(
1− γ

c

w − γ
c

)k/c(
w − 1

w − γ
c

)x ξ∑

j=0

(
ξ

j

)
(j + k/c)x

x!

[
1−

(
1− γ

c

) w

w − 1

]ξ−j [ w
(
1− γ

c

)2

(w − 1)(w − γ
c
)

]j

=

( γ
c
− 1

γ
c
− w

)k/c
(1− w)x−ξ(
γ
c
− w

)x ×

×
ξ∑

j=0

(
ξ

j

)
(j + k/c)x

x!

[
1− γ

c
w
]ξ−j

[
w
(
γ
c
− 1
)2

γ
c
− w

]j

(4.201)

where (y)x := (y)(y+ 1) · · · (y+ x− 1) is the Pochhammer symbol/rising factorial. This can
also be written in terms of the hypergeometric function 2F1(a, b; c;x).

4.5.4 Binomial, Poisson, and negative binomial special cases

Corollary 2. Return to the original contour integral for time-dependent rates (Eq. 4.40),
and set k = c = 0, but leave the time-dependence of γ(t) arbitrary. We have

w(t) := exp

[
−
∫ t

t0

γ(t′)dt′
]

(4.202)
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q(t) = w(t)pf (4.203)

P (x, t; ξ, t0) =
1

2π

∫ ∞

−∞
dpf

[1 + iw(t)pf ]
ξ

(1 + ipf )x+1
. (4.204)

The function in the numerator has no poles, so the contour integral can easily be evaluated
using Cauchy’s integral formula. The result is

P (x, t; ξ, t0) =

(
ξ

x

)
[w(t)]x [1− w(t)]ξ−x (4.205)

for x ≤ ξ and 0 otherwise, i.e. a binomial distribution.
Return to the original contour integral for time-dependent rates (Eq. 4.40), and set

γ = c = 0, but leave the time-dependence of k(t) arbitrary. We have

λ(t) :=

∫ t

t0

k(t′)dt′ (4.206)

q(t) = pf (4.207)

P (x, t; ξ, t0) =
1

2π

∫ ∞

−∞
dpf

eiλ(t)pf

(1 + ipf )x+1−ξ . (4.208)

This contour integral can be evaluated using either Cauchy’s integral formula or a table of
integrals (c.f. Gradshteyn and Ryzhik [78] ET I 118(3), in section 3.382, on pg. 365). The
result is

P (x, t; ξ, t0) =
λ(t)x−ξe−λ(t)

(x− ξ)! (4.209)

for x ≥ ξ and 0 otherwise, i.e. a (shifted) Poisson distribution.
Return to the original contour integral for time-dependent rates (Eq. 4.40), and set

k = γ = 0, but leave the time-dependence of c(t) arbitrary. In this case, we will define w(t)
differently from before as

w(t) := exp

[
−
∫ t

t0

c(t′)dt′
]

(4.210)

i.e. as the reciprocal of what we previously called w(t). This is to match the result from
Jahnke and Huisinga. Now we have

q(t) =
w(t)−1

1
pf
− i [w(t)−1 − 1]

(4.211)

P (x, t; ξ, t0) =
1

2π

∫ ∞

−∞
dpf

1

(1 + ipf )x−ξ+1

1

[1− i(w(t)−1 − 1)pf ]
ξ
. (4.212)

The term on the right has no poles in the upper half-plane, so we can evaluate it using
Cauchy’s formula to find

P (x, t; ξ, t0) =

(
x− 1

ξ − 1

)
[w(t)]ξ [1− w(t)]x−ξ (4.213)

which is nonzero only for x ≥ ξ, i.e. we have a shifted negative binomial distribution.
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4.6 Zero and first order calculations

In this section, we sketch the calculations necessary for proving the formulas from Theorem 4
on a system with arbitrary combinations of zero and first order reactions. First, we present
the Hamiltonian operator and kernel. Then we sketch how the path integral expression
for the propagator U(ipf , z0) may be evaluated. Finally, we use the explicit form of the
propagator to derive the transition probability and generating function.

Writing down the CME directly is difficult; however, we do know that a CME involving
only zero or first order reactions only as terms proportional to Grassberger-Scheunert creation
operators, and has terms with at most one annihilation operator. We can assume it takes
the form (c.f. Eq. 4.51)

Ĥ(t) =
∑

ν1,...,νn

αν1,...,νn(t)
(
â+

1

)ν1 · · ·
(
â+
n

)νn

+
∑

k

∑

ν1,...,νn

βkν1,...,νn
(t)
(
â+

1

)ν1 · · ·
(
â+
n

)νn
âk

(4.214)

for some coefficients αν1,...,νn(t) and βjν1,...,νn
(t) that are determined by the details of one’s list

of reactions. The corresponding Hamiltonian kernel is

H(ip, z, t) = 〈−ip|Ĥ(t)|z〉
=
∑

ν1,...,νn

αν1,...,νn(t) (ip1)ν1 · · · (ipn)νn

+
∑

k

∑

ν1,...,νn

βkν1,...,νn
(t) (ip1)ν1 · · · (ipn)νn zk .

(4.215)

Now we can compute the propagator corresponding to this kernel.

Lemma 11 (Zero and first order reactions propagator). The propagator for the system with
arbitrary combinations of zero and first order reactions is

U = exp

{
i z0 · q(t) +

∫ t

t0

∑

ν1,...,νn

αν1,...,νn(t− s+ t0) [iq1(s)]ν1 · · · [iqn(s)]νn ds

}
(4.216)

where q(s) is as defined in Theorem 4.

Proof. We will only sketch this proof, because the argument is exactly the same as the one
presented in Lemma 8—the notation is just more cluttered, because we are now dealing
with a mult-species system and an arbitrarily large list of reactions. One may notice, from a
careful look at that prior argument, that its success did not depend on the detailed features of
the birth-death-autocatalysis system at all; it only depended on the Hamiltonian containing
terms at most first order in annihilation operators (i.e. no terms like âj âk or (âj)

6 appear).
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Since this is also true in the current case, we can rerun that argument to find that the
propagator can be written in terms of the solution q(t) to

q̇j(s) = −i
∑

ν1,...,νn

βjν1,...,νn
(t− s+ t0) [iq1(s)]ν1 · · · [iqn(s)]νn (4.217)

satisfying the initial condition qj(t0) = pfj . As before, the final propagator has two terms.
There is one term that comes from p0 = q(t) coupling to z0, and another term (due to the
terms in the Hamiltonian involving no annihilation operators) that becomes a convolution
integral.

Next, we will derive the transition probability.

Lemma 12 (Zero and first order reactions transition probability). The transition probability
for the system with arbitrary combinations of zero and first order reactions is

P =

∫

Rn

dpf

(2π)n
[1 + iq(t)]ξ e

∫ t
t0

∑
αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds

(1 + ipf )x+1
(4.218)

where q(s) is as in Theorem 4.

Proof. Begin with the expression for the generating function in terms of the propagator U
(c.f. Corollary 6). As in Sec. 4.4.4, we have

P =
1

x!

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
〈
x
∣∣zf
〉
ex
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf

=
1

x!

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
(
zf
)x
e−z

f ·1 eiz
0·q(t)(1 + ip0)ξ

× e−ip
0·z0−ipf ·zf e

∫ t
t0

∑
ν1,...,νn

αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds
.

(4.219)

The integral over z0 is
∫
dz0 e−iz

0·(p0−q(t)) =
1

in(p0 − q(t))1
, (4.220)

the integral over p0 is
∫

dp0

(2πi)n
(1 + ip0)ξ

(p0 − q(t))1
= (1 + iq(t))ξ , (4.221)

and the integral over zf is

∫
dzf

(
zf
)x

x!
e−z

f ·(1+ipf ) =
1

(1 + ipf )x+1
, (4.222)

leaving only the desired integral.
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Finally, we will derive the generating function.

Lemma 13 (Zero and first order reactions generating function). The generating function
for the system with arbitrary combinations of zero and first order reactions is

ψ(g, t) = [1 + iq(t)]ξ×
× e

∫ t
t0

∑
αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds

∣∣∣
pf=−i(g−1)

(4.223)

where q(s) is as in Theorem 4.

Proof. Begin again with the expression for the generating function in terms of the propagator
U (c.f. Corollary 6). For proving this result, it is convenient to switch over to analytic
notation, in which

|ψ(t)〉 → ψ(g, t)

|x〉 → gx

|z〉 → ez·(g−1) .

(4.224)

In particular, we have

ψ =

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
ez
f ·(g−1)eiz

0·q(t)(1 + ip0)ξ

× e−ip
0·z0−ipf ·zf e

∫ t
t0

∑
ν1,...,νn

αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds
.

(4.225)

The integral over z0 is
∫
dz0 e−iz

0·(p0−q(t)) =
1

in(p0 − q(t))1
, (4.226)

the integral over p0 is
∫

dp0

(2πi)n
(1 + ip0)ξ

(p0 − q(t))1
= (1 + iq(t))ξ , (4.227)

and the integral over zf is
∫
dzf e−z

f ·[−(g−1)+ipf ] =
1

[−(g − 1) + ipf ]1
, (4.228)

leaving only the integral

∫
dpf

(2πi)n
[1 + iq(t)]ξ e

∫ t
t0

∑
ν1,...,νn

αν1,...,νn (t−s+t0)[iq1(s)]ν1 ···[iqn(s)]νn ds

[pf + i(g − 1)]1
. (4.229)

This integral is a simple contour integral (the numerator is the exponential of a function
analytic in pf ), whose evaluation via Cauchy’s integral formula corresponds to the desired
result.
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4.7 Another view of the propagator

The mess of formalism aside, a coarse view of what we have been doing is that we have been
calculating the propagator U , which we remind the reader is defined via

U(ipf , z0) :=
〈
−ipf

∣∣Û(t, t0)
∣∣z0
〉

(4.230)

where |z0〉 and
∣∣−ipf

〉
are coherent states. We computed U by evaluating many integrals,

and then used the formula (c.f. Corollary 6)

|ψ(t)〉 =

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
∣∣zf
〉
U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf (4.231)

to recover the generating function |ψ(t)〉. This expression for |ψ(t)〉 is then suitably manip-
ulated to directly recover other objects of interest, like moments or transition probabilities.

Given the relatively simple-looking results we have derived for U (c.f. Lemmas 2, 8, and
11), one may wonder whether there is another way to derive it—in particular, does U satisfy
some PDE?

In the following, it will be more convenient to switch to a more standard notation for the
probability generating function:

|ψ(t)〉 =
∑

x

P (x, t) |x〉 → ψ(g, t) :=
∑

x

P (x, t) gx (4.232)

which really just amounts to the replacement |x〉 → gx. This is related to our notation by
taking the Grassberger-Scheunert product of the generating function with a coherent state
|g − 1〉 for some g ∈ Rn:

〈g − 1|ψ(t)〉 =
∑

x

P (x, t) 〈g − 1|x〉 =
∑

x

P (x, t)(1 + (g − 1))x = ψ(g, t) . (4.233)

In this notation, the relationship between the generating function and the propagator reads

ψ(g, t) =

∫
dzfdpf

(2π)n
dz0dp0

(2π)n
ez
f ·(g−1)U(ipf , z0)

〈
−ip0

∣∣ψ(t0)
〉
e−ip

0·z0−ipf ·zf . (4.234)

Recall that the generating function ψ(g, t) satisfies a partial differential equation. For sim-
plicity, suppose we are dealing with the chemical birth-death process, for which the relevant
PDE reads

∂ψ

∂t
= k(t)[g − 1]ψ − γ(t)[g − 1]

∂ψ

∂g
. (4.235)

Substituting this into (the one-dimensional version of) Eq. 4.234, the right-hand side reads

∫
dzfdpf

2π

dz0dp0

2π
U {k[g − 1]− γ[g − 1]zf} ezf (g−1)e−ipf zf 〈−ip0|ψ(t0)〉 e−ip0z0 . (4.236)
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But note that

(g − 1)ezf (g−1) =
∂

∂zf
ezf (g−1)

zfe
−ipf zf = i

∂

∂pf
e−ipf zf .

(4.237)

Using these identities, integrating by parts, and freely removing boundary terms, the right-
hand side now reads

∫
dzfdpf

2π

dz0dp0

2π

{
ipf

[
kU + iγ

∂U

∂pf

]}
ezf (g−1)e−ipf zf 〈−ip0|ψ(t0)〉 e−ip0z0 . (4.238)

This suggests that the expression given by Eq. 4.234 will solve the equation of motion for
|ψ(t)〉 (Eq. 4.58) if

∂U(ipf , z0)

∂t
= ipf

[
kU(ipf , z0) + iγ

∂U(ipf , z0)

∂pf

]
. (4.239)

It is easy to verify that our expression for the propagator of the chemical birth-death process
(c.f. Lemma 2) does solve this PDE.

We can generalize this enough for our purposes, although it should be clear that this
correspondence holds for any CME (and not just ones involving only zero and first order
reactions).

Proposition 11 (Propagator PDE). If the generating function ψ(g, t) satisfies the PDE
given by Eq. 4.51, then the propagator U(ipf , t; z0, t0) satisfies a PDE

∂U

∂t
=
∑

ν1,...,νn

αν1,...,νn(t)
[
ipf1

]ν1

· · ·
[
ipfn
]νn

U

− i
∑

k

∑

ν1,...,νn

βkν1,...,νn
(t)
[
ipf1

]ν1

· · ·
[
ipfn
]νn ∂U

∂pfk

(4.240)

with initial condition U(ipf , t0; z0, t0) = exp
(
iz0 · pf

)
for arbitrary pf , z0 ∈ Rn.

Proof. Integrate by parts as in the one-dimensional example. The initial condition comes
from the definition of U :

U(ipf , t0; z0, t0) =
〈
−ipf

∣∣Û(t0, t0)
∣∣z0
〉

=
〈
−ipf

∣∣z0
〉

= eiz
0·pf . (4.241)

At this point, we should note that the PDE satisfied by the propagator (Eq. 4.240) and
the PDE satisfied by the generating function (Eq. 4.51) are equivalent up to a change of
variables (i.e. g − 1 → ipf ). Does this mean that the propagator, along with the entire
Doi-Peliti artifice we have constructed, is extraneous?

94



While this is a reasonable question to ask, the answer is probably no. It is easy to see
that our expressions for the propagator and our expressions for the generating function have
tended to look somewhat different, with the latter almost always being more complicated.
The main reason for this difference seems to be that the propagator’s initial condition is much
simpler than the initial condition for the generating function PDE, which usually permits
finding explicit solutions of the propagator PDE.

Now that we have this result, how can we connect it with the propagator solution we
found in Lemma 11 (for arbitrary combinations of zero and first order reactions, which
includes all other propagators considered in this paper as special cases)? It turns out that
there is a straightforward way to do this using the method of characteristics, a standard
approach for solving first order PDEs like the one above.

The method involves supposing that the relevant independent variables (in this case, pf

and t) lie along some parameterized curve. For a pedagogical example applying this method
to solve a toy problem in chemical kinetics (the chemical birth-death process with additive
noise), see [72].

Lemma 14 (Method of characteristics solution). The propagator for the system with arbi-
trary combinations of zero and first order reactions matches the one given by Lemma 11.

Proof. Suppose (where we use slightly different notation here, because only the initial con-
dition of the PDE depends on z0 and t0) that pf and t lie along curves parameterized by
some parameter s, so that

∂

∂s

[
U(pf (s), t(s)

]
=
∂U

∂t

∂t

∂s
+

n∑

k=1

∂U

∂pfk

∂pfk
∂s

=− ∂U

∂t
− i
∑

k

∑

ν1,...,νn

βkν1,...,νn
(t)
[
ipf1

]ν1

· · ·
[
ipfn
]νn ∂U

∂pfk
.

(4.242)

Choose the curve so that

∂t

∂s
= −1

∂pfk
∂s

= −i
∑

ν1,...,νn

βkν1,...,νn
(t(s))

[
ipf1(s)

]ν1

· · ·
[
ipfn(s)

]νn
.

(4.243)

Suppose that we are interested in U(ipf , tf ; z
0, t0) for some particular final time tf . Solving

the equation for t(s), we have
t(s) = tf − s+ t0 (4.244)

where the arbitrary constant was chosen so that s ∈ [t0, tf ] with t(t0) = tf and t(tf ) = t0.
Then the equation determining pf (s) reads

∂pfk
∂s

= −i
∑

ν1,...,νn

βkν1,...,νn
(tf − s+ t0)

[
ipf1(s)

]ν1

· · ·
[
ipfn(s)

]νn
. (4.245)
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Notice that this is exactly the same as the equation satisfied by q(s) (see Theorem 4).
Moreover, our pf (s) and q(s) satisfy the same initial condition: pf (s = t0) = pf (t(s) = tf ) =
pf , since the symbol pf means the value corresponding to the evaluation of U(ipf , tf ; z

0, t0)
at the final time tf . This point is somewhat subtle, so convince yourself of it before going
forward.

Hence, we can make the identification pf (s) → q(s). This means our PDE for U now
reads

∂U

∂s
=
∑

ν1,...,νn

αν1,...,νn(t) [iq1]ν1 · · · [iqn]νn U . (4.246)

Solving this as usual, we have the solution

U(s) = C exp

{∫ s

t0

∑

ν1,...,νn

αν1,...,νn(t− s+ t0) [iq1(s)]ν1 · · · [iqn(s)]νn ds

}
(4.247)

for some constant C that depends on the initial condition. Implement the initial condition
for s = t0 (i.e. t(s) = tf ), noting that pf (s = t0) = q(s = tf ). Finally, evaluate U(s) at
s = tf to obtain

U(tf ) = exp

{
iz0 · q(tf ) +

∫ tf

t0

∑

ν1,...,νn

αν1,...,νn(t− s+ t0) [iq1(s)]ν1 · · · [iqn(s)]νn ds

}

(4.248)
which is the desired answer.

After all this, it is natural to ask whether the path integral calculations were necessary
if the answer for the propagator can be determined by solving a relatively simple PDE. The
author can only note that he was able to come up with this alternative approach only after
carefully studying the path integral answer. It is likely that there are other cases where one
can ‘turn the crank’ to determine the path integral answer, and then justify that answer
using some more conventional method after one realizes why it takes its precise form.

4.8 Discussion

The strength of the Doi-Peliti approach—that calculations require nothing more clever than
evaluating many integrals—is probably also its primary weakness. In Jahnke and Huisinga’s
original paper, they began with proofs of partial results that offered intuition for why their
main result is true: in short, Poisson remains Poisson, and multinomial remains multinomial.
In contrast, our calculation does not seem to offer such insight en route to the full solution.
This may make it easier to generalize to other kinds of systems (as we did in Sec. 4.5 and
Sec. 4.6), but it is a little unsatisfying.
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Still, the Doi-Peliti approach was able to generate a solution in a nontrivial case where
Jahnke and Huisinga’s approach broke down, and we showed that it can offer solutions in far
more general and nontrivial cases in Sec. 4.6. While the calculation is likely to be tedious,
it seems possible that the Doi-Peliti approach could also be used to find explicit generating
functions and transition probabilities (i.e. involving the explicit solution for q(t)) for suitable
generalizations of (for example) the birth-death-autocatalysis system, like one that involves
many birth reactions, death reactions, and reactions of the form Sj → Sk + S`. It is not
clear what new insights are necessary to solve explicitly for q(t) in cases like this.

Another obvious objection to the Doi-Peliti approach is that it is not entirely mathemati-
cally rigorous: in rederiving Jahnke and Huisinga’s result, we freely swapped many improper
integrals, frequently utilized the integral representation of the Dirac delta function, and so
on. But we did get answers, and the method is likely to yield answers for problems that
other methods cannot currently solve. If nothing else, the Doi-Peliti approach can be used
as a tool to generate answers, which can be justified as rigorously correct using some other
method (e.g. by showing that they solve the CME directly).

While we did not resort to approximations in this paper, it is worth noting that utilizing
Doi-Peliti path integrals enables the use of powerful perturbative and asymptotic expan-
sions. For most systems of interest in mathematical biology (e.g. gene networks with many
species and interactions), this is the way in which the Doi-Peliti approach can be practically
applied. See Weber and Frey [76], and Assaf and Meerson [20], for recent reviews discussing
approximation techniques related to path integral descriptions of the CME.

The Doi-Peliti path integral is just one example of a stochastic path integral [76, 79]. The
Onsager-Machlup [80, 81, 82, 83] and Martin-Siggia-Rose-Janssen-De Dominicis [84, 85, 86,
87, 83] path integrals are two other examples, which offer an alternative to the Fokker-Planck
equation in the same way the Doi-Peliti path integral is an alternative to the CME. While
exact computations of these path integrals are also tedious, they are just as mechanical—
one can ‘turn the crank’ and generate answer, without relying on (for example) a priori
knowledge of special functions to solve differential equations [72, 77].

4.9 Conclusion

We rederived Jahnke and Huisinga’s classic result on monomolecular reaction systems using
the Doi-Peliti coherent state path integral approach, which reduces solving the CME to
the computation of many integrals. In addition, we also derived an explicit exact time-
dependent solution to a problem involving an autocatalytic reaction that was beyond the
scope of Jahnke and Huisinga’s method, and a formal exact solution for systems involving
arbitrary combinations of zero and first order reactions. We hope that our calculations, as
well as our detailed description of the Doi-Peliti formalism, help make the Doi-Peliti method
more accessible to mathematical biologists studying the CME.
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4.A Quantum vs standard notation

In this paper, we make abundant use of Dirac’s bra-ket notation for vectors and inner
products. While this notation is standard in quantum mechanics, it is less often used in
areas with a more strictly mathematical bent. At the beginning of Sec. 4.3, we listed
a few important reasons for this choice; to reiterate, it eases notation, makes it easy to
repeatedly apply the identity operator (c.f. the derivation of the path integral expression for
the propagator U), and is suggestive for the inner products we are using.

In this appendix, we will briefly review it and compare it with notation more commonly
used in linear algebra and stochastic processes, so that this paper can be easily read by
mathematicians unfamiliar with quantum mechanical notation.

For now, we will work in one dimension for simplicity. Consider a complex vector space
V with a countable basis e0, e1, e2, ..., so that an arbitrary state in this space reads

φ =
∞∑

x=0

c(x)ex (4.249)

for some complex coefficients c(x). In terms of bra-ket notation, we would denote the basis
vectors (also called ‘kets’ or ‘states’) by |0〉 , |1〉 , |2〉, ... and an arbitrary state by

|φ〉 =
∞∑

x=0

c(x) |x〉 , (4.250)

which essentially amounts to the identifications ex → |x〉 and φ→ |φ〉.
Define the inner product 〈ex, ey〉 := δ(x − y) for all x, y ∈ N, and extend it to arbitrary

states by linearity. Using bra-ket notation, we would write

〈x|y〉 = δ(x− y) . (4.251)

At this point, there are not yet any significant differences between the two choices of notation.
The significant differences begin when we consider linear functionals like the functional Ly :
V → C defined by its action on a basis vector ex:

Ly(ex) := 〈ey, ex〉 . (4.252)

Using bra-ket notation, we would denote Ly by 〈y| (this is called a ‘bra’), and Ly acting on
ex by 〈y|x〉 (the inner product is sometimes called a ‘bra-ket’). This allows us to represent
Fourier-like identities like

φ =
∞∑

y=0

〈ey, φ〉ey (4.253)

via

|φ〉 =
∞∑

y=0

〈y|φ〉 |y〉 , (4.254)
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or more succinctly by defining the operator

1 =
∞∑

y=0

|y〉 〈y| (4.255)

which by definition is equal to the identity operator. Equations like these are often called
‘resolutions of the identity’, because they recast the identity operator in some convenient
form. The notation above is meant to be highly suggestive; one can imagine it ‘bumping
into’ a vector/state |φ〉 from the left to recover Eq. 4.254.

This notation also makes it easy to repeatedly apply resolutions of the identity, and to
see what the result will be. Compare

φ =
∑

y1,y2,y3

〈ey3 , ey2〉〈ey2 , ey1〉〈ey1 , φ〉ey3 (4.256)

to
|φ〉 =

∑

y1,y2,y3

|y3〉 〈y3|y2〉 〈y2|y1〉 〈y1|φ〉 . (4.257)

The above can be obtained simply by inserting Eq. 4.255 next to |φ〉 many times.
One helpful feature of bra-ket notation is that eigenvectors are traditionally labeled by

their eigenvalues. For example, if Âφ = λφ, it is traditional to write φ as

φ→ |λ〉 , (4.258)

so that Â |λ〉 = λ |λ〉. We used this throughout the paper to denote coherent states, which
we defined to be eigenstates of the annihilation operators.

Matrix elements—expressions of the form 〈φ2, Âφ1〉 for two vectors φ1 and φ2 and some
operator Â—are denoted by

〈φ2|Â|φ1〉 . (4.259)

This notation is convenient when we are computing matrix elements involving operators and
their eigenstates. For example, let â be an operator, â† be its Hermitian conjugate, and
φ1 → |λ1〉 and φ2 → |λ2〉 be eigenstates with eigenvalues λ1 and λ2, respectively. Then on
the one hand, we have

〈φ2, â
†â φ1〉 = 〈âφ2, âφ1〉 = λ∗2λ1〈φ2, φ1〉 (4.260)

in standard notation. On the other hand, we have

〈λ2|â†â|λ1〉 = λ∗2λ1 〈λ2|λ1〉 (4.261)

using bra-ket notation, where we imagine â† ‘acting to the left’ and â ‘acting to the right’.
That is about all there is to say about the correspondence between bra-ket notation and

typical vector space notation. One should keep in mind that the strength of bra-ket notation
is in repeatedly applying the identity operator/resolutions of the identity, which is required
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to construct the Doi-Peliti path integral. The correspondence is summarized (for arbitrary
dimensions, using the notation introduced in Sec. 4.2) in Table 4.1.

A few words should also be said about the relationship between our generating function
and its usual analytic function form. We remind the reader that both are defined (in one
dimension again, for simplicity) via

ψ(g, t) =
∞∑

x=0

P (x, t) gx |ψ〉 =
∞∑

x=0

P (x, t) |x〉 (4.262)

where P (x, t) is a solution to the CME. These expressions are completely equivalent, up to
the identification gx → |x〉. In fact, the equations of motion they satisfy exactly correspond.
For example, in the case of the chemical birth-death process, we remind the reader that
ψ(g, t) satisfies the PDE

∂ψ(g, t)

∂t
= k(t)[g − 1]ψ(g, t)− γ(t)[g − 1]

∂ψ(g, t)

∂g
(4.263)

whereas |ψ〉 satisfies the equation
∂ |ψ〉
∂t

= Ĥ |ψ〉 (4.264)

where in this case the Hamiltonian operator Ĥ is given (in terms of our original creation and
annihilation operators) by

Ĥ = k(π̂ − 1)− γ(π̂ − 1)â . (4.265)

This is the same as the above PDE, provided one makes the identifications

π̂ → g

â→ ∂

∂g
.

(4.266)

It turns out that these identifications work more generally (for arbitrary numbers of dimen-
sions, and an arbitrary list of reactions). Although they are equivalent, one form of the
generating function is often more convenient to use than the other. In our case, we use
the Hilbert space form for almost the entirety of this paper, because it allows us to exploit
bra-ket notation to denote applying many resolutions of the identity (c.f. Sec. 4.3.5), and
to work straightforwardly in terms of matrix elements of the Hamiltonian.

Finally, we should say that the coherent state resolution of the identity we used many
times to construct the Doi-Peliti path integral (c.f. Sec. 4.3.5) can be written in terms of
ordinary functions as

gx =

∫ ∞

0

dz

∫ ∞

−∞

dp

2π
ez(g−1)(1 + ip)xe−izp (4.267)

in one dimension, and

gx =

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
ez·(g−1)(1 + ip)xe−iz·p (4.268)

in arbitrarily many dimensions. However, attempting to construct the path integral using
this notation instead of bra-ket notation is significantly messier, so we have avoided it.
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Object Bra-ket notation Standard notation

basis vector/ket |x〉 ex

linear functional/bra 〈x| Lx : ey 7→ 〈ex, ey〉
zero vector 0 0

arbitrary state |φ〉 =
∑

x

c(x) |x〉 φ =
∑

x

c(x) ex

inner product 〈x|y〉 〈ex, ey〉
operator matrix element 〈x|A|y〉 〈ex,A ey〉 = 〈A† ex, ey〉

generating function |ψ(t)〉 =
∑

x

P (x, t) |x〉 ψ(t) =
∑

x

P (x, t) ex

coherent state (c.s.) |z〉 =
∑

y

zy

y!
e−z·1 |y〉 cs(z) =

∑

y

zy

y!
e−z·1 ey

c.s. identity operator |x〉 =

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
|z〉 〈−ip|x〉 e−iz·p ex =

∫

[0,∞)n
dz

∫

Rn

dp

(2π)n
cs(z)〈cs(−ip), ex〉e−iz·p

Table 4.1: Let x ∈ Rn, and let the notation be as in Sec. 4.2.2 (e.g. x! := x1! · · ·xn!). This
table summarizes the correspondence between quantum and standard notation for several
objects discussed in this appendix, as well as objects discussed elsewhere in this paper (e.g.
coherent states).
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[65] U.C. Täuber, M. Howard, B.P. Vollmayr-Lee, Journal of Physics A: Mathematical and
General 38(17), R79 (2005)

[66] T. Fung, J.P. O’Dwyer, R.A. Chisholm, Journal of Mathematical Biology 74(1), 289
(2017)

[67] C.D. Greenman, T. Chou, Phys. Rev. E 93, 012112 (2016)

[68] C.D. Greenman, Journal of Statistical Mechanics: Theory and Experiment 2017(3),
033101 (2017)

104

http://www.edpsciences.org/10.1051/jphys:019850046090146900
http://www.edpsciences.org/10.1051/jphys:019850046090146900
https://link.aps.org/doi/10.1103/RevModPhys.70.979


[69] P.C. Bressloff, Stochastic Processes in Cell Biology (Springer, 2014). DOI 10.1007/
978-3-319-08488-6

[70] J. Albert, Journal of Mathematical Biology (2019)

[71] P.C. Bressloff, Journal of Physics A: Mathematical and Theoretical 50(13), 133001
(2017)

[72] J.J. Vastola, arXiv e-prints arXiv:1910.09117 (2019)

[73] D. Griffiths, D. Schroeter, Introduction to Quantum Mechanics (Cambridge University
Press, 2018)

[74] M.D. Schwartz, Quantum Field Theory and the Standard Model (Cambridge
University Press, 2014). URL http://www.cambridge.org/us/academic/

subjects/physics/theoretical-physics-and-mathematical-physics/

quantum-field-theory-and-standard-model

[75] J. Cardy, G. Falkovich, K. Gawedzki, Reaction-diffusion processes (Cambridge Univer-
sity Press, 2008), p. 108–161. London Mathematical Society Lecture Note Series. DOI
10.1017/CBO9780511812149.004

[76] M.F. Weber, E. Frey, Reports on Progress in Physics 80(4), 046601 (2017). DOI
10.1088/1361-6633/aa5ae2. URL http://stacks.iop.org/0034-4885/80/i=4/a=

046601?key=crossref.02abaf744081951aaaca3bafec0e1284

[77] J.J. Vastola, arXiv e-prints arXiv:1910.10807 (2019)

[78] I.S. Gradshteyn, I.M. Ryzhik, Table of integrals, series, and products (Academic press,
2014)

[79] J.J. Vastola, W.R. Holmes, arXiv e-prints arXiv:1909.12990 (2019)

[80] L. Onsager, S. Machlup, Phys. Rev. 91, 1505 (1953). DOI 10.1103/PhysRev.91.1505.
URL https://link.aps.org/doi/10.1103/PhysRev.91.1505

[81] S. Machlup, L. Onsager, Phys. Rev. 91, 1512 (1953). DOI 10.1103/PhysRev.91.1512.
URL https://link.aps.org/doi/10.1103/PhysRev.91.1512

[82] R. Graham, Zeitschrift für Physik B Condensed Matter 26(3), 281 (1977). DOI 10.
1007/BF01312935. URL https://doi.org/10.1007/BF01312935

[83] J.A. Hertz, Y. Roudi, P. Sollich, Journal of Physics A: Mathematical and Theoretical
50(3), 033001 (2016). DOI 10.1088/1751-8121/50/3/033001. URL https://doi.org/

10.1088%2F1751-8121%2F50%2F3%2F033001

[84] P.C. Martin, E.D. Siggia, H.A. Rose, Phys. Rev. A 8, 423 (1973). DOI 10.1103/
PhysRevA.8.423. URL https://link.aps.org/doi/10.1103/PhysRevA.8.423

105

http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://www.cambridge.org/us/academic/subjects/physics/theoretical-physics-and-mathematical-physics/quantum-field-theory-and-standard-model
http://stacks.iop.org/0034-4885/80/i=4/a=046601?key=crossref.02abaf744081951aaaca3bafec0e1284
http://stacks.iop.org/0034-4885/80/i=4/a=046601?key=crossref.02abaf744081951aaaca3bafec0e1284
https://link.aps.org/doi/10.1103/PhysRev.91.1505
https://link.aps.org/doi/10.1103/PhysRev.91.1512
https://doi.org/10.1007/BF01312935
https://doi.org/10.1088%2F1751-8121%2F50%2F3%2F033001
https://doi.org/10.1088%2F1751-8121%2F50%2F3%2F033001
https://link.aps.org/doi/10.1103/PhysRevA.8.423


[85] H.K. Janssen, Zeitschrift für Physik B Condensed Matter 23(4), 377 (1976). DOI
10.1007/BF01316547. URL https://doi.org/10.1007/BF01316547

[86] DE DOMINICIS, C., J. Phys. Colloques 37(C1), C1 (1976). DOI 10.1051/jphyscol:
1976138. URL https://doi.org/10.1051/jphyscol:1976138

[87] C. De Dominicis, L. Peliti, Phys. Rev. B 18, 353 (1978). DOI 10.1103/PhysRevB.18.353.
URL https://link.aps.org/doi/10.1103/PhysRevB.18.353

106

https://doi.org/10.1007/BF01316547
https://doi.org/10.1051/jphyscol:1976138
https://link.aps.org/doi/10.1103/PhysRevB.18.353


Chapter 5

Path integral representations of the chemical master equation.
II: A new state space path integral and application to coarse-graining

How can we solve the CME, and how can we simplify it? This is the second of two chapters
that introduce path integral methods; this method is new, and is directly analogous to state
space path integrals (i.e. the usual ones) from quantum mechanics. This path integral is
both useful for solving the CME (see Appendix A of this chapter) and for simplifying it.
The main thrust here is to justify the most common approximation in chemical kinetics/gene
regulation: approximating continuous dynamics as discrete. As noted at the beginning of
the previous chapter, this path integral is just as ‘powerful’ as the Doi-Peliti one, although
it has the advantage of requiring less formalism.

Abstract: In 2000, Gillespie rehabilitated the chemical Langevin equation (CLE) by describing

two conditions that must be satisfied for it yield a valid approximation of the chemical master

equation (CME). In this work, we construct an original path integral description of the CME, and

show how applying Gillespie’s two conditions to it directly leads to a path integral equivalent to the

CLE. We compare this approach to the path integral equivalent of a large system size derivation,

and show that they are qualitatively different. In particular, both approaches involve converting

many sums into many integrals, and the difference between the two methods is essentially the

difference between using the Euler-Maclaurin formula and using Riemann sums. Our results shed

light on how path integrals can be used to conceptualize coarse-graining biochemical systems, and

are readily generalizable.

This chapter was published in Physical Review E as
“Chemical Langevin equation: A path-integral view of Gillespie’s derivation”

[Vastola and Holmes, Physical Review E 101, 032417 (2020)]
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5.1 Introduction

Gillespie’s classic paper [1] on how to derive the chemical Langevin equation (CLE) from
the chemical master equation (CME) proceeds differently than by naively truncating the
Kramers-Moyal expansion of the CME [2, 3, 4] or by invoking the largeness of the system
volume Ω a la van Kampen [5, 6]; instead, he argues based on the existence of a time scale
with certain properties. In particular, his derivation completes avoids rewriting discrete
number variables n as concentration variables x := n/Ω.

By writing down two precise conditions that control the validity of the CLE (to be re-
viewed in Sec. 5.2), he rehabilitated it as a well-founded approach to approximating stochas-
tic dynamics described by the CME (in the face of ostensible no-go results like the Pawula
theorem [7]), and directly inspired the tau-leaping algorithm [8] and its many modifications
[9, 10, 11, 12, 13, 14] for speeding up numerical simulations of biochemical reactions.

