
The contribution of the 3D genome to gene regulation, human evolution, and disease

By

Evonne McArthur

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Human Genetics

May 13th, 2022

Nashville, Tennessee

Approved:

John A. Capra, Ph.D.

Nancy J. Cox, Ph.D.

Lea K. Davis, Ph.D.

Douglas M. Ruderfer, Ph.D.

Emily Hodges, Ph.D.

Alexander G. Bick, M.D, Ph.D.



Copyright © 2022 Evonne McArthur
All Rights Reserved

ii



ACKNOWLEDGMENTS

More than any discovery, my journey was truly about the community of people who made this pursuit

fulfilling and fun. On paper, many things went “wrong” during my PhD: my lab moved across the country

and a pandemic forced more than half of my experience to be physically isolated. But, I never felt alone. In

fact, these last few years have been a grand adventure and, despite the challenges, I would not want it any

other way. For this, I am eternally grateful and indebted to the scientific community, friends, and family that

supported me along the way.

I was once told that a PhD is like a four year-long conversation: you really better like the people you

are talking to. Luckily, I could not have asked for a better group of conversation partners. Being at the

edge of knowledge can be intimidating and frustrating, but my peers and my mentors made it exciting

and enjoyable. I want to thank the Vanderbilt MSTP, VGI, and ACCRE administrators, staff, teachers,

and faculty that facilitate these conversations. By coordinating seminars, providing resources, teaching

challenging topics, and directing these programs, you all shape the future of science. I am grateful for my

peers in both the Vanderbilt MSTP, human genetics graduate program, and collaborators at UCSF for their

continually interesting ideas and help in making my ideas a reality. I want to thank each member of my

committee—Lea Davis, Doug Ruderfer, Emily Hodges, Alex Bick, and Nancy Cox—for inspiring me at

every meeting and giving me the encouragement to keep going. To each member of the Capra Lab, both

past and present, I am forever appreciative of all your advice, camaraderie. . . and especially all of our happy

hours. Not only have you left a unique imprint on this work, but you have also made me a better scientist

and person. I especially want to thank Sarah Fong and David Rinker for your willingness to be my recurring

sounding-board both inside and outside of the lab. Most importantly, I want to express my deepest gratitude

to Tony Capra for his unfailingly thoughtful mentorship. You made me feel at home, both scientifically and

personally, even in trying times.

Finally, I want to acknowledge my family for making me whole during such a focused undertaking.

Thank you for always reminding me of the important things and for being my biggest cheerleaders. To

Nikki, thank you for the most empathy. To my Mom, thank you for the most encouragement. To my Dad,

thank you for the most advice. All of your support means more than you can ever know. And, to Ankith,

who was my partner on this crazy adventure—travelling across the country 4 times, living in 6 apartments

in 3 states, working 9 different jobs, planning 3 weddings, and co-parenting Hero the dog—I could not have

done it without you.

iii



TABLE OF CONTENTS

Page

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The evolution of humans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Archaic hominins and admixture . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.1.3 Phenotypic legacy of archaic ancestry . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Contribution of the non-coding genome to complex trait architecture and evolution . . . . . 4
1.2.1 Non-coding genome revolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Partitioned heritability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.3 Non-coding variation in hominin evolution and divergence . . . . . . . . . . . . . 6

1.3 Form and function of the 3D genome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3.1 3D chromatin organization and consequences . . . . . . . . . . . . . . . . . . . . 8
1.3.2 Relationship between evolution and the 3D genome . . . . . . . . . . . . . . . . . 10
1.3.3 Predictions of 3D genome folding . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2 QUANTIFYING THE CONTRIBUTION OF NEANDERTHAL INTROGRESSION TO THE
HERITABILITY OF COMPLEX TRAITS* . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Genomic regions with Neanderthal ancestry are depleted of complex trait heritability 14
2.2.2 Neanderthal introgressed variants are depleted for heritability of most complex traits 15
2.2.3 Older introgressed variants contribute more trait heritability . . . . . . . . . . . . . 17
2.2.4 Neanderthal introgressed variants are most enriched for heritability of dermato-

logic traits and most depleted for cognitive traits . . . . . . . . . . . . . . . . . . . 17
2.2.5 Neanderthal alleles confer directional effects for some traits . . . . . . . . . . . . . 18
2.2.6 LD-aware identification of introgressed alleles with directional effects on human

traits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 TOPOLOGICALLY ASSOCIATING DOMAIN BOUNDARIES THAT ARE STABLE ACROSS
DIVERSE CELL TYPES ARE EVOLUTIONARILY CONSTRAINED AND ENRICHED

*This chapter has been previously published in McArthur, E., Rinker, D.C., & Capra, J.A. 2021. Nat. Comms.

iv

https://doi.org/10.1038/s41467-021-24582-y


FOR HERITABILITY† . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Estimating complex-trait heritability across the 3D genome landscape . . . . . . . 38
3.2.2 TAD boundaries are enriched for complex-trait heritability and evolutionary se-

quence conservation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.2.3 TAD boundaries vary in stability across cellular contexts . . . . . . . . . . . . . . 40
3.2.4 Stable TAD boundaries are enriched for complex-trait heritability, evolutionary

constraint, and functional elements . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2.5 The heritability landscape across the 3D genome varies across phenotypes . . . . . 43

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4 RECONSTRUCTING THE 3D GENOME ORGANIZATION OF NEANDERTHALS
REVEALS THAT CHROMATIN FOLDING SHAPED PHENOTYPIC AND
SEQUENCE DIVERGENCE‡ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.1 Reconstructing the 3D genome organization of archaic hominins . . . . . . . . . . 55
4.2.2 Archaic hominin and modern human genomes exhibit a range of 3D divergence . . 55
4.2.3 3D genome organization diverges between AH and MH at 167 genomic loci . . . . 56
4.2.4 Regions with 3D divergence highlight AH-MH phenotypic differences . . . . . . . 59
4.2.5 Relationship between sequence divergence and 3D divergence . . . . . . . . . . . 60
4.2.6 Maintenance of 3D genome organization constrained sequence divergence in re-

cent hominin evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.7 3D genome organization constrained introgression in MHs . . . . . . . . . . . . . 62
4.2.8 Introgression shaped the 3D genome organization of present-day Eurasians . . . . 63

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Replication across diverse populations . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Consideration of rare variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.3 Applications to other mechanisms of gene regulation . . . . . . . . . . . . . . . . 78
5.2.4 Evaluation of differences across cell types and species . . . . . . . . . . . . . . . . 79

6 APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.1 Appendix 1: Supporting information for Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 80
6.2 Appendix 2: Supporting information for Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 104
6.3 Appendix 3: Supporting information for Chapter 4 . . . . . . . . . . . . . . . . . . . . . . 122

†This chapter has been previously published in McArthur, E. & Capra, J.A. 2021. AJHG.
‡This chapter is available as a preprint in McArthur, E. et al. 2022. BioRxiv.

v

https://doi.org/10.1016/j.ajhg.2021.01.001
https://doi.org/10.1101/2022.02.07.479462


LIST OF TABLES

Table Page

6.1 Traits used for partitioned heritability analyses with S-LDSC. . . . . . . . . . . . . . . . 98
6.2 Heritability enrichment for introgressed variants. . . . . . . . . . . . . . . . . . . . . . . 99
6.3 Domain enrichment for 405 traits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.4 Chapter enrichment for 405 traits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5 Subchapter enrichment for 405 traits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.6 Partitioned heritability and direction of effect results for 41 representative traits. . . . . . 103
6.7 Cell types used for all analyses from the 3DGenomeBrowser. . . . . . . . . . . . . . . . 120
6.8 GWAS traits used for heritability analyses and phenotypic cluster membership. . . . . . . 121
6.9 1000 Genomes Project (1KGP) individual genomes used for 3D genome predictions. . . . 137
6.10 Counts of 3D divergent windows and 3D-modifying variants. . . . . . . . . . . . . . . . 138
6.11 Both 3D genome and sequence variability are more important in predicting introgression

shared across super-populations than introgression unique to a single super-population. . 139
6.12 Compared to sequence variability, 3D variability is a relatively more informative pre-

dictor of amount of introgression when considering windows of the genome with any
introgression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

vi



LIST OF FIGURES

Figure Page

1.1 Evolutionary and geographic relationships between archaic hominins with high-quality
genome sequences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Partitioned heritability analysis quantifies a genomic region’s contribution to the heri-
tability of a trait. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Topologically associating domains (TADs) are fundamental units of 3D genome nuclear
organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 Complex trait heritability is broadly depleted in regions with Neanderthal ancestry and
in introgressed variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Heritability enrichment and depletion in introgressed variants across 405 traits clustered
by domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Neanderthal alleles confer directional effects for some traits. . . . . . . . . . . . . . . . . 20
2.4 Signed LD profile regression identifies a candidate functional association between an

introgressed haplotype in GRB10 and autoimmune disease. . . . . . . . . . . . . . . . . 23
2.5 Patterns of heritability and direction of effect suggest contrasting selective pressures on

introgressed variation associated with different traits. . . . . . . . . . . . . . . . . . . . . 25

3.1 Schematic depiction of our analyses of 3D chromatin TAD-boundary stability and function. 36
3.2 Regions flanking TADs are enriched for heritability of diverse common complex traits

and evolutionary sequence conservation. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Stable TAD boundaries are enriched for complex-trait heritability, evolutionary conser-

vation, and functional elements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 The heritability landscape across the 3D genome varies across phenotypes. . . . . . . . . 44

4.1 Reconstructing the 3D genome organization of archaic hominins. . . . . . . . . . . . . . 56
4.2 3D genome divergence between archaic hominins (AHs) and modern humans (MHs)

varies across the genome. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Regions with 3D divergence between MHs and AHs highlight loci linked to phenotypic

differences. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4 3D genome organization constrained human sequence divergence. . . . . . . . . . . . . . 61
4.5 3D variable windows in MH have more evidence of AH introgression. . . . . . . . . . . 64
4.6 Introgression introduced novel 3D genome organization patterns to modern Eurasians. . . 66

6.1 Defining genomic regions with Neanderthal ancestry. . . . . . . . . . . . . . . . . . . . 82
6.2 Trait heritability patterns in regions with Neanderthal ancestry and introgressed variants

are consistent when defined based on variants identified by S* from Vernot et al. 2016. . . 83
6.3 Trait heritability patterns in regions with Neanderthal ancestry and introgressed variants

are consistent when defined based on match to the Vindija Neanderthal genome. . . . . . 84
6.4 Patterns of complex trait heritability are similar across four different sets of Neanderthal

introgressed variants. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.5 Partitioned heritability enrichment P-values are not biased by the allele frequency distri-

bution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.6 Schematic of likely evolutionary trajectories and ages of introgressed alleles in the dif-

ferent sets considered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

vii



6.7 Variants that contribute to Crohn’s Disease risk observed in Vindija that are absent in
Altai have diverse evolutionary origins. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.8 Introgressed variants at higher allele frequency in modern European populations con-
tribute more to trait heritability than rarer variants. . . . . . . . . . . . . . . . . . . . . . 89

6.9 Neanderthal introgressed regions that disproportionately contribute to heritability of sun-
burn and WBC count are enriched in haplotypes with evidence of adaptive selection. . . . 90

6.10 Patterns of complex trait heritability across 405 traits organized by DOMAIN across four
different sets of Neanderthal introgressed variation. . . . . . . . . . . . . . . . . . . . . 91

6.11 Patterns of complex trait heritability across 405 traits organized by CHAPTER across
four different sets of Neanderthal introgressed variation. . . . . . . . . . . . . . . . . . . 92

6.12 Patterns of complex trait heritability across 405 traits organized by SUBCHAPTER across
four different sets of Neanderthal introgressed variation. . . . . . . . . . . . . . . . . . . 93

6.13 Directionality of effects for introgressed variants with the strongest trait associations is
stable at different significance levels and pruning thresholds. . . . . . . . . . . . . . . . . 94

6.14 Neanderthal alleles confer genome-wide uni-directional effects for some traits. . . . . . . 95
6.15 Windows with strong correlations between Neanderthal LD profile and trait-association

highlights genes implicated in introgression’s effect on sunburn risk and chronotype. . . . 96
6.16 Correlations between Neanderthal LD profile and trait-association at NMUR2 highlight

putative mechanisms for the effect of introgression on morningness. . . . . . . . . . . . . 97
6.17 Meta-analysis of heritability patterns across cell types yields similar results to averaging. 105
6.18 Overlap between region flanking TADs and neighboring TADs. . . . . . . . . . . . . . . 106
6.19 TAD boundaries are enriched for heritability. . . . . . . . . . . . . . . . . . . . . . . . . 107
6.20 TAD boundaries are more conserved than windows inside TADs. . . . . . . . . . . . . . 108
6.21 Trait heritability conditioned on 86 annotations. . . . . . . . . . . . . . . . . . . . . . . 109
6.22 Histograms of boundary stability based on alternate definitions of TAD boundaries. . . . 109
6.23 Biologically similar cell types cluster by TAD map similarity. . . . . . . . . . . . . . . . 110
6.24 Relationship between heritability enrichment and boundary stability is robust to different

boundary definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.25 The enrichment of stable TAD boundaries for genes is robust to gene set and boundary

definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.26 The enrichment of stable TAD boundaries for sequence-level conservation is robust to

boundary definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.27 The enrichment of stable TAD boundaries for CTCF binding is robust to boundary defi-

nitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.28 Heritability enrichment and conservation at TAD boundaries stable across cell types

replicates using a germ-layer-informed measure of stability. . . . . . . . . . . . . . . . . 115
6.29 Removing boundaries near genomic gaps or blacklist regions increases the correlations

between stability and functional attributes. . . . . . . . . . . . . . . . . . . . . . . . . . 116
6.30 Traits in the boundary-depleted cluster and boundary-enriched cluster do not differ in

GWAS parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.31 Patterns of heritability enrichment across the 3D genome in human embryonic stem cells

(ESC) are robust to the TAD calling algorithm used. . . . . . . . . . . . . . . . . . . . . 118
6.32 Among boundary-depleted traits, stable boundaries associate with stronger heritability

enrichment in TAD centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
6.33 Average TAD length in a cell type negatively correlates with number of TADs. . . . . . . 119
6.34 Handling missingness in the archaic hominin genomes. . . . . . . . . . . . . . . . . . . 123
6.35 Archaic hominin sequence coverage across the genome. . . . . . . . . . . . . . . . . . . 124
6.36 3D divergence in 1 Mb genomic window is weakly correlated with coverage. . . . . . . . 125

viii



6.37 Alternative measures of contact map comparison correlate with the 3D divergence de-
rived from the Spearman’s rank correlation coefficient. . . . . . . . . . . . . . . . . . . . 126

6.38 3D genome organization comparisons with chromatin contact maps from embryonic stem
cell (ESC) are similar to those from human foreskin fibroblast (HFF). . . . . . . . . . . . 127

6.39 AH-MH 3D divergence across the whole genome. . . . . . . . . . . . . . . . . . . . . . 128
6.40 Method for linking 3D divergent windows to test phenotype ontology term enrichment. . 129
6.41 Phenotype ontology enrichment across other sets of AH-MH 3D divergent windows im-

plicate similar phenotypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
6.42 Full pairwise heatmaps clustered by both sequence 3D divergence and sequence divergence.131
6.43 3D genome divergence depends on both the strength and context of the CTCF motif

disrupted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
6.44 Windows with evidence of AH introgression are more 3D variable in MHs even when

using different definitions of introgression. . . . . . . . . . . . . . . . . . . . . . . . . . 133
6.45 3D variable windows in MH have more evidence of AH introgression even when using

different definitions of introgression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
6.46 rs12536129 is a high-frequency introgressed allele with regulatory and phenotypic asso-

ciations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
6.47 Amount of introgression is negatively correlated with 3D divergence to all Neanderthal

individuals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

ix



CHAPTER 1

INTRODUCTION*

1.1 The evolution of humans

“And today we inherit the genetic scars of an ancient struggle. What Mendel discovered
was not a law so much as a battleground.”

— Carl Zimmer. “She Has Her Mother’s Laugh: The Powers,
Perversions, and Potential of Heredity.” (2018), pp. 162.1

1.1.1 Motivation
Although anatomically modern humans first appeared in Africa 200,000–300,000 years ago, the human

genome has been shaped by billions of years of diverse physical environments, exposures, and hybridiza-

tion2. This process of evolution has enabled our ancestors to biologically adapt to diverse challenges.

Through mutations to the genome, evolved features become encoded and inherited through generations.

However, the processes that permitted our species to become diploid, multi-cellular, sentient, and social

organisms are the same processes that cause genetic disease. These evolutionarily ancient systems, like

DNA replication, methylation, recombination, and repair, lead to genome diversity which provides the sub-

strate for both adaptation and dysfunction3,4. Consequently, all of human genetic predisposition—risk for

cardiovascular disease, protection against autoimmune disease, or distaste for cilantro—is a consequence of

evolution3. To explain human biology, it is imperative to understand human evolution.

Variation in traits and diseases represent a network of intertwined trade-offs3: benefits and costs exist

for both short and tall stature, high and low blood sugar, the risk for infection and over-active autoimmunity.

And none of these traits exist in a silo, rather they are evaluated by selection as a product of interactions with

both the external and internal environment. For example, lighter versus darker skin pigmentation modulates

exposure to UV radiation, which is necessary for Vitamin D3 synthesis, but an excess increases risk for skin

neoplasms. Therefore, selection on skin color can be adaptive to populations at different latitudes that have

different sun exposure. Vitamin D levels subsequently affect the physiology of the skeleton, parathyroid,

metabolism, heart, and immune system—each of which also interacts with the environment and other body

systems5. Furthermore, genomic loci responsible for skin color are nearby and physically “linked” to loci

that contribute to risk of prostate cancer, which illustrates another entwined, or “hitchhiking”, trade-off6.

