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CHAPTER I 

 

INTRODUCTION* 

 

Clinical and phenotypic characteristics of functional seizures 

Functional seizures (FS) are paroxysmal episodes that often include altered awareness 

or convulsions with presentation like epileptic seizures. FS differ from epileptic seizures (ES) in 

that no evidence of aberrant electrical signaling patterns is evident on video 

electroencephalogram (v-EEG) and underlying psychological factors are thought to be involved 

in the etiology. There is currently no known underlying organic cause for FS.  

Approximately eighty percent of FS patients are initially diagnosed with ES, which 

further delays the proper diagnosis. Many FS patients are prescribed antiepileptic drugs (AED), 

which appear to be neutral at best and detrimental at worst for treating FS.
1,2

 The number of 

AEDs prescribed is associated with increased delay to diagnosis, particularly for patients in 

whom the first AED did not work, but who were continued on different AED trials despite the 

lack of response.
1
 The gold standard to distinguish FS from ES is to use video-encephalogram 

recordings (v-EEGs) to capture both brain activity (by EEG) and convulsions (by video recording) 

throughout the onset and duration of a “typical seizure” for that patient.
3
 A lack of aberrant 

brain signaling during the seizure episode is required for the diagnosis of FS.
4
 Further clouding 

the proper diagnosis of FS and epilepsy is the reported literature suggesting that around a fifth 

of FS patients also have concurrent epilepsy.
1,5,6

 

*Adapted with permission from Goleva SB et al., JAMA Netw Open, 2020 
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Research comparing FS and ES has shown that phenotypically, FS patients are more 

debilitated by their seizure disorder on average, and that the frequency of their seizures is 

significantly greater.
7
 For example, Rawlings et al. described patients who had upwards of three 

hundred seizures over a four day span, making it difficult for patients to hold down steady jobs 

and significantly impacting their quality of life.  

While the cause of FS remains unknown, it is believed that FS are primarily related to 

psychiatric distress and trauma is thought to be a primary risk factor. Previous studies, including 

a clinical epidemiology study from our group, confirmed the significant enrichment of 

psychiatric diagnoses in FS patients, with posttraumatic stress disorder and sexual assault 

trauma among two of the primary associations in FS patients.
8–11

 Females constitute 

approximately 75% of FS diagnosed patients, which our own epidemiological studies 

replicated.
8,10–12

 

 

Historical perspective on the diagnosis of FS 

FS is often a diagnosis of clinical exclusion, and has historically been arduous to 

diagnose, with a current average of over 8 years to diagnosis.
1
 In the DSM-V, FS is classified 

under conversion disorder, subtype “with attacks or seizures,” and is defined as neurological 

symptoms that are incompatible with neuropathology. The lack of evidentiary diagnostic 

criteria for FS further impedes urgently needed clinical research. Moreover, the absence of 

consistent nomenclature or specific International Classification of Diseases (ICD) classification 

additionally hampers clinical recognition and treatment.  
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Numerous records and clinical publications dating from 1730 to 1901 show that FS were 

historically thought to be products of hysteria, particularly in females, or conscious 

manifestations of psychological disorders, rather than uncontrollable experiences.
13

 In 

Mandeville’s 1730 book, he writes the first known English description of functional seizures, 

then described as “hysterical seizures” or simply “hysterics,”:  

 

“As to Fits, some are seized with violent Coughs; others with Hiccups; and abundance of 

Women are taken with Convulsive laughing. There are Fits that have short Remissions, 

in which you would think the Woman was going to recover, and yet last many Hours. 

Some are so slight that the Patients only lose the Use of their Legs and Tongue, but 

remain sensible; others again are so violent that those who are seized with them foam 

at the Mouth, rave and beat their Heads against the Ground; but whether they resemble 

an Apoplex, or are only fainting, or seem to be Epileptic, they all come under the 

Denomination of Hysteric … .”
14

 

 

In an example of the sex discrimination that has historically been used against women 

to invalidate their experience of functional seizures, he goes on to describe his rationale that 

the “imbecility of the contexture of spirits in women” contributes to their development of 

hysterics: 

 

“We’ll examine how much the Imbecility of the Contexture of Spirits in Women 

contributes to the cause of [Hysterics]. First, that it renders them all obnoxious to what 
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is the immediate Cause of the Disorders in the Functions of the Brain and Nerves, or 

both ... But besides this Confusion of the Spirits to make the Distemper habitual, and 

render Women Hysterics of the first Class, there is required, and always observed, 

another Antecedent Cause, that can bring about the Confusion I speak of, without the 

Assistance of any external Violence. That is the Deficiency of the finer Spirits, which the 

stomachic Germent suffers by, whereof I have said so much: To the producing this 

Effect, the Imbecility of them is likewise so far accessary, that where there is anything to 

exhaust the Spirits, the Weakness of their contexture occasions it to be sooner 

accomplished; and the less Force serves to dissipate and destroy them: One Hour’s 

intense Thinking wastes the Spirits more in a Woman, than six in a man. [I have] thus 

demonstrated how far the Weakness of the spirits disposes Women to the hysteric 

passion.”
14

 

 

As video-encephalograms were not yet available, in 1855, RB Todd described that the 

movements of “hysterical fits” were “combined and regular, and directed to an end and by a 

purpose.” He claimed that a main distinguishing feature was that the patient “was a highly 

excitable, hysterical person, who has been subjected to moral, and perhaps physical influences 

also, well-calculated to keep up that state.” In short, RB Todd’s diagnosis favored the presence 

of psychological factors in the etiology.
15,16

 

In 1884, Thomas Clifford wrote a scathing take on patients who were predisposed to 

“hysteria”: 
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“Take a hysterical person, man or woman, in its common and, so far, proper sense; take 

it to mean a person of feeble purpose, of limited reason, of foolish impulse, of wanton 

humors, of irregular or depraved appetites, of indefinite and inconsistent complaints, 

seeing things as they are not, often fat and lazy, always selfish, or to take it in less 

degree, one capricious, listless, willful, attractive perhaps, yet having always the chief 

notes of hysteria – selfishness and feebleness of purpose; and if such persons… have or 

have had anesthesia, unreal epilepsy, unreal syncope, unreal palsy, unreal cramps, then 

set down such a person as hysterical, but forget not, nevertheless, to cure mind and 

body.
17

  

 

In 1923, Pierre Briquet posited that hysteria is predominantly a disease of women, as to 

fulfill her noble mission in life, woman has been endowed with great sensitiveness and is easily 

moved emotionally, which predisposes her to hysteria.
18

 As the instance of “hysterical seizures” 

rose, Briquet hypothesized that “It is very probably that in several of these epidemics particular 

circumstances determined the form of the symptoms of the hysterical persons seized first. 

Then, through the involuntary influence upon the mind and the tendency to imitation, the 

hysterical persons who came afterwards had symptoms like those who had them first, and 

these in turn influenced the others.” Thus, spreading the theory that functional seizures could 

be attributed to a powerful imagination.  

Given the history of physician attitudes towards FS, it is not surprising that terminology 

for FS was overtly pejorative including hystero-epilepsy (1800s) and pseudoseizures (1964-
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2000s), which stigmatized patients by implying underlying malingering or factitious disorder.
19

 

Today FS patient advocates and clinicians are lobbying for new nomenclature.  

 

Nosology and naming of FS 

To reduce stigmatization of patients and to fit with nosology of other movement 

disorders, there is a call to standardize the nomenclature for functional seizures.
19–21

 Today, 

functional seizures are known by one of 7 terms: non-epileptic seizures, non-epileptic attack 

disorder, psychogenic non-epileptic seizures, conversion disorder with seizures, dissociative 

seizures, psychogenic non-epileptic attacks, or functional seizures.
19–21

. The inability to agree on 

a name to describe this disorder creates a difficulty for patients in understanding and accepting 

their illness without stigma. It additionally impedes doctors in explaining the condition to FS 

patients and impedes researchers in identifying FS patients for studies and in sharing their 

research with community audiences. 

Throughout this research, I choose to use the term ‘functional seizures’ due to recent 

studies suggesting that patients prefer this term to describe their disorder and find it least 

stigmatizing.
19–21

 Specifically, the Functional Neurological Disorder society found in a survey 

that patients ranked ‘functional seizure’ as their most favored term, and psychogenic non-

epileptic seizures, which is currently the most commonly used name for this disorder among 

the medical community, as only their fourth favorite term.
19

. Another survey found that only 

6% of FS patients found the term ‘functional seizures’ offensive, compared to 48% of patients 

who found the term ‘hysterical seizure’ offensive and 26% who found the term ‘psychogenic 

non-epileptic seizure’ offensive.
20
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Treatment modalities 

Once patients are diagnosed with FS, treatment modalities available are extremely 

limited. Once diagnosed, FS patients may be treated with various psychiatric therapeutic 

modalities including cognitive behavioral therapy. Cognitive behavioral therapy is the only 

treatment modality linked to significantly improved outcomes, although randomized clinical 

trials show that it does not significantly affect the frequency of seizures in patients after one 

year of treatment.
22–24

 To date, no pharmaceuticals have passed clinical trials for the 

improvement of seizures in FS patients.
22,24

 

In the FS historical perspective published in Epilesia in 2004, W. Curt LaFrance Jr. and 

Orrin Devinsky point out that, “Although our treatments are refined in the sense that we 

psychopharmacologically target neurotransmitter abnormalities in [nonepileptic seizure] 

patients or treat them with individualized psychotherapies, after >200 years, we have not 

added one controlled trial to empirically test the outcome of our treatments for NES.”
13

 
 

 

Review of current epidemiological research on FS 

FS remains understudied despite the fact that 20-30% of patients referred to epilepsy 

monitoring units are eventually diagnosed with FS.
25

 The few published studies include small 

sample sizes, and limited epidemiological data.
26

 Given this lack of research, the Commission on 

Neuropsychiatric Aspects of Epilepsy of the International League Against Epilepsy (ILAE) placed 

FS in the top three neuropsychiatric problems with anxiety/depression and psychotic disorder 

in 2011
12,27

. Based on this ranking, the “ILAE Psychogenic Non-Epileptic Seizures Task Force” 

was founded to summarize the current understanding, diagnosis, management, and treatment 
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for FS.
4,12,28

 Given the challenging diagnosis of FS, lack of standardized nomenclature, limited 

treatment options, lack of awareness, and publications highlighting this issue, there is a 

compelling need for more research on FS.
12,13,29

 There is a particular need to find ways to 

shorten the time to diagnosis or lead to advanced exploration of treatments for FS patients.  

The prevalence of FS was previously indirectly estimated at 2-33 per 100,000 (0.002% - 

0.033%),
30

 and approximately 17 - 22% of FS patients have concurrent epilepsy.
5,6

  FS patients 

reportedly have a higher rate of psychiatric disorders (e.g. PTSD, anxiety, depression, etc.) than 

both the general population and epilepsy patients (RR = 1.30, 95% CI = 1.14 - 1.48 across all 

psychiatric disorders studied).
31

 Trauma is also known to be a significant risk factor and a recent 

study reported that females with FS were eight times more likely to report sexual abuse.
10

  

 

Using electronic health records to study FS 

Electronic health records (EHRs) have been used as a strategy to increase the 

identification of patients with certain disorders or phenotypes for research.
32,33

 As EHRs contain 

structured and unstructured data on all patients who use any given hospital system, these 

records provide a large amount of data for clinical epidemiology research studies. EHRs contain 

electronic longitudinal data including demographics, billing codes, procedural codes, and 

clinical notes collected during a given patients’ health care, all of which have associated dates 

facilitating research on the trajectory of various symptoms and comorbidities with respect to an 

index condition.  

Challenges of using EHRs for research include ensuring and prioritizing patient privacy 

and data security and creating ways to use unstructured data, such as clinical notes, associated 
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with EHRs. To this end, VUMC has devised a de-identified version of the VUMC-EHR for 

research use named the Synthetic Derivative (SD). The SD is a clinical data warehouse for 

research that allows scientists to use structured data and search through unstructured clinical 

notes using keywords and regular expressions.
34

  

FS studies have historically suffered from small sample sizes and a lack of 

epidemiological data. Thus, we determined that using EHR data would be a powerful way to 

quickly collect cases for clinical and genetic epidemiology studies of FS. However, due to 

stigmatization of the disease, traditional EHR phenotyping methods were difficult in this sample 

as there are no International Classification of Disease, 9
th

 edition (ICD9) codes that are specific 

to FS patients. Therefore, the VUMC-EHR SD presented a particularly useful opportunity for us 

to develop an algorithm to reliably identify FS cases. We also recognized the potential to 

calculate the first-ever direct prevalence of FS. We were able to calculate period prevalence, or 

the proportion of people with FS at any time during a specific time interval. In our case, this was 

October 1989 to October 2018, the dates of records in the EHR at the time of data extraction. 

The algorithm we developed to identify FS patients using VUMC-EHR records includes 

general seizure and conversion disorder ICD codes, FS keywords in patient charts, and Current 

Procedural Terminology (CPT) codes for v-EEGs.
8
 Chart review by a team including a clinical 

neurologist demonstrated a positive predictive value of 98%. Our clinical epidemiology studies 

in the VUMC-EHR using these patients as cases confirmed previous reports of sex-bias and 

psychiatric comorbidities in FS patients.
8
 Our direct calculation of FS patients in the Vanderbilt 

University Medical Center Electronic Health Record (VUMC-EHR) system estimated the period 

prevalence of FS to be much higher than previously thought, at 0.014%.
8
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Potential role of genetics in FS 

The first genetic study on FS presented whole-genome sequencing to determine that six 

percent of their sample harbored pathogenic or likely pathogenic variants, including in the 

genes NSD1 and GABRA5.
35

 This genetic burden was similar to individuals with generalized 

epilepsy (GE) (2%) and focal epilepsy (FE) (3%). Previous genome wide association studies 

(GWAS) have also shown that disorders related to FS, including GE, FE, and PTSD all have a 

significant, though small, heritable component, with SNP-based heritability most recently 

reported at 32%, 9%, and 5%, respectively.
36,37

 Although the SNP-based heritability estimates 

for PTSD and FE are low, this establishes that these disorders have some genetic contribution. 

Thus, we hypothesized that FS is heritable, meaning that a significant portion of the variance in 

the phenotype of functional seizures can be explained by genetic variance. 