Path integrals offer a way to think about stochastic processes that is somewhat inde-
pendent from the usual differential equations perspective [15]. This means that—at least in
principle—there should be a way to translate Gillespie’s derivation into path integral lan-
guage. Because path integrals (along with associated technology like the renormalization
group [16, 17, 18, 19]) are known to be useful for understanding coarse-grained descrip-
tions of systems (e.g. effective field theories [20, 19]), such a translation should contribute
meaningfully to our understanding of how to intelligently coarse-grain biochemical systems.

In this paper, we show how Gillespie’s two conditions translate to a path integral-based
derivation of the chemical Langevin equation. Our approach here builds upon the path
integral descriptions of Langevin/Fokker-Planck equations described in [15]. We will proceed
with little mathematical rigor (as is typical in physics), but with enough clarity that our
arguments could in principle be made mathematically precise.

The paper is organized as follows. In Sec. 5.2, we review Gillespie’s derivation of the
CLE. In Sec. 7.3, we construct a path integral description of CME dynamics. In Sec. 5.4,
we apply Gillespie’s conditions to our path integral formulation to obtain the CLE, and also
discuss an alternative method based on a large system volume argument. Finally, we discuss
consequences of our work for understanding coarse-grained biochemical systems in Sec. 7.6.

5.2 Review of Gillespie’s chemical Langevin equation derivation

In this section, we review Gillespie’s derivation [1] of the chemical Langevin equation from
the chemical master equation. We use the same notation Gillespie used in his paper, although
we will not require that the same physical assumptions (i.e. well-stirred, dilute chemicals in
a fixed volume and at constant temperature) hold, because the derivation does not depend
on them.

Consider a system with N species and M reactions. Denote the propensity function of
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the jth reaction by aj, and the corresponding stoichiometry vector by νj. The chemical
master equation reads

∂P (n, t)

∂t
=

M∑

j=1

aj(n− νj)P (n− νj, t)− aj(n)P (n, t) (5.1)

where P (n, t) is the probability that the state of the system is n = (n1, ..., nN) ∈ NN at time
t.

Gillespie’s derivation requires the existence of a time scale τ for which the following two
conditions hold:

i The propensity functions do not change their values appreciably,
i.e. aj(n(t)) ≈ aj(n(t′)) for all j and all t′ ∈ [t, t+ τ ].

ii The average number of firings of each reaction over a time τ is much larger than 1.

Due to their connection with the tau-leaping algorithm [8, 9, 10, 11, 12, 13, 14] for approxi-
mately simulating CME dynamics, Gillespie later called these the first leap condition and the
second leap condition [21]. They are in practice easily satisfied in the case of large molecule
numbers, and they are exactly satisfied in the thermodynamic limit [22], where the system
volume Ω is taken to infinity while keeping all concentrations fixed.

Consider ni(t), the number of molecules corresponding to species i at time t. It changes
in a small time ∆t according to

ni(t+ ∆t) = ni(t) +
M∑

j=1

νjiKj(aj,∆t) , (5.2)

where νji is the ith component of the stoichiometry vector νj (i.e. the change in number of
species i due to reaction j firing once), and Kj(aj,∆t) is a random variable that describes
the number of times reaction j fires in ∆t.

For an arbitrary CME and arbitrary length of time ∆t, Kj might be taken from a com-
plicated distribution. But if condition (i) holds in a length of time τ , each reaction fires
independently of each other reaction, because no reactions significantly change any propen-
sity functions. Because (by definition) the probability of reaction j firing in an infinitesimal
time dt is aj(n(t))dt, and because that probability will not significantly change during the
time length τ , the number of times reaction j fires in τ is well-approximated as a Poisson
random variable with mean aj(n(t))τ , which we will denote by Pj(aj(n(t))τ).

This means that when condition (i) holds we can write the time evolution of ni(t) over a
length of time τ as

ni(t+ τ) = ni(t) +
M∑

j=1

νjiPj(aj(n(t))τ) . (5.3)

This equation is the basis for the tau-leaping approach first described by Gillespie in 2001
[8], and later modified and extended by himself and others [9, 10, 11, 12, 13, 14].
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If condition (ii) holds, the average number of times reaction j fires in τ (i.e. aj(n(t))τ)
is much larger than 1, so the Poisson random variables are well-approximated by normal
random variables:

Pj(aj(n(t))τ) ≈ Nj(aj(n(t))τ, aj(n(t))τ) , (5.4)

where Nj(aj(n(t))τ, aj(n(t))τ) is a normal random variable with mean and variance both
equal to aj(n(t))τ . If we also note that each normal random variable can be decomposed as

Nj(aj(n(t))τ, aj(n(t))τ) = aj(n(t))τ +
√
aj(n(t))τ Nj(0, 1) , (5.5)

we can write the time evolution of ni(t) in a time τ as

ni(t+ τ) = ni(t) +
M∑

j=1

νjiaj(n(t))τ +
M∑

j=1

νji

√
aj(n(t))τ Nj(0, 1) . (5.6)

Because this equation has the form of an Euler-Maruyama time step, we can identify the
dynamics of the system on the time scale τ with the set of N stochastic differential equations
(SDEs)

ẋi =
M∑

j=1

νjiaj(x) +
M∑

j=1

νji

√
aj(x) Γj , (5.7)

where the Γj are M independent Gaussian white noise terms, and where we have relabeled
each ni as xi to emphasize that we are now working with continuous variables.

Our chemical Langevin equation corresponds to a chemical Fokker-Planck equation

∂P (x, t)

∂t
=

N∑

i=1

− ∂

∂xi

[(
M∑

j=1

νjiaj(x)

)
P (x, t)

]
+

1

2

N∑

i=1

N∑

i′=1

∂2

∂xi∂xi′

[(
M∑

j=1

νjiνji′aj(x)

)
P (x, t)

]

(5.8)
which serves an approximation to the CME (Eq. 5.1). As Gillespie notes, this is exactly
what one would get from truncating the Kramers-Moyal expansion of the CME at second
order, so his derivation in some sense justifies the naive one.

The CLE (Eq. 5.7), and the associated chemical Fokker-Planck equation (Eq. 5.8)
describing how the system’s probability density will evolve in time, are not without problems.
They generically predict negative concentrations [23] (although the hope is that the system
has a negligibly small probability of occupying these states, and this is often borne out in
practice), can be inaccurate for systems far from equilibrium [24], may not always exhibit
multistability when the CME is multistable [25], and can give rise to nonphysical probability
currents at equilibrium [26].

Despite these shortcomings, utilizing the CLE can help speed up simulations of CME
dynamics when some species have large molecule numbers [27, 28, 29, 30] or when there
is a clear separation of time scales [31, 32, 33]. Moreover, alternative schemes like the
deterministic reaction rate equations and the linear noise approximation [6] can profitably
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be viewed as approximations to the CLE [34], and moment-closure approximations have
comparable accuracy [35].

The CLE, and Langevin equations more generally, have become standard approaches to
modeling noisy gene regulation [36, 37, 38, 39, 40]. They have also been used to analyze
noise-driven oscillations [41], model intracellular calcium dynamics [42, 43, 44], study ion-
channel gating [45], and understand spiking neurons [46]. While only approximate, the CLE
is unquestionably useful.

5.3 Path integral formulation of CME dynamics

Although path integrals [47] are most well-known in the context of quantum mechanics and
quantum field theory [48, 49, 50, 19, 51, 52], they have also proven useful for understanding
classical stochastic phenomena like Brownian motion [53, 54, 55], conformational transitions
[56, 57, 58], quantitative finance [59, 60, 50], population dynamics [61, 62, 63, 64, 65], neuron
firing [66, 67, 68, 69, 70, 71, 72], gene regulation [36, 73, 74, 75, 76, 77], and chemical kinetics
[78, 79, 80, 81, 82].

In this section, we will develop a straightforward path integral formulation of chemical
master equation dynamics. Our path integral is constructed to closely resemble the for-
malism we used to describe SDE/Fokker-Planck dynamics in [15]. To our knowledge, it is
original, although certain aspects also resemble the approach used by Lazarescu et al. [83].
The approach presented in this section is somewhat distinct from the often used Doi-Peliti
approach [84, 85, 86, 87], which involves integrating over so-called coherent states and yields
integrals instead of sums.

5.3.1 States and operators

Our main objective is to solve the CME, Eq. 5.1. Instead of solving it directly, we will solve
a related problem phrased in terms of states and operators in a certain Hilbert space; this
allows us to construct a path integral just as one does in quantum mechanics.

Consider an infinite-dimensional Hilbert space spanned by the |n〉 vectors (where n =
(n1, ..., nN) ∈ NN), in which an arbitrary state |φ〉 is written

|φ〉 =
∞∑

n1=0

· · ·
∞∑

nN=0

c(n) |n〉 (5.9)

for some generally complex-valued coefficients c(n). To ease notation, we will write

∑

n

:=
∞∑

n1=0

· · ·
∞∑

nN=0

(5.10)
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so that an arbitrary state reads

|φ〉 =
∑

n

c(n) |n〉 . (5.11)

Define an inner product in this space by

〈m|n〉 = δmn (5.12)

for all basis vectors |m〉 and |n〉, so that the inner product of two arbitrary states reads

〈φ2|φ1〉 =
∑

n

c∗2(n)c1(n) . (5.13)

Using the inner product defined by Eq. 5.12 and Eq. 5.13, we can show that there is a
resolution of the identity

1 =
∑

n

|n〉 〈n| (5.14)

since 〈n|φ〉 = c(n). Define the state operators n̂i by

n̂i |n〉 := ni |n〉 (5.15)

for all i = 1, ..., N . We will associate any function f(n) = f(n1, ..., nN) with the operator
f(n̂), whose action on a basis vector |n〉 is

f(n̂) |n〉 := f(n̂1, ..., n̂N) |n〉 (5.16)

where there is no operator ordering ambiguity because the n̂i all commute with one another.
Also define the propensity function operators âj via

âj |n〉 := aj(n) |n + νj〉 (5.17)

for all j = 1, ...,M , where νj denotes the stoichiometry vector of the jth reaction.

5.3.2 Generating function and equation of motion

In the spirit of Peliti[86], define the generating function

|ψ(t)〉 :=
∑

n

P (n, t) |n〉 (5.18)

where, as in the previous section, P (n, t) is the probability that the state of the system is
n = (n1, ..., nN) at time t. Note that

∂ |ψ〉
∂t

=
∑

n

∂P (n, t)

∂t
|n〉

=
∑

n

[
M∑

j=1

aj(n− νj)P (n− νj, t)− aj(n)P (n, t)

]
|n〉

=
∑

n

M∑

j=1

aj(n)P (n, t) |n + νj〉 −
∑

n

M∑

j=1

aj(n)P (n, t) |n〉

(5.19)

112



where we have reindexed the left sum in the last step. Now we have

∂ |ψ〉
∂t

=
∑

n

[
M∑

j=1

aj(n) |n + νj〉 − aj(n) |n〉
]
P (n, t)

=
∑

n

[
M∑

j=1

âj |n〉 − aj(n)

]
P (n, t) |n〉

=

[
M∑

j=1

âj − aj(n̂)

]
|ψ〉 .

(5.20)

If we define the operator

Ĥ :=
M∑

j=1

âj − aj(n̂) , (5.21)

which we will call (in analogy with quantum mechanics) the Hamiltonian, then we can write
the equation describing the time evolution of the generating function as

∂ |ψ〉
∂t

= Ĥ |ψ〉 . (5.22)

It is this equation that we will solve instead of the CME; since 〈n|ψ(t)〉 = P (n, t), a solution
to the CME can be extracted out of a solution to this equation.

5.3.3 Deriving the CME path integral

The formal solution to Eq. 5.22 is

|ψ(tf )〉 = eĤ(tf−t0) |ψ(t0)〉 . (5.23)

At this point (following the usual procedure for deriving path integrals [15]), we write the
length of time (tf − t0) as T∆t for some large number of time steps T , split the propagator
into many pieces, and insert many resolutions of the identity:

|ψ(tf )〉 = eĤ∆t · · · eĤ∆t |ψ(t0)〉
=
∑

n0

· · ·
∑

nT

|nT 〉 〈nT |eĤ∆t|nT−1〉 · · · 〈n1|eĤ∆t|n0〉 〈n0|ψ(t0)〉 . (5.24)

We are specifically interested in the transition probability P (nf , tf ; n0, t0). To obtain an
expression for it, note that if |ψ(t0)〉 = |n0〉, then P (nf , tf ; n0, t0) = 〈nf |ψ(tf〉. Hence, we
have

P (nf , tf ; n0, t0) =
∑

n1

· · ·
∑

nT−1

〈nT |eĤ∆t|nT−1〉 · · · 〈n1|eĤ∆t|n0〉 . (5.25)
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where nT = nf . Now we just need to evaluate these matrix elements and put them together.
Choose ∆t sufficiently small so that

〈nk|eĤ∆t|nk−1〉 ≈ 〈nk|1 + Ĥ∆t|nk−1〉
= δnk,nk−1

+ 〈nk|Ĥ|nk−1〉∆t .
(5.26)

We will take ∆t→ 0 at the end of the calculation, so this equality will hold exactly. Using
the specific form of Ĥ (Eq. 5.21), we have

〈nk|Ĥ|nk−1〉 = 〈nk|
M∑

j=1

âj − aj(n̂)|nk−1〉

=
M∑

j=1

〈nk|âj − aj(n̂)|nk−1〉

=
M∑

j=1

aj(nk−1) [〈nk|nk−1 + νj〉 − 〈nk|nk−1〉]

=
M∑

j=1

aj(nk−1)
[
δnk,nk−1+νj − δnk,nk−1

]
.

(5.27)

Recall that the usual integral representation of the Dirac delta function reads

δm,n =

∫
dp

(2π)N
e−ip·(m−n) , (5.28)

where dp = dp1 · · · dpN and each pi is integrated over the whole real line. Using this repre-
sentation, 〈nk|Ĥ|nk−1〉 becomes

∫
dpk

(2π)N
e−ipk·(nk−nk−1)

{
M∑

j=1

[
eipk·νj − 1

]
aj(nk−1)

}
(5.29)

where we have labeled the integration variable pk to anticipate there being one integral for
each matrix element in the final answer. Using Eq. 5.26, 〈nk|eĤ∆t|nk−1〉 is approximately
equal to ∫

dpk
(2π)N

e−ipk·(nk−nk−1)

{
1 + ∆t

M∑

j=1

[
eipk·νj − 1

]
aj(nk−1)

}
. (5.30)

Noting that ∆t is small enough for the bracketed expression to be approximately equal to
the corresponding exponential, our final expression for 〈nk|eĤ∆t|nk−1〉 becomes

∫
dpk

(2π)N
e−ipk·(nk−nk−1)+∆t

∑M
j=1[exp(ipk·νj)−1]aj(nk−1) . (5.31)
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Using Eq. 5.25 and Eq. 5.31, we find that P (nf , tf ; n0, t0) can be written as the path integral

P = lim
T→∞

∑

n1

· · ·
∑

nT−1

∫
dp1

(2π)N
· · ·
∫

dpT
(2π)N

exp

{
T∑

k=1

−ipk · (nk − nk−1) + ∆t
M∑

j=1

[
eipk·νj − 1

]
aj(nk−1)

}

(5.32)
which resembles the MSRJD (Martin-Siggia-Rose-De Dominicis) path integral description
[88, 89, 90, 91, 92] of the Fokker-Planck equation. Again, while the Doi-Peliti path integral
involves integrating over coherent states, this path integral involves integrating over every
possible discrete path through NN that goes from n0 to nf .

Although our primary interest in this paper is to use Eq. 5.32 to derive the CLE, this
path integral representation of the CME has utility in its own right. See Appendix 5.A for
how it can be used to exactly solve for time-dependent transition probabilities associated
with simple chemical reaction systems.

5.4 Path integral derivation of the chemical Langevin equation

In this section, we reinterpret Gillespie’s derivation of the CLE in the context of stochastic
path integrals, and show explicitly how his two conditions translate in the path integral
context. Our central tool will be the Euler-Maclaurin formula [93, 94], which allows one to
approximate sums as integrals (plus correction terms). It says that

b∑

n=a

f(n) ∼
∫ b

a

f(x) dx+
f(b) + f(a)

2
+
∞∑

k=1

B2k

(2k)!

[
f (2k−1)(b)− f (2k−1)(a)

]
(5.33)

where B2k is the (2k)th Bernoulli number, and the “∼” symbol is to indicate that we are
to interpret the right-hand side as an asymptotic expansion (generically, the infinite sum
may not be convergent, but retaining a finite number of terms still usually provides a good
approximation to the left-hand side).

The Euler-Maclaurin formula is not an unfamiliar tool in chemical physics, given that it is
often used to approximate partition functions [95, 96, 97] to good accuracy in certain regimes
(e.g. the high temperature limit). It has also been used for other interesting purposes,
like computing Fermi-Dirac integrals [98], and proving the asymptotic equivalence of two
descriptions of Coulombic systems in certain potentials [99].

Roughly speaking, we will proceed as follows. Condition (i) will allow us to approximate
each sum in Eq. 5.32 as an integral, and to argue that the correction terms are small;
meanwhile, condition (ii) will allow us to Taylor expand the exp(ipk · νj) terms in Eq. 5.32
to second order in the momenta pk. The result of these two approximations will be a MSRJD
path integral, which we know from studies of stochastic path integrals [15] to be equivalent
to a system of Langevin equations. In particular, it will be equivalent to Eq. 5.7, the CLE.
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5.4.1 Only some paths satisfy Gillespie’s conditions

Gillespie’s first condition (see Sec. 5.2) says that, in a period of time τ , the propensity
functions do not change appreciably. Upon some reflection, we realize that this cannot be
true for all possible trajectories the system might have, assuming the propensity functions
have some state-dependence (which, in general, they do). In principle, it is possible that the
number of molecules of some species jumps between 1 and 10100, wildly and irregularly, so
that there does not exist any time scale on which the propensity functions do not change
appreciably. Indeed, all sorts of crazy trajectories are possible in principle—but they are
overwhelmingly unlikely in practice.

While there certainly exist crazy and pathological paths for which it is hard or impossible
to find a time scale τ that satisfies Gillespie’s first condition, the requirement is not so
stringent for most of the trajectories the system might take. In other words, we will suppose
that the first condition is satisfied for the dominant paths rather than for all paths.

A similar argument applies to the second condition. This means that, in applying our
two conditions, we will no longer be summing over all possible paths (c.f. Eq. 5.32). Instead,
we will be summing over all possible paths that satisfy the two conditions, a collection which
we will assume includes the dominant or most likely paths.

If we are not summing over all possible paths, what does our region of integration look
like? To understand this, it is helpful to consider the simple case of a CME with one species
and one reaction. Label the number of that species by n, and the propensity function of the
single reaction by a.

Imagine starting the system in the state with n0 molecules and thinking about where it
will go (i.e. all possible states n1) in the next time length τ . For the dominant paths, we
assume that the difference |a(n1) − a(n0)| is small, so that the propensity function did not
change appreciably. But what do we mean by “appreciably”?

In a paper showing his two conditions hold in the thermodynamic limit [22], Gillespie
assumed that his first condition meant

|a(n1)− a(n0)|
a(n0)

� 1 (5.34)

i.e. that the change in the propensity function on the time scale τ is negligible compared
to the size of its original value. This matches the intuition we have about what constitutes
a negligible change in population size: for example, if the population size changed by 100
molecules, but the total number of molecules is on the order of 105, we imagine that change
not to be noticeable.

Here, we can be a little bit more precise than Eq. 5.34. We generally assume that
our propensity functions are nicely behaved—in particular, that they are continuous, that
they are infinitely differentiable, and that we may freely Taylor expand them. That is,
we assume the aj are analytic functions throughout our domain. Because most propensity
functions of interest are polynomials (or at worst, rational functions like Hill functions), and
because expressions like the Kramers-Moyal expansion already assume the aj are smooth,
these assumptions do not turn out to be particularly strong.
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Suppose a(n0) > 0, which is always true in the regime we care about, since we will usually
need n sufficiently large; generic monomolecular and bimolecular propensity functions have
zeros at n = 0 and n = 1. Because a is continuous, for any ε > 0 we can find a δ > 0 such
that

|a(n1)− a(n0)| < εa(n0) (5.35)

provided |n1−n0| < δ. In order for the correction terms that arise from applying the Euler-
Maclaurin formula (Eq. 5.33) to be negligible, we also want to bound the derivatives of a in
a similar fashion.

Analogous conditions apply in the general case, where the aj may be functions of more
than one variable. The moral of the story is that, because of the assumed smooth behavior of
the propensity functions, we can find a region where they (and their derivatives) do not vary
appreciably. In the simple one-dimensional case, this is an ‘interval’ [n0 − δ−0 , n0 + δ+

0 ] ⊆ N
(where we let δ−0 6= δ+

0 in general since we need n0 − δ−0 and n0 + δ+
0 to both be natural

numbers); in general, this is the intersection of an open set with a lattice: U0(δ)∩NN ⊆ NN .
For convenience, we will use U0 to denote both the open set and its lattice intersection.

Hence, for a one-dimensional system, we restrict ourselves to paths

∞∑

n1=0

· · ·
∞∑

nN−1=0

→
n0+δ+

0∑

n1=n0−δ−0

· · ·
nN−2+δ+

N−2∑

nN−1=nN−2−δ−N−2

(5.36)

where the δ+
i and δ−i , as in the discussion above, are chosen so that the propensity functions

and their derivatives vary within acceptable bounds. For an arbitrary CME, we restrict
ourselves to paths ∑

n1

· · ·
∑

nT−1

→
∑

n1∈U0

· · ·
∑

nT−1∈UT−2

(5.37)

where the sets Ui ⊆ NN are chosen similarly.

5.4.2 Coarse-graining time

There is another ‘philosophical’ point we need to address. Earlier, we imagined breaking
up the propagator into T time steps of length ∆t, and choosing T to be large enough (or
equivalently, ∆t to be small enough) that each piece of the propagator was well-approximated
by its first-order Taylor expansion (c.f. Eq. 5.26). However, Gillespie’s two conditions only
apply on the ‘coarser’ time scale τ . How do we go from time steps of size ∆t to time steps
of size τ in Eq. 5.32?

There are two straightforward ways we can imagine. The simpler way is to say that,
since we are in the business of making approximations anyway, we may as well make the
approximation that Eq. 5.32 is valid on the time scale τ , and that the terms we neglected
when Taylor expanding the propagator do not matter much in the regime where Gillespie’s
conditions apply.

But there is a more intellectually honest way to proceed. Suppose we originally broke the
propagator into S · T time steps, for some natural number S large enough for our derivation
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to go through without issue. This means that the time step in our path integral has size
∆t := t/(S · T ). We want to rewrite our path integral in terms of a ‘macroscopic’ time scale
τ := t/T , which corresponds to breaking up the overall time t into T time steps of length τ .

Schematically, this means we want to make the following identifications:

n0
∆t−→ n1

∆t−→ · · · ∆t−→ nS : n0
τ−→ n1

nS
∆t−→ nS+1

∆t−→ · · · ∆t−→ n2S : n1
τ−→ n2

...

nS·(T−1)
∆t−→ nS·(T−1)+1

∆t−→ · · · ∆t−→ nS·T : nT−1
τ−→ nT

(5.38)

The argument of the exponential in Eq. 5.32 reads

S·T∑

k=1

−ipk · (nk − nk−1) + ∆t
M∑

j=1

[
eipk·νj − 1

]
aj(nk−1) . (5.39)

Consider the following small piece of this expression:

S·T∑

k=1

[
eipk·νj − 1

]
aj(nk−1) . (5.40)

Assuming (on the dominant paths) that the propensity function aj only changes appreciably
on the time scale τ = S∆t, we can make the approximation that

aj(n0) ≈ aj(n1) ≈ · · · ≈ aj(nS−1)

aj(nS) ≈ aj(nS+1) ≈ · · · ≈ aj(n2S−1)

...

aj(nS·(T−1)) ≈ aj(nS·(T−1)+1) ≈ · · · ≈ aj(nS·T−1)

(5.41)

and rewrite Eq. 5.40 in terms of aj(n0), aj(nS), aj(n2S), ..., aj(nS·T ) only. This means that
the only places the ‘intermediate’ time steps (e.g. n1, ...,nS−1, or nS+1, ...,n2S−1) will appear
are in the piece that reads

S·T∑

k=1

−ipk · (nk − nk−1) . (5.42)

Happily, this means that all of the intermediate time steps can be summed over. For example,

∑

n1

· · ·
∑

nS−1

exp

{
S∑

k=1

−ipk · (nk − nk−1)

}
≈ δ(p1 − p2)δ(p2 − p3) · · · δ(pS−1 − pS) (5.43)

where the right-hand side is approximate because, due to our restriction of the sum domain
in the previous section, the sum representation of the Dirac delta function

1

(2π)N

∑

n

exp {−in · (p− p′)} = δ(p− p′) (5.44)
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only approximately applies. After summing over all intermediate time steps and integrating
out extraneous pk using the delta functions that appear, Eq. 5.40 reads

T∑

k=1

−ipk · (nk − nk−1) + S∆t
M∑

j=1

[
eipk·νj − 1

]
aj(nk−1)

=
T∑

k=1

−ipk · (nk − nk−1) + τ

M∑

j=1

[
eipk·νj − 1

]
aj(nk−1) .

(5.45)

Hence, using Gillespie’s first condition, we have successfully gone from a path integral with
time scale ∆t to a path integral with a ‘coarser’ time scale τ .

5.4.3 Applying condition 1

In this section, we will apply condition (i) in order to convert the sums in Eq. 5.32 to
integrals. After restricting our domain to the dominant paths (see Sec. 5.4.1) and coarse-
graining time (see Sec. 5.4.2), our current path integral description of the CME reads

P ≈
∑

n1∈U0

· · ·
∑

nT−1∈UT−2

∫
dp1

(2π)N
· · ·
∫

dpT
(2π)N

exp{−Sτ} (5.46)

where we recall that the sets U0, ..., UT−2 cover all trajectories on which Gillespie’s two
conditions apply, and where we have defined the function (which we can call the “action”,
in analogy with quantum mechanics)

S :=
T∑

k=1

ipk ·
(

nk − nk−1

τ

)
−

M∑

j=1

[
eipk·νj − 1

]
aj(nk−1) (5.47)

to ease notation. We will proceed using the Euler-Maclaurin formula (Eq. 5.33). As a
starting point, consider Eq. 5.46 in one-dimension:

P ≈
n0+δ+

0∑

n1=n0−δ−0

· · ·
nN−2+δ+

N−2∑

nN−1=nN−2−δ−N−2

∫
dp1

2π
· · ·
∫
dpT
2π

exp{−Sτ} (5.48)

where the δ−i and δ+
i are as described in Sec. 5.4.1. Using the Euler-Maclaurin formula, we

have

n0+δ+
0∑

n1=n0−δ−0

exp{−Sτ}

≈
∫ n0+δ+

0

n0−δ−0
exp{−Sτ} dn1 +

e−S(n0+δ+
0 )τ + e−S(n0−δ−0 )τ

2
+
∞∑

k=1

B2k

(2k)!

d2k−1

dn2k−1
1

[
e−Sτ

]n0+δ+
0

n0−δ−0
.

(5.49)
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Now we need to argue that the correction terms can safely be neglected. Define δ := δ+
0 +δ−0 .

Because the propensity functions don’t change vary much in the interval [n0 − δ−0 , n0 + δ+
0 ]

(by Gillespie’s first condition), the integral term is roughly

exp {−S(n0)τ} δ . (5.50)

Meanwhile, the next term is roughly

exp {−S(n0)τ} (5.51)

which should be negligible compared to the first as long as δ � 1. This should certainly
be true; if δ ∼ 1, our conditions are either too strict, or we are in a regime with too small
molecule numbers.

Because the propensity functions aj do not change much (and because the aj are nicely
behaved, usually monotonic functions in the regime we care about), they are approximately

‘flat’. This means that their derivatives a
(2k−1)
j are small. For example,

d

dn1

[
e−Sτ

]
=

[
i(p2 − p1) + τ

M∑

j=1

[
eipkνj − 1

]
a′j

]
e−Sτ (5.52)

so

d

dn1

[
e−Sτ

]n0+δ+
0

n0−δ−0

=τ
M∑

j=1

[
eipkνj − 1

] [
a′j(n0 + δ+

0 )e−S(n0+δ+
0 )τ − a′j(n0 − δ−0 )e−S(n0−δ−0 )τ

]

≈τe−S(n0)τ

M∑

j=1

[
eipkνj − 1

] [
a′j(n0 + δ+

0 )− a′j(n0 − δ−0 )
]

≈0 .

(5.53)

In summary, we have

n0+δ+
0∑

n1=n0−δ−0

exp{−Sτ} ≈
∫ n0+δ+

0

n0−δ−0
exp{−Sτ} dn1 (5.54)

which means we’ve successfully converted a sum into an integral. Apply this argument many
more times to obtain

n0+δ+
0∑

n1=n0−δ−0

· · ·
nT−2+δ+

T−2∑

nT−1=nT−2−δ−T−2

exp{−Sτ}

≈
∫ n0+δ+

0

n0−δ−0
dn1 · · ·

∫ nT−2+δ+
T−2

nT−2−δ−T−2

dnT−1 exp{−Sτ} .

(5.55)
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A similar argument applies to the N species path integral (Eq. 5.46); the only difference is
that the Euler-Maclaurin formula must be applied N times for each time step, because we
would like to convert N sums to an N -variable integral.

Alternatively, one can argue using the appropriate many sum generalization of the Euler-
Maclaurin formula (Eq. 5.33). There is some literature on generalizations of it to sums over
polytopes [100, 101, 102] (schematically, shapes in N -dimensional space whose vertices we
can imagine as living in ZN). The main challenge for this approach would be to show that
satisfying Gillespie’s first condition corresponds to satisfying the requirements associated
with the approximation being accurate (which are somewhat more technical than those for
the single sum Euler-Maclaurin formula).

The end result of all this is

P ≈
∫

U0

dx1 · · ·
∫

UT−2

dxT−1

∫
dp1

(2π)N
· · ·
∫

dpT
(2π)N

exp{−Sτ} . (5.56)

where we have relabeled each nk as xk to (as in Sec. 5.2) emphasize that we are now
working with continuous variables. We remark that, if not for the bounds, we would have a
Kramers-Moyal path integral (see Sec. V of our earlier paper [15]).

5.4.4 Applying condition 2

Consider the terms in the action S (Eq. 5.47) that look like

[
eipk·νj − 1

]
aj(xk−1)τ . (5.57)

Condition (ii) tells us that, for the dominant paths, aj(xk−1)τ � 1. In particular, we will
assume that it is so large that Taylor expanding the term it is multiplied by will have a
negligible effect on the overall value1, i.e.

[
eipk·νj − 1

]
aj(xk−1)τ

≈
[
ipk · νj −

1

2

N∑

`=1

N∑

`′=1

p`kp
`′
k νj`νj`′

]
aj(xk−1)τ

(5.58)

where p`k is the `-th component of the vector pk. Thus, we finally obtain

S ≈
T∑

k=1

ipk ·
[

xk − xk−1

τ
−

M∑

j=1

νjaj(xk−1)

]
+

1

2

N∑

`=1

N∑

`′=1

M∑

j=1

p`kp
`′
k νj`νj`′aj(xk−1) (5.59)

which looks just like the action for the MSRJD path integral (see Sec. V of [15]) correspond-
ing to the chemical Fokker-Planck equation (Eq. 5.8). Our final result for the whole path

1See Appendix 5.B for a somewhat more rigorous argument justifying this approximation.
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integral reads

P ≈
∫

U0

dx1 · · ·
∫

UT−2

dxT−1

∫
dp1

(2π)N
· · ·
∫

dpT
(2π)N

exp

{
−

T∑

k=1

[
ipk ·

(
xk − xk−1

τ
−

M∑

j=1

νjaj(xk−1)

)
+

1

2

N∑

`=1

N∑

`′=1

M∑

j=1

p`kp
`′
k νj`νj`′aj(xk−1)

]
τ

}

(5.60)

which looks like the usual Fokker-Planck path integral but with restricted integration bounds.
The appearance of Eq. 5.60 can be compacted somewhat if we define the diffusion tensor

D``′ :

D``′(x) :=
1

2

M∑

j=1

νj`νj`′aj(x) . (5.61)

At the CLE/Fokker-Planck level, the diffusion tensor captures all information about a sys-
tem’s noise. It must be positive semidefinite for the Fokker-Planck equation and its corre-
sponding path integral to make sense [103, 104].

Finish the derivation by enlarging our integration domain as much as possible (while
keeping the diffusion tensor positive semidefinite), assuming that permitting these additional
paths does not substantially contribute to transition probabilities, since they were small
enough to neglect in the first place. In general, we do not expect that the appropriate
domain for our new continuous variables will be [0,∞)N , despite the fact that our original
domain was NN . For example, the chemical Langevin equation [1] for the birth-death process
(with birth rate k, death rate γ, and steady state mean µ := k/γ) reads

ẋ = k − γx+
√
k + γx η(t) (5.62)

and is naturally defined on [−µ,∞), because there is always some nonzero probability that
the noise term will push the system into negative concentrations while its magnitude is
greater than or equal to zero, i.e. when k + γx = γ(µ+ x) ≥ 0.

5.4.5 Comparison with the system volume approach

We have shown in the previous few sections how Gillespie’s derivation works in a path integral
context. Because Gillespie himself [1] compared his approach to ones which rely upon the
largeness of the system volume Ω, it is interesting to do that here also. Let us translate the
typical system volume approach into path integral language, and see how it compares with
the approach we described earlier.

Consider again a CME with N species and M reactions (Eq. 5.1), but this time with the
additional physical context that the chemicals interact inside a very large volume Ω. Suppose
we rewrite the CME in terms of concentration variables xi := ni/Ω for all i = 1, ..., N . The
change in variables will lead to the probability density function P (n, t) increasing by a factor
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of ΩN :

P (n, t)dn = ΩNP (n, t)dx = P (x, t)dx

=⇒ P (x, t) = ΩNP (n, t) .
(5.63)

Gillespie used rigorous microphysical arguments [105, 106, 107, 1] to show that the volume-
dependence of the propensity functions for monomolecular, bimolecular, and trimolecular
reactions goes like

aj(n) = Ω ãj(x) (5.64)

where the adjusted propensity functions ãj are volume-independent. Using Eq. 5.63 and Eq.
5.64, our original CME path integral (Eq. 5.32) can be rewritten as

P = lim
T→∞

ΩN
∑

n1

· · ·
∑

nT−1

∫
dp1

(2π)N
· · ·
∫

dpT
(2π)N

exp

{
T∑

k=1

−iΩ pk · (xk − xk−1) + Ω∆t
M∑

j=1

[
eipk·νj − 1

]
ãj(xk−1)

}
.

(5.65)

Now add in T − 1 factors of ΩN/ΩN :

P = lim
T→∞

[
1

ΩN

∑

n1

]
· · ·


 1

ΩN

∑

nT−1



∫ (

Ω

2π

)N
dp1 · · ·

∫ (
Ω

2π

)N
dpT

exp

{
T∑

k=1

−iΩ pk · (xk − xk−1) + Ω∆t
M∑

j=1

[
eipk·νj − 1

]
ãj(xk−1)

}
.

(5.66)

Riemann sums will play the role that the Euler-Maclaurin formula did (i.e. converting sums
to integrals) in our earlier derivation. Recall that the (right endpoint) Riemann sum for a
function f on [0, b] reads [108]

∫ b

0

f(x)dx ≈
N∑

i=0

f(i∆x)∆x (5.67)

where ∆x = b/N . If we take b→∞ and N →∞ in such a way that ∆x remains constant,
we can write ∫ ∞

0

f(x)dx ≈
∞∑

i=0

f(i∆x)∆x . (5.68)

The corresponding N -dimensional result is
∫ ∞

0

dx1 · · ·
∫ ∞

0

dxN f(x)

≈
∞∑

i1=0

· · ·
∞∑

iN=0

f(i1∆x, · · · , iN∆x)(∆x)N .
(5.69)
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Since the inverse system volume 1/Ω seems to play the role of ∆x in Eq. 5.66, we can use
this Riemann sum result to approximate each sum as

1

ΩN

∑

n

≈
∫ ∞

0

dx1 · · ·
∫ ∞

0

dxN (5.70)

so that our path integral is now

P = lim
T→∞

∫
dx1 · · ·

∫
dxT−1

∫ (
Ω

2π

)N
dp1 · · ·

∫ (
Ω

2π

)N
dpT

exp

{
T∑

k=1

−iΩ pk · (xk − xk−1) + Ω∆t
M∑

j=1

[
eipk·νj − 1

]
ãj(xk−1)

}
.

