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Chapter 1

Overview

1.1 Introduction

This dissertation asks the question, “Can we design auditing strategies that are both

effective and efficient in defending against data misuse in modern information systems?”.

The continuous advancement of computation and storage technology has been incen-

tivizing the digitalization of human and our daily life for decades. Such a phenomenon

profoundly changes the way information is exchanged, decisions are made, and people

think and innovate. With a shared belief of the outstanding capability of improving the

efficiency of information exchange and providing assurance to information accuracy and

integrity, many modern information systems have emerged to supply critical services to

human society by collecting, storing and processing human generated data. An electronic

health record (EHR) system is one of these significant innovations (see Figure 1.1a as an

example), which enables numerous benefits, including effective communications between

clinical personnel and patients [1, 2], care efficiency through anytime access [3], and re-

ductions in medical errors [4, 5]. A financial management information system (see Figure

1.1b as an example) is another remarkable model which enables reliable transaction ser-

vices, efficient wealth management, and continuous service provision [6]. These systems

not only quicken the pace of human activities, but also reshape the nature of daily life.

2



(a) An examplar interface of Epic EHR system showing a fake patient.

(b) An examplar interface of Mifos banking system showing a fake client.

Figure 1.1: Concrete domains which motivate and are also directly impacted by the re-
search of this dissertation.

At the same time, attacks are unfortunately never absent due to the important roles that

these mission-critical information systems play in facilitating human society, as well as the

great value of the data they hold [7, 8, 9]. While attacks can lead to a range of conse-

quences, ranging from the interruption of the continuous operation of information systems

to the compromise of data integrity, their final goal often converges to the breach of per-

sonal privacy. In 2015, a medical data breach event at Anthem—one of the biggest health
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insurance providers in the United States—set a new record of data breach in U.S. history

[10], affecting over 78.8 million people through a criminal hacking of its data servers. In

2017, the personal identifying data of approximately 145 million of Americans were com-

promised in an attack against the top credit reporting agency, Equifax [11]. Though a large

number of manual and automated screening strategies (or combined) guarding security and

privacy are continuously developed and deployed, successful attacks against information

systems and the sensitive data they hold keep hitting the headlines. As such, it has been

widely recognized that no system is impervious to attacks or immune to compromise, es-

pecially in the face of the attacks that are adapting, evolving, and improving their ways to

undermine protections and to conceal their true purposes.

A widely used solution to defend against data misuse in information systems is to create

and then analyze the system audit logs [12, 13, 14, 15]. This simple idea has been practiced

quite some time and has leveraged to support multiple goals of information system manage-

ment [16, 17, 18, 19], including the compliance and accountability in the context of system

security and data privacy [20, 21, 22, 23]. Audit logs can be structured heterogenously,

but they typically record event details made to a system along the lines of “who performed

which activity at what time point leading to what system status” [20, 21, 24]. This mecha-

nism is valuable as it enables retrospective investigations for administrators on suspicious

events such that real attacks can be recognized and stopped before causing greater losses

when being audited. A further step is that, for auditing convenience, suspicious events are

usually mapped to predefined semantic types according to their characteristics, each corre-

sponding to a distinct malicious situation [25, 26]. These semantic types can take a variety

of forms and excel in screening different threats. For instance, a rule-based mechanism can

easily pick out the access activities to the records of very important persons (VIPs) stored

in a system, whereas a machine learning detection model can pinpoint the malicious ac-

count that demonstrates anomalous system access patterns. The detected suspicious events

and their corresponding types are then presented to the system administrator (or auditor)
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as alerts to be audited, which adds complexity to deriving effective audit policy ahead of

time.

However, auditing is non-trivial in practice due to several notable challenges that the

auditor can face in the real world domain. First, it is often the case that the audit workload is

substantially beyond the available resources for auditing (e.g., the time of security admin-

istrators or privacy officials) [27, 28, 29]. Second, a high rate of false positives, resulting

from a lack of capability to precisely define maliciousness, makes the auditing inefficient

[30, 31, 32]. Third, human attackers usually act strategically according to their knowledge

and observations on the system operation to minimize the probability of being caught by

the auditor, which makes a fixed auditing pattern vulnerable [33, 34, 35]. For example, an

attacker can easily bypass an auditing strategy based on the importance of alert types or

a well trained machine learning outlier detection tool by manipulating their attack behav-

iors. Fourth, compared to the scenario where targets to be protected are fixed as the prior

knowledge of both defender and attackers (e.g., airport terminal patrol), the objects to be

investigated in data misuse auditing (i.e., alerts) are unknown before an audit cycle (e.g.,

one day) begins.

Essentially, data misuse auditing is a task that seeks to assign limited investigation re-

sources to a large number of alerts in an adversarial environment. Unfortunately, almost all

previous works fail to base their development on this essential characteristic of auditing in

deriving their strategies. This dissertation, however, departs from modeling the interactions

between an auditor and attackers as a leader-follower game, where an auditor (defender)

first commit to a stochastic auditing strategy, and then attackers respond with an attack with

certain target or type based on their observations, while attempting to minimize the like-

lihood of being detected. In fact, the auditing solutions under this modeling architecture

demonstrate inherent advantages in comparison to others by incorporating uncertainties to

the space via strategy randomization and expanding along realistic incentives of benefit

maximization of players. Following this direction of modeling, in this dissertation we ex-
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plore the potentiality that a variety of intelligent auditing mechanism designs can achieve

to improve the efficiency of the defense and even deterrence against data breach.

1.2 Summary of Contributions

Figure 1.2 summarizes the high level goals and the associated specific game modeling

strategies of this dissertation. Basically, this dissertation considers designing audit mecha-

nisms from two different perspectives: offline prioritization and online signaling (or online

warning). Here, we use the terms offline and online to indicate whether there are interac-

tions between the auditor and data users through any auditing mechanism in real time data

accessing process. In particular, we unfold our investigations by answering two questions

accounting for the adversarial environment between an auditor and attackers: 1) is it possi-

ble to prioritize alerts in an intelligent way such that the auditor can maximize their benefit

from this randomized order, and 2) can an audit mechanism operate in a real time fashion

such that an attacker who is launching attacks can be deterred before success. The first

perspective stems from the observations that in practice system administrators or privacy

officials tend to focus on very few alert types that are in their best interest to investigate

(or equivalently, the top alert types in their rank of importance). As a consequence, the

rest are rarely touched due to budget limitation which creates free lunch for attackers. In

addition to conducting auditing totally offline, the second perspective explores incorporat-

ing information exchange between players in real time (e.g., when a user request sensitive

data) to influence the attackers’ strategy selection or even deter attackers. Though our con-

tributions can be applied to general information services, in this dissertation we rely on a

representative use case—EHR misuse auditing—to contextualize our investigations, where

an employee (or EHR user) of a healthcare organization (HCO) can misuse patients’ data

and breach patients’ privacy via illegal access.

More concretely, to answer the first question (corresponding to Aim 1 in Figure 1.2),

we prototype a novel game theoretic audit framework by considering two dimensions si-
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Aim 1:
Design offline prioritization

Aim 2:
Prototype online signaling

Design and optimize the alert type
prioritization and budget
allocation to maximize audit

effectiveness.

Incorporate real time information
exchange between players and
make it an advantage of the
auditor to influence attackers.

Address the practical adversarial
environment where attackers are
with diverse goals (or types) and

imperfect rationality.

Aim 3:
Robustify online signaling

Game theoretic framework

Figure 1.2: The graphic summary of the three main components of this dissertation.

multaneously: 1) how to prioritize the order of types alone which the triggered alerts are

investigated retrospectively, and 2) what is the upper bound on how much budget (e.g.,

human capital or monetary budget) to allocate for auditing each alert type. In this game,

the auditor chooses a randomized auditing policy with respect to orders of alert types and a

determined budget assignment strategy, while potential attackers choose their record (e.g.,

EHR) to commit attacks as their responses. We show that even a highly restricted ver-

sion of the problem is NP-Hard. Nevertheless, we propose a series of algorithmic methods

for solving these problems, which leverage a combination of linear programming and col-

umn generation to compute a nearly optimal randomized policy for prioritizing alert cate-

gories. Using a synthetic dataset on which deriving the exact solution is feasible, we first

demonstrate the effectiveness of our methods for approximating the optimal solution with

dramatic gains in efficiency. Then, we test the effectiveness of the entire framework with

1) over 1.5 months audit logs of Vanderbilt University Medical Center (VUMC), a major

academic medical center in the U.S., where we assign a plausible payoff structure that ex-

plicitly represented the gain and loss of players when attackers are caught or not, and 2)

a publicly available credit card application dataset. The results of an extensive set of ex-

periments demonstrate that our approach always outperforms the state-of-the-art auditing
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strategy (which neglects game theory), regardless of the budget available to the organiza-

tion. This investigation provides strong evidence that game theory-assisted auditing can

favor the auditor by optimizing strategy selection in the adversarial environment. This has

been published as a peer-reviewed conference paper [36] and a journal paper [37].

The second research question aims to extend the benefit of adversarial modeling to real

time. Specifically, we develop a concept—online signaling—and incorporate it into an au-

dit game. At a high level, online signaling functions as follows: whenever a suspicious

event starts (e.g., request access to a patient’s record, the system configuration files, etc),

the system can, in real time, warn the user who made the request (e.g., via a pop-up win-

dow with a certain probability to optimize) that “This Event May Be Audited”. The user

can then choose to stop (if they are an insider and are, thereby, deterred) or proceed with

the current action. Then, after a certain period of time, a subset of these events that re-

ceived signals is audited. Thus, maximizing deterrence via signaling leads us to an online

optimization problem, where we must determine 1) whether a warning should be sent and

2) the likelihood that the event will be audited.

As the second research aim of this dissertation (shown in Figure 1.2), we prototype

and formalize this auditing problem as a Signaling Audit Game (SAG) as an initial step,

where we model the interactions between an auditor and an attacker, and the usability cost

(i.e., the phenomenon of deterring normal system users) when being deployed. We term

the optimal solution for the auditor as the Online Stackelberg Signaling Policy (OSSP) and

prove, in theory, that OSSP is never worse than the optimal solutions achieved in games

without signaling. We performed a series of experiments with 10 million EHR access

events from VUMC—containing over 26,000 alerts—to illustrate the potential of SAGs

and the consistency of their advantages over existing methods. This has been published as

a peer-reviewed conference paper [38].

While online signaling-based auditing which leverages the benefit of the auditor’s in-

formation advantage has the potentiality to outperform the non-signaling strategies, the
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SAG can perform poorly in practice due to several critical deficiencies. First, the SAG

assumes that all attackers share the same goal such that their preferences over attacking

targets are the same. Their preferences are represented by rewards and penalties of both

players when an attack is caught or not. In reality, however, the motivations of attackers for

compromising a system or sensitive data vary significantly. For example, an employee of

an HCO who peeked at a VIP’s EHR out of curiosity may be a lesser concern than an em-

ployee who sells the same record on a black market (then commit identity theft). Second,

following the standard assumption of the security game modeling, the SAG assumes that

attackers always act with infallible utility maximizing rationality. However, this is an un-

reasonably strong assumption because real world attackers may not have the time, energy,

or knowledge to perform accurate utility calculations to choose a strategy. And it has been

empirically shown that such an assumption in game modeling can cause an excessive loss

to the auditor in the face of real world attackers [39] because the auditor can underprotect

those targets that they believe an attacker would not likely to attack.

The third aim of this dissertation (shown in Figure 1.2) is to make the online signaling

auditing mechanism robust by addressing their deficiencies mentioned above. We introduce

a new auditing framework that we call a robust Bayesian SAG. First, we model multiple at-

tacker types in the auditing setting by making a Bayesian extension to the SAG, where the

uncertainty over the payoffs and preferences of the players are considered by the auditor

in selecting their auditing strategies. The resulting problem can then be solved through a

compact formulation. Second, to model the imperfect rationality of real world attackers we

explore two different types of methods in robust optimization: 1) bounding the worst-case

deviation of attackers’ strategy selection from their optimal strategy, and 2) constraining

the impact of attacker’s deviation to the auditor’s loss. We incorporate each type of con-

straints into an algorithm for solving the robust Bayesian SAG in real time and create a

corresponding solution concept for each. We investigate the theoretical properties of these

solutions and the relationship between them. Surprisingly, these two algorithms, though
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with totally different perspectives, can lead to equivalence in certain settings and demon-

strate consistency in robustness. To evaluate the performance of the robust Bayesian SAG,

we construct two environments: 1) a real environment associated with the audit logs of

over 10 million real EHR accesses of VUMC (the same evaluation dataset as in Aim 2)

and 2) a simulated controlled environment derived from the real data, which allows us to

simulate attacker behaviors regarding their rationality degree. We specifically evaluate the

expected utility of the auditor between the our solutions and the state-of-the-art auditing

method in different conditions to demonstrate the value of the new auditing solutions and

their scalability. This has been submitted to a conference for review.

1.3 Dissertation Structure

The remainder of this dissertation is organized as follows. Chapter 2 surveys the related

work. Afterwards, we expand on each of the aforementioned aim by formalizing the cor-

responding problem to a specific game theoretic model, deriving their solutions and then

making evaluations using real and simulated datasets. Specifically, in Chapter 3, we for-

malize our alert prioritization game and derive its solving algorithms to improve the offline

data misuse auditing. In Chapter 4, the concept of online signaling, as well as the resulting

model—SAG are introduced, followed by the solution’s theoretical properties and perfor-

mance evaluations. Chapter 5 then proposes the robust framework of the SAG considering

multiple attacker types and their imperfect rationality in selecting strategies. We conclude

the dissertation in Chapter 6 by summarizing our contribution and discussing the future

work.
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Chapter 2

Related Work

Auditing has been widely investigated for the protection of critical resources from at-

tacks [40, 41, 42, 43]. There have been a number of investigations into effective alert

management strategies and efficient auditing mechanisms for information systems. In this

chapter, we review recent developments that are closely related to our investigation.

2.1 Alert Prioritazation

2.1.1 Alert Frameworks

Generally speaking, there are two main categories by which alerts are generated by a

system: 1) machine learning methods [44] – which usually measure the distance from ei-

ther normal or suspicious patterns [45, 46, 47, 48, 49, 50], and 2) rule-based approaches—

which flag the occurrences of predefined events when they are observed [51, 52, 53]. Con-

crete implementations are often tailored to distinct application domains.

In the healthcare sector, methods have been proposed to find misuse of EHR systems.

Boxwala et at. [54] treated it as a two-label classification problem and trained support

vector machines and logistic regression models to detect suspicious accesses. Given that

not all suspicious accesses follow a pattern, various techniques have been developed to de-

termine the extent to which an EHR user [55] or their specific access [56] deviated from

the typical collaborative behavior. By contrast, Fabbri et al. [57, 58, 59] designed an

explanation-based auditing mechanism which generates and learns typical access patterns

from an expert-, as well as data-driven, view. EHR access events by authenticated employ-

ees can be explained away by logical relations (e.g., a patient scheduled an appointment

with a physician), while the residual can trigger alerts according to predefined rules (e.g.,

co-workers) or simply fail to have an explanation. The remaining events are provided to
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privacy officials for investigation; however, in practice, only a tiny fraction can feasibly be

audited due to the resource limitation.

In the financial sector, fraud detection [60] in credit card applications assists banks in

mitigating their losses and protecting consumers [61]. Several machine learning-based [62]

models have been developed to detect fraud behavior. Some of the notable models include

hidden Markov models [63], neural networks [64], support vector machines [65], etc. Rule-

based techniques were also integrated into some detection frameworks [66, 67, 68, 69].

While these methods trigger alerts for investigators, they result in a significant number of

false positives—a problem which can be mitigated through alert prioritization schemes.

2.1.2 Alert Burden Reduction

Alert prioritization, as a set of methods to make the large number of alerts raised more

manageable, is not new in the domain of security and privacy. Various methods have been

developed to reduce alert magnitude generated in information systems [70]. Many focus on

reducing redundancy and clustering alerts based on their similarity [71, 70, 72, 73, 74]. In

particular, a cooperative module was proposed for intrusion detection, which implemented

the functions of alert management, clustering and correlation [75]. Xiao et al. proposed a

multi-level alert fusion model to abstract high-level attack scenarios to reduce redundancy

[76]. As an alternative, fuzzy set theory was applied by Maggi et al. to design robust alert

aggregation algorithms [77]. Also, a fuzzy-logic engine to prioritize alerts was introduced

by Alsubhi et al. by rescoring alerts based on a few metrics that dynamically characterize

the degree of maliciousness of an attacker [78, 79]. Njogu et al. built a robust alert cluster

by evaluating the similarity between alerts to improve the quality of those sent to analysts

[80]. By contrast, Aminanto et al. [81, 82, 83] and Sun et al. [84] leveraged the temporal-

or real time-based analysis to inform an isolation forest model to identify real threats as

outliers. However, none of these approaches consider the impact of alert aggregation and

prioritization on decisions by potential attackers, especially as the latter may choose attacks
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that circumvent the prioritization and aggregation mechanisms.

2.2 Stackelberg Security Games

The developed frameworks in this dissertation are related to the literature on Stackel-

berg security game (SSG) [85, 86, 87], a leader-follower game that well characterizes a

variety of adversarial environments where defender and attacker interact with each other

under specific security resource constraints. Under this specific category of games, a single

or multiple defenders [88, 89] first commit to a (possibly randomized) allocation of secu-

rity resources, while the attacker chooses an attack in response based on observation or

surveillance. The allocation of security resources associates with the selection of strategies

for players. Deriving an optimal defensive strategy needs to consider the priority differ-

ences regarding the targets to be protected, the possible response of attackers based on

their knowledge, and the uncertainties ranging from capabilities and knowledge of players

to their types [86]. The most commonly adopted solution concept of a basic SSG is called

Strong Stackelberg Equilibrium (SSE) [90]. An SSE corresponds to a pair of strategies (one

for the defender, and the other for the attacker) such that 1) changing to any other strategies

will never lead to an increase of the expected utility of a player, and 2) the attacker breaks

ties in favor of the defender. The tie-breaking assumption is mathematically reasonable

because the defender is able to induce the favorable strong equilibrium by shifting the pro-

tection by an arbitrary small level from the equilibrium such that the attacker strictly prefer

the desired strategy [91].

Due to the excellent role the SSG plays in the complex decision making process, such

models have been applied in a broad variety of security settings, such as airport checkpoint

randomization [92] and passenger screening [93], air marshal scheduling [94], coast guard

patrol scheduling [95], and even for preventing poaching and illegal fishing [96]. How-

ever, models used in many of these prior works are specialized to physical security and do

not readily generalize to the problem of prioritizing alerts for auditing. In practical alert
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prioritization and auditing problems, in contrast, a crucial consideration is that there are

many potential attackers and many potential victims or modes of attack for each of these.

Moreover, auditing policies involve recourse actions where the specific alerts audited de-

pend on the realizations of alerts of various types. Since alert realizations are stochastic,

this engenders complex interactions between the defender and attackers, and results in a

highly complex space of prioritization policies for the defender.

2.3 Audit Games and Alert Prioritization

Blocki et al. first modeled the audit problem between an auditor and an attacker as

a classic security game [97, 98]. In this setting, players act strategically and the goal is

to learn an optimal resource allocation strategy that optimizes the expected payoff of the

auditor [98]. Different from the basic SSG, the auditor employs a continuous punishment

rate parameter to deter attackers, which, in turn, influences the auditor’s utility due to its

impact to organization productivity. This component can be regarded as the usability cost

of deploying the audit game. To simulate the real audit environment, Blocki et al. gen-

eralized the framework by accounting for the situations with multiple defender resources

[99]. However, their methods treat alerts as a set of existing targets that could be attacked, a

modeling decision that cannot be readily generalized into the system audit setting. To solve

this challenge, Schlenker et al. introduced a game theoretic approach to deal with how to

assign alerts to security analysts [100], where each analyst has different areas of expertise

[101]. However, there are two key limitations that hinder its application to the general data

misuse auditing: 1) it considers only single attacker, whereas auditing decisions in the con-

text of access control policies commonly involve many potential attackers, with most never

considering the possibility of an attack, and 2) it assumes that the number of alerts in each

category is known a priori to both the auditor and attacker. In this dissertation, we consider

the scenario with multiple attackers and apply the practical situation where alert counts by

category are stochastic and can exhibit high variance.
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Laszka et al. first modeled the alert prioritization problem as a game, in which the au-

ditor determines the order of auditing with respect to alert types [102]. However, this game

has two obvious deficiencies by assuming that 1) the identity of a specific attacker was un-

known and 2) an exhaustive auditing strategy across alert types of a given order would be

applied. These assumptions are relaxed in the investigation addressed by our study in this

dissertation. With a similar goal of prioritizing alerts, Tong et al. considered the dynam-

ics of detection environment as an important factor and proposed a robust approach that

combines game theory and adversarial reinforcement learning [103]. Specifically, neu-

ral reinforcement learning was used to compute approximately optimal policies for each

player in response to a fixed policy of the other player. Then, the final policies of players

can be derived by a double-oracle framework. Though demonstrating improved auditing

performance over previous research in controlled testing scenarios, it is unclear whether

the strong assumptions on attackers (e.g., a full knowledge of the state of the detection

environment) can weaken the protection effectiveness of this model in practice.

2.4 Signaling in security games

It was recently shown that the traditional Stackelberg game framework has limited ef-

ficacy in many real world settings, which can be improved by a signaling scheme to reveal

noisy information to the attacker [104, 105, 106]. In particular, Xu et al. proposed a two-

stage security game model to protect targets with a better performance. In the first stage,

the defender allocates inspection resources and the attacker selects a target. In the second

stage, the defender reveals information, potentially deterring the attacker’s attack plan of

attack [107]. The advantages of signaling were subsequently extended to Bayesian Stack-

elberg games, where players have payoff-relevant private information [108]. It has been

shown that signaling also boosts defensive performance in security games, specifically for

the task of assigning randomized human patrollers and sensors to protect important targets

[106]. However, these investigations aimed to protect existing physical targets as well. The
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methodology does not easily fit into the auditing environment, where the timing of budget

assignment and signaling are reversed.

2.5 Imperfect Rationality

To account for the imperfect rationality of real world attackers, various investigations

have worked to integrate the human decision making process into formal algorithms. Based

on quantal response, Yang et al. developed Best Response to Quantal Response (BRQR)

to explicitly model the probability that an attacker selects each attack based on their ex-

pected utility on each response strategy [109]. Nguyen et al. improved the performance by

integrating a subjective utility function into BRQR [110], which they named SU-BRQR.

Though effective, these models try to optimize the defender’s utility with an objective func-

tion that is non-linear and non-convex. As a result, time needed to solve the problem leads

to a solution that does not scale for real time auditing. Moreover, the proposed solutions

required an accurate estimation of the parameter that determines the noise in the human re-

sponse function, which is non-trivial given the excessively low rate of adversarial events.
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Part II

Offline Auditing: Alert Prioritization
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Chapter 3

Game Theoretic Alert Prioritization

The quantity of personal data that is collected, stored, and subsequently processed con-

tinues to grow rapidly. Given its sensitivity, ensuring privacy protections has become a

necessary component of database management. To enhance protection, a number of mech-

anisms have been developed, such as audit logging and alert triggers, which notify admin-

istrators about suspicious activities. However, this approach is limited. First, the volume of

alerts is often substantially greater than the auditing capabilities of organizations. Second,

strategic attackers can attempt to disguise their actions or carefully choose targets, thus

hide illicit activities. In this chapter, we introduce an auditing approach that accounts for

adversarial behavior by (1) prioritizing the order in which types of alerts are investigated

and (2) providing an upper bound on how much resource to allocate for each type.

Specifically, we model the interaction between a database auditor and attackers as a

Stackelberg game. We show that even a highly constrained version of such problem is

NP-Hard. Then we introduce a method that combines linear programming, column gen-

eration and heuristic searching to derive an auditing policy. On the synthetic data, we

perform an extensive evaluation on the approximation degree of our solution with the op-

timal one. The two real datasets, (1) 1.5 months of audit logs from Vanderbilt University

Medical Center and (2) a publicly available credit card application dataset, are used to test

the policy-searching performance. The findings demonstrate the effectiveness of the pro-

posed methods for searching the audit strategies, and our general approach significantly

outperforms non-game-theoretic baselines.

18



3.1 Introduction

Modern computing and storage technology has made it possible to create ad hoc database

systems with the ability to collect, store, and process extremely detailed information about

the daily activities of individuals [111]. These database systems hold great value for so-

ciety, but accordingly face challenges to security and, ultimately, personal privacy. The

sensitive nature of the data stored in such systems attracts malicious attackers who can

gain value by disrupting them in various ways (e.g., stealing sensitive information, com-

mandeering computational resources, committing financial fraud, and simply shutting the

system down) [112]. It is evident that the severity and frequency of attack events continue

to grow. Notably, the most recent breach at Equifax led to the exposure of data on 143

million Americans, including credit card numbers, Social Security numbers, and other in-

formation that could be used for identity theft or other illicit purposes [11]. Even more of

a concern is that the exploit of the system continued for at least two months before it was

discovered.

While complex access control systems have been developed for database management,

it has been recognized that in practice no database systems will be impervious to attack

[113]. As such, prospective technical protections need to be complemented by retrospective

auditing mechanisms, a notion that has been well recognized by the database community

[114]. Though audits do not directly prevent attacks in their own right, they may allow

for the discovery of breaches that can be followed up on before they escalate to full blown

exploits by adversaries originating from beyond, as well as within, an organization.

In the general situation of database management, auditing relies heavily on the perfor-

mance of a threat detection and misuse tracking (TDMT) module, which raises real-time

alerts based on the actions committed to a system for further investigation by experts. In

general, the alert types are specifically predefined by the administrator officials in ad hoc

applications. For instance, in the healthcare domain, organizations are increasingly reliant

on electronic health record (EHR) systems for anytime, anywhere access to a patient’s
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health status. Given the complex and dynamic nature of healthcare, these organizations of-

ten grant employees broad access privileges, which increases the potential risk that inside

employees illegally exploit the EHR of patients [115]. To detect when a specific access to

a patient’s health record is a potential policy violation, healthcare organizations use various

triggers to generate alerts, which can be based on predefined rules (e.g., when an access

is made to a designated very important person). As a consequence, the detected anoma-

lies, which indicate deviations from routine behavior (e.g., when a pediatrician accesses

the records of elderly individuals), can be checked by privacy officials [116]. As another

example, consider the credit card provisioning domain. In this setting, individuals are in-

terested in applying for credit cards, which might be used in a fraudulent manner. There

may be many reasons why an application would trigger an alert for a credit risk analyst,

who, in turn, would need to determine if the applicant is worth investigating.

Although TDMTs are widely deployed in database systems as both detection and de-

terrence tools, security and privacy have not been sufficiently guaranteed. The utility of

TDMT in practice is currently limited by the fact that they often lead to a very large num-

ber of alerts, whereas the number of actual violations tends to be quite small. This is

particularly problematic because the large quantities of false alarms can easily overwhelm

the capacity of the administrative officials who are expected to follow-up on these, but have

limited resources at their disposal [117]. One typical example is the observation from our

evaluation dataset: at Vanderbilt University Medical Center, on any single workday, the

volume of accesses to the EHR system is around 1.8 million, of which more than 30,000

alerts of varying predefined types are generated, which far beyond the capacity of pri-

vacy officials. Therefore, in lieu of an efficient audit functionality in the database systems,

TDMTs are not optimized for detecting suspicious behavior.