To explore this hypothesis, we used a genome-wide association study (GWAS) approach 

to determine whether any genetic variants are associated with functional seizure cases versus 

controls. To reduce the cost associated with whole genome sequencing, genotyping is used to 

genotype only common genetic variants (typically MAF > 0.01). For polygenic traits in which a 

high number of variants with low effect size contribute to the underlying genetic architecture of 

the trait; GWAS are an efficient way to scan common genetic variants across the entire 

genome.
38,39

 Many psychiatric and neurological diseases are polygenic and heritable, thus we 

hypothesized that this technique may be successful in determining the genetic architecture of 

FS as well.
36,37,40–43

 Using GWAS analyses, we aimed to (1) identify the variants and genes 

associated with FS, (2) calculate a polygenic risk score associated with FS cases vs controls, and 

(3) determine the genetic heritability of FS. Incorporating the validated VUMC-EHR algorithm, 
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we conducted a multi-site FS GWAS meta-analysis, which is also the first FS GWAS reported to 

date.  

Studies show that other psychiatric and neurological disorders are polygenic, which 

have an inherent reduction of discoverability. For example, a book by Ted Abel and Thomas 

Nickl-Jockschat recently demonstrated that GWAS for Crohn’s disease, for which GWAS was 

shown to be a successful strategy, discovered around 50 loci associated with Crohn’s disease 

with a sample size of around 5,000.
44

 In comparison, bipolar disorder and schizophrenia 

discovered less than 5 associations each with the same sample size. This indicates that BIP and 

SCZ, which are both psychiatric conditions, have a more polygenic genetic architecture, in 

which more variants are involved in the disease and each one has a smaller effect size. For SCZ 

GWAS, there was a critical inflection point around 15k sample size, above which the 

relationship between sample size and number of novel discoveries became much more linear. 

Since FS is more similar phenotypically to SCZ and BIP than Crohn’s disease, we expected that 

we would need a significant sample size before being powered to discover variants associated 

with FS using GWAS. As the number of FS samples available using our own genetic data in 

BioVU was limited to around 300, we determined that conducting a GWAS meta-analysis using 

genetic data from six biobanks around the world would be a better strategy to increase our 

power for discovery.
45

 Results include cases and controls identified from our BioVU samples, 

the Cleveland Clinic, Mount Sinai (BioMe), the Million Veterans Program (MVP), Massachusetts 

General BioBank (MGBB), and the Danish population registry (iPSYCH). 

Overall, this thesis characterizes the clinical and genetic epidemiology of FS in clinical 

populations. We utilized a database of de-identified electronic health records (EHR) from 
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Vanderbilt University Medical Center (VUMC) to (1) develop a clinically validated phenotyping 

algorithm to identify FS cases, (2) estimate the prevalence of FS in a hospital population, (3) 

systematically identify FS comorbidities, and (4) investigate the relationship between sexual 

assault-trauma and FS. We then guided phenotyping efforts to incorporate data genomic data 

on FS cases and controls from six other biobanks and registries to (5) determine the SNP-based 

heritability of FS, and (6) identify individual single nucleotide polymorphisms (SNPs) and genes 

associated with FS. 
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CHAPTER II 

 

CLINICAL EPIDEMIOLOGY OF FUNCTIONAL SEIZURES* 

 

Introduction 

In this chapter, we characterize the clinical epidemiology of FS in a hospital population. 

We utilized a database of de-identified electronic health records (EHR) from Vanderbilt 

University Medical Center (VUMC) to identify FS cases and controls. This epidemiological study 

used an automated phenotyping algorithm to identify cases and controls by incorporating 

International Classification of Diseases (ICD) codes, Current Procedural Terminology (CPT) 

codes, and regular expressions. Most FS cases identified were ascertained through primary care 

or the epilepsy monitoring unit. Here, we address the following research questions: (1) what is 

the prevalence of FS in our hospital sample, (2) do we observe known comorbidities of FS in this 

sample, (3) what novel comorbidities are identified in FS cases, and (4) what is the relationship 

between sexual assault trauma and FS in this clinical population?  

 

Methods  

Sample and Data Description 

The VUMC Electronic Health Record (VUMC-EHR) system contains inpatient and 

outpatient data from the medical center spanning labs, billing codes, medications, chart notes, 

and procedural codes, among other medical information, from 1994 onward.
34

 The synthetic  

*Adapted with permission from Goleva SB et al., JAMA Netw Open, 2020 
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derivative (SD) is a mirror image of the VUMC-EHR which is used for research and has been de-

identified to protect patient privacy. During this process, the medical record number from each 

patient’s record is removed and replaced with a research unique identifier which cannot be 

linked to the original medical record number, as no link is maintained between the two. Then, 

any identifying features in the medical record are scrubbed or replaced with non-identifying 

replacements. For example, an algorithm is used to scrub any instances of names in the record 

using census-derived name dictionaries and a function which derives the name information 

from the header files of the original medical records. Additionally, dates are changed by a 

randomly generated amount of time within a similar timeframe. The aggregate error rate has 

been reported to be 1.7%. As de-identification algorithms can never perform perfectly, a 

further safeguard is implemented in that all researchers who use the SD are mandated by the 

terms of a data use agreement.   

Our study population included all 2,346,808 unique VUMC patients from 1994 to 2019.
34

 

Demographics, ICD9 and ICD10 codes, CPT codes, and clinical notes were extracted from the 

synthetic derivative (SD), a de-identified copy of the medical record, and mined for subsequent 

analyses. For the phenome-wide association study, we restricted the study population to adults 

(>=18 years at the end of the medical record) with at least five ICD9 or ICD10 codes on different 

days over at least three years to exclude individuals who did not receive regular health care at 

VUMC and reduce bias due to nonrandom missingness between cases and controls (medical 

home; Figure 1A). A total of 1,910 out of 3,341 FS patients did not meet criteria for the medical 

home definition and were not included in the PheWAS, resulting in a total of 1,431 patients 

included in the analysis. Related ICD codes were organized into hierarchical code families (i.e., 
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“phecodes”) that represent broader categories of disease 

(https://phewascatalog.org/phecodes).
46

 This research study was reviewed and approved by 

VUMC IRB #181185 and #190085. 

 
A.        
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B. 

 
 
Figure 1. FS patients have longer, more dense medical records as compared to controls. A. Density plot of length of 

record is plotted in years for FS cases (blue, purple) versus controls (red, green) in both medical home (red, blue) 

0.00

0.03

0.06

0.09

0 50 100 150
Records per year

de
ns

ity

Phenotype
Control

PNES

Phenotype
Control

PNES

NA



 17 

 

and outside of it (green, purple). Additionally, the median value for each group is plotted as a vertical dashed line. 

B. Density plot of records per year in FS cases (blue) and controls (red) within the medical home. Median values are 

plotted as vertical dashed line for both groups. 

 

FS case/control algorithm 

Two separate FS algorithms were developed under supervision of a clinical neurologist, 

Kevin F. Haas, MD, PhD (KFH), to reduce bias during algorithm development and chart review. 

The primary algorithm was used to identify FS patients without concurrent epilepsy (Figure 2, 

Table 1). The secondary algorithm identified FS patients without exclusions for epilepsy (Figure 

3, Table 2).
47

 All analyses were done in both algorithms independently, but as all results 

remained similar, only results from the primary algorithm are presented. 100% of patients in 

the primary algorithm are also included in the secondary algorithm. Future directions may 

include conducting these analyses on patients who have both epilepsy and FS, which would not 

have been included in the primary algorithm and would be specific to the secondary algorithm. 

The primary algorithm was validated by unblinded manual chart review of 50 algorithm-

identified cases. 

 

 

Figure 2. Algorithm for detecting FS cases and controls within the VUMC EHR. All VUMC EHR patients were initially 

included, then anyone with a generalized or focal epilepsy ICD code was excluded. Patients without convulsion or 
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conversion disorder ICD codes were considered controls, while anyone with both a FS keyword in their chart and 

the presence of the keyword EEG was included as a FS case. 

 

 

Figure 3. Flow chart of algorithm used to identify FS patients irrespective of their epilepsy case/control status. 

 

FS inclusion keywords 
( >= 1) 

Inclusion ICD 
codes ( >= 1) 

Inclusion CPT codes ( >= 
1) 

Additional 
inclusion criteria 

Exclusion Epilepsy 
ICD codes in group ( 

>= 1) 
“Psychogenic non-

epileptic” 

(or nonepileptic or non 
epileptic) 

300.11 – 

conversion 

disorder 

Group 95812-95830: 

Routine 

Electroencephalography 

(EEG) Procedures 

Genotyping data 

available 

345.1 

“Pseudoseizure” 780.39 – other 

convulsions 

Group 95950-95967: 

Special EEG Testing 

Procedures 

Presence of 

keyword “EEG” 

in chart 

345.10 

“Psychogenic seizure” R56.9 – 

unspecified 

convulsions 

.. .. 345.4 

“Non-epileptic 

seizure” 

(or nonepileptic or non 
epileptic) 

F44.5 – 

conversion 

disorder with 
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.. .. 345.40 

“ PNES " .. .. .. 345.5 

.. .. .. .. 345.50 

.. .. .. .. G40.20 

.. .. .. .. G40.30 

.. .. .. .. G40.00 

.. .. .. .. G40.10 

 
Table 1. Criteria for algorithm to identify FS patients, excluding those who have concurrent epilepsy. Inclusion ICD 

codes, inclusion keywords and other criteria, and exclusion ICD codes are all listed. 
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keywords in 
chart

Yes

No

Controls
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keyword "EEG"

No

Excluded

No
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Presence of EEG 
CPT code Yes

No
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FS inclusion keywords ( >= 
1) 

Inclusion ICD codes ( >= 
1) 

Inclusion CPT codes ( >= 
1) 

Additional inclusion 
criteria 

“Psychogenic non-epileptic” 

(or nonepileptic or non 
epileptic) 

300.11 – conversion 

disorder 

Group 95812-95830: 

Routine 

Electroencephalography 

(EEG) Procedures 

Genotyping data 

available 

“Pseudoseizure” 780.39 – other 

convulsions 

Group 95950-95967: 

Special EEG Testing 

Procedures 

Presence of keyword 

“EEG” in chart 

“Psychogenic seizure” R56.9 – unspecified 

convulsions 

.. .. 

“Non-epileptic seizure” 

(or nonepileptic or non 
epileptic) 

F44.5 – conversion 

disorder with seizures or 

convulsions 

.. .. 

“ PNES " .. .. .. 

 
Table 2. Criteria for algorithm to identify FS patients regardless of epilepsy status. Inclusion ICD codes, inclusion 

keywords and other inclusion criteria are all listed. 

  

Both algorithms were created by filtering criteria joined with Boolean operators. First, 

we required one or more convulsion or conversion disorder (ICD9 codes 300.11 OR 780.39 OR 

ICD10 codes R56.9 OR F44.5)
47

 AND the presence of regular expressions indicating FS-related 

keywords in charts (“pseudoseizure,” “psychogenic seizure,” “nonepileptic seizure”, or “ pnes 

”). Although FS can present as syncopal events, we have not included this phrase in our 

algorithm because in patient charts such as the ones we mined, this would be a nonspecific 

symptom and would add noise to our algorithm. Next, we required the presence of both the 

keyword “EEG” AND one or more EEG CPT code (Group 95812-95830: Routine 

Electroencephalography (EEG) Procedures and Group 95950-95967: Special EEG Testing 

Procedures) to ensure that patients had an EEG performed at VUMC. Eighty-two percent of 

potential FS cases with an “EEG” keyword also had an EEG procedure CPT code present in their 

chart. 
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Extraction of sexual assault trauma from the EHR 

We identified sexual assault trauma patients in the VUMC-EHR using regular expressions 

identification in clinical notes (Supplementary Methods). While it is likely to be under-reported 

at the time of the assault, a history of sexual assault can be extracted from the medical record. 

Based on an initial review of 25 charts, which were randomly selected, we identified eight 

inclusion phrases (i.e., “his/her sexual assault”, “history of sexual abuse”, “history of rape”, etc.) 

and four exclusion phrases (i.e., “denies history of sexual abuse”, “no hx of sexual assault”, etc.) 

to identify cases (Table 3). Although ICD codes do exist for sexual assault trauma, they were 

infrequently used. The primary mode of identification of patients who experienced sexual 

assault trauma in the EHR was through the identification of regular expressions (e.g., “history of 

sexual abuse”, “was raped”) within clinical notes. 

 

Include Exclude 

history (OR hx OR h/o) of sexual abuse no history (OR hx OR h/o) of sexual abuse 

history (OR hx OR h/o) of sexual assault denies history (OR hx OR h/o) of sexual abuse 

sexual (OR sexually) abuse(d) by no history (OR hx OR h/o) of sexual assault 

reports (OR reported) a rape denies history (OR hx OR h/o) of sexual assault 

her (OR his) rape  

was raped  

sexually abused him (OR her)  

secondary to rape (OR sexual abuse OR sexual assault)  

 

Table 3. Criteria to identify sexual assault trauma patients. Patients were exclusively identified using natural 

language processing of patients’ clinical notes using various inclusion phrases and exclusion phrases. The inclusion 

phrases and exclusion phrases used are both reported here. 
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Sexual assault trauma mediation of FS: 

We fitted a multivariable logistic regression model to adult FS cases and controls to 

determine whether sexual assault trauma, female sex, or the interaction between them was 

correlated with FS case status. Additional covariates included median age of record, median 

BMI, race, and record density. Next, we performed mediation analysis using the ‘mediation’ R 

package to test whether females were more likely to develop FS because females are more 

likely to experience sexual assault trauma.
52

 

Because sex is randomly determined at conception, the assumption of random 

assignment to the “treatment” condition holds, thus the patient sex (male/female) was coded 

as the “treatment” variable. Sexual assault trauma was then coded as the mediator and FS as 

the outcome in a model-based mediation analysis.
52

 We used 1,000 bootstrap comparisons to 

determine empirical confidence intervals and determine statistical significance of the mediation 

model. Additionally, we ran the mediation analysis with four different randomly generated 

seeds to ensure that the results and empirical p-values of the analysis remained stable across 

all permutations. 

 

Chart Review 

Fifty charts were randomly selected from the FS algorithm identified cases and were 

reviewed by one rater (SBG), who was trained by a clinical neurologist (KFH).  