(5.71)

Now we can argue just as we did in Sec. 5.4.4. Because we are taking Ω to be extraordinarily
large in the thermodynamic limit,

Ω
[
eipk·νj − 1

]
ãj(xk−1)τ

≈Ω

[
ipk · νj −

1

2

N∑

`=1

N∑

`′=1

p`kp
`′
k νj`νj`′

]
ãj(xk−1)τ

(5.72)

i.e. Ω is so large that above term does not change much in value when Taylor expanded to
second order in pk. Finally, we have

P = lim
T→∞

∫
dx1 · · ·

∫
dxT−1

∫ (
Ω

2π

)N
dp1 · · ·

∫ (
Ω

2π

)N
dpT

exp

{
−Ω

T∑

k=1

[
ipk ·

(
xk − xk−1

∆t
−

M∑

j=1

νj ãj(xk−1)

)
+

1

2

N∑

`=1

N∑

`′=1

M∑

j=1

p`kp
`′
k νj`νj`′ ãj(xk−1)

]
∆t

}

(5.73)

which is the same as the result from Sec. 5.4.4 (c.f. Eq. 5.59) but with additional factors of
Ω. It also exactly matches the system volume MSRJD path integral for the Fokker-Planck
equation (c.f. Eq. 94 in Sec. V of [15]). In other words, we have indeed derived a path
integral equivalent to a set of Langevin equations/a Fokker-Planck equation. Moreover, it
is equivalent to the same set of Langevin equations that Eq. 5.59 is (as is easily seen after
changing back from concentration variables to the original number variables)—although the
integration bounds on the path integral are different here.

Given that this approach was significantly simpler (in both a technical and conceptual
sense), why bother with Gillespie’s derivation? There are a few good reasons.

• The approximations provided by Eq. 5.68 and Eq. 5.69 are more mathematically
dubious than the Euler-Maclaurin formula (Eq. 5.33), which is well-studied and has
precisely expressed error bounds.
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• The thermodynamic limit may not apply to most biochemical systems of interest,
given that molecule numbers are often large but not overwhelmingly so, and that
the system volume (for example, of a cell) is not large enough to prevent crowding
[109, 110, 111, 112] and boundary effects [113, 114, 115] from being important.

• The system volume approach only applies when our CME describes a well-stirred,
dilute mix of chemicals held at fixed temperature in a very large box—but the CLE is
known to be a useful approximate description of all sorts of other stochastic systems
(e.g. spiking neurons, fluctuating population dynamics models, stock options). In
these other situations, there is no clear notion of a control parameter analogous to Ω.

• The system volume approach misses the subtlety of the integration bounds associated
with the chemical Langevin/chemical Fokker-Planck equations; as we pointed out at the
end of the previous section, it is a nontrivial issue that the domain of the approximating
CLE will generally not be [0,∞)N .

5.5 Discussion

We constructed an original path integral description of the CME, and applied Gillespie’s con-
ditions (suitably interpreted) to it in order to derive a path integral known to be equivalent
to the CLE. In some sense, the difference between the system size approach and Gillespie’s
approach to deriving the CLE is the difference between approximating sums as integrals via
Riemann sums, and via the Euler-Maclaurin formula. As discussed at the end of the previous
section, while both approximation techniques can be valid in the appropriate circumstances,
the Euler-Maclaurin formula is more generally applicable and has better characterized cor-
rection terms.

It is interesting to note that, although we began with an exact path integral that involved
taking the limit ∆t → 0 (Eq. 5.32), we coarse-grained time to end up with a path integral
with fixed time step τ that does not get taken to zero (Eq. 5.60). This leads to another sense
in which the CLE is only an approximate description, since a true CLE/Fokker-Planck path
integral (see [15]) also involves taking the limit ∆t→ 0. However, the idea of a ‘macroscopic’
timescale was addressed by Gillespie himself in his original paper [1]. There, he offered an
analogy to current in an electric circuit: we can freely write and manipulate the derivative
I := dq/dt, and think about the limit dt→ 0, provided we understand that we are not taking
it to be so small that shot noise effects start to matter.

Because our argument applied to each reaction/propensity function separately, it can in
principle be used construct path integrals for hybrid systems. In other words, just as Harris et
al. [28, 29, 30] do, we can suppose that Gillespie’s two conditions apply only to a subset of all
reactions or species, and construct a path integral in which some species/reactions are treated
CLE-style, while others are treated CME-style. Indeed, there should be a path integral way
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to view all of the hybrid constructions—based on molecule numbers or separations of time
scales—referenced in Sec. 5.2. These path integrals could then be used to extract large
deviation results.

It is unclear if Gillespie’s conditions could be applied to the Doi-Peliti path integral
[84, 85, 86, 87] in order to recover a CLE-equivalent path integral. Part of the difficulty is
that the Doi-Peliti construction involves integrating over coherent states, which contribute
integrals over the whole real line in the expression for the propagator [86]; it is not necessarily
straightforward to associate these with sums or integrals over state space.

Although we only used the path integral representation of the CME constructed in Sec.
7.3 to derive the CLE, it can also be used as a tool in its own right for the same purposes
other path integral representations are often used for: namely, finding exact solutions [116,
117, 118], constructing asymptotic or perturbative approximations to transition probabilities
and moments [119], computing least action paths associated with particular state transitions,
and enabling a variational method for numerically computing transition probabilities and
least action paths [70]. In cases where Gillespie’s first condition applies, and the domain
of the path integral can be restricted, the numerical evaluation of Eq. 5.32 becomes even
easier. Though our argument does not offer a constructive prescription for the restricted
integration domains U0, ..., UT−2, one can in principle bootstrap the path integral by running
Gillespie algorithm simulations beforehand to estimate reasonable domains.

5.6 Conclusion

The chemical Langevin equation is usually derived using Gillespie’s two conditions, or large
system volume arguments; as we described, both methods have clear path integral analogues.
Our results suggest that path integrals offer a useful and mathematically precise way of
thinking about the relationship between different levels of approximation (e.g. CME and
CLE), and about coarse-graining biochemical models more generally.

5.A Sample path integral calculations

One can get a feel for a given path integral by using it to exactly calculate transition proba-
bilities for simple systems. In this appendix, we use the path integral described by Eq. 5.32
to compute exact time-dependent transition probabilities for a (i) pure birth process, a (ii)
pure death process, and a (iii) chemical birth-death process. For more information on the
chemical birth-death process, and for analogous path integral calculations that are valid in
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the limit where molecule numbers can be treated as continuous, see [116] and [117].
These systems can also be solved using the Doi-Peliti path integral, the most commonly

used path integral description of the CME—see Vastola [118] for a guide. It is interesting
to note that the transition probability derivations presented in this appendix are simpler in
some ways; for example, one does not need to introduce coherent states or special scalar
products, and transition probabilities can be computed without computing the generating
function first.

The following path integral calculations involve the evaluation of many contour integrals.
The resolution of identity introduced in Eq. 5.28, which leads to the ‘momentum’ integrals
going from negative infinity to positive infinity, yields contour integrals with an infinite
number of poles. In order to make these calculations somewhat simpler, we instead use the
equally valid resolution of the identity given by

δ(n1 − n2) =

∫ π

−π

dp

2π
e−ip(n1−n2) (5.74)

in one dimension, and

δ(n1 − n2) =

∫ π

−π
· · ·
∫ π

−π

dp1 · · · dpN
(2π)N

e−ip·(n1−n2) (5.75)

in more than one dimension. This means that our CME path integral is still given by Eq.
5.32, but with the pk integrals all going from −π to π.

5.A.1 The pure birth process

The pure birth process models a species that is randomly created at some rate. It is charac-
terized by the chemical reaction

∅ k−→ X (5.76)

where k is the birth rate. This reaction corresponds to the CME

∂P (n, t)

∂t
= k [P (n− 1, t)− P (n, t)] (5.77)

where P (n, t) is the probability that the system has n X molecules at time t (with n ∈
{0, 1, 2, ...}). For this system, our path integral for the transition probability P (nf , t;n0, 0)
(c.f. Eq. 5.32) reads

P = lim
T→∞

∑

n1

· · ·
∑

nT−1

∫
dp1

2π
· · ·
∫
dpT
2π

exp

{
T∑

`=1

−ip`(n` − n`−1) + k∆t
(
eip` − 1

)
}

(5.78)

where ∆t := t/T . First, since

− k∆t
T∑

`=1

= −kt , (5.79)
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the overall answer has a prefactor exp(−kt). Next, organizing terms by the n`, we have

ip1n0 − ipTnf + in1(p2 − p1) + in2(p3 − p2) + · · ·+ inT−1(pT − pT−1) . (5.80)

Each sum over n` (for ` = 1, ..., T − 1) just corresponds to summing a geometric series:

∞∑

n`=0

[
ei(p`+1−p`)]n` =

1

1− ei(p`+1−p`) . (5.81)

Now consider the integral over p1, which reads

∫ π

−π

dp1

2π

eip1n0+k∆teip1

1− ei(p2−p1)
. (5.82)

Switching variables to z = eip1 , we have the contour integral

∮
dz

2πi

zn0ek∆tz

z − eip2
, (5.83)

whose integrand has a simple pole at eip2 . Although Cauchy’s theorem does not technically
apply in this case, since the pole lies on the circular contour, we can imagine deforming the
contour or integrand slightly (e.g. by taking eip2 → (1 − ε)eip2) so that Cauchy’s theorem
does apply, allowing us to evaluate the integral in the usual way2. Doing so, we obtain

eip2n0+k∆teip2 , (5.84)

which indicates that the overall effect of doing the contour integral was to implement the
constraint that p1 = p2. Similarly, the overall effect of doing the integral over p` (for
` = 2, ..., T − 1), which schematically reads

∫ π

−π

dp`
2π

f(p`)

1− ei(p`+1−p`) (5.85)

for some function f(p`), is to implement the constraint that p` = p`+1. Hence, after doing
the integrals over p1, ..., pT−1, we have

∫ π

−π

dpT
2π

e−ipT (nf−n0)+kteipT . (5.86)

Define ∆n := nf − n0 and change variables to z = eipT . Then we have

∮
dz

2πi

ektz

z∆n+1
. (5.87)

2These arguments can be made more rigorous if one wishes. Because path integrals are somewhat mathe-
matically dubious in the first place, regularization techniques like these are required for the integrals involved
to be well-defined. Ultimately, the proof is ‘in the pudding’: if we get the right answer, which can easily be
verified by substituting it directly into Eq. 5.77, these abuses can be excused.
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For ∆n < 0, this integral has no poles, so P (nf , t;n0, 0) = 0 in that case. For ∆n ≥ 0, a
standard application of Cauchy’s integral formula yields that the result is

1

∆n!

d∆n

dz∆n

[
ektz
]
z=0

=
(kt)∆n

∆n!
. (5.88)

Hence, including the prefactor e−kt, our result for the transition probability is

P (nf , t;n0, 0) =
(kt)∆ne−kt

∆n!
(5.89)

i.e. a Poisson distribution.

5.A.2 The pure death process

The pure death process models a species that randomly degrades at some rate. It is charac-
terized by the chemical reaction

X
γ−→ ∅ (5.90)

where γ is the death rate. This reaction corresponds to the CME

∂P (n, t)

∂t
= γ [(n+ 1)P (n+ 1, t)− nP (n, t)] (5.91)

where P (n, t) is the probability that the system has n X molecules at time t (with n ∈
{0, 1, 2, ...}). This time, our path integral for the transition probability P (nf , t;n0, 0) reads

P = lim
T→∞

∑

n1

· · ·
∑

nT−1

∫
dp1

2π
· · ·
∫
dpT
2π

exp

{
T∑

`=1

−ip`(n` − n`−1) + γ∆t n`−1

(
e−ip` − 1

)
}
.

(5.92)
The terms that involve n` (for some ` = 1, ..., T − 1) look like

in`
[
p`+1 − p` − iγ∆t

(
e−ip`+1 − 1

)]
, (5.93)

so the sum over n` yields

∞∑

n`=0

[
ei[p`+1−p`−iγ∆t(e−ip`+1−1)]

]n`
=

1

1− ei[p`+1−p`−iγ∆t(e−ip`+1−1)]
. (5.94)

The integral over p1 reads

∫ π

−π

dp1

2π

eip1n0+γ∆tn0(e−ip1−1)

1− ei[p2−p1−iγ∆t(e−ip2−1)]
. (5.95)

We can argue just as in the previous calculation to show that the net effect of doing this
integral is to implement the constraint

p1 = p2 − iγ∆t
(
e−ip2 − 1

)
. (5.96)
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Similarly, the effect of doing the integrals over p2, ..., pT−1 is to implement the constraints

p` = p`+1 − iγ∆t
(
e−ip`+1 − 1

)
(5.97)

for ` = 2, ..., T − 1. While this recurrence relation is probably not solvable in closed form,
we can do a trick to evaluate p` (for ` = 1, ..., T − 1) in terms of pT (the only momentum
variable not yet integrated over). Notice that Eq. 5.97 looks like a ‘backwards’ Euler time
step corresponding to the ordinary differential equation (ODE)

ṗ = −iγ
(
e−ip − 1

)
. (5.98)

This approximation becomes exact in the ∆t→ 0 limit, which is the limit we are interested
in. Eq. 5.98 has the solution

eip(t) = 1− Ce−γt , (5.99)

where C must be determined from the initial condition p(0) = pT (since the ODE runs
‘backwards’). Doing so, we have

eip0 = 1− (1− eipT )e−γt (5.100)

in the small ∆t limit, where p0 is defined via

eip0 := eip1+γ∆t(e−ip1−1) . (5.101)

The intuition is that p0 is what we reach after starting at pT and taking T time steps of size
∆t. Our last integral reads

∫ π

−π

dpT
2π

eip0n0e−ipTnT =

∫ π

−π

dpT
2π

[(
1− e−γt

)
+ e−γteipT

]n0 e−ipTnT . (5.102)

Define q := 1− e−γt and change variables to z = eipT so that we have

∮
dz

2πi

[q + (1− q)z]n0

znT+1
=

n0∑

j=0

(
n0

j

)
(1− q)jqn0−j

∮
dz

2πi

1

znT−j+1
. (5.103)

The contour integral is nonzero only for the term with j = nT . Then P (nf , t;n0, 0) = 0 for
nT > n0, and

P (nf , t;n0, 0) =

(
n0

nf

)[
e−γt

]nf [1− e−γt
]n0−nf (5.104)

otherwise, i.e. we have a binomial distribution.
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5.A.3 The chemical birth-death process

The chemical birth-death process models a species that is randomly created and randomly
degrades. Its list of chemical reactions is

∅ k−→ X

X
γ−→ ∅

(5.105)

where k is the birth rate and γ is the death rate. This reaction corresponds to the CME

∂P (n, t)

∂t
= k [P (n− 1, t)− P (n, t)] + γ [(n+ 1)P (n+ 1, t)− nP (n, t)] (5.106)

where P (n, t) is the probability that the system has n X molecules at time t (with n ∈
{0, 1, 2, ...}). This path integral reads

lim
T→∞

∑

n1

· · ·
∑

nT−1

∫
dp1

2π
· · ·
∫
dpT
2π

exp

{
T∑

`=1

−ip`(n` − n`−1) + k∆t
(
eip` − 1

)
+ γ∆t n`−1

(
e−ip` − 1

)
}
.

(5.107)
The terms that involve n` (for some ` = 1, ..., T − 1) look just the same as in the previous
subsection, so the sums over the n` evaluate to the same answer. The same ODE constraint
is also enforced by the integrals over the p`, leaving the only difference between this problem
and the previous one in the evaluation of the final integral. We have

∫ π

−π

dpT
2π

eip0n0e−ipTnT ek
∑T
`=1(eip`−1)∆t

=

∫ π

−π

dpT
2π

[
q + (1− q)eipT

]n0 e−ipTnT ek
∑T
`=1(eip`−1)∆t

(5.108)

where p0 is defined as in Eq. 5.101, and q := 1− e−γt as before. Observe that there is a term
in the integrand, due to the birth reaction, that was not present in Eq. 5.102. In order to
proceed, we must evaluate that term in the small ∆t limit. Note,

k

T∑

`=1

(
eip` − 1

)
∆t ≈ k

∫ t

0

dt
(
eip(t) − 1

)
= −

[
1− eipT

]
µq (5.109)

where we have exploited the link between Riemann sums and integrals, used the expression
for p(t) from Eq. 5.99, and defined µ := k/γ. Now our integral reads

e−µq
∫ π

−π

dpT
2π

[
q + (1− q)eipT

]n0 e−ipTnT eµqe
ipT . (5.110)

Changing variables to z = eipT yields

e−µq
∮

dz

2πi

[q + (1− q)z]n0 eµqz

znT+1
= e−µq

n0∑

j=0

(
n0

j

)
qn0−j(1− q)j

∮
dz

2πi

eµqz

znT−j+1
(5.111)
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which can be evaluated via Cauchy’s integral formula to obtain the result

P (nf , t;n0, 0) =

min(n0,nf )∑

j=0

(
n0

j

)
qn0−j(1− q)j · (µq)nf−je−µq

(nf − j)!
. (5.112)

This agrees with the result obtained using the Doi-Peliti path integral (c.f. Eq. 77 of [118]),
although the calculation was arguably less complicated here.

5.B An alternative argument for Taylor expanding the action

In section 5.4.4, we argued that Gillespie’s second condition allows us to say that

[
eipk·νj − 1

]
aj(xk−1)τ

≈
[
ipk · νj −

1

2

N∑

`=1

N∑

`′=1

p`kp
`′
k νj`νj`′

]
aj(xk−1)τ .

(5.113)

In this appendix, we present a slightly more careful alternative argument for the validity
of this important approximation. Because the term we are approximating appears in the
argument of the path integral’s exponential (c.f. Eq. 5.32), we are really trying to say that

exp

{
M∑

j=1

[
eipk·νj − 1

]
aj(nk−1)τ

}

≈ exp

{
ipk ·

(
M∑

j=1

νjaj(nk−1)τ

)
− 1

2

M∑

j=1

(pk · νj)2aj(nk−1)τ

}
.

(5.114)

Let us now show that this approximation holds. To ease notation, rewrite this as

exp

{
M∑

j=1

[
eip·νj − 1

]
aj

}

≈ exp

{
ip ·

(
M∑

j=1

νjaj

)
− 1

2

M∑

j=1

(p · νj)2aj

}
,

(5.115)
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where we have removed the superfluous index on p, and used the shorthand aj := aj(nk−1)τ .
Start by Taylor expanding the exponentials:

exp

{
M∑

j=1

[
eip·νj − 1

]
aj

}

=e−(a1+···aM )ee
ip·ν1a1 · · · eeip·νM aM

=
∑

x1,...,xM

(a1)x1

x1!
e−a1 · · · (aM)xM

xM !
e−aM eip·(ν1x1+···+νMxM )

(5.116)

where the sum over each xj runs from zero to infinity. Notice that the factor corresponding
to the jth reaction looks like a Poisson distribution; since aj � 1 (condition (ii)), it can be
approximated as Gaussian in the usual way:

(aj)
xj

xj!
e−aj ≈ 1√

2πaj
e
− (xj−aj)2

2aj . (5.117)

Now the sum over each xj can be approximated as an integral using the Euler-Maclaurin
formula, and we can expand the domain of integration without significantly changing the
result since the Gaussian function is sharply peaked:

∞∑

xj=0

1√
2πaj

e
− (xj−aj)2

2aj
+ip·νjxj

≈
∫ ∞

0

dxj
1√
2πaj

e
− (xj−aj)2

2aj
+ip·νjxj

≈
∫ ∞

−∞
dxj

1√
2πaj

e
− (xj−aj)2

2aj
+ip·νjxj

=eip·νjaj−
(p·νj)2

2
aj .

(5.118)

Putting these factors together for each j yields Eq. 5.115, the desired approximation. While
the argument we just presented is somewhat more technical than the one in the main text,
it also mirrors Gillespie’s original derivation of the CLE more closely: we essentially approx-
imated many Poisson distributions as normal distributions, just as Gillespie did (c.f. Eq.
5.4).
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Chapter 6

Analytic solution of chemical master equations involving gene switching.
I: Representation theory and diagrammatic approach to exact solution

How can we solve the CME? This chapter introduces a ladder operator technique, and finds
that the dynamics of RNA production and degradation looks ‘bosonic’, and that the dy-
namics of a gene switching between two states of transcriptional activity looks ‘fermionic’.
Treating systems involving both monomolecular reactions (e.g. RNA splicing and degra-
dation) and gene switching is important for explaining single cell RNA counts data, so
theoretical advances in understanding these kinds of problems may be particularly valuable.

Abstract: The chemical master equation (CME), which describes the discrete and stochastic

molecule number dynamics associated with biological processes like transcription, is difficult to

solve analytically. It is particularly hard to solve for models involving bursting/gene switching,

a biological feature that tends to produce heavy-tailed single cell RNA counts distributions. In

this paper, we present a novel method for computing exact and analytic solutions to the CME

in such cases, and use these results to explore approximate solutions valid in different parameter

regimes, and to compute observables of interest. Our method leverages tools inspired by quantum

mechanics, including ladder operators and Feynman-like diagrams, and establishes close formal

parallels between the dynamics of bursty transcription, and the dynamics of bosons interacting

with a single fermion. We focus on two problems: (i) the chemical birth-death process coupled to

a switching gene/the telegraph model, and (ii) a model of transcription and multistep splicing in-

volving a switching gene and an arbitrary number of downstream splicing steps. We work out many

special cases, and exhaustively explore the special functionology associated with these problems.

This is Part I in a two-part series of papers; in Part II, we explore an alternative solution approach

that is more useful for numerically solving these problems, and apply it to parameter inference on

simulated RNA counts data.

This chapter is currently under review at Physical Review E as
“Analytic solution of chemical master equations involving gene switching.
I: Representation theory and diagrammatic approach to exact solution”

[Vastola, Gorin, Pachter, and Holmes (2021)] arXiv link
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6.1 Introduction

This is the first in a series of two papers on solving chemical master equations involving a
switching gene, particularly in the context of bursty models of transcription and splicing.
This paper describes a novel theoretical approach for solving these problems analytically,
and explores the mathematical properties of the solutions we obtain in detail; the second
paper [1] describes an alternative approach that is more appropriate for efficiently solving
these problems on a computer. In other words, this paper tells us how to think about the
solutions to these models, while the next paper offers a fast and stable way to work with
them in practice—especially in the context of parameter inference.

The chemical master equation (CME) describes how the number of molecules in a system
(e.g. RNA in a single cell) changes over time [2, 3, 4, 5, 6, 7, 8, 9, 10]. It treats molecule
numbers as discrete rather than continuous, and dynamics as stochastic rather than de-
terministic; especially when there are small numbers of molecules, fluctuations due to the
randomness associated with diffusion and molecular interactions become important.

The equation itself—which can either be described as a differential-difference equation,
or as a countably infinite number of coupled ordinary differential equations—is typically
challenging to solve both analytically and numerically. Monomolecular reaction networks,
treated by Jahnke and Huisinga in a landmark 2007 paper [11, 12], comprise the largest
class of systems for which analytic solutions to the CME are known. But this class does
not include systems with many biologically common types of chemical reactions, like protein
synthesis and binding, whose presence in a system’s reaction list yields CMEs that can at
present be solved only in very special cases [13] (see e.g. [2, 14, 15, 16, 17, 12, 18, 19, 20]).

One biological feature that yields CMEs that are hard to solve analytically is bursting
[21, 22, 23, 24, 25, 26, 27, 28, 29]. Bursting refers to the fact that RNA transcription does
not seem to happen at a continuous rate in many contexts, but instead in discrete bursts.
This is usually modeled by assuming that genes have at least two states that they randomly
switch between, and transcribe at different rates when in different states.

Recent improvements in fluorescence and sequencing-based experimental methods have
enabled the identification of sub-molecular features of individual RNA [30, 31] in single cells.
Specifically, one can detect individual introns, which provides the ability to interrogate the
dynamics of RNA splicing—long implicated in the physiological control of gene expression
[32, 33, 34, 35, 36]. If the kinetics of these systems are to be understood in terms of a mech-
anistic model, one must be able to solve CMEs involving both splicing and gene switching,
since bursting is known to be one of the salient features.

In this paper, we present a new and fairly general approach to solving CMEs involving
gene switching, and first illustrate our approach by exactly solving a telegraph model-like
problem that describes mRNA production and degradation given a gene that randomly
switches between two states. This is a particularly useful benchmark, as the problem has been
solved before [37, 38, 39, 40, 41]. We then use our method to tackle a much more complicated
problem: deriving the full steady state distribution of a model of bursty transcription and
splicing, assuming a linear path graph and arbitrarily many splicing steps. This path graph
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model is relatively simple, but plausible and directly applicable to modeling genes that have
few introns and a single significant isoform. We validate our work using standard numerical
approaches (exact stochastic simulations [42, 43, 5] and finite state projection [44, 45]).

The paper is organized as follows. In Sec. 6.2, we present our main results and outline
the theoretical approach described in later sections. This section is intended to allow readers
to appreciate the utility of this new method, and to use the results we have derived with
it, without having to enmesh themselves in its technical details. In Sec. 6.3, we describe a
ladder operator-based approach to solving the chemical birth-death process and pure gene
switching, and derive the ladder operators that allow us to effectively reframe the coupled
problem. In Sec. 6.4, we construct a diagrammatic series solution to the coupled problem,
and explain how to draw the relevant Feynman-like diagrams. In Sec. 6.5, we examine
special cases of our series solution, and show how to extract them from the more general
result. In Sec. 6.6, we study the high copy number/continuous concentration limit of our
solution, and show that it corresponds to solving a certain Fokker-Planck equation coupled to
a switching gene. In Sec. 6.7, we generalize our theoretical approach to tackle the multistep
splicing problem. In Sec. 7.2, we consider the problem of implementing our solutions on
a computer, and validate them against numerical approaches. Finally, we discuss how our
approach could be fruitfully extended and applied to study more general splicing dynamics
in Sec. 7.6.

6.2 Main results and outline of approach

In this section, we summarize our main analytic results. Readers only interested in our
results, and not in methodological details, may find this section the most useful.

We have analytically solved two problems: (i) a telegraph model-like problem involving
one RNA species and a switching gene, and (ii) a generalization of it intended to model the
dynamics of bursty transcription with multiple downstream splicing steps (Fig 6.1). The
problem statements and main results for each are presented here in their own subsections
(with additional, more specialized results in Sec. 6.4 - 6.7). The third subsection provides
a brief guide to the three kinds of qualitative solution behavior one can expect. The last
subsection provides a roadmap for the new theoretical methodology explored in the rest of
the paper.
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Ẏ2 = k12Y1 − k12Y2 + α2

[∑

i

cie
−βis

]
Y2
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â+j+1 − â+j
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+
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N−1∑

j=0

βj

(
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Ẏ1 = −k21Y1 + k21Y2 + α1

[∑

i

cie
−βis

]
Y1
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Ĥ = −sB̂+B̂ −
N∑

j=0

βjÂ
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j Âj + (∆α)

N∑

j=0

qjÂ
+
j

[
B + c3B

+ + c4B
+B

]

= Ĥs + Ĥms + Ĥint
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)
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+
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+
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+
j

[
B + c3B

+ + c4B
+B

]

= Ĥs + Ĥms + Ĥint
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âj − βN â
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+
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+
j

[
B + c3B

+ + c4B
+B

]
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N−1∑

j=0

βj

(
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(2)

1

∅

α1 α2 k12 k21 β0 β1
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N âN (1)
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N âN (1)
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+
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Ẏ1 = −k21Y1 + k21Y2 + α1 (g − 1) e−γs Y1
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âj − βN â
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âj − βN â
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+
j

[
B + c3B

+ + c4B
+B

]
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1

General model of
transcription and
multistep splicing

Birth-death-switching model One splicing step model

Figure 6.1: The models we will examine in this paper. The 1 species version is the birth-
death-switching model (usually called the telegraph model elsewhere). We generalize it to
include some arbitrary number N of downstream splicing steps, so that the most general
model has N + 1 distinct species of RNA overall.

6.2.1 Chemical birth-death process coupled to a switching gene

Problem statement

Let X denote the RNA species, and G1 and G2 the two possible gene states. Using the
formalism of the chemical master equation (CME), RNA production and degradation coupled
to a switching gene can be modeled using the list of chemical reactions

G1
k21−−→ G2 G2

k12−−→ G1

G1
α1−→ G1 +X G2

α2−→ G2 +X

X
γ−→ ∅

(6.1)

where k21 and k12 parameterize the rates of gene switching, α1 and α2 parameterize the
transcription rate in each gene state, and γ parameterizes the RNA’s degradation rate. This
model is often called the ‘telegraph model’, especially when one of the production rates is
zero. For reasons that will become clear in the following sections, we prefer to think of it as
two distinct problems coupled together: the chemical birth-death process (describing RNA
production and degradation given a constitutively active gene) coupled to a switching gene.

The stochastic dynamics of this system are completely characterized by the probabil-
ity distribution P (x, S, t), which indicates the probability that the system has x ∈ N :=
{0, 1, 2, ...} RNA molecules and is in gene state S ∈ {1, 2} at some time t (given some
specified initial condition P (x, S, 0) which has no effect on steady state information). The
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probability distributions P (x, 1, t) and P (x, 2, t) are determined by the CME

∂P (x, 1, t)

∂t
= − k21P (x, 1, t) + k12P (x, 2, t)

+ α1 [P (x− 1, 1, t)− P (x, 1, t)] + γ [(x+ 1)P (x+ 1, 1, t)− xP (x, 1, t)]

∂P (x, 2, t)

∂t
= k21P (x, 1, t)− k12P (x, 2, t)

+ α2 [P (x− 1, 2, t)− P (x, 2, t)] + γ [(x+ 1)P (x+ 1, 2, t)− xP (x, 2, t)]

(6.2)

which is known to be difficult to solve analytically. Heuristically, the difficulty comes from
coupling two qualitatively very different kinds of stochastic processes: a discrete switching
process on two states, and a biased random walk on a countably infinite molecular number
space.

We will not compute P (x, 1, t) or P (x, 2, t) in full generality, but rather the functions

Pss(x) := lim
t→∞

P (x, 1, t) + P (x, 2, t)

ψss(g) :=
∞∑

x=0

Pss(x)gx
(6.3)

i.e. the steady state probability distribution and steady state (analytic) generating function
for a complex variable g, both marginalized over gene state. Several distinct objects labeled
‘generating functions’ will appear throughout this paper, so we distinguish this one with the
adjective ‘analytic’ to avoid confusion.

Steady state results

Define the derived quantities

αeff := α1

(
k12

s

)
+ α2

(
k21

s

)

µ :=
α1

(
k12

s

)
+ α2

(
k21

s

)

γ
=
αeff
γ

∆α := α1 − α2

c3 :=
k12k21

s2

c4 :=
k21 − k12

s
,

(6.4)

where αeff is the effective transcription rate (which takes into account the average amount
of time spent in each gene state in the long time limit), µ is the effective mean molecule
number, ∆α is the production rate difference, and c3 and c4 are non-dimensional coefficients
that appear in our solution. Also define the 2× 2 transfer matrix T (c.f. Sec. 6.4.2) as

T =

(
T00 T01

T10 T11

)
=

(
0 1
c3 c4

)
=

(
0 1

k12k21

s2
k21−k12

s

)
. (6.5)

144



Using Ck(x, µ) to denote the kth Charlier polynomial (see Appendix 6.A for the definition
and properties of these objects), the exact analytic results for Pss(x) and ψss(g) can be
written

Pss(x)

Poiss(x, µ)
= 1 +

∞∑

k=2

(∆α)k Ck(x, µ)
∑

i1,...,ik−1=0,1

T0ik−1

(kγ)

Tik−1ik−2

[(k − 1)γ + ik−1s]
· · · Ti10

(γ + i1s)

= 1 + (∆α)2C2(x, µ) · c3

(s+ γ)2γ
+ (∆α)3C3(x, µ) · c3c4

(s+ γ)(s+ 2γ)3γ
+ · · ·

(6.6)

ψss(g)

eµ(g−1)
= 1 +

∞∑

k=2

[(∆α)(g − 1)]k
∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Ti10

(γ + i1s)

= 1 +
[(∆α)(g − 1)]2c3

(s+ γ)2γ
+

[(∆α)(g − 1)]3c3c4

(s+ γ)(s+ 2γ)3γ
+ · · ·

(6.7)

where Poiss(x, µ) denotes the Poisson distribution

Poiss(x, µ) :=
µxe−µ

x!
. (6.8)

See Fig. 6.2 for plots in three representative cases, and a comparison against numerical
results obtained via finite state projection [44, 45]. Although it is not obvious, our results
agree with previously published results on this problem, e.g. results due to Iyer-Biswas et
al. [39], Huang et al. [40], and Cao and Grima [41]; see Appendix 6.E for a mathematical
proof of this. For special cases and limits of these formulas, see Sec. 6.5.

The mean and variance of this distribution are given by

〈x〉 = µ

σ2
x =

〈
x2
〉
− 〈x〉2 = µ+

(∆α)2c3

(s+ γ)γ
.

(6.9)

6.2.2 Multistep splicing coupled to a switching gene

Problem statement

Let X0 denote unspliced/nascent RNA, X1 denote RNA that has experienced one splic-
ing step (i.e. one intron has been removed), X2 denote RNA that has experienced two
splicing steps, and so on. Assuming there are N splicing steps, let XN denote the fully
processed/mature RNA. As before, let G1 and G2 denote the two possible gene states.
Transcription coupled to a switching gene, with multiple downstream splicing steps, can be
modeled using the list of chemical reactions

G1
k21−−→ G2 G2

k12−−→ G1

G1
α1−→ G1 +X0 G2

α2−→ G2 +X0

X0
β0−→ X1

β1−→ X2
β2−→ · · · βN−1−−−→ XN

βN−→ ∅

(6.10)
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Figure 6.2: The birth-death-switching steady state distribution Pss(x) in three represen-
tative cases: general rates (k12 ∼ k21), equal rates (k12 = k21), and very unequal rates
(k12 � k21). The black dotted lines correspond to the finite state projection (FSP) result,
while the colored dots correspond to the result from our solution approach.

where k21 and k12 parameterize the rates of gene switching, α1 and α2 parameterize the
transcription rate in each gene state, βi parameterizes the rate of the ith splicing step (for
0 ≤ i < N), and βN parameterizes the mature RNA’s degradation rate.

Denote the state of the system using x := (x0, x1, ..., xN) ∈ NN+1 and S ∈ {1, 2}. Use εj
to denote the vector with a 1 in the jth place and zeros elsewhere. The CME corresponding
to this model reads

∂P (x, 1, t)

∂t
= − k21P (x, 1, t) + k12P (x, 2, t)

+ α1 [P (x− ε0, 1, t)− P (x, 1, t)]

+
N−1∑

j=0

βj [(xj + 1)P (x + εj − εj+1, 1, t)− xjP (x, 1, t)]

+ βN [(xN + 1)P (x + εN , 1, t)− xNP (x, 1, t)]

∂P (x, 2, t)

∂t
= k21P (x, 1, t)− k12P (x, 2, t)

+ α2 [P (x− ε0, 2, t)− P (x, 2, t)]

+
N−1∑

j=0

βj [(xj + 1)P (x + εj − εj+1, 2, t)− xjP (x, 2, t)]

+ βN [(xN + 1)P (x + εN , 2, t)− xNP (x, 2, t)] .

(6.11)
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For this more complicated many-variable problem, it is helpful to introduce the notation

vx := vx0
0 · · · vxNN

x! := x0! · · ·xN !

∑

x

:=
∞∑

x0=0

· · ·
∞∑

xN=0∫
dx :=

∫
dx0 · · ·

∫
dxN .

(6.12)

We aim to compute the steady state probability distribution and (analytic) generating func-
tion both marginalized over gene state, i.e.

Pss(x) := lim
t→∞

P (x, 1, t) + P (x, 2, t)

ψss(g) :=
∑

x

Pss(x) gx (6.13)

where g ∈ CN+1.

Steady state results

We will reuse several derived quantities from Sec. 6.2.1. One that must be modified is the
effective mean, which in this case is a vector µ := (µ0, µ1, ..., µN) whose components are
defined as

µi =
αeff
βi

. (6.14)

We can use it to define the multivariate Poisson distribution

Poiss(x,µ) :=
µxe−µ·1

x!
=
µx0

0 e
−µ0

x0!
· · · µ

xN
N e−µN

xN !
. (6.15)

We must also define the vector q = (q0, q1, ..., qN), and the family of vectors v(k) (for 0 ≤
k ≤ N). The entries of the former are defined via

q0 = 1

q1 = − β0

β1 − β0

q2 =
β0β1

(β2 − β0)(β2 − β1)

qj = (−1)j
β0 · · · βj−1

(βj − β0) · · · (βj − βj−1)
( 1 ≤ j ≤ N )

(6.16)

while the entries of the latter are defined via

v
(k)
j =





0 j < k

1 j = k
βk···βj−1

(βk+1−βk)···(βj−βk)
j > k .