Given the overwhelming number of alerts in comparison to available auditing resource

and the need to catch attackers, the core query function invoked by an administrator must

consider resource constraints. And, given such constraints, we must determine which trig-
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gered alerts should be recommended for investigation. One intuitive way to proceed is to

prioritize alert categories based on the potential impact of a violation if one were to be

found. However, this is an inadequate strategy because would-be violators can be strategic

and, thus, reason about the specific violations they can perform so that they balance the

chance of being audited with the benefits of the violation. To address this challenge, we

introduce a model based on a Stackelberg game, in which an auditor chooses a randomized

auditing policy, while potential violators choose their victims (such as which health records

to view) or to refrain from malicious behavior after observing the auditing policy.

Specifically, our model restricts the space of audit policies to consider two dimensions:

1) how to prioritize alert categories and 2) how many resources to allocate to each cate-

gory. We show that even a highly restricted version of the auditor’s problem is NP-Hard.

Nevertheless, we propose a series of algorithmic methods for solving these problems, lever-

aging a combination of linear programming and column generation to compute an optimal

randomized policy for prioritizing alert categories. We perform an extensive experimental

evaluation with two real datasets—one involving EHR access alerts and the other pertain-

ing to credit card eligibility decisions—the results of which demonstrate the effectiveness

of our approach.

The remainder of the chapter is organized as follows. In subsection 3.2, we formally

define the game theoretic alert prioritization problem and prove its NP-hardness. In subsec-

tion 3.3, we describe the algorithmic approaches for computing a randomized audit policy.

In subsection 3.4, we introduce a synthetic dataset to show, in a controlled manner, the

effectiveness of our methods for approximating the optimal solution with dramatic gains in

efficiency. In subsection 3.5, we use two real datasets (from healthcare and finance) that

rely upon predefined alert types to show that our methods lead to high-quality audit strate-

gies. We discuss our findings and conclude this chapter in subection 3.6 and subection 3.7.
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3.2 Game Theoretic Model of Alert Prioritization

In environments dealing with sensitive data or critical services, it is common to deploy

TDMTs to raise alerts upon observing suspicious events. By defining ad hoc alert types,

each suspicious event can be marked with an alert label, or type, and put into an audit

bin corresponding to this type. Typically, the vast majority of the raised alerts do not

correspond to actual attacks, as they are generated as a part of a routine workflow that is

too complex to accurately capture. Consequently, looking for actual violations amounts

to looking for needles in a large haystack of alerts, and inspecting all, or even a large

proportion of, alerts that are typically generated is rarely feasible. A crucial consideration,

therefore, is how to prioritize alerts, choosing a subset that can be audited given a specified

auditing budget from a vast pool of possibilities. The prioritization problem is complicated

by the fact that intelligent adversaries—that is, would-be violators of organizational access

policies—would react to an auditing policy by changing their behavior to balance the gains

from violations, and the likelihood, and consequences, of detection.

We proceed to describe a formal model of alert prioritization as a game between an au-

ditor, who chooses an alert prioritization policy, and multiple attackers, who determine the

nature of violations, or are deterred from one, in response. In the described scenarios, we

assume that the attackers have complete information, which is the worst case assumption1.

For reference purposes, the symbols used throughout this chapter are described in Table

3.1.

3.2.1 System Model

Let E be the set of potential adversaries, such as employees in a healthcare organization,

some of whom could be potential violators of privacy policies, and V be the set of potential

victims, such as patients in a healthcare facility. We define events, as well as attacks,

1We do not claim that the attacker actually has such information, but instead aim to be robust even if the
attacker has complete information
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Table 3.1: A legend of the notation used in this chapter.

Symbols Interpretation

T Set of alert types
E Set of entities or users causing events
V Set of records or files available for access
Pt(⟨e,v⟩) Probability of raising type t alert by attack ⟨e,v⟩
Ct Cost for auditing an alert of type t
B Auditing budget
Ft(n) Probability that at most n alerts are in type t
OOO Set of all alert prioritizations over T
Zt Number of alerts under type t
bt Budget threshold assigned for auditing type t
R(⟨e,v⟩) Adversary’s gain when attack ⟨e,v⟩ is undetected
M(⟨e,v⟩) Adversary’s penalty when attack ⟨e,v⟩ is captured
K(⟨e,v⟩) Cost of deploying attack ⟨e,v⟩
pooo Probability of choosing an alert prioritization ooo
Pe Probability that e is a potential adversary

by a tuple ⟨e,v⟩. A subset of these events will trigger alerts. Now, let T be the set of

alert types or categorical labels assigned to different kinds of suspicious behavior. For

example, a doctor viewing a record for a patient not assigned to them and a nurse viewing

the EHR for another nurse (who is also a patient) in the same healthcare facility could

trigger two distinct alert types. We assume that each event ⟨e,v⟩ maps to at most one alert

type t ∈ T . This mapping may be stochastic; that is, given an event ⟨e,v⟩, an alert with type

t is triggered with probability Pt(⟨e,v⟩), and no alert is triggered otherwise (i.e., pt ′
⟨e,v⟩ = 0

for all t ′ ̸= t). Typically, both categorization of alerts and corresponding mapping between

events and types is given (for example, through predefined rules). If not, it can be inferred

by generating possible attacks and inspecting how they are categorized by TDMT. Auditing

each alert is time-consuming and the time to audit an alert can vary by alert type. Let Ct be

the cost (e.g., time) of auditing a single alert of type t and let B be the total budget allocated

for auditing.

We assume that the number of alerts triggered by normal events follows a distribution

which reflects a typical workflow of the organization and can be learned based on historical
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data. We assume this distribution is known, represented by Ft(n), which is the probabil-

ity that at most n alerts of type t are generated. If we make the reasonable assumption

that attacks are rare events and that the alert logs are tamper-proof by applying a certain

technique [118], then this distribution can be obtained from historical alert logs. It is note-

worthy that the probability that adversaries successfully manipulate the distribution in the

sensitive practices (e.g., the EHR system or the credit card application program), to fool

the audit model is almost zero. The cost of orchestrating and implementing such attacks is

much higher than what could be gained from running a few undetected attacks.

3.2.2 Game Model

We model the interaction between the auditor and potential violators as a Stackelberg

game. Informally, the auditor chooses a possibly randomized auditing policy, which is

observed by the prospective violators, who in response choose the nature of the attack,

if any. Both decisions are made before the alerts produced through normal workflow are

generated according to a known stochastic process Ft(n).

In general, a specific pure strategy of the defender (auditor) is a mapping from an ar-

bitrary realization of alert counts of all types to a subset of alerts that are to be inspected,

abiding by a constraint on the total amount of budget B allocated for auditing alerts. Even

representing a single such strategy is intractable, let alone optimizing in the space of ran-

domizations over these. We, therefore, restrict the defender strategy space in two ways.

First, we let pure strategies involve an ordering ooo = (o1,o2, . . . ,o|T |) (∀i, j ∈ Z+ and

i, j ∈ [1, |T |], if i ̸= j, then oi ̸= o j) over alert types, where the subscript indicates the

position in the ordering, and a vector of thresholds b = (b1, . . . ,b|T |), with bt being the

maximum budget available for auditing alerts in category t. Let O be the set of feasible

orderings, which may be a subset of all possible orders over types (e.g., the organizational

policy may impose constraints, such as always prioritizing some alert categories over oth-

ers). We interpret a threshold bt as the maximum budget allocated to t; thus, the most alerts
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of type t that can be inspected is ⌊bt/Ct⌋. Second, we allow the auditor to choose a ran-

domized policy over alert orderings, with pooo being the probability that ordering ooo over alert

types is chosen, whereas the thresholds b are deterministic and independent of the chosen

alert priorities.

We have a collection of potential adversaries E , each of whom may target any potential

victim v∈ V . We assume that the adversary will target exactly one victim (or at most one, if

V contains an option of not attacking anyone). Thus, the strategy space of each adversary

e is V . In addition, we characterize the probability that an adversary e ∈ E performs an

attack as Pe (i.e., e does not even consider attacking with probability 1−Pe).

Suppose we fix a prioritization ooo and thresholds b. Let o(t) be the position of alert

type t in ooo and oi be the alert type in position i in the order. Let Bt(ooo,b,Z) be the budget

remaining to inspect alerts of type t if the order is ooo, the defender uses alert type thresholds

b, and the vector of realizations of benign alert type counts is Z = {Z1, . . . ,Z|T |}. Then we

have

Bt(ooo,b,Z) = max

{
B−

o(t)−1

∑
i=1

min{boi,ZoiCoi} ,0

}
. (3.1)

Now, let us take a moment to unpack this expression for context. For the audited alert

type t, we repeatedly compare the threshold bt with ZtCt to determine how much budget

will be left for the types that follow in the priority order. If the total budget that is eaten by

inspecting alerts prior to t is larger than B, Bt(ooo,b,Z) returns 0, and no alerts of type t will

be inspected. Next, we can compute the number of alerts of type t that are audited as

nt(ooo,b,Z) = min{⌊Bt(ooo,b,Z)/Ct⌋ ,⌊bt/Ct⌋ ,Zt} . (3.2)

Suppose that an attack generates an alert of type t. As noted earlier, we assume that the

number of alerts generated due to attacks is a negligible proportion of all generated alerts

(e.g., when Pe are small). Then, the probability that an alert of type t generated through an

25



attack is detected is approximately

Pal(ooo,b, t)≈ EZ

[
nt(ooo,b,Z)

Zt

]
. (3.3)

The approximation comes from the fact that we use the benign counts Zt in the denomi-

nator to approximate the sum of the number of the false positive alerts and the true positive

alerts in type t. This is because 1) the number of true positive alerts in each type is very

small in practice and 2) the exact number true positives are unknown to the auditor.

The adversary e does not directly choose alert types, but rather the victims v (e.g., an

EHR). The probability of detecting an attack ⟨e,v⟩ under audit order ooo and audit thresholds

b is then

Pat(ooo,b,⟨e,v⟩) = ∑
t

Pt(⟨e,v⟩)Pal(ooo,b, t). (3.4)

We now have sufficient preliminaries to define the utility functions of the adversaries

e ∈ E . Let M(⟨e,v⟩) denote the penalty of the adversary when captured by the auditor,

R(⟨e,v⟩) denote the benefit if the adversary is not audited, and K(⟨e,v⟩) the cost of an

attack. The utility of the adversary is then

Ua(ooo,b,⟨e,v⟩) = Pat(ooo,b,⟨e,v⟩) ·M(⟨e,v⟩)

+(1−Pat(ooo,b,⟨e,v⟩)) ·R(⟨e,v⟩)−K(⟨e,v⟩).
(3.5)

By assuming that the game is zero-sum, there is no difference between the Strong Stack-

elberg Equilibrium (SSE) and the Nash Equilibrium (NE) [119]. Under this assumption,

the auditor’s goal can be transferred into finding a randomized strategy ppp and type-specific

thresholds b to minimize the expected utility of the adversary:

min
ppp,b ∑

e∈E
Pe max

v ∑
ooo∈OOO

poooUa(ooo,b,⟨e,v⟩), (3.6)
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where ppp = {pooo | ooo ∈OOO}. We call this optimization challenge the optimal auditing problem

(OAP).

The optimal auditing policy can be computed using the following mathematical pro-

gram, which directly extends the standard linear programming formulation for computing

mixed-strategy Nash equilibria in zero-sum games:

minb,ppp,u ∑e∈E Peue

s.t. ∀⟨e,v⟩ , ue ≥ ∑ooo∈OOO poooUa(ooo,b,⟨e,v⟩)

∑ooo∈OOO pooo = 1,

∀ooo ∈OOO, 0≤ pooo ≤ 1.

(3.7)

An important issue in this formulation is that we do not randomize over the decision

variables b. However, if we restrict strategies to the decision variables ppp by fixing b first,

then the resulting SSE and NE are identical. Indeed, if we fix b, the formulation becomes

a linear program. Nevertheless, since the set of all possible alert prioritizations is exponen-

tial, even this linear program has exponentially many variables. Furthermore, introducing

decision variables b makes it non-linear and non-convex. Next, we show that solving this

problem is NP-hard, even in a restricted special case. We prove this by reducing from the

0-1 Knapsack problem.

Definition 1 (0-1 Knapsack Problem) Let I be a set of items where each item i ∈ I has

a weight wi and a value vi, with wi and vi integers. W is a budget on the total amount of

weight (an integer). Question: given a threshold K, does there exist a subset of items R⊆ I

such that ∑i∈R vi ≥ K and ∑i∈R wi ≤W?
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Theorem 1 OAP is NP-hard even when O is a singleton.

Proof We reduce from the 0-1 Knapsack problem defined by Definition 1. We begin by

constructing a special case of the auditing problem and work with the decision version

of optimization Equation 3.6, in which we decide whether the objective is below a given

threshold θ . First, suppose that Zt = 1 for all alert types t ∈ T with probability 1. Since

the set of orders is a singleton, the probability distribution over orders pooo is not relevant.

Consequently, it suffices to consider bt ∈ {0,1} for all t, and the actual order over types

is not relevant because Zt = 1 for all types. Consequently, we can choose b to select an

arbitrary subset of types to inspect subject to the budget constraint B (i.e., type t will be

audited iff bt = 1). Thus, the choice of b is equivalent to choosing a subset of alert types

A⊆ T to audit.

Suppose that V = T , and each victim v ∈ V deterministically triggers some alert type

v∈ V = T for any attacker e. Let M(⟨e,v⟩) =C(⟨e,v⟩) = 0 for all e∈ E ,v∈ V , and suppose

that for every e, there is a unique type t(e) with R(⟨e,v⟩) = 1 if and only if v = t(e) and 0

otherwise. Then maxvUa(o,b,⟨e,v⟩) = 1 if and only if bt(e) = 0 (i.e., alert type t(e) is not

selected by the auditor) and 0 otherwise. Finally, we let Pe = 1 for all e.2

For the reduction, suppose we are given an instance of the 0-1 Knapsack problem. Let

T = I , and for each i ∈ I , generate vi attackers with t(e) = i. Thus, vi = |{e : t(e) = i}|.

Let Ci = wi be the cost of auditing alerts of type i, and let B =W . Define θ = |E |−K. Now

observe that the objective in Equation 3.6 is below θ if and only if minb ∑t:bt=0 vt ≤ θ ,

or, equivalently, if there is R such that ∑t∈R vt ≥ K. Thus, the objective of Equation 3.6

is below θ if and only if the Knapsack instance has a subset of items R ⊆ I which yield

∑i∈R vi ≥ K, where R must satisfy the same budget constraint in both cases.

2While this is inconsistent with our assumption that attackers constitute only a small portion of the system
users, we note that this is only a tool for the hardness proof.
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3.3 Solving the Alert Prioritization Game

There are two practical challenges that need to be addressed to compute useful approx-

imate solutions to the OAP. First, there is an exponential set of possible orderings of alert

types that need to be considered to compute an optimal randomized strategy for choosing

orderings. Second, there is a combinatorial space of possible choices for the threshold

vectors b. In this section, we develop a column generation approach for the linear program

induced when we fix a threshold vector b. We then introduce a search algorithm to compute

the auditing thresholds.

3.3.1 Column Generation Greedy Search

By fixing the auditing threshold vector b, Equation 4.3 becomes a linear program, albeit

with an exponential number of variables. However, since the number of constraints is small,

only a limited number of variables will be non-zero. In other words, the number of effective

orderings of alert types in the optimal solution is small compared to the exponential search

space. The challenge is in finding this small basis. We solve this problem in a greedy

manner by applying the column generation framework. In this approach, we iteratively

solve a linear program, where we use a subset of the variables. Upon each iteration we add

a new variable before the value of the objective function fails to reduce. By doing so, we

can incorporate the orderings that contribute to reducing the value of the objective function.

When no new orderings can be added, the process terminates. We refer to this method as

Column Generation Greedy Search (CGGS), the pseudocode for which is in Algorithm 1.

Specifically, we begin with a small subset of alert prioritizations QQQ ⊆ OOO. We solve

the linear program induced after fixing b in Equation 4.3, restricted to columns in QQQ. For

reference purposes, we call this the master problem, which is generated by function Gl p(∗).

Next, we check if there exists a column (ordering over types) that improves upon the current

best solution. The column of parameter matrix of constraints can be denoted as Γpooo =
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Pat(ooo,b,⟨e,v⟩)−1 for the decision variable pooo or Γue = 1 for the decision variable ue. The

corresponding reduced costs, computed by function rc(∗), are Cr
pooo = 1− πQQQ · Γpooo and

Cr
ue =−πQQQ ·Γue , where πQQQ is the solution of the dual problem. By minimizing the reduced

costs, we generate one new column in each iteration and add it to the subset of columns QQQ

in the master problem. Within the process of generating a new column, we use Γ′
(o′o′o′+t) to

denote the parameter column with the audit order (o′o′o′+ t). This process is repeated until we

can prove that the minimum reduced cost is non-negative.

The subproblem of generating the optimal column is itself non-trivial. We address this

subproblem through the application of a greedy algorithm for generating a reduced-cost-

minimizing ordering over alert types. The intuition behind CGGS is that, in the process

of generating a new audit order, we greedily add one alert type at a time to minimize the

reduced cost given the order generated thus far. We continue until the objective (reduced

cost) fails to improve.

ALGORITHM 1: Column Generation Greedy Search (CGGS)
Input : The set QQQ with a single random pure strategy for the auditor.
Output: The set of pure strategies QQQ.

1 while True do
2 Z = Gl p(QQQ); /* Construct LP using current QQQ */
3 πππQQQ = LP(Dual(Z)); /* Solve dual problem */
4 o′o′o′ = [];
5 while |o′o′o′|< |T | do
6 o′o′o′ = o′o′o′+ argmaxt∈T\o′o′o′πππQQQ ·Γ′(o′o′o′+t);

7 end
8 if minrc(QQQ)< 0 then
9 QQQ =QQQ+o′o′o′;

10 else
11 break;
12 end
13 end
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3.3.2 Iterative Shrink Heuristic Method

Armed with an approach for solving the linear program induced by a fixed budget

threshold vector b, we now develop a heuristic procedure to find alert type thresholds.

Now, let us characterize the range of each element in b. First, it should be recognized

that ∑t bt ≥ B because to allow otherwise would clearly waste auditing resources. Yet there

is no explicit upper bound on the thresholds. However, given the distribution of the number

of alerts Zt for an alert type t, we can obtain an approximate upper bound on bt , where

Ft(bt/Ct) ≈ 1. This is possible because setting the thresholds above such bounds would

lead to negligible improvement. Consequently, searching for a good solution can begin

with a vector of audit thresholds, such that for each bt , Ft(bt/Ct) ≈ 1. Leveraging this

intuition, we design a heuristic method, which iteratively shrinks the values of a good3

subset of audit thresholds according to a certain step size ε . We refer to this as the Iterative

Shrink Heuristic Method (ISHM), the pseudocode for which is provided in Algorithm 2.

In each atomic searching action, ISHM first makes a subset of thresholds bt strategically

shrink. Next, it checks to see if this results in an improved solution. We introduce a variable

lh, which indicates the level (or the size) of the given subset of b, and ε ∈ (0,1), which

controls the step size.

In the beginning, the vector of audit thresholds {Ĥo} is initialized with the approximate

upper bounds. Then, by assigning lh = 1, we consider shrinking each of the audit thresholds

Ĥi. The coefficient for shrinking is defined by the ratio in line 7, which is instantiated

with the predefined step size ε; i.e., i = 1. If the best value for the objective function in

the candidate subsets at lh = 1 after shrinking shows an improvement, then the shrink is

accepted and the shrinking coefficient is made smaller by increasing i. When no coefficient

leads to improvement, we increase lh by one, which induces tests of threshold combinations

at the same shrinking ratio. This logic is described in line 6 through 20.

3“Good” in this context means that shrinking the thresholds within the subset improves the value of the
objective function.
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Once an improvement occurs, the search course resets based on the current b. The

search terminates once lh > |T |.

Note that for a single improvement, the worst-case time complexity is O(⌈1/ε⌉·O(LP) ·

2|T |). Though exponential, our experiments show that ISHM achieves outstanding perfor-

mance, both in terms of precision (of approaching the optimal solution) and efficiency.

ALGORITHM 2: Iterative Shrink Heuristic Method (ISHM)
Input : Instance of the game, step size ε .
Output: Vector of audit thresholds {Ĥi}.

1 Initialize {Ĥi} with full coverages in {Ft};
2 lh = 1; ob j =+∞;
3 while lh <= |T | do
4 Clh = choose(|T |, lh); /* Find combinations */
5 prgrs = 0;
6 for i← 1 to ⌈1/ε⌉ do
7 ratio = max{0,1− i∗ ε};
8 ob jr =+∞; pstr = 0;
9 for j← 1 to |Clh | do

10 temp = {Ĥi};
11 for k← 1 to lh do
12 temp(1,Clh( j,k)) = temp(1,Clh( j,k)) ∗ ratio;
13 end
14 ob j′ = LP(B, temp); /* Return LP objective value */
15 if ob j′ < ob jr then ob jr = ob j′; pstr = j;
16 end
17 if ob jr < ob j then
18 ob j = ob jr;
19 Su =Clh(pstr, :); /* Types in need of update */
20 for j← 1 to |Su| do ĤSu j

= ĤSu j
∗ ratio;

21 break;
22 end
23 prgrs = i;
24 end
25 if prgrs == ⌈1/ε⌉ then lh = lh + 1;
26 else lh = 1;
27 end
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3.4 Controlled Evaluation

To gain intuition into the potential for our methods, we evaluated the performance of

the ISHM and CGGS approaches using a synthetic dataset, Syn A. To enable comparison

with an optimal solution, we use a relatively small synthetic dataset, but as will be clear, it

is sufficient to illustrate the relationship between our methods and the optimal brute force

solution.

To perform the analysis, we vary the audit budgets B and step size ε of ISHM. In

addition, we evaluate a combination of CGGS+ISHM (since the former is also an approxi-

mation), by again comparing to the optimal.

3.4.1 Data Overview

The dataset Syn A consists of 5 potential attackers who perform accesses (pe = 14), 8

files, 4 predefined alert types, and a set of rules for triggering alerts if any access happens.

Table 3.2 summarizes the information of Syn A and related parameters in the corresponding

scenario. We let the number of alerts for all types be distributed according to a Gaussian

distribution with means and standard deviation as reported in Table 3.2a. Since the number

of alerts for each alert type are integers, we discretize the x-axis of each alerts cumulative

distribution function and use the corresponding probabilities for each possible alert count.

We consider the 99.5 probability coverage for each alert type to obtain a finite upper bound

on alert counts.

We assume alerts are triggered deterministically for each access, a common case in

rule-based systems. The alert type that will be triggered for each potential access is pro-

vided in Table 3.2b, where “-” represents a benign access. This table is generated with

a probability vector [0.07,0.38,0.23,0.16,0.16] for each employee, which corresponds to

alert type vector [0,1,2,3,4]. Although in reality, benign accesses may be more frequent,

4The artificially high incidence of attacks here is merely to facilitate a comparison with a brute-force
approach.
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we lower their probability to better differentiate the final value of the objective function.

The benefit of the adversary for a successful attack, the cost of an attack and the cost of an

audit are all directly related to the alert type, which is shown in Table 3.2a. In addition, the

penalty for being caught is set to a constant value of 4.

Table 3.2: Description of Dataset Syn A.

(a) Parameters for alert types in the synthetic setting.

Type 1 Type 2 Type 3 Type 4

Mean 6 5 4 4
Std 2 1.6 1.3 1

99.5% Coverage +/-5 +/-4 +/-3 +/-3
Benefit 3.4 3.7 4 4.3

Attack Cost 0.4 0.4 0.4 0.4
Audit Cost 1 1 1 1

(b) Rules for alert types in the synthetic setting.

Employee Record

r1 r2 r3 r4 r5 r6 r7 r8

e1 − 3 2 2 3 4 3 1
e2 1 − 1 1 1 2 1 1
e3 1 3 4 − 1 3 1 4
e4 2 1 3 1 4 4 2 2
e5 2 3 1 4 2 1 3 2

3.4.2 Optimal Solution with Varying Budget

Based on the given information, we can compute the optimal OAP solution. First,

the search space for audit thresholds in this scenario is as follows: 1) for each alert type,

the audit threshold bt ∈ N, 2) the sum of thresholds for all alert types should be greater

than or equal to B, 3) for each type, the upper bound of the audit threshold bt is where

Ft(bt/Ct)≈ 1. Concretely, we set vector J = Mean+ |99.5%Coverage| as the upper bound

for finding the optimal solution. Thus, the space of the investigation of the optimal solution

is O(∏
|T |
i=1(Ji +1)). Note that 0 is also a possible choice, which means the auditor will not

34



check the corresponding alert type. Thus, it is infeasible to directly solve the OAP in the

instances with a large number of alert types or large Ji.

To investigate the performance of the proposed audit model, we allocated a vector of

audit budgets B = {2,4,6,8,10,12,14,16,18,20}, which has a wide range with respect to

the scale of the means of the alert types. We then apply a brute force search to discover

an optimal vector of budget thresholds for each type. Table 3.3 shows the optimal solution

of OAP for each candidate B, including the optimal value of the objective function, opti-

mal threshold (using the smallest optimal threshold whenever the optimal solution is not

unique), pure strategies in the support of the optimal mixed strategy, and the optimal mixed

strategy of the auditor. As expected, it can be seen that as the budget increases, the optimal

value of the objective function (minimized by the auditor) decreases monotonically.
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Table 3.3: The optimal solution for the auditor under various budgets.

ID Budget Optimal Objective Value Optimal Threshold Effective Pure Strategy Optimal Mixed Strategy

1 2 12.2945 [1,1,1,1] [2,3,4,1][4,1,3,2][4,2,3,1][4,3,2,1] [0.3566, 0.3780, 0.1210, 0.1444]
2 4 7.7176 [2,1,1,2] [1,2,3,4][2,1,3,4][4,2,1,3][4,2,3,1] [0.4664, 0.0052, 0.0934, 0.4350]
3 6 3.2651 [2,2,2,2] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.2748, 0.2341, 0.3293, 0.1618]
4 8 -0.4517 [3,3,2,2] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.0762, 0.4600, 0.1329, 0.3309]
5 10 -2.1314 [3,3,3,3] [1,2,3,4][1,4,3,2][4,1,2,3][4,1,3,2] [0.3926, 0.0788, 0.4080, 0.1206]
6 12 -3.7345 [4,4,3,3] [2,1,3,4][4,2,3,1][4,2,1,3][4,1,3,2] [0.2028, 0.1554, 0.2076, 0.4342]
7 14 -5.1645 [5,4,3,3] [2,1,3,4][4,2,3,1][4,2,1,3][4,1,3,2] [0.3559, 0.2199, 0.3176, 0.1066]
8 16 -6.4510 [6,5,4,4] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.2431, 0.2636, 0.1728, 0.3205]
9 18 -7.4649 [7,6,5,5] [2,1,3,4][4,1,3,2][4,2,1,3][4,2,3,1] [0.2710, 0.2630, 0.2054, 0.2615]
10 20 -8.1561 [9,7,6,6] [1,2,3,4][4,1,2,3][4,1,3,2][4,2,3,1] [0.2398, 0.1742, 0.2275, 0.3585]
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3.4.3 Findings

Our heuristic methods aim to find an approximate solution through major reductions in

computation complexity. In this respect, the search step size ε is a key factor to consider be-

cause it could lead the search into a locally optimal solution. To investigate the gap between

the objective function with the optimal solution, as well as the influence of ε on the gap, we

performed experiments with a series of step sizes ε = [0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5].