This example illustrates how environmental pressures select for traits that benefit multiple human biological

processes, but maintain genetic variants that increase the risk for others. This complexity highlights the

need for an evolutionary perspective to move from isolated trait associations towards mechanistic biological

insights that can enable prognostic, preventative, and therapeutic strategies.

*Parts of this chapter have been adapted from McArthur, E., Rinker, D.C., & Capra, J.A. 2021. Nat. Comms.; McArthur, E. &
Capra, J.A. 2021. AJHG.; and, McArthur, E. et al. 2022. BioRxiv. with permission of the publisher and co-authors.
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One such mechanism that drives the variation in human traits is the regulation of how genes are expressed

to produce the diversity of cell types needed across the human lifespan7–10. Tracing the “genetic scars” left

in gene regulatory regions of the genome can help us to understand how humans have evolved and why

individuals have risk for certain traits. Just as an individual’s family tree holds clues about both their past

ancestry and future risk for disease3, improving our understanding of the human evolutionary tree can teach

us both about the challenges our ancestors faced and help us to understand, and maybe even manipulate, our

genome for tomorrow.

1.1.2 Archaic hominins and admixture
Today, humans (H. sapiens) are the only remaining hominin species. However, the archeological and pale-

ontological record suggests that the closest members of our family tree—archaic hominins—survived until

30–40 kya2,11,12. Evidence of Neanderthals (H. neanderthalensis) have been found in the Middle East, Eu-

rope, and Asia, while Denisovans are thought to have lived in East and Southeast Asia2. The sequencing of

these archaic hominin genomes and their comparison with diverse modern human genomes has transformed

our understanding of human history, evolution, and biology13–17. To date, high-quality genome sequencing

is available for three Neanderthals and one Denisovan. Each are named for where they were discovered: Vin-

dija 33.13 Neanderthal is from Vindija cave in Croatia14; Chagyrskaya 8 Neanderthal is from Chagyrskaya

cave15; and, both the Altai Neanderthal13 (also named Denisova 5) and the Denisova 3 Denisovan16 are from

the Denisova cave. Both the Denisova and Chagyrskaya caves are in the Altai mountains in Siberia, Russia

near the border of Kazakhstan. It is estimated that the archaic and modern human lineage diverged between

0.85–1.2 mya and the Neanderthal-Denisovan lineage split around 600–750 kya18–20. These individuals

estimated relationships, ages, and geographic locations are depicted in Fig. 1.1.

Ever since the first Neanderthal fossil was discovered in 1856 in the German Neander Valley21, there has

been considerable curiosity as to how their lifestyles, anatomy, and cognition were similar or different from

modern humans. Archaeological artifacts, paleontological evidence, and their geographic dispersal suggest

they were approximately 5 feet tall, with a prominent supra-orbital ridge, large thorax and skull, had a hunter-

gatherer lifestyle, and made a variety of complex tools22–25. For more than a century, scientists hypothesized

whether modern and archaic humans hybridized (i.e., interbred), especially once it was established that

humans and archaic hominins were in the same place at the same time2.

Genome sequencing finally revealed that, over the past 50,000 years, modern humans interbred with

multiple archaic hominin groups—including both Neanderthals and Denisovans—on multiple occasions

and in several locations after migrating out of Africa. Archaic hominin groups also hybridized with other

archaic hominins creating an intertangled web of relatedness26; notably, Denisovan 11, “Denny,” was a

first-generation hybrid with a Neanderthal mother and Denisovan father27. As a result of these introgression

events, nearly all Eurasians have approximately 2% Neanderthal ancestry14,28,29. The amount of Deniso-

van ancestry is more population-specific, with some Oceanian individuals having up to 5% Denisovan an-

cestry28. Collectively, at least 38% of archaic hominin genomes still remain in fragments across Eurasian

genomes30,31. Therefore, archaic hominins are not only a closely-related foil that can help highlight uniquely

human parts of our genome, but they actually contribute to human genome diversity today.
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Figure 1.1: Evolutionary and geographic relationships between archaic hominins with high-quality genome
sequences.
(A) The estimated evolutionary relationships between modern humans (MH [green]), three Neanderthals
(V: Vindija14, A: Altai13, C: Chagyrksyaka15 [purple]), and one Denisovan16 (D [blue]) are depicted. The
phylogeny is approximately to scale; however, many of the dates are imprecise estimates and depend on
the simulation parameters, like mutation rate. The end of each archaic branch represents the date estimate
for each individual (not the extinction of that population). Other events like the appearance of anatomically
modern humans (green bar), the most significant recent out-of-Africa (OOA) migration (yellow bar), and an
estimate of when archaic hominins (AH) disappeared are highlighted (red line). (B) The map depicts where
each archaic sample was identified within Eurasia. These figures were adapted from Mafessoni et al.15 (Fig.
1) with additional data from Rogers et al.18, Rogers et al.19, and Gómez-Robles20. The map was reproduced
from Google Maps.

1.1.3 Phenotypic legacy of archaic ancestry
The archaic ancestry remaining in modern human genomes is far from silent. Admixture added multiple

pulses of genetic diversity to human genomes26,32, providing both potential fitness advantages and dis-

advantages to those who inherited them. For example, archaic DNA may have facilitated the ability of

modern humans to inhabit diverse environments as they spread around the globe33. Some archaic alleles

have functions and evolutionary signatures suggestive of positive selection due to beneficial effects33–35.

Many of these alleles influence systems that directly interact with the environment26, such as the immune

system36–43, hair and skin44–46, response to oxygen47, and metabolism34,48–50.

Despite these potential adaptive benefits of admixture, simulations and empirical analyses of the dis-

tribution of introgressed alleles across the genome suggest that they were largely deleterious in modern

humans51,52. Several lines of evidence support selection against introgressed Neanderthal DNA in most

functional regions of human genomes shortly after hybridization51–54. First, Neanderthal ancestry is de-
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pleted in regions of the genome with strong background selection and evolutionary conservation44,45,53.

Second, Neanderthal ancestry is depleted in regions of the genome with annotated molecular functions (e.g.,

genes and gene regulatory elements), and this depletion is strongest in annotated brain and testis regulatory

regions53,55,56. Furthermore, remaining alleles of Neanderthal ancestry–—i.e., introgressed alleles that were

maintained by either selection or drift since admixture—are predicted to be less likely to modify protein and

regulatory function than matched sets of alleles that arose on the human lineage, suggesting that functional

introgressed variants were less tolerated57,58. Finally, the majority of archaic alleles that are strongly asso-

ciated with disease in single-locus tests are risk-increasing in the context of modern human populations59.

Several non-exclusive scenarios may explain the apparent genetic cost of Neanderthal introgression. The

introgressing Neanderthals had a smaller effective population size than modern human populations. The

resulting lower efficacy of selection allowed the accumulation of weakly deleterious alleles in Neanderthal

populations13. After introgression, these variants were subject to more effective selection in larger modern

human populations51,52. It is also possible that hybrid incompatibilities and deleterious epistatic interactions

between archaic and human alleles reduced the fitness of early hybrids44,45,55,60,61.

These benefits and costs of introgression in modern humans have been primarily characterized based on

overlap with molecular annotations44,45,53,55 or existing genome-wide association study (GWAS) hits14,59,62.

Phenotypes associated with Neanderthal ancestry are diverse and range from immune system response36–43,59,63,

hair and skin coloration44–46,59,63, metabolism34,48–50, cardiopulmonary function47,63, skeletal morphol-

ogy63,64, and behavior26,59,63. However, most medically and evolutionarily relevant traits are complex, with

hundreds or thousands of loci across the genome contributing to them65,66. Thus, studies of individual loci

are not sufficient to address the overall influence of Neanderthal admixture on human traits. Furthermore,

despite these numerous phenotypic associations, understanding the specific mechanisms by which archaic

variants contribute to disease risk and protection remains difficult.

1.2 Contribution of the non-coding genome to complex trait architecture and evolution

“But one researcher’s trash is another researcher’s treasure, and a growing number of
scientists believe that hidden in the junk DNA are intellectual riches that will lead to a
better understanding of diseases [. . . ], normal genome repair and regulation, and perhaps
even the evolution of multicellular organisms.”

— Rachel Nowak. “Mining Treasures from ’Junk DNA’.”
Science. 263.5147, (1994), pp. 608–610.67

1.2.1 Non-coding genome revolution
Just as the advent of genome sequencing facilitated our ability to accurately trace human evolutionary ori-

gins, it also spurred a transformation in human genetics and genomics. Although initial drafts of the human

genome were published in 2001 by the International Human Genome Sequencing Consortium and Celera

Genomics, it was only very recently (2021) that the full 3.055 billion base pair genome was truly completed

after filling the missing 8%68. In addition to the improved genome sequence quality, the past 20 years have

also been witness to an explosion in genome sequence quantity. A single pass of sequencing for an entire
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genome can take as little as 2 minutes69 and, today, over 200,000 whole genome sequences are available70.

One of the most striking surprises unveiled by the human genome sequence is the modest number of

protein-coding genes. At surface-level, the central dogma of molecular biology implies that the primary

purpose of DNA is to transcribe RNA that is translated into proteins which are the “functional” units of the

cell. In the 1990s, it was hypothesized that humans had over 100,000 protein-coding genes and that the rest

is non-functional or redundant “junk DNA”71,72. Remarkably, there are only approximately 20,000 protein-

coding genes that account for just 2% of the human genome. Interpretation of the remaining 98%—the

“non-coding” genome—has proved an ongoing puzzle.

Over the past two decades, the Encyclopedia of DNA Elements (ENCODE) project, among others, has

demonstrated the importance of the non-coding genome in processes such as transcriptional and translational

regulation, DNA replication, chromatin structure, and histone modification, among others. The power and

complexity of the non-coding genome is illustrated by the ability for diverse cell types to arise from the same

genome: transcriptional control of the right gene, at the right time, and in the right cell type is necessary

for complex multi-cellular life. While this serves as the foundation for phenotypic diversity across cell

types, individuals, and species, it also creates opportunity for dysfunction leading to disease. While most

initial attempts to isolate variants implicated in disease focused on the exome, the genome-wide association

study (GWAS) revolution has further highlighted the necessity and challenges of interpreting the phenotypic

effects of the non-coding genome.

The increased availability of genotype data for large cohorts of individuals paved the way for GWAS to

become a standard experimental design for population-scale studies. Simply, GWAS test for associations

between a genotype and a phenotype. Over the past 15 years, GWAS have led to the discovery of thou-

sands of loci, genes, and pathways associated with complex traits65. Notably, more than 88% of variants

associated with common disease in GWAS are in non-coding regions73. These associations are enriched

in functionally-annotated regulatory elements (e.g. enhancers and promoters), often in a cell-type-specific

manner, suggesting that gene expression modulation in the non-coding genome largely mediates common

disease risk73–76. There are many tools that incorporate these functional annotations with machine learning

and probabilistic models to aid in variant interpretation77. However, prioritizing non-coding variants for

functional investigation remains a challenge given the genome’s complex regulatory landscape and context

specificity78,79. Ultimately, moving from association to function is necessary for developing prognostic,

preventative, and therapeutic strategies80–84.

1.2.2 Partitioned heritability
Results of a GWAS also allow for a variety of other types of analysis such as developing polygenic risk

scores, conducting Mendelian randomization, estimating genetic correlations and SNP-based heritability

(SNP: single nucleotide polymorphism)85. Heritability of a trait describes the proportion of the phenotypic

variance in a population that is attributable to genetic factors (ĥ2), which was historically estimated with

twin or family studies86. SNP-based heritability (h2
SNP) uses data from a GWAS to estimate the proportion of

phenotypic variance explained by any set of SNPs (e.g., in a genotyping array, whole genome sequencing)87.

While heritability describes how the entire set of SNPs across the whole genome contributes to the trait’s
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phenotypic variation, a related concept—partitioned heritability—quantifies how a subset of SNPs across

a partition of the genome contributes to phenotypic variation75,88. For example, early work partitioned the

heritability of certain traits, like height, by chromosome88,89. They found that the variance explained by each

chromosome was directly proportional to the length of the chromosome. This suggests that height is highly

polygenic; if you normalize the phenotypic variance explained by the number of SNPs in the partition,

each chromosome contributes relatively equally to the heritability of height. In contrast, some traits like von

Willebrand factor (vWF) levels were dominated by contribution from chromosome 988. Genetic variation on

chromosome 9 explains 14% of the variance in vWF levels despite chromosome 9 only accounting for 4.5%

of the bases in the genome. Thus, in this example, chromosome 9 is enriched for partitioned heritability

contribution to vWF levels. This preliminarily suggests that part of chromosome 9 contributes an outsized

effect to vWF levels. Indeed, the ABO locus, which is important for vWF levels, is on chromosome 988. In

summary, enrichment from partitioned heritability analysis is calculated as Enrichmentc =
%h2

(c)
%SNP(c)

where h2
(c)

is the heritability explained by SNPs in partition c and %SNP(c) is the proportion of SNPs in that partition

of the genome75. This is visually depicted with a toy example in Fig. 1.2.

Although partitioned heritability can be conducted with a variety of statistical frameworks, for this work

I use stratified LD score regression (S-LDSC). S-LDSC quantifies the heritability of a trait explained by

common (minor allele frequency [MAF] > 5%) variants in a set of regions of interest, explicitly conditioned

on the association statistics and the underlying linkage disequilibrium (LD) structure75,90.

Practically, partitioned heritability describes the genetic architecture landscape of a trait with relevance

to functional, evolutionary, or population genetics-based annotations. For example, contributions of SNPs

at different allele frequencies can be used to highlight the differences in genetic architecture between traits,

such as obsessive-compulsive disorder and Tourette’s syndrome91. Partitions can also be made on functional

elements (i.e., enhancers, promoters, or eQTLs) across cell-types to link diseases to relevant cellular con-

texts. For example, heritability for body mass index (BMI) is more concentrated in central nervous system

(CNS) enhancers than in other metabolic tissues (e.g., adrenal or pancreas)75,76. Heritability is also enriched

in enhancers and promoters that have older sequence age (i.e., sequence synteny with more distant species)

when compared to those with younger sequence age92. Together, these illustrate the power of leveraging the

influx of GWAS data with partitioned heritability analyses to reveal differences in biology and evolutionary

history underlying diverse traits.

1.2.3 Non-coding variation in hominin evolution and divergence
Understanding the non-coding genome is not only essential for interpreting trait-associated variations in

humans, it has also proved to be a fundamental mechanism in the evolution of species. Over 50 years ago,

early results from comparisons between chimpanzee and human blood proteins pointed to a “paradox”:

despite obvious phenotypic differences between the species, their blood protein amino acid sequences are

almost identical7,72. Likewise, the protein-coding genomes of archaic hominins and modern humans are

highly similar. Previous work has identified some non-synonymous changes leading to amino acid substitu-

tions between archaic and modern humans that impact genes involved in metabolism, hair distribution, body

morphology, cognition, and behavior17,93. However, these represent only a small fraction of the genome
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Figure 1.2: Partitioned heritability analysis quantifies a genomic region’s contribution to the heritability of a
trait.
Pictured is a toy example of how partitioned heritability enrichment is calculated across two example
genome partitions. Using an LD reference panel and regression conditioned on a set of baseline annota-
tions (not pictured), GWAS association statistics for a given trait (Manhattan plot) are partitioned by given
genomic partition(s). For the SNPs in each partition, their collective contribution to the trait heritability
is calculated. For example, in partition #1, 30% of the trait’s SNP-based heritability is contributed by the
variants (black dots) in the partition (red bar). In partition #2, only 12% of the SNP-based heritability is
contributed (blue bar), owing to the lack of SNP association signal in this part of the genome. The propor-
tion of SNP-based heritability in a window is normalized by the total proportion of SNPs in the window
(over all SNPs considered in the genome). For example, partition #1 accounts for 10% of the SNPs in the
“genome” while partition #2 is larger and accounts for 24% of the SNPS in the “genome”. The equation
for partitioned heritability used by S-LDSC75 is depicted and the calculation for each example is shown.
Generally, heritability enrichment indicates that genetic variants in the regions are more associated with
phenotypic variation in the trait than expected given a null hypothesis of polygenicity (Example #1). Heri-
tability depletion means that the variants associated with less phenotypic variation than expected (Example
#2). Throughout the dissertation, heritability enrichment is indicated with red color or elevation above
the baseline of one (no enrichment). Heritability depletion is indicated with blue or depression from the
baseline.

differences between archaic and modern humans. In modern and archaic hominins respectively, there are

only 42 and 167 fixed non-synonymous single nucleotide changes17. Furthermore, they tend to have less

predicted functional effect than mutations that arose on the modern human lineage57. Thus, similar to the

paradox from early comparisons between chimpanzees and humans, these protein-coding changes alone

cannot explain the phenotypic divergence between modern and archaic humans.

Instead, the phenotypic evolution of hominins is largely driven by changes in the non-coding genome

that affect the regulation of conserved proteins7–10. However, because of ancient sample degradation, gene

expression in archaic hominins cannot be directly assayed94. Previous studies have used diverse approaches

to understand the gene regulatory differences between modern and archaic humans. Many studies that

have considered the effect of archaic variants on gene expression leverage genomes of modern Eurasians

with Neanderthal ancestry. These investigations have found widespread expression differences between

Neanderthal and human alleles. One-quarter of Neanderthal haplotypes inherited by humans show cis-
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regulatory effects55 and these introgressed alleles contribute more to expression variation than expected57.

Yet, these studies have major limitations. They only investigate regions where modern humans have

remaining Neanderthal ancestry. Some regions of modern human genomes have little or no evidence of

introgression largely due to negative selection on deleterious or incompatible haplotypes within a few gen-

erations after hybridization44,45,53–57. Thus, considering only introgressed variation provides a very limited

view into hominin biology and the differences between archaic and modern humans. It also limits our ability

to understand why certain regions of MH genomes tolerated Neanderthal DNA while others did not. Col-

bran et al.94 addressed this challenge by imputing AH gene regulation genome-wide through models trained

on gene expression data in MHs95. They estimated that over 1900 genes had different patterns of regulation

between AHs and MHs. However, the molecular mechanisms through which archaic variants alter gene

expression remain unclear.