The charts were reviewed for positive clinical diagnosis of FS based on a publication by 

LaFrance et al describing the minimum requirements for the diagnosis of FS.
4
 Positive predictive 

values (PPVs) were calculated for two groups based on this paper: (a) documented, clinically 
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established, or probable FS; and (b) possible FS. Based on this paper, the first criteria for a 

positive diagnosis of documented, clinically established, or probable FS was defined as having 

chart history characteristics consistent with FS. The second criteria was having a seizure 

witnessed by a clinician who either 1) reviewed the video EEG recording and found the 

semiology typical of FS, or 2) is experienced in diagnosis of seizure disorders and found the 

seizure to show semiology typical of FS, regardless of whether or not it was on v-EEG. The third 

criteria was that there was no epileptiform activity in routine or sleep-deprived interictal EEG, 

in routine or ambulatory ictal EEG during a typical event, or immediately before, during or after 

ictus captured on ictal video EEG. A positive diagnosis for possible FS was defined as having a 

history consistent with FS, event matched FS semiology by witness report or self-

report/description, and that there was no epileptiform activity in routine or sleep-deprived 

interictal EEG.
4
 KFH was consulted as needed to adjudicate.  

Prior to review of these 50 charts, SG reviewed 100 charts, and KH also reviewed 37 of 

these charts. The goal of this first round of chart review was to train the reviewer (SG) to 

identify key phrases and language used by VUMC neurologists to interpret video EEG and to 

confirm diagnoses. SG, KH, and LKD sat in conference for approximately 4 hours to discuss the 

levels of evidence observed and the certainty of diagnosis given video EEG results.  

For the sexual assault trauma analysis, AL manually reviewed 52 charts to identify the 

presence of confirmatory statements describing a history or current experience of sexual 

assault trauma.  
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Standard error (SE) and confidence intervals (CI) for the positive predictive value of each 

algorithm was calculated using the following formulas, where TP = number true positive, FP = 

number false positive: 

SE = $PPV ∗ (1 − PPV)TP + FP  

CI = PPV ± 1.96 ∗ SE 

Positive Predictive Value (PPV=total true cases/total algorithm identified cases*100) was 

calculated to determine the accuracy of the phenotyping approach for both FS and sexual 

assault trauma. The FS charts were reviewed for documented evidence of a clinical diagnosis of 

FS and classified as either (a) documented, clinically established, or probable FS; or (b) possible 

FS.
4
 Additionally, mean and standard error of the reported time from seizure onset to FS 

diagnosis were calculated using data extracted during chart review. 

 

Development of Medical Home Population 

The total study population used for algorithm development and prevalence calculations 

included the entire hospital population (N = 2,346,808). However, the phenome-wide 

association study was restricted to a subset of this total population called the “medical home” 

population. The medical home is a heuristic definition that restricts the total sample to a 

subpopulation with more complete medical record data to facilitate the comparison of 

comorbidity patterns between cases and controls. The definition applied required the presence 

of at least 5 codes over a period of at least 3 years. The reason for this restriction is to 

ameliorate the impact of missing data in controls who may have a much shorter medical record 
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which can result in a biased upward estimate in the regression coefficients in a case vs. control 

comparison in the PheWAS. 

 

Phenome Wide Association Studies (PheWAS) 

Phenome Wide Association Studies (PheWAS) were performed to systematically assess 

the co-occurrence of FS and all other phenotypes across the adult medical phenome after 

covariate adjustment. ICD-9 codes were mapped to 1,814 phecodes (outcomes) as described 

and validated using a hierarchical grouping system by the Phecode Map v1.2 project.20 For 

each of the 1,653 phecodes , any individual with two or more phecode-mapped ICD-9 codes 

was assigned case status for the corresponding phecode, while those with no phecode-mapped 

ICD-9 codes were assigned as controls, and those with only one phecode-mapped ICD-9 code 

were excluded from the analysis of that phecode. ICD-10 codes were not included as, at the 

time, there was not yet a validated structure for ICD-10 to phecode mapping, and since most of 

the data uses the ICD-9 billing data. We required a minimum number of 100 cases for each 

phecode. We fitted 1,653 logistic regressions to test the relationship between algorithm-

defined binary FS case/control status (predictor variable) and each phecode (outcome) after 

adjusting for potential mediators and confounders including sex, age (defined for each 

individual as median age across their medical record), density of records (in records per year), 

and EHR-reported race.
46,51

 PheWAS results were considered statistically significant if the p-

value of the association passed a Bonferroni corrected threshold for multiple testing 

(p<0.05/1,653=3.02E-05).  
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PheWAS of FS compared to controls with epilepsy 

We compared algorithm-identified FS cases (n = 1,431) to controls with epilepsy (n = 

4,715). Controls with epilepsy were defined as anyone who had either an ICD10 code from 

group G40 or an ICD9 code from group 345 for either generalized or focal epilepsy, as 

previously reported.
47,48

 Then, we conducted a PheWAS where the independent variable was FS 

cases status vs. controls with epilepsy using all of the same covariates. Finally, we repeated the 

analysis a final time and compared epilepsy cases (4,175) to controls (n = 496,890). Here, 

controls were defined as all other patients, excluding FS cases, FS patients meeting exclusion 

criteria for FS, and any patients with either one or two GE or FE ICD codes.   

 

FS comorbidity sex-differences analysis 

We performed a phenome-wide FS by sex interaction analysis to determine whether 

comorbidities were more common among males or females with FS after accounting for any 

baseline sex-difference in the prevalence of the comorbidity. A minimum number of 100 cases 

of any given phenotype were required for inclusion in the analysis. Phenotypes that exceeded a 

Bonferroni corrected interaction p-value (p < 3.02E-05) demonstrated a significant diagnosis by 

sex interaction. Although all phenotypes were included in the analysis, any significant 

phenotypes which were sex-specific were manually excluded.  

 

FS date of diagnosis analyses 

 For each patient identified as a FS case, we established the date of the first clinical 

suspicion of FS, defined as the first mention of a FS keyword in clinical notes. We used the date 
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of EEG administration (with a FS keyword appearing in the patient’s chart within 30 days) to 

define the date of the diagnosis of FS. We then determined the average time from the first 

mention to the diagnosis for algorithm defined FS cases. Furthermore, during the manual chart 

review we documented patient-reported onset of seizures. 

 

Cerebrovascular disease identification 

Based on initial results from the PheWAS, we conducted further follow-up analysis of 

the class of cerebrovascular disease conditions. Date of diagnosis of cerebrovascular disease 

was identified using the date of the first ICD code of a list of ICD9 codes that were found to be 

significantly associated with FS and epilepsy (all of which overlapped). The ICD9 code list was as 

follows: 430, 433, 433.8, 430.2, 433.2, 433.21, 433.3, 433.31, 430.3, 433.6, 430.1, 433.1, 433.5, 

433.11, 433.12.  

 

Temporal analysis between FS and cerebrovascular disease: 

We performed additional analyses to further explore the temporal relationship between 

FS (and epilepsy) diagnosis and coded cerebrovascular disease (CVD) after our PheWAS 

revealed an association between FS and CVD (Supplementary Methods). We determined 

whether CVD or FS was more likely to occur in the EHR first, then whether there was any 

difference in the common comorbidities between those patients who presented with FS first or 

CVD first. For patients with both FS and CVD, we calculated the median (and interquartile) age 

at the first ICD code for CVD and the number of years from FS diagnosis to first CVD code. We 

then binned patients into three groups (a) FS diagnosis >90 days before CVD, (b) FS diagnosis 
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within 90 of CVD diagnosis, and (c) CVD diagnosis >90 days before FS diagnosis. We compared 

these three groups of FS+CVD patients on seventeen different clinical and demographic 

features (Table 7). We performed parallel analyses to examine the temporal relationship 

between CVD and epilepsy and to test for differences in the same seventeen clinical features 

that were examined in FS+CVD cases. 

 

Calculation of BMI from the EHR 

Previous publications indicate that body mass index (BMI) may be higher in patients 

with FS.
49

 Therefore we included BMI as a covariate in several analyses. BMI data was obtained 

from the EHR. All individuals had multiple BMI measurements from various visits to the VUMC.  

BMI in the EHR is prone to recording errors.
50

 To remove erroneous BMI records, we first z-

score scaled the longitudinal BMI measurements collected within each individual, then 

removed any measurement with a Z-score below -3 or above 3. Next, we calculated median 

BMI value for everyone.
50

 

Using the cleaned median BMI values for everyone with available data, we calculated 

the mean and SE of BMI for FS cases without epilepsy as defined by our algorithm (n = 1,605), 

for FS cases with epilepsy as defined by our second algorithm (n = 1,058), and for controls (n = 

488,398) as defined by our algorithm. We also calculated the mean and SE BMI value for 

epileptic patients (n = 6,186) for comparison and replication of prior studies.
49

 We used the R 

package ggplot2 for plotting, and a one-way ANOVA was performed in R followed by a Tukey 

post-hoc analysis to determine statistical significance of the difference in BMI between each 

group.   
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It is also worth noting that all of these analyses were performed separately with and 

without median BMI included as a covariate. However, results for analyses excluding the 

median BMI covariate are not shown as they were very similar to the analyses including median 

BMI as a covariate.  

 

Results 

Calculation of Positive Predictive Value (PPV) from automated EHR-based FS phenotyping 

algorithm  

Thirty-five of 50 (70%; 95% CI = 69.18% - 70.82%) FS designated charts reviewed met 

criteria to be considered “Documented, Clinically Established, and Probable FS cases”, while 14 

(28%; 95% CI = 27.21%-28.79%) of cases were “Possible FS cases”, and only 1 (2%) case was 

considered “No FS/Not enough information”.  

 

EEG keyword presence in charts and CPT code presence are strongly correlated 

Across the entire VUMC-EHR, 66,936 patients had an EEG CPT code, 109,523 patients 

had “EEG” written in their charts, and 62,249 patients had both an EEG CPT code and keyword 

EEG in their charts. Approximately 93% of patients with an EEG CPT code also had a clinical note 

with the EEG description or interpretation and approximately 57% of patients with an EEG 

keyword also had an EEG code in their chart. 

 

Automated EHR-based sexual assault trauma phenotyping algorithm yields a PPV of 90% 
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AML manually reviewed 52 charts identified as cases by the sexual assault trauma 

phenotyping algorithm and calculated the positive predictive value of the algorithm. Charts 

were identified as true positives if they clearly contained a description of the patient’s reported 

history of sexual assault. In the 5/52 charts identified as false positives, inclusion phrases were 

present either as negation of sexual assault history (e.g., “she denies a h/o sexual abuse”) or in 

reference to someone other than the patient (e.g., “her sister was sexually abused”). Using this 

approach, AML determined the PPV of the sexual assault trauma phenotyping algorithm was 

90.38% (CI = 82.37% - 98.39%). 

 

Chart review to determine the average time from seizure to diagnosis 

Thirty-two charts of the fifty randomly selected for manual chart review included 

written descriptions of patient-reported date of seizure onset. As SBG reviewed the charts, she 

made note of the patient-reported date of seizure onset. Based on this data, the mean time 

from seizure onset to diagnosis of FS was 6.6 (± 1.4) years. 

 

Descriptive medical record statistic in medical home vs. non-medical home cases and controls 

Within the entire VUMC-EHR, FS cases (purple) have a longer length of record than controls 

(green; Figure 1A). This difference remains when restricted to medical home (MH) status, 

where FS cases (blue) have an even longer length of record on average than controls (red). 

Additionally, we see that within the medical home, FS patients (blue) have higher density of 

record (mean=9.07, SE=0.95) than controls (mean=6.03, SE=0.03; red; Figure 1B). In other 

words, FS cases get diagnosed with more billing codes per year than their control counterparts. 
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Combined with their longer length of records, this indicates that throughout their medical 

records, FS cases get coded with more ICD codes than controls.  

 

Calculation of FS prevalence in a clinical population 

The FS algorithm identified 3,341 patients >18 years old with FS in the VUMC-EHR, out 

of a total patient population of 2,346,808 (0.14%). 752,024 VUMC patients met our definition 

for “medical home”. Of the total FS case sample, 1,431 met the definition for medical home 

(Table 4). The period prevalence of FS patients in the adult medical home population was 0.27% 

(1,431 out of 523,593) and 74% of the algorithm-identified FS medical home patients were 

female (Table 4).  

 

 FS Controls  FS Cases  OR (95% CI) Beta (SE) p-value 
N VUMC-EHR 3,341    

N Medical Home 502,200 1,431    

Female sex, N (%) 299,472 (60) 1,062 (74) 1.75 (1.55-1.99)  1.61E-18* 

Race, N (%)     

   Caucasian  417,523 (83) 1,264 (88) 1.97 (1.11-3.47)  0.02 

   African American 56,549 (11) 166 (12) 1.02 (0.51-2.05)  0.96 

   Asian 7,581 (2) 13 (1) 0.35 (0.09-1.27)  0.11 

   Unknown/Other 18,097 (4) 30 (2) 0.33 (0.08-1.26)  0.10 

   Native American 1,992 (0.004) 10 (1) 0.13 (0.01-1.10)  0.06 

Ethnicity, N (%)     

   Hispanic/Latino(a) 9,644 (2) 23 (2) 0.38 (0.22-0.65)  5.20E-04* 

   Unknown 19,176 (4) 37 (3)    

Records per year, 

Median (Q1 – Q3) 
6.03 (2.88 – 13.15) 9.07 (4.05 – 20.89) 

.. 10.26 (0.61) 1.72e-63* 

Length of record (years), 

Median (Q1 – Q3) 
8.81 (5.56 – 12.99) 10.29 (6.26 – 14.68) 

.. 1.13 (.14) 1.68e-16* 

Number of ICD codes, 

Median (Q1 – Q3) 
49 (23 – 113) 80 (35 – 215.5) 

.. 124.25 

(5.21) 

1.84e-125* 

Age, Median (Q1 – Q3) 59.58 (45.02 – 72.48) 49.31 (39.40 – 59.87) .. -9.77 (0.46) 3.4e-104* 
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Median Age of Record, 

Median (Q1 – Q3) 
51 (36 – 65) 40 (30 – 51) 

.. -1.05 (0.46) 6.6e-124* 

Median BMI (Q1 -Q3) 27.8 (24.2 – 32.5) 28.7 (24.0-34.9) .. 1.04 (0.19) 1.27E-7* 

 

Table 4. Algorithm-defined FS cases and controls demographics. Number of adult cases identified by FS algorithm 

within the VUMC EHR and how many of those meet a medical home definition, or those who have at least 5 ICD 

codes on different days over the span of at least 3 years. We have further shown the proportion of males and 

females within each of these categories. Around 74% of FS cases identified by our algorithm are female (compared 

to 60% females in controls), which mirrors previously reported FS demographics. We have also shown the race, 

ethnicity, density of records, and age demographics in both algorithm-defined FS cases and controls. * indicates 

that the statistical analysis exceeded Bonferroni multiple-testing correction. 