Tables 3.4 and 3.5, summarize the results, where each cell consists of two items: 1) the min-

imized sum of the maximal utilities of all adversaries obtained using the heuristic method

and 2) the corresponding audit threshold vector.

There are three findings worth highlighting. First, when ε is fixed, the approximated

values of the objective function decrease as the budget increases. This is akin to the trend

shown in Table 3.3. Second, when the budget B is fixed, the approximated values achieved

through ISHM and ISHM+CGGS exhibit a general growth trend as ε increases. This oc-

curs because larger shrink ratios increase the likelihood that the heuristic search will miss

more of the good approximate solutions. Third, we find that the ISHM and ISHM+CGGS

solutions are close to the optimal. To measure the solution quality as a function of ε , we

use γε =
1
|B|∑

|B|
i |ŜBi,ε −SBi,ε |/|SBi,ε |, where ŜBi,ε denotes the approximate optimal values

in Tables 3.4 and 3.5 and SBi,ε denotes the optimal values provided by Table 3.3.

In Table 3.6, it can be seen that ISHM (and solving the linear program to optimality)

achieves solutions near 99% of the optimal (as denoted by γ1
ε ) when the step size ε ≤ 0.2.

Even the approximately optimal solutions with ε = 0.5 have a good approximation ratio

(above 89%). As such, it appears that if we choose an appropriate ε , then ISHM can

perform well.

When we combine ISHM+CGGS (denoted by γ2
ε ), the approximation quality drops

compared to γ1
ε , as we would expect, with the lone exception of (ε = 0.4). However, γ2

ε is

very close to γ1
ε , which suggests that our approximate column generation method does not

significantly degrade the quality of the solution.
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Next, we consider the computational burden for ISHM to achieve an approximate target

of the optimal solution. Table 3.7 provides the values of the threshold vectors under various

B and ε . It can be seen that the number of threshold candidates explored decreases as the

step size grows. For a given ε , the number of thresholds considered by the algorithm

initially increases, but then drops as the audit budget increases. The reason that less effort

is necessary at the extremes of the budget range is that the restart of the test for a single alert

type (to find a better position) is invoked less frequently. By contrast, a larger amount of

effort is required in the middle of the budget range due to more frequent restarts (although

this yields only a small improvement).

Finally, we investigate the average number for the threshold vectors explored by the

algorithm over the budget range B. For the various step sizes, we represent the results

in vector form T = [403,223,156,121,93,86,68,66,61,47]. Dividing by the number of

investigations needed to discover the optimal solution, the resulting ratio vector is T ′ =

[0.0831, 0.0460, 0.0321, 0.0251, 0.0198, 0.0190, 0.0163, 0.0182, 0.0206, 0.0210].

Thus, when ε = 0.2 (when both γ1
ε and γ2

ε are greater than 0.99), the number of thresholds

explored is only 2.51% of the entire space. As such, by applying ISHM, the number of

investigated threshold candidates can be greatly reduced without significantly sacrificing

solution quality.
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Table 3.4: The approximation of the optimal solutions obtained by ISHM at various levels of B and ε .

B Approximation of Optimal Loss of the Auditor and corresponding thresholds by ISHM

ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20 ε = 0.25 ε = 0.30 ε = 0.35 ε = 0.40 ε = 0.45 ε = 0.50

2 12.2945 12.2945 12.2958 12.2945 12.2958 12.3675 12.3675 12.2945 12.3675 12.3675
[10,1,1,1] [9,1,1,1] [9,9,1,1] [8,1,1,1] [8,9,1,1] [7,9,7,7] [7,9,7,7] [6,1,1,1] [6,9,7,7] [5,9,7,7]

4 7.7176 7.7176 7.7176 7.7176 7.7176 7.7176 7.7181 7.8402 7.8402 7.9037
[2,1,1,2] [2,1,1,2] [2,1,1,2] [2,1,1,2] [2,1,1,2] [2,1,1,2] [2,1,7,2] [1,1,7,7] [1,9,1,3] [11,9,1,3]

6 3.2651 3.2651 3.2651 3.2651 3.2651 3.2651 3.3267 3.2744 3.4549 3.4549
[2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [3,3,2,2] [2,3,2,2] [11,2,3,3] [11,2,3,3]

8 −0.4517 −0.4517 −0.4517 −0.4517 −0.4517 −0.3508 −0.4517 −0.4116 −0.3730 −0.2910
[3,3,2,2] [3,3,2,2] [3,3,2,2] [3,3,2,2] [3,3,2,2] [4,4,2,2] [3,3,2,2] [11,3,2,2] [3,4,3,3] [5,4,3,3]

10 −2.1314 −2.1314 −2.1314 −2.1314 −2.1314 −1.9693 −1.9996 −2.0119 −2.0755 −2.0037
[3,3,3,3] [3,3,3,3] [3,3,3,3] [3,3,3,3] [3,3,3,3] [4,4,4,4] [4,3,4,4] [3,3,4,4] [3,4,3,3] [5,4,3,3]

12 −3.7345 −3.7345 −3.7345 −3.7345 −3.7345 −3.5991 −3.5627 −3.4854 −3.6533 −3.6873
[4,4,3,3] [4,4,3,3] [4,4,3,3] [4,4,3,3] [4,4,3,3] [4,4,4,4] [4,5,4,4] [6,5,4,4] [6,4,3,3] [5,4,3,3]

14 −5.0713 −5.0713 −5.0430 −5.0430 −5.0713 −5.0962 −5.0350 −5.0629 −5.0713 −5.0713
[9,4,3,5] [9,4,3,5] [11,5,3,3] [11,5,3,3] [5,4,3,5] [7,4,4,4] [7,5,4,4] [6,5,4,4] [6,4,3,7] [5,4,3,7]

16 −6.4510 −6.4510 −6.4363 −6.4510 −6.3823 −6.4135 −6.4363 −6.4510 −6.3225 −6.1149
[6,5,4,4] [6,5,4,4] [7,5,4,4] [6,5,4,4] [6,6,5,5] [7,6,4,4] [7,5,4,4] [6,5,4,4] [6,9,7,7] [5,9,7,7]

18 −7.4649 −7.4649 −7.4600 −7.4490 −7.4585 −7.4490 −7.4320 −7.3956 −7.3612 −6.1149
[7,6,5,5] [7,6,5,5] [7,7,5,5] [8,7,5,5] [8,6,5,5] [7,6,7,7] [7,9,7,7] [11,9,7,4] [6,9,7,7] [5,9,7,7]

20 −8.1561 −8.1561 −8.1548 −8.1523 −8.1520 −8.1308 −8.1138 −7.6619 −7.3612 −6.1149
[9,7,6,6] [9,7,6,6] [9,7,7,7] [8,7,7,7] [8,9,7,7] [11,6,7,7] [7,9,7,7] [11,9,7,4] [6,9,7,7] [5,9,7,7]
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Table 3.5: The approximation of the optimal solutions obtained by ISHM + CGGS at various levels of B and ε .

B Approximation of Optimal Loss of the Auditor and corresponding thresholds by ISHM + CGGS

ε = 0.05 ε = 0.10 ε = 0.15 ε = 0.20 ε = 0.25 ε = 0.30 ε = 0.35 ε = 0.40 ε = 0.45 ε = 0.50

2 12.2967 12.2967 12.3096 12.2967 12.3096 12.3677 12.3677 12.2967 12.3677 12.3677
[1,1,1,1] [1,1,1,1] [9,9,1,1] [1,1,1,1] [8,9,1,1] [7,9,7,7] [7,9,7,7] [1,1,1,1] [6,9,7,7] [5,9,7,7]

4 7.7214 7.7214 7.7346 7.7214 7.7346 7.7346 7.7346 7.9151 7.8402 7.9045
[2,1,1,2] [2,1,1,2] [2,9,1,2] [2,1,1,2] [2,9,1,2] [2,9,1,2] [2,9,1,2] [1,1,1,7] [1,9,1,3] [11,9,1,3]

6 3.2755 3.2755 3.2755 3.2755 3.2755 3.2755 3.3628 3.3267 3.4897 3.3099
[2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [2,2,2,2] [3,3,2,2] [2,3,2,2] [11,2,3,3] [2,2,3,3]

8 −0.4422 −0.4422 −0.4422 −0.4422 −0.2761 −0.3300 −0.4006 −0.4422 −0.3404 −0.2761
[3,3,2,2] [3,3,2,2] [3,3,2,2] [3,3,2,2] [5,2,2,7] [4,4,2,2] [4,3,2,2] [3,3,2,2] [3,4,3,3] [5,2,3,3]

10 −2.1203 −2.1203 −2.1203 −2.1203 −2.1203 −1.9503 −1.9873 −2.0091 −2.0612 −1.9508
[3,3,3,3] [3,3,3,3] [3,3,3,3] [3,3,3,3] [3,3,3,3] [4,4,4,4] [4,3,4,4] [3,3,4,4] [3,4,3,3] [5,4,3,3]

12 −3.7215 −3.7215 −3.7215 −3.7215 −3.7215 −3.5832 −3.5448 −3.4326 −3.6383 −3.6768
[4,4,3,3] [4,4,3,3] [4,4,3,3] [4,4,3,3] [4,4,3,3] [4,4,4,4] [4,5,4,4] [6,5,4,4] [6,4,3,3] [5,4,3,3]

14 −5.0709 −5.1529 −5.0430 −5.0700 −5.0698 −5.0857 −5.0125 −5.0494 −5.0698 −5.0706
[5,9,3,4] [5,4,4,4] [9,4,3,3] [6,5,3,4] [6,4,3,7] [7,4,4,4] [7,5,4,4] [6,5,4,4] [6,4,3,7] [5,4,3,7]

16 −6.4394 −6.4394 −6.4258 −6.4394 −6.3683 −6.4008 −6.4258 −6.4394 −6.3038 −6.1149
[6,5,4,4] [6,5,4,4] [7,5,4,4] [6,5,4,4] [6,6,5,5] [7,6,4,4] [7,5,4,4] [6,5,4,4] [6,9,7,7] [5,9,7,7]

18 −7.4524 −7.4524 −7.4465 −7.4363 −7.4472 −7.4359 −7.4171 −7.3825 −7.3612 −6.1149
[7,6,5,5] [7,6,5,5] [7,7,5,5] [8,7,5,5] [8,6,5,5] [7,6,7,7] [7,9,7,7] [11,5,7,7] [6,9,7,7] [5,9,7,7]

20 −8.1448 −8.1448 −8.1433 −8.1398 −8.1388 −8.1207 −8.1043 −7.6619 −7.3612 −6.1149
[9,7,6,6] [9,7,6,6] [9,7,7,7] [8,7,7,7] [8,9,7,7] [11,6,7,7] [7,9,7,7] [11,9,7,4] [6,9,7,7] [5,9,7,7]
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Table 3.6: The average precision over the budget vector B by applying ISHM and
ISHM+CGGS.

ε 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

γ1
ε

0.9982 0.9982 0.9973 0.9974 0.9970 0.9634 0.9830 0.9680 0.9549 0.8982
γ2

ε
0.9943 0.9959 0.9932 0.9940 0.9560 0.9562 0.9684 0.9700 0.9452 0.8966

Table 3.7: The number of threshold vectors checked by ISHM with a given budget B and
step size ε .

ε
B

2 4 6 8 10 12 14 16 18 20

0.10 251 267 255 243 235 227 199 207 191 171
0.20 128 144 148 140 132 124 108 108 92 84
0.30 65 109 101 93 85 85 81 77 69 65
0.40 74 66 78 70 70 62 62 62 50 50
0.50 35 43 47 47 47 47 43 35 35 35

3.5 Model Evaluation

The previous results suggest ISHM and CGGS can be efficient and effective in solving

the OAP in a small controlled environment. Here, we investigate the performance of the

proposed game-theoretical audit model on more realistic and larger datasets. This evalua-

tion consists of comparing the quality of solutions of OAP with several natural alternative

auditing strategies.

The first dataset, Rea A, corresponds to the EHR access logs of Vanderbilt University

Medical Center (VUMC). This dataset is notable because VUMC privacy officers rely on

this data to conduct retrospective audits to determine if there are accesses that violate or-

ganizational policy. The central goal in this use case is to preserve patient privacy. Given

that this is not a publicly available dataset, we conducted experiments with a second dataset,

Rea B, which consists of public observations of credit card applications. It labels applicants

as having either low or high risk of fraud. We provide an audit mechanism to capture events

of credit card fraud based on the features in this dataset. We use Rea B to demonstrate the

broad applicability of the proposed approaches and enable replication of our results.
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Table 3.8: Description of the EHR alert types.

ID Alert Type Description Mean Std

1 Same Last Name 183.21 46.40
2 Department Co-worker 32.18 23.14
3 Neighbor (≤ 0.5 miles) 113.89 80.44
4 Last Name; Same address 15.43 14.61
5 Last Name; Neighbor (≤ 0.5 miles) 23.75 11.07
6 Same address; Neighbor (≤ 0.5 miles) 20.07 11.49
7 Last Name; Same address; Neighbor (≤ 0.5 miles) 32.07 16.54

3.5.1 Data Overview

Rea A consists of the VUMC EHR access logs for 28 continuous workdays during

2017. There are 48.6M access events, 38.7M (79.5%) of which are repeated accesses.5

We filtered out the repeated accesses to focus on the distinct user-patient relationships es-

tablished on a daily basis. The mean and standard deviation of daily access events was

355,602.18 and 195,144.99, respectively. The features for each event include: 1) times-

tamp, 2) patient ID, 3) employee ID, 4) patient’s residential address, 5) employee’s resi-

dential address, 6) employee’s VUMC department affiliation and 7) indication of if a patient

is an employee. We focus on the following alert types: 1) employee and patient share the

same last name, 2) employee and patient work in the same VUMC department, 3) employee

and patient share the same residential address, and 4) employee and patient are neighbors

within a distance threshold.

In certain cases, the same access may generate multiple alerts, each with a distinct

type. For example, if a husband, who is a BMRC employee, accesses his wife’s EHR,

then two alert types may be triggered: 1 (same last name) and 3 (same address). We,

therefore, redefine the set of alert types to also consider combinations of alert categories.

The resulting set of alert types is detailed in Table 3.8.

We label each access event in the logs with a corresponding alert type or as “benign”

5We define a repeated access as an access that is committed by the same employee to the same patient’s
EHR on the same day.
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(i.e., no alerts generated). To evaluate our methods, we choose a random sample of 50

employees and patients who generate at least one alert. This set of employees and the set

of patients then results in 2500 potential accesses, where each employee can access each

patient.

We let the probability that an employee could be malicious be 1, which is artificially

high, but enables us to clearly compare the methods in the experiments. The benefit vector

for the adversary is [10,12,12,24,25,25,27] for the corresponding categories of alert types

(1-7 in Table 3.8). The penalty for capture is set to 15. We set the cost of both an attack

and an audit to 1. We acknowledge that the model parameters are ad hoc, but this does

not affect the results of our comparative analysis. In practice, this would be accomplished

based on expert opinion, but is outside the scope of this study.

Rea B is the Statlog (German Credit Data) dataset available from the UCI Machine

Learning Repository. Rea B contains 1000 credit card applications. It is composed of 20

attributes describing the status of the applicants pertaining to their credit risk. Before is-

suing a credit card, banks would determine if it could be fraudulent based on the features

in the data. Nevertheless, no screening process is perfect, and given a large number of

applications, applications will require retrospective audits to determine whether specific

applications should be canceled. Thus, alerts in this setting aim to indicate potential fraud

and a subset of such alerts are chosen for a time-consuming auditing process. Leveraging

the provided features, we define 5 alert types, which are triggered by the specific com-

binations of attribute values and the purpose of the application. The 8 selected purposes

of application are the “victims” in our audit model. Table 3.9 summarizes how alerts are

triggered. In the description field, italicized words represent the purpose of the application,

while the other words represent feature values.

We used the 5 alert categorizations discussed above to label the 1000 applications with

alert types, excluding any that fail to receive a label. Among these, we randomly se-

lected 100 applicants who may choose to “attack” one of the 8 purposes of credit card
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Table 3.9: Description of the defined alert types.

ID Alert type Description Mean Std

1 No checking account, Any purpose 370.04 15.81
2 Checking < 0, New car, Education 82.42 7.87
3 Checking > 0, Unskilled, Education 5.13 2.08
4 Checking > 0, Unskilled, Appliance 28.21 5.25
5 Checking > 0, Critical account, Business 8.31 2.96

applications, for a total of 800 possible events. The benefit vector for the adversary is

[15,15,14,20,18] for each of the alert types generated, respectively. We set the penalty

for detection to 20 and costs for attack and audit were both set to 1. Again, to facilitate

comparison we set pe = 1 in all cases.

3.5.2 Comparison with Baseline Alternatives

The performance of the proposed audit model was investigated by comparing with sev-

eral natural alternative audit strategies as baselines. The first alternative is to randomize the

audit order over alert types, which we call Audit with random orders of alert types. Though

random, this strategy mimics the reality of random reporting (e.g., where a random patient

calls a privacy official to look into alleged suspicious behavior with respect to the use of

their EHR). In this case, we adopt the thresholds out of the proposed model with ε = 0.1

to investigate the performance. The second alternative is to randomize the audit thresholds.

We refer to this policy as Audit with random thresholds. For this policy, we assume that 1)

the auditor’s choice satisfies ∑i bi ≥ B and 2) the auditor has the ability to find the optimal

audit order after deciding upon the thresholds. The third alternative is a naive greedy audit

strategy, where the auditor prioritizes alert types according to their utility loss (i.e., greater

consequence of violations). In this case, the auditor investigates as many alerts of a certain

type as possible before moving on to the next type in the order. For our experiments, when

the alert type order is based on the loss of the auditor, which is the benefit the adversary
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receives when they execute a successful attack. Thus, we refer to this strategy as Audit

based on benefit.

The following performance comparisons are assessed over a broad range of auditing

budgets. For our model, we present the values of the objective function with three different

instances of the step size ε in ISHM: [0.1,0.2,0.3]. Figures 4.1 and 3.2 summarize the

performance of the proposed audit model and three alternative audit strategies for Rea A

and Rea B, respectively.

For dataset Rea A, the range of B was set to 10 through 100. The budget of 100 covers

about 1/4 of the sum of the means of the seven alert types. In reality, such coverage

is quite high. By applying the proposed audit model, we approximately solve the OAP

given B and ε . For Audit with random orders of alert types, we assign the audit thresholds

using ISHM with ε = 0.1. The randomization is repeated 2000 times without replacement.

As for Audit with random thresholds, we randomly generate the audit thresholds to solve

the corresponding LP, which are repeated 5000 times. For Audit based on benefit, we

randomly sample 2000 instances of Z based on the distributions of alert types learned from

the dataset.

Based on Figure 4.1, there are several findings we wish to highlight. First, in our model,

as the audit budget increases, the auditor’s loss decreases. At the high end, when B ≥ 90,

the auditor’s loss is zero, which, in the VUMC audit setting, implies that all the potential

adversaries are deterred from an attack. This valuation of B is smaller than 1/4 of the sum

of distribution means of all alert types. The reason for this phenomenon stems from the

fact that when the audit budget increases, the audit model finding better approximations of

the optimal audit thresholds, which, in turn, enables the auditor to significantly limit the

potential gains of the adversaries. Second, our proposed model significantly outperforms

all of the baselines. Third, even though Audit with random orders of alert types uses ap-

proximated audit thresholds, the auditor’s loss is substantially greater than our proposed

approach. However, the auditor’s losses for the alternatives approach ours when B = 20.
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This is because the thresholds are [0,0,0,7,0,11,8], such that the audit order is less of

a driver than in other situations. Fourth, Audit based on benefit tends to have very poor

performance compared to other policies. This is because when the audit order is fixed (or

is predictable), adversaries have greater evasion ability and attack more effectively. Fifth,

Audit with random thresholds tends to outperform the other baselines but is still signifi-

cantly worse than our approach. The is because the auditor has the ability to search for the

optimal audit policy, but the thresholds are randomly assigned such that they are hampered

in achieving the best solution.
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Figure 3.1: Auditor’s loss in the proposed and baseline models in the Rea A dataset.

For the credit card application scenario, Figure 3.2 compares the auditor’s loss in our

heuristics and the three baselines. For dataset Rea B, the range for B is 10 to 250 with a step

size of 20. As expected, as the budget increases, the auditor sustains a decreasing average

loss. It can be seen that the proposed audit model significantly outperforms the alternative

baselines. Specifically, as the auditing budget increases, the auditor’s loss trends towards,

and becomes, 0 in our approach. This means that the attackers are completely deterred.

For the alternatives, as before, Audit with random thresholds outperforms other strategies.

And, just as before, the strategy that greedily audits alert types (in order of loss) tends to
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perform quite poorly.
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Figure 3.2: Loss of the auditor in the proposed and alternatives audit model in the Rea B
dataset.

3.6 Disccusion

TDMTs are usually deployed in database systems to address a variety of attacks that

originate from within and beyond an organization. However, an overwhelming alert volume

is far beyond the capability of auditors with limited resources. Our research illustrates that

policy compliance auditing, as a significant component of database management, can be

improved by prioritizing which alerts to focus on via a game theoretic framework, allowing

auditing policies to make the best use of limited auditing resources while simultaneously

accounting for the strategic behavior of potential policy violators. This is notable because

auditing is critical to a wide range of management requirements, including privacy breach

and financial fraud investigations. As such, this model and the effective heuristics we offer

in this study fill a major gap in the field.

There are several limitations of our approach that we wish to highlight as opportunities

for future investigations. First, there are limitations to the parameterization of the game.

One notable aspect is that we assumed that the game has a zero-sum property. Yet in
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reality, this may not be the case. For example, an auditor is likely to be concerned less

about the cost incurred by an adversary for executing an attack and more concerned about

the losses that arise from successful violations Additionally, while our experiments show

the proposed audit model outperforms natural alternatives, it is unclear how sensitive this

result is to parameter variations. Thus, a fruitful direction of research is in the payoff

structures and how they influence the performance of the model.

A second set of limitations stems from the assumptions we rely upon. In particular, we

assumed that each attack is instantaneous, which turned the problem into a one-shot two-

stage game. However, attacks in the wild may require multiple cycles to fully execute, such

that the auditor may be able to capture the attacker before they complete their exploit. To

address such a setting, a temporal audit model may complement the approach introduced in

this chapter. Furthermore, our model is predicated on an environment in which the auditor

has complete knowledge, including the identities, about the set of potential adversaries.

However, in practice, one player can hardly know everything about the other. Thus, a

natural follow-up investigation is to relax such a strong assumption by involving uncertainty

in the knowledge of the players.

A third limitation is in the economic premise of the attack. Specifically, we expected

the interaction between the auditor and adversaries as fully rational. In reality, adversaries

may be bounded in their rationality, and an important extension would be to generalize the

model consider such behavior.

3.7 Conclusion

Prioritizing the alerts raised by TDMT modules can enable effective auditing of privacy-

and security-related incidents. This chapter introduced a game theoretic model to represent

the strategic interactions between an auditor and a set of potential adversaries. We showed

that discovering the optimal prioritization of alerts is NP-hard, but that several efficient

search heuristics can be designed to solve the problem. Using a controlled, synthetic,
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dataset, we proved that the heuristics can achieve a performance that is close to the opti-

mal solution. And, using several different types of datasets illustrated that the heuristics

are substantially more effective at prioritization than typical auditing strategies invoked in

practice. We did, however, make several simplifying assumptions regarding the behavior

of the adversaries and the parameterization of the variables in the model, but believe that

this research provides a foundation for further investigation in alert prioritization games.
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Part III

Online Auditing: Signaling
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Chapter 4

Signaling Audit Game: an online solution

Routine operational use of sensitive data is often governed by law and regulation. For

instance, in the medical domain, there are various statues at the state and federal level

that dictate who is permitted to work with patients’ records and under what conditions. To

screen for potential privacy breaches, logging systems are usually deployed to trigger alerts

whenever a suspicious access is detected. However, such mechanisms are often inefficient

because 1) the vast majority of triggered alerts are false positives, 2) small budgets make

it unlikely that a real attack will be detected, and 3) attackers can behave strategically,

such that traditional auditing mechanisms cannot easily catch them. To improve efficiency,

information systems may invoke signaling, so that whenever a suspicious access request

occurs, the system can, in real time, warn the user that the access may be audited. Then, at

the close of a finite period, a selected subset of suspicious accesses are audited. This gives

rise to an online problem in which one needs to determine 1) whether a warning should be

triggered and 2) the likelihood that the data request event will be audited. In this chapter,

we formalize this auditing problem as a Signaling Audit Game (SAG), in which we model

the interactions between an auditor and an attacker in the context of signaling and the us-

ability cost is represented as a factor of the auditor’s payoff. We study the properties of its

Stackelberg equilibria and develop a scalable approach to compute its solution. We show

that a strategic presentation of warnings adds value in that SAGs realize significantly higher

utility for the auditor than systems without signaling. We perform a series of experiments

with 10 million real access events, containing over 26K alerts, from a large academic med-

ical center to illustrate the value of the proposed auditing model and the consistency of its

advantages over existing baseline methods.
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4.1 Introduction

Our society now collects, stores, and processes personal and intimate data with ever-

finer detail, documenting our activities and innovations in a wide range of domains, ranging

from health to finance [120, 121]. Due to the potential value of such data, their manage-

ment systems face non-trivial challenges to personal privacy and organizational secrecy.

The sensitive nature of the data stored in such systems attracts malicious attackers who can

gain value by disrupting them in various ways (e.g., stealing sensitive information, com-

mandeering computational resources, committing financial fraud, and simply shutting the

system down) [122, 58]. Reports in the popular media indicate that the severity and fre-

quency of attack events continues to grow. Notably, the recent breach at Equifax led to the

exposure of data on 143 million Americans, including credit card numbers, Social Security

numbers, and other information that could be used for identity theft or other illicit purposes

[11]. Even more of a concern is that the exploit of the system continued for at least two

months before it was discovered.

To defend against attack, modern database systems are often armed with an alerting ca-

pability to detect and notify about potential risks incurred during daily use [123, 124, 125].