Gokhman et al.96 and Batyrev et al.97 aimed to elucidate these mechanisms by computationally re-

constructing maps of archaic DNA methylation. They found 2,000 differentially methylated regions that

associate with genes predominantly related to facial and limb anatomy. Silvert et al.98 evaluated the overlap

of archaic variants with enhancers, promoters, and miRNAs and found links to adipogenesis and cancer sus-

ceptibility. Together, these illustrate the potential to mechanistically link archaic genotypes with regulatory

functions via the prediction of molecular phenotypes.

1.3 Form and function of the 3D genome

“Whether it be the sweeping eagle in his flight, or the open apple-blossom, the toiling
workhorse, the blithe swan, the branching oak, the winding stream at its base, the drifting
clouds, over all the coursing sun, form ever follows function, and this is the law.”

— Louis Henry Sullivan. “The Tall Office Building
Artistically Considered.” (1896).99

1.3.1 3D chromatin organization and consequences
Given the importance of gene regulation in interpreting both inter- and intra-species diversity, it is critical to

consider the physical form of how transcription control occurs within the cell nucleus. Despite the discovery

of chromosome territories in 1909, the physical folding of the genome has only more recently been explored

as an integral part of genome function100,101. During interphase, the human genome is organized in three-

dimensional (3D) nuclear space to allow for proper genome replication and transcription102. Chromatin

contact maps are experimentally measured using chromosome-conformation-capture technologies (3C, 4C,

5C, Hi-C, MicroC)103–107, which allow for quantification of genome folding at various resolutions. These

range from large-scale chromosome territories to small-scale local structure, like loops and “architectural

stripes”, which can reflect gene regulatory function by enhancers105,108–110.

At an intermediate sub-chromosomal scale, chromatin physically compartmentalizes into topologically

associating domains (TADs)105,111–113. TADs are megabase-long genomic regions that self-interact, but

rarely contact regions outside the domain105,111–114 (Fig. 1.3A). They are likely formed and maintained
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through interactions between protein complexes including CTCF zinc-finger transcription factors and co-

hesin ring-shaped complexes102,105. TADs have been characterized as basic units of 3D genome structure

given their stability across cell divisions114,115, cell-types111,112,116–118, and syntenic sequences between

species105,111,119–121.

Figure 1.3: Topologically associating domains (TADs) are fundamental units of 3D genome nuclear organiza-
tion.
(A) TADs are megabase-long regions of chromatin organization that self-interact, but rarely contact regions
outside the domain. TADs facilitate communication between genes (rectangle) and enhancers (stars) via
physical looping. (B) The regions insulating TADs (gray vertical bar) are TAD boundaries. They contribute
to the regulation of gene expression by restricting interactions (red “x”) of cis-regulatory sequences to their
appropriate target genes. TAD structure disruption via large structural variants (SV) has been implicated
in rare disease and cancer parthenogenesis122. (C) We summarize the findings of previous work which has
begun to characterize the functional and constraint landscape across the 3D genome. CTCF binding and
clustering are enriched at boundaries102,105. TAD boundaries have more evidence of purifying selection
on SV compared to TADs. Boundaries are enriched for syntenic breaks121,123. Finally, human haplotype
breakpoints do not align with chromatin boundaries (Fig. 1.3C)124.

Although 3D genome organization is essential to many aspects of normal cell physiology including

cell-type identity, differentiation, and replication timing, one of its primary roles is in facilitating enhancer-

promoter interactions to regulate gene expression125–131. TADs modulate gene regulation by restricting

interactions of cis-regulatory sequences, like enhancers, to their target genes105. Specifically, regions be-

tween TADs—termed TAD boundaries—have insulatory properties. TAD boundaries prevent “enhancer

hijacking”: a process where enhancers act on an inappropriate target gene. Removing insulatory TAD

boundaries leads to ectopic gene expression both in vitro and in vivo. For example, TAD structure disrup-

tion at the EPHA4 locus leads to inappropriate rewiring of developmental genes implicated in limb formation

defects105,122,132. In cancer, large structural alterations that disrupt TAD boundaries cause pathogenic gene

expression in acute myeloid leukemia (AML) and medulloblastoma133,134 (Fig. 1.3B). TADs and boundaries
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are formed through the binding and interaction of several factors including CTCF and cohesin; consequently,

altering CTCF binding promotes oncogenic gene expression in gliomas135. Structural variation (SV) that

disrupts TAD structure causes gain-of-function, loss-of-function, and misexpression in many forms of rare

neurodevelopmental disease122.

Although we are beginning to understand the role of 3D genome disruption in rare disease and cancer,

the relationship between common disease and 3D genome architecture has not been investigated. Even com-

mon small-scale variation (e.g., SNPs) influences 3D genome structure136, for example, through modifying

CTCF-binding site motifs necessary for TAD formation. However, the contribution of common variation in

different 3D contexts to complex traits is unknown.

1.3.2 Relationship between evolution and the 3D genome
Previous studies disagree about the functional importance and evolutionary pressures across the landscape of

the 3D genome. TAD organization has two basic features: the “self-associating” TAD and the “insulatory”

TAD boundary105. TADs are functional units; their disruption is often deleterious. For example, across

species, enrichment of syntenic breaks at TAD boundaries suggests an evolutionary preference for mutations

that “shuffle” intact TADs, rather than “break” them121,123 (Fig. 1.3C). Additionally, TADs often contain

clusters of co-regulated genes—e.g., cytochrome genes and olfactory receptors105. Together, these suggest

that TADs are more functionally important and evolutionarily constrained than boundaries.

In contrast, other studies have highlighted the greater importance of TAD boundaries. SVs that disrupt

TAD boundaries are implicated in rare disease and cancer105,122,133–135. Accordingly, TAD boundaries have

evidence of purifying selection on SV (Fig. 1.3C). Moreover, boundaries shared between two cell-types

experience stronger purifying selection than unique boundaries, suggesting that shared boundaries are more

intolerant of disruption137. TAD boundaries are also enriched for housekeeping genes and transcription start

sites (TSS)105,111. Finally, human haplotype breakpoints do not align with chromatin boundaries, which

indicates that recombination may be deleterious at TAD boundaries124(Fig. 1.3C). Collectively, these suggest

that TAD boundaries are more functionally important, especially at the scale of human evolution.

1.3.3 Predictions of 3D genome folding
Understanding the mechanisms, function, and evolution of 3D genome folding has parallels in another

decades-long “folding” challenge. Namely, the “protein folding problem” addresses how an amino acid

sequence (rather than DNA sequence) encodes a protein’s 3D atomic structure (rather than chromatin’s 3D

nuclear structure)138. The protein folding problem encompasses many related sub-puzzles138. First, what is

the “code” that determines folding? Second, how does the folding physically occur in vivo? Third, how can

the structure be predicted from sequence computationally? Finally, how does the form relate to function?

These questions first emerged around 1960. Since then, both experimental data and methods have seen big

advances. With the development of AlphaFold2—a deep learning approach that combines physio-chemical

knowledge with multiple-sequence alignments—some have deemed the protein folding problem solved139.

Despite the continued potential for improvement, comprehensive knowledge of the protein-folding code

provides necessary context to understand the relationship between form and function for interpretation of
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disease variants and evolutionary constraint across proteins.

The “chromatin folding problem” may follow a parallel trajectory towards a similar ultimate goal of

improving variant interpretation and functional understanding of non-coding genome biology. Yet, work on

this complex problem is in its early stages. Chromatin folding is likely facilitated by a complex interplay of

transcription factors. While DNA only encodes for 20 amino acids, it encodes for many more transcription

factor motifs that do not respect the same tri-nucleotide codon template. Transcription factors and chro-

matin folding are also cell type specific. Furthermore, protein folding can be compartmentalized to the scale

of a single protein or multimer. In contrast, chromatin interactions can occur at every pair of sites across

the entire genome, even across different chromosomes. This is immense in scope with 4.7× 1018 possible

pair-wise interactions across our 3.055 billion base pair genome. Finally, although protein folding is dy-

namic, there is evidence that chromatin folding is transient and exists in multiple configurations. Current

experiments are limited in both their resolution and their ability to measure dynamics.

A variety of both polymer-based and statistical approaches have been developed to address these chal-

lenges140. Some incorporate other experimental data (e.g., epigenetic data, transcription factor binding) to

inform their predictions. Challenges include the uncertainty of specifying biophysical parameters needed

for modelling, high computational demands, non-linear dependencies between data used to predict struc-

ture, and lack of availability of high-quality experimental data in the proper cellular context140. Recently,

deep learning methods have been developed to learn the sequence “grammar” underlying 3D genome fold-

ing patterns140–143. Because they predict 3D organization from sequence alone, they avoid the need for

additional experimental data or pre-specified biophysical parameters. Using a convolutional neural network

(CNN) allows the model to “learn” non-linear combinations of motifs, without any a priori knowledge, to

predict chromatin contact maps. Because the molecular mechanisms governing genome organization, like

CTCF binding and co-localization with cohesin, are largely evolutionarily conserved111,121, models trained

using human data perform well even when applied to DNA sequences from mice141. Thus, unlike genome-

wide methods for predicting organism-level phenotype (e.g., polygenic risk scores), these models can likely

be applied across diverse hominins to provide insight into the role of 3D genome folding in disease and

evolution.

1.4 Overview
Understanding the consequence of any of the millions of variants in an individual genome78—modern or

archaic—requires context of human evolutionary history coupled with a mechanistic knowledge of genome

function. Given the established importance of gene regulation combined with the emerging role of chro-

matin folding in gene regulation, there is a critical need to integrate 3D genome architecture into genome

interpretation both for the understanding of evolution and disease risk.

In summary, this dissertation will leverage techniques in human genetics, functional genomics, evolu-

tionary biology, and machine learning to interrogate the relationship between recent human evolution, 3D

genome organization, gene regulation, and complex human disease with the following aims:

• Comprehensively quantify the contribution of Neanderthal ancestry to diverse human traits. (Chap-

ter 2)
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• Map the relationship between 3D genome architecture and the genetic architecture of complex traits

(Chapter 3)

• Reconstruct the 3D genome organization of Neanderthals to evaluate how chromatin folding shaped

human evolution (Chapter 4)

In order to ultimately assess the 3D genome contribution to the phenotypic diversity of modern and

archaic humans, we must first comprehensively catalog the influence of archaic ancestry on traits in modern

humans today. Given the pervasiveness of archaic ancestry in modern human genomes and the complexity

of most evolutionary-relevant traits, studies of individual loci one-by-one have not sufficiently addressed the

overall influence of Neanderthal admixture on human traits. In Chapter 2, I use partitioned heritability to

comprehensively quantify the contribution of Neanderthal ancestry to over 400 traits. Integrating the results,

I propose a model for using trait heritability and direction of effect to understand how selection acted on

different traits and how introgression may have facilitated adaptation to non-African environments.

Despite evidence that archaic ancestry influences certain traits in modern humans, elucidating mecha-

nisms through which variation contributes to traits remains difficult. One such putative mechanism is via

the 3D genome. Although 3D genome disruption has been implicated in rare disease, I evaluate the role

of the 3D genome in complex traits in Chapter 3. Additionally, I synthesize 3D genome maps across cell

types to quantify their functional and evolutionary conservation to help resolve conflicting evidence about

evolutionary pressures across the 3D genome landscape.

Given the established importance of the 3D genome organization to both rare disease and complex traits,

in Chapter 4, I computationally resurrect the 3D genome organization of Neanderthals and Denisovans using

deep learning models that predict 3D genome folding patterns. Because these models can be applied to

novel sequences, it overcomes limitations of previous work that only investigated genomic regions where

present-day humans have remaining Neanderthal ancestry. Using the resulting chromatin contact maps, I

demonstrate how differences in 3D genome folding between archaic and modern humans provide a putative

molecular mechanism for the phenotypic differences between the species. Finally, comparisons with contact

maps across modern humans highlight that 3D genome organization constrained sequence divergence and

patterns of introgression in hominin evolution.

Together, mapping these relationships quantifies the functional contribution of variants in different 3D

contexts. This will provide a framework to ask previously unanswerable questions about the role of the 3D

genome in human evolution and disease. Ultimately, this work highlights the 3D genome as a mechanism

linking genotype and phenotype, both within present-day humans and across hominins.
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CHAPTER 2

QUANTIFYING THE CONTRIBUTION OF NEANDERTHAL INTROGRESSION TO THE
HERITABILITY OF COMPLEX TRAITS*

2.1 Introduction
Anatomically modern humans (AMH) interbred with archaic hominin groups on multiple occasions and in

several locations over the past 50,000 years. As a result, nearly all Eurasians have approximately 2% Nean-

derthal ancestry resulting from interbreeding events that occurred shortly after their ancestors left Africa14,28.

Analyses of available genome-wide association studies and large-scale biobank data revealed that alleles of

Neanderthal ancestry are associated with diverse traits in modern Eurasians14,58,59,62. However, due to lim-

ited phenotype data and technical challenges quantifying associations between archaic alleles and traits31,58,

previous studies have not comprehensively characterized the genome-wide influence of Neanderthal intro-

gression on modern human diseases and traits.

Archaic admixture may have facilitated the ability of AMH to inhabit diverse environments as they

spread around the globe33. Despite the potential benefits of admixture, simulations and empirical analyses

of the distribution of introgressed alleles across the genome suggest that they were largely deleterious in

AMH51,52. Given the broad evidence for negative selection against alleles of Neanderthal ancestry in func-

tional regions coupled with evidence of positive selection on specific introgressed Neanderthal alleles, there

is a need to more comprehensively characterize and reconcile the functional effects of introgressed alleles

on variation in diverse AMH traits. Previously, the legacy of introgression in AMHs has been primarily

characterized based on overlap with molecular annotations44,45,53,55 or existing genome-wide association

study (GWAS) hits14,59,62. However, most medically and evolutionarily relevant traits are complex, with

hundreds or thousands of loci across the genome contributing to them65,66. Thus, studies of individual loci

are not sufficient to address the overall influence of Neanderthal admixture on human traits.

Here, we leverage recent maps of Neanderthal ancestry32 with new techniques to characterize the contri-

bution of Neanderthal introgression to the heritability of common complex traits75,90 and identify trends in

introgressed variants’ direction of effect on these traits. Using well-powered GWASs for 405 diverse traits

from existing studies and the UK Biobank144, we estimate trait heritability in genetic variation in regions of

the human genome in which detectable Neanderthal ancestry remains and in introgressed Neanderthal vari-

ants themselves. This broad view of the influence of Neanderthal ancestry genome-wide supports selection

against Neanderthal ancestry in regions of the genome that influence nearly all complex traits. However, it

reveals that common introgressed Neanderthal alleles, especially those shared across Neanderthal popula-

tions, have a greater than expected effect on several traits with potential relevance for AMH adaptation into

non-African environments. Integrating our results, we propose a framework (see 2.3:Discussion) for using

trait heritability and direction of effect in introgressed regions to understand how selection acted on different

†This chapter is adapted from McArthur, E., Rinker, D.C., & Capra, J.A. 2021. Nat. Comms. and has been reproduced with
permission of the publisher and co-authors D.C. Rinker and J.A. Capra.
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traits and how introgression may have facilitated adaptation to non-African environments.

2.2 Results
2.2.1 Genomic regions with Neanderthal ancestry are depleted of complex trait heritability
To quantify the relationship between the heritability of complex traits and Neanderthal introgression, we first

investigated genomic regions where detectable Neanderthal ancestry remains in some AMHs. Hereafter, we

will refer to these as “regions with Neanderthal ancestry” (Fig. 2.1A). We consider introgressed regions in

Europeans identified by the Sprime algorithm. This algorithm identifies regions in individuals’ genomes

that contain a high density of single nucleotide variants absent in unadmixed African populations and that

frequently match Neanderthal alleles32. Filtering for introgressed regions matching the Altai Neanderthal

genome, we identified 1345 segments of the human genome with remaining Neanderthal ancestry that have

a median length of 299 kb (IQR: 174 – 574 kb), covering 19% of the genome (2.4:Methods, Fig. 6.1). This

high confidence set reflects the state-of-the-art, but likely does not include all regions with Neanderthal an-

cestry; some archaic fragments are too short or too similar to non-archaic fragments to detect. As more

modern and archaic individuals are sequenced, additional regions in AMHs with Neanderthal ancestry may

be detected. We also separately considered introgressed segments defined based on comparison to the Vin-

dija Neanderthal and using the S* algorithm (Figs. 6.2,6.3).

To estimate the contribution of variation in regions with Neanderthal ancestry to trait heritability, we

conducted partitioned heritability analysis using stratified LD score regression (S-LDSC). S-LDSC quanti-

fies the heritability of a trait explained by common (minor allele frequency [MAF] > 5%) variants in a set of

regions of interest, explicitly conditioned on the association statistics and the underlying linkage disequilib-

rium (LD) structure75,90. To start, we considered summary statistics from a curated representative set of 41

diseases and complex traits with high-quality GWAS used in previous S-LDSC analyses (average number

of individuals [N] = 329,378; SNPs in GWAS [M] = 1,155,239; h2
SNP = 0.19; Table 6.1)92,144–154.