(6.17)
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Use Vn(x,µ) to denote the multistep orthogonal polynomial associated with the nonnegative
integer vector n ∈ NN+1; these polynomials are new, and are defined and discussed in
Appendix 6.D. Our exact analytic result for Pss(x) is

Pss(x)

Poiss(x,µ)
=1 +

∞∑

k=2

∑

paths j

(∆α)k qnVn(x,µ)
∑

i1,...,ik−1=0,1

T0ik−1

[βj1 + · · ·+ βjk ]
· · · Ti10

[βj1 + i1s]
,

(6.18)

where the sum requires some explanation. For each k ≥ 2, we sum over all paths j of
length k with elements in {0, 1, ..., N}, i.e. j := (j1, ..., jk) ∈ {0, 1, ..., N}k. The vector
n := (n0, n1, ..., nN) counts the number of times that each integer i appears in a path, i.e.

nr =
∑

i s.t. ji=r

1 (6.19)

for all 0 ≤ r ≤ N . For example, in the case of two splicing steps (N = 1), for k = 1 there
are just two paths: j(1) = (0) and j(2) = (1). For k = 2, there are four:

j(1) = (0, 0)

j(2) = (0, 1)

j(3) = (1, 0)

j(4) = (1, 1) .

(6.20)

In general, for N splicing steps and a set length k ≥ 1, there will be (N + 1)k distinct paths
that must be summed over. The (analytic) generating function is

ψss(g)

eµ·(g−1)
=1 +

∞∑

k=2

(∆α)k
∑

paths j(k)

N∏

m=0

[
qm(g − 1) · v(m)

]nm ∑

i1,...,ik−1=0,1

T0ik−1

[βj1 + · · ·+ βjk ]
· · · Ti10

[βj1 + i1s]

=1 + (∆α)2

N∑

a=0

N∑

b=0

[
qa(g − 1) · v(a)

] [
qb(g − 1) · v(b)

] c3

(βa + βb)(βa + s)
+ · · · .

(6.21)

For special cases and limits, see Sec. 6.7.4. The means, variances, and covariances of this
distribution are

〈xi〉 = µi

σ2
i =

〈
x2
i

〉
− 〈xi〉2 = µi + (∆α)2

N∑

a=0

N∑

b=0

2qaqbv
(a)
i v

(b)
i c3

(βa + βb)(βa + s)

Cov(xi, xj) = 〈xixj〉 − 〈xi〉 〈xj〉 = (∆α)2

N∑

a=0

N∑

b=0

qaqbv
(a)
i v

(b)
j c3

(βa + βb)(βa + s)
.

(6.22)
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6.2.3 Brief guide to qualitative solution behaviors

For developing intuition about the behavior of these distributions, it is helpful to keep
three edge cases in mind: (i) the Poisson limit, (ii) the Poisson mixture limit, and (iii) the
negative binomial limit. Our exact solutions provably reduce to each of these three special
cases in various biologically plausible limits (see Sec. 6.5 and 6.7.4), and can be viewed as
interpolating between them in intermediate parameter regimes.

When the sum of the gene switching rates, s = k12 +k21, is much larger than the degrada-
tion and splicing rates, switching happens so quickly that the RNA only ‘feels’ the effective
transcription rate αeff . In this parameter regime, the steady state solutions reduce to Pois-
son distributions—exactly the behavior we would expect if there were no gene switching.

When s is much smaller than the degradation and splicing rates, switching happens
so rarely that the system behaves like a superposition of two birth-death/monomolecular
processes: one with transcription rate α1, and the other with transcription rate α2. In this
parameter regime, the steady state solutions reduce to the Poisson mixture

Pmix(x) =
k12

s
Poiss(x,µ1) +

k21

s
Poiss(x,µ2) (6.23)

where the k12/s and k21/s factors represent the typical fractions of time the system spends
in each gene state.

Finally, the bursty limit is defined by the conditions:

α1 � 1

α2 = 0

k21 � 1 k21 � k12

(6.24)

where taking α1 and k21 large is done while keeping α1/k21 held fixed. This yields a model
with burst size b := α1/k21 and burst frequency k12, which has a heavy-tailed steady state
distribution that is approximately negative binomial [28, 46]. For example, the birth-death-
switching distribution approximately becomes

Pnb(x) =

(
x+ r − 1

x

)
(1− p)rpx (6.25)

where

r :=
k12

γ

p :=
b

1 + b
.

(6.26)

We emphasize again that it will be helpful throughout the paper to think of the somewhat
complicated general analytic solutions as interpolating between these three extremes. Indeed,
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as Fig. 6.3 suggests, this can be viewed somewhat literally. If we define the ad-hoc measures

‘burstiness’ :=
∆α

α1 + α2

· k12k21

(k12 + k21)2

‘switching vs degradation’ :=
s

s+ γ

(6.27)

and compare the exact birth-death-switching solutions for various randomly sampled param-
eter sets to each of these three limit distributions, we can see that the parameter space can
be relatively cleanly divided up into three regions.

Poisson

Poisson mix

Neg. bin.

Figure 6.3: The birth-death-switching steady state distribution for many randomly sampled
(N = 2000) parameter sets compared to three reference distributions (Poisson, Poisson
mixture, negative binomial). After sampling a parameter set and computing the true Pss(x),
the L2 distance between it and each reference distribution was computed. Each parameter
set was plotted in ‘switching vs degradation’-‘burstiness’ space and colored according to
the closest reference distribution. Red: Poisson, Green: Poisson mixture, Blue: negative
binomial.

6.2.4 Outline of approach to analytic solution

The theoretical methodology used to obtain these results is new, and uses ideas inspired by
quantum mechanics. Instead of directly trying to solve each CME (Eq. 6.2 and Eq. 6.11),
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1. Find ladder
      operators

3. Solve via
     diagrams

(1) birth-death

(2) switching gene

2. Represent combined
problem in terms of them

Pss = Poisson×(1+ + + · · · )

Â , Â+

B̂ , B̂+

Ĥ = Ĥs + Ĥbd + Ĥint

Figure 6.4: The three main steps of our theoretical approach. First, we identify ladder
operators for the RNA-only problem and the gene-switching-only problem. Then we use
those ladder operators to formulate the CME of the full problem as a specific coupling of
the individual problems. Finally, we exploit properties of the ladder operators to obtain a
series solution, which can be viewed as a sum of Feynman diagrams.

we reframe the problem in terms of states and operators in a certain Hilbert space. In this
more abstract space, we must compute the generating function (instead of the probability
distribution), whose dynamics are determined by an operator that ‘looks’ like a Hamiltonian.
In this way, solving the CME is reduced to solving an abstract Schrödinger-like equation.

But this Schrödinger-like equation is, naively, just as difficult to solve as the original
CME. The key insight is to split the problem into two separate pieces (the dynamics of RNA
by itself, and the dynamics of a switching gene by itself), solve each individual piece in a very
particular way, and then pose the original problem as a certain coupling of the individual
problems.

The aforementioned ‘particular way’ is to solve the individual problems in terms of ladder
operators, which are mathematically analogous to those used in the algebraic treatment of
the quantum harmonic oscillator [47] and in quantum field theory [48]. The dynamics of
RNA by itself can be solved in terms of ‘bosonic’ ladder operators, while the dynamics of a
switching gene by itself can be solved in terms of ‘fermionic’ ladder operators. Posing the
full coupled problem in terms of these operators makes it amenable to the usual methods
of quantum field theory, and enables a diagrammatic approach to computing quantities of
interest. It also essentially reduces many computations (e.g. of moments) to straightforward
algebra.

To summarize, our general strategy involves three steps (Fig. 6.4):

1. Find ladder operators for RNA dynamics (assuming a constitutively active gene). Find
ladder operators for pure gene switching.

2. Express the Hamiltonian of the coupled problem in terms of these ladder operators.

3. Solve the coupled problem perturbatively/diagrammatically to all orders.
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In the following sections, we carry out this plan. We first focus on the birth-death-switching
problem because it is less encumbered by notational baggage, and so better illustrates our
method. After establishing the method by solving this problem, we go on to solve the
multistep splicing problem to demonstrate the power of this new approach.

6.3 Preliminary representation theory

In this section, we study the representation theory of RNA production and degradation by
itself, and gene switching by itself. We will find that the former dynamics can be described
by bosonic ladder operators, while the latter dynamics can be described by fermionic ladder
operators. In the last subsection, we show how to use these ladder operators to couple the
two individual problems and obtain the Hamiltonian operator corresponding to Eq. 6.2.

6.3.1 Representation theory of chemical birth-death process

In this section, we study the chemical birth-death process—a simple stochastic model of
RNA being produced and degraded, without any additional features like gene switching
or regulation—and in particular how to work with it in terms of ladder operators that
make various theoretical features (e.g. the spectrum, the relationship between eigenstates,
and computing expectation values) transparent. These ladder operators and the morass
of formalism surrounding them will then be used to couple the birth-death process to a
switching gene in Sec. 6.4.

Let X denote the RNA species as before. The chemical birth-death process is defined by
the list of reactions

∅ α−→ X

X
γ−→ ∅

(6.28)

where α parameterizes the rate of RNA production and γ parameterizes the rate of degra-
dation. For simplicity, we assume both α and γ are time-independent. The corresponding
CME is

∂P (x, t)

∂t
= α [P (x− 1, t)− P (x, t)] + γ [(x+ 1)P (x+ 1, t)− xP (x, t)] (6.29)

where P (x, t) is the probability that the system has x ∈ {0, 1, 2, ...} RNA molecules at time
t.

In order to think about this problem in terms of ladder operators, we must first reframe
it in terms of states within a certain Hilbert space, and operators that act on those states.
Consider a Hilbert space spanned by the basis kets |0〉 , |1〉 , ..., where an arbitrary state |φ〉
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can be written

|φ〉 :=
∞∑

x=0

c(x) |x〉 (6.30)

for some generally complex coefficients c(x). The operators that act on these states will
generally be written in terms of the creation and annihilation operators

π̂ |x〉 := |x+ 1〉
â |x〉 := x |x− 1〉 (6.31)

which satisfy the familiar commutation relation [â, π̂] = 1. In the reframed problem, we
work with the generating function

|ψ〉 :=
∞∑

x=0

P (x, t) |x〉 (6.32)

instead of the probability density P (x, t); by construction, it contains equivalent information,
so that knowing one is equivalent to knowing the other. Just as P (x, t) satisfies the CME
given by Eq. 6.29, it is easy to show that the generating function |ψ〉 satisfies the equation
of motion

∂ |ψ〉
∂t

= Ĥbd |ψ〉 (6.33)

where the Hamiltonian operator Ĥbd is defined as

Ĥbd := α (π̂ − 1) + γ (â− π̂â) . (6.34)

For technical reasons, it will be slightly more convenient to work in terms of the Grassberger-
Scheunert creation operator â+ := π̂−1 [49, 12], in terms of which the Hamiltonian operator
reads

Ĥbd := α â+ − γ â+â . (6.35)

Now we will proceed with the ladder operator solution of the problem. We are seeking two
operators Â and Â+ for which the following hold:

1. Hamiltonian decomposition: Ĥbd is proportional to Â+Â.

2. Commutation relation: The pair satisfies [Â, Â+] = 1.

3. Hermitian conjugates: There is an inner product with respect to which Â and Â+

are Hermitian conjugates.1

1This last requirement is optional, and is mainly necessary if one wishes to use ladder operators to derive
transient (as opposed to steady state) solutions.
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Although such a pair of operators may not exist for a generic choice of Ĥ, their existence
is easy to establish for this problem. Define µ := α/γ (which turns out to be the mean
molecule number at steady state), and consider the operators

Â+ :=
√
µ â+

Â :=
1√
µ

(â− µ) .
(6.36)

Their fundamental commutation relation [Â, Â+] = 1 is easy to verify. In terms of these two
operators, the Hamiltonian can be written

Ĥbd = −γ Â+Â . (6.37)

This decomposition makes it easy to show that the commutation relations

[Â, Ĥbd] = −γÂ
[Â+, Ĥbd] = γÂ+

(6.38)

hold. They can be used to argue [47, 50] that there is a ground state |0〉 satisfying

Â |0〉 = 0

|0〉 =
∞∑

x=0

Pss(x) |x〉 =
∞∑

x=0

µx

x!
e−µ |x〉 , (6.39)

where the normalization of |0〉 was chosen so that its coefficients sum to 1 (since they
correspond to the values of the steady state probability distribution Pss(x)), and that the
eigenvalues of the Hamiltonian operator are −En, where

En = γ n (6.40)

for n = 0, 1, 2, ... Hence, we can write the eigenstates of Ĥbd as |n〉 for n ∈ N (e.g. |0〉 is the
ground state, and |1〉 if the first excited state), so that

Ĥbd |n〉 = −γ n |n〉 . (6.41)

Moreover, using the facts that2 [Â, (Â+)n] = n(Â+)n−1 and Â |0〉 = 0, we have

Ĥbd(Â
+)n |0〉 = −γÂ+Â(Â+)n |0〉

= −γÂ+
[
(Â+)nÂ+ n(Â+)n−1

]
|0〉

= −γ n(Â+)n |0〉
(6.42)

i.e. that
|n〉 ∝ (Â+)n |0〉 . (6.43)

2This is easy to show by induction, using the fundamental commutation relation between Â and Â+.
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In order to fix the normalization of the eigenstates |n〉, we must decide on an inner product.
For this problem, a natural choice turns out to be

〈x|y〉 :=
δxy

Pss(x)
=
δxy x! eµ

µx
. (6.44)

It is straightforward to show that Â and Â+ are Hermitian conjugates with respect to this
inner product. On the one hand,

〈x|Â+|y〉 =
√
µ 〈x|â+ − 1|y〉

=
√
µ [ 〈x|y + 1〉 − 〈x|y〉 ]

=
√
µ

[
δx,y+1 x! eµ

µx
− δxy x! eµ

µx

]
.

(6.45)

On the other hand,

〈y|Â|x〉 =
1√
µ
〈y|â− µ|x〉

=
1√
µ

[ x 〈y|x− 1〉 − µ 〈y|x〉 ]

=
1√
µ

[
x
δx−1,y (x− 1)! eµ

µx−1
− µδxy x! eµ

µx

]

=
√
µ

[
δx,y+1 x! eµ

µx
− δxy x! eµ

µx

]

= 〈x|Â+|y〉 .

(6.46)

Because Â and Â+ are Hermitian conjugates, Ĥbd is Hermitian, since

(
Ĥbd

)†
= −γ

(
Â+Â

)†
= −γ

(
Â
)† (

Â+
)†

= −γÂ+Â = Ĥbd . (6.47)

This allows us to use a standard argument to show that different eigenstates are orthogonal:

〈m|n〉 = − 1

En
〈m|Ĥbd|n〉 = − 1

En
〈n|Ĥbd|m〉∗ =

Em
En
〈n|m〉∗ =

Em
En
〈m|n〉 (6.48)

which forces 〈m|n〉 = 0 since Em 6= En. In order to normalize these eigenstates, so that
〈n|n〉 = 1 for all n ∈ N, we note that

〈n|n〉 = 〈0|Ân(Â+)n|0〉 = n! 〈0|0〉 = n! . (6.49)

This implies the correct normalization for the eigenkets is

|n〉 :=
(Â+)n√
n!
|0〉 . (6.50)
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Using this definition, we can show that

Â+ |n〉 =
√
n+ 1 |n+ 1〉

Â |n〉 =
√
n |n− 1〉 ,

(6.51)

properties that will be useful later.
All of this legwork we put into understanding the eigenstates of Ĥbd makes finally solving

the equation of motion, Eq. 6.33, relatively simple. Because the eigenstates as we have
defined them are orthonormal, we have the resolution of the identity

1 =
∞∑

n=0

|n〉 〈n| . (6.52)

The formal solution of Eq. 6.33 is

|ψ(t)〉 = eĤbd(t−t0) |ψ0〉 (6.53)

where |ψ0〉 = |ψ(t0)〉 is the initial generating function. Applying Eq. 6.52 to our formal
solution, we have

|ψ(t)〉 =
∞∑

n=0

eĤbd(t−t0) |n〉 〈n|ψ0〉

=
∞∑

n=0

e−En(t−t0) |n〉 〈n|ψ0〉

=
∞∑

n=0

〈n|ψ0〉 |n〉 e−γn(t−t0) .

(6.54)

We are particularly interested in computing the transition probability P (x, t;x0, t0) for ar-
bitrary x0 ∈ N, in which case |ψ0〉 = |x0〉. Denoting the coefficients of |n〉 by Pn(x), note
that

〈n|x0〉 =
Pn(x0)

Pss(x0)
(6.55)

by definition. It can be shown, using the definition of |n〉 from Eq. 6.50 and the fact that
the coefficients of |0〉 are known (c.f. Eq. 6.39), that

Pn(x) =

√
µn

n!
Cn(x, µ)Pss(x) (6.56)

where Cn(x, µ) are the Charlier polynomials, a family of discrete orthogonal polynomials
whose properties are discussed at length in Appendix 6.A. They play a role analogous to
the one the Hermite polynomials play in the solution of the quantum harmonic oscillator.
Hence, the solution to Eq. 6.33 with |ψ0〉 = |x0〉 is

|ψ(t)〉 =
∞∑

n=0

√
µn

n!
Cn(x0, µ) |n〉 e−γn(t−t0) . (6.57)
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The corresponding probability distribution P (x, t;x0, t0) can be obtained in two ways: (i)
by appealing to the definition of |ψ(t)〉, or (ii) by invoking the Euclidean product. The
Euclidean product is another useful inner product, and defined on two basis kets as

〈x|y〉Eu = δx,y (6.58)

and extended to more general kets by linearity. The expression 〈x|ψ(t)〉Eu essentially ‘picks
out’ the coefficient of |ψ(t)〉 corresponding to P (x, t); although this is identical to just picking
out the x coefficient of the generating function, using this notation makes the mathematical
analogy between position-space wave functions and probability distributions more transpar-
ent. Finally,

P (x, t;x0, t0) = 〈x|ψ(t)〉Eu

=
∞∑

n=0

√
µn

n!
Cn(x0, µ) 〈x|n〉Eu e−γn(t−t0)

= Pss(x)
∞∑

n=0

µn

n!
Cn(x0, µ)Cn(x, µ) e−γn(t−t0) .

(6.59)

The more familiar expression for P (x, t;x0, t0), given by [11, 12]

P (x, t;x0, t0) =

min(x0,x)∑

j=0

(
x0

j

)
qx0−j(1− q)j · (µq)x−je−µq

(x− j)! (6.60)

where q(t) := 1 − e−γ(t−t0), can be obtained from Eq. 6.59 using Charlier polynomial prop-
erties discussed in Appendix 6.A; for example, one can either use the integral representation
given by Eq. 6.211, or the Charlier polynomial generating function given by Eq. 6.209.

Particular features of the solution, like moments, can be obtained by expressing certain
operators in terms of ladder operators and then using their algebraic properties to compute
the result. For example, suppose we want to compute the mean 〈x〉 as a function of time.
First, note that

â |ψ(t)〉 =
∞∑

x=0

P (x, t) x |x− 1〉 , (6.61)

so

〈0|â|ψ(t)〉 =
∞∑

x=0

P (x, t)x = 〈x〉 (6.62)

where we have used the fact that the inner product of the vacuum state with any basis ket
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|x〉 is 〈0|x〉 = 1. Now, since â =
√
µ Â+ µ, we can compute

〈x〉 = 〈0|(√µ Â+ µ)|ψ(t)〉

=
∞∑

n=0

√
µn

n!
Cn(x0, µ) 〈0|(√µ Â+ µ)|n〉 e−γn(t−t0)

=
∞∑

n=0

√
µn

n!
Cn(x0, µ)

[√
µ 〈0|Â|n〉+ µ 〈0|n〉

]
e−γn(t−t0)

=
∞∑

n=0

√
µn

n!
Cn(x0, µ) [

√
µn 〈0|n− 1〉+ µ 〈0|n〉] e−γn(t−t0)

=
∞∑

n=0

√
µn

n!
Cn(x0, µ) [

√
µn δn,1 + µ δn,0] e−γn(t−t0)

= (x0 − µ) e−γ(t−t0) + µ

(6.63)

where we have used the fact that C1(x0, µ) = (x0/µ)− 1.
Parenthetically, we may note that the use of these ladder operators to understand the

birth-death process evokes striking parallels with the quantum harmonic oscillator; the anal-
ogy is even more striking in the continuous limit, where Hermite polynomials replace the
Charlier polynomials (see Sec. 6.6 and [50]). In some sense, a single chemical species being
randomly produced and degraded behaves like a free boson. More generally, we will see in
Sec. 6.7 that N chemical species being produced and degraded behave like N free bosons.

6.3.2 Representation theory of pure gene switching

In this section, we will consider the stochastic dynamics of a switching gene by itself. A care-
ful study of the switching gene uncovers ladder operators that will be useful when coupling
switching dynamics to the birth-death process in the next section.

Consider a gene with two states, which we will label as G1 and G2. Our list of chemical
reactions is

G1
k21−−→ G2

G2
k12−−→ G1

(6.64)

and the corresponding CME reads

∂P (1, t)

∂t
= − k21P (1, t) + k12P (2, t)

∂P (2, t)

∂t
= k21P (1, t)− k12P (2, t)

(6.65)

where P (1, t) is the probability that the gene is in state 1 at time t, and P (2, t) is the
probability that the gene is in state 2 at time t. If we define the state vector

~P (t) :=

(
P (1, t)
P (2, t)

)
, (6.66)

158



then we can write the CME in the form

~̇P = Ĥs
~P , (6.67)

where the switching Hamiltonian Ĥs is defined to be

Ĥs :=

(
−k21 k12

k21 −k12

)
. (6.68)

One important property of the matrix Ĥs is that it is infinitesimal stochastic (see [51] for
more discussion of this property), which means that 1T Ĥs = 0T , or equivalently that the
columns of Ĥs sum to zero. This property guarantees probability conservation:

d

dt

(
1T ~P

)
= 1T

d~P

dt
= 1T Ĥs

~P = 0T ~P = 0 . (6.69)

It is easy enough to find the exact time-dependent solution to this system by diagonalizing
Ĥs. Its eigenvalues are λ0 = 0 and λ1 = −s, where s := k12 + k21 is the gene switching rate
sum. The corresponding eigenvectors are

~v0 =

( k12

k12+k21
k21

k12+k21

)
~v1 =

(
1
−1

)
. (6.70)

Hence, the exact solution is
~P (t) = ~v0 + c ~v1 e

−st (6.71)

where the constant c depends upon one’s initial condition.
A more interesting task is to try and express Ĥs in terms of ladder operators that will

make its solution structure more explicit. Recall that the anticommutator of two matrices
M1 and M2 is defined as {M1,M2} := M1M2 +M2M1. We are seeking two operators B̂ and
B̂+ for which the following hold:

1. Hamiltonian decomposition: Ĥs is proportional to B̂+B̂.

2. Commutation relations: The pair satisfies {B̂, B̂} = {B̂+, B̂+} = 0 and {B̂, B̂+} =
1. Here, 1 is shorthand for the 2× 2 identity matrix.

3. Hermitian conjugates: There is an inner product with respect to which B̂ and B̂+

are Hermitian conjugates.

By trial and error3, we can find that the operators

B̂ :=

(
k12k21

s2
−k2

12

s2
k2

21

s2
−k12k21

s2

)

B̂+ :=

(
1 1
−1 −1

) (6.72)

3For a more principled route to determining them, see Appendix 6.B.
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suffice. In terms of them, the switching Hamiltonian Ĥs can be written

Ĥs = −s B̂+B̂ . (6.73)

One nice feature of B̂ and B̂+ is that their action on the eigenvectors of Ĥs is particularly
simple:

B~v0 = 0 B~v1 = ~v0 (6.74)

B+~v0 = ~v1 B+~v1 = 0 . (6.75)

These are properties that we will repeatedly exploit later. One can define a natural inner
product on R2 using the symmetric and positive-definite weight matrix

Ŵ =

(
1 +

k2
21

s2
1− k12k21

s2

1− k12k21

s2
1 +

k2
12

s2

)
. (6.76)

Note that, since k12 and k21 are nonnegative, 0 ≤ (k12k21)/s2 ≤ 1/4, which makes the
entries of Ŵ nonnegative. For more discussion on the appropriateness of this weight matrix,
along with some mathematical motivation for considering these kinds of ladder operators,
see Appendix 6.B. For now, assuming our choice of Ŵ is well-motivated, we define the inner
product of two vectors ~z1, ~z2 ∈ R2 via

〈~z1, ~z2〉 := ~zT1 W~z2 . (6.77)

With respect to this inner product, B̂ and B̂+ are Hermitian conjugates (see Appendix 6.B
for the mathematical details), i.e. we have Ŵ B̂ = (B̂+)T Ŵ and Ŵ B̂+ = (B̂)T Ŵ .

Recalling that the eigenvectors of Ĥs and ĤT
s are orthogonal with respect to the usual

dot product offers another way to view this inner product. That is, given the eigenvectors
~w0 and ~w1 (which correspond to the eigenvalues λ0 = 0 and λ1 = −s since Ĥs and ĤT

s have
the same eigenvalues), we have ~vTi W = ~wTi . For completeness’ sake, we note that

~w0 =

(
1
1

)
~w1 =

( k21

k12+k21

− k12

k12+k21

)
. (6.78)

Because applying ~wT0 on the left corresponds to summing over each gene state, we will end
up using it to marginalize over gene state in Sec. 6.5.

It will be helpful to recast this inner product in terms of bra-ket notation; to that end,
we identify the eigenvectors ~v0 and ~v1 with |0〉 and |1〉, ~w0 and ~w1 with 〈0| and 〈1|, and note
that

〈0|1〉 = 0

〈0|0〉 = 〈1|1〉 = 1
(6.79)

i.e. they constitute an orthonormal basis.
It is interesting to note that the switching gene behaves much like a single spin-1/2

fermion. Given that many RNA species being produced and degraded behave like many free
bosons (see Sec. 6.7), it is tempting to speculate that the dynamics of switching between
many gene states corresponds to the dynamics of many free fermions. As we discuss at the
end of Appendix 6.B, this generically does not seem to be true, at least in a straightforward
generalization of our approach.
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6.3.3 Coupling a switching gene to the birth-death process

We would like to couple a switching gene to the chemical birth-death process; in particular,
we would like to make the production rate dependent on the current gene state. This means
that, instead of the production rate being a constant parameter α, we can view it as an
operator

α̂ :=

(
α1 0
0 α2

)
(6.80)

where α1 and α2 are the distinct production rates we first introduced in Eq. 7.1. We stress
that we do not assume anything about α1 or α2 (e.g. that they are distinct, or that one is
significantly larger than the other), even though these assumptions apply in the biologically
interesting case of a bursty gene.

This section’s central trick is to note that the matrix α̂ can be written in terms of ladder
operators, since the set {1, B̂, B̂+, B̂+B̂} forms a basis for the space of all real 2×2 matrices.
We will use this fact to write

(
α1 0
0 α2

)
= r1 + r2B̂ + r3B̂

+ + r4B̂
+B̂ (6.81)

for some coefficients r1, r2, r3, and r4. To determine these coefficients, we recall from the
previous subsection the facts that (i) the actions of B̂ and B̂+ on the eigenvectors of Ĥs are
easy to compute (c.f. Eq. 6.74 and Eq. 6.75), and (ii) the eigenvectors of Ĥs are orthonormal
with respect to the inner product we defined (c.f. Eq. 6.79). For example,

α̂ |0〉 = r1 |0〉+ r2B̂ |0〉+ r3B̂
+ |0〉+ r4B̂

+B̂ |0〉
= r1 |0〉+ r3 |1〉

=⇒ r1 = 〈0|α̂|0〉 .
(6.82)

Similarly,

r2 = 〈0|α̂|1〉
r3 = 〈1|α̂|0〉
r4 = 〈1|α̂|1〉 − r1 .

(6.83)

It should be noted that, although we are interested here in the case where the production
rate depends on the current gene state in the sense specified above, this method can in
principle be used to tackle many possible generalizations of this problem.

Our particular coefficients read

r1 =
α1k12 + α2k21

s
r2 = α1 − α2

r3 = (α1 − α2)
k12k21

s2

r4 = (α1 − α2)
k21 − k12

s
.

(6.84)
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If we define the effective production rate

αeff :=
α1k12 + α2k21

s
, (6.85)

then we can write the matrix α̂ in terms of ladder operators as

α̂ = αeff + (α1 − α2)

[
B +

k12k21

s2
B+ +

k21 − k12

s
B+B

]
. (6.86)

With this done, we can write out the Hamiltonian operator for our full, coupled problem4.
It reads

Ĥ = −sB̂+B̂ + α̂ â+ − γ â+â

= −sB̂+B̂ − γÂ+Â+ (α1 − α2) â+

[
B̂ +

k12k21

s2
B̂+ +

k21 − k12

s
B̂+B̂

]

= −sB̂+B̂ − γÂ+Â+
(α1 − α2)√

µ
Â+

[
B̂ +

k12k21

s2
B̂+ +

k21 − k12

s
B̂+B̂

]

= Ĥs + Ĥbd + Ĥint

(6.87)

where we define the interaction Hamiltonian Ĥint as

Ĥint :=
(α1 − α2)√

µ
Â+

[
B̂ +

k12k21

s2
B̂+ +

k21 − k12

s
B̂+B̂

]
(6.88)

along with the shorthand notations

µ :=
αeff
γ

Â+ =
√
µ
(
a+ − 1

)

Â =
1√
µ

(a− µ) .

(6.89)

The parameter µ that appears in this Hamiltonian is actually the effective mean—a sort of
average of what the mean would be given the typical amount of time the system spends in
each gene state. It should not be conflated with α1/γ or α2/γ in what follows.

Interestingly, Ĥint looks like an interaction term with interaction strength proportional
to (α1 − α2), the difference between the two production rates. In particular, since the Â
operators are ‘bosonic’, and the B̂ operators are ‘fermionic’, our full Hamiltonian looks like
it describes one boson interacting with one fermion. When the production rates are equal
(i.e. when α1 = α2), the interaction term disappears, and the birth-death process and the
gene switching dynamics become uncoupled. This makes sense—from the point of view of
the birth-death process, it doesn’t matter what the current gene state is as long as it doesn’t
affect the production rate.

4This can be derived from the full CME, Eq. 6.2.
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It is natural to speculate that the Hamiltonian describing a birth-death process coupled
to a gene with N gene states would correspond to one boson interacting with N−1 fermions
(which also possibly interact with each other). Coupling additional birth-death processes (for
example, representing gene-gene interactions or downstream products of the original RNA)
may look like having more bosons. It is not completely clear what the representation theory
of Ĥs would look like in these more general cases, or even if a ladder operator view would be
appropriate. Regrettably, the representation theory of infinitesimal stochastic matrices seems
not particularly well-studied; for example, it is not clear to the authors that infinitesimal
stochastic matrices (or even restricted classes of them, like irreducible infinitesimal stochastic
matrices) have a spectral theorem that would permit eigenvector decompositions similar to
the one we have used here.

6.4 Diagrammatic approach to exact solution

In this section, we use the ladder operators identified in the previous section to develop
a diagrammatic approach to obtaining the exact steady state solution of CMEs involving
switching (and in particular, of Eq. 6.2).

6.4.1 Constructing eigenstates of full Hamiltonian

Consider a state formed by naively combining the eigenstates of the two original problems5,
which we will denote by |n; g〉, and which satisfies

Ĥs |n; 0〉 = 0

Ĥs |n; 1〉 = −s |n; 1〉
Ĥbd |n; g〉 = −γn |n; g〉 .

(6.90)

The action of our ladder operators on this state is

B̂ |n; 0〉 = B̂+ |n; 1〉 = 0

B̂+ |n; 0〉 = |n; 1〉
B̂ |n; 1〉 = |n; 0〉
Â |n; g〉 =

√
n |n− 1; g〉

Â+ |n; g〉 =
√
n+ 1 |n+ 1; g〉 .

(6.91)

5The birth-death problem has a countably infinite number of eigenstates, which can be indexed by a
natural number n, and the switching gene has two, which we label using 0 and 1. Note that these two
eigenstates are distinct from the two gene states, which are labeled using 1 and 2.
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All of this means that we can compute the action of Ĥ on these states. It is

Ĥ |n; 0〉 = −γn |n; 0〉+
(α1 − α2)√

µ

k12k21

s2

√
n+ 1 |n+ 1; 1〉

Ĥ |n; 1〉 = −(s+ γn) |n; 1〉+
(α1 − α2)√

µ

√
n+ 1

[
|n+ 1; 0〉+

k21 − k12

s
|n+ 1; 1〉

]
.

(6.92)

From the above, it should be clear that our states |n; g〉 are ‘almost’ eigenstates of Ĥ, if
it were not for the term proportional to (α1 − α2) due to the interaction Ĥint between the
bosonic and fermionic ladder operators. If α1 is very close to α2, this term would be small,
and it may be reasonable to approximately consider the states |n; g〉 as eigenstates.

But this suggests something interesting. Consider the action of Ĥ on the ‘next’ states,
indexed by n+ 1:

Ĥ |n+ 1; 0〉 = −γ(n+ 1) |n+ 1; 0〉+
(α1 − α2)√

µ

k12k21

s2

√
n+ 2 |n+ 2; 1〉

Ĥ |n+ 1; 1〉 = −[s+ γ(n+ 1)] |n+ 1; 1〉+
(α1 − α2)√

µ

√
n+ 2

[
|n+ 2; 0〉+

k21 − k12

s
|n+ 2; 1〉

]
.

(6.93)

Note that

Ĥ

{
|n; 0〉+

(α1 − α2)√
µ

k12k21

s2(s+ γ)

√
n+ 1 |n+ 1; 1〉

}

=− γn
{
|n; 0〉+

(α1 − α2)√
µ

k12k21

s2(s+ γ)

√
n+ 1 |n+ 1; 1〉

}

+

[
(α1 − α2)√

µ

]2
k12k21

s2(s+ γ)

√
(n+ 1)(n+ 2)

[
|n+ 2; 0〉+

k21 − k12

s
|n+ 2; 1〉

]
(6.94)

which is to even better approximation an eigenstate of Ĥ when α1 is close to α2. It seems
like this process may be continued to obtain an infinite series in powers of (α1 − α2)—and
indeed it can. To show how it can, first let us ease notation by writing

d :=
α1 − α2√

µ

c3 :=
k12k21

s2

c4 :=
k21 − k12

s

(6.95)

so that the interaction Hamiltonian Ĥint can be written as

Ĥint = d Â+
[
B̂ + c3B̂

+ + c4B̂
+B̂
]
. (6.96)
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If we write our result for the eigenstate |n〉 of the full coupled problem (which we label as
such since it has eigenvalue −γn) as

|n〉 := |n; 0〉+ d
√
n+ 1

{
q0

1,0 |n+ 1; 0〉+ q0
1,1 |n+ 1; 1〉

}
+ · · ·

= |n; 0〉+
∞∑

k=1

dk
√

(n+ 1)k
{
q0
k,0 |n+ k; 0〉+ q0

k,1 |n+ k; 1〉
} (6.97)

for some coefficients q0
k,g determined by the procedure above, with (n+1)k := (n+1) · · · (n+

k), we find that the coefficients satisfy the recurrence relations

kγ q0
k,0 = q0

k−1,1

(kγ + s) q0
k,1 = c3 q

0
k−1,0 + c4 q

0
k−1,1

(6.98)

for all k ≥ 1, with the initial conditions q0
0,0 = 1 and q0

0,1 = 0.
Similarly, we can construct eigenstates |n+ s/γ〉 (which we label as such since they have

eigenvalues −γ (n+ s/γ) ) as an infinite series

|n+ s/γ〉 := |n; 1〉+ d
√
n+ 1

{
q1

1,0 |n+ 1; 0〉+ q1
1,1 |n+ 1; 1〉

}
+ · · ·

= |n; 1〉+
∞∑

k=1

dk
√

(n+ 1)k
{
q1
k,0 |n+ k, 0〉+ q1

k,1 |n+ k; 1〉
} (6.99)

whose coefficients are determined by the recurrence relations

(kγ − s) q1
k,0 = q1

k−1,1

kγ q1
k,1 = c3 q

1
k−1,0 + c4 q

1
k−1,1

(6.100)

for all k ≥ 1, with the initial conditions q1
0,0 = 0 and q1

0,1 = 1.
The above recurrences have closed form solutions, but their expressions are somewhat

cumbersome; fortunately, there is an interesting diagrammatic interpretation of the coeffi-
cients q0

k,g and q1
k,g. We will explore these points in the next two subsections.