This entails the logging of access events, which can be thought of as a collection of rules,

each of which defines a semantic type of a potentially malicious situation [126, 25]. In

mission-critical systems, the access requests of authenticated users are often granted to en-

sure continuity of workflow and operations, such that notification about potential misuse

is provided to administrators who perform retrospective audit investigations [114, 97, 127,

128]. For instance, many healthcare organizations (HCOs) rely on alert, as well auditing,

mechanisms to monitor anomalous accesses to electronic health records (EHRs) by em-

ployees who may violate policy and breach the privacy of certain patients [129]. Similarly,

the providers of online services, such as financial institutions and social media platforms,

often use alerts and audits to defend against attacks, such as financial fraud and compro-

mises to computational resources [130]. Though audits do not directly prevent attacks in
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their own right, they allow for the discovery of breaches that can be followed up on before

they escalate to full blown exploits by attackers.

However, there are challenges to instituting robust auditing schemes in practice. First,

the volume of triggered alerts is typically far greater than the auditing capacity of an or-

ganization [131]. Second, in practice, the majority of triggered alerts correspond to false

positives, which stem from an organization’s inability to define and recognize complex dy-

namic workflows. Third, to mitigate the risk of being caught, attackers prefer to act strate-

gically, such as carefully choosing the way (or target) to attack. And last, but not least, in

the retrospective audit setting, attacks are not discovered until they are investigated.

In essence, this is a resource allocation problem in an adversarial environment for which

the Stackelberg security game (SSG) is a natural choice to apply for modeling purposes

[132, 34, 86, 133, 134, 135]. In this model, the defender first commits to a budget allo-

cation policy and, subsequently, the attacker responds with the optimal attack based on

the defender’s strategy. This model has enabled the design and deployment of solutions

to various security problems in practice, such as ARMOR (which was adopted by the Los

Angeles Police Department (LAPD) to randomize checkpoints on the roadways at Los

Angeles International Airport) [92] and IRIS (which was adopted by the US Federal Air

Marshal Service to schedule air marshals on international flights) [136]. The audit game

is a variation of the SSG designed to discover an efficient audit strategy [98, 99, 36, 37].

With respect to strategic auditing, most research has focused on deriving a defense strategy

by solving, or approximating, the Strong Stackelberg Equilibrium (SSE). Unfortunately,

it was recently shown that merely applying the SSE strategy may have limited efficacy in

some security settings [107]. This can be addressed by strategically revealing information

to the attacker [107, 104], a mechanism referred to as signaling (or persuasion [137, 108]).

In this setting, the goal is to set up a signaling scheme to reveal noisy information to the

attacker and, by doing so, influence the attacker’s decision with respect to outcomes that

favors the defender. However, all approaches derived to date rely on allocating resources
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before signaling, such that it serves as a source of informational advantages for deceiving

the attacker. Yet, in the audit setting, the decision sequence is reversed, such that the signal

is revealed (e.g., via a warning screen) at the time of an access request, whereas the audit

occurs after a certain period of time. This poses new challenges for the design of signaling

schemes.

Many organizations have recognized and adopted signaling mechanisms to protect sen-

sitive data. For example, in 2018, Vanderbilt University Medical Center (VUMC) an-

nounced a new break-the-glass policy to protect the privacy of patients with a person of

interest (or VIP) designation, such as celebrities or public figures.1 Under this policy, ac-

cess to the EHRs of these individuals triggers a pop-up warning that requires the user to

provide a justification for the access. Once the warning has been served, the user can decide

whether or not to proceed to access, knowing that each access is logged for potential audit-

ing. However, such a policy is implemented in a post hoc manner that does not optimize

when to signal nor when to audit.

In this chapter, we introduce the notion of a Signaling Audit Game (SAG), which ap-

plies signaling to alert and auditing. We leverage the time gap between the access request

made by the (potential) attacker and the actual execution of the attack to insert the signaling

mechanism. When an alert is triggered by a suspicious access request, the system can, in

real time, send a warning to the requestor. At this point, the attacker has an opportunity

to re-evaluate his/her utility and make a decision about whether or not to continue with an

attack. In contrast to previous models, which are all computed offline, the SAG optimizes

both the warning strategy and the audit decision in real time for each incoming alert. Im-

portantly, we consider the usability cost into the SAG where the normal data requestors

may be scared away by the warning messages in practice. This may lead to descent in

operational efficiency of organizations which deploy SAGs.

To illustrate the performance of the SAG, in this chapter we evaluate the expected utility

1https://www.mc.vanderbilt.edu/myvumc/index.html?article=21557
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of the auditor with a dataset of over 10 million real VUMC EHR accesses and predefined

alert types. The results of a comprehensive comparison, which is performed over a range of

conditions, indicate that the SAG consistently outperforms state-of-the-art game theoretic

alternatives that lack signaling by achieving higher overall utility while inducing nominal

increases in computational burden.

The remainder of this chapter is organized as follows. We first propose the SAG and

introduce how it is played in the audit setting. Next, we analyze the theoretical properties

of the SAG equilibria. The dataset, experiments, and results are then described in the

evaluation section. We conclude this chapter by discussing limitations of our approaches

as opportunities for future investigation.

4.2 Online Signaling in Audit Games

In this section, we describe the SAG model in the general context of information ser-

vices. For illustrative purposes, we use healthcare auditing as a running example.

4.2.1 Motivating Domain

To provide efficient healthcare service, HCOs typically store and process each patient’s

clinical, demographic, and financial information in an EHR system. EHR users, such as

physicians and other clinical staff, need to access patients’ EHRs when providing health-

care services. The routine workflow can be summarized as three steps: 1) a user initiates

a search for a patient’s EHR by name and date of birth, then the system returns a list of

patients (often based on a fuzzy matching) along with their demographic information, 2)

from the list, this user requests access to a patient’s record, and 3) the system returns the

requested record. Due to the complex, dynamic and time-sensitive nature of healthcare,

HCOs typically grant employees broad access privileges, which unfortunately creates an

opportunity for malicious insiders to exploit patients’ EHRs [138].

To deter malicious access, breach detection tools are commonly deployed to trigger

55



alerts in real time for the administrator whenever suspicious events occur. Alerts are of-

ten marked with predefined types of potential violations which help streamline inspection.

Notable alert types include accessing the EHR of co-workers, neighbors, family members,

and VIPs [129]. Subsequently, a subset of the alerts are retrospectively audited at the end

of each audit cycle, and the auditor determines which constitute an actual policy violation.

4.2.2 Signaling Audit Games

Here, we formalize the Signaling Auditing Game (SAG) model. An SAG is played

between an auditor and an attacker within a predefined audit cycle (e.g., one day). This

game is sequential such that alerts arrive one at a time. For each alert, the auditor needs to

make two decisions in real time: first, which signal to send (e.g., to warn the user/attacker

or not), and second, whether to audit the alert. Formally, let Xτ
c denote the event that alert τ

will be audited, and Xτ
u denote that it is not audited. Following the convention of notations,

the subscripts c and u stand for covered and uncovered, respectively. We further let ξ τ
1

denote the event that a warning signal is sent for alert τ , while ξ τ
0 denotes the event that

no warning is sent (i.e. a “silent signal”). The warning ξ τ
1 is delivered privately through

a dialog box on the requestor’s screen, which might communicate “Your access may be

investigated. Would you like to proceed?”. Xτ
c ,X

τ
u ,ξ

τ
1 ,ξ

τ
1 are random variables whose

probabilities are to be designated.

We assume that there is a finite set of alert types T and, for each t ∈ T , all alerts are

considered equivalent for our purposes (i.e., attacks triggering alerts of type t all result in

the same damages to the system). The auditor has an auditing budget B that limits the

number of alerts that can be audited at the end of the cycle. For each alert type t, let V t

denote the cost (or time needed) to audit an alert of type t. Thus, if θ t is the probability of

auditing alerts of type t and dt is the number of such alerts, the budget constraint implies

that ∑t θ t ·V tdt ≤ B.

Since the setting is online, an optimal policy for the auditor must consider all possible
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histories of alerts, including the correlation between alerts. Given that this is impractical,

we simplify the scheme so that 1) each alert is viewed independently of alerts that pre-

cede it and 2) future alerts are considered with respect to their average relative frequency.

Specifically, we assume that each attack effectively selects an alert type t, but do not need

to consider the timing of attacks. Rather, we treat each alert as potentially adversarial. This

implicitly assumes that an attack (e.g., a physician’s access to the EHR of a patient they do

not treat) triggers a single alert. However, this is without loss of generality, since we can

define alert types that capture all realistic multi-alert combinations.

Now, we define the payoffs to the auditor and attacker. For convenience, we refer to the

alert corresponding to an attack as the victim alert. If the auditor fails to audit a victim alert

of type t, the auditor and the attacker will receive utility U t
d,u and U t

a,u, respectively. On the

other hand, if the auditor audits a victim alert of type t, the auditor and the attacker will

receive utility U t
d,c and U t

a,c, respectively. Here, the subscripts d and a stand for defender

and attacker, respectively. Naturally, we assume U t
a,c < 0 <U t

a,u and U t
d,c ≥ 0 >U t

d,u.

Figure 4.1 demonstrates the key interactions of both players along the timeline. Each

yellow block within the audit cycle represents a triggered alert and the corresponding in-

teractions with it. The auditor continues to update the real time probability of auditing any

alert (may or may not be triggered) with respect to the alert type and the time point τ . In

other words, the auditor commits in real time to the auditing and signaling strategy. In this

case, the auditor always moves first, as shown at the beginning of the lower timeline.

Access request
over a target

Audit cycle begins

Commit to a
mixed strategy

Proceed to
attack or quit

Audit cycle ends

Randomly choose
alerts to audit

Update available
budget

Trigger an alert

Time

Send a signal

Figure 4.1: The auditor and attacker actions are shown in blue and red, respectively.
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A warning signaling scheme, captured by the joint probability distribution of signaling

and auditing, can be fully specified through four variables for each τ:

P(ξ τ
1 ,X

τ
c ) = pτ

1, P(ξ τ
1 ,X

τ
u ) = qτ

1,

P(ξ τ
0 ,X

τ
c ) = pτ

0, P(ξ τ
0 ,X

τ
u ) = qτ

0.

(4.1)

Upon receiving the signal, the attacker reacts as follows:

• After ξ τ
1 : the system presents two choices to the attacker: “Proceed” to access the

requested record or quit.

• After ξ τ
0 : the attacker automatically proceeds to access the requested record (since

the attacker receives no warning).

For convenience, when possible we omit the superscript τ when the alert we are dealing

with, is readily apparent from the context.

Figure 4.2 illustrates the temporal sequence of decisions in the SAG. Each edge in the

figure is marked with its corresponding joint probability of a sequence of decisions up to

and including that edge. Note that the two gray nodes are not extended because they do not

lead to any subsequent event.2

Further, observe that, p1 +q1 + p0 +q0 = 1, and the overall probability of auditing this

alert is P(Xc) = P(Xc,ξ1)+P(Xc,ξ0) = p1 + p0. Conditional on the warning signal ξ1, the

probability of auditing this alert is thus P(Xc|ξ1) = p1/(p1 +q1).

Since the auditor has a fixed auditing budget, she will need to update the remaining

budget after determining the signal-conditional audit probability for the current alert. We

use Bτ to denote the remaining budget before receiving alert τ . Let t denote the type of

alert τ and τ + 1 denote the next alert. After the signaling scheme for τ is executed, the

auditor then updates Bτ for the use of the next alert τ +1 as follows:

2The upper gray node corresponds to the case when an access request is abandoned. The lower one
represents an impossible case because the user automatically gets the requested record.
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Access request
Triggers an alert

Yes

No

Yes

No

Yes

No

Yes

Warning? Attack? Audit?

Yes

No

!"

!0

#"

#0

!0+#0

No

!"+#"1

Figure 4.2: The decision tree of the auditor and an arbitrary user, the actions for which are
shown in blue and red, respectively.

• If ξ τ
1 is sampled: Bτ+1 = Bτ − pτ

1/(pτ
1 +qτ

1) ·V t .

• If ξ τ
0 is sampled: Bτ+1 = Bτ − pτ

0/(pτ
0 +qτ

0) ·V t .

Additionally, we always ensure that Bτ ≥ 0. The key challenge in our model is to compute

the optimal pτ
1,q

τ
1, pτ

0,q
τ
0 for each alert τ online by accounting for the remaining budget and

the estimate number of future alerts. This needs to be performed to ensure that the auditor

does not spend the budget at a rate that is excessively fast or slow.

Without signaling, our audit game can be solved offline, at the end of the audit cycle.

This situation can be captured by a Stackelberg security game by viewing alerts as targets.

The optimal auditing probabilities can then be determined offline by computing the SSE of

this game. However, as our experiments show, this simplified strategy (which we refer to

as offline SSE) performs substantially worse than our online approach.

The SAG can be viewed as a variation on the Stackelberg game, where it includes

signaling and makes decisions about auditing online upon the arrival of each alert. The

premise behind our solution is therefore a Strong Stackelberg equilibrium of the SAG, in

which the auditor commits to a randomized joint signaling and auditing decision, and the

associated probability distribution is observed by the attacker, who then decides first upon

59



the alert type to use, and subsequently whether to proceed after a warning. We will seek

the optimal randomized commitment strategy for the auditor in this game.

The SAG model contains two crucial differences from prior investigations into signal-

ing for security games. The first is that the signaling scheme for each alert in an SAG must

be optimized sequentially in real time. By contrast, previous models, such as [107], decide

the signaling schemes for all targets simultaneously in an offline fashion. The second is

in how private information is leveraged. In previous models, the defender utilizes the in-

formational advantage that the defender currently has (e.g., knowledge about the realized

protection status of the target) to deceive the attacker. However, in our scenario, the auditor

first decides the signaling scheme, by when he/she has an equal amount of information as

the attacker (which includes the status of the current environment), and then exercises her

informational advantage after the audit cycle ends (by deciding which to audit).

4.3 Optimizing SAGs

In this section, we design an algorithm for solving SAGs. For presentation purpose, we

fix the alert τ to a particular type t and, thus, the superscript will, at times, be omitted for

notational convenience. We begin by considering the problem of computing the real time

SSE of the game without signaling that transpires for a given observed alert τ . This game,

as well as its solution, serve as a baseline of the optimized SAGs.

4.3.1 Online SSG

Consider the arrival of an alert τ . Let dt
τ be the number of future alerts of type t ∈ T

after alert τ is triggered.3 We assume that dt
τ follows a Poisson distribution Dt

τ , which is

widely adopted to characterize the number of arrivals. We can compute the SSE strategy

using a multiple linear programming (LP) approach for budget Bτ . In this approach, for

3The vast majority of alerts are false positives. Consequently, we can estimate dt
τ from alert logs in

previous audit cycles.
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each alert type t, we assume that t is the attacker’s best response, and then compute the

optimal auditing strategy. Finally, we choose the best solution (in terms of the auditor’s

utility) among all of the LPs as the SSE strategy.

Now, let θ t ′(t) be the probability of auditing an alert of type t ′ when the attacker’s best

response is t. In addition to this optimal auditing policy, we design how we plan to split

the remaining budget Bτ among all alert types. We assume that the audit distribution will

remain constant for future alerts, which allows us to consider the long-term impact of our

decision about auditing. We represent the budget that we allocate for inspecting alerts of

each type as a vector Bτ = {B1
τ ,B

2
τ , ...,B

|T |
τ } that the long-term budget allocation decision

is constrained by the remaining audit budget: ∑
|T |
t=1 Bt

τ ≤ Bτ . Now, assuming type t is the

best response, the following LP returns optimal auditing strategy:

maxBτ
θ t(t) ·U t

d,c +(1−θ t(t)) ·U t
d,u

s.t.

∀t ′, θ t(t) ·U t
a,c +(1−θ t(t)) ·U t

a,u

≥ θ t ′(t) ·U t ′
a,c +(1−θ t ′(t)) ·U t ′

a,u,

∀t ′, θ t ′(t) = Edt′
τ ∼Dt′

τ

(
Bt′

τ

V t′dt′
τ

)
,

∑
|T |
t ′=1 Bt ′

τ ≤ Bτ ,

∀t ′, Bt ′
τ ∈ [0,Bτ ],

(4.2)

where the first constraint ensures that t is the attacker’s best response. After solving |T |

instances of LP (4.2), the best solution for the auditor will henceforth be referred to as the

online SSE strategy (or simply, the SSE), θ SSE .

4.3.2 Optimal Signaling

We now describe how to build a signaling mechanism into the audit game and then

compute the optimal signaling scheme, as well as the budget allocation strategy.
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From the perspective of the attacker, whether to proceed or quit after receiving a warn-

ing signal depends on his conditional expected utility:

Et
a(util|ξ1) =

pt
1

pt
1 +qt

1
·U t

a,c +
qt

1
pt

1 +qt
1
·U t

a,u.

We impose the constraint Et
a(util|ξ1) ≤ 0 such that the attacker’s best response to ξ1 is to

quit, in which case both players will receive 0 utility. We do not enforce constraints for

ξ0 because the potential attacker does not have any option but to proceed. In this case, the

expected utility of the auditor is

Et
d(util|ξ0) =

pt
0

pt
0 +qt

0
·U t

d,c +
qt

0
pt

0 +qt
0
·U t

d,u.

Overall, the expected utility for the attacker can be computed as

Et
a(util) = (pt

0 +qt
0) ·Et

a(util|ξ0) = pt
0 ·U t

a,c +qt
0 ·U t

a,u.

Accordingly, the auditor’s expected utility is

Et
d(util) = (pt

0 +qt
0) ·Et

d(util|ξ0) = pt
0 ·U t

d,c +qt
0 ·U t

d,u.

However, a side effect is that, the warnings sent by the auditor (e.g., the pop-up warning

screen off of break-the-glass strategy deployed by VUMC) may pose an additional utility

loss to the auditor in practice, which we call usability cost. This is because when normal

users request access to sensitive data and receive a warning message, they may walk away

by choosing quit instead of “Proceed”, which induces a loss in operational efficiency for

the organization. For each type t ′, we set this loss to be proportional to the product of

the probability of sending warnings pt ′
1 + qt ′

1 , the probability of being deterred Pt ′ and the

expectation of the number of future false positive alerts to the end of the current audit
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cycle Et ′
τ . The loss incurred for each quit by a normal user is set to be Ct ′(< 0). Then, the

expected utility of the auditor can be updated as Et
d(util) = pt

0 ·U t
d,c+qt

0 ·U t
d,u+∑

|T |
t ′=1(pt ′

1 +

qt ′
1) ·Pt ′ ·Et ′

τ ·Ct ′ .

The optimal signaling scheme (or, more concretely, joint signaling and audit probabili-

ties) can be computed through the following set of LPs:

max
p0,p1,q0,q1,Bτ

pt
0 ·U t

d,c +qt
0 ·U t

d,u +
|T |

∑
t ′=1

(pt ′
1 +qt ′

1) ·Pt ′ ·Et ′
τ ·Ct ′

s.t.

∀t ′, pt
0 ·U t

a,c +qt
0 ·U t

a,u ≥ pt ′
0 ·U t ′

a,c +qt ′
0 ·U t ′

a,u,

∀t ′, pt ′
1 ·U t ′

a,c +qt ′
1 ·U t ′

a,u ≤ 0,

∀t ′, pt ′
1 + pt ′

0 = Edt′
τ ∼Dt′

τ

(
Bt ′

τ

V t ′dt ′
τ

)
,

∀t ′, pt ′
1 + pt ′

0 +qt ′
1 +qt ′

0 = 1,

∑
t ′∈{1,...,|T |}

Bt ′
τ ≤ Bτ ,

∀t ′, Bt ′
τ ∈ [0,Bτ ],

∀t ′, pt ′
0 ,q

t ′
0 , pt ′

1 ,q
t ′
1 ∈ [0,1],

(4.3)

where we assume type t is the best one for the attacker to potentially exploit. Note that, in

the objective function, the incurred additional loss is an accumulated value that considers

the amount of time remaining in the period for the current audit cycle. The likelihood of

sending warning signal in the current time point is a real time estimation of future warnings.

Due to the fact that attacks are extremely rare in practice in comparison to the magnitude

of alerts, in solving LP (4.3) we use the expected number of future alerts Edt′
τ ∼Dt′

τ

(dt ′
τ )

to approximate Et ′
τ . As a result, Edt′

τ ∼Dt′
τ

(dt ′
τ ) can then be estimated from historical data

collected in previous audit cycles. Our goal is thus to find the optimal signaling scheme for

all types, and simultaneously, the best budget allocation strategy. We use p0, p1, q0 and q1

to denote the warning signaling scheme for all types, namely, the set {pt ′
0 |∀t ′}, {pt ′

1 |∀t ′},
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{qt ′
0 |∀t ′} and {qt ′

1 |∀t ′}, respectively.

The first constraint in LP (4.3) ensures that attacking type t is the best response strategy

for the attacker. The second constraint indicates that the attacker, when receiving a warning

signal, will quit attacking any type. We refer to the optimal solution among the |T | instances

of LP (4.3) as the Online Stackelberg Signaling Policy (OSSP). In particular, we use θ ossp

to denote the vector of coverage probability at OSSP.

After building the theoretical model of the SAG, we need to pay attention to one im-

portant situation in practice, where an attacker can leverage to perform attacks with lower

level risks of being captured.

4.3.3 The Ending Period of Audit Cycles

Recall that in SAGs, the estimation of the number of alerts in the rest of the current audit

cycle, which is Edt
τ∼Dt

τ
(dt

τ), is calculated based on the alert logs of historical audit cycles.

At the ending period of audit cycles, such estimation keeps decreasing for each type. As

a consequence, it would be ill-advised to apply any approach that performs an estimation

on the arrivals without an additional process to handle the ending period of an audit cycle.

Imagine, for instance, an attacker who only attacks at the very end of an audit cycle. Then,

the knowledge from historical data is likely to indicate that no alerts will be realized in the

future. And it follows that such attacks will not be covered because the available budget

will have been exhausted according to the historical information.

To practically mitigate this problem, when the mean of arrivals in the historical data

drops under a certain threshold, we apply the estimate of the number of future alerts

Edt
τ−1∼Dt

τ−1
(dt

τ−1) in the time point when the last alert was triggered as a proxy of the

real one at the current time point. This technique is called knowledge rollback. By doing

so, the consumption of the available budget in real time will be slowed down because of the

application of a smaller coverage probability. As a consequence, the attacker attempting to

attack late is not afforded an obvious extra benefit.
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4.4 Theoretical Properties of SAGS

In this section, we theoretically analyze the properties of the OSSP solution (equiva-

lently, of the SAG equilibrium). Our first result highlights a notable property of the optimal

signaling scheme. Specifically, the optimal signaling scheme will only trigger warning sig-

nals for the best attacking type, i.e., the type at which attacker utility is maximized. As

such, the rational attacker will choose to attack this alert type.

Theorem 2 If alert τ∗ of type t∗ is the best response strategy for the attacker, then pt
1 =

qt
1 = 0 in the OSSP for ∀t ̸= t∗.4

Proof Let Sol = {pt
0, pt

1,q
t
0,q

t
1}t∈T be any optimal solution and t∗ is the best type. We

show that the following newly defined variables will not decrease the objective value of Sol

and thus, by assumption, is still optimal. Let p̄t∗
0 = pt∗

0 , p̄t∗
1 = pt∗

1 , q̄
t∗
0 = qt∗

0 , q̄
t∗
0 = qt∗

0 be the

same as in Sol, however for any t ̸= t∗, define p̄t
0 = pt

0+ pt
1, q̄

t
0 = qt

0+qt
1 and p̄t

1 = 0, q̄t
1 = 0.

First, we argue that these newly defined variables are still feasible. All of the constraints

can easily be verified in LP (4.3) except the first two sets. The second set of constraints is

still satisfied for any t ̸= t∗ (where our variables changed) since p̄t
1 = q̄t

1 = 0. The first set

of constraints are satisfied for any t ̸= t∗ because

p̄t
0 ·U t

a,c + q̄t
0 ·U t

a,u = (pt
0 + pt

1) ·U t
a,c +(qt

0 +qt
1) ·U t

a,u

≤ pt∗
0 ·U

t
a,c +qt∗

0 ·U
t
a,u

= p̄t∗
0 U t

a,c + q̄t∗
0 U t∗

a,u,

where the (only) inequality is due to pt
1 ·U t

a,c + qt
1 ·U t

a,u ≤ 0 as a constraint of LP (4.3)

and the two equations are by our definition of the new variables. This proves that the first

constraint is also feasible.
4We will use ∗ to denote strategies or quantities in the OSSP in the rest of the chapter.
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It remains to show that the newly defined variables do not decrease the objective func-

tion. This follows simply because the term with respect to type t∗ in the objective function

does not change and all the other terms become zero in the newly defined variables, which

is no less than the original cost. This proves the theorem.

Theorem 2 leads to the following corollary: when the attacker avoids attacking certain

type(s) at any time point (this is always the case in OSSP), then the best strategy for the

auditor is to turn off the signaling procedure for those types for less loss incurred by sending

warnings. Now we show that, at any given game status, the marginal coverage probability

for OSSP is the same as the one for the online SSE.

Theorem 3 Let θ t
ossp be the marginal coverage probability in the OSSP at any given game

status and θ t
SSE be the corresponding marginal coverage probability in the online SSE.

Then, in a SAG, for each type t ∈ T , θ t
ossp = θ t

SSE .

Proof Given any game state, the auditor has an estimate about the sets of future alerts. We

prove that for any fixed set of alerts, θ t
ossp = θ t

SSE holds for each type t ∈ T . As a result, in

expectation over the probabilistic estimate, this still holds.

Fixing a set of alerts, the auditor’s decision is a standard Stackelberg game. We first

claim that by fixing the auditing strategy in the OSSP, the attacker can receive Eossp
a by

triggering any alert τ , thus type t. In other words, ∀t ̸= t∗,Ea(θ
t
ossp) = Eossp

a . Assume, for

the sake of contradiction, that an alert τ ′ of type t ′ with positive coverage probability is

not the best response of the attacker in an SAG. Then, the auditor can redistribute a certain

amount of the protection resources from τ ′ to the alerts of the attacker’s best-response type

and guarantee that it is still the best-response type. This increases the coverage probability

of these alerts and, thus, increases the auditor’s utility, which contradicts the optimality of

OSSP. This implies that the first constraint in LP (4.3) is tight in the OSSP. Similarly, this

holds true for the online SSE. Notice that Ea(θ
t) is a strictly decreasing function of θ t for

both OSSP and online SSE.

66



Next, we prove that Esse
a =Eossp

a implies θ t
ossp = θ t

SSE for all τ , thus t, as desired. This is

because θ t
ossp > θ t

SSE(≥ 0) implies Eossp
a = Ea(θ

t
ossp)< Ea(θ

t
SSE) = Esse

a (a contradiction)

and θ t
ossp < θ t

SSE implies Eossp
a ≥ Ea(θ

t
ossp)> Ea(θ

t
SSE) = Esse

a (again, a contradiction). As

a result, it must be the case that θ t
SSE = θ t

ossp for all τ , and thus t, as desired.

We now show that Esse
a = Eossp

a must hold true. Assume, for the sake of contradiction,

that Esse
a > Eossp

a . Then for any θ t
SSE > 0, it must be that θ t

ossp > θ t
SSE . This is because

θ t
ossp ≤ θ t

SSE implies that Eossp
a ≥ Ea(θ

t
ossp) ≥ Ea(θ

t
SSE) = Esse

a , which is a contradiction.