In this context, heritability depletion indicates that genetic variants in regions in which some individuals

have Neanderthal ancestry are less associated with phenotypic variation in the trait than expected given a

null hypothesis of complete polygenicity. Heritability enrichment means that the variants associate with

more phenotypic variation than expected. Heritability enrichment (or depletion) in a set of variants provides

evidence of functional relevance for the region to the trait and suggests the action of selection155 (see model

in 2.3:Discussion). Regions with Neanderthal ancestry are broadly depleted of variation that contributes to

complex trait heritability (Fig. 2.1B). These regions are 1.10-fold (i.e. 10%) depleted for contribution to

trait heritability compared to the heritability expected from the background genome (two-tailed one-sample

t-test P = 8×10−7, 95% confidence interval [CI]:1.07–1.14). Most variants segregating in Eurasian popu-

lations in regions of the genome with Neanderthal ancestry are not of Neanderthal origin (Fig. 2.1A); yet,

even after removing introgressed variants (LD expanded to r2 > 0.5 [2.4:Methods]), these regions are still

1.06-fold depleted for trait heritability (P = 0.003, CI:1.02–1.10). The heritability depletion observed after

removing introgressed variants (and those in LD with them) suggests that introgressed variants account for

some, but not all, of the heritability depletion in these regions. The depletion across traits also holds for

introgressed haplotypes identified by the earlier S* method (Fig. 6.2A) and based on matching the Vindija
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Neanderthal (rather than Altai) genome (Fig. 6.3A)156. Previous studies have shown that regions with Ne-

anderthal ancestry have less evidence for evolutionary constraint and function at the molecular level53,55,56.

Our results demonstrate that regions of the genome that retain Neanderthal ancestry are also depleted for

variation influencing a diverse array of complex traits.

We find three exceptions to the complex trait heritability depletion: sunburn, skin color, and tanning

(Fig. 2.1B). In contrast to all other traits, regions with Neanderthal ancestry are not depleted for heritability

of these traits (P = 0.3–0.4). These three traits are genetically correlated with magnitudes between r = 0.55

and 0.86. Several previous hypotheses suggest that the introgression of Neanderthal alleles related to hair

and skin pigmentation could have provided non-African AMHs with adaptive benefits as they moved to

higher latitudes44,45,59,62. Our results suggest that introgressed Neanderthal haplotypes were not selected

against in regions of the genome involved in skin pigmentation, in contrast to regions associated with other

traits.

2.2.2 Neanderthal introgressed variants are depleted for heritability of most complex traits
In the previous section, we demonstrated that non-introgressed variants in regions with remaining Nean-

derthal ancestry are depleted for heritability of most complex traits. We now focus on the heritability con-

tributed by introgressed variants specifically.

We quantified the relationship between heritability of the representative 41 complex traits and several

sets of common Neanderthal-introgressed variants with different evolutionary histories. The largest set

included all variants with evidence of introgression in any Eurasian population according to Sprime32 (N =

900,902, 2.4:Methods); this set will be referred to as “introgressed variants” throughout the manuscript. This

set includes not only high-confidence Neanderthal-origin introgressed variants, but also ancestral alleles lost

in Africans that were reintroduced to Eurasians through archaic introgression58, variants with origins in

other archaic hominins such as Denisovans, and possibly variants tightly linked to introgressed haplotypes

that arose in Eurasians shortly after introgression. The most stringent and high-confidence sets include

Neanderthal-introgressed alleles that are observed in Europeans and explicitly match the either the Altai

genome (N = 138,774) or the Vindija genome (N = 167,927, 2.4:Methods); these sets will be referred to

as “Altai-matching” and “Vindija-matching” introgressed variants, respectively. We calculated partitioned

heritability on these sets and two other intermediate-stringency sets (2.4:Methods); results from all sets are

in Fig. 6.4.

Consistent with our observations on non-introgressed variants in regions with Neanderthal ancestry

(Fig. 2.1B), the set of all introgressed variants is 1.28-fold depleted for contribution to trait heritability

(two-tailed one-sample t-test P = 0.0004, CI: 1.13-1.45). (Fig. 2.1C, Table 6.2). We observed the strongest

depletion for heritability for cholesterol level (4.7-fold depleted, CI:1.82–12.1, q = 0.02 after Benjamini-

Hochberg FDR-correction at the 0.05 level), platelet count (1.7-fold depleted, CI:1.18–2.42, q = 0.04),

systolic blood pressure (1.6-fold depleted, CI:1.22–2.01, q = 0.01), years of education (1.5-fold depleted,

CI:1.14–1.96, q = 0.04), and body mass index (BMI, 1.5-fold depleted, CI:1.18–1.89, q = 0.02). Due their

distinct evolutionary histories, introgressed variants have a different allele frequency distribution than other

sets of common variants; however, this difference is not responsible for the number of significantly depleted
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Figure 2.1: Complex trait heritability is broadly depleted in regions with Neanderthal ancestry and in intro-
gressed variants.
(A) We focus on variants in regions of the human genome with remaining Neanderthal ancestry (red box). These
variants (vertical lines and diamonds) have multiple evolutionary histories: most are segregating on non-introgressed
haplotypes (black), many are present in Eurasians due to introgression (red), and some of these introgressed alleles
were shared among multiple Neanderthal populations including both the Altai Neanderthal and the introgressing Ne-
anderthal population (diamonds). (B) Regions of the genome where Neanderthal ancestry remains (all variants in
the red box in A) are depleted for heritability of 41 diverse complex traits (mean: 1.10 fold-depleted, two-tailed one-
sample t-test P= 8×10−7) except for sunburn, skin color, and tanning. Each dot represents the heritability enrichment
or depletion for a single trait estimated by stratified LD score regression (S-LDSC). Removing introgressed variants
(red lines and diamonds in A, LD expanded to r2 > 0.5), these regions are still broadly depleted for trait heritabil-
ity (mean: 1.06 fold-depleted, two-tailed one-sample t-test P = 0.003). The boxplot centers represent medians, the
boxes are bounded by the first and third quartiles, and the Tukey-style whiskers extend to a maximum of 1.5 × IQR
beyond the box. (C) Introgressed variants (red lines and diamonds in A) contribute varying levels of heritability to
different 41 traits. Most (76%) traits trend towards heritability depletion in introgressed variants (one-tailed Binomial
test P = 0.007). Bars for individual traits represent heritability enrichment estimates with 95% confidence intervals
which are calculated by S-LDSC standard errors using a block jackknife (n = 200). Traits are colored by their domain
(legend); marked domains appear in later figures. These colors will be used in all figures. (D) Altai-matching intro-
gressed variants (y-axis, diamonds in A) are more enriched for heritability than all introgressed variants (x-axis) for
78% of traits (one-tailed Binomial test P = 0.0002, 1.02x vs. 0.78x). Traits with depletion below 0.125 are plotted on
the y-axis baseline. These patterns are consistent when considering the Vindija Neanderthal (Fig. 6.3).
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traits we observe (Fig. 6.5).

2.2.3 Older introgressed variants contribute more trait heritability
The Altai-matching set contains alleles that originated in the Neanderthal lineage and were likely common

among diverse Neanderthal groups given the substantial genetic, geographical, and temporal divergence of

the Altai Neanderthal from the introgressing population14,15. However, it excludes many true introgressed

Neanderthal alleles, such as those that were not present in the Altai Neanderthal. The Vindija Neanderthal

was closer to the introgressing population, so the Vindija-matching set additionally includes many younger

Neanderthal alleles, as does the set of all introgressed variants (Fig. 6.6).

Despite the overall depletion for complex trait heritability in regions of the genome with introgression

(Fig. 2.1B; 1.10-fold depleted, P = 8×10−7) and in all introgressed variants (Fig. 2.1D; 1.28-fold depleted,

P = 0.0004), the trait heritability in Altai-matching variants is not depleted (Fig. 2.1D, 1.02-fold more

heritability contribution, P = 0.9). The Altai results are very similar to partitioned heritability estimates

when introgressed variants are identified using the S* approach (r2 = 0.79), suggesting their robustness to

technical variation (Fig. 6.2B-C)156. The heritability enrichments for Vindija-matching variants across traits

are highly correlated with those for the Altai-matching variants (r2 = 0.93, Fig. 6.3B-C). However, Altai-

matching variants contribute more heritability than Vindija-matching variants to 66% of traits (one-tailed

Binomial test P = 0.03, Fig. 6.3C).

The greater contribution of Altai-matching variants to trait heritability compared to all introgressed

variants and Vindija-matching variants supports our hypothesis that older variants that were shared among

multiple Neanderthal populations were more tolerated after introgression. On average across the 41 traits,

79.2% (CI: 73.6-84.8%) of nominally trait-associated introgressed variants are observed in the Altai Nean-

derthal (P= 1×10−4, pruned associations with r2 = 0.5). However, we note one exception: only 50% of the

Crohn’s disease risk-associated variant clusters (two of four) are present in Altai; the remainder are likely

younger as they are observed only in the Vindija Neanderthal (P = 4× 10−13, Fig. 6.7); these contribute

to the increased heritability enrichment for Crohn’s disease in Vindija-matching variants compared to other

introgressed variants (Fig. 6.3C, Supplemental Text 6.1 in Appendix 1).

Finally, we hypothesize that selection contributed to the heritability enrichment observed for certain

traits. Supporting this, we find that high-frequency introgressed variants (MAF > 21%) contribute more to

heritability enrichment than rarer variants (Fig. 6.8, Supplemental Text 6.1 in Appendix 1) and that many

genomic windows contributing to the heritability enrichment of sunburn risk and white blood cell count

overlap introgressed haplotypes predicted to be adaptive (Fig. 6.9, Supplemental Text 6.1 in Appendix 1).

Together, these findings suggest that selection acted differently on Neanderthal variation with specific his-

tories (older vs. younger) and differently across traits.

2.2.4 Neanderthal introgressed variants are most enriched for heritability of dermatologic traits and
most depleted for cognitive traits

To evaluate heritability trends across more traits and bodily systems, we analyzed GWAS summary statistics

for 405 traits from the UK BioBank and FinnGen divided into domains, chapters, and subchapters from the
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GWAS Atlas (2.4:Methods)144,157–159. We performed partitioned heritability analysis on these traits using

the sets of Neanderthal-introgressed variants described above (Fig. 2.2, Figs. 6.10-6.12).

In this diverse set of traits, Altai-matching introgressed variants are most enriched for heritability of

dermatologic (hair-related) traits (2.7-fold enriched, CI: 2.4–3.1, q = 0.04, two-tailed one-sample t-test)

and most depleted for cognitive (higher-level cognitive and memory functions) traits (2.0-fold depleted,

CI:1.4–2.7, q = 0.04) (Fig. 2.2A, Table 6.3). We also observed heritability enrichment in traits related to

body structure (e.g. fractures, dental diseases, 1.9-fold enriched, CI:1.3–2.8, q = 0.06), endocrine (1.7-

fold enriched, CI:1.4–2.2, q = 0.11), respiratory (1.3-fold enriched, CI:1.1–1.5, q = 0.05), and the skeletal

system (1.1-fold enriched, CI:1.0–1.3, q= 0.1). Traits related to eye structure (1.8-fold depleted, CI:1.2–3.1,

q = 0.04), environment (1.5-fold depleted, CI:1.1–2.1, q = 0.05), and daily activities (1.3-fold depleted,

CI:1.0–1.7, q = 0.07) are depleted in addition to cognitive traits. The depletion in cognitive traits suggests

that the previously observed strong depletion for Neanderthal alleles in regulatory regions active in the brain

may be due to effects on brain-related complex traits55,56,58.

Other trait domains exhibit substantial intra-domain diversity in the heritability patterns with some traits

showing strong enrichment and others showing depletion in Altai-matching introgressed variants. Thus,

we also quantified enrichment and depletion for traits at the more granular chapter and subchapter lev-

els. Dividing immunologic traits into subchapters, Altai-matching variants contribute more heritability to

WBC-related traits (1.3-fold enriched, CI:1.0–1.6) than to RBC-related traits (1.5-fold depleted, CI:1.0–2.4)

(P = 0.02, two-tailed two-sample t-test, Fig. 2.2B). For skeletal traits, bone mineral density-related traits

show the most enrichment for heritability in introgressed variants (1.2-fold enriched, CI:1.1–1.4, q = 0.01,

Fig. 2.2C). For reproductive traits, puberty- and menstruation-related traits are enriched for heritability (1.5-

fold enriched, CI:1.0–2.2, q = 0.10), whereas sexual and procreation functions are depleted (1.5-fold de-

pleted, CI:1.2–2.0, q = 0.05, Fig. 2.2D), possibly reflecting reproductive barriers to introgression. For psy-

chiatric traits, tobacco use disorders trend towards enrichment (1.2-fold enriched, CI:1.0-1.5, q= 0.23), con-

sistent with previous observations, while introgressed variants are depleted for contribution to personality-

related functions (1.4-fold depleted, CI:1.1–1.8, q = 0.07, Fig. 2.2E)59,62. Domain, chapter, and subchapter-

level results across all traits for all the sets of introgressed variants are in Figs. 6.10-6.12 and Tables 6.3-6.5.

2.2.5 Neanderthal alleles confer directional effects for some traits
Partitioned heritability analyses quantify the overall contribution of introgressed loci to variation in traits

across humans; however, they do not test for consistent directional effects on a trait across introgressed

loci. We now test whether introgressed alleles consistently have effects in the same direction (e.g., mostly

risk increasing) for eight traits spanning phenotypic domains for which Altai-matching introgressed variants

contributed more heritability than expected (AutoimmuneDz, Balding, Sunburn, FVC, Heel T Score, Morn-

ingPerson, MenopauseAge, WBCCount, Fig. 2.1C). We quantify Neanderthal introgressed allele direction

of effect in two ways.

First, focusing on the trait-associated variants with the strongest effects, we intersected Altai-matching

introgressed alleles with associated variants from the eight GWAS. We then quantified if there is an overrep-

resentation of introgressed alleles in the risk-increasing or risk-decreasing direction. We considered GWAS
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Figure 2.2: Heritability enrichment and depletion in introgressed variants across 405 traits clustered by do-
main.
(A) Altai-matching introgressed variants are most enriched for dermatological traits (hair-related) and most depleted
for cognitive traits (higher-level cognitive and memory functions). Each point represents heritability enrichment or
depletion of one trait among Altai-matching introgressed variants. Traits with depletion less than 0.125 are plotted on
the baseline for visualization. Within some domains, introgressed variants also show variable heritability enrichment.
(B) Dividing immunologic traits into subchapters, Altai-matching introgressed variants contribute more to heritability
of WBC-related traits (1.3-fold enriched, n = 7) and less to RBC-related traits (1.5-fold depleted, n = 6) (P = 0.02,
two-tailed two-sample t-test). (C) For skeletal traits, bone mineral density-related traits show the most enrichment for
heritability in introgressed variants (1.2-fold enriched, q = 0.01, n = 12). (D) For reproductive traits, puberty- and
menstruation-related traits are enriched for heritability (1.5-fold enriched, q = 0.1, n = 5), whereas sexual and procre-
ation functions are depleted (1.5-fold depleted, q = 0.05, n = 7). (E) For psychiatric traits, tobacco use disorders trend
towards enrichment (1.2-fold enriched, q = 0.23, n = 11), consistent with previous observations, while introgressed
variants are depleted for contribution to personality-related functions (1.4-fold depleted, q = 0.07, n = 35) Unless oth-
erwise specified, all q values are from two-tailed one-sample t-tests with Benjamini-Hochberg FDR-correction at the
0.05 level. The domain, chapter, and subchapter-level results across all traits are similar when considering other sets
of introgressed variants (Figs. 6.10-6.12, Tables 6.3-6.5). The boxplot centers represent medians, the white Xs denote
means, the boxes are bounded by the first and third quartile, and the Tukey-style whiskers extend to a maximum of 1.5
× IQR beyond the box.
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variants with P < 1× 10−8 and pruned variants in perfect LD (r2 = 1) to reduce redundant counts due to

linked variants. Results from using less strict thresholds (P < 5×10−8, P < 1×10−6 and r2 > 0.8, r2 > 0.5)

show consistent directions of effect with some modest differences in the strength of directionality (Fig. 6.13).

Four traits show a difference (q < 0.05, one-tailed χ2 goodness of fit test) in the direction of effect

of introgressed variants: balding, menopause age, forced vital capacity, and morning person (Fig. 2.3A).

Respectively, Altai-matching introgressed alleles were more associated with hair loss (q = 0.01, less Type

1 Balding), younger age at menopause (q = 0.04), larger lung volumes (FVC, q = 0.03) and increased

likelihood of being a morning person (q = 0.03). Additionally, introgressed alleles may be more likely to be

associated with increased bone density (q = 0.19) and with increased sunburn risk (q = 0.21), which would

support previous findings, but requires further validation.

Neanderthal LD Profile
 (      residual)

0

10

20

30

40

50

60

0 0

Autoimmune
Disease

1 4

Sunburn

45

61

Heel 
T Score

22

14

WBC
Count

N
um

be
r 

of
 g

en
om

e-
w

id
e

si
gn

ifi
ca

nt
S

N
P

s

A B

10

2

Menopause
Age

q = 0.04

10

25

Forced Vital
Capacity

q = 0.03

3

13

Morning
Person

q = 0.03

15

2

Type 1
Balding

riskprotection burnsnever more
dense

less
dense

higherlowerolderyounger largersmaller yesnofull
hair

hair
loss

q = 0.01 q = 0.02

0 50 100

bu
rn

s

never 

0

5

2.5

-2.5

-5M
ar

gi
na

l c
or

re
la

tio
n

to
 S

u
n

b
u

rn
(a

vg
   

   
re

si
du

al
 [x

10
-4

])

Figure 2.3: Neanderthal alleles confer directional effects for some traits.
For eight traits with heritability enrichment in Altai-matching introgressed variants (Fig. 2.1D), we assessed the di-
rection of effect of the Neanderthal alleles with two approaches. The first intersects introgressed Altai-matching
Neanderthal alleles (LD-expanded to r2 = 1) with strongly associated (P < 1×10−8) variants from each GWAS. (A)
For each trait, we plot the number of variants by the direction of effect of the Neanderthal allele. Variants in perfect
LD (r2 = 1) are pruned. Four traits show a significant difference (q < 0.05, one-tailed χ2 goodness of fit test) in
direction of effect: increased balding, younger menopause age, increased forced vital capacity, and morning person.
For example, of the 17 Neanderthal alleles associated with balding, 15 are associated with hair loss and only two with
full hair. Sunburn, Heel T score, and WBC count also show modest biases. (B) This second approach, signed LD
profile regression, considers the direction of effect over all variants (n = 1,187,349), not just those with the largest
effects. For each variant, we compute the marginal correlation (α̂) of the variant to the trait versus the Neanderthal LD
profile (Rν). For the sunburn trait, we observe a positive correlation indicating a significant uni-directional relationship
genome-wide between Neanderthal introgressed alleles and risk for sunburn (empirical null distribution P = 0.001,
q = 0.02). For visualization, we bin Rν into 10 equally spaced intervals and plot the average α̂ with 95% bootstrapped
confidence intervals.