 

Demographic differences in FS cases and controls 

Linear or logistic regression was applied to determine the effects of FS status on each 

outcome presented in Table 4 while covarying for all other variables presented. Logistic 

regression was used for binomial variables while linear regression was used for all quantitative 

variables. Results indicated that FS cases are significantly more likely to be female (OR = 1.75, 

95% CI = 1.55-1.99, p = 1.6e-18). FS cases were more likely to be Caucasian (OR = 1.97, 95% CI = 

1.11-3.47, p = 0.02) and less likely to be Hispanic (OR = 0.38, 95% CI = 0.22-0.65, p = 5.2e-04). 

Additionally, FS cases had a longer medical record (median = 10.29, Q1-Q3 = 6.26 – 14.68) than 

controls (median = 8.81, Q1-Q3 = 5.56 – 12.99, p=3.44e-04), more ICD codes accrued (FS cases 

median = 80, Controls = 49, p = 3.37e-27), and a greater density of record than controls (FS 

median = 9.07, Control median = 6.03, p = 0.002). FS cases were significantly younger than 

controls (median FS age = 49.31, median control age = 59.58, p=3.4e-104) and had a 

significantly higher BMI (FS median = 28.7, control median = 27.8, p=1.27e-07).  
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FS comorbidity with psychiatric and neurological disorder codes 

Phenotypes most significantly associated with FS when compared to algorithm-

identified controls included psychogenic and somatoform disorders (OR 1.37, 95% CI 1.35 – 

1.38, p<3.02e-05; somatoform disorder (OR 1.43, 95% CI 1.41 – 1.45, p<3.02e-05); PTSD (OR 

1.22, 95% CI 1.21 – 1.24, p<3.02e-05); mood disorders (OR 1.14, 95% CI 1.13 – 1.15, p<3.02e-

05), and anxiety disorders (OR 1.14, 95% CI 1.13 – 1.15, p<3.02e-05; Figure 4A). We also 

identified strong associations with depression (OR 1.14, 95% CI 1.13 – 1.15, p<3.02e-05), and 

schizophrenia (OR 1.19, 95% CI 1.17– 1.20, p<3.02e-05). Overall, 56/72 (77%) phecodes 

mapping to the psychiatric disorders category were significantly associated with FS after 

Bonferroni correction for multiple testing (p = 3.02E-05). We found that 55/82 (67%) of the 

‘neurological disorder’ phecodes were also significantly associated with FS.  
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Figure 4. PheWAS of A) VUMC EHR FS algorithm defined cases versus algorithm defined controls and B) VUMC EHR 

FS algorithm defined cases versus epilepsy controls. Results are plotted by category of phenotypes, with each 

category shown in a different color. Only the top 20 associations are labeled to increase visibility of the graph. 

Additionally, upturned triangles represent positive associations with FS case status, while downturned triangles 

represent negative associations with FS case status. The horizontal red line indicates the Bonferroni corrected p-

value. 
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Table 5 includes the period prevalence of sexual-assault trauma and ten common 

psychiatric comorbidities among algorithm-defined FS cases. These were ten predominantly 

adult-afflicting psychiatric comorbidities for which ICD code definitions had previously been 

validated.
53

 The prevalence of most of these psychiatric comorbidities in the VUMC-EHR 

confirmed previously reported literature.
54–61

 However, prevalence of these psychiatric 

comorbidities was much higher in FS patients ranging from 2.59% (phobia) to 30.19% (MDD).  

 

 

Phenotype 
N Cases Total (N 

comorbid with FS) 
VUMC-EHR MH 
Prevalence (%) 

Prevalence within 
FS patients (%) 

Ratio of prevalence 
within FS:VUMC-EHR MH 

Schizophrenia 10,322 (176) 1.97 12.30 6.24 

Major depression 36,069 (432) 6.89 30.19 4.38 

Bipolar disorder 14,789 (254) 2.82 17.75 6.28 

Insomnia 32,493 (195) 6.21 13.63 2.20 

Posttraumatic stress 

disorder 
8,088 (339) 1.54 23.69 15.34 

Obsessive-compulsive 

disorder 
2,086 (39) 0.40 2.73 6.84 

Alcohol abuse 13,630 (105) 2.60 7.34 2.82 

Alcohol use - long term 5,164 (46) 0.99 3.21 3.26 

Phobia 2,550 (37) 0.49 2.59 5.31 

Anxiety 38,898 (391) 7.43 27.32 3.68 

Sexual Assault Trauma 4,357 (188) 0.83 13.14 15.79 

Functional seizures 1,431 0.27 .. .. 

 

Table 5. Psychiatric phenotypes and sexual assault trauma comorbidities in FS cases. The number of adult cases for 

each psychiatric comorbidity within the VUMC-EHR medical home is reported as well as the number of cases with 

FS comorbidity. We have also calculated the prevalence of each disorder in the VUMC-EHR medical home adult 

population and the FS adult population. Finally, we have calculated the ratio of the prevalence of each disorder 

within FS patients vs. in the entire VUMC-EHR. The total number of adult patients in the SD medical home was 

523,584. 
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Psychiatric, neurological, and cerebrovascular disorders are associated with epilepsy 

We also performed a PheWAS analysis between epilepsy cases and epilepsy controls, 

which showed 47 out of 71 psychiatric disorders codes were significantly associated with 

epilepsy, as well as 60 out of 82 neurological phecodes (Figure 5). We also observed that 35 

circulatory system phenotypes were significantly associated with epilepsy, several of which 

were among the strongest associations with epilepsy.  

 
 
Figure 5. PheWAS of VUMC EHR ICD-code defined epilepsy cases versus controls. Results are plotted by category of 

phenotypes, with each category shown in a different color. Only the top 20 associations are labeled to increase 

visibility of the graph. Additionally, upturned triangles represent positive associations with FS case status, while 
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downturned triangles represent negative associations with FS case status. The horizontal red line indicates the 

Bonferroni corrected p-value. 

 

Additionally, PheWAS comparing comorbidity patterns between FS cases and epilepsy 

cases showed that 72% of the psychiatric, 42% of the neurological and 20% of the circulatory 

system phenotypes that were associated with FS, remained associated with FS even when the 

comparison group was limited to epilepsy cases (Figure 4B).  

 

FS co-occurrence with cerebrovascular disease  

We identified thirteen novel and significant associations between cerebrovascular 

disease codes and FS. These included cerebrovascular disease (OR 1.08, 95% CI 1.06 – 1.09, 

p<3.02e-05) and transient cerebral ischemia (OR 1.09, 95% CI 1.08 – 1.11, p<3.02e-05; Table 6). 

PheWAS analyses comparing FS cases to epilepsy cases (Figure 4B) and epilepsy cases to 

controls (Figure 5) showed that cerebrovascular disease is associated with epileptic and non-

epileptic seizures. CVD (phecode 433) was more strongly associated with epilepsy than FS (FS 

OR = 1.08, CI =1.06-1.09, p=2.6E-40; Epilepsy OR = 1.20, CI = 1.18 – 1.21, p<3.02e-05).  
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Phecode Phecode Description OR p N Cases N Controls 95% CI 
433 Cerebrovascular disease 1.08 2.57E-40 19161 374563 (1.06 - 1.09) 

433.31 Transient cerebral ischemia 1.09 2.80E-35 7475 374563 (1.08 - 1.11) 

433.3 Cerebral ischemia 1.09 3.24E-34 7886 374563 (1.08 - 1.11) 

433.8 Late effects of cerebrovascular disease 1.09 2.56E-18 3510 374563 (1.07 - 1.11) 

433.6 Acute, but ill-defined cerebrovascular disease 1.10 2.60E-17 2350 374563 (1.08 - 1.13) 

433.2 Occlusion of cerebral arteries 1.07 6.77E-14 6680 374563 (1.05 - 1.09) 

433.21 
Cerebral artery occlusion, with cerebral 

infarction 
1.07 1.72E-13 6476 374563 (1.05 - 1.09) 

430 Intracranial hemorrhage 1.08 1.37E-11 3088 374563 (1.05 - 1.10) 

433.5 Cerebral aneurysm 1.08 2.22E-08 1618 374563 (1.05 - 1.11) 

430.1 Subarachnoid hemorrhage 1.08 5.68E-08 1187 374563 (1.05 - 1.11) 

430.2 Intracerebral hemorrhage 1.07 6.20E-06 1525 374563 (1.04 - 1.10) 

430.3 Subdural hemorrhage 1.09 1.80E-05 782 374563 (1.05 - 1.14) 

433.1 Occlusion and stenosis of precerebral arteries 1.05 2.86E-05 6741 374563 (1.03 - 1.08) 

 

Table 6. FS-associated cerebrovascular disease phenotypes. Cerebrovascular disease phenotypes in the circulatory 

system category that were significantly associated with FS case/control status, as well as their associated OR and 

the number of cases for each phenotype. 

 

Twenty-nine percent of patients were diagnosed with FS prior to the onset of CVD, 23% 

were diagnosed with CVD and FS within 90 days of each other, and almost half (48%) were 

diagnosed with FS after CVD (Figure 6, Figure 7, Table 7). However, these results are difficult to 

disentangle given the complication of the long diagnostic odyssey of FS. Essentially, the date of 

diagnosis for FS has shown to be on average 8 years after the typical onset of seizures in this 

patient population. This implies a certain level of uncertainty in the exact order of the CVD vs FS 

events even in the face of this analysis. A parallel analysis of epilepsy and CVD revealed similar 

patterns (Table 8).  
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 CVD and FS codes (n 
= 92) 

FS before CVD (n 
= 27) 

CVD before FS 
(n = 44) 

FS and CVD 
simultaneous (n = 

21) 
Age at first cerebrovascular code, 

Median (Q1 – Q3) 

49.78 (39.03 – 

55.51) 

45.27 (37.29 – 

54.79) 

50.09 (41.83 – 

55.68) 

51.27 (38.87 – 

58.58) 

Age at FS suspicion, Median (Q1 – 

Q3) 

49.03 (38.10 – 

57.30) 

38.80 (32.95 – 

49.10) 

53.79 (43.46 – 

60.66) 

51.30 (38.68 – 

58.34) 

Age at FS diagnosis, Median (Q1 – 

Q3) 

49.71 (38.41 – 

57.82) 

38.80 (32.95 – 

49.14) 

53.79 (45.08 - 

61.35) 

51.30 (38.68 – 

58.58) 

Years from cerebrovascular code to 

FS diagnosis, Median (Q1—Q3) 
0.19 (-0.85 - 3.48) 

-3.98 (-6.86 to -

1.54) 

3.89 (1.40 - 

5.77) 
0.01 (0.00 - 0.07) 

PTSD comorbidity, N (%) 20 (22) 6 (22) 10 (23) 4 (19) 

Sexual assault trauma comorbidity, 

N (%) 
14 (15) 6 (22) 5 (11) 3 (14) 

Migraine comorbidity, N (%) 27 (29) 7 (26) 14 (32) 6 (29) 

Schizophrenia comorbidity, N (%) 3 (3) 1 (4) 1 (2) 1 (5) 

MDD comorbidity, N (%) 20 (22) 5 (19) 11 (25) 4 (19) 

Bipolar disorder comorbidity, N (%) 10 (11) 3 (11) 6 (14) 1 (5) 

Insomnia comorbidity, N (%) 9 (10) 2 (7) 4 (9) 3 (14) 

PTSD comorbidity, N (%) 0 (0) 0 (0) 0 (0) 0 (0) 

Anxiety comorbidity, N (%) 29 (32) 6 (22) 17 (39) 6 (29) 

Phobia comorbidity, N (%) 14 (15) 5 (19) 6 (14) 3 (14) 

Alcoholism comorbidity, N (%) 5 (5) 2 (7) 2 (5) 1 (5) 

OCD comorbidity, N (%) 5 (5) 2 (7) 2 (5) 1 (5) 

Female sex, N (%) 64 (70) 17 (63) 33 (75) 14 (67) 

Race, N (%)  

  Caucasian 81 (88) 23 (85) 38 (86) 20 (95) 

  African American 11 (12) 4 (15) 6 (14) 1 (5) 

Ethnicity, N (%)  

  Hispanic/Latino(a) 2 (2) 1 (4) 0 (0) 1 (5) 

Median BMI, Median (Q1 – Q3) 
28.91 (24.72 – 

35.61) 

28.27 (24.13 – 

32.03) 

28.31 (24.03 – 

36.12) 

32.86 (26.57 – 

37.34) 

Records per year, Median (Q1 – Q3) 19.26 (8.61 – 61.02) 
23.54 (6.79 – 

48.33) 

26.46 (9.65 – 

68.30) 

11.52 (7.85 – 

34.07) 

Length of record, Median (Q1 – Q3) 11.09 (7.38 - 15.75) 
12.00 (8.80 - 

15.38) 

11.11 (7.80 - 

15.99) 
10.62 (7.13 - 11.85) 

Number of ICD codes, Median (Q1 – 

Q3) 
241.50 (68.25 – 648) 212 (67 – 607) 

409.5 (102 – 

819.5) 
100 (56 – 399) 

Age, Median (Q1 – Q3) 
59.14 (48.94 – 

65.91) 

52.35 (42.72 – 

60.94) 

62.85 (53.47 – 

68.04) 

60.99 (53.35 – 

65.84) 

Median Age of Record, Median (Q1 

– Q3) 
51.50 (40 – 59) 46 (37.25 – 55) 

54.50 (43.75 – 

60.25) 
51 (42 – 58) 



 40 

 

Cerebrovascular disease 

subcategory ICD codes (% of total 

CVD ICD codes) 

 

  Cerebral hemorrhage 12 17 9 10 

  Cerebral artery occlusion 19 23 18 16 

  Cerebral ischemia 29 23 33 30 

  Cerebrovascular disease 35 30 37 41 

  Cerebral aneurysm 4 5 4 1 

  Cerebral atherosclerosis 1 2 0 1 

 

Table 7. Demographics for 92 patients who were diagnosed with both cerebrovascular disease and FS. 

Demographics are also shown for three subgroups of these patients: those who developed FS before CVD (n = 27); 

those who developed FS and CVD within three months of each other (n = 21); and those who developed CVD 

before FS (n = 44). The proportion of males and females, race, ethnicity, density of records, median age across the 

medical record, age at first CVD code, age at FS suspicion, age at FS diagnosis, and percentages of CVD 

subcategories represented in each group. ICD codes for cerebral hemorrhage included 430, 430.2, 430.3, and 

430.1. ICD codes for cerebral artery occlusion included 433.2, 433.21, 433.1, and 433.11. ICD codes for cerebral 

ischemia included 433.3 and 433.31. ICD codes for cerebrovascular diseases included 433, 433.8, and 433.6. The 

ICD code for cerebral aneurysm was 433.5, and the ICD code for cerebral atherosclerosis was 433.12. 