On the other hand, for any θ t
ossp > 0, θ t

SAG > θ t
SSE must be true, because 0 < θ t

ossp ≤ θ t
SSE

implies that Esse
a = Ea(θ

t
SSE) ≤ Ea(θ

t
ossp) = Eossp

a , which is a contradiction. As a result,

it must be the case that either θ t
SSE = θ t

ossp = 0 or θ t
ossp > θ t

SSE for any τ , thus t. Yet this

contradicts the fact that ∑τ θ t
SSE = ∑τ θ t

ossp = Bτ . Similarly, Esse
a < Eossp

a can not hold true.

As a result, Esse
a = Eossp

a is true.

In the proof above, we can conclude that the attacker’s utility is the same in the OSSP

and the online SSE. We now prove that the SAG is lower-bounded by the online SSG with

respect to the auditor’s expected utility.

Theorem 4 Given any game state, the expected utility of the auditor by applying the OSSP

is never worse than when the online SSE is applied.

Proof If the attacker completes the attack, his expected utility by attacking type t in SAG

is Ea(θ
t) = (pt

1 + pt
0) ·U t

a,c +(qt
1 +qt

0) ·U t
a,u, where θ t is the coverage probability of type

t.

• If Ea(θ
t) < 0, then the attacker will choose to not approach any target at the be-

ginning, regardless of if there exists a signaling procedure. Thus, in both cases the

auditor will achieve the same expected utility, which is 0.

• If Ea(θ
t) ≥ 0, then let pt

1 = 0 and qt
1 = 0. And it follows that pt

0 = θ t and qt
0 =

1− θ t . This solution satisfies all of the constraints in LP (4.3), which, in this case,

share exactly the same form with LP (4.2). In combination with Theorem 2, we can
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conclude that in this special setting, the expected utilities of the auditor, by applying

SAG (not necessary the OSSP) and online SSE, are the same: Ed(θ
t) = θ t ·U t

d,c +

(1−θ t) ·U t
d,u. Thus, the expected utility of the auditor in the OSSP is never worse

than the one in the online SSE.

This begs the following question: can applying the OSSP bring more benefit to the

expected utility of the auditor? Our experiments lend support to an affirmative answer.

Our next result reveals an interesting property about the optimal signaling scheme. In-

terestingly, it turns out that by applying OSSP in specific situations, if there is no warn-

ing sent, then the auditor will not audit the triggered alerts in their optimal strategy (i.e.,

pt∗
0 = 0).

Theorem 5 In SAG, if the payoff structure satisfies 0 ≥ (U t∗
d,c−Pt∗ ·Et∗

τ ·Ct∗)/(U
t∗
d,u−Pt∗ ·

Et∗
τ ·Ct∗)≥U t∗

a,c/U t∗
a,u on the best attacking type t∗ in the OSSP, then we have pt∗

0 = 0 on the

τ–th alert.

Proof This will be proved in the instance of LP (4.3) that derives the best pair of the signal-

ing strategy and the attacking strategy t∗. For inference convenience, for all t we substitute

pt
1 and qt

1 with θ t
ossp− pt

0 and 1−θ t
ossp−qt

0, respectively. Combining with Theorem 2, the

objective function of LP (4.3) can be simplified as pt∗
0 ·U

t∗
d,c +qt∗

0 ·U
t∗
d,u + pt∗

1 ·Pt∗ ·Et∗
τ ·Ct∗+

qt∗
1 ·Pt∗ ·Et∗

τ ·Ct∗ = pt∗
0 · (U

t∗
d,c−Pt∗ ·Et∗

τ ·Ct∗)+qt∗
0 · (U

t∗
d,u−Pt∗ ·Et∗

τ ·Ct∗)+Pt∗ ·Et∗
τ ·Ct∗ .

Now, we simplify constraints. The first constraint is always tight in the OSSP (as shown

in Theorem 3). By applying the substitution rules, the second constraint becomes ∀t ′, pt ′
0 ·

U t ′
a,c +qt ′

0 ·U t ′
a,u ≥ θ t ′

ossp ·U t ′
a,c +(1−θ t ′

ossp) ·U t ′
a,u. For all t ′ ̸= t∗, it can be future transformed

into (θ t ′
ossp− pt ′

0) ·U t ′
a,c +(1−θ t ′

ossp−qt ′
0) ·U t ′

a,u ≤ 0. Due to the fact that pt ′
1 = qt ′

1 = 0 in the

OSSP for ∀t ′ ̸= t∗, pt ′
0 is equal to θ t ′

ossp, and qt ′
0 equal to 1−θ t ′

ossp. As such, for all t ′ ̸= t∗, this

constraint naturally holds true. By far, the best strategy pair of SAG in our setting needs

to maximize pt∗
0 · (U

t∗
d,c−Pt∗ ·Et∗

τ ·Ct∗)+qt∗
0 · (U

t∗
d,u−Pt∗ ·Et∗

τ ·Ct∗)+Pt∗ ·Et∗
τ ·Ct∗ , such that

pt∗
0 ·U t∗

a,c+qt∗
0 ·U t∗

a,u ≥ θ t∗
ossp ·U t∗

a,c+(1−θ t∗
ossp) ·U t∗

a,u (we refer to this inequality as constraint
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α) and that these probability variables are in [0,1] and sum up to 1.5

We set up a Cartesian coordinate system and let qt∗
0 be the vertical axis and pt∗

0 the

horizontal one. Geometrically, the slopes of the item to be maximized, which is −(U t∗
d,c−

Pt∗ ·Et∗
τ ·Ct∗)/(U

t∗
d,u−Pt∗ ·Et∗

τ ·Ct∗) and constraint α , which is −U t∗
a,c/U t∗

a,u are both positive.

Note that, though we do not constrain the left side of constraint α , which is Et∗
a (util|ξu) =

pt∗
0 ·U t∗

a,c +qt∗
0 ·U t∗

a,u > 0, this inequality is always true. If not the case, the attacker will not

initially attack. We discuss the righthand side β = θ t∗
ossp ·U t∗

a,c+(1−θ t∗
ossp) ·U t∗

a,u as follows.

• β ≤ 0. In this setting, constraint α is dominated. The boundary of the dominant

constraint passes the origin and the feasible region is a triangle with its base on

the vertical axis, as shown in Figure 4.3a. Thus, in both cases, if (U t∗
d,c−Pt∗ ·Et∗

τ ·

Ct∗)/(U
t∗
d,u−Pt∗ ·Et∗

τ ·Ct∗)≥U t∗
a,c/U t∗

a,u holds true (which implies that the slope of the

objective function is less than the boundary’s slope of the dominant constraint), then

pt∗
0 = qt∗

0 = 0 leads to the maximum of the objective function. The OSSP, thus is

pt∗
1 = θ t∗

ossp,q
t∗
1 = 1−θ t∗

ossp, pt∗
0 = qt∗

0 = 0.

• β > 0. Thus, constraint α dominates pt∗
0 ·U t∗

a,c +qt∗
0 ·U t∗

a,u > 0. The boundary’s inter-

cept of the dominant constraint is δ = (θ t∗
ossp ·U t∗

a,c +(1−θ t∗
ossp) ·U t∗

a,u)/U t∗
a,u ∈ (0,1].

Using an analysis similar to the previous case of β , only when pt∗
0 = 0,qt∗

0 = δ

does lead to the maximum of the objective function. This is indicated in Figure

4.3b. The OSSP is pt∗
1 = θ t∗

ossp, pt∗
0 = 0,qt∗

1 = 1− θ t∗
ossp− (θ t∗

ossp ·U t∗
a,c +(1− θ t∗

ossp) ·

U t∗
a,u)/U t∗

a,u,q
t∗
0 = (θ t∗

ossp ·U t∗
a,c +(1−θ t∗

ossp) ·U t∗
a,u)/U t∗

a,u.

Remark. In application domains, the absolute value of the penalty for the attacker is often

greater than the benefit from committing attacks. As for the auditor, his/her benefit from

catching an attack is often less than the absolute value of the loss due to missing an attack.

If the warning cost Pt∗ · Et∗
τ ·Ct∗ were ignored, then 0 ≥ U t∗

d,c/U t∗
d,u ≥ U t∗

a,c/U t∗
a,u is often

satisfied in practice. Considering that the warning cost is proportional to the estimation of

5Constraints involving Bt ′
τ are neglected because θ t ′

ossp is the coverage probability that can be derived from
Bt ′

τ in our setting.
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Figure 4.3: Feasible regions (blue areas) and an objective function gaining the largest value
for β ≤ 0 and β > 0. Note that the boundary pt∗

0 + qt∗
0 = x is only for illustration, and its

intercept can slide in [0,1] by taking into account the value of pt∗
1 and pt∗

1 . However, this
never impact the optimal solution.

the number of future warning events, which decreases with time, the condition in Theorem

5 only happens in a certain period of time.

One might wonder that, given that the condition in Theorem 5 is valid, whether the

attacker can keep attacking until receiving no warning, in which case the attacker can attack

safely under the optimal signaling scheme? Actually, this strategy cannot lead to success

because once the attacker chooses to quit, his/her identity is essentially revealed. The

auditor cannot punish the attacker (yet) because the attacker quits the attack, leaving no

evidence. Therefore, a successful attack later on only hurts him/her, while help the auditor

find forensic evidence of an attack. In practice, it is common that the auditor uses reserved

budget to deal with special cases. In the setting above, the author can use a small portion

of the auditing budget to investigate repeated attempts of data access, but in practice this

is not an issue, as these cases are likely to be rare in real world. As a result, once an

attacker chooses to quit, the best response should be to not attack during the rest of the

auditing cycle. In the experimental comparison with online/offline SSG, which requires no

additional budget for such attack category, we will apply a reduced available budget as the

input of the corresponding SAG to ensure fairness in our comparisons.
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A natural follow-up question is can the attacker manipulate the model by running this

strategy across audit cycles? The answer is no as well. Such a behavior can be easily

detected by a rule that applies when the attacker performs his/her attack repeatedly. When

the auditor does not send a warning, the attacker successfully attacks. Yet, since there was

a warning sent previously, the auditor will use the probability p1 to audit, rather than p0.

Thus, the attacker should take this into account before adopting such a strategy.

Theorem 6 The auditor benefits equally in terms of the expected utility from SAG and

online SSG at the τ-th alert, if it satisfies U t∗
d,u > Pt∗ ·Et∗

τ ·Ct∗ , where t∗ is the best type to

attack in the OSSP.

Proof We prove this by applying the same simplification and the split strategy (i.e., analyze

two distinct situations based on the value of β ) as applied in the proof for Theorem 5. Note

that the slope of the objective function is−(U t∗
d,c−Pt∗ ·Et∗

τ ·Ct∗)/(U
t∗
d,u−Pt∗ ·Et∗

τ ·Ct∗). Since

Ct∗ < 0, the numerator is less than 0. If U t∗
d,u > Pt∗ ·Et∗

τ ·Ct∗ , then the denominator is greater

than 0. Thus, the slope is less than 0. In particular, the slope is less than −1 (which is the

slope of boundary pt∗
0 +qt∗

0 = x) because of U t∗
d,c ≥ 0 >U t∗

d,u. We now analyze properties in

this situation geometrically.

As demonstrated in Figures 4.4a and 4.4b, the boundary pt∗
0 + qt∗

0 = x(∈ [0,1]) should

pass through the (0,1) point. This is because, if this failed to occur, then the value of the

objective function can be further improved by lifting the boundary. The optimal solution

for both cases is at the intersection point of the two boundaries of the feasible region. Thus,

it follows that pt∗
0 +qt∗

0 = 1 for the OSSP, which implies pt∗
1 = qt∗

1 = 0. In other words, the

signaling procedure is turned off for the best attacking type t∗ in the OSSP. Combining with

what Theorem 2 indicates, when U t∗
d,u > Pt∗ ·Et∗

τ ·Ct∗ , the signaling procedure is off for all

types. In LP (4.3), by substituting variables pt ′
1 and qt ′

1 (for all t ′) with 0, the SAG instance

becomes an online SSG (as shown in LP (4.2)). Thus, the two LPs share the same solution,

and the auditor will receive the same expected utility in both auditing mechanism.
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Figure 4.4: Feasible regions (blue shaded triangle areas) and an objective function gaining
the largest value for β ≤ 0 and β > 0.

This result indicates that if the incurred loss due to a warning is too large, then an SAG

will degrade into an online SSG, where the signaling procedure is turned off. It suggests

that in the application domain, to ensure that the signaling is deployed in a useful manner,

organizations need to 1) refine the alert system so that false positive alerts can be classified

as normal events, and 2) decrease the number of the events in which normal users are scared

away.

Our final theory concerns the attacker’s utility in OSSP.

Theorem 7 The expected utility of the attacker when applying the OSSP is the same as

that achieved when applying the online SSE strategy.

Proof Let Esse
a and Eossp

a denote the expected utility for the attacker at online SSE and

OSSP, respectively. Assume, for the sake of contradiction, that Esse
a > Eossp

a . Then for any

θ t
SSE > 0, we must have θ t

ossp > θ t
SSE . This is because θ t

ossp ≤ θ t
SSE implies that Eossp

a ≥

Ea(θ
t
ossp)≥ Ea(θ

t
SSE) = Esse

a , which is a contradiction. On the other hand, for any θ t
ossp >

0, θ t
SAG > θ t

SSE must be true, because 0 < θ t
ossp ≤ θ t

SSE implies that Esse
a = Ea(θ

t
SSE) ≤

Ea(θ
t
ossp) = Eossp

a , which is a contradiction. As a result, it must be the case that either

θ t
SSE = θ t

ossp = 0 or θ t
ossp > θ t

SSE for any τ , thus t. Yet this contradicts the fact that ∑τ θ t
SSE =
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Table 4.1: A summary of the daily statistics per alert types.

ID Alert Type Description Mean Std

1 Same Last Name 196.57 17.30
2 Department Co-worker 29.02 5.56
3 Neighbor (≤ 0.5 miles) 140.46 23.23
4 Same Address 10.84 3.73
5 Last Name; Neighbor (≤ 0.5 miles) 25.43 4.51
6 Last Name; Same Address 15.14 4.10
7 Last Name; Same Address; Neighbor (≤ 0.5 miles) 43.27 6.45

∑τ θ t
ossp = Bτ . Similarly, Esse

a < Eossp
a can not hold true. As a result, Esse

a = Eossp
a is true.

4.5 Model Evaluation

In this section, we evaluate the performance of the SAG on the real EHR access logs

from VUMC, which deployed an unoptimized warning strategy. To illustrate the value of

signaling, we compare with multiple game theoretic alternative methods in terms of the

expected utility of the auditor. Specifically, we investigate the robustness of the advantage

of SAGs under a range of different conditions. Now we first describe the real dataset which

is used for evaluation.

Table 4.2: The payoff structures for the pre-defined alert types.

Payoff Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

Ud,c 100 150 150 300 400 600 700
Ud,u −400 −500 −600 −800 −1000 −1500 −2000
Ua,c −2000 −2250 −2500 −2500 −3000 −5000 −6000
Ua,u 400 400 450 600 650 700 800

4.5.1 Dataset

The dataset consists of EHR access logs for 56 continuous normal working days in

2017. We excluded all holidays (include weekends) because they exhibit a different access

pattern from working days. The total number of unique accesses ⟨Date, Employee, Patient⟩

is on the order of 10.75M. The mean and standard deviation of daily unique accesses
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are approximately 192K and 8.97K, respectively. We focus on the following alerts types:

employee and patient: 1) share the same last name, 2) work in the same department, 3) share

the same residential address, and 4) are neighbors within a distance less than 0.5 miles.

When an access triggers multiple distinct types of alerts, their combination is regarded as a

new type. Table 5.1 lists the set of predefined alert types, along with the mean and standard

deviation of their occurrence on a daily basis. We provide the payoff structure for both the

attacker and the auditor in Table 5.2. These values are estimates based on discussions with

experts working in the area.

4.5.2 Experimental Setup

The audit cycle is defined as one day from 0:00:00 to 23:59:59. From the dataset, we

construct 15 groups, each of which contains the alert logs of 41 continuous normal working

days as the historical data (for estimating the distributions of future alerts in all types), and

the alert logs of the 1 subsequent day as the day for testing purpose. We set up a real time

environment for evaluating the performance in terms of the auditor’s expected utility. We

set the audit cost per alert to V t = 1,∀t ∈ {1, ..., |T |}. From the alert logs of three months,

we obtain the frequency at which users quit when they receive the warning messages in our

dataset. According to this observation, in our experiments we set the probability of quitting

as Pt = 0.186 in the SAG model for all types.

We compare the real time auditor’s expected utility for each triggered alert between

the OSSP (the optimal objective value of LP (4.3)) and both the offline and online SSE (the

optimal objective value of LP (4.2)). The offline SSE corresponds to the traditional method,

which determines the auditing strategy at the end of the auditing cycle. By contrast, the

online SSG determines the auditing strategy for each alert in real time, which is equivalent

to an SAG without signaling.

One significant challenge in comparing the OSSP with the online SSE is that the real

time budget consumption in the SAG is determined by the sampling result of warning/no
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warning and, thus is not deterministic. This leads to a situation where, for the time series of

alerts in each audit cycle, if there is no intervention, then the online SSG and the SAG will

move independently with respect to the game status. As such, their performance cannot

be directly compared. To set up a well-controlled environment for comparison, for each

incoming alert we focus on the online SSG with its game status be the same as the current

SAG instance. Recall that for the SAG, the auditor needs to reserve a portion of the total

auditing budget for inspecting the repeated data requests at the end of each audit cycle.

Due to the fact that it is unnecessary for the online SSG, we set the available budget at each

incoming alert in the online SSG to be equal to the sum of the available budget of the SAG

instance at the current time point, and the reserved budget of the SAG for the additional

inspection of the repeated data requests. By doing so, it makes our comparison fair.

To investigate the robustness of the results over different game conditions, we evaluate

the performance by varying three factors. First, we vary the loss value for the auditor

with respect to each quit of a normal user when receiving a warning message. We set

Ct = {−1,−5,−10}.6 Second, to deter the attacker who quits until they receive no warning

in the safe period for an SAG (where pt∗
0 = 0 as shown in Theorem 5), we assess a series of

constant budgets, which we set to α = {1%,5%} of the total available budget B. We do not

consider this situation in the baseline strategies because such loss does not apply. Third,

we vary the total auditing budget. Specifically, we consider B = {30,50,70}. By setting

B = 50, the available budgets for the SAG at the very beginning time point of an audit cycle

are 49.5 for α = 1% and 47.5 for α = 5%, respectively.

Considering the fact that the estimated payoff structure may not be perfect, we also

test the robustness of the results by varying the values in the given payoff structure. To

do so, we use Ua,c and Ud,c from the first type because these variables are more chal-

lenging for domain experts to articulate. We evaluate the performance by setting U1
a,c =

{−500,−1000,−1500,−2000,−2500,−3000,−3500} and fixing the other variables to

6To the best of our knowledge, there is no perfect measure for this loss in the EHR application domain.
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their values in Table 5.2. We set U1
d,c = {25,50,75,100,125,150,175} and run the same

evaluation as described above.

4.5.3 Results

We considered all 7 alert types described in Table 5.1. Due to space limitations, we

only show the sequential results of 15 sequential testing days along the timeline in Figures

5.4a-4.5o by applying B = 50,Ct =−1 for all types and α = 1%.

It is noteworthy that the type for each alert may not be aligned with the optimal attacking

type in the OSSP strategy. Thus, to compare the approaches, we only apply the SAG on

alerts whose type is equal to the best attacking type in the OSSP. For alerts whose types

differ, we simply apply the online SSE strategy and use its optimal coverage probability to

update the real time available budget. When applying SAGs, we first optimize the signaling

scheme, then randomly sample whether to send a warning according to P(ξ τ
1 ). Next, we

update (in real time) the available budget based on the signal.

Figures 5.4a-4.5o illustrate the real time expected utility of the auditor. It can be seen

that the majority of alerts were triggered between 8 : 00AM and 5 : 00PM, which generally

corresponds to the normal working hours of VUMC. After this period, the rate of alerts

slows down considerably. Note that the trend for offline SSE is flat because, in this method,

the auditor’s expected utility is the same for each alert regardless of when it is triggered.

There are several notable findings and implications. First, in terms of the expected

utility of the auditor, OSSP significantly outperforms the offline SSE and the online SSE.

This suggests that the SAG increases auditing effectiveness. We believe that this advantage

is due to the optimized signaling mechanism, which ensures the loss of the auditor is zero

when sending warning messages. Second, at the end of each testing day, the auditor’s

expected utility for each approach does not drop below the online SSE. We believe that

this is an artifact of the knowledge rollback, which slows down the budget consumption in

this period. In particular, at the end of multiple testing days, such as illustrated in Figures
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Figure 4.5: The auditor’s expected utility in the OSSP and alternative equilibria for the 7
alert types with a total budget of B = 50. We applied α = 1% and Ct =−1 for the OSSP.
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Table 4.4: The advantages of OSSP over online SSE in terms of the mean (and the standard
deviation) of the differences in the auditor’s expected utility. Asterisks indicate the original
values we used in the evaluations above.

U1
a,c −500 −1000 −1500 −2000∗ −2500 −3000 −3500

MEAN 67.89 120.28 148.29 167.64 180.67 184.99 194.54
STD 27.89 31.98 27.51 26.20 25.68 36.34 39.93

U1
d,c 25 50 75 100∗ 125 150 175

MEAN 173.71 169.30 166.93 165.20 163.65 160.19 158.13
STD 26.33 25.32 25.58 24.92 23.93 24.61 23.36

5.4a, 4.5f, 4.5g, 4.5h, 4.5j, 4.5k and 4.5o, the expected auditor loss approaches 0. Third,

the sequences of online SSE are close to the corresponding offline SSE sequences. This

indicates that the auditing procedure does not benefit from determining only the coverage

probability for each of the alert types in real time. In other words, the signaling mechanism

in the SAG can assist the auditing tasks in various environments. Moreover, the advantage

of OSSP over online SSE grows with the overall budget.

We expanded the investigation to consider various conditions of the auditing tasks.

We computed the mean (and standard deviation7 of) differences between the OSSP and

the corresponding online SSE for each triggered alert across 15 testing days by varying

the total auditing budget, the loss of the auditor on each quit of normal users, and the

percentage of the budget for inspecting anomalous repeated requests. The results are shown

in Table 4.3, where we also indicate the percentage of the averaged improvement in each

setting. Here, this value is defined as the absolute improvement on the expected utility

of the auditor divided by the optimal auditor’s expected utility in the online SSE. From

the results, we have the following significant observations. First, it is notable that OSSP

consistently outperforms the online SSE with respect to the auditor’s expected utility in a

variety of auditing settings. For example, in the setting that Ct =−1 for all t and α = 1%,

as B grows from 30 to 70, the auditor’s expected utility improvement grows from 16% to

7Note that the distributions are not necessarily Gaussian. The standard deviations are largely dominated
by the ending periods of testing days, where the expected utility of the auditor in the OSSP is usually close
to 0.
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77%. This is a trend that holds true for other settings as well. Second, by fixing B and Ct for

all t, the auditor’s expected utility decreases when we reserve more budget to investigate the

repeated requests by single user. Yet, this is not unexpected because this approach reduces

the amount of consumable auditing resources. Third, by increasing the cost of deterring a

single normal data request, we also weaken the advantages of OSSP over the online SSE

(when B and α are held constant).

We then investigated the robustness of the advantage of OSSP over online SSE by

varying U1
a,c and U1

d,c. We computed the mean (and standard deviation of) differences

between the OSSP and the corresponding online SSE across all testing days. Here, we

applied B = 50,Ct = −1 for all types and α = 1%. As can be seen in Table 4.4, OSSP

maintains its advantage for a wide range of U1
a,c and U1

d,c. The advantage of OSSP is

inversely proportional with U1
a,c and directly proportional with U1

d,c. Thus, even if the

estimates of the payoff structure are imperfect, the SAG still outperforms baseline methods.

Table 4.5: The mean and standard deviation of auditor’s expected utility at OSSP as a
function of Pt (15 testing days).

Ct
Pt for all t

×1.0 ×0.5 ×0.1

−1 −185.54±29.85 −179.92±32.71 −175.47±32.97
−5 −208.60±41.91 −201.34±33.92 −180.85±32.75

Next, we considered how the probability of being scared away for normal users (i.e., Pt)

influences the auditor’s expected utility. Recall that, in the experiments reported on so far,

we adopted Pt = 0.186, an estimate based on an environment that relied upon an unopti-

mized signaling procedure. However, this value can change in practice for several reasons.

First, an optimized signaling scheme will likely influence users’ access patterns, such as the

frequency of triggering alerts, as well as how users respond to a signaling mechanism. Sec-

ond, the probability Pt can decrease, if an organization effectively performs policy training

with its employees, such that normal users may be less likely to be scared away if they re-

ceive a warning message when requesting access to a patient’s record. Table 4.5 shows the
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expected utility of the auditor at OSSP by varying the input of Pt in the setting of B = 50.

We apply three values of Pt by reducing the original value to its 100%,50% and 10%. It

can be seen that the auditor’s expected utility under OSSP improves as Pt reduces. When

holding Ct constant, a t-test reveals that each pair of performances is statistically signifi-

cantly different with p < 10−6. This indicates that reducing the frequency of quitting for

normal users reduces the usability costs and, thus, improves the auditing efficiency.

In addition, we tested the average running time for optimizing the SAG on a single

alert across all the testing days. Using a laptop running Mac OS, an Intel i7 @ 3.1GHz,

and 16GB of memory, we observed that the SAG could be solved in 0.06 seconds on

average. As a consequence, it is unlikely that system users would unlikely perceive the

extra processing time associated with optimizing the SAG in practice.

4.6 Discussion

In this chapter, we integrated signaling into auditing frameworks. We strategically warn

the attacker in real time and then realize the audit strategy at the end of the audit cycle with

an offline mode. In particular, we formalized the usability cost in our approach to model

the real-world audit scenario. We further illustrated that such a defensive strategy improves

the performance of defenders over existing game theoretic alternatives using real EHR

auditing data. Our framework is generalizable to more powerful attackers because as long

as the adversarial behavior can be represented by pattern(s), it will fit into our model. As

such, our audit model is applicable to any capability of the attacker.

There are several limitations we wish to highlight as opportunities for future investiga-

tions. First, in this chapter we assumed that the attacker has a fixed payoff structure in each

audit cycle; however, in practice, there may exist many types of attackers who can receive

different utility on the same target. As a next step, we believe that the SAG can be extended

for a Bayesian setting where the payoff structure of the attacker varies according to types.

Second, in this chapter we focused on a single-attacker scenario. However, our model can

81



handle the multi-attacker scenario in which the attackers share the same payoff structure

and act independently. In this case, the optimal strategy of the auditor for each alert is the

same as in the single-attacker scenario. Moreover, it has been shown that solving problems

that involve multiple types of attackers or collusion among them is NP-hard even if we do

not consider signaling [90]. Third, in this chapter, we assumed that the attacker is perfectly

rational. This is a strong assumption and may lead to an unexpected loss in practice. Thus,

a more robust version of the SAG will be needed for wide deployment. Fourth, in this study

we simplify modeling the dependence between alerts and assume that they are triggered in-

dependently. However, this may not be the case all the time in practice and attacks may

evolve. Fifth, the scalability of solving the SAG, with respect to the number of alert types,

needs more investigation in future.