By considering only variants passing a strict “genome-wide significant” P-value threshold, this direc-

tionality analysis tests for a relationship at the extremes of effect size and P-value. To assess if there is a

uni-directional bias among Neanderthal-introgressed alleles on these traits across the effect distribution, we

used signed LD profile regression (SLDP)160. Signed LD profile regression assesses whether variant effects

on a trait (α̂ from GWAS summary statistics) are correlated genome-wide with a signed genomic annotation

via the signed LD profile (Rν). Our genomic annotation quantifies how tightly linked each variant is to
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Altai-matching Neanderthal introgressed alleles (Neanderthal LD profile [Rν], 2.4:Methods).

Using signed LD profile regression on eight traits with heritability enrichment, we find a strong genome-

wide correlation between higher LD to introgressed alleles (Neanderthal LD profile, Rν) and increased risk

for Sunburn α̂ (r f = 0.18%, q = 0.02, Fig. 2.3B, Table 6.6). Other traits, including menopause age and

morningness, show directionality trends similar to the P-value threshold analysis (Fig. 6.14, Table 6.6).

Some traits with heritability enrichment, like WBC count and autoimmunity, do not show consistent direc-

tionality genome-wide; instead, these traits have both genomic windows where Neanderthal alleles associate

with risk-increase and other windows that associate with risk-reduction (i.e., bi-directional). Expanding to

the 41 representative traits, introgressed alleles also have strong genome-wide uni-directional effects of pro-

tection from anorexia (r f =−0.93%, q = 4×10−5) and schizophrenia (r f =−0.27%, q = 0.01; Table 6.6).

Even though Neanderthal variants contribute less to the heritability of these traits than expected, the associ-

ated introgressed alleles that remain are disproportionately risk-decreasing.

2.2.6 LD-aware identification of introgressed alleles with directional effects on human traits
In this section, we present examples of specific associations based on consistent directions of effect of in-

trogressed alleles on traits identified by signed LD profile regression160. In contrast to previous approaches

that simply intersected introgressed alleles with estimates of trait effects from association studies, we locate

regions of interest based on strong correlations between LD to Altai-matching introgressed alleles (Nean-

derthal LD profile, Rν) and trait-associated risk or protection (α̂) in sliding windows across the genome

(2.4:Methods). This provides additional evidence of biologically relevant effects for Neanderthal variants,

and has the benefit over simple GWAS intersections because directional effects are less confounded by ge-

nomic co-localization of Neanderthal ancestry with other functional elements and can have more power

when applied to rare variation or diverse populations160. With this method we can identify candidate trait-

associated regions that are not tagged by a single genome-wide significant association, yet still have a sig-

nificant directional relationship between Neanderthal LD profile and a trait.

Applying this method to the eight traits from Fig. 2.3, we found many previously reported introgressed

loci with trait associations. For example, we identify a window with a strong positive correlation between

the Neanderthal LD profile and sunburn risk (chr9:16641651–16787775, r =+0.83). This window includes

the gene BNC2 and a high-frequency introgressed haplotype that influences skin pigmentation levels in

Europeans (Fig. 6.15)161. We also recover previous links between Neanderthal introgression and chronotype

surrounding ASB1 (overall r = −0.92, Fig. 6.15)62. Recapitulating these established findings supports

the utility of this method for identifying regions where Neanderthal introgression influences phenotypes in

modern Europeans.

We also identify several hundred additional windows with strong associations between LD to intro-

gressed alleles and directional effects on traits. For example, we discovered two windows near NMUR2

(within chr5:151745423-151931514) that show a positive relationship between increased LD to Neanderthal

alleles and increased propensity to be a morning person (overall r = +0.91, Fig. 6.16). In the Supplemen-

tal Text 6.1 in Appendix 1, we describe eQTL, PheWAS, and model organism evidence supporting the

hypothesis that introgressed alleles downregulate NMUR2 in the brain leading to increased morningness.
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This introgressed haplotype also has a genome-wide significant association with being a morning person

(rs4958561: P = 8.5×10−12).

In contrast, no introgressed alleles individually had associations with autoimmune disease in the UK

Biobank (n = 459,324) that pass genome-wide significance thresholds. Yet, illustrating the potential of

the signed LD profile regression approach to discover candidate associations, we identify a window in

which variants show a strong negative correlation (i.e., a protective relationship) between LD to Neanderthal

introgression and autoimmune disease risk (chr7:50649920-50739129, r = −0.84, Fig. 2.4A-C). In this

approximately 90 kb window, there are six introgressed GWAS tag variants; rs17544225 has the strongest

single-locus association with autoimmune disease (P = 9.8×10−5; Fig. 2.4B). Within 1 Mb there are only

two other variants with a similar association to autoimmune disease (rs2886554, 361 kb upstream, P =

4.0×10−5; rs6583440, 326 kb upstream, P = 6.8×10−5). These variants are not introgressed or in LD with

rs17544225 (r2 = 0.0001 and 0.0026, respectively).

Considering the introgressed variants and others in LD together provides power to test if the associa-

tion signal in this region is likely related to the Neanderthal alleles or other nearby variation (Fig. 2.4C).

This region contains GRB10, which encodes a growth factor receptor-bound protein known to interact with

several tyrosine kinase receptors and signaling molecules162. GRB10 has been associated with a subtype

of systemic sclerosis (lcSSc); patients with systemic sclerosis have higher expression of GRB10 in mono-

cytes163,164. Studies of Grb10 deficient mice demonstrated Grb10’s role in hematopoietic regeneration in

vivo165. Additionally, in a transcriptome study of CD4+ Effector Memory T cells (CD4+ TEM), GRB10

was the most downregulated gene after T-cell receptor stimulation166. Notably, in both human and mouse,

GRB10 mRNA is highly alternatively spliced, resulting in four to seven unique isoforms167. Of the 20 in-

trogressed variants overlapping this window, 17 are splicing quantitative trait loci (sQTL, increasing intron

excision, tag variant rs17544225: P = 3×10−9 [Bonferroni critical value P = 1×10−3], Fig. 2.4B) in the

spleen95. In a PheWAS, traits associated with the introgressed haplotype (tagged by rs17544225) include

monocyte count (P = 4×10−8) and monocyte percentage (P = 3×10−6; both pass the Bonferroni correc-

tion threshold P = 1× 10−5)159. Therefore, we hypothesize that Neanderthal introgressed alleles regulate

the expression or splicing of GRB10 contributing to changes in monocytes that may lead to protection from

autoimmunity.

2.3 Discussion
Here we estimate heritability patterns across more than 400 diverse traits in genomic regions influenced

by Neanderthal introgression. Regions with remaining Neanderthal ancestry in modern populations are de-

pleted of heritability for all traits considered, except those related to skin and hair. Introgressed alleles are

also depleted for heritability of most traits; however, there is modest enrichment for heritability of several

traits among alleles with older Neanderthal origins, including autoimmune disorders, hair and skin traits,

chronotype, bone density, lung capacity, and age at menopause (Fig. 2.1). Summarizing these heritability

patterns over trait domains, we find that dermatological, endocrine, and respiratory traits are consistently

enriched for heritability among Altai-matching Neanderthal introgressed variants, whereas cognitive and

ophthalmological domains are the most depleted (Fig. 2.2A). Additionally, several trait domains show di-
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Figure 2.4: Signed LD profile regression identifies a candidate functional association between an introgressed
haplotype in GRB10 and autoimmune disease.
(A) A genomic region overlapping GRB10 (chr7:50,649,920-50,739,129, yellow box) contains an introgressed haplo-
type. (B) GWAS Manhattan plot for this region showing associations with autoimmune disease from the UK Biobank
(n = 459,324). The strongest single-variant association is at an introgressed variant, but it does not reach genome-
wide significance (blue star, P = 9.8× 10−5 at rs17544225). (C) Using signed LD Profile regression, we discover a
strong negative relationship between LD to introgressed alleles and autoimmune disease in this region. The negative
correlation between Neanderthal LD profile and autoimmune disease risk suggests a protective relationship between
Neanderthal introgression at this locus and autoimmune disease (r = −0.84). Thus, while the single-variant associ-
ation alone is not sufficient to implicate this introgressed haplotype in autoimmune disease risk, considering LD to
Neanderthal alleles and the direction of effect across variants identifies it as a candidate. (D) The haplotype (tagged
by starred variant rs17544225) is derived in Neanderthals (N) and at 11% frequency in modern Europeans (EUR, n =
503) with 1% frequency in Africans (AFR, n = 661, only observed in admixed African Americans and Caribbeans)
(1000G super-populations). (E) The introgressed allele is also is an sQTL in which Neanderthal alleles associate with
increased GRB10 intron excision in spleen (two-tailed t-test P = 3× 10−9). The boxplot centers represent medians
and the boxes are bounded by the first and third quartiles.
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vergent heritability patterns, e.g. among psychiatric and reproductive traits (Fig. 2.2D-E). Using two meth-

ods for evaluating the direction of effect of variants on traits, we find uni-directional biases for introgressed

alleles with balding risk, younger menopause age, sunburn risk, forced vital capacity increase, and morning

preference (Figs. 2.3,6.14). Finally, we show how our approaches can highlight novel candidate introgressed

variants that influence risk for disease (Figs. 2.4,6.16, Supplemental Text 6.1 in Appendix 1).

To contextualize the implications of our results and to provide a framework for future studies, we pro-

pose a model that links observed patterns of heritability and direction of effect to hypotheses about the

history of selective pressures on introgressed haplotypes (Fig. 2.5). Along the dimensions of heritability

enrichment vs. depletion and uni-directional vs. bi-directional associations, traits fall into four general

quadrants (Fig. 2.5B). First, most traits show heritability depletion among introgressed variants and no bias

in the direction of effect. This suggests selection against introgressed variants that influenced these traits

(Fig. 2.5B, bottom left). Second, the opposite pattern—enrichment for heritability in introgressed variants

and a directional bias in their direction of effect—suggests that introgression introduced functional alleles

that were positively selected in AMHs (Fig. 2.5B, top right). For example, the enrichment for heritability

of sunburn and tanning in Altai-matching introgressed alleles and the bias in direction of effect in AMH

suggests that these introgressed alleles decreased hair and skin protection against sun exposure in ways that

may have been beneficial, perhaps in response to decreased UV at higher latitudes. Third, traits, like au-

toimmune disease risk and WBC count, have heritability enrichment among introgressed variants, but no

directional bias. In this case, introgression likely contributed increased diversity—both trait increasing and

decreasing—into AMHs that was beneficial as they adapted to non-African environments (Fig. 2.5B, bottom

right). We found support for the action of positive selection on two traits with heritability enrichment; high-

frequency putatively adaptive introgressed haplotypes are enriched for overlap with windows associated

with both sunburn and white blood cell count (Fig. 6.9). Fourth, traits like anorexia and schizophrenia, show

depletion for heritability among introgressed variants, but in contrast to most depleted traits, the remaining

introgressed variants have a bias towards trait-protective effects (Fig. 2.5B, top left). We hypothesize that

this pattern could be produced by negative selection purging most introgressed alleles that influence the

trait paired with selection for a small number of introgressed protective alleles. Supporting this interpreta-

tion, remaining Altai-matching variation has the strongest correlation with protective benefit against serious

fitness-reducing diseases (anorexia, schizophrenia)168. In summary, our results reveal signatures of contrast-

ing patterns of selection since admixture on introgressed variation associated with different traits. Further

work is needed to determine how these introgressed variants influence traits and resolve the dynamics of

selection.

Our results expand the current understanding of the functional effects of introgressed variants in several

dimensions. First, previous studies of regions with Neanderthal ancestry found depletion for evidence of

background selection and functional annotations, such as genes and gene regulatory elements active in spe-

cific tissues44,45,53,56. We extend beyond these proxies for function and show depletion for effects on diverse

complex traits in a human population. This further supports selection against Neanderthal introgression in

trait-associated genomic regions. However, we also find an exception to this pattern for variation associated

with skin color and tanning. This is consistent with previous hypotheses that genomic regions associated
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with skin traits tolerated introgression and with previous tests for genome-wide effects of Neanderthal an-

cestry on complex traits that found enrichment for traits related to skin and hair45,59.

Second, our analyses increase the scope and accuracy of estimates of the genome-wide influence of

Neanderthal introgression on human phenotypes. S-LDSC requires only GWAS summary statistics, rather

than individual-level data as in the GCTA analysis of 46 specific traits in Simonti et al. 201659. This enabled
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Figure 2.5: Patterns of heritability and direction of effect suggest contrasting selective pressures on introgressed
variation associated with different traits.
See next page for full caption.
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Figure 2.5: (Previous page.) Patterns of heritability and direction of effect suggest contrasting selective pres-
sures on introgressed variation associated with different traits.
(A) After admixture, many Neanderthal variants segregated in hybrid populations. As these populations evolved into
modern Eurasians, some introgressed variants were lost due to drift or negative selection (dashed line) and some were
maintained due to drift or positive selection (solid line). (B) Among the remaining introgressed variants in modern
Europeans, traits fall into four general quadrants on the axes of heritability enrichment vs. depletion (x-axis) and
uni-directional vs. bi-directional trait effects (y-axis). For each quadrant, we depict potential variant histories and
selective pressures leading to the observed distribution of introgressed variants’ trait effects (solid and dashed lines).
(Bottom Left) Heritability for most traits is depleted among introgressed variants (narrow effect distribution with most
variants conferring no effect) with no bias in the direction of effect (centered at zero). This suggests selection against
introgressed variants that influenced these traits. (Top Right) The opposite pattern is observed in traits such as sunburn
and tanning. These traits are enriched for heritability among introgressed variants (thick tail with more variants
conferring trait effects than expected), and they have a bias in their direction of effect (skewed). This pattern suggests
that introgression introduced some functional alleles that were positively selected in AMHs. (Bottom Right) Traits, like
autoimmune disease risk and white blood cell (WBC) count, have heritability enrichment among introgressed variants
(thick tails with many variants conferring trait effect), but no directional bias (centered). In this case, introgression
likely contributed increased diversity relevant to the trait—both trait-increasing and decreasing—into AMHs that was
beneficial as they adapted to non-African environments. (Top Left) Finally, traits like anorexia and schizophrenia, show
depletion for heritability among introgressed variants (narrow distribution), but they have a significant directionality
bias in the few introgressed variants with effects (skewed). This pattern could be produced by negative selection
purging most introgressed alleles that influence the trait paired with selection for a small number of introgressed
beneficial alleles.

us to test effects on over 400 traits across many domains in a larger cohort. Furthermore, the partitioned

heritability method for identifying enrichment considers LD and the full distribution of variant effect sizes

from a GWAS rather than selecting an ad hoc significance threshold and attempting to generate appropriate

comparison sets of non-introgressed alleles as in the analysis of 136 traits in an earlier release of the UK

Biobank by Dannemann et al.62 Highlighting the importance of accounting for LD, a recent analysis of

introgression in whole-genome sequences from 27,566 Icelanders by Skov et al.31 suggested based on locus-

by-locus trait association tests that many previous associations between traits and introgressed variants were

better explained by non-introgressed variants in LD. Our approach addresses this important concern without

the need for arbitrary filters and assumptions about the causal variant that complicate locus-level analyses.

Furthermore, in contrast to simply associating the absolute number of archaic alleles in each individual

with traits31, our approach assesses the genome-wide influence of archaic introgression on phenotypes by

considering the specific archaic alleles present across individuals and the effects of each allele on traits.

Third, we analyze trait heritability patterns for different sets of variants in regions with Neanderthal an-

cestry (Fig. 2.1A). Considering non-introgressed variants and remaining introgressed variants with different

histories separately enables us to identify differences in the effects of introgressed variants based on their ori-

gins and genomic context. For example, we find modest enrichment for heritability of several traits among

introgressed alleles, even though they are in regions of the genome with overall depletion for heritability

of these traits. Our analyses also suggest differences in heritability among different subsets of introgressed

variants. The introgressed variants that remain in AMH genomes are the result of complex selective and

demographic pressures following admixture35,51,53. Introgressed haplotypes carry alleles of different ori-

gins, including ancestral alleles lost in some modern Eurasian populations58.Our analysis of different sets
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of alleles on introgressed haplotypes revealed that introgressing alleles matching the Altai Neanderthal are

less depleted for heritability than those matching introgressed alleles overall (Fig. 2.1D). The introgressing

Neanderthal population diverged from the Altai Neanderthal population more than 100 kya, while the Vin-

dija was much closer genetically and geographically14,15. Thus, we hypothesized that the Altai-matching

introgressed alleles were likely at higher frequency in different Neanderthal populations and were thus less

likely to have strong deleterious effects than younger introgressed Neanderthal alleles. The lower levels

of depletion (and modest enrichment for some traits) of heritability in Altai-matching variants support this

hypothesis.

Fourth, we introduce a new approach for testing for consistent direction of effects for introgressed alleles

on traits. Using this approach, we show that Neanderthal introgression generally increased propensity for

sunburn, balding, larger lung capacity, and younger menopause, while it had both increasing and decreas-

ing effects on most other traits. With this directionality metric, we also highlight hundreds of candidate

functional introgressed variants including many that would not have been identified by simply intersecting

introgressed alleles with GWAS results.