 

 CVD and Epi codes 
(n = 735) 

Epi before CVD 
(n = 208) 

CVD before Epi 
(n = 374) 

Epi and CVD 
simultaneous (n = 

153) 
Age at first cerebrovascular 

code, Median (Q1 – Q3) 

55.27 (42.72 – 

65.18) 

52.31 (40.03 – 

61.81) 

54.31 (43.62 – 

65.07) 
60.96 (48.26 – 70.49) 

Age at first epilepsy code, 

Median (Q1 – Q3) 

55.74 (42.07 - 

66.16) 

46.07 (33.68 – 

57.73) 

58.70 (45.91 – 

68.55) 
61.02 (48.30 – 70.49) 

Days from epilepsy code to 

cerebrovascular, Median 

(Q1—Q3) 

-106 (-1006.5 to 

289) 

1195 (607.5 – 

2739.8) 

-990 (-2089.8 to -

350.2) 
-1 (-28 to 0) 

Sexual assault trauma, N (%) 10 (1) 3 (1) 4 (1) 3 (2) 

PTSD, N (%) 18 (2) 9 (4) 7 (2) 2 (1) 

Female sex, N (%) 357 (49) 104 (50) 183 (49) 70 (46) 

Race, N (%)  

   Caucasian  599 (81) 180 (87) 293 (78) 126 (82) 
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   African American 127 (17) 25 (12) 77 (21) 25 (16) 

   Asian 6 (1) 2 (1) 3 (1) 1 (1) 

   Unknown/Other 1 (0) 0 (0) 1 (0) 0 (0) 

Ethnicity, N (%)  

   Hispanic/Latino(a) 14 (2) 4 (2) 7 (2) 3 (2) 

Median BMI, Median (Q1 – 

Q3) 

27.45 (23.69 – 

31.84) 

27.14 (23.50 – 

31.51) 
27.45 (24.03 – 32) 27.75 (23.14 – 31.16) 

Records per year, Median 

(Q1 – Q3) 

29.15 (14.40 – 

56.46) 

24.07 (11.25 – 

44.43) 

35.03 (17.22 – 

64.94) 
26.28 (13.67 – 53.67) 

Length of record, Median 

(Q1 – Q3) 

12.56 (8.05 – 

16.79) 
14.06 (9.50 – 17.45) 13.16 (8.48 – 16.84) 9.21 (6.12 – 14.12) 

Number of ICD codes, 

Median (Q1 – Q3) 
339 (158 – 676) 288 (142 – 556.8) 

413.5 (181.2 – 

791.2) 
250 (148 – 535) 

Age, Median (Q1 – Q3) 66.4 (54.4 – 75.72) 
61.32 (48.52 – 

71.63) 

67.60 (56.01 – 

78.25) 
71.14 (59.35 – 77.81) 

Median Age of Record, 

Median (Q1 – Q3) 
58 (46 – 68) 

52.50 (40.00 – 

62.00) 
59 (48 – 70) 63 (50 – 70) 

Cardiovascular subcategory 

ICD codes (% of total CVD ICD 

codes) 

 

   Cerebral hemorrhage 20 19 18 27 

   Cerebral artery occlusion 25 25 26 22 

   Cerebral ischemia 20 20 21 18 

   Cerebrovascular disease 33 33 32 32 

   Cerebral aneurysm 2 3 2 2 

   Cerebral atherosclerosis 1 1 1 1 

 

Table 8. Demographics for 735 patients who were diagnosed with both cerebrovascular disease and epilepsy. 

Demographics are also shown for three subgroups of these patients: those who developed Epilepsy before CVD (n 

= 208); those who developed Epilepsy and CVD within three months of each other (n = 153); and those who 

developed CVD before Epilepsy (n = 374). The proportion of males and females, race, ethnicity, density of records, 

median ages across the medical record, age at first CVD code, age at first generalized or focal epilepsy code, and 

percentages of CVD subcategories are shown for each group. ICD codes for cerebral hemorrhage included 430, 

430.2, 430.3, and 430.1. ICD codes for cerebral artery occlusion included 433.2, 433.21, 433.1, and 433.11. ICD 

codes for cerebral ischemia included 433.3 and 433.31. ICD codes for cerebrovascular diseases included 433, 
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433.8, and 433.6. The ICD code for cerebral aneurysm was 433.5, and the ICD code for cerebral atherosclerosis was 

433.12. 

 

 

Figure 6. Histogram of the number of years from date of PNES diagnosis to cerebrovascular diagnosis in 92 patients 

who had both CVD and PNES. Negative values indicate patients who were diagnosed with CVD before PNES, while 

positive values indicate patients who were diagnosed with PNES before CVD. 
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A.               B.                

  
C.  

 

 

 

 

 

 

 

 

 

 

Figure 7. Temporal analysis of the development of FS and cerebrovascular disease in 92 patients. Patients are 

binned into three groups: A. Patients who developed FS before CVD (n = 27); B. Patients who developed FS and 

CVD within 3 months of each other (n = 21); and C. Patients who developed CVD before FS (n = 44). The age at the 

first CVD ICD code each patient was diagnosed with is plotted as red dots, with median and first and third quartiles 

plotted as a box plot. The corresponding age at FS diagnosis is plotted as blue dots, with a grey line connecting the 

age of diagnosis of CVD and FS for each patient. 
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FS association with sexual assault trauma  

We identified a total of 10,036 individuals (0.36%) in the EHR who met inclusion criteria 

for sexual assault trauma including 1,853 males and 8,183 females (Table 3). Among these 

patients, 4,357 also met criteria for the medical home population and were over the age of 18. 

Approximately four percent (188/4,357) of patients reporting sexual assault met criteria for FS. 

Conversely, the prevalence of sexual assault trauma among patients with FS was 13.14%, 15.79 

times more prevalent than in the general medical home population. The prevalence of sexual 

assault trauma among patients with epilepsy was 132 out of 4,715 (2.80%). 

Using a multi-variable logistic regression, we found that sexual assault trauma is 

significantly associated with FS (OR = 10.26, CI = 10.09 – 10.44, p<3.02e-05) (Table 9) after 

adjusting for age, sex, median BMI, race, and medical record density. While our analysis 

showed that female sex was also significantly associated with FS (Male OR = 0.64, CI = 0.51 – 

0.77, p<3.02e-05), at this time there was no significant interaction between sex and sexual 

assault trauma on FS diagnosis (OR = 1.30, CI = 0.80 – 1.81, p = 0.31). 

 

Variable P-value OR CI 

Sexual Assault Trauma 5.36E-146 10.26 10.09-10.44 

Sex (Male) 4.04E-11 0.64 0.51-0.77 

Sexual Assault Trauma:Sex 0.31 1.30 0.80-1.81 

 

Table 9. FS case status and sex are significantly associated with sexual assault in the VUMC-EHR. A multivariable 

logistic regression FS ~ Sexual assault trauma + sex + sexual assault trauma*sex was performed to determine 

whether FS case/control status, sex, or the interaction of FS case status were correlated with sexual assault case 

status. P-values, odds ratio (OR) and the 95% confidence interval (CI) are presented for each variable. The 
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multivariable logistic regression used included these variables and additional covariates for median age of record, 

median BMI, race, and the density of records. 

 

Mediation of sexual assault trauma and the increased rate of females with FS  

Sexual assault trauma mediated 22% (p<3.02e-05) of the variance in FS diagnosis 

associated with female sex.  

 

Comorbidity patterns for FS do not differ by sex 

There were no significant differences between males and females in the prevalence of 

each FS comorbidity. Based on the PheWAS conducted in FS patients with a sex interaction 

term added to the logistic regression, no phenotypes exceeded the significance threshold for 

multiple testing.  

 

BMI is significantly higher in FS patients than controls 

One-way ANOVA and a post-hoc Tukey test showed that FS cases without concurrent 

epilepsy had significantly higher median BMI measurement than algorithm-defined or epilepsy 

patients (Figure 8). Additionally, a greater proportion of algorithm-defined FS cases without 

concurrent epilepsy were considered obese (BMI>30) (39%) compared to algorithm-defined 

controls (33%), epileptic patients (27%), and FS patients with concurrent epilepsy (37%)(Table 

10). 
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Figure 8. FS patients have greater BMIs than the control group and epilepsy patients. Average and SE of median 

BMI are shown for controls as identified by our algorithm, epilepsy patients as identified by ICD codes, FS cases as 

identified by our algorithm, and FS cases with epilepsy as identified by our second algorithm. All participants 

analyzed had a median age of records over 18. The sample size and percentage of patients from each group that 

were considered obese (BMI over 30) is also shown. 

 

 



 47 

 

Phenotype Sample size 
Mean body mass index 

(SE) 
Obese (% BMI over 

30) 

Control 488,398 28.17 (0.01) 33.46 

Epilepsy 6,186 26.29 (0.09) 26.59 

FS only 1,605 29.01 (0.20) 39.31 

FS and epilepsy 1,058 28.64 (0.24) 37.43 

 

Table 10. Body Mass Index information for FS and epilepsy cases as compared to controls. Average and SE of 

median BMI are shown for controls as identified by our algorithm, epilepsy patients as identified by ICD codes, FS 

cases as identified by our algorithm, and FS cases with epilepsy as identified by our second algorithm. All 

participants analyzed had a median age of records over 18. The sample size and percentage of patients from each 

group that were considered obese (BMI over 30) is also shown. 

 

Discussion 

This study aimed to examine clinical and epidemiological characteristics of FS. First, we 

identified FS patients in the VUMC-EHR by developing an automated phenotyping algorithm 

with a PPV of 98%. The complete algorithm (Figure 2, Table 1) for identification of FS cases is 

provided in supplementary materials and deposited in PheKB for future research use by others. 

Chart review of these patients also revealed that the average time from first seizure to FS 

diagnosis in these patients was 6.6 years (± 1.4). Based on the number of patients identified by 

our algorithm in proportion to the total number of patients in our hospital system, we 

calculated the period prevalence of FS to be 0.14% in our clinical population. When restricting 

to the medical home population, the period prevalence was 0.27%. In analyzing comorbidities 

among FS patients, we confirmed previous reports that FS co-occurs with psychiatric and 
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neurological disorders, and that FS patients are nearly sixteen times more likely than the 

average hospital patient to have a documented history of sexual assault trauma. Moreover, we 

found that sexual assault trauma explains 22% of the increased rate of FS in females. Finally, we 

also discovered that FS co-occurs with cerebrovascular disease at a rate higher than expected 

by chance. 

FS was previously estimated to occur in approximately 2-33 people per 100,000 (0.002 – 

0.033%).
30

 The directly calculated period prevalence of FS in the VUMC clinical population was, 

as expected, much higher at 142 per 100,000 (0.14%). VUMC is home to an epilepsy monitoring 

unit (EMU), which increases the number of FS patients relative to the general population. Thus, 

the prevalence in the VUMC EHR may not be generalizable. However, it is critical to understand 

the prevalence of FS in a medical center setting for multiple reasons. First, efforts aimed at 

improving clinical care for FS patients are bolstered by awareness of the frequency of FS in a 

clinical setting. Second, the prevalence in a clinical setting also provides motivation for 

development of an ICD diagnostic classification specific to FS. The visibility issues that patients 

with FS face
 
was further substantiated by our chart review which indicated that the average 

time from first seizure to FS diagnosis was 6.6 years, closely matching older reports.
1
 

Several demographic comparisons between FS cases and controls closely matched 

previously reported literature. We confirmed the association between FS and female sex status 

(OR = 1.75, 95% CI = 1.55-1.99, p = 1.6e-18).
5,62

 We also confirmed that FS patients had a 

significantly higher BMI (FS median = 28.7, control median = 27.8, p=1.27e-07) than controls.
49

 

Other demographic analyses revealed currently unreported associations to our knowledge. Our 

study demonstrated that FS cases were more likely to be Caucasian (OR = 1.97, 95% CI = 1.11-
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3.47, p = 0.02), and less likely to be Hispanic (OR = 0.38, 95% CI = 0.22-0.65, p = 5.2e-04). 

Additionally, FS cases had a longer medical record (median = 10.29, Q1-Q3 = 6.26 – 14.68) than 

controls (median = 8.81, Q1-Q3 = 5.56 – 12.99, p=3.44e-04), more ICD codes accrued (FS cases 

median = 80, Controls = 49, p = 3.37e-27), and a greater density of record than controls (FS 

median = 9.07, Control median = 6.03, p = 0.002). FS cases were significantly younger than 

controls (median FS age = 49.31, median control age = 59.58, p=3.4e-104). This indicates that 

while FS patients in our medical system are around a decade younger than the average patient 

at VUMC, they still accrued more ICD codes and had a longer record than controls by around a 

decade. This indicates generally worsened health outcomes for FS patients at an earlier age 

than controls. 

Our PheWAS results suggest that patients with FS are at risk for additional chronic 

health conditions including cerebrovascular disease. While associations between CVD and 

epilepsy are widely reported, no robust associations between FS and CVD have been reported 

to our knowledge.
63–67

 Diagnoses of cerebral ischemia, occlusion of cerebral arteries, and 

intracranial hemorrhage were all significantly associated with FS in our data (Table 6). These 

results are consistent with a previous report detailing FS and co-morbid chronic medical 

conditions.
68 

However, we observed no clear illness trajectory from FS to CVD, and in fact found 

that CVD often preceded the onset of FS (Figure 6, Figure 7, Table 7). Moreover, we found no 

difference in the rate of FS risk factors or comorbidities between those patients who 

experienced FS first compared to those who experienced CVD first. The finding that CVD may 

precede FS could be explained by brain trauma or psychological distress related to CVD, 

paralleling prior data demonstrating that stroke is a risk factor for later-onset epilepsy.  These 
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findings have important implications for the management of patients who develop post-stroke 

seizures. Specifically, diagnostic video-EEG evaluation for post-stroke seizures is critical to 

confirm the diagnosis of epilepsy and/or FS.  