4.7 Conclusion

Alert-based auditing is often deployed in database systems to address a variety of at-

tacks to the data resources being stored and processed. However, the volume of alerts is

often beyond the capability of administrators, thus limits the effectiveness of auditing. Our

research illustrates that strategically incorporating signaling mechanisms into the data re-

quest workflow can significantly improve the auditing work. We investigated the features,

as well as, the value of a game theoretic Signaling Audit Game, along with an Online

Stackelberg Signaling Policy to solve the game. While we demonstrated the feasibility of

this approach with the audit logs of an electronic medical record system at a large academic

medical center, the approach is sufficiently generalized to support auditing in a wide range

of environments. Though our investigation illustrates the merits of this approach, there are

certain limitations that provide opportunities for extension and hardening of the framework

for real world deployment.
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Chapter 5

Robust Bayesian Signaling Games for Database Access Auditing

Inappropriate accesses to sensitive data stored and processed in database systems pose

a threat to personal privacy and an organization’s support of critical services. Alert-based

auditing has been widely deployed to mitigate this threat. Recently, the problem of effi-

ciently designing alert-based auditing schemes was modeled as a Signaling Audit Game

(SAG), where users are warned of potential investigations into their activities. However,

this model assumes that 1) attacker’s goals are known to the defender, and 2) the attacker

is a perfectly rational utility maximizer. Both assumptions, however, are likely violated in

practice, and as a consequence, can cause an excessive loss to the defender (auditor). We

introduce a new auditing framework, which we call a robust Bayesian SAG, which explic-

itly models the auditor’s uncertainty about the attacker’s goals and level of rationality. This

new model integrates two types of robust modeling techniques: 1) bounding the worst-case

deviation of an attacker’s selected strategy from the optimal and 2) constraining the im-

pact of the attacker’s deviation on the auditor’s loss. We then introduce several algorithmic

approaches to compute robust solutions, the performance of which we evaluate in two envi-

ronments: 1) the audit logs of over 10M real electronic health record accesses from a large

academic medical center and 2) a simulated (controlled) environment derived from the real

data. Further, we investigate the theoretical properties of these solutions and their relation-

ship. We demonstrate in both environments that our robust solutions largely improve the

performance of database access auditing compared to the state-of-the-art method. It is also

notable that our solving algorithms take imperceptible running time to human and can scale

for real time auditing.
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5.1 Introduction

Personal data is increasingly recorded with finer granularity and greater quality. This

makes data more useful for research and refinement of services, but also heightens privacy

concerns [139, 121, 140, 141]. In particular, the sensitive nature of personal informa-

tion can attract the attention of malicious attackers, who may benefit either directly (e.g.,

simply by gaining knowledge about someone else) by reusing the information to commit

fraud (e.g., via identity theft) or indirectly by selling the information to others (e.g., the

paparazzi). Even more of a concern is that, unlike attacks against the continuous operation

of database management systems that can be quickly discovered, and subsequently fixed,

attacks against data privacy are often initially silent, such that they may not be recognized

until major losses have already occurred.

In recognition of this problem, a logging system with an alert functionality often oper-

ates in tandem with the primary system to detect and notify administrators about the poten-

tial data misuses incurred during daily use [125, 142]. In many systems, alerts are based

on a set of rules that are predefined by administrators, each corresponding to a semantic

type of a potentially malicious situation [25, 143]. These rules can be quite heterogenous,

ranging from simple declarative statements (e.g., a user accessed a certain type of sensitive

data) [144] to machine learning models (e.g., an automated outlier detection tool based on

deep learning) [145]. Once alerts have been triggered, they are then brought to the atten-

tion of administrators for consideration in retrospective investigations. It is notable that,

in many mission-critical systems, formally rigorous access control frameworks are often

only weakly applied (if at all) to ensure the continuity of the workflows and operations.

This makes retrospective auditing more important for mitigating the magnitude of a pri-

vacy breach. For instance, many healthcare organizations (HCOs) heavily rely on auditing

procedures (instead of access control) to screen suspicious accesses to electronic health

records (EHR) by their employees (and other privileged users) who may violate data use

policies [129].
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However, it is often the case that the amount of resources required for auditing (e.g.,

the time of security administrators or privacy officials) to investigate triggered alerts is sub-

stantially beyond what is available in practice [146]. Moreover, auditing is further hindered

by the fact that many of the alerting systems that have been instituted are plagued by high

false positive rates [147]. It adds much more complexity that attackers have a strong incen-

tive to perform attacks strategically to mitigate the chance of being caught via observing

and analyzing the established auditing mechanism. This can unfortunately make a strong

traditional anomaly detection strategy fail.

To address such challenges, the Stackelberg security game (SSG) [34, 148, 86] has been

adapted to model the interactions between a defender (auditor) and a set of attackers in a

variant of the SSG, known as the audit game [98, 149, 36]. In an audit game, an attacker

maximizes their expected utility based on the observation of the initial strategy commit-

ted to by an auditor. The auditor, taking the attacker’s response space into consideration,

then maximizes their expected utility by strategically assigning auditing resources to po-

tential targets. Beyond the conventional model of auditing, we introduced a new concept

in Chapter 4, online signaling, into the audit game, resulting in a signaling audit game

(SAG), which significantly outperforms previous models with respect to the auditor’s ex-

pected utility [38]. Specifically, when an alert is triggered by a suspicious access request,

the system can, in real time, send a warning to the requestor via, for example, a private

pop-up window. At this point, the attacker has an opportunity to re-evaluate their expected

utility and make a decision about whether or not to continue with an attack. The SAG

optimizes both the warning and the audit decision simultaneously in real time.

Though it provides an excellent mechanism to deter attackers, there are two major de-

ficiencies in the current structure of a SAG. First, they only consider one type of attacker

in the system. In other words, they assume that all attackers share the same goal of attacks

and, thus, the same payoff structure (i.e., rewards and penalties). This is unlikely to be

the case in practice because different attackers often have different incentives and, thus,
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utility functions. In the EHR misuse scenario, for instance, an attacker can be financially

(extrinsically) motivated to sell a patient’s information to a black market or the dark web,

facilitating various forms of identity theft, such as fraudulent insurance claims [150]. Yet a

different attacker might be intrinsically motivated to simply learn about the private medical

condition of a high-profile patient or acquaintance. Importantly, attackers, when caught,

will be penalized according to the severity of the committed breach. As such, the attacker

types that an auditor may potentially face can largely influence the defense strategy and,

thus, the expected utility of the auditor. An oversimplified model of attacker types may

cause excessive loss of the auditor, leading to a failure of a SAG.

A second problem with the SAG is that it assumes that the attacker acts under perfect

rationality, such that they always consider all possible strategies and choose the best one as

their response. Though this has become a standard assumption in security game modeling,

it rarely holds true for human attackers in the real world. And when human attackers are not

utility maximizers, their decisions deviate from the optimal strategy [151, 152, 109, 153].

Failure to account for this fact in modeling may cause unexpected loss in the auditor’s

utility [39]. In other words, the selection of the auditor’s defense strategy should be robust

to attackers who are not perfectly rational.

In this paper, we address these deficiencies by introducing a new auditing framework,

which we call a robust Bayesian SAG. This framework integrates two components. First,

to account for multiple attacker types, as well as uncertainty in the auditor’s belief against

the actual type of attacker they face, we model the problem as a variant of a Bayesian

Stackelberg game [154, 152], which we efficiently solve through a compact formulation.

Second, to account for imperfect rationality of players, we integrate two types of methods

to support robust optimization: 1) bounding the worst-case deviation of an attacker’s strat-

egy selection from their optimal strategy and 2) constraining the impact of the attacker’s

deviation on the auditor’s loss. We incorporate each type of constraints into an algorithm

for solving the robust Bayesian SAG in real time and create a corresponding solution con-

86



cept for each. We then investigate the theoretical properties of these solution concepts and

the relationship between them.

We evaluate the performance of the robust Bayesian SAG in two environments: 1) a

real environment associated with the audit logs of over 10 million real EHR accesses from

Vanderbilt University Medical Center (VUMC) and 2) a simulated controlled environment

derived from the real data. We specifically evaluate the expected utility of the auditor

between the proposed solutions and the state-of-the-art auditing method in different condi-

tions to demonstrate the value of the new auditing solutions and their scalability.

5.2 Preliminary and Notations

In this section, we review the online signaling mechanism in database access auditing

(i.e., SAG) as well as its solution. Though we situate our presentation in the context of EHR

misuse auditing, it should be recognized that the formulation can be applied to any database

access auditing scenario. One of the reasons we focus on EHR auditing is that healthcare is

the only industry where insiders are considered the greatest threat to the organization [155].

Moreover, this is a rapidly growing problem. In 2020, over 8.5 million health records were

exposed in insider data misuse incidents in the US, a magnitude similar to all incidents

reported between 2017 and 2019 [156].

In an HCO, a patient’s data, including personal identifiable information and health re-

lated information, is stored and processed in a centralized system. The employees (or EHR

users) provide healthcare services by accessing and updating the EHRs of patients. The

interactions of a user and an EHR system consists of four fundamental steps:

• STEP 1: A user issues a search for a record. This search may be direct (using a

patient’s record number) or indirect (e.g., via a search for name and date of birth), in

which case a set of patient records are served for further consideration.

• STEP 2: The user identifies the patient profile of interest and requests access to the
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corresponding EHR.

• STEP 3: The system returns the requested record.

• STEP 4: The user interacts with the returned EHR.

A SAG is played in real time between an auditor and an attacker within a predefined

audit cycle, as shown in Fig. 5.1a. The auditor assumes each incoming alert is triggered

by an attacker such that all interactions shown are carried out each time. For each access

request that triggers an alert in real time by the misuse detection system, the auditor needs

to determine: 1) which signal to send to the requestor in real time (e.g., warn the requestor

or not), and 2) whether or not to audit the alert at the end of the audit cycle. The warning

sent to the data requestor can take many forms, but it is typically presented as a message

along the lines of “Your access might be investigated. Proceed or quit?”, along with one

button for Proceed and the other for Quit. The requestor can then click the button corre-

sponding to their decision. When no warning is sent (or silent signal), the requested data

will be returned to the requestor automatically without any further interaction. This process

depends on four probabilities, as shown in Fig. 5.1b, which are defined as the signaling

scheme.

Formally, p1 denotes the joint probability that 1) a warning is sent to the requestor re-

garding the triggered alert, and 2) this alert will be investigated by the auditor. By contrast,

q1 is the joint probability that 1) a warning is sent to the requestor, and 2) this alert will

not be investigated. Similarly, p0 and q0 are defined in the scenario where no warning is

sent to the requestor. As a result, the probability of sending a warning is p1 + q1 and the

probability that an alert will be investigated–regardless of warning or not–is p1 + p0. Due

to the fact that there exist multiple predefined alert types, each of which corresponds to a

potential type of violation (or attack type), the signaling scheme is designed to be alert type

specific. We use {pt
1,q

t
1, pt

0,q
t
0} to represent the signaling scheme of alert t ∈ T , where T

is a finite set of alert types. Alerts with the same type are considered equivalent in terms of
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the loss and reward to players.
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(a) An illustration of the SAG over time. Each block in the time-
line denotes a series of interactions for an alert triggered by the
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not in the space of the signaling scheme.

Figure 5.1: Interactions between auditor and attacker in SAG.

We define the payoff structures (i.e., quantified utility in terms of rewards and penal-

ties) of players by {U t
d,c,U

t
d,u,U

t
a,c,U

t
a,c}t∈T , where d and a indicate defender (auditor) and

attacker, respectively, and c and u represent the scenarios where an attack is covered (or

investigated) and not covered, respectively. If an alert of type t is indeed an attack, and it is

not audited, then the auditor and the attacker will receive utility U t
d,u and U t

a,u, respectively.
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In the real world, it naturally holds true that U t
a,c < 0 <U t

a,u and U t
d,c ≥ 0 >U t

d,u.

The audit task for each audit cycle is constrained by an auditing budget B. We use

Bτ to represent the available budget when alert τ of type t is triggered. Let δ t be the

probability of auditing alerts of type t and let dt be the number of alerts associated with

this type. Naturally, the budget constraint ∑t δ tV tdt ≤ Bτ will be satisfied, where V t is

the cost to audit an alert of type t. Note that the available budget is updated after each

round of interactions (as shown in Figure 5.1a). Specifically, if a warning signal was sent

to the requestor for alert τ , then the available budget for the next alert τ + 1 becomes

Bτ+1 = Bτ − pt
1/(pt

1 + qt
1) ·V t . By contrast, if there was no warning sent out for alert τ ,

then the budget becomes Bτ+1 = Bτ − pt
0/(pt

0 +qt
0) ·V t .

To optimize the signaling schemes for each triggered alert and the budget allocation

strategy over all alert types in an online manner, Yan et al. proposed a solution based on the

budget constraint—Online Stackelberg Signaling Policy (OSSP) [38]. The core of OSSP is

the following set of constraints:

Et
a(util|warning) =

pt
1

pt
1 +qt

1
·U t

a,c +
qt

1
pt

1 +qt
1
·U t

a,u ≤ 0 ∀t ∈ T,

which forces the attacker’s expected utility over each target to be non-positive. In other

words, this setup ensures that the attacker’s best response strategy to a warning is to quit.

In this scenario, both players will receive zero utility. As such, the expected utility for the

attacker and the auditor is:

Et
a/d(util) = pt

0 ·U t
a/d,c +qt

0 ·U t
a/d,u.

The OSSP is derived from the strong Stackelberg equilibrium [157, 86], which assumes

that the attacker will break ties in favor of the defender. Thus, the OSSP is computed

by solving multiple linear programs (LP), each assuming a distinct alert type is the best

strategy for the attacker. The solution is the one that produces the largest expected utility
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for the auditor.

To summarize, the SAG is essentially a leader-follower game that is a unique variant

of the Stackelberg security game (SSG) [110]. The SAG leverages the time gap between

moves of players and the potential impact of information exchange during this time, which

induces a larger action space than a typical SSG and provide an opportunity to favor the

auditor using their information advantage. Accordingly, the OSSP is a variant of a Strong

Stackelberg equilibrium that is specific to a SAG, where 1) the auditor commits to a ran-

domized joint signaling and auditing strategy in real time and 2) the attacker decides first

about which alert type to induce and, subsequently, whether to proceed when receiving a

warning.

Though a SAG provides mathematically effective auditing strategy, it is limited for

practical use. This is because it oversimplifies the practical scenario where there could be

more than one attacker types with distinct goals, each exhibiting a different payoff structure

for the same target. In addition, the SAG neglects the fact that attackers often function

under imperfect rationality. A failure to consider either of these facts in deriving audit

solutions can lead to excessive loss for the auditor.

5.3 Robust Bayesian SAG

In this section, we formalize, and then build the solutions for, the robust Bayesian SAG

in the general context of information services. We start with modeling a Bayesian version

of SAG, which serves as a foundation for the robustness modeling later.

5.3.1 Bayesian SAG

We integrate the concept of multiple player types into a SAG [38] and refer to the

resulting game as a Bayesian SAG. We then design its solving algorithm by combining the

algorithm solving SAG [38] and the algorithm DOBSS [158] for solving Bayesian security

games [87]. The Bayesian SAG still assumes the perfect rationality of players and both
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players rigorously select their strategies that optimize their expected utilities. We assume

that there is only one type of auditor and multiple types of attackers (i.e., all attackers

share the same goal). We use θ l to denote the priori probability that an attacker of type

l ∈ L appears in the system, where L is a finite set of attacker types. The pure strategy of

an attacker (i.e., which alert type to use) of type l is denoted by binary variables zl
t . The

auditor’s expected utility is ∑t ∑l θ lzl
t · (pt

0U t,l
d,c+qt

0U t,l
d,u), where we add superscript l to the

payoff notations to indicate the corresponding type of attacker.

It should be recognized that the auditor is subject to an additional loss that is caused

by non-malicious users who walk away upon seeing a warning signal (i.e., choose “Quit”

instead of “Proceed”) when they properly request to access a sensitive data record that

triggers alert(s). This usability cost is an important factor to consider in optimizing the

signaling scheme. Following the usability cost design in [38], we update the auditor’s

expected utility for an arbitrary time point as Eτ
d(util) = ∑t

(
∑l θ lzl

t · (pt
0U t,l

d,c + qt
0U t,l

d,u)+

(pt
1 + qt

1) ·PtEt
τCt
)
. Here, the usability cost, i.e., the second term, is proportional to 1)

the probability that a warning is sent to the data requestor when an alert is triggered, 2)

the probability that a non-malicious user walks away upon receiving a warning Pt , 3) the

expected number of false positive alerts from the current moment in time (that is, when

alert τ is triggered) to the end of the audit cycle Et
τ , and 4) the loss (e.g., system efficiency)

Ct due to each “walking-away” event from non-malicious users.

Let M be a very large positive number and Al be the upper bound of the expected utility

of an attacker in type l. The Bayesian SAG can be solved by applying the following mixed-

integer quadratic program (MIQP):
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max
p,q,Bτ ,z

∑t

(
∑l θ

lzl
t · (pt

0U t,l
d,c +qt

0U t,l
d,u)+(pt

1 +qt
1) ·PtEt

τCt
)

s.t.

∀t ∈ T,∀l ∈ L, pt
1U t,l

a,c +qt
1U t,l

a,u ≤ 0,

∀t ∈ T,∀l ∈ L, 0≤ Al− (pt
0U t,l

a,c +qt
0U t,l

a,u)≤ (1− zl
t)M,

∀t ∈ T, pt
1 + pt

0 = Edt
τ∼Dt

τ

(
Bt

τ

V tdt
τ

)
,

∀t ∈ T, pt
1 + pt

0 +qt
1 +qt

0 = 1,

∀t ∈ T, pt
0,q

t
0, pt

1,q
t
1 ∈ [0,1],

∀t ∈ T, Bt
τ ∈ [0,Bτ ], ∑t∈T Bt

τ ≤ Bτ ,

∀t ∈ T,∀l ∈ L, zl
t ∈ {0,1}, ∑t∈T zl

t = 1.

(5.1)

Instead of modeling in a fashion of multiple LPs, which is adopted by the algorithm

proposed for solving SAG [38], we solve the Bayesian SAG using only one MIQP. This

allows for a more compact game representation and, thus, more efficient search for an exact

solution. The first constraint for the MIQP (5.1) forces the attacker to abort current access

for all attacker types and targets. The left inequality of the second constraints ensures that

Al is the upper bound of the attacker’s expected utility in type l. When an attacker of type l

attacks target t as their response, then the right inequality is activated, which ensures that t

is the best strategy for the attacker of type l. We follow the strategy in [38] to compute the

probability that an attack of type t will be investigated by the auditor. In the third constraint,

dt
τ denotes the number of type-t alerts after the current alert τ is triggered til the end of the

current audit cycle. The distribution of dt
τ is assumed to follow a Poisson distribution Dt

τ ,

which can be easily learned from historical data. The last row of constraints limits the

attacker strategy of any type to be a pure distribution (in comparison to be probabilistic)

over all targets. Note that in the objective function we use the expected number of future

alerts Edt
τ∼Dt

τ
(dt

τ) to approximate Et
τ because the majority of alerts are false positives in

the general audit setting. We refer to this solution concept a Bayesian OSSP because the
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auditor only has uncertain knowledge about the attacker types they may encounter. We will

use the Bayesian OSSP as a baseline in our experiments.

5.3.2 Imperfect rationality and robust strategies

In the real world, it is unreasonable to assume that attackers can always act with infal-

lible utility maximizing rationality. It is also an unreasonably strong assumption that the

attacker will break ties to favor the auditor in practice (which is unfortunately a premise

of the OSSP and the Bayesian OSSP). This is because human attackers may not have the

time, energy, or knowledge to perform accurate utility calculations to choose a strategy. In

economics, such a phenomenon is defined as bounded rationality [159]. It has been empir-

ically shown that a security game solution assuming perfect rationality of players may lead

to unexpected loss in the face of human attackers because the defender underprotects those

targets that they believe an attacker would not attack [152]. Now, we explore integrating

two robust modeling methods, which serve as the basis of our solutions, to account for the

imperfect rationality of attackers such that new solutions are robust to adversarial humans.

ε-robust: The first method is designed to explicitly bound the worst-case utility de-

viation of the attacker’s strategy selection from their optimal strategy [152]. This can be

achieved by modeling that attackers may select an ε-optimal strategy in the worst case,

where ε ≥ 0. In other words, attackers may respond with any strategy within ε deviation

in utility from their optimal strategy. We use the following inequalities to formulate this

method:

ε · (1− yl
t)≤ Al− (pt

0 ·U t,l
a,c +qt

0 ·U t,l
a,u)≤ ε +(1− yl

t) ·M,

where the binary variables yl
t denote all ε-optimal strategies for attacker type l. Here, we

allow an attacker to have more than one choice to attack. When yl
t = 1 holds true, the

inequalities above become 0≤ Al− (pt
0 ·U

t,l
a,c +qt

0 ·U
t,l
a,u)≤ ε . This indicates that attacking

target t is within the ε degradation from the corresponding utility of the best response. In
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the other situation, where yl
t = 0, the right inequality is deactivated, which implies that

attacking target t causes a strategy to be more than ε away from the optimal solution and,

thus, should be discarded.

β -robust: Instead of setting a clear boundary that an attacker can move, the second

method is designed by constraining the maximum loss of the auditor caused by the de-

viation of the attacker’s response from their optimal strategy [160]. Formally, it can be

formulated as:

γ
l− (pt

0 ·U
t,l
d,c +qt

0 ·U
t,l
d,u)≤ β · (Al− (pt

0 ·U t,l
a,c +qt

0 ·U t,l
a,u)),

where γ l denotes the auditor’s optimal expected utility without considering the usability

cost in the face of an attacker in type l. The left side of this inequality denotes the auditor’s

loss when the attacker attacks target t (instead of choosing the best target). This value is a

constraint factor of β times the attacker’s loss for the deviation, where β ≥ 0. This design

does not set a hard cut-off point for attackers, but instead allows for a more gradual defense

against an attacker’s deviation.

We refer to these two special case games as the ε-robust Bayesian SAG and the β -robust

Bayesian SAG.

5.3.3 Optimizing robust Bayesian SAG

We introduce two algorithms to solve the ε-robust Bayesian SAG and the β -robust

Bayesian SAG as follows.

Solving the ε-robust Bayesian SAG. By applying an ε-optimal constraint to the at-

tacker’s expected utility, we solve the ε-robust Bayesian SAG through the following mixed-

integer linear program (MILP):
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max
p,q,Bτ ,z,y

∑l∈L θ
l
γ

l +∑t∈T (pt
1 +qt

1) ·PtEt
τCt

s.t.

∀t ∈ T,∀l ∈ L, pt
1U t,l

a,c +qt
1U t,l

a,u ≤ 0,

∀t ∈ T,∀l ∈ L, 0≤ Al− (pt
0U t,l

a,c +qt
0U t,l

a,u)≤ (1− zl
t)M,

∀t ∈ T,∀l ∈ L, ε(1− yl
t)≤ Al− (pt

0U t,l
a,c +qt

0U t,l
a,u)

≤ ε +(1− yl
t)M,

∀t ∈ T,∀l ∈ L, (1− yl
t)M+ pt

0U t,l
d,c +qt

0U t,l
d,u ≥ γ

l,

∀t ∈ T, pt
1 + pt

0 = Edt
τ∼Dt

τ

(
Bt

τ

V tdt
τ

)
,

∀t ∈ T, pt
1 + pt

0 +qt
1 +qt

0 = 1,

∀t ∈ T, pt
0,q

t
0, pt

1,q
t
1 ∈ [0,1],

∀t ∈ T, Bt
τ ∈ [0,Bτ ], ∑t∈T Bt

τ ≤ Bτ ,

∀t ∈ T,∀l ∈ L, zl
t ≤ yl

t , zl
t ,y

l
t ∈ {0,1},

∀l ∈ L, ∑t∈T zl
t = 1, ∑t∈T yl

t ≥ 1.

(5.2)

Similar to the Bayesian SAG, the first constraint above ensures that when an attacker re-

ceives a warning message, it is in the best interest of the attacker to quit accessing the

requested record to avoid getting a non-positive reward. Given attacker type l, the binary

variables zl
t denote the attacker’s optimal strategy with an expected utility of Al , and bi-

nary variables yl
t denote all ε-optimal strategies for attacker type l. The second and third

constraints, as well as constraints in last two rows, are used to fulfill these definitions. To

achieve the robust auditing against an attacker’s deviation, we maximize the lower bound

of the auditor’s expected utility, i.e., γ l , for all possible deviations by the attacker to guard

against the worst case scenario. The objective function also considers the usability cost for

deterring the non-malicious users of the system. We refer to this solution concept as the

ε-robust Bayesian OSSP.
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Solving the β -robust Bayesian SAG. To directly constrain the maximum loss of the

auditor in the face of imperfectly rational attackers, we introduce the following MILP al-

gorithm:

max
p,q,Bτ ,z

∑l∈L θ
l
γ

l +∑t∈T (pt
1 +qt

1) ·PtEt
τCt

s.t.

∀t ∈ T,∀l ∈ L, pt
1U t,l

a,c +qt
1U t,l

a,u ≤ 0,

∀t ∈ T,∀l ∈ L, 0≤ Al− (pt
0U t,l

a,c +qt
0U t,l

a,u)≤ (1− zl
t)M,

∀t ∈ T,∀l ∈ L, (1− zl
t)M+ pt

0U t,l
d,c +qt

0U t,l
d,u ≥ γ

l,

∀t ∈ T,∀l ∈ L, γ
l− (pt

0U t,l
d,c +qt

0U t,l
d,u)

≤ β (Al− (pt
0U t,l

a,c +qt
0U t,l

a,u)),

∀t ∈ T, pt
1 + pt

0 = Edt
τ∼Dt

τ

(
Bt

τ

V tdt
τ

)
,

∀t ∈ T, pt
1 + pt

0 +qt
1 +qt

0 = 1,

∀t ∈ T, pt
0,q

t
0, pt

1,q
t
1 ∈ [0,1],

∀t ∈ T, Bt
τ ∈ [0,Bτ ], ∑t∈T Bt

τ ≤ Bτ ,

∀t ∈ T,∀l ∈ L, zl
t ∈ {0,1}, ∑t∈T zl

t = 1.

(5.3)

Here, γ l is used to represent the utility of the auditor (without the usability cost) against the

type-l attacker’s best strategy. In this regard, we neither explicitly model nor constrain the

attacker’s deviation from their optimal response strategy. Instead, we constrain the potential

loss of the auditor as a function of the attacker’s loss through the fourth constraint. We refer

to this solution concept as the β -robust Bayesian OSSP.

Both algorithms for robust signaling schemes trade off the optimal utility of the auditor

for protecting against the weakness of the Bayesian SAG in the face of real world attackers.