For now, let us stop and note that we have established that there are eigenstates of Ĥ
with eigenvalues −γ n − s g for all n ∈ N and g ∈ {0, 1}. Although it is not clear how to
prove this mathematically, it is likely that this is the complete collection of eigenstates, so
that the full spectrum of Ĥ is given by

En,g = γ n+ s g (6.101)

for n ∈ N and g ∈ {0, 1}. One nice feature of this result is that it offers a natural way to
understand previous observations regarding the relative importance of different time scales in
this problem. For example, Iyer-Biswas et al. [39] point out (in our notation) that min(γ, s)
determines the time scale of relaxation to steady state. This makes sense, because −min(γ, s)
is precisely the smallest nonzero eigenvalue.
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6.4.2 The transfer matrix

Closed form solutions to the recurrence relations given by Eq. 6.98 and 6.100 can be written
in terms of a certain 2× 2 matrix, which we will call the transfer matrix T . First, consider
that Eq. 6.98 can be rewritten in the form

(
q0
k,0

q0
k,1

)
=

(
0 1

kγ
c3

kγ+s
c4

kγ+s

)(
q0
k−1,0

q0
k−1,1

)
=

( 1
kγ

0

0 1
kγ+s

)(
0 1
c3 c4

)(
q0
k−1,0

q0
k−1,1

)
. (6.102)

Similarly, Eq. 6.100 can be rewritten in the form
(
q1
k,0

q1
k,1

)
=

( 1
kγ−s 0

0 1
kγ

)(
0 1
c3 c4

)(
q1
k−1,0

q1
k−1,1

)
. (6.103)

This motivates defining the matrix T whose entries are

T00 = 0

T01 = 1

T10 = c3 =
k12k21

s2

T11 = c4 =
k21 − k12

s
,

(6.104)

i.e.

T =

(
T00 T01

T10 T11

)
=

(
0 1
c3 c4

)
=

(
0 1

k12k21

s2
k21−k12

s

)
. (6.105)

Keeping in mind the initial condition, we can now straightforwardly compute the coefficients
q0
k,0 via

(
q0
k,0

q0
k,1

)
=

(
0 1

kγ
c3

kγ+s
c4

kγ+s

)
· · ·
(

0 1
γ

c3
γ+s

c4
γ+s

)(
1
0

)
. (6.106)

In other words, q0
k,0 is the 00 (upper left) entry of a k-fold product of 2×2 matrices, and q0

k,1

is the 10 (bottom left) entry. By the same argument, q1
k,0 and q1

k,1 are the 01 and 11 entries
of a k-fold product. Explicitly,

q0
k,0(0→ 0 in k steps) =

∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Timim−1

(mγ + ims)
· · · Ti2i1

(2γ + i2s)

Ti10

(γ + i1s)

q0
k,1(0→ 1 in k steps) =

∑

i1,...,ik−1=0,1

T1ik−1

(kγ)
· · · Timim−1

(mγ + ims)
· · · Ti2i1

(2γ + i2s)

Ti10

(γ + i1s)

q1
k,0(1→ 0 in k steps) =

∑

i1,...,ik−1=0,1

T0ik−1

(kγ − s) · · ·
Timim−1

(mγ − s+ ims)
· · · Ti11

(γ − s+ i1s)

q1
k,1(1→ 1 in k steps) =

∑

i1,...,ik−1=0,1

T1ik−1

(kγ)
· · · Timim−1

(mγ − s+ ims)
· · · Ti11

(γ − s+ i1s)
.

(6.107)

These are the cumbersome expressions referred to in the previous subsection. In the next
subsection, we offer a diagrammatic interpretation of them.
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6.4.3 Feynman rules

It turns out that we can associate with each coefficient qak,b a diagram with k lines and k+ 1
vertices. We obtain the following Feynman rules for computing the Hilbert space/bra-ket
representation of the eigenstates.

Hilbert space Feynman rules

In order to compute the coefficient of |n+ k; g〉 in the infinite series expansion of |n〉 (c.f.
Eq. 6.97), draw all valid diagrams going from 0 to g ∈ {0, 1} in k steps according to the
following rules, and add the numbers corresponding to each diagram.

1. Set up grid: Write out positions 0 through k from left to right. Draw two parallel
horizontal lines above these labels to denote the 0 and 1 gene eigenstates. The diagram
will consist of k+1 vertices, each located at a horizontal {0, ..., k} position and vertical
gene eigenstate (lower or upper) position, and lines connecting those vertices.

2. Draw lines: Place the first vertex at horizontal position 0 and on the bottom row.
Fill in the following positions from left to right. There are three possible moves: (i) if
at 0, you must next go to 1; (ii) if at 1, you can go to 0 next; (iii) if at 1, you can stay
at 1. If g = 0, the last vertex must be on the bottom row. If g = 1, the last vertex
must be on the top row.

3. Numerical factors: Associate each move/line with a numerical factor. In particular,
associate the move from position m− 1 to position m with the factor:

• 0→ 1 flip:
c3

s+mγ

• 1→ 1 stay :
c4

s+mγ

• 1→ 0 flip:
1

mγ

4. Tack on generic factors: Multiply the numbers associated with each line together,
along with the generic factors dk

√
(n+ 1) · · · (n+ k), to get the number corresponding

to the diagram you drew.

The steps are displayed in the context of a specific example in Fig. 6.5. See Tables 6.2 and
6.3 in Appendix 6.C for the values of many low-order Feynman diagrams.

Analogous rules can be written for computing q1
k,g: one must start on the upper row

instead of the lower row, and the denominators associated with step 3 are slightly different,
since we would have to make the substitutions s+mγ → mγ and mγ → mγ − s.
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=
c3c4

(s + γ)(s + 2γ)3γ
×
( )

� �

� �

� � � �

generic
 factors

c3
s+ γ
c4

s+ 2γ
1

3γ
1

2γ
c4

s+ 3γ
1

4γ
c3

s+ 3γ

(1)

1

c3
s+ γ
c4

s+ 2γ
1

3γ
1

2γ
c4

s+ 3γ
1

4γ
c3

s+ 3γ

(1)

1

c3
s+ γ
c4

s+ 2γ
1

3γ
1

2γ
c4

s+ 3γ
1

4γ
c3

s+ 3γ

(1)

1

Figure 6.5: How to draw a Feynman diagram. Here, we illustrate the process using the
unique diagram that goes from 0 to 0 in three steps. Step 1: Draw the grid. Step 2: Draw
the lines for your diagram. Step 3: Associate each line with numerical factors. Step 4:
Multiply the numbers for each line together, and tack on generic factors.

6.5 Special cases and limits

In this section, we examine various special cases of the result we found in the previous
section. Of particular biological relevance are the steady state probability distribution and
various special cases of it, including the limiting distributions described earlier in Sec. 6.2.3.

To summarize our work from the previous section, we found that Ĥ has eigenstates |n〉
(where n ∈ N) with energies En = γn which can be written in terms of the naive eigenstates
|n; g〉 via

|n〉 = |n; 0〉+
∞∑

k=1

∑

ik=0,1

dk
√

(n+ 1)k q
0
k,ik
|n+ k; ik〉

= |n; 0〉+
∞∑

k=1

dk
√

(n+ 1)k
∑

i1,...,ik=0,1

Tikik−1

(kγ + iks)
· · · Ti10

(γ + i1s)
|n+ k; ik〉 ,

(6.108)

and eigenstates |n+ s/γ〉 with energies En = γn + s that can be written in terms of naive
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eigenstates as

|n+ s/γ〉 = |n; 1〉+
∞∑

k=1

∑

ik=0,1

dk
√

(n+ 1)k q
1
k,ik
|n+ k; ik〉

= |n; 1〉+
∞∑

k=1

dk
√

(n+ 1)k
∑

i1,...,ik=0,1

Tikik−1

(kγ − s+ iks)
· · · Ti11

(γ − s+ i1s)
|n+ k; ik〉 .

(6.109)

For comparison with experiment, we are most interested in a special eigenstate: the eigen-
state with eigenvalue 0, which corresponds to the steady state probability distribution. Spe-
cializing the above, we have the ‘vacuum state’

|0〉 = |0; 0〉+
∞∑

k=1

dk
√
k!

∑

i1,...,ik=0,1

Tikik−1

(kγ + iks)
· · · Ti10

(γ + i1s)
|k; ik〉 . (6.110)

6.5.1 Steady state probability distribution

We can extract what we really care about—the probability distribution corresponding to Eq.
6.110—by either picking out coefficients, or invoking the Euclidean product as in Sec. 6.3.1.
For the states |x;S〉 (where x represents molecule number and S ∈ {1, 2} represents gene
state, rather than gene eigenstate), from which the naive eigenkets |n; g〉 can be constructed,
the Euclidean product can be defined via

〈x1;S1|x2;S2〉Eu := δx1,x2δS1,S2 (6.111)

so that

〈x;S|n; g〉Eu =

√
µn

n!
Cn(x, µ)Poiss(x, µ)(~vg)S . (6.112)

Either way, we find

Pss(x, ~S)

Poiss(x, µ)
= ~v0 +

∞∑

k=1

(∆α)k Ck(x, µ)
∑

i1,...,ik=0,1

Tikik−1

(kγ + iks)
· · · Ti10

(γ + i1s)
~vik (6.113)

where ∆α := α1 − α2 is the production rate difference. We can marginalize this result over
gene state by applying ~wT0 = (1, 1)T on the left; doing so, we obtain

Pss(x)

Poiss(x, µ)
= 1 +

∞∑

k=2

(∆α)k Ck(x, µ)
∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Ti10

(γ + i1s)
. (6.114)

The corresponding result for the (analytic) generating function, which is straightforward
to compute from this formula, is presented in Sec. 6.2.1. If we are only interested in the
steady state distribution marginalized over gene state, we can modify the Feynman rules we
presented earlier to compute it instead of the Hilbert space coefficients. These can be viewed
as the Feynman rules for ‘molecular number space’ rather than Hilbert space.
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Molecule number space Feynman rules

In order to compute the terms of order (∆α)k in the infinite series expansion of Pss(x)/Poiss(x, µ)
(c.f. Eq. 6.114), draw all valid diagrams going from 0 to 0 in k steps according to the fol-
lowing rules, and add the numbers corresponding to each diagram.

1. Set up grid: Write out positions 0 through k from left to right. Draw two parallel
horizontal lines above these labels to denote the 0 and 1 gene eigenstates. The diagram
will consist of k+1 vertices, each located at a horizontal {0, ..., k} position and vertical
gene eigenstate (lower or upper) position, and lines connecting those vertices.

2. Draw lines: Start on the bottom row (0). There are three possible moves: (i) if at 0,
you must next go to 1; (ii) if at 1, you can go to 0 next; (iii) if at 1, you can stay at 1.
The last vertex must be on the bottom row.

3. Numerical factors: Associate each move/line with a numerical factor. In particular,
associate the move from position m− 1 to position m with the factor:

• 0→ 1 flip:
c3

s+mγ

• 1→ 1 stay :
c4

s+mγ

• 1→ 0 flip:
1

mγ

4. Tack on generic factors: Multiply the numbers associated with each line together,
along with the generic factors (∆α)kCk(x, µ), to get the number corresponding to the
diagram you drew.

It appears that the appropriate correlation function for this problem is given by the function

〈0|Â2|0〉 =
σ2
x − µ
µ

=
(∆α)2c3

(s+ γ)γ
≤ (∆α)2

4γ2
(6.115)

where the inner product is defined analogously to before (c.f. Eq. 6.44) on molecule number
basis kets via

〈x|y〉 :=
δxy

Pss(x)
. (6.116)

This function measures how much the steady state distribution deviates from a Poisson
distribution; it corresponds to the first nontrivial 0 → 0 diagram, which can be seen in the
upper left corner of Fig. 6.6. It may be possible to view this as the propagator for some
sort of quasiparticle (a transcripton?), but the advantages of such a view are not completely
clear. In the next few sections, we examine biologically relevant special cases and limits of
Eq. 6.114.
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Figure 6.6: First few Feynman diagrams contributing to Pss(x), with the numerical factors
corresponding to each line shown explicitly. The overall result for Pss(x) is obtained by
multiplying the sum of all diagrams by a Poisson distribution.

6.5.2 Equal switching rates

In the special case of equal switching rates, where k12 = k21, the exact solution simplifies
considerably. In this regime, we have

c3 =
k12k21

s2
=

1

4

c4 =
k21 − k12

s
= 0

(6.117)

which means that all Feynman diagrams involving a 1 → 1 ‘stay’ line vanish. This leaves
only diagrams of the form 0 → 1, 0 → 1 → 0, 0 → 1 → 0 → 1, and so on, i.e. the ‘zigzag’
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diagrams (see Fig. 6.7). In particular, for k even we have

q0
k,0 =

c
k/2
3

(s+ γ)2γ(s+ 3γ) · · · [s+ (k − 1)γ]kγ

q0
k,1 = 0

q1
k,0 = 0

q1
k,1 =

c
k/2
3

(γ − s)2γ(3γ − s) · · · [(k − 1)γ − s]kγ

(6.118)

and for k odd we have

q0
k,0 = 0

q0
k,1 =

c
(k+1)/2
3

(s+ γ)2γ(s+ 3γ) · · · [(k − 1)γ](s+ kγ)

q1
k,0 =

c
(k−1)/2
3

(γ − s)2γ(3γ − s) · · · (k − 1)γ(kγ − s)
q1
k,1 = 0 .

(6.119)

This allows us to write explicit formulas like

|n〉 = |n, 0〉+
∞∑

k even>0

dk
√

(n+ 1)k c
k/2
3

(s+ γ)2γ(s+ 3γ) · · · [s+ (k − 1)γ]kγ
|n+ k; 0〉

+
∞∑

k odd

dk
√

(n+ 1)k c
(k+1)/2
3

(s+ γ)2γ(s+ 3γ) · · · [(k − 1)γ](s+ kγ)
|n+ k; 1〉 .

(6.120)

The corresponding formula for the steady state probability distribution marginalized over
gene state is

Pss(x)

Poiss(x, µ)
= 1 +

∞∑

k=2,4,...

(∆α)k
c
k/2
3

(s+ γ)2γ(s+ 3γ) · · · [s+ (k − 1)γ]kγ
Ck(x, µ) . (6.121)

Rewriting it in terms of Gamma functions, we have the formula

Pss(x)

Poiss(x, µ)
= Γ

(
s

2γ
+

1

2

) ∞∑

m=0

[
∆α

4γ

]2m
C2m(x, µ)

m! Γ
(
s

2γ
+ 1

2
+m

) , (6.122)

which makes it easy to compute that the steady state (analytic) generating function is

ψss(g) = eµ(g−1)Γ

(
s

2γ
+

1

2

)[
4γ

∆α(g − 1)

] s
2γ
− 1

2

I s
2γ
− 1

2

(
∆α

2γ
(g − 1)

)
(6.123)

where Iν(z) is the modified Bessel function of the first kind.
In the case of equal switching rates, for sufficiently different α1 and α2 the distribution

is generically bimodal with unequally sized peaks. In the limit of very large α1 and α2 (i.e.
the continuous concentration limit discussed in Sec. 6.6), this asymmetry disappears, and
Pss becomes completely symmetric about the effective mean µ (see Fig. 6.8).
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Special case Relevant diagrams Example
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· · ·+ +

zigzag diagrams

balance beam diagrams

Figure 6.7: Dominant Feynman diagrams in two special cases. When the gene switching
rates are equal (k12 = k21), only the ‘zigzag’ diagrams are nonzero. When the gene switching
rates are very unequal (e.g. k12 � k21), the ‘balance beam’ diagrams contribute the leading
terms.

6.5.3 Very unequal switching rates

Suppose that k12 and k21 are very different—as is often the case in practice with bursty
transcription, where one gene state is considered ‘active’ and the other ‘inactive’. Without
loss of generality, let k21 � k12, so that the 1 → 2 transition happens much more readily
than the 2 → 1 transition. Define r := k12/k21 and note r � 1. In this regime, we are
interested in finding the steady state probability distribution to first order in r. Note that

c3 =
k12k21

(k12 + k21)2
=

r

1 + 2r + r2
≈ r

c4 =
k21 − k12

k21 + k12

=
1− r
1 + r

≈ 1− 2r

(6.124)

to first order approximation in r. Hence, c3 ∼ r and c4 ∼ 1 at leading order. Then the
dominant diagrams contributing to the steady state probability sum have first step 0 → 1,
all intermediate steps 1→ 1, and last step 1→ 0.

There exists such a diagram for all k ≥ 2, and its value is always (to first order in r)
proportional to r. We will call these ‘balance beam’ diagrams (see Fig. 6.7 for a visual).
Then we have

∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Ti10

(γ + i1s)
≈ T01

(kγ)
· · · T11

(2γ + s)

T10

(γ + s)

≈ r

γk
1

[(s/γ) + 1][(s/γ) + 2] · · · [(s/γ) + (k − 1)]k

=
r

γk
(s/γ)(
s
γ

)
k
k
,

(6.125)
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so that our approximate formula for Pss(x) in the very unequal switching rates regime reads

Pss(x)

Poiss(x, µ)
≈ 1 +

sr

γ

∞∑

k=2

(
∆α

γ

)k
Ck(x, µ)

1(
s
γ

)
k
k
. (6.126)

Like the negative binomial distribution, this distribution is somewhat heavy-tailed. This
extra variance is thought to be one of the more dramatic consequences of gene switching for
empirical single cell RNA counts distributions.

It should also be noted that this ‘dominant’ diagram kind of analysis recalls what one
often does in field theory, e.g. in studies of condensed matter systems [52]. This is one of
the advantages of this Feynman diagram way of thinking: various approximations can be
justified by observing in some regime that certain diagrams are dominant, and others can
be ignored.

The very unequal switching rates limit is closely related to the bursty / negative binomial
limit we mentioned in Sec. 6.2.3. Recall that the relevant parameter conditions are

α2 = 0

α1 →∞, k21 →∞
b :=

α1

k21

held fixed

ω :=
k12

γ
held fixed

(6.127)

where b is called the burst size and ω is called the burst frequency. Unfortunately, because
this limit requires keeping α1/k21 held fixed, we cannot simply take the relevant limit of Eq.
6.126. Instead, we would have to start again with Eq. 6.114.

It turns out that a somewhat slicker way to recover the negative binomial limit is to use
the hypergeometric form of the (analytic) generating function, which we derive from Eq.
6.114 in Appendix 6.E. For α2 = 0, it reads

ψss(g) =
∞∑

n=0

[
α1

γ
(g − 1)

]n

n!

(
k12

γ

)
n(

s
γ

)
n

. (6.128)

First, note that

(
s

γ

)

n

=
(k12 + k21)

γ

(
(k12 + k21)

γ
+ 1

)
· · ·
(

(k12 + k21)

γ
+ n− 1

)

≈ k21

γ

(
k21

γ
+ 1

)
· · ·
(
k21

γ
+ n− 1

)

≈
(
k21

γ

)n
(6.129)

174



in the large k21 limit. Taking α1 and k21 large while keeping b and ω held fixed,

ψss(g) ≈
∞∑

n=0

[
α1

γ
(g − 1)

]n

n!

(
k12

γ

)
n(

k21

γ

)n

=
∞∑

n=0

[b(g − 1)]n

n!
(ω)n

=

[
1

1− b(g − 1)

]ω

(6.130)

which is precisely the generating function of a negative binomial distribution with p =
b/(1 + b) and r = ω.

6.5.4 Switching much faster than degradation

If gene switching tends to happen much more frequently than degradation, so that s � γ,
we can approximate the Feynman denominators (mγ + ims) ≈ ims where im = 1, yielding
an asymptotic series in powers of 1/s:

Pss(x)

Poiss(x, µ)
≈ 1 +

1

s

[
(∆α)2C2

c3

2γ

]
+

1

s2

[
(∆α)3C3

c3c4

3γ
+ (∆α)4C4

c2
3

8γ2

]
+ · · · . (6.131)

In the s/γ → ∞ limit, the distribution becomes exactly Poisson with mean µ. Intuitively,
gene switching happens so fast in this regime that the gene product only ‘feels’ the effective
transcription rate given by αeff , and the problem reduces to the familiar chemical birth-death
process.

6.5.5 Switching much slower than degradation

If degradation tends to happen much more frequently than gene switching, so that γ � s,
we can approximate the Feynman denominators (mγ + ims) ≈ mγ, yielding

Pss(x)

Poiss(x, µ)
≈ 1 +

∞∑

k=1

[
∆α

γ

]k
1

k!
Ck(x, µ)

∑

i1,...,ik−1=0,1

T0ik−1
· · ·Ti10

00
=
∞∑

k=0

[
∆α

γ
T

]k
1

k!
Ck(x, µ)

(6.132)

where the notation
00
= means that the LHS is the 00 (upper left) entry of the 2 × 2 matrix

described by the RHS. We can sum this in closed form using the known formula for the
generating function of the Charlier polynomials (c.f. Eq. 6.209 in Appendix 6.A) to obtain
the beautiful approximate formula

Pss(x)

Poiss(x, µ)

00≈
[
1 +

∆α

γµ
T

]x
e−(∆α)T/γ . (6.133)
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Recall from Sec. 6.2.3 that, when γ � s, we expect the steady state probability distribution
to look like a mixture of two Poisson distributions (with means α1/γ and α2/γ). Because
switching is slow compared to the dynamics of production and degradation, on short time
scales the system looks like a birth-death process; the effect of switching is to move from one
Poisson distribution to the other.

Although this formula appears superficially different, it turns out to be exactly the same
as a Poisson mixture. To see why, note that we can write

T =

(
0 1

f(1− f) 1− 2f

)
(6.134)

where f := k12/s. Diagonalizing T , we find that

T =

(
1 1
−f 1− f

)(
−f 0
0 1− f

)(
1− f −1
f 1

)
. (6.135)

This representation makes it easy to take powers of T , which we can use to evaluate Eq.
6.132 in a different way. We have

(
T k
)

00
= f(1− f)k + (1− f)(−f)k (6.136)

which means

Pss(x)

Poiss(x, µ)
≈

∞∑

k=0

[
∆α

γ

]k {
f(1− f)k + (1− f)(−f)k

} 1

k!
Ck(x, µ)

= f
∞∑

k=0

[
∆α

γ
(1− f)

]k
1

k!
Ck(x, µ) + (1− f)

∞∑

k=0

[
∆α

γ
(−f)

]k
1

k!
Ck(x, µ)

= f

(
1 +

(1− f)∆α
γ

µ

)x

e−(1−f) ∆α
γ + (1− f)

(
1−

f ∆α
γ

µ

)x

ef
∆α
γ

(6.137)

where we used the generating function of the Charlier polynomials (Eq. 6.209) in the last
step. Simplifying, we obtain

Pss(x) ≈ µx

x!
e−µ

[
k12

s

(
1 +

k21

s
∆α
γ

µ

)x

e−
k21
s

∆α
γ +

k21

s

(
1−

k12

s
∆α
γ

µ

)x

e
k12
s

∆α
γ

]

=
k12

s

(α1/γ)

x!
e−α1/γ +

k21

s

(α2/γ)

x!
e−α2/γ

(6.138)

i.e. a Poisson mixture.
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6.6 The continuous concentration limit

Remarkably, by solving the birth-death-switching CME we have also solved a qualitatively
very different problem almost for free: the problem of coupling an Ornstein-Uhlenbeck-like
process to a switching gene, which corresponds to the continuous concentration limit of the
discrete birth-death process. The same ladder operator/diagrammatic approach we have just
followed works, with only minor changes.

The chemical birth-death process with additive noise [50] is governed by the Fokker-
Planck equation

∂P (x, t)

∂t
= − ∂

∂x
[(α− γx)P (x, t)] +

σ2

2

∂2P (x, t)

∂x2
(6.139)

where P (x, t) is the probability that the concentration of X molecules in the system is x ∈ R
at time t, and where σ > 0 is called the additive noise coefficient. It is equivalent to the
Ornstein-Uhlenbeck process up to a simple change of variables, which is most transparently
seen by noting that its stochastic trajectories follow the stochastic differential equation (SDE)

ẋ = α− γx+ ση(t) (6.140)

with η(t) a Gaussian white noise term. It is biologically interesting because, in the regime
where typical molecule numbers are large, it is reasonable to approximate the discrete
molecule number dynamics of the chemical birth-death process as the continuous concentra-
tion dynamics described by this Fokker-Planck equation6.

If we coupled this process to a switching gene, we would obtain the Fokker-Planck equa-
tions

∂P (x, 1, t)

∂t
= −k21P (x, 1, t) + k12P (x, 2, t)− ∂

∂x
[(α1 − γx)P (x, 1, t)] +

σ2

2

∂2P (x, 1, t)

∂x2

∂P (x, 2, t)

∂t
= k21P (x, 1, t)− k12P (x, 2, t)− ∂

∂x
[(α2 − γx)P (x, 2, t)] +

σ2

2

∂2P (x, 2, t)

∂x2

(6.141)

with P (x, i, t) denoting the probability that the system has concentration x ∈ R and gene
state i ∈ {1, 2} at time t.

Analogously to before, we can first consider the problem without a switching gene (Eq.
6.139), and define the generating function via

|φ〉 =

∫ ∞

−∞
dx P (x, t) |x〉 . (6.142)

If we introduce operators x̂, p̂ that act as

x̂ |φ〉 :=

∫ ∞

−∞
dx x c(x) |x〉

p̂ |φ〉 :=

∫ ∞

−∞
dx − ∂c(x)

∂x
|x〉

(6.143)

6Negative concentrations are allowed but are overwhelmingly improbable in the regime where this con-
tinuous model is used, i.e. assuming α/γ � 1 so that typical molecule numbers are large.
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on a general state |φ〉, we can write the equation of motion satisfied by the generating
function in the form

∂ |ψ〉
∂t

= Ĥbda |ψ〉 (6.144)

where the Hamiltonian operator is defined as

Ĥbda = p̂ (α− γx̂) +
σ2

2
p̂2 . (6.145)

We can go on to derive ladder operators

Â :=
1√
σ2/2γ

[
x̂− µ− σ2

2γ
p̂

]

Â+ :=

√
σ2

2γ
p̂

(6.146)

whose properties match those discussed in Sec. 6.3.1, which includes that we can write the
Hamiltonian in terms of them as

Ĥ = −γ Â+Â . (6.147)

With that done, we have ladder operators for the continuous birth-death problem, as well
as the ones derived in Sec. 6.3.2 for the switching gene problem. We can pose the coupled
problem in terms of them, as in Sec. 6.3.3, via

Ĥ = −sB̂+B̂ + p̂ [α̂− γx̂] +
σ2

2
p̂2

= −sB̂+B̂ − γÂ+Â+ (α1 − α2) p̂

[
B̂ +

k12k21

s2
B̂+ +

k21 − k12

s
B̂+B̂

]

= −sB̂+B̂ − γÂ+Â+
(α1 − α2)√
σ2/2γ

Â+

[
B̂ +

k12k21

s2
B̂+ +

k21 − k12

s
B̂+B̂

]

= Ĥs + Ĥbda + Ĥint .

(6.148)

As before, we can simplify notation by defining the quantities

d :=
α1 − α2√
σ2/2γ

c3 :=
k12k21

s2

c4 :=
k21 − k12

s

(6.149)

so that the interaction Hamiltonian Ĥint can be written as

Ĥint = d Â+
[
B̂ + c3B̂

+ + c4B̂
+B̂
]
. (6.150)
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But this is precisely the same interaction Hamiltonian we solved earlier (c.f. Eq. 6.96)!
Because the method from here on out works in Hilbert space, rather than molecule number
space or concentration space, we can go on derive Feynman rules of exactly the same form.

We must do something slightly different only when we go from the generating function
to the probability distribution. The analogue to the Euclidean product (c.f. Eq. 6.58) is

〈φ1|φ2〉Eu :=

∫
dx c∗1(x)c2(x) (6.151)

and the relevant results (given no gene switching) can be summarized as

〈x|ψ〉Eu = P (x, t)

〈x|n〉Eu =

√
1

2nn!
Hn

(√
γ

σ2
(x− µ)

)
·Gauss

(
x, µ,

σ2

2γ

)

Gauss(x,m, s2) :=
1√

2πs2
e−

(x−m)2

2s2

(6.152)

where Hn denotes the nth Hermite polynomial. Continuing as before, we find7

Pss(x,~g)

Gauss
(
x, µ, σ

2

2γ

) = ~v0 +
∞∑

k=1

[
∆α√
σ2/γ

]k
Hk

(√
γ

σ2
(x− µ)

) ∑

i1,...,ik=0,1

Tikik−1

(kγ + iks)
· · · Ti10

(γ + i1s)
~vik .

(6.153)

If we marginalize over gene state, we obtain

Pss(x)

Gauss
(
x, µ, σ

2

2γ

) = 1 +
∞∑

k=2

[
∆α√
σ2/γ

]k
Hk

(√
γ

σ2
(x− µ)

) ∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Ti10

(γ + i1s)
.

(6.154)

One easily notes that the only difference between these results and the ones for the discrete
birth-death process are the substitutions

Poiss(x, µ)→ Gauss

(
x, µ,

σ2

2γ

)

Ck(x, µ)→
[

1√
σ2/γ

]k
Hk

(√
γ

σ2
(x− µ)

)
.

(6.155)

7See [53] for another interesting series expansion involving the Hermite polynomials. Thomas and Grima
study higher-order terms in the system size expansion of the CME; the Hermite polynomials seem to appear
essentially due to fact that (most) arbitrary CMEs can be locally approximated as a multivariate birth-death
process with additive noise.

179



Because the birth-death process with additive noise (with the specific additive noise constant
σ =
√

2α) is the large µ limit of the discrete birth-death process (see Fig. 6.8), there is an
alternative way to get this result. One merely needs to know that

Ck(x, µ)
µ�1−−→

[
1√
2µ

]k
Hk

(
x− µ√

2µ

)
(6.156)

so that Eq. 6.114 becomes Eq. 6.154 (with σ =
√

2α).

Color: continuous approximation Dashed: discrete result
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â+j+1 − â+j
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(2)

1

Figure 6.8: Comparison of the continuous approximation to the discrete birth-death-
switching result for equal switching rates as α1 is varied. α2 = α1−30, γ = 1, k12 = k21 = 0.1.
The continuous result is symmetric about the effective mean µ in all cases; the discrete result
approaches the continuous result as α1 becomes large.

It is interesting to note that problems of similar form appear elsewhere. For example, by
specializing the parameter values of this problem, one finds that Eq. 6.153 and Eq. 6.154
can exactly describe the solution of an active matter run-and-tumble motion problem [54].
The precise correspondence is described in Table 6.1 below.

Gene regulation problem Run-and-tumble problem

Concentration x Position x
Gene state i ∈ {1, 2} Right-moving or left-moving
P (x, 1, t) and P (x, 2, t) Pφ(x, t) and Pψ(x, t)

Transcription rates α1, α2 Self-propulsion speeds w
2
,−w

2

Degradation rate γ Spring constant k
Gene switching rates k12, k21 Direction switching rates α

2
, α

2

Effective mean concentration µ = α1k12+α2k21

γ(k12+k21)
Effective mean position µ = 0

Table 6.1: The parameter correspondence between the continuous birth-death-switching
problem considered here, and the run-and-tumble problem considered by Garcia-Millan and
Pruessner [54].
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6.7 Generalization to multistep splicing

Fortuitously, our approach to solving the birth-death-switching problem—a problem that
has been solved before [39, 40, 41], albeit using very different methods—straightforwardly
generalizes, so that we can solve a significantly more complicated problem that has not been
solved before. In this section, we consider more realistic transcription dynamics, involving
an arbitrary number of splicing steps that occur in a fixed order, coupled to a switching
gene.

Our plan of attack is the same as the one detailed in Sec. 6.2.4. The ladder operators for
pure gene switching are the same as before, so we will first find the ladder operators for the
dynamics of transcription and multistep splicing given a constitutively active gene. The list
of reactions and CME for the coupled problem are as stated in Sec. 6.2.2 (c.f. Eq. 6.11).

6.7.1 Representation theory of multistep splicing

Assuming a constitutively active gene, the reaction list for transcription and multistep splic-
ing (with N splicing steps that occur in a fixed order) reads

∅ α−→ X0

X0
β0−→ X1

X1
β1−→ X2

...

XN−1
βN−1−−−→ XN

XN
βN−→ ∅

(6.157)

where α parameterizes the transcription rate, βi parameterizes the rate of the ith splicing
step (for 0 ≤ i < N), and βN parameterizes the mature RNA’s degradation rate. For
simplicity, we assume that the βi are all distinct. Denote the state of this system using the
vector x := (x0, x1, ..., xN) ∈ NN . If we use εj to denote the vector with a 1 in the jth place
and zeros elsewhere, we can write the CME for this system as

∂P (x, t)

∂t
= α [P (x− ε0, t)− P (x, t)]

+
N−1∑

j=0

βj [(xj + 1)P (x + εj − εj+1, t)− xjP (x, t)]

+ βN [(xN + 1)P (x + εN , t)− xNP (x, t)] .

(6.158)

As before, we will reframe the problem in terms of a generating function in a certain Hilbert
space, where the dynamics are completely determined by a Hamiltonian operator. In terms
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of the Grassberger-Scheunert [49, 12] creation operators (â+
i := π̂i − 1), the Hamiltonian

operator Ĥms of the multistep splicing problem reads

Ĥms := α â+
0 + β0

(
â+

1 − â+
0

)
â0 + β1

(
â+

2 − â+
1

)
â1 + · · ·+ βN−1

(
â+
N − â+

N−1

)
âN−1 − βN â+

N âN

= α â+
0 +

N−1∑

j=0

βj
(
â+
j+1 − â+

j

)
âj − βN â+

N âN .

(6.159)

We are seeking operators satisfying the commutation relations (c.f. Eq. 6.38)

[Â, Ĥms] = −λÂ
[Â+, Ĥms] = λÂ+

(6.160)

where λ > 0 is some constant with units of inverse time. A reasonable strategy is to compute
many commutators by hand, and combine them by trial and error in order to construct the
desired operators. Some commutator results that are useful for this purpose are:

[â+
j , Ĥ] = βj â

+
j − βj â+

j+1 j = 0, ..., N − 1

[â+
N , Ĥ] = βN â+

N

[âj, Ĥ] = −βj âj + βj−1 âj−1 j = 1, ..., N

[â0, Ĥ] = α− β0â0 = −β0

(
â0 −

α

β0

)
.

(6.161)

From the above, it is immediately clear that â+
N is an up ladder operator (with constant βN),

and â0 − (α/β0) is a down ladder operator (with constant β0).
To find the rest, we can note that â+

N−1 is an up ladder operator up to a correction
involving â+

N ; making that correction allows us to find an up ladder operator (with constant
βN−1) that is a linear combination of â+

N−1 and â+
N . Similarly, we can find an up ladder

operator (with constant βN−2) that is a linear combination of â+
N−2, â+

N−1, and â+
N . In

general, we have up ladder operators Â+
i (for i = 0, ..., N), where

Â+
N := â+

N

Â+
N−1 := â+

N−1 +
βN−1

βN − βN−1

â+
N

Â+
N−2 := â+

N−2 +
βN−2

βN−1 − βN−2

â+
N−1 +

βN−1 βN−2

(βN−1 − βN−2)(βN − βN−2)
â+
N

Â+
i := â+

i +
N∑

j=i+1

βi · · · βj−1

(βj − βi) · · · (βi+1 − βi)
â+
j i = 0, 1, ..., N.

(6.162)

One can apply the same argument to derive the down ladder operators, starting from Â0
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and constructing ÂN last. We obtain

Â0 := â0 −
α

β0

Â1 := â1 −
β0

β1 − β0

â0 +
α β0

β1(β1 − β0)

Â2 := â2 −
β1

β2 − β1

â1 +
β0 β1

(β2 − β1)(β2 − β0)
â0 −

α β0 β1

β2(β2 − β0)(β2 − β1)

Âi := âi +
(−1)i+1α β0 · · · βi−1

βi(βi − βi−1) · · · (βi − β0)
+

i−1∑

j=0

(−1)i−j
βj · · · βi−1

(βi − βi−1) · · · (βi − βj)
âj .