  Consistent with previous reports, we found FS are associated with multiple psychiatric 

and neurological disorders compared to the general hospital population and to epilepsy 

patients (Figure 4B; Figure 5). These multiple illnesses may be causally linked to FS etiology or 

pathophysiology. Alternatively, multiple diagnoses may accumulate for a FS patient while 

undergoing clinical treatment and care since FS has a broad differential diagnosis. Therefore, 

further research is needed to clarify if any causal relationship exists between FS and the 

numerous comorbidities identified in this study. Given that FS patients on average are 

diagnosed with 4.75 different psychiatric diagnoses (compared to 2.6 in epilepsy patients and 

0.85 in hospital controls), we suggest a clinical guideline: that patients experiencing seizures 

with a high burden of psychiatric illness be considered for a FS diagnosis and referred for 

diagnostic video-EEG monitoring.  This is especially important as early FS diagnosis and 

treatment are associated with better outcome.
69–71

 Overall, we believe that this novel EHR-

based study provides important rationale and motivation for ongoing EHR-based research to 

improve the complex and challenging clinical care of patients with FS. 

FS has a much higher prevalence in females. Consistent with previous reports, 

approximately 74% of FS cases in our cohort were female.
10,29,62,72,73

 Previous studies also 

indicate that females with FS were eight times more likely to report sexual assault trauma than 

males with FS.
10

 We found that sexual assault trauma and PTSD were approximately 16 times 

more frequent in FS patients compared to the general hospital population (Table 5). Among FS 
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patients, 15.82% of females and 5.42% of males reported a history of sexual assault trauma. 

Given sexual assault trauma exposure, there was no significant difference between males and 

females in the rate of FS diagnosis indicating that males and females who experience sexual 

assault trauma are at equivalent risk of developing FS (Table 9). While females with FS reported 

more sexual assault trauma than males with FS, this reflected the increased overall rate of 

sexual assault among females (1.08%) compared to males (0.25%). Mediation analysis results 

indicated that the overall increased rate of sexual assault trauma among females explains 

nearly a quarter of the increased rate of FS among females. Taken together, these findings 

provide evidence for the hypothesis that FS, while influenced by multiple complex factors 

exhibiting interindividual differences, may be considered a physical manifestation of the 

neurological damage caused by trauma.  
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CHAPTER III 

 

GENETIC EPIDEMIOLOGY OF FUNCTIONAL SEIZURES 

 

Introduction 

The population prevalence of functional seizures was previously estimated to be 

0.002%-0.033%
30

 and in Chapter II, we calculated the period prevalence of FS in the Vanderbilt 

University Medical Center Electronic Health Record (VUMC-EHR) system to be 0.014%.
8
 

Approximately 20-30% of patients admitted to epilepsy monitoring units (EMUs) are eventually 

diagnosed with FS,
25

 highlighting the benefit of including academic medical center EMUs as 

recruitment sites for research on FS. Motivated by this rationale, in Chapter II, we developed an 

algorithm to identify FS patients which yielded a positive predictive value of 98%.
8
  

Furthermore, most existing single site studies of FS studies are limited in sample size.
26

 

However, meta-analysis of EHRs with associated biobanks is a powerful way to quickly collect 

large numbers of cases and controls for clinical and genetic epidemiology studies.
42,45

 

The first genetic study on FS, conducted by Drs. Costin Leu and Dennis Lal, who also 

collaborated on this project, used whole-genome sequencing to determine that six percent of 

their sample contained pathogenic or likely pathogenic rare variants in genes such as NSD1 and 

GABRA5.
35

 This genetic burden was similar to that observed in individuals with generalized 

epilepsy (2%) and focal epilepsy (3%; p=0.3).
35

 Previous studies also show that phenotypically 

related disorders, including generalized epilepsy (GE), focal epilepsy (FE), and PTSD are 

heritable, with SNP-based heritability most recently reported at 32%, 9%, and 5%, 
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respectively.
36,37

 Thus, we hypothesized that FS are also modestly heritable with a polygenic 

architecture. 

Using the validated VUMC-EHR algorithm, we conducted a multi-site genome-wide 

association study (GWAS) and meta-analysis of functional seizures. Cases and controls were 

identified from the EHRs of the Vanderbilt University Medical Center (BioVU), the Cleveland 

Clinic, Mount Sinai (BioMe), the Million Veteran Program (MVP), Massachusetts General 

BioBank (MGBB), and the Danish population registry (iPSYCH), resulting in a total of 9,289 FS 

cases and 417,818 controls of European ancestry.  

 

Methods 

Sample Collection 

We included cases and controls from six individual biobanks in this meta-analysis of 

functional seizures. Further information regarding the algorithmic phenotyping (Table 11) and 

analysis method (Table 12) at each site is described below. 

 

 ICD10 
F44.5 

ICD9 300.11 
or 780.39 

ICD10 
R56.9 

EEG CPT 
Code 

FS 
Keyword 

Medical record 
review 

Epilepsy ICD 
code Exclusion 

BioVU X X X X X  X 

CC      X  

iPSYCH X      X 

Mt. Sinai X X X X   X 

MVP X X     X 

MGBB X X X X   X 

 

Table 11. FS phenotyping strategies across each biobank. Each row represents a biobank included in the FS GWAS 

meta-analysis, and each column represents a parameter used to select FS cases. An ‘X’ is used to demark which 
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phenotyping parameters each biobank used. Epilepsy ICD codes (ICD9 codes 345.1, 345.10, 345.4, 345.40, 345.5, 

345.50 and ICD10 codes G40.20, G40.30, G40.00, and G40.10) were excluded. 

 

BioBank FS Cases FS Controls Total Sample 
BioVU 309 59,856 60,165 

CC 109 17,811 17,920 

Mt. Sinai 133 9,744 9,877 

MVP 7,111 446,799 453,910 

MGBB 1,134 24,562 25,696 

iPSYCH 232 2,660 2,892 

Meta-analysis 9,028 561,432 570,460 
 

Table 12. Number of FS cases and controls across each biobank. Each row represents a biobank included in the FS 

GWAS meta-analysis. The number of cases and controls in each individual biobank, the total number of individuals 

from each biobank, as well as the resulting total number of cases and controls used in the meta-analysis, is shown. 

 

Post-GWAS, pre-meta-analysis Quality Control 

After obtaining summary statistics from each individual site, we followed a field 

standard quality control protocol, EasyQC.
74

  SNPs were filtered for MAF <0.05, missing data, 

non-A, C, T, or G alleles, data entry and analysis errors (e.g. negative betas and standard errors), 

and imputation scores r2<0.3 or info score <0.8. GWAS effect alleles (EA) were aligned with the 

1000 Genomes reference population, and effect allele frequency was calculated (Figure 9).
75
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Figure 9. GWAS Meta-Analysis pipeline. Steps for post-GWAS, pre-meta-analysis QC, meta-analysis, post-meta-

analysis QC, and post GWAS integrative functional analysis is described.  

 

BioVU Genome-wide Association Study 

Phenotyping approach 

A subset of individuals in the Vanderbilt University Medical Center EHR also contribute 

blood left over after routine clinical testing for the purposes of biobanking (BioVU) and genetic 

analysis. A thorough description of BioVU has been previously published 
34

. As of July 2021, 

BioVU contains 260,002 samples and 94,474 of these samples are genotyped on the Illumina 

Mega-ex Array, which covers nearly 2 million markers. An automated phenotyping algorithm 

was used to select FS cases and controls for GWAS analysis as described previously (Figures 2,3; 

Tables 1, 2, 11).
8 

This resulted in the identification of 309 functional seizure cases and 59,856 

controls with genotyping data available (Table 12). 

 

GWAS Meta Analysis Steps

Pre-Meta-Analysis QC Meta-Analysis Post-Meta-Analysis QC Downstream Analyses

- Obtain summary statistics 
from each individual 
BioBank

- Filter MAF < 0.05
- Remove missing data, 

non-A, C, T, or G alleles, 
negative betas and 
standard errors

- Filter imputed SNPs with 
r2<0.3 or INFO score<0.8

- Ensure GWAS EAF is 
aligned with reference 
population

- Align effect alleles among 
all BioBanks

- Use METAL software
- Inverse variance weighted 

using fixed effects model
- Meta-analyze 

X-chromosome separately 
from autosomes

- Make Manhattan and QQ 
plots for results

- For each SNP, plot 
average imputation 
statistic versus 
heterogeneity p-value

- Ensure lambda GC for 
each study doesn't 
exceed 1.1

- Determine minimum and 
maximum allele frequency 
difference

- Heritability using LDSC
- Genetic correlation with 

related disorders
- Transcriptome wide 

analysis using 
s-MultiXcan
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Quality Control of Genetic Data 

Genotype quality control included SNP precleaning using a SNP call rate of <0.95 using 

PLINK v1.9 (https://www.cog-genomics.org/plink/1.9/)
76,77

. In other words, individual SNPs 

were filtered temporarily for the purpose of individual-level filtering, and were then added back 

to the data. Individual SNPs with MAF <1% were temporarily filtered during the following 

individual-filter steps: Individuals were filtered who had a call rate <0.98. Next, Fhet values 

were calculated within EHR-reported races and individuals with |Fhet| >0.2 were filtered out.  

The individuals to be filtered from those three steps were removed and then a new MAF filter 

of 0.5% was applied.  

SNP ids were then mapped to 1000Genomes reference panel and principal components 

were calculated using PLINK v1.9 and Eigenstrat (https://github.com/DReichLab/EIG)
78,79

.   

Next, ancestry cluster boundaries were defined to identify individuals of homogenous ancestry. 

Closely related individuals within each ancestry group were again filtered out by calculating IBD 

and filtering PI_HAT > 0.2 using PLINK v1.9. Hardy-Weinberg disequilibrium was calculated 

within each ancestry group using non-LD pruned data and SNPs with a Hardy-Weinberg p-value 

< 10^-10 were removed.  SNPs with >0.1 MAF difference between study data and the 1KG 

population reference were filtered.
75

  

Next, the genotype data was strand-aligned to the Haplotype Reference Consortium 

(HRC; http://www.haplotype-reference-consortium.org/)
80

 reference panel using Will Rayner’s 

pre-imputation script, HRC-1000G-check-bim-NoReadKey.pl 

(https://www.well.ox.ac.uk/~wrayner/tools/).
81

 Data was then phased with ShapeIt.
82,83

 The 

aligned samples were then submitted for imputation at the Michigan Imputation Server (MACH; 
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v1.0.4) in five batches using the cosmopolitan 1,000 genomes reference panel.
75,84–87

 

Imputation was run using Minimac3 with HRC r1.1as the reference panel and Eagle v2.3 for 

phasing with a “Mixed” population setting.   

Following imputation, SNPs with R
2 

< 0.3 were filtered.  Non-biallelic SNPs were also 

filtered.  Next, SNPs with a call rate < 0.98 or MAF < 0.05 were removed. This stringent MAF 

was applied due to the low number of cases in the sample for GWAS.  Individuals with a call 

rate of < 0.98 were also filtered.  Logistic regression analysis on genotype and imputation batch 

was performed using PLINK v1.9 and to find and filter out SNPs showing batch effects. SNPs 

demonstrating significant inflation in p-value, as visualized on the QQ plot, were removed.   

SNPs with low imputation quality (R
2
<0.3) and low minor allele frequency (MAF<0.05) 

were filtered post-GWAS, after which this genotyping data included 3,944,055 SNPs, 41,714 

(1.06%) of which were not shared among genotyping data from any of the other 5 sites (Table 

13).  

 

Statistical Analysis 

Variants associated with FS cases compared to controls were identified using the GWAS 

software  SAIGE (Scalable and Accurate Implementation of GEneralized mixed model), which 

uses a generalized mixed-model and implements saddlepoint approximation to account for 

case-control imbalance.
88–91

 In the GWAS analysis we covaried for the top ten principal 

components estimated from genetic data to further control for population stratification, sex, 

number of ICD codes per day, and median age of record (Table 14). 
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Cleveland Clinic (CC) GWAS 

Phenotyping approach 

FS cases for GWAS analysis were ascertained through the Epilepsy Biorepository of the 

Cleveland Clinic Epilepsy Center. Charts of these participants were then reviewed by an epilepsy 

biorepository research coordinator trained in clinical epilepsy phenotyping (Table 11). 
35

 All 

others were considered controls. This resulted in the identification of 109 functional seizure 

cases and 17,811 controls with genotyping data available (Table 12). 

 

Quality Control of Genetic Data 

All samples were genotyped at the Broad Institute of Harvard and MIT (Cambridge, MA, 

USA) using the Illumina Global Screening Array with Multi-disease drop-in (GSA-MD v1.0). SNP 

genotypes were called using Illumina's genotyping analysis software Autocall. Rare SNPs (MAF < 

0.1) were called with the zCall software 34 and included in the Autocall output. 

QC and imputation of these samples was done in parallel with the Epi25 cohort and is 

detailed elsewhere 
92

. Before imputation, genotyped individuals were excluded based on the 

following criteria: i) genotype call rate <0.95; ii) high (>0.2) or low (<-0.2) inbreeding coefficient 

estimate of the observed versus expected number of homozygous genotypes; iii) missing, 

ambiguous, or sex mismatch between X-chromosome genotype and reported gender; iv) 

population outliers not clustering with the 1000 Genomes Project
93

 European samples in a 

principal component analysis. Then, single-nucleotide polymorphisms (SNPs) were excluded 

based on the following criteria: i) SNP call rate <0.98 in the combined case/control dataset; ii) 
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minor allele frequency (MAF) <0.01; iii) deviation from the Hardy-Weinberg equilibrium with 

P<1x10
-6

. Sample and SNP QC procedures were performed using PLINK v1.9
94

 and GCTA.
95

 The 

genotyped dataset was aligned to the imputation reference (variant name, variant position, and 

strand orientation) using the Genotype Harmonizer.
96

 Imputation to the Haplotype Reference 

Consortium (HRC) reference r1.1
81

 was performed using reference-based phasing with Eagle 

v2.4
97

 and Minimac4 (https://github.com/statgen/Minimac4), as implemented on the Michigan 

Imputation Server.
98

  

After QC, SNPs were filtered out (using all imputed samples) with i) Minimac4 

imputation quality score, R2 < 0.3; ii) Minimac4 squared correlation value between masked 

genotypes of genotyped SNPs and the imputed dosages, Emp-R2 < 0.3; iii) logistic regression P-

value < 1e-4 between control/control imputation batches; iv) call rate < 0.98; v) Hardy-

Weinberg p-value < 1e-5; vi) MAF < 0.01. Individuals were filtered to have max 2nd-degree 

relationship (kinship coefficient > 0.0884 filtered out) using KING. Post-GWAS filtering 

imputation R
2
>0.3 and MAF>0.05, this genotyping data included 2,458,425 SNPs, 54,681 

(2.22%) of which were not shared among genotyping data from any of the other 5 sites (Table 

13). 