As a result, there are similarities worth highlighting. Intuitively, a larger ε and a smaller

β in a reasonable range can render more robustness to the auditing task. This implies
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that both ε and β need to be properly tuned in the real auditing scenario according to

its characteristics, and vice versa. However, these two methods have distinct perspectives

to achieve robustness, which may demonstrate differences in their theoretical properties,

practical protection efficiency, and scalability.

5.4 Theoretical Properties

In this section, we analyze the theoretical properties of the Bayesian OSSP, the ε-robust

Bayesian OSSP, and the β -robust Bayesian OSSP solutions, as well as their relationship.

They will be used as theory basis to explain experimental results. We start with a notable

property of the Bayesian OSSP that the associated signaling scheme only sends warning

for the best alert types (targets) from all potential attacker types.

Theorem 8 For any Bayesian OSSP, if the set of alert types Q = {t1
∗ , t

2
∗ , ..., t

K
∗ }, where

K < |T | and Q ⊆ T , consists of the best response strategies for all possible attacker types

(∀l ∈ L), then pt
1 = qt

1 = 0 for ∀t /∈ Q.

Proof Assume S = ({pt
0, pt

1,q
t
0,q

t
1,{zl

t}l∈L,Bt
τ}t∈T ,{Al}l∈L) is any optimal solution of

MIQP (5.1). We define a set of new variables by letting p̄t∗
0 = pt∗

0 , p̄t∗
1 = pt∗

1 , q̄
t∗
0 = qt∗

0 , q̄
t∗
0 =

qt∗
0 for all t∗ ∈Q, which are the same as in S; however, we define p̄t

0 = pt
0+ pt

1, q̄
t
0 = qt

0+qt
1

and p̄t
1 = 0, q̄t

1 = 0 for any t /∈ Q. In addition, we define z̄l
t = zl

t for all t ∈ T, l ∈ L, Āl = Al

for all l ∈ L, and B̄t
τ = Bt

τ for all t ∈ T . We now prove that these newly defined variables

will never reduce the objective value of MIQP (5.1) on its optimal solution S.

We first demonstrate the feasibility of the newly defined variables, i.e.,

S̄= ({ p̄t
0, p̄t

1, q̄
t
0, q̄

t
1,{z̄l

t}l∈L, B̄t
τ}t∈T ,{Āl}l∈L).

The first constraint of MIQP (5.1) is still satisfied both for all t ∈ Q and for all t /∈ Q since

p̄t
1 = q̄t

1 = 0. As z̄l
t remains the same for all t ∈ T, l ∈ L, the second constraint holds true for
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any t ∈ Q. For any t /∈ Q (which corresponds to z̄l
t = 0 for all l ∈ L), the left inequality still

holds true, because

Āl − (p̄t
0U t,l

a,c + q̄t
0U t,l

a,u)

= Al− (pt
0 + pt

1) ·U t,l
a,c− (qt

0 +qt
1) ·U t,l

a,u

= Al− (pt
0U t,l

a,c +qt
0U t,l

a,u)− (pt
1U t,l

a,c +qt
1U t,l

a,u)

≥ Al− (pt
0U t,l

a,c +qt
0U t,l

a,u) ≥ 0,

where the first inequality above is due to pt
1U t

a,c+qt
1U t

a,u ≤ 0 as a constraint of MIQP (5.1).

Thus, the second constraint in MIQP (5.1) is feasible. It is evident that the rest of the

constraints can be satisfied for the newly defined variables.

Next, we show that the newly defined variables do not harm the objective value that

corresponds to the optimal solution S. The first term of the objective function can be

rewritten as ∑t ∑l θ l z̄l
t · (p̄t

0U t,l
d,c+ q̄t

0U t,l
d,u) = ∑t∈Q ∑l θ l z̄l

t · (p̄t
0U t,l

d,c+ q̄t
0U t,l

d,u)+∑t /∈Q ∑l θ l z̄l
t ·

(p̄t
0U t,l

d,c+ q̄t
0U t,l

d,u) = ∑t∈Q ∑l θ lzl
t · (pt

0U t,l
d,c+qt

0U t,l
d,u) = ∑t ∑l θ lzl

t · (pt
0U t,l

d,c+qt
0U t,l

d,u), which

is the same as in S. This is because z̄l
t = zl

t = 0 for any t /∈ Q. The second term of the

objective function can be transformed to ∑t∈Q(p̄t
1+ q̄t

1) ·PtEt
τCt +∑t /∈Q(p̄t

1+ q̄t
1) ·PtEt

τCt =

∑t∈Q(pt
1 +qt

1) ·PtEt
τCt , which does not reduce the objective value, because PtEt

τCt ≤ 0. In

summary, the newly defined variables yield a solution S̄ with a objective value that is no

smaller than the original value with S. This proves the theorem.

Theorem 8 implies that if all types of perfectly rational attackers avoid targeting certain

alert type(s), then the best strategy for the auditor is to turn off the signaling procedure for

those types to prevent loss incurred by sending warnings. Theorem 8 cannot generally hold

true for either the ε-robust Bayesian OSSP and the β -robust Bayesian OSSP. Intuitively,

this is because these two robust game models shift their optimization power to account for

possible deviations of attackers with imperfect rationality, where the auditor will lose less
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than using the Bayesian OSSP. This is done by changing the signaling scheme. And, if

the signaling procedures were still turned off for all suboptimal attack strategies, then the

auditor can never benefit from the robustness design.

Next, in the following two theorems, we show that the ε-robust Bayesian OSSP and the

β -robust Bayesian OSSP are equivalent in certain conditions.

Theorem 9 Let W be the greatest absolute expected utility of an arbitrary attacker in ε-

robust Bayesian SAG, if ε > 2W and β = 0, then the ε-robust Bayesian OSSP and the

β -robust Bayesian OSSP are equivalent.

Proof Note that Al is the expected attacker’s utility under the optimal response (i.e., zl
t = 1),

thus |Al| ≤W for all l ∈ L holds true. Given ε > 2W in ε-robust SAG, we first prove that

yl
t = 1 for all t ∈ T, l ∈ L in any ε-robust Bayesian OSSP. To do so, we assume ∃yl

t = 0, then

the right inequality of the third constraint in MILP (5.2) turns inactive, whereas the left

inequality becomes pt
0U t,l

a,c +qt
0U t,l

a,u ≤ Al− ε . Then we have Al− ε ≤W− ε <W−2W =

−W. According to the definition of W, −W ≤ pt
0U t,l

a,c +qt
0U t,l

a,u for all t ∈ T . Then we have

−W ≤ pt
0U t,l

a,c +qt
0U t,l

a,u <−W, which is a contradiction.

With yl
t = 1 for all t ∈ T, l ∈ L, the third constraint of MILP (5.2) transforms to 0 ≤

Al−(pt
0U t,l

a,c+qt
0U t,l

a,u)≤ ε , where the left inequality is then equivalent to the left inequality

of the second constraint. We now prove that Al− (pt
0U t,l

a,c +qt
0U t,l

a,u)≤ ε for all t ∈ T, l ∈ L

by supposing ∃t ∈ T, l ∈ L, that Al−(pt
0U t,l

a,c+qt
0U t,l

a,u)> ε holds true. This can be rewritten

as Al > (pt
0U t,l

a,c+qt
0U t,l

a,u)+ε > (pt
0U t,l

a,c+qt
0U t,l

a,u)+2W>−W+2W=W. This contradicts

to |Al| ≤W for all l ∈ L. Thus, the third constraint of MILP (5.2) is trivially satisfied, which

thus can be removed.

When β = 0, the fourth constraint of MILP (5.3) then becomes γ l ≤ (pt
0U t,l

d,c +qt
0U t,l

d,u)

for all t ∈ T, l ∈ L, which implies the third constraint in MILP (5.3) (which thus can be

removed), and is the same as the fourth constraint of MILP (5.2) given yl
t = 1 for all t ∈

T, l ∈ L. As a consequence, MILP (5.3) shares the same constraints with MILP (5.2) in the
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given two conditions. In addition, the objective functions of MILP (5.3) and (5.2) are the

same. This theorem is proved.

Intuitively, this means that if ε is sufficiently large, then the ε-robust Bayesian SAG

will cover all possible deviations of an attacker. This makes γ l in MILP (5.2) the lower

bound of the expected utility of an attacker in type l, which is indicated by the fourth

constraint of MILP (5.2). The objective function is then translated to maximize the sum of

the specified lower bound of the auditor’s utility and the potential usability cost. We call

this a pseudo-MAXIMIN solution. Similarly, if β = 0, the β -robust Bayesian SAG would

not set constraints based on any specific deviation of the attacker, but instead makes γ l

the lower bound of the auditor’s (in type l) expected utility (without usability cost). Thus,

the β -robust Bayesian OSSP in this scenario becomes a pseudo-MAXIMIN solution as

well. The pseudo-MAXIMIN solution seeks to achieve the highest robustness of auditing

such that the auditor’s expected utility in the face of a totally random attacker will not be

unexpectedly low.

Theorem 10 If ε = 0 and β is sufficiently large, then the ε-robust Bayesian OSSP and the

β -robust Bayesian OSSP are equivalent and both degrade to the Bayesian OSSP.

Proof We first show that the ε-robust Bayesian OSSP is equivalent to the Bayesian OSSP

when ε = 0. The third constraint of MILP (5.2) becomes 0 ≤ Al − (pt
0U t,l

a,c + qt
0U t,l

a,u) ≤

(1− yl
t)M with ε = 0, which shares the same format with the second constraint. We then

prove that yl
t = zl

t for all t ∈ T, l ∈ L. Given zl
t ≤ yl

t and zl
t ,y

l
t ∈ {0,1} for all t ∈ T, l ∈

L, we assume that ∃t ′, l# such that yl#

t ′ = 1,zl#

t ′ = 0, which implies that ∃t∗ ̸= t ′ such that

zl#

t∗ = 1 (given ∑t∈T zl
t = 1) and yl#

t∗ = 1. Then for the attacker of type l# ∈ L, we have

0≤ Al#− (pt ′
0U t ′,l#

a,c +qt ′
0U t ′,l#

a,u )≤ (1− yl#

t ′ )M = 0. Then we have Al#
= (pt ′

0U t ′,l#

a,c +qt ′
0U t ′,l#

a,u ).

Given that 0≤ Al#− (pt∗
0 U t∗,l#

a,c +qt∗
0 U t∗,l#

a,u )≤ (1− zl#

t∗)M = 0, it is obvious that the attacker

of type l# is indifferent to attack a target of type t ′ and t∗, as each leads to the greatest

expected utility, Al#
. Applying yl#

t∗ = 1,yl#

t ′ = 1 to the fourth constraint of MILP (5.2), we

get pt∗
0 U t∗,l#

d,c +qt∗
0 U t∗,l#

d,u ≥ γ l#
and pt ′

0U t ′,l#

d,c +qt ′
0U t ′,l#

d,u ≥ γ l#
, implying that γ l#

is a lower bound
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of the auditor’s expected utility in face of the attacker of type l# with their best response t∗

and t ′. This would only serve to reduce the auditor’s expected utility and thus would not be

an optimal solution. As a result, yl
t = zl

t for all t ∈ T, l ∈ L holds true.

To show that the optimal objective value of MILP (5.2) is no less than that of of MIQP

(5.1), we assume ({pt
0, pt

1,q
t
0,q

t
1,{zl

t}l∈L,Bt
τ}t∈T ,{Al}l∈L) is any optimal solution of MIQP

(5.1). We then define p̄t
1 = pt

1, q̄
t
1 = qt

1, p̄t
0 = pt

0, q̄
t
0 = qt

0, z̄
l
t = ȳl

t = zl
t , Ā

l = Al, B̄t
τ = Bt

τ , γ̄
l =

∑t∈T zl
t ·(pt

0U t,l
d,c+qt

0U t,l
d,u) for all t ∈ T, l ∈ L. All constraints in MILP (5.2) except the fourth

constraint can be easily verified to hold true when applying the newly defined variables.

The fourth set of constraints can be rewritten as ∀t ∈ T, l ∈ L,(1−zl
t)M+ pt

0U t,l
d,c+qt

0U t,l
d,u≥

∑t∈T zl
t · (pt

0U t,l
d,c + qt

0U t,l
d,u). Given any l ∈ L, where zl

t∗ = 1 and thus zl
t = 0 for all t ̸= t∗,

this inequality still holds true. Thus, the newly defined variables are a feasible solution of

MILP (5.2). By applying γ̄ l to the objective function of MILP (5.2), which yields the same

objective function with MILP (5.2), we can therefore obtain a same objective value using

the new variables in MILP (5.2).

We then show that the optimal objective value of MIQP (5.1) is no less than that of

MILP (5.2). To do so, we assume ({pt
0, pt

1,q
t
0,q

t
1,{zl

t = yl
t}l∈L,Bt

τ}t∈T ,{Al}l∈L) is any

optimal solution of MILP (5.2). We define p̄t
1 = pt

1, q̄
t
1 = qt

1, p̄t
0 = pt

0, q̄
t
0 = qt

0, z̄
l
t = ȳl

t =

zl
t , Ā

l = Al, B̄t
τ = Bt

τ for all t ∈ T, l ∈ L. All of the constraints of MIQP (5.1) are satisfied.

In the objective function of MIQP (5.1), the term ∑t∈T z̄l
t · (p̄t

0U t,l
d,c + q̄t

0U t,l
d,u) = ∑t∈T zl

t ·

(pt
0U t,l

d,c + qt
0U t,l

d,u) = pt
0U t,l

d,c + qt
0U t,l

d,u given zl
t = 1 for all l ∈ L, which is no less than γ l

because according to the fourth constraint of MILP (5.2), zl
t = yl

t = 1 makes this term

greater or equal to γ l . Thus, the ε-robust Bayesian OSSP is equivalent to the Bayesian

OSSP when ε = 0.

Next, we show that the β -robust Bayesian OSSP is equivalent to the Bayesian OSSP if

β is sufficiently large. In this case, the fourth constraint of MILP (5.3) is trivially satisfied,

thus can be removed. We can then apply the same proof method above to show that a set

of newly defined feasible variables for MIQP (5.1) based on any optimal solution of MILP
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(5.3) can yield an objective value that is no less than the corresponding objective value of

the β -robust Bayesian OSSP, and vice versa.

In other words, ε = 0 and a sufficiently large β both lead to the loss of robustness of the

signaling audit system against any possible deviation of a potential attacker from their best

response strategy. By contrast, as an implication of Theorem 9, the robustness level of the

signaling audit system is pushed to the other end, where the worst case attacker (irrational

at all) is considered through maximizing the lower bound expected utility of the auditor.

In Theorem 11, we show how the values of ε and β between these two ends influence the

optimal objective values of MILP (5.2) and (5.3).

Theorem 11 Consider the non-negative ε and β as independent variables, the optimal

objective value of MILP (5.2) is a monotonically non-increasing function of ε , whereas the

optimal value of MILP (5.3) is monotonically non-decreasing function of β .

Proof For MILP (5.2), the third constraint indicates that if an attacker of type l deviates

from the optimal response strategy (which leads to a gain of Al for the attacker) within ε

regarding the expected utility (i.e., Al − (pt
0U t,l

a,c + qt
0U t,l

a,u) ≤ ε), then this attack strategy t

can be represented by yl
t = 1. It follows that for any l ∈ L, a larger ε ensures that the number

of the attacker’s strategies falling into ε degradation does not decrease at least (sometimes

it can increase). Note that the number of active constraints in the fourth inequality is equal

to the number of the attacker’s strategies that are within ε degradation. This implies that

the number of newly added active constraints to MILP (5.2) due to the increase of ε will

not decrease at least (sometimes increase), which thus will at least not increase (sometimes

decrease when there are more active constraints from the fourth constraint) the optimal

objective value of MILP (5.2). As a result, the optimal objective value of MILP (5.2) is a

monotonically non-increasing function of ε .

The fourth constraint of MILP (5.3) bounds the loss of the auditor due to the deviation

of the attacker of type l from the optimal strategy (i.e., γ l− (pt
0U t,l

d,c +qt
0U t,l

d,u)) by the loss

of the attacker because of the deviation with a coefficient of β . Thus, a smaller β leads to
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a tighter set of constraints, which thus will at least not increase the optimal objective value

of MILP (5.3) given that other constraints keep the same. This proves the second half of

the theorem.

0 Sufficiently large

Optimal
objective value

βϵ
0 Sufficiently large

Optimal
objective value

Theorem 2
(Pseudo-MAXIMIN)

Theorem 3
(Bayesian OSSP)

Theorem 4
(Non-decreasing)

Theorem 4
(Non-increasing)

Figure 5.2: A graphical summary of Theorems 9, 10, 11. Note that the two curves in their
own horizontal spaces are monotonically non-increasing and non-decreasing, respectively.

An important implication from Theorems 10 and 11 is that the optimal objective values

of MILPs (5.2) and (5.3), which respectively correspond to the ε- and β -robust Bayesian

OSSP, are no greater than the optimal value of MIQPs (5.1), which correspond to Bayesian

OSSP, regardless of the non-negative ε and β . On the other hand, Theorems 9 and 11 imply

that the optimal objective values of MILPs (5.2) and (5.3) can be no less than the optimal

value when ε is sufficiently large and β = 0. Fig. 5.2 provides a graphical summary of

the last three theorems. The two end points linked by the green dashed line indicate the

largest objective value (the auditor’s expected utility with the usability cost) and the two

auditing solutions demonstrate no robust features at these points; however, the points linked

by the brown dashed line indicate the smallest auditor’s expected utility with the usability

cost such that both auditing solutions consider the worst-case rationality of an attacker

(i.e., a totally random attacker in selecting their strategy). It is evident that accounting for

robustness sacrifices the auditor’s optimal expected utility in the face of uncertain types of

the attacker.
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Table 5.1: A summary of alert types and their daily statistics.

ID Description Mean St.dev

1 Same Last Name 196.57 17.30
2 Department Co-worker 29.02 5.56
3 Neighbor (≤ 0.5 miles) 140.46 23.23
4 Same Address 10.84 3.73
5 Last Name & Neighbor (≤ 0.5 miles) 25.43 4.51
6 Last Name & Same Address 15.14 4.10
7 Last Name & Same Address & Neighbor (≤ 0.5 miles) 43.27 6.45

5.5 Model Evaluation

In this section, we evaluate the performance of the ε- and β -robust Bayesian SAG.

We compare them with a non-robust baseline model (i.e., the Bayesian SAG, the adapted

version of the solution in [38], which is the only state-of-the-art model to consider) in terms

of the auditor’s utility. The experiments are designed and conducted in two environments.

The first is a reproduced real-time auditing environment using real EHR access logs from

Vanderbilt University Medical Center (VUMC). By contrast, the second is a simulated

controlled environment built on a real auditing scenario. This allows us to simulate attacker

behaviors regarding the rationality degree. We test different auditing conditions by varying

multiple key parameters. We begin with an introduction of our dataset and then describe

the experimental setup for the two environments.

5.5.1 Dataset

The experiments in this study are based on a dataset of 10M real EHR access logs col-

lected from the EHR system deployed at VUMC, which were also used in several earlier

studies [38, 36]. These correspond to all EHR access events during a period of 56 continu-

ous normal working days in 2017. Data for holidays and weekends were excluded because

their access patterns are different from working days. The average number of daily unique

access events (i.e., user A accesses patient B’s EHR in one day) is 192K with a standard
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Table 5.2: The payoff structures of the auditor (top) and the attacker (bottom) for the pre-
defined alert types.

Payoff Attack (target) type
t = 1 t = 2 t = 3 t = 4 t = 5 t = 6 t = 7

U t,1
d,c 100 150 150 300 400 600 700

U t,2
d,c 10 15 20 30 35 50 70

U t,1
d,u −400 −500 −600 −800 −1000 −1500 −2000

U t,2
d,u −40 −45 −50 −60 −70 −85 −200

U t,1
a,c −2000 −2250 −2500 −2500 −3000 −5000 −6000

U t,2
a,c −100 −120 −180 −200 −250 −280 −330

U t,1
a,u 400 400 450 600 650 700 800

U t,2
a,u 10 10 15 20 30 40 75

deviation of 8.97K. The information associated with each EHR access event includes the

user’s and patient’s names, their residential addresses, and if a patient is also an employee

of VUMC, and their department affiliations. All of the evens are timestamped. Four pre-

defined alert types are used to trigger real time alerts which are recorded in our dataset:

user and patient (whose data was requested) 1) share the same last name, 2) are co-workers

from the same department, 3) are neighbors (≤ 0.5 miles), and 4) share the same residen-

tial address. If an EHR access event triggers more than one alert type, their combination is

defined as a new alert type. The description of alert types used in this study and their daily

statistics are provided in Table 5.1.

In this study, we focus on two types of attackers seen in practice, each with a distinct

motivation for EHR misuse. The first type of attacker is financially motivated (referred to

as F-MOT), which often leads to medical identity theft (such as insurance fraud) [161],

while the second is motivated by intrinsic curiosity (referred to as C-MOT) about some-

one’s clinical condition [162], including, but not limited to, medical conditions, treatment

and medical visit history. The priori distribution of these two types that the auditor can

encounter is set to θ 1 : θ 2 = 2 : 8. The payoff structures for both players under the two

attacker types are shown in Table 5.2. We set the payoffs for the first attacker type to be
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one order of magnitude higher than the second type because financially motivated attacks

can lead to larger penalty and reward. These values are estimates based on discussions with

experts working in the area. Note that though our dataset does not include straightforward

rules for F-MOT attackers, this will not influence model evaluation.

5.5.2 Experimental Setup

1). Real environment

We follow the same scenario in [38] to define the audit cycle as one day from 0:00:00 to

23:59:59. We apply a sliding window with a length of 42 days to the data collection period

(i.e., 56 continuous working days) to construct 15 data groups. Each consists of a 41-day

period of history observations for estimating the number of future alerts, along with the

subsequent day for model evaluation purpose. For each evaluation day, a real time auditing

environment is established where the auditor and EHR users interact with each other on

the timeline. Instead of evaluating the objective values of all candidate game solutions, we

compute the expected utility of the auditor conditioned on that a user of type l̃ (which is

randomly assigned based on θ 1 : θ 2) requests an EHR which triggers an alert of type t̃ as

follows:

pt̃
0U t̃,l̃

d,c +qt̃
0U t̃,l̃

d,u +∑t(pt
1 +qt

1) ·PtEt
τ̃Ct . (5.4)

We refer to this value as the conditioned expected utility (CEU) of the auditor. We set

the probability of quitting as {Pt = 0.186}t∈T . This is based on our observations from

a 3-month period before data collection in 2017 when a “break the glass” [163] real-time

warning system was deployed at VUMC to naively warn every access request that triggered

alert(s). In addition, we apply the same budget update strategy in real time as introduced in

section 5.2, where the consumed budget for the current alert relies on whether a warning is

sent to the requestor, the alert type, and the associated signaling scheme.
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We compare the CEU of the auditor derived from the Bayesian OSSP to those derived

from each of the robust solutions we developed (i.e., the ε-robust Bayesian OSSP and the

β -robust Bayesian OSSP) across the 15 evaluation days. Note that in practice the auditor

regards each incoming alert as a potential attack. As such, we compute the CEU of the

auditor over all alerts.

We investigate the robustness of the results by varying several parameters:

• We consider multiple total auditing budgets B = {100,120,140}.

• We vary the loss of the system due to each walking-away event from non-malicious

users. We set {Ct = {−1,−5,−10}}t∈T .

• To investigate how the performance of our solutions varies based on the core pa-

rameters that control the degree of robustness, we test a spectrum of values for

ε and β , respectively. We consider ε = {0,50,100,200,400,800,1600,3200} and

β = {0.0,0.125,0.25,0.5,1.0,2.0,4.0,8.0}.

2). Simulated controlled environment

To systematically investigate the performance of our auditing solutions against attackers

with different behavior patterns in terms of their rationality degree, we create a controlled

environment based on several key configurations in the real setting. To assign values to

{Et
τ}t∈T , we leverage the state at the first triggered alert of the first evaluation day (i.e.,

Day 42) in the real environment. Specifically, we set {Et
τ}t∈T as [196.1, 28.9, 141.0, 9.8,

25.4, 15.4, 42.8] for the seven alert types. For the same state, we then solve MIQP (5.1)

to derive the probability of being caught for each alert type (i.e., {pt
1 + pt

0}t∈T = [0.083,

0.075, 0.084, 0.129, 0.123, 0.109, 0.173]). Additionally, we set {Ct =−1,Pt = 0.186}t∈T .

Based on these configurations, we simulate the following game components to establish

the evaluation environment.
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• We apply the derived {pt
1 + pt

0}t∈T to each game, and then introduce random noise

to {pt
1 + pt

0}t∈T to simulate games with different budgets. This also bypasses solv-

ing {Bt}t∈T , which fairly simplifies the computation. The noise follows a Gaussian

distribution with a mean of 0 and a standard deviation of 0.02. We ensure the simu-

lated probabilities are in the correct range of (0,1) via value clipping. This process

is repeated 2000 times in deriving solutions for all game models.

• Similar to the evaluation in the real environment, we assess performance on a range

of values of the two robustness parameters ε and β .

• We simulate attackers with different levels of rationality by controlling the proba-

bilities of deviation from their optimal attacking target. This is achieved by using

the Quantal Response strategy [153], which assumes that attackers respond stochas-

tically such that the chance of selecting a strategy positively associates with the ex-

pected utility on this strategy. Mathematically, the probability of attacking target t

for an attacker in type l is:

wt,l =
eλ ·(pt

0U t,l
a,c+qt

0U t,l
a,u)

∑t eλ ·(pt
0U t,l

a,c+qt
0U t,l

a,u)
, (5.5)

where λ (> 0) controls the rationality level of an attacker. A smaller λ makes an

attacker more likely to select non-optimal response strategies and vice versa. In

the extreme case, a λ value that is infinitely close to 0 leads to an attacker who

selects a response strategy in uniformly random manner. We set values for λ as

{10−4,10−3,10−2,10−1,100}.

5.5.3 Results

1). Real environment

109



In Fig. 5.3, we show the performance of the ε-robust Bayesian SAG and the β -robust

Bayesian SAG in comparison to the non-robust model (i.e., the Bayesian SAG) across all

15 evaluation days. We present the results under three different choices of total budgets, but

apply {Ct =−1}t∈T for all scenarios. Due to the fact that the attacker types are randomly

assigned for each comparison group, the CEU of the auditor for the Bayesian OSSP across

the spectrum of ε and β values differ slightly, but are sufficiently similar for comparison

purposes.

(a) B=100, ε-robust vs non-robust (b) B=100, β -robust vs non-robust

(c) B=120, ε-robust vs non-robust (d) B=120, β -robust vs non-robust

(e) B=140, ε-robust vs non-robust (f) B=140, β -robust vs non-robust

Figure 5.3: CEU of the auditor in the ε-robust and β -robust equilibria compared with the
non-robust solution across 15 testing days under different total budgets.

There are several notable findings and implications worth highlighting. First, both the
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Table 5.3: Average CEU of the auditor across 15 testing days for ε = 3200 and β = 0.0.
The percentage value in each cell indicates the averaged improvement when compared to
the non-robust baseline, i.e., Bayesian OSSP.