(6.163)

These ladder operators satisfy the important commutation properties:

[Âj, Ĥms] = −βj Âj
[Â+

j , Ĥms] = βj Â
+
j

[Âi, Â
+
j ] = δi,j

(6.164)

for all i, j = 0, 1, ..., N . We can write the Hamiltonian in terms of them as

Ĥms = −β0 Â
+
0 Â0 − β1 Â

+
1 Â1 − · · · − βN Â+

N ÂN , (6.165)

which looks like the Hamiltonian of (N+1) uncoupled harmonic oscillators or non-interacting
bosons. The energies of this Hamiltonian are

En0,n1,...,nN = β0 n0 + β1 n1 + · · ·+ βN nN (6.166)

with each nj ∈ N. Using ladder operators or other methods, it is clear that the ground state
|0〉 (which has energy E0,...,0 = 0) corresponds to the steady state probability distribution

Poiss(x,µ) :=
µxe−µ·1

x!
=
µx0

0 e
−µ0

x0!
· · · µ

xN
N e−µN

xN !
(6.167)

where the components of the vector µ are µi = α/βi for all 0 ≤ i ≤ N .
In what follows, it will be helpful to consider simple cases in order to get intuition for

the more general case. The ‘toy’ case of one splicing step (N = 1, two distinct species) has
ladder operators

Â0 := â0 −
α

β0

Â1 := â1 −
β0

β1 − β0

â0 +
α β0

β1(β1 − β0)

Â+
0 := â+

0 +
β0

β1 − β0

â+
1

Â+
1 := â+

1 .

(6.168)
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Properties like the canonical commutation relations and ladder operator decomposition of
the Hamiltonian are straightforward to verify in this case. The case of two splicing steps
(N = 2, three distinct species) has ladder operators

Â0 := â0 −
α

β0

Â1 := â1 −
β0

β1 − β0

â0 +
α β0

β1(β1 − β0)

Â2 := â2 −
β1

β2 − β1

â1 +
β0 β1

(β2 − β1)(β2 − β0)
â0 −

α β0 β1

β2(β2 − β0)(β2 − β1)

Â+
0 := â+

0 +
β0

β1 − β0

â+
1 +

β0 β1

(β1 − β0)(β2 − β0)
â+

2

Â+
1 := â+

1 +
β1

β2 − β1

â+
2

Â+
2 := â+

2 .

(6.169)

The reader may notice that, in these ladder operators, there are no analogues of the
√
µ

factors that appear in Eq. 6.36. Those factors appeared earlier in order to make Â and Â+

Hermitian conjugates with respect to a certain inner product. Because we will only solve
for the steady state probability distribution, such an inner product, along with guaranteeing
the up and down ladder operators are Hermitian conjugates of one another, is not necessary.
Furthermore, it is not clear what the ‘correct’ choice of inner product is in this case, because
choosing one directly analogous to Eq. 6.44 (but using Eq. 6.167 instead of a one-dimensional
Poisson distribution) does not seem to work.

6.7.2 Diagrammatic approach to exact solution

We will now use our ladder operators to reframe the coupled problem as in Sec. 6.3.3, and
proceed with a diagrammatic approach to the exact solution as in 6.4. The Hamiltonian of
the coupled problems reads

Ĥ = −sB̂+B̂ + α̂ â+
0 +

N−1∑

j=0

βj
(
â+
j+1 − â+

j

)
âj − βN â+

N âN

= −sB̂+B̂ −
N∑

j=0

βjÂ
+
j Âj + (∆α) â+

0

[
B + c3B

+ + c4B
+B
]
.

(6.170)

All we need to do in order to proceed is to express â+
0 in terms of our ladder operators. In

the case of one splicing step, this is easy:

â+
0 = Â+

0 −
β0

β1 − β0

Â+
1 (6.171)
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In case of two splicing steps:

â+
0 = Â+

0 −
β0

β1 − β0

Â+
1 +

β0β1

(β2 − β0)(β2 − β1)
Â+

2 . (6.172)

In general, for N splicing steps, we have

â+
0 = Â+

0 +
N∑

j=1

(−1)j
β0 · · · βj−1

(βj − β0) · · · (βj − βj−1)
Â+
j . (6.173)

To ease notation, we can write

â+
0 =

N∑

j=0

qjÂ
+
j (6.174)

and define the vector q = (q0, ..., qN) via

q0 = 1

q1 = − β0

β1 − β0

q2 =
β0β1

(β2 − β0)(β2 − β1)

qj = (−1)j
β0 · · · βj−1

(βj − β0) · · · (βj − βj−1)
( 1 ≤ j ≤ N ) .

(6.175)

Hence, we have

Ĥ = −sB̂+B̂ −
N∑

j=0

βjÂ
+
j Âj + (∆α)

N∑

j=0

qjÂ
+
j

[
B + c3B

+ + c4B
+B
]

= Ĥs + Ĥms + Ĥint

(6.176)

where the interaction Hamiltonian Ĥint is defined to be

Ĥint = (∆α)
N∑

j=0

qjÂ
+
j

[
B + c3B

+ + c4B
+B
]
. (6.177)

As before, we will work in terms of the naive eigenstates |n; g〉 = |n0, n1, ..., nN ; g〉. The
action of our ladder operators on these states is easily computed. We seek to calculate the
‘ground state’, which we will write as

|0̄〉 := |0 + · · ·+ 0〉 = |0; 0〉+
∑

n 6=0

∑

g=0,1

qn
√

n! Q(n, g) |n; g〉 (6.178)

for some coefficients Q(n, g). Start by observing that

Ĥ |0; 0〉 = (∆α)c3

N∑

j=0

qj |εj; 1〉 . (6.179)
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Next,

Ĥ |εi; 1〉 = − (s+ βi) |εi; 1〉+ (∆α)qi
√

2 [ |2εi; 0〉+ c4 |2εi; 1〉 ]

+ (∆α)
∑

j 6=i
qj [ |εi + εj; 0〉+ c4 |εi + εj; 1〉 ] . (6.180)

This means that, to second order in (∆α), the vacuum state is

|0̄〉 ≈ |0; 0〉+ (∆α)
N∑

i=0

qi
T10

s+ βi
|εi; 1〉

+ (∆α)2
√

2
N∑

i=0

(qi)
2

[
T01T10

2βi(s+ βi)
|2εi; 0〉+

T11T10

(s+ 2βi)(s+ βi)
|2εi; 1〉

]

+ (∆α)2
∑

i 6=j
qiqj

[
T01T10 |εi + εj; 0〉
(βj + βi)(s+ βi)

+
T11T10 |εi + εj; 1〉

(s+ βj + βi)(s+ βi)

]
.

(6.181)

The qualitative difference between this problem and the one-dimensional problem we solved
earlier, at least as far as this diagrammatic approach goes, is quickly becoming clear. Ear-
lier, we had to think about paths through gene eigenstate space (e.g. one diagram might
correspond to 0 → 1 → 0) when writing down our solution, but the ‘path’ through RNA
eigenstate space was simple. In the case of the vacuum state, it went 0 → 1 → 2 → · · · ,
with each increase corresponding to another application of the up ladder operator Â+.

But in this case, each time we increment the RNA eigenstate number vector, we have
(N + 1) choices of up ladder operator. For example, among the second order terms there
is one that corresponds to first applying Â+

0 , and then applying Â+
1 . The order of traversal

matters, because this is distinct from the term whose path involves first applying Â+
1 , and

then Â+
0 —as one can see from the Feynman diagram denominators.

Continuing this procedure, we find that

|0̄〉 = |0; 0〉+
∞∑

k=1

∑

paths j

(∆α)kqn
√

n!
∑

i1,...,ik

Tikik−1

[βj1 + · · ·+ βjk + iks]
· · · Ti10 |n; ik〉

[βj1 + i1s]
(6.182)

where the sum over paths should be understood as follows. For each k ≥ 1, we sum over all
paths j of length k with elements in {0, 1, ..., N}, i.e. j := (j1, ..., jk) ∈ {0, 1, ..., N}k. The
vector n := (n0, n1, ..., nN) counts the number of times that each integer i appears in a path,
i.e.

nr =
∑

i s.t. ji=r

1 (6.183)

for all 0 ≤ r ≤ N . The Hilbert space Feynman rules we obtain are almost the same as
before, up to this change involving considering paths through RNA eigenstate space.
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Hilbert space Feynman rules (multistep version)

In order to compute the coefficient of |n; g〉 in the infinite series expansion of |0̄〉 (c.f. Eq.
6.182), draw all valid diagrams going from 0 to g ∈ {0, 1} in k = n0 + · · ·nN steps according
to the following rules, and add the numbers corresponding to each diagram.

1. Set up grid: Write out positions 0 through k from left to right. Draw two parallel
horizontal lines above these labels to denote the 0 and 1 gene eigenstates. The diagram
will consist of k+1 vertices, each located at a horizontal {0, ..., k} position and vertical
gene eigenstate (lower or upper) position, and lines connecting those vertices.

2. Draw lines: Place the first vertex at horizontal position 0 and on the bottom row.
Fill in the following positions from left to right. There are three possible moves: (i) if
at 0, you must next go to 1; (ii) if at 1, you can go to 0 next; (iii) if at 1, you can stay
at 1. If g = 0, the last vertex must be on the bottom row. If g = 1, the last vertex
must be on the top row.

3. Numerical factors: Associate each move/line with a numerical factor. In particular,
associate the move from position m− 1 to position m with the factor:

• 0→ 1 flip:
c3

s+ βj1 + · · ·+ βjm

• 1→ 1 stay :
c4

s+ βj1 + · · ·+ βjm

• 1→ 0 flip:
1

βj1 + · · ·+ βjm

4. Sum over RNA paths: Write down all possible paths on {0, 1, ..., N}k of length k in
which each integer i appears exactly ni times. Evaluate your diagram for all of these
paths (by multiplying the numbers associated with each line together) and sum the
contributions due to each path.

5. Tack on generic factors: Multiply in the generic factors (α)kqn
√

n! to get the
number corresponding to the diagram you drew.

6.7.3 Steady state probability distribution

Let us determine the steady state probability distribution corresponding to Eq. 6.182. As
before, we can either invoke the Euclidean product or manually pick out coefficients in
molecule number space. For the states |x;S〉 (where x represents molecule number and
S ∈ {1, 2} represents gene state, rather than gene eigenstate), from which the naive eigenkets
|n; g〉 can be constructed, the Euclidean product can be defined via

〈x1;S1|x2;S2〉Eu := δx1,x2δS1,S2 (6.184)

187



so that

〈x;S|n; g〉Eu =
1√
n!

Vn(x,µ)Poiss(x,µ) (~vg)S (6.185)

where Vn(x,µ) denotes a novel generalization of the Charlier polynomials that we define and
discuss in Appendix 6.D. Using this, we have

Pss(x, ~S)

Poiss(x,µ)
= ~v0 +

∞∑

k=1

∑

paths j

(∆α)k qnVn(x,µ)
∑

i1,...,ik

Tikik−1

[βj1 + · · ·+ βjk + iks]
· · · Ti10 ~vik

[βj1 + i1s]
.

(6.186)

Marginalizing over gene state,

Pss(x)

Poiss(x,µ)
= 1 +

∞∑

k=2

∑

paths j

(∆α)k qnVn(x,µ)
∑

i1,...,ik−1

T0ik−1

[βj1 + · · ·+ βjk ]
· · · Ti10

[βj1 + i1s]
.

(6.187)

See Fig. 6.9 for some representative distributions in the N = 1 case, and how they compare
to numerical results obtained by finite state projection [44, 45]. It is interesting to note
that this result is the same as our one species solution (c.f. Eq. 6.114) up to the following
replacements:

∞∑

k=2

−→
∞∑

k=2

∑

paths j

dk −→ (∆α)k (q0)n0 · · · (qN)nN

kγ −→ βj1 + · · ·+ βjk
Poiss(x, µ) −→ Poiss(x,µ)

Ck(x, µ) −→ Vn0,...,nN (x,µ) .

(6.188)

We can write down our last set of Feynman rules for computing this steady state probability
distribution directly.

Molecule number space Feynman rules (multistep version)

In order to compute the terms of order (∆α)k in the infinite series expansion of Pss(x)/Poiss(x,µ)
(c.f. Eq. 6.187), draw all valid diagrams going from 0 to 0 in k steps according to the fol-
lowing rules, and add the numbers corresponding to each diagram.

1. Set up grid: Write out positions 0 through k from left to right. Draw two parallel
horizontal lines above these labels to denote the 0 and 1 gene eigenstates. The diagram
will consist of k+1 vertices, each located at a horizontal {0, ..., k} position and vertical
gene eigenstate (lower or upper) position, and lines connecting those vertices.
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2. Draw lines: Place the first vertex at horizontal position 0 and on the bottom row.
Fill in the following positions from left to right. There are three possible moves: (i) if
at 0, you must next go to 1; (ii) if at 1, you can go to 0 next; (iii) if at 1, you can stay
at 1. If g = 0, the last vertex must be on the bottom row. If g = 1, the last vertex
must be on the top row.

3. Numerical factors: Associate each move/line with a numerical factor. In particular,
associate the move from position m− 1 to position m with the factor:

• 0→ 1 flip:
c3

s+ βj1 + · · ·+ βjm

• 1→ 1 stay :
c4

s+ βj1 + · · ·+ βjm

• 1→ 0 flip:
1

βj1 + · · ·+ βjm

4. Sum over RNA paths + generic factors: Write down all possible paths on
{0, 1, ..., N}k of length k. Evaluate your diagram for all of these paths (by multiplying
the numbers associated with each line together) and sum the contributions due to each
path with the weights (∆α)kqnVn(x,µ) where n = (n0, ..., nN) counts the number of
times each integer i appears in a given path.

6.7.4 Special cases

In this section, we will specialize our result for the steady state probability distribution in
various ways, just as we did earlier for the one species problem in Sec. 6.5.

If we want to marginalize over x1, ..., xN , leaving only the distribution for the number x0

of nascent RNA, we need the formula

∑

x1,...,xN

Vn(x,µ) Poiss(x,µ) = (δn1,0 · · · δnN ,0) Cn0(x0, µ0) Poiss(x0, µ0) . (6.189)

Only the terms with n1 = · · · = nN = 0 survive, converting the remaining polynomials to
Charlier polynomials and eliminating any paths other than the ones with all zeros. We end
up with

Pss(x0)

Poiss(x0, µ0)
= 1 +

∞∑

k=2

(∆α)k Cn0(x0, µ0)
∑

i1,...,ik−1

T0ik−1

(kβ0)
· · · Ti10

(β0 + i1s)
(6.190)

i.e. the result is the same as what we found in the one species problem (c.f. Eq. 6.114). This
makes sense, because the dynamics downstream of the nascent RNA species X0 should have
no impact on its distribution. More generally, if we were to marginalize over xm+1, ..., xN ,
leaving only x0, ..., xm, the distribution would match the distribution for the multistep prob-
lem with m splicing steps.
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Figure 6.9: Comparison of the 2 species/1 splicing step (i.e. N = 1) result described by Eq.
6.187 against finite state projection (FSP) in a variety of parameter conditions. Unspliced
RNA corresponds to x0, while spliced RNA corresponds to x1. In these cases, our formula
matches orthogonal numerical results quite well.

Meanwhile, if we want to marginalize over x0, ..., xN−1, leaving only the distribution for
the number xN of mature/fully processed RNA, we need the formula

∑

x0,...,xN−1

Vn(x,µ) Poiss(x,µ) = CnN (xN , µN) Poiss(xN , µN)
N∏

k=0

[
v

(k)
N

]nk
. (6.191)

Since all of the v
(k)
N are nonzero, no paths vanish this time. We have

Pss(xN)

Poiss(xN , µN)
= 1 +

∞∑

k=2

∑

paths j

(∆α)k qnCnN (xN , µN)×

×
N∏

k=0

[
v

(k)
N

]nk ∑

i1,...,ik−1

T0ik−1

[βj1 + · · ·+ βjk ]
· · · Ti10

[βj1 + i1s]
.

(6.192)

Qualitatively, this formula indicates that the distribution of the mature RNA species XN

is affected by all of the preceding splicing steps—including how many steps there were,
and the associated rates. This observation is less trivial than it at first seems, since the
marginal steady state distribution of XN for a constitutively active gene (which is a Poisson
distribution) is completely independent of upstream splicing dynamics.
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Let us move on to special parameter regimes of the full joint distribution. In the case of
very unequal switching rates (k21 � k12), we can argue as in Sec. 6.5.3 that the ‘balance
beam’ Feynman diagrams contribute the most to first order in the switching rate ratio
r := k12/k21. The end result is analogous:

Pss(x)

Poiss(x,µ)
= 1 +

∞∑

k=2

∑

paths j

(∆α)k qnVn(x,µ)×

× r

(βj1 + · · ·+ βjk)
(
βj1 + · · ·+ βjk−1

+ s
)
· · · (βj1 + s)

.

(6.193)

If switching is much faster than all of the βi (for 0 ≤ i ≤ N), we can again write an
asymptotic series in 1/s:

Pss(x)

Poiss(x,µ)
≈ 1 +

1

s
(∆α)2c3

∑

i,j

qnVn(x,µ)

βi + βj
+O

(
1

s2

)
(6.194)

where n := εi+εj. Finally, if switching is much slower than all of the βi, we can approximate
the Feynman denominators as (βj1 +· · · βjm+ims) ≈ (βj1 +· · · βjm) and use the combinatorial
result8 that

∑

paths j , n fixed

1

(βj1 + · · ·+ βjk) · · · (βj1 + βj2) (βj1)
=

1

n!

1

βn0
0 · · · βnNN

(6.195)

where we consider only paths of length k with the same sum vector n. Then our steady state
probability becomes

Pss(x)

Poiss(x,µ)
= 1 +

∑

n

1

n!

N∏

j=0

[
(∆α)qj
βj

T

]nj
Vn(x,µ) . (6.196)

Using the formula for the generating function of these orthogonal polynomials (c.f. Eq. 6.246
in Appendix 6.D), we can sum this in closed form to obtain

Pss(x)

Poiss(x,µ)

00≈
N∏

j=0

[
1 +

(∆α)

µj
T
∑

k

v
(k)
j

qk
βk

]xj
e
−(∆α)T

∑
k v

(k)
j

qk
βk . (6.197)

Using a straightforward generalization of the argument from Sec. 6.5.5, we can show that
this interesting-looking formula is exactly equal to a Poisson mixture, i.e. that

Pss(x) ≈ k12

s
Poiss(x,µ1) +

k21

s
Poiss(x,µ2) (6.198)

in this limit.

8This can be proved by induction.
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6.8 Numerical implementation and validation

In this section, we explain how to implement the formulas presented in the previous sections
efficiently, and discuss typical numerical behavior.

The most important thing to note is that, while our results are formally correct (see e.g.
Appendix 6.E for a mathematical proof of the agreement between our birth-death-switching
result and the previously known result), they are likely not very useful for numerically im-
plementing the solution to these problems in large swaths of parameter space. In particular,
they are frequently numerically unstable, with the more general formulas presented in the
previous section somewhat more unstable than the birth-death-switching formulas.

This is essentially due to two reasons. The first reason is that our solutions were con-
structed as perturbative solutions in powers of ∆α; when this is not small—as in the case in
most real situations—our implementations behave particularly poorly (Fig. 6.10a) because
one must compute a very large number of series terms in order to closely approximate the
correct answer. One is also likely to encounter overflow errors in taking large powers of ∆α.

One might wonder whether our formulas are asymptotic expansions of the true result,
which would mean they formally diverge. This is not so. For example, in the birth-death-
switching case we have that Cn ∼ (x/µ)n, and that the Feynman diagram sums go like
1/(γnn!). Very roughly, we have

Pss(x)

Poiss(x, µ)
∼

∞∑

n=0

[
∆α · x
γ · µ

]n
1

n!
= exp

[
∆α · x
αeff

]
. (6.199)

The analysis is similar in the multistep case, where we instead obtain

Pss(x)

Poiss(x,µ)
∼ exp

[
N∑

j=0

∆α · qjxj
αeff

]
. (6.200)

The second reason is that additional instability arises due to the proliferation of time scales
(i.e. the βi) in the multistep problem. When the βi are all comparable, all of the Feynman
diagrams contribute, leading to a large number of terms being required to converge to the
correct answer.

Despite these instabilities, the formulas are still usable if their regime of validity is kept
in mind. We have found that computing the analytic generating function (Eq. 6.7 and Eq.
6.21), and then inverse fast Fourier transforming, tends to produce more stable results than
using the state space formulas directly. This has the added advantage that one can bypass
numerically computing the orthogonal polynomials.

We explore runtime performance and stability in quantitative fashion for the birth-death-
switching solution in Fig. 6.10. Because the birth-death-switching problem has been solved
before (in particular in [40], by Huang et al.), we can assess the accuracy of our solution
formula (Eq. 6.6) by comparing it to their hypergeometric solution formula. By sampling
physiologically plausible parameters and modulating the approximation order, we can com-
pute the precision and computational complexity of the solution; the details of the sampling
procedure are described in Appendix 6.F.
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The diagrammatic solution exhibits substantially weaker state space size dependence than
the hypergeometric solution (Fig. 6.10a), with nearly constant time complexity compared
to the O(N1.00) complexity of the Huang solution in the relevant domain. The runtime
dependence on order of approximation is approximately linear (Fig. 6.10b). In the low-
∆α region, the diagrammatic solution recapitulates the analytical solution quite well, as
quantified using the Kullback-Leibler and Kolmogorov-Smirnov divergence measures (Fig.
6.10c-d). Therefore, the algorithm performance suggests natural applications to the design
of adaptive solvers, with the diagrammatic solution used as much as possible in the low-∆α
regime. Finally, we note that the slow-switching Poisson mixture approximation given in
Eq. 6.198 generally underperforms the diagrammatic solution.

But, as we might have anticipated, the discrepancy between the ‘ground truth’ Huang
result and our solution formula increases sharply as ∆α gets large. This is clear from the large
Kullback-Leibler divergence (Fig. 6.10c) and Kolmogorov-Smirnov distance (Fig. 6.10d)
values in this regime.

In conclusion, the solution formulas have proven useful tools for examining the qualitative
behavior of the models in various regimes (e.g. as we did in Sec. 6.5 and Sec. 6.7.4), and
can be used to obtain reliable theoretical results for observables like moments. But the series
themselves are numerically poorly conditioned, and can be somewhat slow in the multistep
case (where one must sum over many ‘paths’), and so are not appropriate for tasks like
parameter inference on RNA counts data. In the second part of this two part article [1], we
present an alternative approach that has better numerical properties.

193



Ru
nt

im
e 

/ s

Ru
nt

im
e 

/ s

KL
 d

iv
er

ge
nc

e

KS
 d

is
ta

nc
e

state space size approximation order

|α1 − α2| |α1 − α2|

Figure 6.10: Exploration of birth-death-switching solution performance and stability. For
many randomly sampled parameter sets, we evaluated the effective state space size, runtime,
and accuracy. Each dot corresponds to a different parameter set. See Appendix 6.F for
details on the parameter sampling procedure and definition of state space size. (a) Runtime
comparison between the ground truth hypergeometric solution from Huang et al. [40] and
the diagrammatic estimates as a function of state space size, computing only the first n terms
of Eq. 6.6. (b) Runtime comparison for the diagrammatic estimates as a function of approx-
imation order. (c) Cumulative 98th percentile of the Kullback-Leibler divergence between
estimates and ground truth as a function of |∆α| (colors correspond to colors in (b); red rep-
resents trivial Poisson solution). (d) Cumulative 98th percentile of the Kolmogorov-Smirnov
divergence between estimates and ground truth as a function of |∆α| (colors correspond to
colors in (b)). The last two panels confirm that increasing ∆α makes convergence much
slower, which in practice could mean inaccurate numerical results when computing Eq. 6.6
to fixed order.
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6.9 Discussion

Using a novel theoretical methodology inspired by quantum mechanics, we have solved sev-
eral complicated problems in stochastic chemical kinetics exactly: the chemical birth-death
process coupled to a switching gene, the chemical birth-death process with additive noise
coupled to a switching gene (the continuous limit of the former model), and a more realistic
model of transcription involving a switching gene and an arbitrary number of downstream
splicing steps. We also uncovered tantalizing formal connections between chemical kinetics
and quantum physics: the dynamics of a system involving RNA production and degrada-
tion coupled to a switching gene looks much like the dynamics of a system involving non-
interacting bosons coupled to a fermion, for example. Unfortunately, the instability of these
solution formulas renders them inadequate for practical purposes like parameter inference.
We will address this deficiency further in part II [1].

There are various potential directions for generalizing this approach, some of which we
have pointed out earlier in the paper. Most obviously, the idea of expressing a system’s
Hamiltonian in terms of ‘natural’ ladder operators, and rewriting it in terms of ‘free’ Hamil-
tonians and an interaction term, is broadly applicable—whether or not a switching gene is
involved. In the context of stochastic chemical kinetics and gene regulation, birth-death-like
processes like the ones we have studied here may be an appropriate choice of free Hamilto-
nian, with the interaction terms corresponding to dynamics we currently do not know how to
solve exactly. Notably, in most cases we cannot exactly solve dynamics involving molecular
binding/unbinding [13]. One expects nonlinear operator products like Â1Â2Â

+
3 to appear in

the interaction term in such cases.
Closer in spirit to our current results, one expects the ability to generalize to (i) more

than two gene states, and (ii) more realistic transcription and splicing dynamics. Multistate
models have been solved in at least one special case [55], but it is expected that such a
generalization would be highly nontrivial. It is not immediately obvious how to generalize
to more than two gene states while maintaining nice anti-commutation properties for the
switching-associated ladder operators; we offer some reflection on this problem towards the
end of Appendix 6.B. On the other hand, generalizing to more complicated models of tran-
scription and splicing, involving branching splicing topologies and even alternative splicing,
seems more straightforward. The main difficulty would be understanding the representa-
tion theory of this more general problem, which in some sense means reckoning with the
representation theory of so-called monomolecular reaction networks [11, 12] (the natural
multi-species generalization of the birth-death process).

One unexpected strength of our method is that the problem it treats is fairly abstract.
Although we took our main CME (Eq. 6.11) to represent RNA dynamics coupled to a
switching gene, almost the exact same equation can be used to describe a more granular
model of transcription involving RNA polymerase molecules that hop sequentially along a
gene [56]. Also, as pointed out at the end of Sec. 6.6, the continuous limit of our model
corresponds exactly to a model of active matter run-and-tumble motion [54]. This suggests
our techniques may be useful for solving a broad range of stochastic physical and biological
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problems.
Lastly, we must emphasize the surprising applicability of quantum mechanics-like operator-

based approaches, and the natural appearance of objects that resemble Feynman diagrams.
There are probably many more results (in both stochastic gene regulation and studies of
active matter dynamics) that can be derived by exploiting useful parallels between quantum
mechanics and stochastic chemical reaction dynamics, as several pieces of past work have
suggested [51, 57, 50, 58, 59].
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6.A Charlier polynomials

In this appendix, we will define the Charlier polynomials and describe their properties. It
is useful to view them as a discrete analogue to the more familiar Hermite polynomials;
in particular, the Charlier polynomials relate to the Poisson distribution the same way that
Hermite polynomials relate to the normal distribution. Moreover, they reduce to the Hermite
polynomials in the same limit that the Poisson distribution reduces to a normal distribution.

Given a parameter µ ≥ 0 and a nonnegative integer n, define the nth Charlier polynomial
Cn(x, µ) for all x ≥ 0 via the Rodrigues formula

Cn(x, µ) :=
1

Poiss(x, µ)
[−∇]n Poiss(x, µ) (6.201)

where we recall that

Poiss(x, µ) :=
µxe−µ

x!
, (6.202)

and where ∇ is the backward difference operator that acts on a discrete-valued function f
according to

∇f(x) := f(x)− f(x− 1) . (6.203)

For example, to obtain C1(x, µ), we compute

C1(x, µ) =
Poiss(x− 1, µ)− Poiss(x, µ)

Poiss(x, µ)
=

x
µ
Poiss(x, µ)− Poiss(x, µ)

Poiss(x, µ)
=
x

µ
− 1 . (6.204)

From the point of view of our ladder operator solution of the chemical birth-death process,
this definition of Cn(x, µ) arises from taking

〈x|n〉 = 〈x| (Â
+)n√
n!
|0〉 =

√
µn

n!
〈x| (π̂ − 1)n |0〉 (6.205)

and defining
Cn(x, µ) := 〈x| (π̂ − 1)n |0〉 . (6.206)

In our convention, the first few Charlier polynomials are

C0(x, µ) = 1

C1(x, µ) =
x

µ
− 1

C2(x, µ) =
x2

µ2
−
[

1

µ2
+

2

µ

]
x+ 1

C3(x, µ) =
x3

µ3
− 3

µ2

[
1 +

1

µ

]
x2 +

1

µ

[
3 +

3

µ
+

2

µ2

]
x− 1 .

(6.207)

In general, the nth Charlier polynomial will be an nth order polynomial in x which asymp-
totically goes like (x/µ)n.

197



0 5 10 15 20 25 30

x
1

0

1

2

3

4

5

6

C n
(x

,
)

First four Charlier polynomials ( = 10)
C0
C1
C2
C3

Figure 6.11: The first few Charlier polynomials (C0, C1, C2, C3) for µ = 10. For x somewhat
larger than µ, we can see that Cn ∼ (x/µ)n.

Two results are particularly useful for deriving various properties of the Charlier polyno-
mials. One is its generating function GC(t, x) (not to be confused with probability generating
function seen elsewhere in this paper), defined via

GC(t, x) :=
∞∑

n=0

Cn(x, µ)

n!
tn . (6.208)

Using the Rodrigues formula (Eq. 6.201), we can show that

GC(t, x) =
1

Poiss(x, µ)

∞∑

n=0

[−∇ t]n

n!
Poiss(x, µ)

=
1

Poiss(x, µ)
e−∇ t Poiss(x, µ)

=
1

Poiss(x, µ)
e−t

x∑

n=0

Poiss(x− n, µ) tn

n!

=
1

Poiss(x, µ)
e−t

(
1 +

t

µ

)x
Poiss(x, µ)

=

(
1 +

t

µ

)x
e−t .

(6.209)
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Another useful result comes from a novel integral representation of the Poisson distribution9

Poiss(x, µ) =

∫ ∞

−∞

dz

2π

e−iµz

(1− iz)x+1
. (6.210)

Applying the Rodrigues formula to it, we can derive the integral representation

Cn(x, µ) =
1

Poiss(x, µ)

∫ ∞

−∞

dz

2π

(−iz)ne−iµz

(1− iz)x+1
(6.211)

which, incidentally, offers another method for explicitly computing GC(t, x).
One property of the Charlier polynomials that we will use is that

∞∑

x=0

Cn(x, µ)gx
µxe−µ

x!
= (g − 1)neµ(g−1) , (6.212)

a result that can be derived using our expression for GC(t, x). To do so, note that

∞∑

n=0

∞∑

x=0

Cn(x, µ)gx
µxe−µ

x!

tn

n!
=
∞∑

x=0

gx
(µ+ t)x

x!
e−t−µ

= exp {g (µ+ t)− t− µ}

= eµ(g−1)

∞∑

n=0

(g − 1)n

n!
tn

(6.213)

and match the coefficients of tn. This property, along with our formula for GC(t, x), can be
used to derive what is probably the most important property of the Charlier polynomials:
that they are orthogonal with respect to a Poisson weight function, i.e.

∞∑

x=0

Cn(x, µ)Cm(x, µ) Poiss(x, µ) =
n!

µn
δn,m . (6.214)

This orthogonality relation offers an alternative way to view the resolution of the identity
described by Eq. 6.52.

Other properties that are useful to establish include that the Charlier polynomials obey
a recurrence relation in x, and that they reduce to Hermite polynomials in the large µ limit.
To establish the recurrence relation, it is easiest to solve the birth-death CME (Eq. 6.29)
via separation of variables. Given that we already know the allowed energies En (c.f. Eq.
6.40) and steady state distribution (c.f. Eq. 6.39), we can substitute the ansatz

P (x, t) = Cn(x, µ)Poiss(x, µ)e−γnt (6.215)

into the time-dependent CME to derive (after simplifying)

−nCn(x, µ) = µ [Cn(x+ 1, µ)− Cn(x, µ)]

+ x [Cn(x− 1, µ)− Cn(x, µ)] .
(6.216)

9See Gradshteyn and Ryzhik [60] (ET I 118(3), in section 3.382, on pg. 365).

199



In addition to offering another way to define the Charlier polynomials, this recurrence relation
also offers one numerically efficient way to determine their values. Meanwhile, the large µ
behavior of the Charlier polynomials is described by

(
√
µ)nCn(x, µ)

µ�1−−→
(

1√
2

)n
Hn

(
x− µ√

2µ

)

GC(
√
µ t, x)

µ�1−−→ GH

(
t√
2
,
x− µ√

2µ

)
,

(6.217)

where GH(t, y) denotes the generating function of the (physicists’) Hermite polynomials
Hn(x), which reads

GH(t, y) :=
∞∑

n=0

Hn(y)

n!
tn = e2yt−t2 . (6.218)

This can be established by straightforwardly approximating GC(
√
µ t, x). For large µ, we

have that

GC(
√
µ t, x) = e−

√
µt

(
1 +

t√
µ

)x

= e−
√
µte

x log
[
1+ t√

µ

]

≈ e−
√
µte

x
[
t√
µ
− t2

2µ

]
(6.219)

where we have expanded the logarithm to second order. Approximating x ≈ µ in the t2

term, we have

e−
√
µte

x
[
t√
µ
− t2

2µ

]
≈ e−

√
µte

xt√
µ
− t2

2

= exp

{
x− µ√

µ
t− t2

2

}

= exp

{
2
x− µ√

2µ

(
t√
2

)
−
(

t√
2

)2
}

= GH

(
t√
2
,
x− µ√

2µ

)

(6.220)

as desired. The reader may notice that the approximations that were necessary here are
the same as the ones required to show that a Poisson distribution reduces to a normal
distribution in the large µ limit, i.e. it is necessary in both cases to truncate the Taylor
series of a logarithm and assume that x ≈ µ in part of the formula.
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6.B More on switching gene representation theory

Although the appearance of fermionic ladder operators in the solution of pure gene switching
dynamics may at first seem mysterious, there is a systematic approach to finding these
operators and deriving their properties. In this appendix, we discuss this approach, and
point towards how it might be generalized for problems involving more than two gene states.

The key insight is that the matrix10 Hs is infinitesimal stochastic, which means its
columns sum to zero. This forces one of the eigenvalues of Hs to be zero, and the other
(assuming Hs 6= 0) to be strictly negative. Because its two eigenvalues are distinct, it is
diagonalizable, and can be written in the form

Hs = −s QDQ−1 (6.221)

where we are using −s to denote the negative eigenvalue of Hs, and where D is the diagonal
matrix

D :=

(
0 0
0 1

)
. (6.222)

Trivially, we can observe that

D =

(
0 0
0 1

)
=

(
0 0
1 0

)(
0 1
0 0

)
= B̃+B̃ (6.223)

where we have defined the matrices B̃ and B̃+. Various properties of B̃ and B̃+, including
their commutation relations, are obvious:

B̃e0 = 0 B̃e1 = e0

B̃+e0 = e1 B̃+e1 = 0

{B̃, B̃} = B̃2 + B̃2 = 0

{B̃+, B̃+} = (B̃+)2 + (B̃+)2 = 0

{B̃, B̃+} = B̃B̃+ + B̃+B̃ = I

(6.224)

where e0 := (1, 0)T and e1 := (0, 1)T . These anticommutation properties are identical to
those satisfied by B and B+, and the action of B̃ and B̃+ on e0 and e1 looks like the action
of B and B+ on the eigenvectors of Hs (c.f. Eq. 6.74 and Eq. 6.75). This is no accident;
noting that

Hs = −s QB̃+B̃Q−1 = −s (QB̃+Q−1)(QB̃Q−1) , (6.225)

we can define B := QB̃Q−1 and B+ := QB̃+Q−1, i.e. B and B+ are just a similarity
transformation away from B̃ and B̃+. Various properties of B and B+ follow trivially from
the properties of B̃ and B̃+ listed in Eq. 6.224. For example,

QB̃Q−1Qe1 = Qe0 =⇒ Bv1 = v0 , (6.226)

10In this appendix, we will relax our convention of putting hats on matrices and arrows on vectors.
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since Q constitutes a change of basis, e.g. Qe0 = v0.
A ‘natural’ weight matrix W can be motivated by this idea that our system is simple up

to a change of basis. To force the eigenvectors vi of Hs to be orthogonal, we can note that
the standard basis vectors ei are orthogonal, and that Q changes from one basis set to the
other. In particular,

δi,j = eTi ej = (Q−1vi)
T (Q−1vj) = vTi (Q−TQ−1)vj , (6.227)

so we should define W to be the symmetric matrix

W := Q−TQ−1 . (6.228)

It is easy to see that B and B+ are Hermitian conjugates with respect to the inner product
induced by this weight matrix, e.g.