 

Statistical Analysis 

Variants associated with FS cases compared to controls were identified using the GWAS 

software BoltLMM, which uses a generalized mixed-model for association testing.
99,100

 

Additionally, sex was covaried for during the association analysis (Table 13). 
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Massachusetts General BioBank (MGBB) 

Phenotyping Approach 

The Mass General Brigham (MGB) Biobank [https://biobank.partners.org] is a hospital-

based research program launched in 2010 designed to empower genomic and translational 

research for human health. Participants are patients above age 18 who provided informed 

consent to join the biobank in the MGB network (previously Partners HealthCare), including 

Massachusetts General Hospital, Brigham and Women’s Hospital, and other affiliated 

institutions. For each consented subject, a collection of blood samples is obtained (plasma, 

serum, and DNA), which are then linked to their clinical data in the electronic health records 

(EHR) as well as survey data on lifestyle, behavioral and environmental factors, and family 

history.
101

 As of December 2019, MGB Biobank has enrolled more than 120,000 participants 

and released genotyping array data for 36,424 subjects. MGB investigators can access the de-

identified datasets from the MGB Biobank under a Data Use Agreement (DUA) without 

additional study protocols.  

Eligible functional seizure (FS) cases from the MGB biobank were defined as those with 

at least one occurrence of ICD-10 codes F44.5 or R56.9 and at least one qualifying CPT code 

(group 95812-95830 and group 95950-95967), excluding subjects with at least one instance of 

G40.20, G40.30, G40.00, or G40.10 (Table 11). This resulted in the identification of 1,134 FS 

cases and 24,562 controls of EUR descent (Table 12). 
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Quality Control of Genetic Data 

The biobank samples are genotyped on Multi-Ethnic Global array (MEGA) from Illumina 

(Illumina Inc., San Diego, USA) and are released in several batches, covering an average of 1.7 

million genetic markers. The dataset uses genome build 37 (hg19).  

Batch-specific quality control of genotype data was performed to remove SNPs with 

genotype missing rate >0.05, samples with genotype missing rate >0.02, and SNPs with 

differential missing rate >0.01 between any two batches, after which different batches were 

merged for subsequent QC steps. As MGB Biobank included individuals from diverse 

populations, genetic ancestry of biobank participants was inferred using 1000 Genomes 

samples (1KG) as the population reference panel.
75

 Specifically, principal components (PCs) for 

biobank samples and 1KG samples combined were computed and a Random Forest classifier 

was trained to assign a “super population” label for biobank samples with a prediction 

probability ≥0.9 using the first 6 PCs of the 1KG samples as the training data. This resulted in 

26,677 individuals classified as European (EUR), as well as a small proportion of non-EUR 

descents (N= 4,248). Within the EUR ancestry, samples with a mismatched reported and genetic 

sex, outliers of the absolute value of heterozygosity (>5SD from the mean), and one from each 

pair of related individuals (IBD >0.2) were removed; SNPs that showed significant batch 

associations at P < 1 × 10−4, with a missing rate > 0.02 or HWE test P < 1 × 10−10 were also 

discarded. 

Michigan Imputation Server (Minimac4) was used to impute genotype dosages for 

biobank samples, with the Haplotype Reference Consortium (HRC) as the reference panel for 
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the EUR ancestry. Markers with imputation quality INFO score <0.8 and minor allele frequency 

(MAF) <0.05 were removed, resulting in 5,361,986 SNPs for analysis, 489,192 (9.12%) of which 

were not shared among any other biobank (Table 13). 

 

Statistical Analysis 

Variants associated with FS case status were identified by fitting a generalized mixed 

model to the data, adjusting for sex, current age, race, and the first 10 principal components 

estimated from genetic data (Table 14). Analysis was performed using the SAIGE GWAS 

software.
88

  

 

BioMe 

Phenotyping Approach 

Participants were recruited for the BioMe Biobank throughout the Mount Sinai 

healthcare system, as per a protocol approved by the local Institutional Review Board (IRB), 

initiated in 2007. Participants were recruited across age, ancestry, and across clinics throughout 

the healthcare system, medical and neuropsychiatric. In providing informed consent, Biobank 

participants authorized access to their de-identified healthcare records and donated a blood 

sample for extraction of genetic material for research purposes. As per the approved protocol, 

no disclosure/feedback of genetic results would be provided, as the analyses were for research 

purposes. The BioMe Biobank clinical data include longitudinal demographics, ICD9 and ICD10 

codes, laboratory test results, and clinical notes, with clinical data since 2003, increasing in 

volume and data entry by progressive year. Participants also provided additional information on 
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self-reported ancestry, personal and family medical history through questionnaires 

administered upon enrollment. 

FS cases were defined using ICD9 or ICD10 inclusion codes (without the inclusion of CPT 

codes in case status), identifying n=145 FS cases compared to n=9,462 controls (Table 11, Table 

12).  

 

Quality Control of Genetic Data 

BioMe biobank participants (n=32,595) were genotyped on the Illumina Global 

Screening Array (GSA). Samples were blacklisted following genotyping for gender discordance, 

low sequencing coverage, heterozygosity rates (falling outside of six standard deviations from 

the mean were excluded), contamination, low call rate, and the discovery of duplicates, yielding 

n=31,705 individuals for downstream analyses. A random individual from all pairs with 

apparent relatedness (kinship coefficient > 0.0885) was excluded. Self- reported ancestry 

information was then used to extract the subset of European individuals for the present 

analysis (n=9,607). SHAPEIT/IMPUTE2 were used to pre-phase and impute genotypes using the 

1000 Genomes Phase 3 reference panel. Variants with MAF<0.05 or imputation quality R2<0.3 

were filtered out, resulting in 5,356,909 variants, 62,195 (1.16%) of which were not shared 

among any other biobank (Table 13).  
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Statistical Analysis 

Variants associated with FS cases compared to controls were identified using BOLT-

LMM. The GWAS covaried for the top ten principal components estimated from genetic data to 

further control for population stratification, sex, and number of ICD codes per day (Table 14). 

 

iPSYCH 

Phenotyping approach 

Genotyping samples were obtained from the Danish Neonatal Screening Biobank hosted 

by Statens Serum Institut. All individuals born in Denmark since 1981 have provided dried 

bloodspots (Guthrie cards). These samples are connected to the Danish register system. DNA is 

extracted from these bloodspots and genotyped at the Broad Institute. Functional seizure cases 

from this biobank were collected using ICD-10-based inclusion (code F44.5 for conversion 

disorder with seizures) and exclusion (ICD-10: G40.20, G40.30, G40.00 and G40.10) criteria 

(Table 11). This resulted in the identification of 232 cases and 2,660 controls for individuals of 

European descent (Table 12). This study has been approved by the Danish research ethical 

committee system.  

 

Quality Control of Genetic Data 

Genotyping data were QC’ed using the parameters SNP missingness < 0.05; subject 

missingness < 0.02; autosomal heterozygosity deviation (|Fhet| < 0.2); SNP missingness < 0.02; 

difference in SNP missingness between cases and controls < 0.02; and SNP Hardy-Weinberg 

equilibrium (P > 10−6 in controls or P > 10−10 in cases).
102,103

 Population stratification was 
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controlled by with imputed marker dosages and principal components. Imputation was 

conducted using IMPUTE2 / SHAPEIT using 1000 genomes reference data.
104

 After filtering, this 

data set included 4,245,406 variants, of which 59,241 (1.4%) were not found in the other 

biobanks (Table 13). 

 

Statistical Analysis 

Variants associated with case status were identified by fitting a logistic regression model 

to the data with covariates for age, sex, genotyping phase, and ancestry-specific population PC1 

to PC10 (Table 14). Analysis was performed using Plink v2.0 GWAS software. 

 

Million Veteran Program (MVP) 

Phenotyping approach 

The Million Veteran Program is an observational cohort study and mega-biobank in the 

Department of Veterans Affairs (VA).
105

 Participants are active users of the Veterans Health 

Administration and provide a blood sample (from which DNA is isolated), responses to 

questionnaires and consent to allow access to clinical data from the VA health records.
105

 For 

the current analysis, we considered 455,789 individuals (MVP v3.0 data release). Functional 

seizure cases from this biobank were collected using CPT-based inclusion (Group 95812-95830, 

Group 95950-95967), ICD-based inclusion (ICD-9: 300.11 and 780.39; ICD-10: F44.5) and 

exclusion (ICD-9: 345.1, 345.10, 345.4, 345.40, 345.5 and 345.50; ICD-10: G40.20, G40.30, 

G40.00 and G40.10) criteria (Table 11). This resulted in the identification of 7,087 cases and 
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291,711 controls for individuals of European descent, and 2,252 cases and 78,156 controls for 

individuals of African descent (Table 12).  

 

Quality Control of Genetic Data 

Pre-imputation variant level QC, pre-phasing and genotype imputation from the 1000 

Genomes Project phase 3, version 5 reference panel into Million Veteran Program (MVP) 

participants was performed as previously described.
75,106

 After filtering, this data set included 

3,150,381 variants, of which 450,416 (14.3%) were not found in the other biobanks (Table 13). 

Samples from 432,318 individuals passed individual-level quality control: a) sample call 

rates > 98.5%, b) sample heterozygosity rates which deviate 3SD or less from the samples’ 

heterozygosity rate mean, c) related samples and samples with cryptic relationship were 

removed with a kinship coefficient cut-off of >= 0.0884 as measured by KING v2.0 software.
106–

108
 Two sources of data were used for sex determination, genotype, and core demographic 

data. We trained a logistic regression model to predict reported (phenotypic) sex from the F 

score. F scores were obtained with PLINK’s --check-sex command applied to the SNPs (MAF > 

0.01) located in the X chromosome (after excluding the PARs).
77

 We then used the individuals’ F 

scores to assign the sex. Individuals whose predicted sex did not match the reported one (n = 

218) were excluded from the analysis. 

Nonbiallelic SNPs, SNPs with R2 < 0.4, SNP call rate < 0.05, HWE p < 5x10-8, or MAF < 

0.05. Ancestry-specific principal component analysis was performed using the EIGENSOFT v6 

software as previously described, to generate the top ten genetic principal components 
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explaining the greatest variability.
78,106

 Individuals of European (EUR) and African (AFR) ancestry 

were identified by the HARE approach as previously described.
109

 

 

Statistical Analysis 

Variants associated with case status were identified by fitting a logistic regression model 

to the data with covariates for age, sex, density of record, ancestry-specific population PC1 to 

PC10 (Table 14). Density of record was defined as anyone with more than 5 codes on separate 

days over the span of at least 3 years. Analysis was performed using Plink v2.0 GWAS 

software.
76

 

 

Meta-analysis of genome-wide association study summary statistics 

We used Metal to conduct an inverse variance-weighted meta-analysis of the summary 

statistics from the six studies by combining p-values across studies taking into account a study 

specific weight, the sample size, and direction of effect (Figure 9).
110–112

 This resulted in 9,289 

cases and 417,818 controls (n=427,107) available for the meta-analysis. The effective size (Neff) 

was 18,174, and was calculated using the following formula.
74

 

5677 = 2
9 1
5:;<6<= + 9

1
5:>?@A>B<=

 

A total of 1,210,977 variants were genotyped or imputed across all 6 biobanks, an 

additional 1,505,538 variants genotyped or imputed across 5 of the biobanks, 1,148,506 

variants across 4 of the biobanks, 707,792 variants across 3 of the biobanks, and 835,406 

variants across 2 of the biobanks. Variants which were only found in 1 of the biobanks 
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genotyping data were only included for the MVP and MGBB samples, as these are the only two 

samples with more than 1,000 cases identified. This resulted in 450,416 variants from MVP 

alone and 489,192 variants from MGBB alone. Genome-wide statistical significance was defined 

as P < 5.0e-8, with the meta-analysis results from METAL reported. 

 

BioBank 
MAF Filter 

applied 

Imputation 
filter applied 

Average 
imputation 

score 

Pre-QC # 
SNPs 

Post-QC # 
SNPs 

BioVU 0.05 R^2 > 0.3 R^2 = 0.99 9,243,980 3,944,055 

CC 0.05 R^2 > 0.3 R^2 = 0.99 3,193,188 2,458,425 

MVP 0.05 R^2 > 0.3 R^2 = 0.96 7,830,224 3,150,381 

MGBB 0.05 INFO > 0.8 INFO = 0.98 21,694,551 5,361,986 

Mt. Sinai 0.05 INFO > 0.8 INFO = 0.96 7,749,766 5,356,909 

iPSYCH 0.05 INFO > 0.8 INFO = 0.97 5,026,277 4,245,406 

 

Table 13. Biobank-specific information for post-GWAS, pre-meta-analysis filtering. For each Biobank, we have 

listed the MAF filter applied, the imputation filter applied, the average imputation score, and number of 

independent SNPs tested, both before and after this filtering. 

 

BioBank Sex Genetic Ancestry Age Density of Records Genotyping phases 

BioVU X X X X 
 

CC X X 
   

Mt. Sinai X X X 
  

MVP X X X X 
 

MGBB X X X 
  

iPSYCH X X X 
 

X 

 

Table 14. Confounders accounted for across sites in meta-analysis GWAS. Each row represents a site of genetic FS 

analysis while each column represents a different confounder that is accounted for. ‘X’s represent that a particular 

site accounted for the confounder. 
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SNP-based Heritability of Functional Seizures 

We calculated heritability estimates from the meta-analysis summary statistics using LD 

Score Regression (LDSC).
113–115

 This method evaluates linkage disequilibrium (LD) data for each 

lead single nucleotide polymorphism (SNP), so that the chi square statistic of each variant 

includes the effects of all other loci in LD with the lead SNP.
115

 The SNP-based heritability was 

calculated on the liability scale, using a range of prevalence from 0.02% to 0.14%.  