B ε = 3200 β = 0.0

Ct =−1 Ct =−5 Ct =−10 Ct =−1 Ct =−5 Ct =−10

100 −40.21 70.17% −92.78 33.96% −101.80 31.12% −40.09 70.40% −94.04 34.68% −99.94 31.67%
120 −35.62 72.35% −84.63 35.49% −95.50 31.84% −35.60 71.37% −89.11 35.00% −93.61 33.85%
140 −31.57 71.93% −78.11 36.56% −86.40 34.51% −31.71 70.91% −80.91 36.31% −86.35 33.02%

ε-robust Bayesian OSSP and the β -robust Bayesian OSSP outperform the Bayesian OSSP

for almost all values of ε and β by achieving a larger CEU of the auditor, and such an ad-

vantage is consistent across all three total budgets. Second, for ε = 0, the ε-robust Bayesian

OSSP is as poor as the Bayesian OSSP. Similar observations are made for large values of

β (e.g., β = 8.0 in Figures 5.3b, 5.3d, and 5.3f). These results empirically verify Theorem

10 — both robust solutions degrade to the Bayesian OSSP, which lacks robustness. Third,

the CEU of the auditor tends to increase as we increase the total budget from 100 to 140

for every value of ε and β . This is not surprising because a greater amount of protection is

realized in auditing.

We highlight that the ε-robust Bayesian OSSP for ε ≥ 800 and the β -robust Bayesian

OSSP for β ≤ 0.125 achieve the highest CEU of the auditor. And, notably, they demon-

strate an equally strong capability in the face of real world attackers with respect to the

CEU of the auditor. For instance, both of the robust solutions improve the auditing perfor-

mance by approximately 70% (in terms of the absolute average improvement on the CEU

of the auditor divided by the CEU of the auditor from the Bayesian OSSP), which illus-

trates the effectiveness of our solutions when compared to the state-of-the-art non-robust

solution. Interestingly, this phenomenon is in line with the scenario articulated in Theo-

rem 9. As such, the largest improvement from the robust solutions may correspond to a

pseudo-MAXIMIN solution on this dataset. This implies that the attackers’ responses in the

real audit logs are almost totally random. One possible explanation for this observation is

that the majority of the access requests are not malicious. It is also possible that the cur-
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rently deployed auditing strategy (i.e., break the glass) might not help incentivize attackers

to behave strategically. And, if this were done well, then it certainly favors the auditor.

We expanded our investigations to account for multiple different game settings. Given

ε = 3200 and β = 0.0. Table 5.3 illustrates the performance of our robust solutions and

their advantages (in terms of average percentage of improvement) over the non-robust

solution respectively by varying 1) total budgets for auditing B, and 2) the loss due to

each walking-away event of non-malicious data requestor Ct . We selected the values of

ε and β that correspond to the best performance exhibited in Fig. 5.3. Here, there are

several points to note. First, the ε-robust Bayesian OSSP and the β -robust Bayesian

OSSP consistently outperform the Bayesian OSSP with respect to the average CEU of

the auditor in a variety of auditing settings. The smallest improvement, which occurs at

{B = 100,ε = 3200,{Ct = −10}t∈T}, over the non-robust solution is still significant and

as high as 31%. Second, as Ct increases (i.e., the loss for each walking-away event from

non-malicious users decreases), the percentage improvement of our robust solutions also

increases. For example, when B = 100, the percentage improvement for both robust solu-

tions increases from 31% for {Ct = −10}t∈T to 70% for {Ct = −1}t∈T . This is because

the usability cost accounts for more proportions in the CEU of the auditor, which, in turn,

reduces the of our solutions’ robustness against the imperfectly rational attackers. It should

also be noted that the absolute values of the CEU of the auditor monotonically increases

with the overall budget B, whereas the percentage improvement remains roughly the same.

2). Simulated controlled environment

Considering the attacker type as a factor, we compare each robust solution to the

Bayesian OSSP across a spectrum of attacker rationality. As shown in Fig. 5.4a and 5.4b,

the Bayesian OSSP for F-MOT attackers becomes increasingly poor (the mean CEU of the

attacker monotonically decreases) as the attacker’s rationality level decreases. By contrast,

the robust solutions are relatively stable for different rationality levels, though there is a
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(a) F-MOT attacker in ε-robust SAG (b) F-MOT attacker in ε-robust SAG

(c) C-MOT attacker in ε-robust SAG (d) C-MOT attacker in β -robust SAG

Figure 5.4: The difference in the CEU of the auditor in the auditing scenario with Bayesian
ε-robust (β -robust) OSSP and the scenario with the alternative Bayesian OSSP (ε = 200
and β = 1.0). Each box plot indicates the first and third quartiles, as well as the median
value. The white circles indicate mean values.

slightly increasing trend for more rational attackers regarding the mean CEU of the auditor.

It is also notable that the distributions of auditor’s CEU demonstrate larger variances for

the Bayesian OSSP than either robust solution, and are left skewed (due to outliers with

large negative CEU values). Such biases are much larger for C-MOT attackers (Fig. 5.4c

and 5.4d) in that the mean CEU value is even no greater than the corresponding first quar-

tile number. In addition, comparing to the gradual shift of the mean CEU of the auditor

over attacker’s rationality spectrum for F-MOT attackers in the Bayesian OSSP, this value

demonstrates two clear patterns for C-MOT attackers: one for λ = 100 and the other for the

rest. The main reason is that the probabilities of selecting strategies for C-MOT attackers is
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uniformly distributed across all targets for λ ≤ 10−1. By contrast, F-MOT attackers, whose

payoff structures are one magnitude higher than C-MOT attackers, are more responsive to

λ values.

Fig. 5.5 shows the CEU of the auditor along ε and β values against attackers with

different rationality levels. Again, there are several notable observations. First, for ε = 0,

an attacker with a higher level of rationality associates with a higher CEU values of the

auditor, as shown in Fig. 5.5a. This is not surprising for several reasons. Specifically, in this

scenario, the ε-robust Bayesian OSSP is equivalent to the Bayesian OSSP (see Theorem

10 and Fig. 5.2). Additionally, the solution is derived by assuming a perfectly rational

attacker, whose expected utility is optimized. In other words, the auditor can benefit from

an increase of the attacker’s rationality. Second, the CEU of the auditor against attackers

with low rationality (e.g., λ = 10−2,10−3, or 10−4) increases with ε in ε ∈ [0,300] and

then remains in a relatively stable level for ε > 300. In other words, less rational attackers

are better handled by the auditing solutions that account for a large deviation of their utility.

By contrast, the CEU of the auditor against attackers with high rationality (e.g., λ = 10−1

or 100) demonstrates a clear rise-and-fall pattern before reaching stability. This is because

these attackers (who are less likely to choose sub-optimal strategies than other attackers)

can be better accommodated by a particular level of deviation in game modeling, which

is not necessarily too large. A larger ε renders the model to supply more protection than

needed, which thus sacrifices auditor’s utility on average, whereas a smaller ε may result

in the overshoot of attackers, where unexpected loss can occur to the auditor. Third, it

is an interesting observation that in the stable area of the CEU of the auditor (ε > 300),

less rational attackers are slightly better handled by the ε-robust Bayesian OSSP. This is

because the game shifts the budget to accommodate these attackers.

As expected, the observations above have a similar result for the β -robust Bayesian

OSSP solutions as shown in Fig. 5.5b. In general, the findings, as well as implications,

from the two subfigures of Fig. 5.5 are in agreement with each other. However, the β -robust
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Bayesian OSSP demonstrate inverted patterns along the robustness parameters, which is

well explained by the theoretical properties articulated in Section 5.4.
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Figure 5.5: CEU of the auditor with respect to attackers with distinct rationality levels.
Each point corresponds to 25K simulated game instances.

3). Running time

As the signaling mechanism for auditing functions in real time, it is critical to ensure

that an auditing solution is derived quickly. If this is not achieved, the operational efficiency

of an organization will be significantly hampered. We measured the time needed to derive

the robust solutions using a UNIX server (with two Intel Xeon E5-2650 CPU @ 2.2GHz

and 256GB of Memory) for 100 randomly generated game instances of each robust game.

We investigate our scalability in deriving robust solutions against a range of alert type

numbers, as well as two quantities of attacker types: |L|= 2 (the setting in this study) and a

much large case where |L|= 8. As shown in Fig. 5.6, for our current setting (|L|= 2, |T |=

7), the mean running time for both robust solutions are approximately 0.03 seconds, which

would be imperceptible. Even for 28 alert types, the mean running time is no greater than

0.1 second. We also observe that deriving the β -robust Bayesian OSSP is more scalable

than deriving the ε-robust Bayesian OSSP. In particular, for |L| = 8, |T | = 28, it takes 10

seconds to solve the ε-robust Bayesian OSSP, which is 10 times longer than solving the

β -robust Bayesian OSSP.
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Figure 5.6: Running time for solving the ε- and β -robust Bayesian OSSP.

5.6 Discussion and Conclusion

Alert-based auditing mechanisms for data misuse are widely deployed in database sys-

tems. In this paper, we addressed problems with two major assumptions inherent in SAGs,

the state-of-the-art database access auditing framework: 1) a single type of attacker (or an

identical goal for all attackers) and 2) perfectly rational attackers. To solve the first issue,

we leveraged a Bayesian modeling technique to account for different types of attackers by

modeling the interactions between the auditor and system users. We then designed two

robust signaling auditing models (i.e., the ε- and β -robust Bayesian SAG), as well as cor-

responding algorithmic strategies to solve these models (i.e., the ε- and β -robust Bayesian

OSSP), to address the imperfect rationality of attackers. We demonstrate that our robust

solutions largely improve the performance of database auditing using real and controlled

environments. Additionally, we found that solving the ε- and β -robust Bayesian SAG can

be performed in a running time that is likely to be imperceptible to human. Moreover, the

β -robust Bayesian SAG demonstrates higher scalability for larger sized auditing profiles

(in terms of the number of attacker types and alert types).

Still, there are several limitations to point out for future investigations. First, the EHR
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access dataset used in the real environment was not based on any explicit game theoretic

implementation of auditing. As a consequence, this dataset is likely to be representative of

certain values of ε and β already. Despite this fact, we believe this dataset is useful for eval-

uation purposes because it illustrates the performance of different solutions and provides a

surrogate for a real system. Still, it should be recognized that EHR users (and especially

attackers) may slowly evolve their practices to influence the system, which may require

amendments to our solutions. Second, though we conducted an evaluation on variety of

game profiles, we did not study how to tune the values of ε or β in practice. Though we

consider this to be outside the scope of this study, it is critical to optimize the deployment

of these parameters in real world settings. Third, we assume that alerts are triggered inde-

pendently along the timeline, such that attackers do not collaborate. This may not always

be the case, in which case future investigations should consider how to consider strategic

coordination of adversarial groups.
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Part IV

Conclusion
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Chapter 6

Conclusions and Future Directions

6.1 Summary

This dissertation focused on solving a challenge threat to personal privacy encountered

by almost all modern information systems, the auditing of suspicious access to data. The

methodology developed throughout this dissertation is based on an understanding of the

factors inherent in the current auditing process, which are hallmarked by 1) a large amount

of triggered alerts that are substantially beyond the available auditing budget, 2) a high rate

of false positives, 3) highly strategic attackers who can evade carelessly designed defense

strategy, and 4) the dynamic nature of the data access events that requires investigation.

Game theoretic modeling addresses these factors, and, thus, is a natural approach sup-

port administrators who need to perform auditing. The developed mechanisms and their

solutions enable a more effective and efficient auditing than our current status quo. The

results of our empirical investigations are remarkable because they demonstrate that blend-

ing an economic perspective and technical approaches can dramatically improve the system

administrator’s auditing capability in a budget-constrained adversarial environment. More-

over, our auditing frameworks provides for an explicit attacker deterrence mechanism while

maximizing its effect through strategy randomization and signaling. The specific accom-

plishments and innovations made through this dissertation are summarized as follows.

Accomplishment 1. Designed and optimized the alert type prioritization and bud-

get allocation to maximize audit effectiveness. We introduced a novel formalization of

the type-based alert prioritization and budget allocation as a Stackelberg security game

between an auditor and a set of attackers. In this game framework, the auditor chooses

an alert prioritization policy (i.e., the probability distribution over the permutation of alert
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types), whereas attackers determine their nature of violations, or are deterred in response.

Our research illustrates that data misuse auditing, as a significant component of system

management, can be improved by prioritizing which alerts to focus on via a game theoretic

framework, allowing auditing policies to make the best use of limited auditing resources

while simultaneously accounting for the strategic behavior of potential policy violators.

Accomplishment 2. Incorporated real time information exchange between play-

ers and made it an advantage of the auditor to influence attackers. We extended the

strategic modeling advantage to the real time environment. Specifically, we incorporated a

concept—online signaling—into game formalization through embedding a warning mech-

anism (e.g., via a private message box) into the gap between access request made by the

potential attacker and the actual execution of the attack. The resulting game framework,

i.e., SAG, is designed to optimize the warning strategy and the audit decision for each

incoming alert. The key constraint in this game enables the valid deterrence of attackers

because it forces that the best strategy for an attacker when receiving a warning message is

to quit the current request. The most prominent finding is that the information advantage

of the auditor can be translated into the gain of their expected utility in the data misuse

auditing scenario. And this is achieved by the termination of a portion of ongoing attacks

by themselves.

Accomplishment 3. Addressed the practical adversarial environment where at-

tackers have diverse goals (or types) and imperfect rationality. To bridge the gap be-

tween the oversimplified assumptions of the SAG and its application domain, we developed

a new game framework, i.e., robust Bayesian SAG, which considers attackers with diverse

goals in the system and imperfect rationality. To do so, we explicitly modeled the auditor’s

uncertainty about the goal of the encountered attackers and introduce two distinct methods

to bound players’ deviations from their corresponding optimal strategies. We empirically

showed that our solutions largely improve the performance of data misuse auditing in the

real world and can handle any attackers in the rationality spectrum.
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Notably, the game theoretic frameworks in this dissertation demonstrate advantages

in generalizability and scalability. First, our auditing frameworks are inclusive because

they enable embedding any potential malicious situations and their corresponding detec-

tion methods or rules as alert types. In other words, as long as the adversarial behaviors

of attackers can be represented by patterns, our framework can include them in deriving

auditing solutions, no matter how powerful an attacker could be. Second, according to the

scalability investigations in this dissertation, solving the developed audit games of a large

game size takes acceptable time even in a real time setting. For example, the running time

of a robust Bayesian SAG with 28 alert types is imperceptible to humans, which will induce

negligible burden to normal data accesses. Third, to the best of our knowledge, the “break

the glass” policy has been integrated as a signaling function in many mission-critical in-

formation system (such as Epic EHR system), such that the testing and deployment of our

online signaling solutions can benefit from these engineering efforts.

6.2 Future Investigations

Moving forward, there are several limitations of tis work that can serve as opportunities

for further investigation.

Open Question 1: How should we model the imprecise knowledge of game

players when deriving their strategies in audit games? Can such a phenomenon

substantially influence the auditing performance?

The game theoretic auditing frameworks developed in this dissertation assume that

players know precisely what they need in terms of prior knowledge to compute their own

expected utility in each possible situation. For example, in all of the three leader-follower

games introduced in this body of work, we assumed an attacker is aware of the knowledge

of the auditor’s defense policy, which is typically a probability distribution over a finite

action space. In the literature of the security games, it is typically believed that this can
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be obtained through careful observations or analysis of historical data. However, such ap-

proaches are unlikely to yield highly accurate approximations of the necessary information

in practice. In particular, the signaling scheme of the SAG is derived in real time, and, thus,

dynamic over time. And it is evident that the temporal characteristic of the framework in-

creases the complexity for an attacker to learn the accurate signaling scheme. Although our

robust Bayesian SAG framework can partially reduce the influence of this factor, a system-

atic investigation is needed to assess its influence for the overall auditing performance.

Open Question 2: How can we determine the robustness level of the auditing

frameworks?

Chapter 5 demonstrates that both of our robust solutions are able to handle attackers

when their rationality levels range from perfect rational to totally irrational. Given the

rationality level of an attacker, there exists a particular set of values for the key robust pa-

rameters (i.e., ε and β ) that can maximize the auditor’s expected utility, while other values

may lead to worse auditing performance. As a consequence, it is important to ensure that

the derived auditing solutions match the rational level of the real world attackers. Yet this

is a non-trivial problem because 1) verified real attacks are quite rare in practice, such that

there is limited information that can be leaned upon to learn an accurate approximation of

attacker’s level of rationality and 2) an attacker’s pattern of behavior can evolve over time.

As such, it evident that our methods would benefit from the incorporation of behavioral

science to analyze, monitor and model this problem.

Open Question 3: How can we harmonize different data misuse auditing or de-

tection frameworks to maximize the overall auditing performance can be max-

imized?

In this dissertation, we investigated how an alert prioritization policy and an online

signaling strategy can be designed to improve data misuse auditing in a separate manner.
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These two approaches depart from different perspectives, and benefit the auditing task in

their own way. There is no clear guidance on when to use which in practice. However, it is

natural that new auditing or data misuse detection frameworks in other novel perspectives

(which does not necessarily adopt game theoretic frameworks) will be developed. And

these approaches will not necessarily conflict with, or dominate, one another. Intuitively,

the harmonization of multiple auditing approaches from different perspectives can enable

the construction of a more protective environment. For example, a real time scoring system

based on machine learning can be embedded into the robust Bayesian SAG by adding new

alert types. However, this would cause new issues to arise, such as how to assign reasonable

payoff structures for new alert types which do not correspond to explainable motivation of

an attacker. Overall, this issue remains largely unexplored and needs systematic investiga-

tions.

Open Question 4: How can we transition the developed auditing frameworks

into real world deployment?

In this dissertation, we depart from a computational perspective and demonstrate the

potentiality of the developed auditing frameworks using well controlled evaluation envi-

ronments. The ultimate goal of this line of research should be to deploy our methodology

into the real-world auditing environment and guarantee their efficacy and efficiency along

the timeline; however, there exist multiple challenges beyond the computational solutions

that this dissertation contributes. First, we need to investigate how to embed our frame-

works (more specifically, the recommendations of which to audit) into the existing auditing

workflow such that the synergy of experts and AI can be optimized given limited auditing

budgets. This usually intertwines with the issue of trust, which needs to be established via

comprehensive evaluation and communication. Second, it is very important to investigate

the corresponding legal concern. Given the uncertain nature of our auditing policies, it is

possible that our solutions neither warn a malicious data access nor investigate it at the end

of an audit cycle. Though the overall auditing performance is improved, the victims of
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data breach in the mentioned scenario may question that their data was not well protected

compared to others.

Open Question 5: Can data synthesis (or augmentation) be leveraged to en-

hance the performance of auditing and support model reproducibility via public

data dissemination?

We recognize that the study of access auditing and the development of tools to detect

inappropriate access is currently limited to those with access to specific access log data.

There is a need to democratize this field of study by developing tools to generate realistic

access data, with the associated clinical context and support reproducibility. The release

of simulated, yet realistic access data will allow for the broader community to compare

methods and results with a common playing field, and meanwhile mitigate the concerns

(such as privacy) from publishing the raw data. Also, there is mounting evidence that

the performance of AI models can be improved by incorporating simulated data that is

representative of the space. Our experience on EHR synthesis [164, 165, 166] shows that

such simulation is possible. However, there remain challenges to adapting the method to

generate access logs. One challenge is that access logs contain various data types, which

leads to a substantially larger feature space. The other is that access logs have temporal

dependencies (access trajectory) that need to be represented.
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[139] Vicenç Torra. Data privacy: Foundations, new developments and the big data chal-

lenge. Springer, 2017.

[140] Abid Mehmood, Iynkaran Natgunanathan, Yong Xiang, Guang Hua, and Song Guo.

Protection of big data privacy. IEEE access, 4:1821–1834, 2016.

142



[141] Priyank Jain, Manasi Gyanchandani, and Nilay Khare. Big data privacy: a techno-

logical perspective and review. Journal of Big Data, 3(1):1–25, 2016.

[142] Shiqing Ma, Kyu Hyung Lee, Chung Hwan Kim, Junghwan Rhee, Xiangyu Zhang,

and Dongyan Xu. Accurate, low cost and instrumentation-free security audit logging

for windows. In Proceedings of the 31st Annual Computer Security Applications

Conference, pages 401–410, 2015.

[143] Mohiuddin Ahmed, Abdun Naser Mahmood, and Jiankun Hu. A survey of net-

work anomaly detection techniques. Journal of Network and Computer Applica-

tions, 60:19–31, 2016.

[144] Vasileios Mavroeidis, Kamer Vishi, and Audun Jøsang. A framework for data-

driven physical security and insider threat detection. In Proceedings of the 2018

IEEE/ACM International Conference on Advances in Social Networks Analysis and

Mining (ASONAM), pages 1108–1115, 2018.

[145] Shuhan Yuan and Xintao Wu. Deep learning for insider threat detection: Review,

challenges and opportunities. Computers & Security, page 102221, 2021.

[146] Solane Duque and Mohd Nizam bin Omar. Using data mining algorithms for de-

veloping a model for intrusion detection system (ids). Procedia Computer Science,

61:46–51, 2015.

[147] Abdulrahman Alharby and Hideki Imai. Ids false alarm reduction using continu-

ous and discontinuous patterns. In Proceedings of the International Conference on

Applied Cryptography and Network Security, pages 192–205, 2005.

[148] Milind Tambe. Security and game theory: algorithms, deployed systems, lessons

learned. Cambridge university press, 2011.

143



[149] Jeremiah Blocki, Nicolas Christin, Anupam Datta, Ariel Procaccia, and Arunesh

Sinha. Audit games with multiple defender resources. In Proceedings of the 2015

AAAI Conference on Artificial Intelligence, volume 29, 2015.

[150] Verizon. 2020 data breach investigations report. https://enterprise.verizon.com/

resources/reports/dbir/, 2020.

[151] Robert J Aumann. Rationality and bounded rationality. In Cooperation: Game-

Theoretic Approaches, pages 219–231. Springer, 1997.

[152] James Pita, Manish Jain, Milind Tambe, Fernando Ordóñez, and Sarit Kraus. Robust
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Sarit Kraus. Bayesian stackelberg games and their application for security at los

angeles international airport. ACM SIGecom Exchanges, 7(2):1–3, 2008.

[155] Verizon. Protected health information data breach report. http://www.

verizonenterprise.com/resources/protected health information data breach report

en xg.pdf, Feb 2018.

[156] Protenus. 2021 breach barometer. http://https://email.protenus.com/hubfs/2021%

20Breach%20Barometer.pdf, Mar 2021.

[157] Bo An, Milind Tambe, Fernando Ordonez, Eric Shieh, and Christopher Kiekintveld.

Refinement of strong stackelberg equilibria in security games. In Proceedings of the

2011 AAAI Conference on Artificial Intelligence, volume 25, 2011.

144

https://enterprise.verizon.com/resources/reports/dbir/
https://enterprise.verizon.com/resources/reports/dbir/
http://www.verizonenterprise.com/resources/protected_health_information_data_breach_report_en_xg.pdf
http://www.verizonenterprise.com/resources/protected_health_information_data_breach_report_en_xg.pdf
http://www.verizonenterprise.com/resources/protected_health_information_data_breach_report_en_xg.pdf
http://https://email.protenus.com/hubfs/2021%20Breach%20Barometer.pdf
http://https://email.protenus.com/hubfs/2021%20Breach%20Barometer.pdf


[158] Praveen Paruchuri, Jonathan P. Pearce, Janusz Marecki, Milind Tambe, Fernando

Ordonez, and Sarit Kraus. Playing games for security: an efficient exact algorithm

for solving bayesian stackelberg games. In Proceedings of the 2008 International

Joint Conference on Autonomous Agents and Multi-agent Systems, pages 895–902,

2008.

[159] John Conlisk. Why bounded rationality? Journal of economic literature, 34(2):669–

700, 1996.

[160] James Pita, Richard John, Rajiv Maheswaran, Milind Tambe, and Sarit Kraus. A

robust approach to addressing human adversaries in security games. In Proceedings

of the European Conference on Artificial Intelligence, pages 660–665, 2012.

[161] Fouzia F Ozair, Nayer Jamshed, Amit Sharma, and Praveen Aggarwal. Ethical issues

in electronic health records: A general overview. Perspectives in clinical research,

6(2):73, 2015.

[162] Akhil Shenoy and Jacob M Appel. Safeguarding confidentiality in electronic health

records. Cambridge Quarterly of Healthcare Ethics, 26(2):337–341, 2017.

[163] Bradley Malin and Edoardo Airoldi. Confidentiality preserving audits of electronic

medical record access. Studies in health technology and informatics, 129(1):320,

2007.

[164] Ziqi Zhang, Chao Yan, Diego A Mesa, Jimeng Sun, and Bradley A Malin. Ensuring

electronic medical record simulation through better training, modeling, and eval-

uation. Journal of the American Medical Informatics Association, 27(1):99–108,

2020.

[165] Chao Yan, Ziqi Zhang, Steve Nyemba, and Bradley A Malin. Generating electronic

health records with multiple data types and constraints. In Proceedings of the 2020

AMIA Annual Symposium Proceedings, volume 2020, page 1335, 2020.

145



[166] Ziqi Zhang, Chao Yan, Thomas A Lasko, Jimeng Sun, and Bradley A Malin. Synteg:

a framework for temporal structured electronic health data simulation. Journal of the

American Medical Informatics Association, 28(3):596–604, 2021.

146


	Copyright
	Dedication
	Acknowledgements
	List of Tables
	List of Figures
	List of Abbreviations
	I Overview and Background
	Overview
	Introduction
	Summary of Contributions
	Dissertation Structure

	Related Work
	Alert Prioritazation
	Alert Frameworks
	Alert Burden Reduction

	Stackelberg Security Games
	Audit Games and Alert Prioritization
	Signaling in security games
	Imperfect Rationality


	II Offline Auditing: Alert Prioritization
	Game Theoretic Alert Prioritization
	Introduction
	Game Theoretic Model of Alert Prioritization
	System Model
	Game Model

	Solving the Alert Prioritization Game
	Column Generation Greedy Search
	Iterative Shrink Heuristic Method

	Controlled Evaluation
	Data Overview
	Optimal Solution with Varying Budget
	Findings

	Model Evaluation
	Data Overview
	Comparison with Baseline Alternatives

	Disccusion
	Conclusion


	III Online Auditing: Signaling
	Signaling Audit Game: an online solution
	Introduction
	Online Signaling in Audit Games
	Motivating Domain
	Signaling Audit Games

	Optimizing SAGs
	Online SSG
	Optimal Signaling
	The Ending Period of Audit Cycles

	Theoretical Properties of SAGS
	Model Evaluation
	Dataset
	Experimental Setup
	Results

	Discussion
	Conclusion

	Robust Bayesian Signaling Games for Database Access Auditing
	Introduction
	Preliminary and Notations
	Robust Bayesian SAG
	Bayesian SAG
	Imperfect rationality and robust strategies
	Optimizing robust Bayesian SAG

	Theoretical Properties
	Model Evaluation
	Dataset
	Experimental Setup
	Results

	Discussion and Conclusion


	IV Conclusion
	Conclusions and Future Directions
	Summary
	Future Investigations

	 BIBLIOGRAPHY 