WB = Q−TQ−1QB̃Q−1 = Q−T B̃QTQ−TQ−1 = Q−T (B̃+)TQTQ−TQ−1 = (B+)TW .
(6.229)

In principle, it is straightforward to extend this idea to represent gene switching dynamics
involving more than two gene states. For example, for a three state gene switching problem
we might generically expect Hs to have three distinct eigenvalues: zero, and two distinct
strictly negative eigenvalues (because, as before, Hs is infinitesimal stochastic). In that case,
Hs can be diagonalized so that

Hs = Q




0 0 0
0 −λ1 0
0 0 −λ2


Q−1

= −λ1 Q




0 0 0
0 1 0
0 0 0


Q−1 − λ2 Q




0 0 0
0 0 0
0 0 1


Q−1

= −λ1 Q




0 0 0
1 0 0
0 0 0






0 1 0
0 0 0
0 0 0


Q−1 − λ2 Q




0 0 0
0 0 0
1 0 0






0 0 1
0 0 0
0 0 0


Q−1

= −λ1 QB̃
+
1 B̃1Q

−1 − λ2 QB̃
+
2 B̃2Q

−1

(6.230)

and we obtain matrices B̃i and B̃+
i (for i = 1, 2) with similar properties as before. If we use

δij to denote the matrix with a 1 in the (i, j)th place and zeros elsewhere, we can write

B̃1 := δ01 B̃+
1 := δ10

B̃2 := δ02 B̃+
2 := δ20 ,

(6.231)

and note that the generalization to (N + 1) gene states is clear.
If constructed in this way, one should be careful to note that the two sets anticommute

with themselves, but not necessarily with each other. For example, while B̃1B̃
+
1 +B̃+

1 B̃1 = I,
we have

B̃1B̃
+
2 + B̃+

2 B̃1 = δ01δ20 + δ20δ01 = δ21 6= 0 (6.232)
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which is naively not what we would expect from ‘independent’ fermionic operators. Using
the same similarity transformation idea as before, we can define matrices

Bi := QB̃iQ
−1

B+
i := QB̃+

i Q
−1

(6.233)

that inherit the properties of the B̃i and B̃+
i , so that

Hs = −λ1 B
+
1 B1 − λ2 B

+
2 B2 , (6.234)

which looks like a decomposition of Hs in terms of two ‘independent’ fermions. Just like the
set {I, B,B+, B+B} formed a basis for the set of all 2× 2 matrices, the set

{I, B1, B2, B
+
1 , B

+
2 , B

+
1 B1, B

+
2 B2, B

+
2 B1, B

+
1 B2} (6.235)

forms a basis for the set of all 3× 3 matrices. Supposing there are (N + 1) gene states and
that Hs has distinct eigenvalues, we could write

Hs = −λ1 B
+
1 B1 − · · · − λN B+

NBN (6.236)

and note that a basis for the space of all (N + 1) × (N + 1) matrices can be constructed
using Bi, B

+
i , and B+

i Bj (for all i, j), for a total of N2 + 2N + 1 = (N + 1)2 basis elements.
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6.C Tables of low order Feynman diagrams

Coeff. Values Relevant diagrams

q0
1,0 0 no diagrams

q0
1,1

c3

s+ γ

q0
2,0

c3

(s+ γ)2γ

q0
2,1

c3c4

(s+ γ)(s+ 2γ)

q0
3,0

c3c4

(s+ γ)(s+ 2γ)3γ

q0
3,1

c3c
2
4

(s+ γ)(s+ 2γ)(s+ 3γ)
+

c2
3

(s+ γ)2γ(s+ 3γ)

q0
4,0

c3c
2
4

(s+ γ)(s+ 2γ)(s+ 3γ)4γ
+

c2
3

(s+ γ)2γ(s+ 3γ)4γ

q0
4,1

c3c
3
4

(s+ γ)(s+ 2γ)(s+ 3γ)(s+ 4γ)

+
c2

3c4

(s+ γ)2γ(s+ 3γ)(s+ 4γ)
+

c2
3c4

(s+ γ)(s+ 2γ)3γ(s+ 4γ)

Table 6.2: The first few coefficients q0
k,g and the corresponding diagrams.
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Coeff. Values Relevant diagrams

q1
1,0

1

γ − s

q1
1,1

c4

γ

q1
2,0

c4

γ(2γ − s)

q1
2,1

c3

(γ − s)2γ +
c2

4

γ · 2γ

q1
3,0

c3

(γ − s)2γ(3γ − s) +
c2

4

γ · 2γ(3γ − s)

q1
3,1

c3c4

(γ − s)2γ · 3γ +
c3c4

γ(2γ − s)3γ +
c3

4

γ · 2γ · 3γ

q1
4,0

c3c4

γ(2γ − s)3γ(4γ − s)

+
c3c4

(γ − s)2γ · 3γ(4γ − s) +
c3

4

γ · 2γ · 3γ(4γ − s)

q1
4,1

c4
4

γ · 2γ · 3γ · 4γ +
c3c

2
4

(γ − s)2γ · 3γ · 4γ

+
c3c

2
4

γ(2γ − s)3γ · 4γ

+
c2

3

(γ − s)2γ(3γ − s)4γ +
c3c

2
4

γ · 2γ(3γ − s)4γ

Table 6.3: The first few coefficients q1
k,g and the corresponding diagrams.
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6.D Multistep orthogonal polynomials

In this appendix, we define a new family of orthogonal polynomials that appear in the
solution of the multistep splicing dynamics problem, and discuss their properties. They gen-
eralize the Charlier polynomials in a natural way, and many Charlier polynomial properties
have analogues in this more general context.

Fix a natural number N ≥ 0 and mean parameter µ := (µ0, ..., µN) ∈ RN+1. These
polynomials will be functions of x := (x0, ..., xN) ∈ NN+1. Denote the polynomial associated
with the integer vector n := (n0, n1, ..., nN) ∈ NN+1 by Vn(x,µ). We assume we have ‘ladder
operators’ made up of linear combinations of finite difference operators

L̂+
i :=

N∑

j=0

v
(i)
j (−∇j) i = 0, 1, ..., N (6.237)

where v(i) contains the coefficients of the ith ladder operator, e.g.

Â+
0 = â+

0 +
β0

β1 − β0

â+
1 +

β0 β1

(β1 − β0)(β2 − β0)
â+

2

=⇒ v(0) =
(

1 β0

β1−β0

β0 β1

(β1−β0)(β2−β0)

)T
,

(6.238)

and where the backward difference operator ∇i acts on a function f(x) according to

∇if(x) := f(x)− f(x0, ..., xi − 1, ..., xN) . (6.239)

The simplest way to define these polynomials is via the Rodrigues formula

Vn(x,µ) :=
1

Poiss(x,µ)

[
N∏

k=0

(
L̂+
k

)nk
]

Poiss(x,µ) . (6.240)

This definition exactly corresponds to the fact that the eigenstates of the multistep splicing
problem can be constructed by repeatedly applying the up ladder operators:

|n〉 =
(Â+

0 )n0

√
n0!
· · · (Â

+
N)nN√
nN !

|0〉 (6.241)

where we have used a mostly arbitrary normalization convention. In the N = 0 case, these
polynomials are just the Charlier polynomials. The first few polynomials in the N = 1 case
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are given by

V00 = 1

V0,1 =
x1

µ1

− 1

V1,0 =
x0

µ0

+
β0

β1 − β0

x1

µ1

− β1

β1 − β0

V0,2 =
x2

1

µ2
1

−
[

1

µ2
1

+
2

µ1

]
x1 + 1

V1,1 =
x0x1

µ0µ1

+
β0

β1 − β0

x1(x1 − 1)

µ2
1

− x0

µ0

− (β1 + β0)

β1 − β0

x1

µ1

+
β1

β1 − β0

V2,0 =
x0(x0 − 1)

µ2
0

+

(
β0

β1 − β0

)2
x1(x1 − 1)

µ2
1

+
2β0

β1 − β0

x0

µ0

x1

µ1

− 2β1

β1 − β0

x0

µ0

− 2β0β1

(β1 − β0)2

x1

µ1

+

(
β1

β1 − β0

)2

.

(6.242)

In general, Vn will be a polynomial of order ni with respect to the variable xi, and of order
|n| = n0 + · · ·+ nN overall. The leading term asymptotically goes like

(
x0

µ0

)n0

· · ·
(
xN
µN

)nN
(6.243)

but other terms of the same order can appear (e.g. a term that goes like x2
1 appears in

V11). As with the Charlier polynomials, two helpful results are the generating function and
a particular integral representation. Noting the representation of a multivariate Poisson
distribution via

Poiss(x,µ) =

∫
dz

(2π)N+1

e−iµ·z

(1− iz)x+1

=

∫
dz0 · · · dzN
(2π)N+1

e−iµ0z0−···−iµNzN

(1− iz0)x0+1 · · · (1− izN)xN+1
,

(6.244)

we can apply the Rodrigues formula to find the integral representation

Vn(x,µ) =
1

Poiss(x,µ)

∫
dz

(2π)N+1

∏N
k=0

[
−i∑N

j=0 v
(k)
j zj

]nk
e−iµ·z

(1− iz)x+1

=
1

Poiss(x,µ)

∫
dz0 · · · dzN
(2π)N+1

∏N
k=0

[
−i∑N

j=0 v
(k)
j zj

]nk
e−iµ0z0−···−iµNzN

(1− iz0)x0+1 · · · (1− izN)xN+1
.

(6.245)
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This can be used to derive the generating function

G(z) =
∑

n

Vn(x,µ)

n!
zn

=
N∏

j=0

[
1 +

1

µj

∑

k

v
(k)
j zk

]xj
e−

∑
k v

(k)
j zk

=
N∏

j=0

[
1 +

1

µj

∑

k

v
(k)
j zk

]xj
e−

∑
k v

(k)
j zk .

(6.246)

This, in turn, can be used to derive the helpful identity

∑

x

Vn(x,µ) gx Poiss(x,µ) =
N∏

k=0

[
N∑

j=0

(gj − 1)v
(k)
j

]nk
eµk(gk−1)

= eµ·(g−1)

N∏

k=0

[
(g − 1) · v(k)

]nk
(6.247)

which can be used both to find the (analytic) generating function in the multistep problem
(c.f. Eq. 6.21) and to marginalize over variables by setting different gi = 1. To derive
marginal distributions in Sec. 6.7.4, we use this fact to obtain the formulas

∑

x1,...,xN

Vn(x,µ) Poiss(x,µ) = (δn1,0 · · · δnN ,0)Cn0(x0, µ0) Poiss(x0, µ0) (6.248)

and

∑

x0,...,xN−1

Vn(x,µ) Poiss(x,µ) =
N∏

k=0

[
v

(k)
N

]nk
CnN (xN , µN) Poiss(xN , µN) . (6.249)

The formulas we have derived so far can be used to determine various special values of these
polynomials. For example, using the generating function (Eq. 6.246) we can find that

Vn(0,µ) =

(
−

N∑

j=0

v
(0)
j

)n0

· · ·
(
−

N∑

j=0

v
(N)
j

)nN

. (6.250)

Using Eq. 6.247, we can find that

V0,0,...,0,nN (x,µ) = CnN (xN , µN) . (6.251)

What about orthogonality? Are Vn and Vn′ orthogonal for n 6= n′? Perhaps surprisingly the
answer is no in general; for example, in the N = 1 case, V10 and V01 are not orthogonal with
respect to a Poisson weight function:

∑

x0,x1

V10(x,µ)V01(x,µ)Poiss(x,µ) =
β0

β1 − β0

1

µ1

6= 0 . (6.252)
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It is true, however, that Vn and Vn′ are orthogonal when |n| 6= |n′| (which is not true in the
above case, where we have 0 + 1 = 1 + 0). This can be argued using the generating function
(Eq. 6.246).

6.E Consistency of current results with previous results

Previous work on the birth-death-switching problem (Iyer-Biswas et al. [39], Huang et al.
[40], and Cao and Grima [41]) found an exact analytic solution for the steady state generating
function ψss(g) given by

ψss(g) = e
α2
γ

(g−1)
1F1

(
k12

γ
,
s

γ
;
∆α

γ
(g − 1)

)
= e

α2
γ

(g−1)
∞∑

n=0

[
∆α
γ

(g − 1)
]n

n!

(
k12

γ

)
n(

s
γ

)
n

(6.253)

where 1F1 denotes the confluent hypergeometric function of the first kind, and (a)n := a(a+
1) · · · (a+n− 1) denotes the Pochhammer symbol/rising factorial. Naively, this result looks
quite different from ours, and does not involve Charlier polynomials or Feynman diagrams
at all. We have checked the numerical consistency of our work with previous work elsewhere
in this paper; in this appendix, we show that our result is mathematically identical to this
one.

First, we recall that our result for the probability generating function is

ψss(g) = eµ(g−1)



1 +

∞∑

k=1

[∆α(g − 1)]k
∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Ti10

(γ + i1s)



 . (6.254)

The Feynman diagram part of this formula can be rewritten in terms of the transfer matrix
T and another matrix, which we arbitrarily denote using R:

R :=

(
1 0
0 0

)
. (6.255)

Specifically, it is the 00 (upper left) entry of a certain product of 2× 2 matrices, i.e.

∑

i1,...,ik−1=0,1

T0ik−1

(kγ)
· · · Ti10

(γ + i1s)
00
=

[kI + rR]T · · · [I + rR]T

γk k! (1 + r)k
(6.256)

where r := s/γ and I is the 2× 2 identity matrix. Also note that

µ =
α1k12 + α2k21

γs
=
α1k12 − α2k12 + α2k12 + α2k21

γs
=

∆α

γ
x+

α2

γ
(6.257)
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where in this context we define x := k12/s. Now we can write

ψss(g)

e
α2
γ

(g−1)

00
= e

∆α
γ
x(g−1)

∞∑

k=0

[
∆α(g−1)

γ

]k

k!

[kI + rR]T · · · [I + rR]T

(1 + r)k
. (6.258)

Let us rewrite the right-hand side by multiplying out the two infinite series involved term
by term (in powers of (g − 1)). The kth term dk of the (Cauchy) product reads

dk =
k∑

`=0

[
∆α
γ
x(g − 1)

]k−`

(k − `)!

[
∆α(g−1)

γ

]`

`!

[`+ rR]T · · · [1 + rR]T

(`+ r) · · · (1 + r)

=

[
∆α

γ
(g − 1)

]k k∑

`=0

xk−`

(k − `)!
1

`!

[`+ rR]T · · · [1 + rR]T

(`+ r) · · · (1 + r)

=

[
∆α
γ

(g − 1)
]k

k!

k∑

`=0

(
k

`

)
xk−`

[`+ rR]T · · · [1 + rR]T

(`+ r) · · · (1 + r)
.

(6.259)

We can simplify this using the surprising identity

rx(rx+ 1) · · · (rx+ k − 1)

r(r + 1) · · · (r + k − 1)
00
=

k∑

`=0

(
k

`

)
xk−`

[`+ rR]T · · · [1 + rR]T

(`+ r) · · · (1 + r)
. (6.260)

Doing so, we have

ψss(g) = e
α2
γ

(g−1)
∞∑

k=0

[
∆α
γ

(g − 1)
]k

k!

rx(rx+ 1) · · · (rx+ k − 1)

r(r + 1) · · · (r + k − 1)

= e
α2
γ

(g−1)
1F1

(
rx, r;

∆α

γ
(g − 1)

) (6.261)

which matches the previously published result. The remainder of this appendix is dedicated
to proving the unusual identity that allows us to make this simplification.
Lemma. Let f(`) and g(`) denote the 00 and 10 entries of the `-fold matrix product

[`+ rR]T · · · [1 + rR]T

(`+ r) · · · (1 + r)
, (6.262)

where

T :=

(
0 1

x(1− x) 1− 2x

)

R :=

(
1 0
0 0

)
.

(6.263)
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Define

S00(k) :=
k∑

`=0

(
k

`

)
xk−`f(`)

S10(k) :=
k∑

`=0

(
k

`

)
xk−`g(`) .

(6.264)

We have that

S00(k) :=
rx(rx+ 1) · · · (rx+ k − 1)

r(r + 1) · · · (r + k − 1)

S10(k) :=
k(1− x)

r + k
S00(k)

(6.265)

for all integers k ≥ 0 (using the convention that the empty product is 1, so that S00(0) = 1).

Proof. First, by definition, we note that f(`) and g(`) satisfy the recurrence relations

f(`) = g(`− 1)

g(`) =
`

`+ r
[x(1− x)f(`− 1) + (1− 2x)g(`− 1)]

(6.266)

for all ` ≥ 1. Next, note that

f(0) = 1

f(1) = 0

f(2) =
x(1− x)

r + 1

g(0) = 0

g(1) =
x(1− x)

r + 1

g(2) =
2x(1− x)(1− 2x)

(r + 1)(r + 2)
.

(6.267)

We will proceed by induction. The k = 0 case is trivially true. The k = 1 case is easy to
show:

S00(1) = xf(0) + f(1) = x

S10(1) = xg(0) + g(1) =
x(1− x)

r + 1
.

(6.268)

Assume our formulas for S00 and S10 hold up to some k. Now we have

S00(k + 1) =
k+1∑

`=0

(
k + 1

`

)
xk+1−` f(`)

= xk+1 + f(k + 1) +
k∑

`=1

[(
k

`

)
+

(
k

`− 1

)]
xk+1−` f(`)

(6.269)
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where we have used Pascal’s identity. Rearranging, this becomes

S00(k + 1) = x
k∑

`=0

(
k

`

)
xk−` f(`) +

k+1∑

`=1

(
k

`− 1

)
xk+1−` f(`)

= xS00(k) +
k∑

`=0

(
k

`

)
xk−` f(`+ 1)

= xS00(k) +
k∑

`=0

(
k

`

)
xk−` g(`)

= xS00(k) + S10(k)

=

[
x+

k(1− x)

r + k

]
S00(k)

=

[
rx+ k

r + k

]
S00(k)

(6.270)

which is exactly what we wanted. Now we will perform the induction step for S10; it is
somewhat more involved. It begins as we argued for S00:

S10(k + 1) =
k+1∑

`=0

(
k + 1

`

)
xk+1−` g(`)

= xk+1 + g(k + 1) +
k∑

`=1

[(
k

`

)
+

(
k

`− 1

)]
xk+1−` g(`)

= x
k∑

`=0

(
k

`

)
xk−` g(`) +

k+1∑

`=1

(
k

`− 1

)
xk+1−` g(`)

= xS10(k) +
k∑

`=0

(
k

`

)
xk−` g(`+ 1)

(6.271)

where we have again used Pascal’s identity. The sum on the right is somewhat tricky to
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evaluate; denote it by S ′. Using the recurrence relation relating g(`+ 1) to f(`) and g(`),

S ′ =
k∑

`=0

(
k

`

)
xk−`

`+ 1

`+ 1 + r
[x(1− x)f(`) + (1− 2x)g(`)]

=
k∑

`=0

(
k

`

)
xk−`

[
1− r

`+ 1 + r

]
[x(1− x)f(`) + (1− 2x)g(`)]

= x(1− x)S00(k) + (1− 2x)S10(k)

− r

k + 1 + r

k∑

`=0

(
k

`

)
xk−`

k + 1 + r

`+ 1 + r
[x(1− x)f(`) + (1− 2x)g(`)]

= x(1− x)S00(k) + (1− 2x)S10(k)

− r

k + 1 + r

k∑

`=0

(
k

`

)
xk−`

[
k + 1 + r

`+ 1 + r
− 1 + 1

]
[x(1− x)f(`) + (1− 2x)g(`)]

= x(1− x)S00(k) + (1− 2x)S10(k)

− r

k + 1 + r

k∑

`=0

(
k

`

)
xk−`

[
k − `
`+ 1

`+ 1

`+ 1 + r
+ 1

]
[x(1− x)f(`) + (1− 2x)g(`)]

= [x(1− x)S00(k) + (1− 2x)S10(k)]

[
1− r

k + 1 + r

]

− r

k + 1 + r

k∑

`=0

(
k

`

)
xk−`

k − `
`+ 1

`+ 1

`+ 1 + r
[x(1− x)f(`) + (1− 2x)g(`)]

= [x(1− x)S00(k) + (1− 2x)S10(k)]

[
1− r

k + 1 + r

]

− r

k + 1 + r

k−1∑

`=−1

k!

(k − `)! `! x
k−` k − `

`+ 1
g(`+ 1)

= [x(1− x)S00(k) + (1− 2x)S10(k)]

[
1− r

k + 1 + r

]

− r

k + 1 + r

k−1∑

`=−1

k!

(k − `− 1)! (`+ 1)!
xk−` g(`+ 1)

= [x(1− x)S00(k) + (1− 2x)S10(k)]

[
1− r

k + 1 + r

]
− rx

k + 1 + r
S10(k)

= x(1− x)S00(k) + (1− 2x)S10(k)− r

k + 1 + r
(1− x) [xS00(k) + S10(k)] .

(6.272)
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Adding all the terms together yields that

S10(k + 1) = xS10(k) + x(1− x)S00(k) + (1− 2x)S10(k)− r

r + k + 1
(1− x) [xS00(k) + S10(k)]

= (1− x) [xS00(k) + S10(k)]− r

r + k + 1
(1− x) [xS00(k) + S10(k)]

=
k + 1

r + k + 1
(1− x) [xS00(k) + S10(k)]

=
k + 1

r + k + 1
(1− x)

[
x+

k(1− x)

r + k

]
S00(k)

=
k + 1

r + k + 1
(1− x)

rx+ k

r + k
S00(k)

(6.273)

which suffices to establish our result.

6.F Numerical validation details

The validation of a method for the solution of a given system requires its characterization
under three criteria. Firstly, the runtime must be benchmarked against a known solution; we
implement the solution due to Huang et al. [40] (specifically, the hypergeometric generating
function solution given by Eq. 6.253). Secondly, the bounds on the error between the
estimate and the ground truth distribution must be estimated, particularly as a function
of the parameter domain. Finally, the switching gene problem necessitates the criterion of
nontriviality. Specifically, in parameter regimes with very slow gene state transition rates,
the solution is given by a mixture of two Poisson distributions, given by Eq. 6.198. Therefore,
it is necessary to confirm that the method outperforms this trivial and computationally facile
solution.

We explore the stationary solution of the chemical master equation. Since the time vari-
able is immaterial, the five-parameter system reduces to a four-parameter one (i.e. we have
α1, α2, γ, k12, k21). We set the degradation rate γ to 1 with no loss of generality. Physically,
the production timescale is assumed to be rather shorter than the degradation timescale,
whereas the transition timescale is assumed to be longer. Therefore, we draw the α parame-
ters from a log-uniform distribution on [10−1, 102] and the k parameters from a log-uniform
distribution on [10−3, 100].

Aside from the parameter values, the evaluation of the distributions requires a domain,
i.e., a distribution support {0, 1, 2, ...,m}. One approach simulates the system for N cells,
considers the observations Y1, ..., YN collected after equilibration, and uses m ← maxj Yj.
This method is rather natural, but problematic in practice, because simulation is substan-
tially more computationally expensive than the computation of distributions by any method.
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Instead, we adopt a heuristic method, inspired by previous literature in the field [61].
Specifically, given a distribution with mean µ and standard deviation σ, we implement
m ← max(5, µ + 4σ). Since µ and σ have simple analytical expressions for the two-state
switch (see Sec. 6.2.1), this procedure is substantially less computationally intensive. To
benchmark this choice of meta-parameters, we selected 1000 parameters and simulated N =
100 cells for each. Only 1.7% of m produced by the moment-based estimate were lower than
those produced by the simulation-based estimate, mostly restricted to low m (Fig. 6.12).
Therefore, we adopt max(5, µ + 4σ) as a conservative estimate for the state space upper
bound.

Figure 6.12: Demonstration of the performance of the moment-based threshold against the
simulation maximum-based threshold for state space definition.

Thus, given a parameter vector and a state space {0, ...,m}, we compute the solution
due to Huang et al. as the non-trivial ground truth, as well as the Poisson solution as
the trivial estimate, and compare them to the diagrammatic solution for various orders of
approximation. The ground truth solution requires m+ 1 evaluations of the hypergeometric
function; therefore, we expect the runtime to be a strong function of the state space size.
Furthermore, the approximation runtime is a function of the approximation order. We
compute and report both dependence trends.

The divergence from the ground truth affords a choice of possible measures. We use the
Kullback-Leibler divergence and the Kolmogorov-Smirnov distance, with probabilities fixed
to a minimum value of 10−16. However, raw divergences are somewhat uninformative for the
purpose of determining robust domains. Given the trend of roughly monotonically increasing
divergence as a function of |α1 − α2| (as seen in Fig. 6.10), a natural choice reports the
maximum of all divergences up to a particular value of |α1−α2|. Intuitively, such a function
of |∆α| reports an estimate for an upper bound on error. For a given approximation order
and choice of acceptable error bound, the function immediately provides the upper bound
of the |∆α| domain that meets this error threshold.
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The maximum is not a particularly robust statistic, and is unstable to outliers. Instead,
we report the 98th percentile of all divergences up to a particular value of |∆α|. Therefore,
such a trace is an estimate of the 98% confidence interval for the maximum error in the
domain. As the sampling density increases, this interval converges to the true one with
O(M−1/2) in the number of parameters sampled. We use 5000 parameter samples to estimate
the intervals.

This procedure lends itself especially easily to quantitative comparison with the trivial
Poisson solution. Specifically, if the divergence between ground truth and the diagrammatic
estimate is lower than the divergence between ground truth and the Poisson mixture estimate,
the diagrammatic estimate quantitatively outperforms the accuracy of the Poisson solution.
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Chapter 7

Analytic solution of chemical master equations involving gene switching.
II: Path integral approach to exact solution and applications to parameter infer-
ence

How can we solve the CME? Unlike in the previous chapters, here we are concerned with
developing an efficient numerical solution technique. We leverage the novel path integral
technique introduced in Chapter 5 to reduce the computation of steady state probability
distributions to (i) solving ODEs, and then (ii) doing an inverse Fourier transform. For this
specific class of problems (monomolecular reactions + gene switching), we greatly outper-
form competing approaches like finite state projection and stochastic simulations. Because
this approach is significantly faster than previously known approaches, it in principle allows
one to fit more complicated/realistic models to single cell RNA counts data.

Abstract: This is the second in a series of two papers on solving chemical master equations

involving gene switching. In the previous paper, we used a ladder operator approach inspired by

quantum mechanics to obtain exact analytic solutions to two biologically interesting problems.

However, the solutions we obtained were in the form of slowly converging infinite series, which are

not practical for purposes like parameter inference. In this paper, we used a completely orthogonal

theoretical approach—a state space path integral representation of the chemical master equation—

in order to derive different analytic solutions more appropriate for numerical implementations. We

show that this approach yields fast and stable implementations of the steady state solutions of these

problems, which outperform alternative approaches like finite state projection, and which can in

principle be used to interrogate transcription and splicing dynamics given single cell RNA counts

data. We illustrate this using simulated data from models of bursty transcription and splicing

involving one, two, and three species.
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7.1 Introduction

This is the second in a series of two papers on solving chemical master equations involving
a switching gene, particularly in the context of bursty models of transcription and splicing.
In the previous paper, we used a ladder operator method inspired by quantum mechanics
to derive exact perturbative solutions to a number of problems. We found solutions that
were informative, but not numerically stable. In this paper, we use a completely orthogonal
path integral method to solve the same problems, and develop numerically fast and efficient
implementations of these solutions. In other words, the previous paper tells us how to think
about the solutions to these models; this paper will offer a fast way to work with them in
practice, especially for purposes like parameter inference.

Parameter inference is currently a salient topic in biophysics and single cell biology,
especially given recent advances in obtaining single cell RNA counts data using fluorescence
or sequencing-based approaches. RNA counts can be recorded accurately enough to fit
probability distributions, which can be connected to mechanistic chemical master equation
(CME) models to learn about the kinetics and structure of the underlying biological processes
[1]. Given new work that has recorded not just how many RNA are in single cells, but how
many RNA with different numbers of introns removed are present [2, 3], it is in principle
possible to apply mechanistic models to counts data to learn about the dynamics of splicing—
and in turn, how splicing controls gene expression [4, 5, 6, 7, 8]. How many splicing steps
are typical? How quickly are introns removed, and how much does this differ across introns
and genes? Are introns usually removed in a fixed order, or a random order?

The ability to identify splicing topologies and parameters has far-reaching implications.
The estimation of splicing rates using a discrete and stochastic CME model produces results
orthogonal to conventional methods for probing intron removal kinetics [9], with broader ap-
plicability to transcriptome-wide, label-free single cell RNA-seq data. The explicit descrip-
tion of intermediate species permits finer identification of gene locus kinetics [10]. Finally,
the ability to simulate a system forward in time offers opportunities for mapping cellular
development and decisions [11].
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N âN (1)
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â+j+1 − â+j
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(2)

1

∅

α1 α2 k12 k21 β0 β1
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âj − βN â
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Ĥ = −sB̂+B̂ −
N∑

j=0

βjÂ
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+
j

[
B + c3B

+ + c4B
+B

]
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)
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â+j+1 − â+j
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Ẏ2 = k12Y1 − k12Y2 + α2

[∑

i

cie
−βis

]
Y2
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â+j+1 − â+j
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âj − βN â
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j Âj + (∆α)

N∑

j=0

qjÂ
+
j

[
B + c3B

+ + c4B
+B

]
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(2)

1

∅

α1 α2 k12 k21 β0 β1

Ẏ1 = −k21Y1 + k21Y2 + α1 (g − 1) e−γs Y1

Ẏ2 = k12Y1 − k12Y2 + α2 (g − 1) e−γs Y2
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Ẏ1 = −k21Y1 + k21Y2 + α1 (g − 1) e−γs Y1
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Figure 7.1: The general problem considered in this paper. Given (steady state) simulated
RNA counts data generated by a CME model of bursty transcription and splicing, we must
correctly infer (non-dimensionalized) model parameters. The two species model is pictured
on the left, but our theoretical approach works for any number of splicing steps.
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In this work, we use our new path integral-based technique to explore the parameter
inference problem in the context of simple stochastic models of bursty transcription and
splicing (Fig. 7.1), and impose a number of restrictions to make it tractable. First, we use
‘clean’ simulated data, and assume the correct model is known a priori ; this means that
our task is only to correctly infer parameters, and to do so in a way that runs quickly, is
numerically stable, and scales relatively well as we consider increasingly complex models.
Second, we assume that introns are spliced out in a fixed order (rather than in a random
or semi-random order), i.e. that we have a ‘linear’ path graph. Finally, we assume one
downstream RNA product, i.e. that there is no alternative splicing.

This paper is organized as follows. In Sec. 7.2, we briefly discuss utility of different
kinds of solutions to the CME for purposes like parameter inference, and the importance of
analytic approaches. In Sec. 7.3, we derive a set of ordinary differential equations (ODEs)
behind our new efficient numerical solution of the CME for this class of systems. In Sec. 7.4,
we validate our results and benchmark performance against other methods (like stochastic
simulations and finite state projection). In Sec. 7.5, we apply our new method to do fast
parameter inference on simulated data for the birth-death switching and multistep splicing
systems. In Sec. 7.6, we discuss implications and possible generalizations.

7.2 Numerical solutions of the CME

CME models are discrete and stochastic, and can only predict the probability of observing
different numbers of RNA inside a single cell at some future time, rather than the specific
number. In order to use these models to learn about real single cell data—especially single
cell RNA counts data—we need efficient ways to generate model predictions. In particular,
we need to generate the steady state probability distributions predicted by a CME model for
many different parameter sets, and compare them with experimental counts distributions.
The parameter set for which the CME distribution most closely matches the empirical dis-
tribution is considered the solution of the inference problem1.

Model predictions typically needs to be generated for some large number of parameter
sets (thousands, tens of thousands, or more), so inefficient features of implementations accu-
mulate and make the fitting of models with many parameters in reasonable amounts of time
unrealistic. Without efficient implementations, only the simplest models can be compared
against data, limiting how much we can learn about the underlying structure and kinetics.

It is helpful to think of approaches to solving CME models as falling into three heuristic
classes: (i) simulation-based, (ii) solver-based, and (iii) analytic. Simulation-based methods
employ stochastic simulations (usually variants of the Gillespie algorithm/stochastic simu-

1Of course, the solution to an inference problem may not be unique, especially when the model in question
is ‘sloppy’ [12, 13, 14]. Although this issue must be dealt with carefully in general, it does not seem to be
significant here.
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lation algorithm [15, 16]) to sample the steady state probability distribution. Solver-based
methods, like finite state projection (FSP) [17, 18, 19], do not involve simulations but in-
stead attempt to solve the CME itself (or something equivalent to it) directly through a
numerical procedure. Analytic methods involve using various mathematical techniques (as
we did in the previous part), frequently method of characteristics solutions to a partial dif-
ferential equation describing the time evolution of the generating function, to write down a
closed-form solution to the problem.

Runtime

Di
ffi

cu
lty

Analytic formulas

CME solvers Simulation
 methods

Figure 7.2: Implementation difficulty versus runtime. Simulation methods (green dots) are
easy to implement, but tend to be slow at generating CME solutions. CME solver methods
(blue dots) are harder to implement, and more problem-specific, but run faster. Analytic
methods (red dots) are the fastest possible approach, but exact solution formulas tend to be
extremely challenging to derive.

In choosing between these methods, one encounters two important trade-offs. The first
is between implementation difficulty and runtime. While stochastic simulation methods are
very easy to code, and while code for simulating one model can easily be adapted to simulate
another, they tend to be a very slow way to generate steady state probability distributions.
FSP, the paradigmatic numerical solver method, is both faster than stochastic simulation
approaches and somewhat harder to implement. Its code is also more problem-specific.
Because it involves exponentiating (or finding the null space of) a generically large matrix,
it scales somewhat poorly as state space size increases. Analytic approaches vary, but their
runtime is often quite fast: their runtime can scale linearly with state space size, or even be
approximately constant.

The other important trade-off is stability: although the analytic infinite series solution
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for the birth-death-switching problem presented Part I can in principle be computed very
quickly, it is not numerically stable, making it useless for parameter inference. It is harder
to make precise assertions about the stability of various solution approaches, but stochastic
simulations are generally quite stable (provided one runs enough simulations), while analytic
solutions can be more variable in their stability.
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Figure 7.3: Our novel approach to numerically solving the CME for models of transcription
and splicing. We use a state space path integral representation of the CME to derive ODEs
satisfied by the generating function, which we solve numerically. Then we take an inverse
fast Fourier transform to obtain the steady state probability distribution.

In this paper, we take a hybrid approach in order to balance speed with stability. Using a
state space path integral representation of the CME [20], we find that the generating function
of the probability distribution (essentially, its discrete Fourier transform) satisfies a certain
set of ODEs. Instead of solving these ODEs analytically (which is likely to yield an unstable
series solution), we solve them numerically. Then we take the inverse fast Fourier transform
to obtain our result (Fig. 7.3). Because one can integrate ODEs and take an inverse Fourier
transform relatively quickly, the implementation is still very fast.

7.3 Path integral approach to analytic solutions

In this section, we present the path integral computations that lead to our numerical solver
algorithm. First, in Sec. 7.3.1, we define and present the calculations for solving the one
species birth-death-switching problem. While they are a special case of the more general
problem, seeing the derivation in a simpler context is helpful for developing a sense of how the
calculations work. Then, in Sec. 7.3.2, we define and present the calculations for solving the
general multi-species problem, involving bursty transcription and arbitrarily many splicing
steps. In Sec. 7.3.3, we simplify the multistep solution in the cases of one splicing step and
two splicing steps.
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7.3.1 Solution to birth-death-switching via path integral method

Let X denote the RNA species, and G1 and G2 the two possible gene states. RNA production
and degradation coupled to a switching gene can be modeled using the list of chemical
reactions

G1
k21−−→ G2 G2

k12−−→ G1

G1
α1−→ G1 +X G2

α2−→ G2 +X X
γ−→ ∅

(7.1)

where k21 and k12 parameterize the rates of gene switching, α1 and α2 parameterize the
transcription rate in each gene state, and γ parameterizes the RNA’s degradation rate.

In this treatment of the birth-death-switching problem, it is helpful to imagine it as
involving three distinct species: RNA (x ∈ N), the number of genes in the G1 state (a ∈ N),
and the number of genes in the G2 state (b ∈ N). Even though we are only interested in the
case with a+ b = 1 (since the gene is either in one state or the other), assuming a, b ∈ N is
helpful for certain technical reasons.