Several limitations must be considered when interpreting our results. First, we quantify the contribution

to heritability of common introgressed variants (MAF > 0.05); genome-wide investigation of rarer intro-

gressed variant effects will be possible in the future as more dense sequencing cohorts and new statistical

methods become available169. Second, because some of the partitions of the genome considered are small

(e.g. common Altai-matching introgressed variants), some of the enrichment, depletion, and directionality

tests we performed are underpowered. Third, many introgressed alleles likely had pleiotropic effects and

different fitness effects in modern versus archaic environments, complicating the inference of the history

of selection. Fourth, recent analyses have demonstrated that estimates of heritability enrichment are sen-

sitive to the assumed heritability model and that variation in heritability estimates from different statistical

methods are influenced by demographic factors170,171. Nonetheless, our results are consistent in direction

across many traits and are correlated across variant sets. Given this consistency, that the overall differ-

ences in heritability estimates in previous evaluations are small, and that none of our interpretations rely on

magnitude of effect, we anticipate that other estimation methods would identify similar overall depletion for

trait-associated variation in genomic regions with Neanderthal ancestry. Fifth, we only analyze the effects of

introgressed variation in the context of Europeans. Further work in new cohorts172 and continued expansion

of GWAS across diverse traits are needed to comprehensively understand the role of introgressed varia-

tion in other (e.g. East and South Asian) populations, especially given that Asians have evidence of pulses

of introgression from different Neanderthal populations than Europeans173. Sixth, in the direction of effect

analyses, we were conservative in considering only Altai-matching alleles and expanding for LD in mapping

introgressed variants to GWAS hits. Thus, some introgressed alleles with effects on traits considered may

have been missed (2.4:Methods); however, our genome-wide signed LD profile regression approach consid-

ers all variants and effects. Finally, while we identify associations between many introgressed haplotypes

and traits, molecular validation is needed to determine the specific causal allele(s) behind the association.

With the growth of large cohorts including linked genotype and phenotype data, it will be valuable to

extend these heritability analyses to large-scale biobank data sets from diverse populations. This will enable
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further quantification of the functional effects and selective pressures on introgressed variants, including

introgression from Denisovans, and other alleles with unique evolutionary histories (e.g., reintroduced an-

cestral alleles, high frequency derived alleles). We also anticipate that simulation studies can inform our

understanding of the types of selective pressures required after introgression to produce the heritability pat-

terns observed. Ultimately, knowledge of how remaining introgressed Neanderthal alleles influence AMH

populations provides a window into understanding the phenotypic variation of Neanderthal populations over

50,000 years ago and how this variation contributed to AMH adaptation to diverse environments.

2.4 Methods
Defining Neanderthal-introgressed regions and variants

Genomic regions with Neanderthal ancestry

To define genomic regions with Neanderthal ancestry we used “segments” identified by Browning et al.32

using Sprime, a heuristic scoring strategy that compares high LD regions in a target admixed populations

(i.e. Europeans) with an unadmixed outgroup (i.e. Africans) to identify putatively introgressed regions.

We considered the Sprime-identified segments identified using five European subpopulations (CEU, TSI,

FIN, GBR, IBS). To isolate regions with Neanderthal ancestry, as recommended by Browning et al.32, we

(1) considered segments identified in these five populations that have at least 30 putatively introgressed

variants that could be compared to the Altai Neanderthal genome and (2) had a match rate of at least 30%

to the Altai Neanderthal allele. We provide data on these sets in Fig. 6.1. After applying these two filters

to the segments identified independently in the five European subpopulations, we merged these sets. This

ultimately defines a set of segments with strong evidence of Neanderthal ancestry in Europeans used for the

top panel of Fig. 2.1B. To define the non-introgressed variants in segments of Neanderthal ancestry (bottom

panel of Fig. 2.1B), we identified 1000G variants in these segments and subtracted out introgressed variants

(LD expanded to r2 > 0.5, see set four below). Finally, in Fig. 6.3A, we repeat this analysis with regions

that have at least a 30% match rate to the Vindija Neanderthal genome (instead of Altai).

Neanderthal introgressed variants (All introgressed variants, Altai-matching, and Vindija-matching)

We consider several sets of Neanderthal introgressed alleles based on Sprime analyses. From most stringent

to least stringent, these sets are: (1) putatively introgressed variants identified in European subpopulations

matching the Altai Neanderthal allele (used predominately in analyses in Fig. 2.1D - Fig. 2.4, N = 138,774),

(2) putatively introgressed variants identified in any modern subpopulation matching the Altai Neanderthal

allele (N = 276,902), (3) putatively introgressed variants identified in European subpopulations regardless

of evidence of matching the Neanderthal allele (N = 350,577), and (4) putatively introgressed variants

identified in any subpopulation regardless of evidence of matching the Neanderthal allele (used in Fig. 2.1C-

D, N = 900,902). In sets three and four, the variants might not match the Altai Neanderthal allele at the site

or a comparison might not have been possible due to lack of coverage or high confidence allele call. We

present results from set one (“Altai-matching introgressed variants”) and set four (“introgressed variants”)

in the main text. Fig. 6.8 reports heritability enrichments by trait for the set one Altai-matching variants but

further stratified by minor allele frequency.
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Of all Altai-matching variants (set one) and introgressed variants (set four), respectively, 44,537/138,774

(32.1%) and 139,118/900,902 (15.4%) are at MAF > 0.05 and are used to calculate heritability enrichment

by S-LDSC. However, all variants at MAF >= 0.52% (Allele Count ¿= 5) are used to compute LD scores.

This includes 82.9% (115,081/138,774) of Altai-matching variants and 41.5% (374,172/900,902) of all in-

trogressed variants.

Finally, we created a “Vindija-matching introgressed variants” set to investigate evolutionarily younger

variants shared among the Neanderthals closer to the introgressing population. This set includes putatively

introgressed variants identified in European subpopulations that match the Vindija Neanderthal allele (N =

167,927, used in Fig. 6.3).

Vernot 2016 S*-identified haplotypes and variants

For completeness, we also considered the introgressed Neanderthal haplotypes previously identified by Ver-

not et al.156. These introgressed regions were identified using the S* statistic which, like Sprime, infers

introgressed regions in the absence of any archaic reference genome. Like Sprime, S* uses a heuristic scor-

ing strategy between introgressed target populations and a non-introgressed outgroup. Sprime differs from

S* in that it simultaneously considers multiple members of the target population, and Sprime allows for

limited gene flow between the target population and the outgroup.

For introgressed haplotypes identified by S* in Europeans (5851), 3243 (55%) are more than 50% cov-

ered by at least one EUR segment identified by Sprime, and 2370 S* haplotypes (40%) have 0% coverage.

Conversely, for introgressed segments identified by Sprime in Europeans (1733), 1128 (65%) are more than

50% covered by at least one EUR haplotype identified by S*, while 282 (16%) have 0% coverage.

GWAS summary statistics

41 representative traits

We considered GWAS summary statistics from a previously-described representative set of 41 diseases and

complex traits92,144–154. Previous studies using these traits had GWAS replicates (genetic correlation > 0.9)

for six of these traits (BMI, Height, High Cholesterol, Type 2 Diabetes, Smoking status, Years of Education).

For these six traits, we considered only the GWAS with the largest sample size so our combined analysis did

not overrepresent these six. All GWAS are European-ancestry only. Many are from UK Biobank, but we

note that their coding may be different than coding used in other UK Biobank heritability analyses144. For

example, morning person is converted into a binary variable (morning person vs. evening person) rather than

the categorical ordinal scale of the underlying data (“definitely a morning person”, “more a morning person”,

“more an evening person”, “definitely an evening person”). Information on these traits is in Table 6.1.

405 UK Biobank Traits

For a more diverse set of traits, we considered GWAS from the UK Biobank and 15 from FinnGen formatted

for LDSC by the Neale Lab144,157. For reliability of S-LDSC heritability estimates, we apply two thresholds

to select GWAS based on recommendations from Finucane et al.75 and the Neale lab157,174. We only consider

traits that meet the following criteria:
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1. High confidence estimates of SNP heritability: traits with an effective sample size of greater than

40,000, a standard error of less than 6 times expected based on the GWAS sample size, sex bias less

than 3:1, no nonlinear ordinal coding of numeric values

2. Significantly heritable traits: phenotypes that have heritability estimates with P< 1.28×10−12 (z> 7)

Together, these two criteria define a set of 405 traits (average n = 288,130, h2
SNP = 0.108). Some traits are

genetically independent of the other traits considered, but many of these traits are also correlated with each

other (e.g., the shared genetic architecture of depression and anxiety). Traits from the previous set of 41 are

only included if they meet the criteria for this high-confidence set from UK Biobank/FinnGen.

Defining phenotypic domains

To explore heritability on a trait domain level, we categorize traits by their phenotypic “domains,” “chap-

ters,” and “subchapters”. We derive these designations from the GWAS Atlas, a database of publicly avail-

able GWAS summary statistics159. The GWAS Atlas has categorized many of the 405 UK Biobank traits;

however, because the GWAS Atlas uses different criteria for inclusion into their database, some of the traits

analyzed here were uncategorized. We manually assigned the uncategorized UK Biobank traits and the 41

representative traits into the domain, chapter, and subchapter hierarchy based on similar categorized traits.

The only change we made to the existing designations was among subchapter labels of the immunologic

domain. All its subchapter instances (N = 14) were labeled “Immunological System Functions.” We man-

ually changed this generic label to either red blood cell (RBC) or white blood cell (WBC). For example,

reticulocyte count and mean corpuscular hemoglobin fall under RBC, while eosinophil count and neutrophil

fall under WBC. The 405 GWAS cross 21 domains, 31 chapters, and 62 subchapters. However, we note that

this organization is not purely hierarchical (e.g. some traits in the same subchapter belong in two different

domains).

Quantifying partitioned heritability with S-LDSC

We quantified partitioned heritability using Stratified-LD Score Regression v1.0.1 (S-LDSC) to test whether

an annotation of interest (e.g., introgressed regions or introgressed variants) is enriched for heritability of a

trait75,90. We use 1000 Genomes for the LD reference panel (variants with MAF ¿ 0.05 in European sam-

ples)175and HapMap Project Phase 3 (HapMap 3)176 excluding the MHC region for our regression variants

to estimate heritability enrichment and standardized effect size metrics following previous recommendations

for S-LDSC75.

S-LDSC estimates the heritability enrichment, defined as the proportion of heritability explained by

common variants (MAF > 0.05) in the annotation divided by the proportion of all variants considered that

are in the annotation. The enrichment of annotation c is estimated as

Enrichmentc =
%h2

(c)

%SNP(c)
=

h2
(c)/h2

|c|/M

where h2
(c) is the heritability explained by common variants in annotation c, h2 is the heritability ex-

plained by the common variants over the whole genome, |c| is the number of common variants that lie in
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the annotation, and M is the number of common variants considered over the genome75,92. We use the

baseline v2.1 model which includes 86 diverse annotations including coding, UTR, promoter and intronic

regions, histone marks (H3K4me1, H3K4me3, H3K9ac, H3K27ac), DNAse I hypersensitivity sites (DHSs),

chromHMM and Segway predictions, super-enhancers, FANTOM5 enhancers, GERP annotations, MAF

bins, LD-related, and conservation annotations75,155,169.

Direction of effect: Intersection with genome-wide significant variants

To intersect introgressed variants with genome-wide significant variants, we first used PLINK to LD expand

the Altai-matching introgressed Neanderthal variants (set one, described in “Neanderthal introgressed vari-

ants” methods section) to perfect LD (r2 > 0.999)177. LD was calculated for variants within 1 Mb of each

introgressed variant using the 1000G European reference population while preserving the “phase” of the al-

lele in LD with the Neanderthal allele175. We eliminated any duplicates (i.e., if two introgressed variants in

perfect LD were both tagging another variant). We intersected this LD-expanded set of introgressed variants

with the GWAS summary statistics using rsIDs. We oriented the sign of the summary statistic (the z-score)

relative to the archaic allele (or the allele in perfect LD to the archaic allele). For example, if a variant is

positively associated with a trait (z-score is +6 with GWAS effect allele “A” and alternative allele “C”), but

the archaic allele is “C”, we flip the z-score to be -6 because the archaic allele “C” is negatively associated

with the trait.

For eight traits (AutoimmuneDz, Balding, Sunburn, FVC, Heel T Score, MorningPerson, Menopause-

Age, WBCCount), we filtered the introgressed variant-summary statistic intersection at different thresholds

of genome-wide significance (P < 1× 10−8, P < 5× 10−8 , P < 1× 10−6). We then pruned variants at

various levels of LD (r2 = 1, r2 = 0.8, r2 = 0.5) to reduce redundant counts due to linked loci. We used

the LDmatrix tool in the LDlink API to calculate the pairwise LD to prune linked variants (with the 1000G

EUR as a reference)178. We then counted the number of introgressed alleles associated with the positive and

the negative directions of the trait. With quantified significance with a chi-squared goodness of fit test.

Limitations of genome-wide significant variant intersection

We caution overinterpretation of these results and highlight some of the limitations of this method. First,

despite LD expansion, only 29% of the introgressed alleles could be intersected with variation interrogated

by the GWAS (LD expanded to r2 = 1). Therefore, this analysis does not investigate directionality of intro-

gressed variants in regions not perfectly tagged by the genotyping array used for the GWAS. However, 61%

of the Sprime segments (larger windows with Neanderthal introgression) have at least one introgressed vari-

ant interrogated by the GWAS; therefore, we feel confident that this analysis samples broadly across intro-

gressed regions. Second, by considering only genome-wide significant variants, this directionality analysis

is limited to loci in the extremes of the GWAS distribution. It does not consider the global genome-wide

relationship between introgressed alleles and directionality of trait-associated variation at varying levels

of effect size and significance. However, we show these results are consistent at a less stringent level of

genome-wide significance (P < 5×10−8, Fig. 6.13).
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Direction of effect: Signed LD profile regression (SLDP) analysis

SLDP quantifies the genome-wide directional effect of a signed functional annotation on polygenic disease

risk. SLDP calculates the correlation between a vector of variant effects on a trait (from GWAS summary

statistics, α̂) and a vector of those variants’ aggregate tagging of an annotation (Rν)160. Our annotation is

each variant’s maximum LD to a Neanderthal introgressed allele (which we term “Neanderthal LD profile”).

This allows us to quantify if there is a genome-wide relationship between a variant’s LD to a Neanderthal

allele and the direction of that variant’s trait association. This is distinct from previous stratified-LD score re-

gression (S-LDSC) analyses because S-LDSC quantifies heritability enrichment in an annotation of interest

independent of directionality.

More specifically, SLDP regresses α̂ (the vector of marginal correlations between variant alleles and a

trait) on vector ν (the signed functional annotation) to estimate r f , the functional correlation between the

annotation and trait, using

E(α̂|ν) =
√

h2
gRν

where R is the LD matrix from the 1000G Phase 3 European reference, h2
g is the trait’s SNP-heritability.

Together, Rν is a vector quantifying each variant’s aggregate tagging of the annotation, termed the “signed

LD profile”. SLDP uses generalized least-squares regression across HapMap 3 variants excluding the MHC

region (M = 1,187,349). It also conditions the regression on a “signed background model” that quanti-

fies the directional effects of minor alleles to reduce confounding due to genome-wide negative selection

or population stratification (using five equally-sized MAF binds). False discovery rates and P-values are

obtained by empirically generating a null distribution by randomly flipping the signs of ν in large blocks.

For a detailed description of the SLDP method, derivation, estimands, and validation see Reshef et al.160.

We conducted SLDP analysis on the 41 representative GWAS summary statistics (Fig. 2.3C and Ta-

ble 6.6). To generate our functional annotation, we used PLINK to calculate pair-wise LD between the

Altai-matching introgressed variants (set 1, described in “Neanderthal introgressed variants” methods sec-

tion) and the 1000 Genomes Phase 3 European reference panel (approx. 10M variants)175. We considered

LD limited to variant pairs within 1 Mb and r2 > 0.2. For each variant in the reference panel, the annotation

(ν) is the maximum r2 value to the Neanderthal variants. The input annotation (ν) is generated with ref-

erence to the allele that is on the Neanderthal haplotype. However, for the SLDP regression, the signs (for

both α̂ and Rν) are oriented with reference to the European minor allele.

For interpretability of the visualizations, all plots show α̂ and Rν with reference to the Neanderthal

allele. For example, if a Neanderthal variant, “X”, is in LD (and in-phase) with SLDP regression variant,

“Y” at r2 = 0.5, variant Y’s functional annotation (ν) is 0.5. We plot the sign of α̂ (from the GWAS) with

reference to Y as the effect allele (A1). All plots describing SLDP results display the residuals of α̂ (y-

axis) and Rν (x-axis) for each variant. This residual reflects that all analyses are conditioned on the “signed

background model” described above.
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Identifying genomic windows with an association between Neanderthal LD profile and trait effect

To locate regions in which Neanderthal introgression likely influences a trait of interest, we identify genomic

windows with a strong correlation between LD to introgressed alleles and trait-associated risk or protection.

From the per-variant output from SLDP regression (M = 1,187,349), we calculated Pearson correlation

coefficients (r) between the residuals of α̂ and Rν for 30 kb sliding windows centered around each SLDP

regression variant. We select windows that have at least 15 SLDP regression variants and an r2 > 0.5

(correlation in either direction), and we join overlapping windows. Therefore, the final windows are often

bigger than 30 kb and can have a correlation coefficient less than 0.5. We only consider windows that have

at least one variant marginally associated with the trait (P < 1×10−4) and windows that overlap at least one

Altai-matching Neanderthal introgressed allele (set one; see above).