 

Genetic Correlations Between Functional Seizures, PTSD, generalized epilepsy, and focal epilepsy  

We calculated the genetic correlation (Rg) between functional seizures and 

posttraumatic stress disorder (PTSD), generalized epilepsy (GE), and focal epilepsy (FE). The 

summary statistics for PTSD, GE, and FE used were downloaded directly from online 

repositories.
36,37,40

 LDSC was used, which calculates Rg similar to the heritability calculation 

described above, but the chi-square statistic is calculated as the product of both z scores from 

the two phenotypes being compared.
113

 

 

Transcriptome-wide association study (TWAS) 

A gene-based analysis was conducted using the results from our meta-GWAS and 

employing S-MultiXcan to assess the simultaneous effect of multiple genetic variants on gene 

expression, then to determine the degree of association between those genes and functional 

seizures.
116

 To perform TWAS we leveraged pre-trained prediction models fitted in GTEx v8 

data (49 tissues, N=838).
117–120

 SNP weights and their respective covariance for 49 available 

tissues (amygdala, anterior cingulate cortex, caudate basal ganglia, cerebellar hemisphere, 
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cerebellum, cortex, frontal cortex, hippocampus, hypothalamus, nucleus accumbens basal 

ganglia, putamen basal ganglia, spinal cord, and substantia nigra, lung, liver, kidney) from 80 to 

154 individuals were obtained from predict.db (http://predictdb.org/), which is based on GTEx 

version 8 eQTL data.
120–122

 Gene expression prediction models were then trained on GTEx data 

using the 49 available GTEx tissues available.
117–120,123

 MetaXcan models are built on S-

PrediXcan and existing approaches, and integrate eQTL information with GWAS results to map 

disease-associated genes. Prediction models for each tissue were integrated with FS meta 

analyzed GWAS data using the software S-PrediXcan.
121,122

 To combine association statistics 

across all tissues while adjusting for tissue–tissue correlation, we used S-MultiXcan.
116

 For 

21,200 genes, we performed a joint multi-tissue approach using S-MultiXcan which uses 

multivariate regression to take advantage of the correlation in gene expression regulation 

between tissues thus increasing statistical power. Here, we applied a single Bonferroni 

correction of 0.05/21,200 = 2.35E-06. 

Miami visualization plots were produced using R.
122

 Miami plots show two different P 

value associations: the meta-analysis GWAS results on the bottom half, and the associations 

between the genes implicated by S-MultiXcan along each chromosome on the top half. 

 

Results: 

Individual Site FS GWAS 

GWAS results were plotted for each individual GWAS (Figure 10). The only biobank to 

have a SNP that exceeded the genome-wide significance line was Mt. Sinai, though this 

association did not withstand pre-meta-analysis QC and appeared to be a false-positive 
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association. The associated QQ plots for each biobank’s GWAS indicated that there did not 

appear to be any inflation issues (Figure 11). Heritability estimates for each individual GWAS 

confirmed that the Lambda GC for each site’s analysis did not show any indication of inflation 

(Table 15). 

 

 
 

Figure 10. Biobank-specific GWAS result Manhattan plots for A) BioVU, B) MVP, C) MGBB, D) CC, E) Mt. Sinai, and 

F) iPSYCH. The blue line represents the suggestive p-value, p=1e-05, while the red line represents the genome-

wide significance level, p<5e-08. 
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Figure 11. Biobank-specific GWAS result QQ plots for A) BioVU, B) MVP, C) MGBB, D) CC, E) Mt. Sinai, and F) 

iPSYCH. The red line represents the line that would result if the observed and expected p-values were the same 

throughout the distribution of results. 

 

BioBank LDSC Intercept LDSC Lambda GC LDSC h^2 obs LDSC h^2 liability  
BioVU 1.007 (0.008) 0.98 -0.01 (0.01) -0.19 

MGBB 1.029 (0.011) 1.047 0.05 (0.04) 0.056 

MVP 0.99 (0.009) 1.026 0.01 (0.002) 0.028 

CC 0.99 (0.007) 1.005 0.025 (0.019) 0.75 

Mt. Sinai 1.008 (0.008) 0.999 -0.056 (0.047) -0.39 

iPSYCH 1.004 (0.009) 1.011 0.051 (0.17) 0.0597 

Meta-analysis 1.000 (0.008) 1.029 0.005 (0.0015) 0.022 

 

Table 15. Heritability results for individual functional seizure GWAS and meta-analysis. Each site’s GWAS 

heritability estimates are shown as calculated by LDSC, including the intercept, lamda GC, observed heritability 
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(h^2 obs), and liability-scale heritability (h^2 liability). Meta-analysis estimates are shown on the bottom row in 

bold. 

 

FS GWAS meta-analysis 

Although there were no significant associations in the GWAS meta-analysis, the 

Manhattan plot for the meta-analysis shows several peaks beginning to emerge that may 

become significant as the analysis increases in power (Figure 12).  

 

 

Figure 12. Biobank-specific GWAS result Manhattan plots for a GWAS meta-analysis of results from BioVU, MVP, 

MGBB, CC, Mt. Sinai, and iPSYCH. The blue line represents the suggestive p-value, p=1e-05, while the red line 

represents the genome-wide significance level, p<5e-08. 

 

One limitation of this study was that not every biobank was able to access QC’ed X-

chromosome data, resulting in FS GWAS meta-analysis X-chromosome data only from Cleveland 

Clinic and BioVU (Figure 12). Heritability analysis for the GWAS meta-analysis indicated that the 

heritability of FS in our samples is 2.21% (SE = 0.015%). Additionally, through LDSC analysis, we 

determined that the lambda GC and intercept of the meta-analysis were 1.03 and 1.00, 

respectively, suggesting no significant inflation due to population substructure or cryptic 
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relatedness. The QQ plot, lambda GC, and intercept for the meta-analysis did not show any 

signs of inflation (Figure 13).  

 

 

Figure 13. GWAS meta-analysis QQ plot. The red identity line represents the line that would result if the observed 

and expected p-values were the same throughout the distribution of results. 

 

FS GWAS meta-analysis genetic correlation with related disorders 

Genetic correlation (Rg) analysis using LDSC indicated that there was not any significant 

genetic correlation between FS and generalized epilepsy (Rg = -0.099, SE = 0.085, p = 0.25), 

focal epilepsy (Rg = -0.56, SE = 0.30, p = 0.067), or PTSD (Rg = 0.092, SE = 0.45, p = 0.65; Table 

16).  

 

Phenotype Genetic Correlation Z-score P 

Generalized Epilepsy -0.099 (0.085) -1.16 0.25 

Focal Epilepsy -0.56 (0.30) -1.84 0.067 

PTSD 0.092 (0.20) 0.45 0.65 
 

Table 16. Genetic correlations with related disorders using LDSC. Rg (SE), Z-score, and p-value are shown for each 

related phenotype tested with respect to FS. 
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FS GWAS meta-analysis-based Transcriptome-wide association study 

TWAS performed using s-MultiXcan showed 58 genes whose expression is significantly 

associated with functional seizures (Figure 14). The most significant TWAS associations included 

the genes Syntaxin Binding Protein 3 (STXBP3, Chr 1; Z = 2.55, SD = 1.79, p = 3.71e-25), TRNA-

YW Synthesizing Protein 1 Homolog B (TYW1B, Chr 7; Z = -2.51, SD = 0.26, p = 1.45e-23), Family 

With Sequence Similarity 186 Member B (FAM186B, Chr 12; Z = -2.75, SD = 2.41, p = 1.19e-21), 

Methionine Sulfoxide Reductase B2 (MSRB2, Chr 10; Z = 3.38, SD = 1.14, p = 3.60e-19), and cat 

eye syndrome chromosome region, candidate 2 (CECR2, Chr 22; Z = 3.23, SD = 1.59, p = 6.72e-

19).  

 

 

 

Figure 14. Transcriptome wide analysis with functional seizures cases vs. controls. TWAS results are plotted in 

green at the top of the figure, while the GWAS results are reflected at the bottom of the figure. Alternating 

chromosomes are plotted in black and grey in the GWAS and in alternating triangles vs circles in the TWAS. For 
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each side, the blue dotted line represents the suggestive significance line for the GWAS while the red solid line 

represents the genome-wide significance threshold. 

 

Discussion: 

This study aimed to examine the genetic architecture of FS. First, we identified FS 

patients across 6 international biobanks, BioVU, BioMe, Cleveland Clinic, MVP, MGBB, and 

iPSYCH using pragmatic EHR-based phenotyping approaches (Table 11). Each biobank 

performed a GWAS to determine the genetic associations with FS cases as compared to 

controls. Here, we have meta-analyzed these GWAS results, and now report the first-to-date 

GWAS meta-analysis of functional seizures. No individual variants exceeded the genome-wide 

significance threshold at this time (Figure 12), though we observed several associations that 

exceeded the suggestive significance threshold, for which further validation and more genetic 

samples are needed to confirm. We also report a SNP-based heritability for FS of 2.21% (Table 

15). Genetic correlation analyses revealed that at this time, FS patients’ genotypes were not 

significantly correlated with the genotypes of PTSD, generalized epilepsy, nor focal epilepsy 

patients (Table 16). Finally, transcriptome-wide association analysis revealed nearly 60 genes 

associated with functional seizures, implicating STXBP3 as the top association (Figure 14).  

Previous studies have shown that polygenicity is inversely correlated with the 

discoverability of GWAS, and that sample size is correlated with discoverability. Although a 

peak on chromosome 8 is beginning to emerge, no variants exceeded genome-wide significance 

in this meta-analysis. Given the high polygenicity and relatively low sample size, this was not 

unexpected. Highly polygenic traits such as height, bipolar disorder, and schizophrenia did not 
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yield substantial discoverability until around 15,000 cases, which appears to be a crucial 

inflection point. Our FS meta-analysis currently includes approximately 9,000 cases (Table 

12).
124

 Based on a power analysis using a genetic power calculator, the number of cases needed 

to discover a variant significantly associated with FS with a relative risk of 1.15 and 80% power 

would be 28,096.
125

 Given the results of our study, we hypothesize that this GWAS study is still 

in the so-called ‘initial dead zone,’ where discoverability until the critical inflection point is very 

low and not linear.
124

 Because this dead zone depends on the number of cases and largest 

effect size, the genetic architecture of FS may be highly polygenic, meaning that the largest 

effect size will be small relative to other phenotypes, and thus FS GWAS studies may require a 

relatively large number of cases to get past this dead zone. Despite being underpowered for 

individual SNP discovery, early GWAS remain useful for SNP-based heritability and as a 

substrate for secondary analyses, like TWAS. 

An additional limitation to the power of this study was that not all the biobanks in the 

analysis were able to use the same phenotyping algorithm to identify FS cases within their 

respective EHRs (Table 11). This was due to the variety of data types that must be accessible to 

produce a gold standard phenotyping approach for FS, including keywords in charts, ICD9, 

ICD10, and CPT codes. This limitation further underscores the lack of discoverability in this first-

ever FS GWAS meta-analysis.   

Due to the inherent nature of discoverability in polygenic traits, the substantial 

environmental risk factors known to contribute to FS (e.g., trauma), and the heterogeneity of 

the phenotyping approaches across the biobanks in this analysis, we anticipated that statistical 

power would present a challenge to this study. Nevertheless, despite the inability to identify 
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single SNP associations, we have revealed significant, albeit low, SNP-based heritability of FS of 

2.21% (Table 15). This is the first ever reported heritability estimate of FS and the second ever 

study to report a heritable component of FS.
35

 Although this estimate is low, it establishes a 

genetic contribution to FS and provides further motivation for genomic research of FS. Given 

the low sample size, heterogeneity in the phenotyping, and likely highly polygenic nature of the 

disorder, the 2% estimate is consistent with our pre-study expectations. Additionally, this 

heritability component is in the general range of similar, highly comorbid, polygenic disorders 

such as PTSD, for which the low end of the heritability range was estimated at 4%.
37

 Through 

LDSC heritability analysis, we were also able to determine that the lambda GC and intercept of 

the meta-analysis were 1.03 and 1.00, respectively. This indicates that there was no significant 

inflation due to population stratification issues. 

Genetic correlation analyses revealed that at this time, FS patients’ genotypes were not 

significantly correlated with the genotypes of PTSD, generalized epilepsy, nor focal epilepsy 

patients (Table 16). Genetic correlation estimates for generalized epilepsy and focal epilepsy 

were negative, which may be due to the exclusion of generalized epilepsy and focal epilepsy 

patients from this analysis, which may have resulted in an overrepresentation of epileptic cases 

in the controls as compared to cases. 

Using TWAS approaches, we provided gene-based associations, which are more 

biologically interpretable. Through this analysis, we also significantly improved power by 

reducing the number of independent tests, thus reducing the multiple testing burden, and 

increasing the effect of individual SNPs by combining eQTLs that effect each gene into a model 

to determine the full effect of underlying variants on gene expression. S-MultiXcan, a variation 
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on the MetaXcan analysis, further improves power by using information across tissues, rather 

than analyzing each tissue independently.
116,122

 Through this analysis, we discovered 58 genes 

significantly associated with FS (Figure 14).  

The strongest association was with the gene Syntaxin Binding Protein 3 (STXBP3; munc-

18). STXBP3 is a vesicular protein expressed in tissues throughout the body.
126

 It is implicated in 

a number of diverse physiological roles, and Munc18c-null mice develop abnormal cerebral 

cortex morphology.
127

 STXBP3 may also play a role in insulin-dependent movement of GLUT4 

and in docking/fusion of intracellular GLUT4-containing vesicles with the cell surface in 

adipocytes.
128

 As aforementioned, there is an association between FS and obesity that has been 

both previously reported and corroborated by our work (Figure 8, Table 10).
8,49

 This underlying 

association with predicted increased STXBP3 gene expression may help to explain this 

association, and further work will be necessary to disentangle this biological relationship. 

Additionally, closely-related protein STXBP1 has been associated with rare forms of childhood 

epilepsy, encephalopathy, and some features of autism spectrum disorder.
129–131

 

The second strongest association, methionine sulfoxide reductase B2 (MSRB2) is known 

to protect cells from oxidative stress. The gene has been shown to play a role that is closely 

associated with its antioxidant activity in the pathophysiology of other neurological disorders 

such as Alzheimer’s disease.
132

 

Although the exact nature of the association between these genes and the 

pathophysiology of FS is not yet known, this study lays the foundation for molecular biology 

studies into the underlying biological causes and contributors to FS, which we believe will 

increase knowledge, decrease stigma, and provide avenues for future therapeutic studies. As 
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no pharmaceutical treatments for FS are available, we hope this emerging set of genes 

associated with FS will fuel the discovery process for pharmaceutical FS treatments, including 

drugs that target these genes which could be repurposed.  

In conclusion, here we have conducted the first and only functional seizure GWAS meta-

analysis to date. This resulted in the first identification of significant heritability of functional 

seizures. Additionally, we have identified genes associated with functional seizures, which will 

power future investigation into the molecular biology of FS, and which could help to identify 

effective drug targets to treat FS. 
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