Let P := P (x, a, b, t;x0, a0, b0, t0) denote the probability of transitioning from a state
with (x0, a0, b0) at time t0 to a state with (x, a, b) at time t. Without loss of generality, we
will assume t0 = 0. Using the state space path integral developed in [20], we can write P as
the expression

P =
∑

x1,...,xT−1

∑

a1,...,aT−1

∑

b1,...,bT−1

∫
dp1dA1dB1 · · · dpTdATdBT

(2π)T (2π)T (2π)T

exp

{
T∑

`=1

−ip`(x` − x`−1)− iA`(a` − a`−1)− iB`(b` − b`−1)

+ k21a`−1∆t
(
ei(B`−A`) − 1

)
+ k12b`−1∆t

(
ei(A`−B`) − 1

)

+ α1a`−1∆t
(
eip` − 1

)
+ α2b`−1∆t

(
eip` − 1

)
+ γ x`−1∆t

(
e−ip` − 1

)}

(7.2)

where we have gone from t0 = 0 to t in T steps, with ∆t := (t− t0)/T .
The early parts of this calculation closely mirror the birth-death calculations presented

in Appendix A of [20]. First, collect terms proportional to x` (for ` = 1, ..., T − 1) and sum
over x`:

∞∑

x`=0

exp
{
−ix`

[
p` − p`+1 + iγ∆t

(
e−ip`+1 − 1

)]}

=
1

1− e−ix`[p`−p`+1+iγ∆t(e−ip`+1−1)]
.

(7.3)

The integrals over p` (for ` = 1, ..., T − 1), as in Appendix A of [20], schematically take the
form ∫ π

−π

dp`
2π

f(p`)

1− e−ix`[p`−p`+1+iγ∆t(e−ip`+1−1)]
. (7.4)
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If we treat this as a contour integral2 and use Cauchy’s integral formula to evaluate it, we
end up enforcing the constraint

p` = p`+1 −∆tiγ
(
e−ip`+1 − 1

)
(7.5)

for ` = 1, ..., T − 1, which makes each of p1, ..., pT−1 functions of pT . In the small ∆t limit
we are interested in, this constraint becomes the (backwards) ODE

ṗ = −iγ
(
e−ip − 1

)
(7.6)

with initial condition p(0) = pT . If we define q := eip − 1, this simplifies to

q̇ = ieipṗ = γ
(
1− eip

)
= −γq (7.7)

with initial condition q(0) = eipT − 1. Solving this, we have

q(s) = eip(s) − 1 =
(
eipT − 1

)
e−γs (7.8)

for s ∈ [0, t]. Summing over a` and b` (for ` = 1, ..., T − 1) and enforcing constraints on A`
and B` in similar fashion, we have ODEs

Ȧ = −i
[
k21

(
ei(B−A) − 1

)
+ α1

(
eip − 1

)]

Ḃ = −i
[
k12

(
ei(A−B) − 1

)
+ α2

(
eip − 1

)]
.

(7.9)

Substitute in our expression for eip(s) − 1, and make the change of variables

Y1(s) := eiA(s) Y2(s) := eiB(s) . (7.10)

Now we have

Ẏ1 = −k21Y1 + k21Y2 + α1

(
eipT − 1

)
e−γt Y1

Ẏ2 = k12Y1 − k12Y2 + α2

(
eipT − 1

)
e−γt Y2

(7.11)

with initial condition Y1(0) = eiAT and Y2(0) = eiBT .
What remains of our path integral is

P (x, a, b, t;x0, a0, b0, 0) =

∫ π

−π

∫ π

−π

∫ π

−π

dpTdATdBT

(2π)3
e−ipT x+ip0x0−iAT a+iA0a0−iBT b+iB0b0 (7.12)

where

p0 := p(t) =
(
eipT − 1

)
e−γt

A0 := A(t)

B0 := B(t) .

(7.13)

2Unfortunately, we must be somewhat cavalier about convergence. These integrals are not technically
well-defined without some sort of regulator analogous to the iε prescription from quantum field theory.
But since these solutions will be compared with alternative approaches known to work, this issue is not
particularly worrisome.
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Let us simplify things in three ways. First, we are interested in the solution marginalized
over gene state, so we can sum over a and b, i.e.

P (x, t;x0, 0) =
∞∑

a=0

∞∑

b=0

P (x, a, b, t;x0, a0, b0, 0)

=

∫ ∫ ∫
dpTdATdBT

(2π)3
e−ipT x+ip0x0+iA0a0+iB0b0

∞∑

a=0

e−iAT a
∞∑

b=0

e−iBT b

=

∫
dpT
2π

e−ipT x+ip0x0

∫
dAT
2π

eiA0(AT )a0

1− e−iAT
∫
dBT

2π

eiB0(BT )b0

1− e−iBT

(7.14)

where we have written A0(AT ) and B0(BT ) to emphasize that A0 and B0 are functions of
AT and BT respectively. Interpreting the integrals over AT and BT as contour integrals
enforces AT = BT = 0, which affects A0 and B0 (via the ODE above) by changing the initial
conditions to Y1(0) = Y2(0) = 1.

Second, for numerical purposes the generating function (the discrete Fourier transform
of the probability distribution) is equally acceptable. Hence, we compute

ψ(θ, t) =
∞∑

x=0

eiθxP (x, t;x0, 0)

=

∫
dpT
2π

eip0x0+iA0a0+iB0b0

∞∑

x=0

ei(θ−pT )x

=

∫
dpT
2π

eip0x0+iA0a0+iB0b0

1− ei(θ−pT )
.

(7.15)

This integral has the effect of enforcing the constraint pT = θ, which again affects the ODEs.
We have

ψ(θ, t) = exp {ip0x0 + iA0a0 + iB0b0} (7.16)

where p0 =
(
eiθ − 1

)
e−γt and A0 and B0 are the solutions to the ODEs above at s = t.

Finally, we can simplify our answer by considering the solution at steady state, i.e. taking
t → ∞. In this limit, our initial gene state does not matter, so we arbitrarily take a0 = 1
and b0 = 0. We also have p0 = 0. Hence,

ψss(θ) = Y1 (7.17)

where Y1 is the long time limit of the solution of

Ẏ1 = −k21Y1 + k21Y2 + α1

(
eiθ − 1

)
e−γs Y1

Ẏ2 = k12Y1 − k12Y2 + α2

(
eiθ − 1

)
e−γs Y2

(7.18)

with initial condition Y1(0) = Y2(0) = 1. Actually, since Y1 and Y2 eventually converge to
the same value, we can write

ψss(θ) = f1Y1(∞) + f2Y2(∞) (7.19)
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for any nonnegative coefficients f1 and f2 with f1 + f2 = 1. Although it is possible to
construct an infinite series solution of the above, we will leave the solution as-is, because this
set of ODEs is likely to offer a more numerically stable implementation than solving them
explicitly. If we did proceed, we would either recover one of our results from Part I, or the
previously known hypergeometric solution [21, 22].

7.3.2 Solution to multistep splicing plus switching via path integral method

Let X0 denote unspliced/nascent RNA, X1 denote RNA that has experienced one splic-
ing step (i.e. one intron has been removed), X2 denote RNA that has experienced two
splicing steps, and so on. Assuming there are N splicing steps, let XN denote the fully
processed/mature RNA. As before, let G1 and G2 denote the two possible gene states.
Transcription coupled to a switching gene, with multiple downstream splicing steps, can be
modeled using the list of chemical reactions

G1
k21−−→ G2 G2

k12−−→ G1

G1
α1−→ G1 +X0 G2

α2−→ G2 +X0

X0
β0−→ X1

β1−→ X2
β2−→ · · · βN−1−−−→ XN

βN−→ ∅

(7.20)

where k21 and k12 parameterize the rates of gene switching, α1 and α2 parameterize the
transcription rate in each gene state, βi parameterizes the rate of the ith splicing step (for
0 ≤ i < N), and βN parameterizes the mature RNA’s degradation rate.

This time, the model has N+1+2 species: N+1 RNA species (x ∈ NN+1), and two gene
states (a, b ∈ N). As before, we are interested in the probability P := P (x, a, b, t; x0, a0, b0, t0)
of transitioning from a state with (x0, a0, b0) at time t0 to a state with (x, a, b) at time t.

One can write down a path integral description of this problem similar to the one in
Sec. 7.3.1, with the main difference being more notational baggage. In order to distinguish
vector elements (i.e. x = (x0, x1, ..., xN+1) from values of counts at the `-th time step, we
will indicate time step indices with superscripts. The path integral reads:

P =
∑

a(1),...,a(T−1)

∑

b(1),...,b(T−1)

∫
dA(1)dB(1) · · · dA(T )dB(T )

(2π)T (2π)T

N∏

j=0

∑

x
(1)
j ,...,x

(T−1)
j

∫
dp

(1)
j · · · dp(T )

j

(2π)T

exp

{
T∑

`=1

−ip(`) ·
[
x(`) − x(`−1)

]
− iA(`)

[
a(`) − a(`−1)

]
− iB(`)

[
b(`) − b(`−1)

]

+ k21a
(`−1)∆t

[
eiB

(`)−iA(`) − 1
]

+ k12b
(`−1)∆t

[
eiA

(`)−iB(`) − 1
]

+ α1a
(`−1)∆t

[
eip

(`)
0 − 1

]
+ α2b

(`−1)∆t
[
eip

(`)
0 − 1

]

+
N−1∑

j=0

βjx
(`−1)
j ∆t

[
eip

(`)
j+1−ip

(`)
j − 1

]
+ βNx

(`−1)
N ∆t

[
e−ip

(`)
N − 1

]}

(7.21)
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where we have gone from t0 = 0 to t in T steps, with ∆t := (t− t0)/T . Proceeding as before,

we first sum over x
(`)
j for all ` = 1, ..., T − 1 and j = 0, 1, ..., N . Then we integrate over p

(`)
j

for all ` = 1, ..., T − 1 and j = 0, 1, ..., N , again using Cauchy’s integral formula to evaluate
all of the contour integrals. If we define

uj := eipj(s) − 1 (7.22)

for j = 0, 1, ..., N , we can write the set of backwards ODEs we obtain as

u̇0 = −β0 (u0 − u1)

...

u̇j = −βj (uj − uj+1)

...

u̇N = −βNuN .

(7.23)

with uj(0) =
(
eip

(T )
j − 1

)
, or equivalently u(0) =

(
eip

(T ) − 1
)

if we abuse notation slightly.

We are only actually interested in solving for u0(s), since p0(s) is the only one of the pj(s)
coupled to the a and b variables; when we take the t → ∞ limit, the dependence on the
other uj(s) will disappear.

The result for u0(s) turns out to be related to the coefficients of the up ladder operators
we found in Part I, along with the qj coefficients. We have

u0(s) = eip0(s) − 1 =
N∑

j=0

qjv
(j) ·

(
eiθ − 1

)
e−βjs (7.24)

where the qj are defined as

q0 = 1

q1 = − β0

β1 − β0

q2 =
β0β1

(β2 − β0)(β2 − β1)

qj = (−1)j
β0 · · · βj−1

(βj − β0) · · · (βj − βj−1)
( 1 ≤ j ≤ N )

(7.25)

and the vectors v(k) (for all k = 0, 1, ..., N) are defined as

v
(k)
j =





0 j < k

1 j = k
βk···βj−1

(βk+1−βk)···(βj−βk)
j > k .

(7.26)
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Continue as in the previous section: sum over the gene-state-related variables, integrate
over their corresponding momenta A(`) and B(`), and make the three simplifications we used
earlier (marginalize over gene states, compute the generating function, take the t → ∞
limit). Finally, we obtain the ODEs

Ẏ1 = −k21Y1 + k21Y2 + α1

[
N∑

j=0

cje
−βjs

]
Y1

Ẏ2 = k12Y1 − k12Y2 + α2

[
N∑

j=0

cje
−βjs

]
Y2

(7.27)

with Y1(0) = Y2(0) = 1, with
cj := qjv

(j) ·
(
eiθ − 1

)
. (7.28)

As in the one species case, the generating function is given by the long time limit of Y1(s)
(or any weighted sum of the long time limits of Y1 and Y2 whose coefficients add to 1, i.e.
f1 + f2 = 1).

7.3.3 Special cases of multistep splicing solution

Let us unpack the solution we derived in the previous section for the two special cases that
will interest us most: the case of N = 1 (i.e. one splicing step, two species), and N = 2 (i.e.
two splicing steps, three species). To ease notation slightly, we will write gj := eiθj .

The first few qj coefficients were given above, and do not depend on N . For N = 1, the
relevant vectors read

v(0) =

(
1,

β0

β1 − β0

)

v(1) = (0, 1) .

(7.29)

Hence,

u0(s) =

[
(g0 − 1) +

β0

β1 − β0

(g1 − 1)

]
e−β0s − β0

β1 − β0

(g1 − 1)e−β1s (7.30)

so that

c0 := (g0 − 1) +
β0

β1 − β0

(g1 − 1)

c1 := − β0

β1 − β0

(g1 − 1) .

(7.31)

When N = 2, we have

v(0) =

(
1,

β0

β1 − β0

,
β0β1

(β1 − β0)(β2 − β0)

)

v(1) =

(
0, 1,

β1

β2 − β1

)

v(2) = (0, 0, 1) .

(7.32)
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Hence,

u0(s) =

[
(g0 − 1) +

β0

β1 − β0

(g1 − 1) +
β0β1

(β1 − β0)(β2 − β0)
(g2 − 1)

]
e−β0s

− β0

β1 − β0

[
(g1 − 1) +

β1

β2 − β1

(g2 − 1)

]
e−β1s +

β0β1

(β2 − β0)(β2 − β1)
(g2 − 1)e−β2s

(7.33)

so that

c0 = (g0 − 1) +
β0

β1 − β0

(g1 − 1) +
β0β1

(β1 − β0)(β2 − β0)
(g2 − 1)

c1 = − β0

β1 − β0

[
(g1 − 1) +

β1

β2 − β1

(g2 − 1)

]

c2 =
β0β1

(β2 − β0)(β2 − β1)
(g2 − 1) .

(7.34)

7.4 Efficient implementation and validation

In this section, we discuss how to implement the ODE-based approach we derived in the
previous section to efficiently compute the steady state solutions of our transcription and
splicing models. We validate our results against stochastic simulations, finite state projec-
tion, and the hypergeometric solution [21, 22] of the one species problem.

Our basic task is to use the ODEs we derived (Eq. 7.18 in the one species case, and Eq.
7.27 in the general case) to compute values of the generating function on the unit circle,
so that we can inverse Fourier transform the result to recover the steady state probability
distribution. There are various implementation tricks one can use to speed up computation.
Because ODE computations for different values of θ are independent, we vectorized our ODE
integration routine over them so that they are computed in parallel. This prevents the use
of adaptive methods, but we found that the standard fourth order Runge Kutta method was
fast and stable. Because our probability distribution should be real rather than complex-
valued, we can halve runtime by using an inverse real fast Fourier transform (irfft) rather
than a standard inverse fast Fourier transform.

As mentioned earlier, we can integrate Y1 and Y2 and compute the generating function
by using the long time limit of f1Y1 + f2Y2 for any nonnegative coefficients f1 and f2 with
f1 + f2 = 1. Empirically, we found that using f1 = k12/(k12 + k21) and f2 = k21/(k12 + k21)
lead to convergence much more quickly than other alternatives.

Qualitatively, the results obtained using our ODE approach match results obtained via
FSP (Fig. 7.4). As can be seen in Fig. 7.5, the results quantitatively agree with both FSP
and stochastic simulations. However, as the state space increases in size, it scales much
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Figure 7.4: Qualitative validation of the ODE approach against FSP. For a representative
parameter set, we computed the solution to the three species splicing problem and compared
various marginal distributions, finding no significant differences. LEFT: Marginals for the
first, second, and third RNA species obtained using both our ODE approach and FSP.
RIGHT: Marginals involving two species (x0, x1 ; x0, x2 ; x1, x2) obtained using both our
ODE approach and FSP.

better than both competing methods; for some parameter regimes, FSP can take ten times
longer to evaluate, and stochastic simulations can take one hundred times longer.

7.5 Parameter inference on simulated data

In this section, we use our CME solver to do fast parameter inference on our models of tran-
scription and splicing (for the one species, two species, and three species models). Because
we can only infer non-dimensionalized parameter ratios from steady state data, we fix β0 = 1,
which is equivalent to working in time units where β0 = 1. Because the most common use
case of inference on real data will be when one transcription rate is very large and the other
is approximately zero, we will fix α2 = 0. This leaves the parameters α1, β1, β2, k12, k21 for
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Figure 7.5: Performance and accuracy of our ODE-based implementation of the 2 species
(1 splicing step) model and 3 species (2 splicing steps) models. The first column shows
runtime as a function of state space size for many randomly sampled parameter sets. The
second column shows the Kullback-Leibler divergence for those same parameter sets. Where
D(ODE||FSP ) and D(FSP ||ODE) correspond means that the FSP and ODE methods
yield equally good approximations of one another. The last column shows KL divergence of
Gillespie vs ODE as a function of state space size.

us to infer.
A given fitting procedure began with generating a ground truth parameter set based on

randomly sampling from loguniform distributions that spanned three orders of magnitude.
Then we simulated data using N = 1000 cells using Gillespie’s algorithm. In order to fit
this data, we used a Kullback-Leibler-divergence-based cost function and a standard gradient
descent algorithm. Each cost function evaluation involved using the ODE method to generate
a steady state probability distribution. The initial guess was based on a method of moments
approach.

Results for the two species model are pictured in Fig. 7.6. The fitted distributions
qualitatively agree with the simulated data, and fitted parameters fairly closely match the
ground truth parameters. Not all parameters are expected to be equally identifiable. Since
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Figure 7.6: Parameter inference on the 2 species (1 splicing step) model given simulated
data (N = 1000 cells). Top: sample fits. Bottom: inferred parameters vs true parameters.
The black dots correspond to the result of inference, while the blue dots correspond to the
initial guess obtained via the method of moments.

gene state is usually not observable, from a moments point of view, k12 and k21 must be
extracted from high order moments. This suggests they are harder to identify, and matches
what we found.

Results are similar for the three species model (Fig. 7.7), which has a much larger state
space. As expected, parameter fits are slightly worse, but still quite close to the ground
truth. Overall, the fitting procedure yielded results that were fairly good for both models;
however, timing varied greatly between them. Fitting 20 parameter sets took on the order
of 15 minutes for the two species model, and on the order of several hours for the three
species model. This is mainly due to having to generate on the order of 1000 steady state
probability distributions before gradient descent converges.

235



Figure 7.7: Parameter inference on the 3 species (2 splicing steps) model given simulated
data (N = 1000 cells). Top: sample fits. Bottom: inferred parameters vs true parameters.
The black dots correspond to the result of inference, while the blue dots correspond to the
initial guess obtained via the method of moments.
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7.6 Discussion

Using a state space path integral approach inspired by quantum mechanics, we obtained
fast and stable numerical implementations of the steady state solutions of the birth-death-
switching and multistep splicing problems, and showed that their performance compares
favorably against existing alternatives (e.g. stochastic simulations, other analytic solutions,
and FSP). Independently of the derivation of these results, their open source implementations
are readily available for biophysicists and quantitative biologists to use for fitting simple
models of transcription and splicing dynamics given single cell RNA counts data.

The broad strokes of our path-integral-based technique—deriving ODEs for the steady
state generating function, solving them numerically, and then inverse fast Fourier transform-
ing the result—do not sensitively depend on the details of this particular problem. Unlike
our results in Part I, this approach seems particularly easy to generalize to more gene states
with some arbitrary switching topology. Instead of two coupled ODEs, one would end up
with as many ODEs as there are distinct gene states. Whether this kind of extension would
be useful remains to be seen, especially since the primary use case of these models is the two
state bursty parameter regime. Since one can evaluate these path integrals straightforwardly
given first order reactions in general, rather than just the monomolecular reactions we have
used here, it may also be possible to adapt this approach to include protein dynamics. On
the other hand, the time-dependent terms of the ODEs would no longer be simple sums of
exponentials, and their dependence on the eiθj may be harder to determine (or otherwise
deal with numerically).

One extension which is certainly possible is generalizing this approach to include splicing
topologies where (i) introns can be removed in an arbitrary order and (ii) alternative splicing
is allowed. As pointed out in the discussion of Part I, this primarily requires a better
understanding of the representation theory of monomolecular reaction networks (that is,
determining what replaces the qj coefficients and v(k) vectors in our ODEs).

In appraising both this work and the work we did on these problems in Part I, it is
interesting to note that there do not seem to be solutions to these problems which are
preferable both from a theoretical point of view and a numerical implementation point of
view. Rather, our part I solutions are preferable for investigating theoretical properties of
the solutions (e.g. computing moments and biologically relevant approximations), while the
approach we worked out here is much more suitable for parameter inference.

While we have made some progress on better understanding how to evaluate steady state
probability distributions for these problems in a numerically efficient way, we expect to run
into additional practical difficulties when fitting real RNA counts data. One generically
expects to run into severe identifiability-related problems, e.g. it may be hard to experi-
mentally distinguish RNA with one intron removed from RNA with two introns removed. It
may be necessary to compute probability distributions that assume such identifiability issues
arise, or else to come up with algorithms for inferring species identity given ambiguous data.
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Chapter 8

Epilogue

In this thesis, we studied analytic solutions of the chemical master equation—especially
using methods inspired by quantum mechanics. We were thoroughly able to understand
monomolecular reaction networks, which are in some sense the ‘harmonic oscillator’ of gene
regulation. Fortunately, despite the simplicity of these models, we were able to apply them
to learn something about transcription and splicing. We were even able to do this when
transcription is coupled to a bursty gene, which yields highly nontrivial stochastic dynamics.

The state space path integral, we have found, is a highly versatile tool for solving chemical
master equations, and it has been used to construct some of the most general solutions yet
known. Still, there is an unsatisfying fact that may be nagging at the back of our minds:
what about more realistic systems?

We have not treated systems involving binding (e.g. A + B → C) or translation (m →
m + p). Can the tools discussed in this thesis handle those problems? Some preliminary
work suggests that the answer is a definite yes for systems involving first order reactions
like translation. Heuristically, this is because systems involving only first order reactions
yield path integrals that can be solved using the ‘backwards ODE’ trick we have used in
a number of places. See Chapter 4 for some discussion of this. The eigenvalues/spectrum
of these systems also seems to be linearly spaced, which means a ladder operator approach
should work in principle, although the form of these ladder operators (in terms of more
basic creation and annihilation operators) may be quite complicated. Generically, it seems
that ladder operators for first order reaction networks may involve infinite sums of creation
and annihilation operators, unlike what we have dealt with in the case of monomolecular
processes.

Allowing binding reactions yields a much more difficult problem. The spectrum generi-
cally goes like n2 instead of n, and ladder operator approaches probably do not work without
significant modification. Traditional approaches, like the method of characteristics, do not
work. Path integral methods may have potential, since the Gaussian integrals that appear
due binding (e.g. X + X → X would contribute a term like x2 in the Doi-Peliti action)
should be solvable. But there are some technical details that prevent us from having done so
already. Our main task here would be to create some analogue of the backwards ODE trick
(and hence reduce the computation of many integrals to just solving ODEs), which does not
work when there are binding reactions.

I suspect that, in the same way understanding in detail how to solve the birth-death
process lead to understanding the solution structure of monomolecular processes, thoroughly
studying a toy model involving translation or binding might lead to a general solution.
It would be quite theoretically satisfying to construct a solution of the CME for systems
involving any combination of monomolecular and bimolecular reactions: as we discussed in
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Chapter 2, this is essentially all biological systems of interest! However, such a solution would
almost certainly be impractical for numerical implementation; we will still need simulations.
Even if it exists, it may be highly unstable, and exhibit some analogue of chaos (so that
small changes in parameters dramatically change the probability distribution).

On the other hand, such a closed form solution may not exist. Such solutions generically
do not exist for interacting quantum field theories; why should they exist in this mathemat-
ically analogous case?

If one desires efficient numerical implementations for some practical purpose, like pa-
rameter inference, we have found that full CME solutions may not actually be particularly
helpful. What is helpful is almost solving the CME, and leaving its solution (or, more typ-
ically, the solution of its generating function) in terms of some ODE which can be solved
numerically. This approach combines the advantages of understanding a problem’s solution
structure with the stability associated with numerically integrating ODEs, and should be
explored further. Such approaches may offer promising results when combined with other
numerical solution methods, like simulations or finite state projection (for example, one can
imagine solving certain subsystems using the ODE approach, and combining the obtained
results with simulation results for a different subsystem).

We did not apply our methods to understand real data in this thesis, partly because
data involving distributions of partly spliced RNA is presently hard to come by. But the
data is coming. Quantitative single cell experiments continue to improve, and there is a
real need for theory that will permit us to reckon with their results. Biology has advanced
tremendously over the past decade, and we have especially improved our ability to do sensi-
tive high-throughput experiments and develop sophisticated algorithms for analyzing those
experiments. But it should be remembered that, as well as experiments and algorithms, we
need ideas.

We can measure and categorize as many cells as we like, so that we understand the
‘what’ questions. What is happening inside a cell when it undergoes a cell fate transition?
But ‘big picture’ aims of understanding these systems, like the robust control of cell fate for
applications in regenerative medicine, will remain elusive until we have a better handle on
different questions. How should we think about what happens inside a cell when it undergoes
a cell fate transition?

There is a need for theory. Exactly what form it should take to be most useful, I do not
know. Perhaps the CME does not offer the right foundation for thinking about stochastic
gene regulation. But there is a need for theoretical understanding of some kind. Something
that goes beyond what is, and suggests what could be. Something that suggests how to
think and compute. Something that tells us what the wrong but useful models of biological
systems are.

How should we think about one kind of cell turning into another kind of cell? How should
we think about cellular decision-making? How should we think about the relationship be-
tween descriptions of these systems at different scales? How should we think about emergent
features?

For now, I can only ask the questions.
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Chapter 9

Postscript: Who’s Afraid of Max Delbrück?

Labels say nothing about nature, but they do say something about the people studying it.
In practice, whether one calls oneself a physicist, biologist, or something else is thought to
have real sociological consequences—for getting academic jobs, getting funded, and getting
published, among other things. These questions of academic identity can become particularly
conspicuous for those researchers that work on the boundary of multiple disciplines, who
may for professional reasons feel the need to assert that they are a member of one tribe over
another.

As Martin notes in an account of the recent rise of condensed-matter physics, its success
“is a story of categories and why they matter.” Identifying condensed-matter physics as a
distinct subdiscipline “made a statement about the type of activity physics was supposed to
be”, and “drew a line between who was a physicist and who wasn’t”. Even the rebranding
of “solid-state physics” to “condensed-matter physics” in the 1960s and 1970s was an effort
to emphasize the intellectual value and conceptual unity of the field as much as it was
an attempt to accurately describe it [1]. Nowadays, with some flavor of condensed-matter
physics being the dominant activity of most working physicists, there is no longer any real
dispute regarding whether it counts as legitimate physics.

The story may be repeating again on the interface of physics and biology. In 2020, the
National Academies explicitly included “Biological Physics/The Physics of Living Systems”
for the first time in its decadal survey of US research [2], a sign that it is increasingly thought
of as truly a part of physics, rather than just physics applied to an outside subject. With
the confluence of recent breakthroughs in experimental techniques (e.g. CRISPR), the high-
throughput collection of multi-omic data, and the developing sophistication of algorithms for
‘big data’-style analyses, the field is poised for explosive growth in the twenty-first century.

But there remains significant confusion over the nature of the field, which is in part
reflected by the diversity of names in use. Here are a few:

biological physics, physics of living systems, biophysics, physical biology,
living state physics, living matter physics

The oldest of these terms is “biophysics”, which was proposed by Karl Pearson in his 1892
book The Grammar of Science. On the need to understand “the genesis of the living from
the lifeless”, he writes [3]:

“A branch of science is therefore needed dealing with the application of the
laws of inorganic phenomena, or Physics, to the development of organic forms.
This branch of science which endeavors to show that the facts of Biology . . .
constitute particular cases of general physical laws has been termed Ætiology.
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It would perhaps be better to call it Bio-physics. This science does not appear
to have advanced very far at present, but it not improbably has an important
future.”

By 1920, the challenge of creating such a field seems to have been met, with Alexander
Forbes outlining his view of biophysics in a Science article and reporting the development
of a biophysics course at Harvard [4]. The next term to appear may be “physical biology”,
which seems to have been introduced by Walter Porstmann in a 1915 article [5]:

“It will be the function of this new branch of science to investigate biological
phenomena as regards their physical aspects, just as Physical Chemistry has
treated the physical aspects of chemical phenomena. Because this field has not
yet been systematically explored . . . the individual data of Physical Biology
appear, as yet, as more or less disconnected facts . . . As results gathered in this
disconnected fashion accumulate, the need of their unification into a harmonious
whole, into a distinct discipline of science, becomes more and more acutely felt.”

In 1925, the first textbook on physical biology—Alfred Lotka’s (of Lotka-Volterra fame)
Elements of Physical Biology—appeared. In it, he more than once distinguishes the project
of physical biology from that of biophysics, citing Forbes’ article and describing biophysics
as studying “the physics of individual life processes” (e.g. nerve conduction), and physical
biology as the application of physical principles to biology in a broader sense (and seemed
to have in mind modeling evolutionary dynamics as an example). “Physical biology would,
in this terminology, include biophysics as a subordinate province”, noted Lotka [6].

Being particular about labels was by no means exclusive to Lotka. Decades later, after
Nicolas Rashevsky spent a lifetime advancing what he called a “mathematical biophysics”
analogous to the more familiar mathematical physics, Rashevsky was invited to give a pres-
tigious lecture at the first Gordon Research Conference on “biomathematics”, which was
to be held in 1965. Recoiling at the term, Rashevsky wrote in a letter to the conference
organizer that it was an “etymological monstrosity” that gave the wrong sense of what the
field was about [7].

In the late 1960s and early 1970s, many physicists studying biological problems faced
“skepticism when presenting . . . at the Biophysical Society Meetings”; these mounting
frustrations led directly to the 1973 establishment of the American Physical Society’s Division
of Biological Physics [8]. One speculates that “biological physics” may have been chosen to
distinguish the organization from the culture of the Biophysical Society and “biophysics”,
which (then and now) has different connotations.

All of this is just to say that labels seem to have mattered historically to many of the
workers on the interface of physics and biology. Even now, the connotations of terms like
“biological physics” and “biophysics” differ for a variety of historical and sociological reasons.
The recently popularity of the “physics of living systems” label within the physics community
may be analogous to the “condensed-matter” rebranding of “solid-state physics”, its use
intending to situate the discipline as an activity within physics rather than outside or adjacent
to it.
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For the remainder of this essay, let us put aside the business of what this field might
be called. Regardless of its name, to what ethos should it aspire? In search of a spirit
of biological physics, it may be appropriate to reflect on the diverging experiences of two
physicists that turned to biology: Max Delbrück and Nicolas Rashevsky.

The case of Max Delbrück

Max Delbrück was born in Berlin in 1906, and matured amidst the scarcity and social
upheaval associated with the first World War. Although he began his university studies
interested in astronomy, exciting developments in quantum mechanics and the lamentable
state of German astronomy led him to pursue theoretical physics instead [9].

Delbrück completed his PhD thesis on a quantum mechanical treatment of the lithium
molecule in 1930, and continued to work on topics related to quantum mechanics until around
1937. He was accepted by the ‘insiders’ of physics, and wrote papers with luminaries like
Lise Meitner and George Gamow. The extent to which he was intimately familiar with the
movers and shakers of the day may be illustrated by the time he jokingly served as a butler
at a costume party thrown by Schrödinger [10].

But Delbrück’s primary research interests were not to remain in physics. Captivated
by a lecture given by Bohr in 1932 entitled “Light and Life”, Delbrück took very seriously
Bohr’s suggestion that there may be some manifestation of his complementarity principle in
biology. In particular, an organism can be viewed “either as a living organism or as a jumble
of molecules”, just as an electron can be viewed either as a particle or a wave; perhaps there is
some “mutually exclusive feature” of each description analogous to position and momentum
in quantum mechanics [9].

While working as a theoretical physicist for Lise Meitner, Delbrück moonlighted as a
biologist, and in 1935 published his first biology-related paper. In the 1940s, following a
Rockefeller Foundation-supported mutation research fellowship at Caltech, and with some
continued support from the foundation, Delbrück’s career in biology blossomed [10]. Over
the course of the decade, he published a landmark paper with Salvador Luria establishing
that Darwinian selection applies to bacteria; helped build the Phage Group, an intellectual
school and forebear of much of modern molecular biology; and began the legendary phage
course at Cold Spring Harbor Laboratory, intending to “spread the new gospel” [11] of
bacteriophage work. For his community building and contributions to genetics, he received
a third of the 1969 Nobel Prize in Physiology or Medicine.

During the war, he was an instructor of physics at Vanderbilt University, but had a
rudimentary research lab in the biology department. While the arrangement was strange
for the time, Delbrück’s sterling physics credentials and the quality of his research output
yielded no complaints. In 1947, he left Vanderbilt to become a Professor of Biology at
Caltech, where he remained for the rest of his career [10].
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The case of Nicolas Rashevsky

Nicolas Rashevsky was born in 1899 in Chernigov, a small village in Ukraine. He was well-
educated—in literature and languages, for example—and learned voraciously. Already by
the age of 19, he had a PhD in theoretical physics from the University of Kiev. Afterwards,
Rashevsky was rapidly uprooted by the Russian Revolution, and by 1925 had moved to the
United States to work as a theoretical physicist at Westinghouse Electric Company.

Rashevsky did most of his work in theoretical physics in the 1920s, publishing on a variety
of fields: quantum mechanics, relativity, photomagnetism, thermionic emission, and colloidal
dynamics, to name a few. But a chance encounter at a “social occasion” with a biologist,
who described the reason for cell division as a mystery, piqued his interest in biological
problems. Soon enough, Rashevsky—reflecting on the absence of a biology analogue to the
then-well-established field of mathematical physics—in 1926 began dreaming of a similar
‘mathematization’ of biology [7, 12].

In the 1930s, Rashevsky concentrated his efforts fully on this project, and with Rockefeller
Foundation support found a position at the University of Chicago. He published on a variety
of problems, including nerve conduction, cell growth, and development. His first book-length
examination of “mathematical biophysics” as he envisioned it, Mathematical Biophysics:
Physicomathematical Foundations of Biology, was released in 1938 [13].

At the same time, Rashevsky ran into mounting obstacles. Facing a chilly reception in
mainstream biology journals, in 1939 he started the Bulletin of Mathematical Biophysics,
which housed the majority of his articles for the remainder of his career. Over the years,
he fought to maintain funding for the intellectual school he had founded at the University
of Chicago (the Committee on Mathematical Biology), for mathematical biology to receive
official recognition from the National Institutes of Health, and to maintain the independence
of his group from meddlesome university administrators. In many of these battles, he was
thwarted, or only partially successful. By the time of his death, he left a mixed scientific
legacy [7].

In some ways, the lives of Delbrück and Rashevsky were strikingly parallel. Both grew
up against a backdrop of war, both were trained as theoretical physicists and switched to
thinking primarily about biological problems in the 1930s, both received significant financial
support from the Rockefeller Foundation, and both were community builders and prolific re-
searchers. But Delbrück met mainstream acceptance, while Rashevsky encountered obstacle
after obstacle. Why?

Perhaps Delbrück was luckier, or had better connections. But one can readily identify two
marked differences in scientific philosophy that may have impacted their trajectories. Firstly,
Delbrück thought of himself more as a natural philosopher than a physicist or biologist [14],
whereas Rashevsky adhered strictly to the ethos of theoretical physics. Rashevsky was
interested in the ‘mathematization’ of biology not just for its practical utility, but for its
own sake [15]. Crudely, one might say that Delbrück pursued questions, while Rashevsky
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pursued an identity. Secondly, Delbrück was more willing to meet biologists halfway by
doing experiments and assiduously checking his hypotheses against the experimental results
of others.

There is something to be said for Rashevsky’s iron will, and his sturdy commitment to his
scientific vision in spite of all opposition. He was a trailblazer in the establishment of math-
ematical biology, and his efforts directly led to the founding of the Society for Mathematical
Biology [7]. But his dogmatic approach may have been alienating to many biologists.

A play by American playwright Edward Albee famously had the provocative title Who’s
Afraid of Virginia Woolf?. Virginia Woolf was an English novelist whose plays often featured
themes of people in British high society living inauthentic lives under many masks. The title
of the play, in one interpretation, means: ‘Who’s afraid to live without illusions?’ [16]

Max Delbrück never seemed to worry about whether he was called a physicist or a
biologist. In fact, he seemed to delight in using one label or the other as it suited him. He saw
himself more akin to a natural philosopher, someone who pursues the ultimate truths about
the natural world regardless of what tools or paradigms their answers require. As we continue
to pursue biological physics, it may be prudent to emulate that style, and courageously pursue
interesting questions whether or not they are properly considered physics at the time—to
act as if we live in a world without disciplinary boundaries. Who’s afraid of Max Delbrück?

This essay won runner-up in the 2020 History of Physics Essay Contest put on by the Forum
on the History of Physics.
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