Figures depicting the windows of interest identified were generated using the UCSC Genome Browser179.

eQTL and sQTL analysis and plots were generated using the Genotype-Tissue Expression (GTEx) Project

(V8 release) Portal on 4/29/202095. GTEx V8 results are in GRCh38 and were lifted over to GRCh37 (hg19)

for comparison with the windows of interest. PheWAS results are from the GWAS Atlas and consider 4756

traits159.

Overlap between genomic windows and high-frequency haplotypes

To test if the windows with Neanderthal trait-associated heritability enrichment and directionality have evi-

dence of recent positive selection, we compared them with high-frequency haplotypes defined by Gittelman

et al.35 (European only) and Chen et al.180 (excluding haplotypes identified in Africans only). We calculated

an empirical null distribution by shuffling identified trait-associated windows within the universe of genomic

regions that could have been identified through the above method (30 kb sliding windows centered around

each SLDP regression variant with at least 15 regression variants that, when merged into non-overlapping

windows, had to overlap at least one Altai-matching allele). For the observed trait-associated windows

and 10,000 shuffled sets of the windows, we quantified the proportion that overlapped the high-frequency

haplotypes and compared the observed to the shuffled (Fig. 6.9).

Data analysis and figure generation

All genomic coordinates and analysis refer to Homo sapiens (human) genome assembly GRCh37 (hg19)

unless otherwise specified. All P-values are two-tailed and q-values are Benjamini-Hochberg FDR-corrected

at α = 0.05, unless otherwise specified. All measures of central tendencies are means, unless otherwise

specified. Data and statistical analyses were conducted using Python 3.5.4 (Anaconda distribution), R 3.6.1,

Jupyter Notebook, BedTools v2.26, and PLINK 1.9177,181. Figure generation was significantly aided by

Matplotlib, Seaborn, and Inkscape182–184.

Data Availability

The publicly available data used for analysis are available in the following repositories: introgressed variants

and segments from Sprime Version 1 [https://data.mendeley.com/datasets/y7hyt83vxr] (Browning et al.32),

introgressed variants and segments from S* [http://akeylab.gs.washington.edu/vernot et al 2016 release
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data/introgressed tag snp frequencies/] (Vernot et al.156), GWAS traits formatted for LDSC v1.0.1 from the

Alkes Price lab [https://data.broadinstitute.org/alkesgroup/LDSCORE/independent sumstats/], UK Biobank

traits formatted for LDSC from the Neale lab [http://www.nealelab.is/uk-biobank]157, GWAS Atlas [https:

//atlas.ctglab.nl/] (Watanabe et al.159), the GTEx Project Portal [https://gtexportal.org/home/] (Lonsdale et

al.95), 1000 Genomes for the LD reference (Auton et al.175), and HapMap Project Phase 3 (HapMap 3)

(Altshuler et al.176). The datasets we generated are available in the trait-h2-neanderthals GitHub repository

[https://github.com/emcarthur/trait-h2-neanderthals]185. They include bed files of all genomic partitions

considered (regions with Neanderthal ancestry, sets of introgressed variants), all results of partitioned heri-

tability analysis output (for the 41 traits formatted from the Price Lab and the 405 traits from the UKBioBank

formatted by the Neale Lab) and signed LD profile regression results.

Code Availability

The publicly available software are available in the following repositories: LDSC v1.0.1 [https://github.

com/bulik/ldsc](Finucane et al.75 and Bulik-Sullivan et al.90) and Signed LD Profile Regression [https://

github.com/yakirr/sldp](Reshef et al.160). The trait-h2-neanderthals GitHub repository [https://github.com/

emcarthur/trait-h2-neanderthals]185 contains a Jupyter notebook with custom code used for data analysis

and all figure generation.
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CHAPTER 3

TOPOLOGICALLY ASSOCIATING DOMAIN BOUNDARIES THAT ARE STABLE ACROSS
DIVERSE CELL TYPES ARE EVOLUTIONARILY CONSTRAINED AND ENRICHED FOR

HERITABILITY*

3.1 Introduction
The three-dimensional (3D) conformation of the genome facilitates the regulation of gene expression186–189.

Using chromosome-conformation-capture technologies (3C, 4C, 5C, Hi-C),103–105 recent studies have demon-

strated that modulation of gene expression via 3D chromatin structure is important for many physiologic

and pathologic cellular functions, including cell-type identity, cellular differentiation, and risk for multiple

rare diseases and cancer125–130,190. Nonetheless, many fundamental questions about the functions of and

evolutionary constraints on 3D genome architecture remain. For example, how does genetic variation in

different 3D contexts contribute to the risk of common complex disease? Furthermore, disease-causing

regulatory variation is known to be tissue-specific; however, only recently has there been characterization

of 3D-structure variation across multiple cell types and individuals190–192. Understanding how different

attributes of 3D genome architecture influence disease risk in a cell-type-specific manner is crucial for in-

terpreting human variation and, ultimately, moving from disease associations to an understanding of disease

mechanisms81.

3D genome organization can be characterized at different scales. Globally, chromosomes exist in dis-

crete territories in the cell nucleus105. On a sub-chromosomal scale, chromatin physically compartmental-

izes into topologically associating domains (TADs). TADs are megabase-scale genomic regions that self-

interact but rarely contact regions outside the domain (Fig.3.1A)105,111–113. They are formed and maintained

through interactions between CTCF zinc-finger transcription factors and cohesin ring-shaped complexes,

among other proteins both known and unknown102,105. TADs are identified based on regions of enriched

contact density in Hi-C maps (Fig.3.1). TADs modulate gene regulation by limiting interactions of cis-

regulatory sequences to target genes105. The extent to which chromatin 3D topology affects gene expression

is still debated193. In extensively rearranged Drosophila balancer chromosomes, few genes had expression

changes194. In contrast, subtle chromatin interaction changes in induced pluripotent stem cells (iPSCs) from

seven related individuals were associated with proportionally large differential gene expression195. Thus,

further cell-type-specific investigation into properties of TAD organization and disruption will need to clar-

ify which parts of the genome are sensitive to changes in 3D structure and how these changes influence gene

regulation and traits.

At the highest level, TAD organization can be divided into two basic features: the TAD and the TAD

boundary. TADs are the self-associating, loop-like domains that contain interacting cis-regulatory elements

and target genes. TAD boundaries—regions in between TADs—are insulatory elements that restrict in-

*This chapter is from McArthur, E. & Capra, J.A. 2021. AJHG. and has been reproduced with permission of the publisher and
co-author J.A. Capra.
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Figure 3.1: Schematic depiction of our analyses of 3D chromatin TAD-boundary stability and function.
(A) Chromatin is organized in 3D space into topologically associating domains (TADs), which are identified by Hi-
C experiments. Regions within a TAD are much more likely to interact with one another than are regions outside
of the TAD. Regions bordering TADs are TAD boundaries. Boxes with right-angled arrows represent genes, and
stars represent gene regulatory elements, such as enhancers. (B) This work addresses two main questions: (1) How are
complex-trait heritability and evolutionary sequence conservation partitioned between TADs and TAD boundaries? (2)
Do stable TAD boundaries (i.e., those observed across multiple tissues) have different contributions to trait heritability
or sequence conservation than TAD boundaries unique to specific tissues?

teractions of cis-regulatory sequences, such as enhancers, to target genes105. Previous work suggests the

functional importance of maintaining both the self-associating TADs and the insulatory boundaries. For

example, in cross-species multiple sequence alignments, syntenic break enrichment at TAD boundaries sug-

gests a long-term evolutionary preference for rearrangements that “shuffle” intact TADs, rather than “break”

them121,123. Additionally, 3D genome structure correlates with similar functional features, such as histone

modifications and replication timing, across species196. TADs also often contain clusters of co-regulated

genes—e.g., cytochrome genes and olfactory receptors105,112,135. Intra-TAD structural variation that deletes

or duplicates enhancers has been implicated in polydactyly, B cell lymphoma, and aniridia122. Together,

these data suggest that the genome is under pressure to preserve TADs as functional units.

Other evidence suggests the greater importance of maintaining TAD boundaries. TAD boundaries are

enriched for housekeeping genes and transcription start sites105,111. Removing insulatory TAD boundaries

leads to ectopic gene expression in cultured cells and in vivo. For example, TAD structure disruption at

the EPHA4 locus leads to inappropriate rewiring of developmental genes implicated in limb-formation de-

fects105,122,132. In cancer, large structural alterations that disrupt TAD boundaries cause pathogenic gene
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expression in acute myeloid leukemia (AML) and medulloblastoma133,134. Structural variation (SV) that

disrupts TAD boundaries causes gain-of-function, loss-of-function, and misexpression in many forms of

rare neurodevelopmental disease132. Accordingly, TAD boundaries and CTCF sites have evidence of puri-

fying selection on SVs137,197. Finally, human haplotype breakpoints do not align with chromatin boundaries,

which indicates that recombination might be deleterious at TAD boundaries124. Collectively, these findings

suggest that TAD boundaries are functionally important and constrained, especially on the scale of human

evolution.

In addition to the need for further characterization of the constraint on and functions of TADs versus

TAD boundaries, there is also a gap in our understanding of the variability in TAD organization across cell

types. TADs and TAD boundaries have been characterized as largely invariant across cell types111,112,116–118

and species105,111,119–121. However, previous pairwise comparisons of five 3D maps suggest that 30%–50%

of TADs differ across cell types78,117. More comprehensive recent investigations have observed large differ-

ences in the percent of boundaries not shared across cell lines (20%–80%), which contrasts with previous

claims of extensive TAD conservation198,199. Boundaries shared across two cell types have evidence of

stronger SV purifying selection than boundaries unique to a cell type, suggesting that shared boundaries are

more intolerant of disruption137. Additionally, stratifying boundaries by their strength (in a single cell type)

facilitated discovery that greater CTCF binding confers stronger insulation and that super-enhancers are pref-

erentially insulated by the strongest boundaries200. Stratifying by hierarchical properties of TADs—TADs

often have sub-TADs—demonstrated that boundaries flanking higher-level structures are enriched for CTCF,

active epigenetic states, and higher gene expression201.

Despite these preliminary indications that the stability of components of the 3D architecture might in-

fluence functional constraint, there has been no comprehensive analysis comparing genomic features and

disease associations between 3D structural elements stable across multiple cell types and those that are

unique to single cell types. Quantifying stability across cell types is important for interpreting new variation

within the context of the 3D genome given our knowledge that disease-associated regulatory variation is

often tissue-specific190–192.

To investigate differences in TAD boundaries across cell types, we quantify boundary “stability” as the

number of tissues that share a TAD boundary. If a TAD boundary is found in many tissues, it is “stable,”

whereas if it is found in few tissues, it is “unique” (Fig. 3.1B). Using this characterization, we address two

main questions that aim to expand our framework for cell-type-aware interpretation of genetic variation and

disease associations in the context of the 3D genome (Fig. 3.1B):

1. How do TADs and TAD boundaries differ in their contribution to complex-trait heritability and their

evolutionary constraint?

2. Are there functional and evolutionary differences in TAD boundaries that are stable across multiple

cell types versus TAD boundaries that are unique to specific tissues?

Synthesizing 3D genome maps across 37 diverse cell types with multiple functional annotations and

genome-wide association studies (GWASs), we show that TAD boundaries are more enriched for heritabil-

ity of common complex traits and more evolutionarily conserved than TADs. Furthermore, genetic variation
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in TAD boundaries stable across multiple cell types contributes more to the heritability of immunologic,

hematologic, and metabolic traits than variation in TAD boundaries unique to a single cell type. Finally,

these cell-type-stable TAD boundaries are also more evolutionarily constrained and enriched for functional

elements. Together, our work suggests that TAD boundary stability across cell types provides valuable con-

text for understanding the genome’s functional landscape and enabling variant interpretation that accounts

for genome 3D structure

3.2 Results
3.2.1 Estimating complex-trait heritability across the 3D genome landscape
Disruption of 3D genome architecture plays a role in rare disease and cancer; however, the contribution of

common variation in different 3D contexts to common phenotypes is unknown. To investigate complex-trait

heritability patterns across the 3D genome landscape, we use 37 TAD maps from the 3D Genome Browser

(Table 6.7)202. The cellular contexts include primary tissues, stem cells, and cancer cell lines116–118,203–206;

for simplicity, we will refer to these as “cell types.” All TAD maps were systematically predicted from Hi-C

data with the HMM pipeline from Dixon et al.111 at either 40 kb or 25 kb resolution (Supplemental Text 6.2

in Appendix 2)202. We estimated common-trait heritability enrichment among common variants within

these 3D genome annotations by using stratified-LD score regression (S-LDSC)75,90. S-LDSC is a method

of partitioning heritability across the genome by using GWAS summary statistics and LD patterns to test

whether variants in an annotation of interest (e.g., TADs or TAD boundaries) are enriched for heritability of

a trait in comparison to the rest of the genome. We considered GWAS summary statistics from a previously

described representative set of 41 diseases and complex traits (Table 6.8)92,144–153.

To investigate patterns of heritability across the 3D genome landscape, we used two strategies for defin-

ing genomic partitions. In the first, we analyzed TADs plus 50% of their length on each side. Motivated

by the approach to partitioning TADs from Krefting et al.123, we subdivided these regions into 20 equally

sized partitions. Bins 1–5 and 16–20 “bookend” the TAD, whereas the center bins 6–15 are inside the TAD

(see 3.4:Methods). In addition to characterizing heritability patterns in bins across the TAD landscape, we

also explicitly defined TAD boundary windows as fixed-size (40 kb, 100 kb, or 200 kb) regions bookending

TADs. We conducted S-LDSC across the 37 cell types for the 41 traits to estimate the enrichment (or de-

pletion) of heritability for each trait across the 20 partitions over the TAD landscape and the 100 kb TAD

boundaries.

3.2.2 TAD boundaries are enriched for complex-trait heritability and evolutionary sequence conser-
vation

Regions flanking TADs are enriched for complex-trait heritability; whereas partitions in TADs are marginally

depleted for heritability overall (1.07× enrichment in flanking regions versus 0.99× enrichment in TADs,

P = 1× 10−193) (Fig. 3.2A). We also observed enrichment in regions flanking TADs when when we used

the 100 kb TAD boundary definition (1.07× background, P = 0.001, Fig. 6.19). The results are con-

sistent whether averaged across traits or meta-analyzed with a random-effects model75,92,207 (r2 = 0.85,

P = 7× 10−9 Fig. 6.17); therefore, further analyses of heritability across traits will use averaging for sim-
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plicity and interpretability. There is also a spike of heritability enrichment in the center of TADs; we explore

this further in a subsequent section.
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Figure 3.2: Regions flanking TADs are enriched for heritability of diverse common complex traits and evolu-
tionary sequence conservation.
(A) Contribution to trait heritability (h2) is enriched across variation in TAD-flanking regions and in the center of
TADs when averaged across 41 common complex phenotypes and TAD maps from 37 cell types (P = 1× 10−193).
Enrichment was computed within 20 equally sized bins centered on each TAD ±50% of its length. (B) Heritability
patterns are consistent across the 3D genome landscape for 37 cell types. (C) Regions flanking TADs have increased
sequence-level constraint. They have a higher proportion of conserved bases (overlap with PhastCons elements; P =
5×10−11) (left blue axis) and a higher average conservation score across those overlapping PhastCons elements (right
gray axis; P = 3×10−29). Error bands signify 99% confidence intervals. Trends are similar for fixed-size 100 kb TAD
boundaries bookending TADs; TAD boundaries are enriched for heritability (P = 0.001, Fig. 6.19) and conservation
(P = 3×10−29, Fig. 6.20A).

The complex-trait heritability enrichment flanking TADs is also consistent across cell types (Fig. 3.2B).

The heritability enrichment values are significant but relatively small in magnitude. This is expected in

light of the large genomic regions considered by this analysis—only a small fraction of the base pairs in a

boundary are likely to be functionally relevant.

To assess functionality via a complementary approach, we compared between-species sequence-level

conservation for TADs and boundaries. Regions flanking TADs are more evolutionarily conserved than

sequences in TADs (Fig. 3.2C). We quantified evolutionary conservation in terms of the proportion of base

pairs in a region in a conserved element identified by PhastCons elements and by the average PhastCons

element score across the region. On average, 5.02% of regions flanking TADs are overlapped by PhastCons

elements, versus 4.97% of TADs (P= 5×10−11), Fig. 3.2C). Furthermore, across these PhastCons elements,
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regions flanking TADs have average higher conservation scores than TADs (334 versus 331, P = 3×10−29,

Fig. 3.2C). The 100 kb TAD boundary set corroborates these results; 5.21% of bases in TAD boundaries are

conserved versus 4.91% in intra-TAD 100 kb windows (P = 3×10−29, Fig. 6.20A). This supports previous

findings underscoring the importance of maintaining TAD boundaries.

The heritability enrichment and conservation at TAD boundaries are most likely due to their known

overlap with functional elements such as CTCF binding sites and genes. Many such elements are enriched

for heritability and conservation themselves75. To assess whether the heritability enrichment flanking TADs

is greater than expected given the known functional elements overlapping TAD boundaries, we calculated

standardized enrichment effect sizes (τ∗
c )92,155. This statistic quantifies heritability unique to the focal an-

notation by conditioning on a broad set of 86 gene regulatory, evolutionary, gene, allele frequency, and

LD-based annotations (baseline v2.1)75,155,169,175. TAD boundaries did not show more heritability than ex-

pected on the basis of their enrichment for the 86 other annotations (Fig. 6.21). Similarly, to assess whether

the greater evolutionary conservation flanking TADs is the result of the known enrichment in functional

elements, we evaluated the conservation of bases in 100 kb boundaries and matched intra-TAD windows

that do not overlap CTCF ChIP-seq peaks or exons. Filtering the base pairs that overlap CTCF peaks, we

found that TAD boundaries still overlap more PhastCons elements and have a higher average PhastCons

element score than windows in TADs (Fig. 6.20). When removing all exonic base pairs, we found that TAD

boundaries have less overlap with PhastCons elements than do windows in TADs. However, the conserved

non-exonic regions of TAD boundaries have higher conservation scores than conserved non-exonic regions

in TADs (Fig. 6.20). Thus, existing annotations probably capture most of the relevant functional elements

(e.g., CTCF, genes, and other regulatory element-binding sites) that determine and maintain boundary func-

tion.

3.2.3 TAD boundaries vary in stability across cellular contexts
The heritability enrichment patterns we observed are similar across cell types, and TADs have been charac-

terized as largely invariant across cell types111,112,116–118. However, previous work suggests distinct func-

tional properties among TAD boundaries with different insulatory strengths, hierarchical structures, and cell

types137,200,201. Thus, we hypothesized that the stability of TAD boundaries across cell types would be in-

formative about their functional roles and conservation. To characterize the stability of TAD boundaries

across diverse cellular contexts, we focused on the 100 kb bookended TAD boundaries (described above),

since these can be directly compared across the 37 cell types. The maps for each cell type are defined with

respect to the same 100 kb windows across the genome, so we identify shared, or “stable,” boundaries on

the basis of these 100 kb windows (Fig. 3.3A). Our results are robust to different definitions of TAD bound-

aries, including 40 kb windows surrounding (±20 kb) TAD start and stop sites (“40 kb boundaries”) and

200 kb windows flanking the TAD start and stop sites (“200 kb bookend boundaries”) (see Fig. 6.22 and

3.4:Methods).

Using the cross-cell-type TAD boundary intersection, we found that boundaries vary substantially across

cell types. Less than 10% of TAD boundaries are shared in 25+ of the 37 cell types, and 22.6% of TAD

boundaries are unique to a single cell type (Fig. 3.3B). With the more granular 40 kb boundaries, 33.9% of
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Figure 3.3: Stable TAD boundaries are enriched for complex-trait heritability, evolutionary conservation, and
functional elements.
(A) Example TAD maps from 37 cell types (rows) for a 3.5 Mb window from human chromosome 1 (hg19). Each
black line represents the genomic extent of a TAD. Example boundaries of different stability quartiles are outlined
in blue (quartile 1 [most cell-type unique] in the darkest blue and quartile 4 [most cell-type stable] in light blue).
(B) Histogram of TAD boundaries by the number of cell types they are observed in (this quantifies their “stability,”
colored by quartiles). The right axis and gray distribution represent the empirical cumulative distribution function
(CDF) of boundary stability shown in the histogram. (C–F) Across TAD-boundary stability quartiles, there is a
correlation between increased cell-type stability and increased (C) complex-trait heritability enrichment (P = 0.006),
(D) conserved bases (overlap with PhastCons elements, P = 6× 10−13), (E) CTCF binding (overlap with ChIP-seq
peaks, P = 1×10−83), and (F) housekeeping genes (P = 8×10−58). All error bars signify 95% confidence intervals.
These trends hold at different boundary definitions (40 kb and 200 kb), for germ-layer informed measures of cell type
stability, and for other measurements of conservation, CTCF binding, and gene overlap (Figs. 6.25–6.28).

boundaries are unique to one tissue (Fig. 6.22A). Even with the permissive 200 kb resolution boundaries,

18.3% of boundaries are unique to a single tissue (Fig. 6.22B). To quantify boundary stability for further

analyses, we bin boundaries into their cell-type stability quartile: boundaries present in only one context

of 37 (cell-type unique) are in the first quartile of stability, boundaries in 2–4 cell types are in the second

quartile, boundaries in 5–13 cell types are in the third quartile, and boundaries in 14 or more of the 37

contexts are the fourth quartile of cell type stability (Fig. 3.3B, examples in Fig. 3.3A).

Although there is high variability in the landscape of TAD boundaries across different cell types, we

found that biologically similar cell types have more similar TAD boundary maps. For example, cell type

classes (e.g., organ or tissue, stem cell, and cancer) generally cluster together. The two neuroblastoma cell

lines cluster together, as do left ventricle, right ventricle, aorta, and skeletal muscle (Fig. 6.23B). This trend

of biologically similar clusters also held at the 40 kb and 200 kb boundary resolution (Figs. 6.23A and
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6.23C). Previous studies have found contrasting results about the level and patterns of similarity across cell

types (Supplemental Text 6.2 in Appendix 2), but our similarity quantifications between cell types agree

with some previous estimates112,117,190,198.

In summary, although TADs and TAD boundaries have been characterized as largely invariant across

cell types, we demonstrate that there is substantial variability between cell types111,112,116–118. We also find

that biologically related cell types have more similar TAD maps, providing preliminary evidence for the

cell-type specificity of the 3D genome and providing further rationale for investigating differences in TAD

maps between cell types.

3.2.4 Stable TAD boundaries are enriched for complex-trait heritability, evolutionary constraint,
and functional elements

When stratifying the 100 kb boundaries by their cell-type stability we found a positive relationship between

cell-type-stability and trait-heritability enrichment (r2 = 0.045, P = 0.006, Fig. 3.3C). The most stable

boundaries (fourth quartile, darkest blue) have 1.07× enrichment of trait heritability, as opposed to 0.96×
enrichment in unique boundaries (first quartile). This positive relationship between heritability and boundary

stability holds at both the 40 kb and 200 kb resolution (Figs. 6.24A and 6.24D).

We also explored the relationship between TAD boundary stability and other evolutionary and functional

attributes. Although TAD boundaries, when compared to TADs, are enriched for CTCF binding111,200, ev-

idence of evolutionary constraint124,137 (Fig. 3.2C) and housekeeping genes are enriched at TAD bound-

aries105,111 (compared to TADs), it is unknown how these features relate to boundary stability across cell

types.

We found that TAD boundary stability is positively correlated with increased evolutionary sequence

constraint (Fig. 3.3D, P = 3× 10−13); compared to cell-type-unique TAD boundaries, boundaries in the

highest quartile of stability have an additional 527 base pairs of overlap with PhastCons elements (5,420

versus 4,893 per 100 kb boundary). This extends previous observations that investigated two cell types

to show that shared boundaries have evidence of stronger purifying selection on structural variants than

boundaries present in only one of the cell types137. On the basis of on our result, we conclude that stable

boundaries are more intolerant of disruption, not only on the scale of structural variants, but also at the

base-pair level.

TAD boundary stability is also correlated with increased CTCF binding (Fig. 3.3E, P = 1× 10−83).

Boundaries in the highest quartile of stability have 1.5× more CTCF sites on average than TAD boundaries

unique to one cell type (6.1 versus 4.0). This aligns with previous findings that boundary insulatory strength

(in a single cell type) is positively associated with CTCF binding111,200; however, it expands this finding to

stability across cell types.

Finally, we found that TAD boundary stability is correlated with increased overlap with genes (1.56×,

Figs. 6.25A–6.25C, P = 1 × 10−74), protein-coding genes (1.65×, Figs. 6.25D–F, P = 7 × 10−90), and

housekeeping genes (2.50××, Figs. 3.3F, 6.25G–I, P = 8× 10−58). Boundaries in the highest quartile of

stability overlap 2.5× more housekeeping genes than do cell-type-unique TAD boundaries (0.37 versus 0.15

per 100 kb boundary). The relationship between stable TAD boundaries and housekeeping-gene enrichment
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might result from many factors, including strong enhancer-promoter interactions, specific transcription-

factor binding, or chromatin insulation caused by highly active sites of transcription129.

Motivated by the observation that closely related cell types have more similar boundary maps (Fig. 6.23)

and given the non-uniform sampling of cell types considered here, we defined an additional measure of

boundary stability based on cellular development. We determined the germ layer of origin (endoderm,

mesoderm, ectoderm) for each of the 37 cell types and stratified boundaries on the basis of their presence

across cells of different origins. Consistent with our results based on the raw count of cell types, boundaries

observed in cell types from all three germ layers are enriched for trait heritability, conserved bases, CTCF

binding, and housekeeping genes in comparison to boundaries unique to one germ layer (Fig. 6.28). This

shows that the greater contribution to complex trait heritability for more stable boundaries is probably robust

to the sample of cell types considered.

Although our measure of TAD boundary stability correlates highly with these functional annotations, we

note a slight drop-off in enrichment at the fourth quartile (compared to the third quartile), especially for trait

heritability, conservation, and CTCF binding (Figs. 3.3C–E). We identify two factors—one technical and one

biological—contributing to this. First, TADs must necessarily start and stop at the edges of chromosomes,

centromeres, and gap regions; these regions will be identified as highly stable TAD boundaries independent

of their functional importance and constraint. When boundaries within 5 Mb of genomic gaps179,208 or

blacklist regions are removed209, the enrichment drop-off is diminished (Fig. 6.29). Second, the 37 cellular

contexts considered are not uniformly sampled; some are more closely related than others. Thus, a boundary

present in a well-sampled set of cell types might appear more stable than a boundary present in less densely

sampled cell types. The germ-layer-based definition of stability has lower resolution but is less subject

to sampling biases. We do not observe a decrease in the enrichment for heritability or other functional

annotations among the most stable set when we use the germ-layer stability scores (Fig. 6.28). Thus, it will

be important in future work to incorporate more detailed understanding of the developmental relationships

of the considered cell types into comparisons of TAD maps.

In summary, TAD boundaries stable across multiple cell types are enriched for complex-trait heritability,

evolutionary constraint, CTCF binding, and housekeeping genes. These trends hold at different boundary

definitions (40 kb and 200 kb), for germ-layer-informed measures of cell type stability, and for other mea-

surements of conservation, CTCF binding, and gene overlap (Figs. 6.25–6.28).

3.2.5 The heritability landscape across the 3D genome varies across phenotypes
The previous analyses have shown that trait heritability is generally enriched at TAD boundaries and fur-

ther enriched in boundaries stable across cell types. Given preliminary evidence that different traits have

unique enrichment profiles among different functional annotations75, we hypothesized that variation in TAD

boundaries might influence certain traits more than others. To investigate trait-specific heritability across the

TAD landscape, we computed heritability enrichment profiles across the 3D genome partitions by trait and

hierarchically clustered them (Fig. 3.4A). We observed two distinct trait clusters (Fig. 3.4A, Table 6.8).

One cluster of traits (“boundary-enriched” cluster) is strongly enriched for complex-trait heritability

at regions flanking TADs (Fig. 3.4B) and in the 100 kb TAD boundaries (Fig. 6.19). Across TAD maps
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Figure 3.4: The heritability landscape across the 3D genome varies across phenotypes.
(A) Trait heritability patterns across the 3D genome organize into two clusters. Some traits are strongly enriched
for complex-trait heritability at TAD boundaries (“boundary-enriched” cluster, purple), whereas others are weakly de-
pleted at TAD boundaries and enriched centrally within the TAD (“boundary-depleted” cluster, green). (B) Heritability
enrichment landscape over TADs for traits in the boundary-enriched cluster (n = 22). The gray lines represent the her-
itability pattern for each trait in the cluster; the purple line is the average over all the traits. (C) Heritability enrichment
landscape over TADs for traits in the boundary-depleted cluster (n = 19). The green line is the average over all the
traits. (D) The positive correlation between boundary stability and trait heritability (Fig. 3.3C) is driven by the subset
of traits in the boundary-enriched cluster (r2 = 0.23, P = 2× 10−6). (E) Odds of cluster membership across pheno-
type categories. The boundary-enriched cluster is predominantly hematologic, immunologic, and metabolic traits. The
boundary-depleted cluster is predominantly neuropsychiatric traits. (F) There is a weak negative correlation between
boundary stability and trait heritability for traits in the boundary-depleted cluster (r2 = 0.04, P = 0.09). Error bars
signify 99% confidence intervals in (B) and (C) and 95% confidence intervals in (D) and (F).

in 37 cell types, these traits have on average 1.16× heritability enrichment at 100 kb TAD boundaries

in comparison to genomic background (P = 1× 10−7, Fig. 6.19). The other cluster of traits (“boundary-

depleted” cluster) shows a weak inverted pattern in comparison to the boundary-enriched cluster; there is

marginal heritability depletion at TAD boundaries (0.97× enrichment, P = 0.06, Fig. 6.19) and a spike of

heritability enrichment within the TAD center (Fig. 3.4C).

The traits in the boundary-enriched cluster are predominantly hematologic (e.g., counts of white and

red blood cells), immunologic (e.g., rheumatoid arthritis, Crohn disease), and metabolic traits (e.g., type 2

diabetes, lipid counts) (Fig. 3.4E). The traits in the boundary-depleted cluster are mostly neuropsychiatric

(e.g., schizophrenia, years of education, Autism spectrum disorder) and dermatologic (e.g., skin color, bald-

ing) (Fig. 3.4E). This stratification of complex diseases into phenotypic classes does not perfectly reflect
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the traits’ pathophysiology. For example, some dermatologic traits fall into the boundary-enriched cluster.

However, these dermatologic traits, such as eczema, also have a substantial immunologic and hematologic

basis, which is a hallmark of other traits in the boundary-enriched cluster. Additionally, body mass index

(BMI) clustered with the psychiatric-predominant boundary-depleted cluster instead of with other metabolic

traits in the boundary-enriched cluster. This is interesting in light of previous findings that BMI heritability is

enriched in central nervous system (CNS)-specific annotations rather than metabolic-tissue (liver, adrenal,

pancreas) annotations75. Skeletal, cardiopulmonary, and reproductive traits do not consistently segregate

into one of the clusters (Fig. 3.4E). This is most likely because of the small sample size and heterogeneity

of traits in these phenotypic classes.

The relationship between heritability enrichment in TAD boundaries and the trait clusters is not con-

founded by GWAS trait sample size (n), number of SNPs (M), or the traits’ SNP-based heritability (h2
SNP)

(Fig. 6.30). Despite using a diverse set of cell types, we recognize that the heritability pattern differences

between traits could be affected by the representation of investigated cell types. However, given that the

pattern of heritability enrichment is consistent across all cell types (Fig. 3.2B), we are confident that no sin-

gle cluster of cell types is driving the differences in heritability patterns between traits. Furthermore, these

patterns are maintained even when we call TADs by a variety of computational methods (Armatus, Arrow-

head, DomainCaller, HiCseg, TADbit, TADtree, TopDom), suggesting that the finding of immunologic and

hematologic heritability enrichment at TAD boundaries is robust to technical variation (Fig. 6.31).

Although analysis across all traits revealed a positive relationship between boundary cell-type-stability

and heritability enrichment (Fig. 3.3C), we found that this trend is driven by traits in the boundary-enriched

cluster: they have further heritability enrichment in cell-type-stable boundaries (r2 = 0.23, P = 2× 10−6,

Fig. 3.4D). The most stable boundaries (fourth quartile) have 1.23× enrichment of trait heritability as com-

pared to 0.93× enrichment in unique boundaries (first quartile). In contrast, traits in the boundary-depleted

cluster have a non-significant negative relationship between stability and heritability (r2 = 0.04, P = 0.09,

Fig. 3.4F). These trends also hold when the germ-layer-informed measurement of boundary stability is used

(Figs. 6.28C and 6.28D). Thus, boundary stability might be more relevant when interpreting variation asso-

ciated with hematologic, immunologic, and metabolic traits.

3.3 Discussion
Although we are beginning to understand the role of 3D genome disruption in rare disease and cancer, we

have a limited framework for integrating maps of 3D genome structure into the study of genome evolu-

tion and the interpretation of common disease-associated variation. Here, we show that TAD boundaries,

in comparison to TADs, are enriched for common complex-trait heritability. Additionally, in exploring

TAD boundaries stable across cell types, we find they are further enriched for heritability of hematologic,

immunologic, and metabolic traits, as well as evolutionary constraint, CTCF binding, and housekeeping

genes. These findings demonstrate a relationship between 3D genome structure and the genetic architec-

ture of common complex disease and reveal differences in the evolutionary pressures acting on different

components of the 3D genome.

Previous work has predominantly characterized the importance and evolutionary constraint of differ-
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ent components of the 3D genome from the perspective of SV and rearrangement events. We address the

relationship between genome 3D structure across cell types at the level of common single nucleotide varia-

tion. We consider evolutionary constraint within humans (approx. 100,000 ya) and constraint across diverse

vertebrate species (approx. 13-450 mya).

At the scale of common human variation, we show that TAD boundaries are enriched for common

variants that account for the heritability of common complex traits. This relationship between 3D genome

structure and common disease-associated variation aligns with the finding of Whalen et al.124 that human

haplotype breakpoints—which are associated with increased variation as a result of the mutagenic properties

of recombination—are depleted at chromatin boundaries. Together, these findings suggest that TADs and

TAD boundaries differ in their tolerance to genetic variation.

Over vertebrate evolution, we show that TAD boundaries have more sequence-level constraint than

TADs. This provides a complementary perspective to that of Krefting et al.,123 who found that human TAD

boundaries are enriched for syntenic breaks when they compared humans to 12 other vertebrate species,

and they thus concluded that intact TADs are shuffled over evolutionary time. While shuffling a TAD may

“move” its genomic location, preserving the TAD unit also requires maintaining at least part of its boundary.

Our work suggests that even though TADs are shuffled, the boundary-defining sequences are under more

constraint than the sequences within the TAD. This is further supported by the high concordance of TAD

boundaries within syntenic blocks across different species and by depletion of SVs at TAD boundaries in

humans and primates105,111,119–121,137.

Slight variation in 3D structure can cause large changes in gene expression193,195. For example, CTCF

helps maintain and form TAD boundaries; consequently, altering CTCF binding often leads to functional

gene expression changes, e.g., oncogenic gene expression in gliomas135. We hypothesize that altering gene

regulation though common-variant disruption of transcription-factor motifs, such as CTCF, that are impor-

tant in 3D structure organization contributes to the enrichment for complex-disease heritability. However,

variation at TAD boundaries most likely also modifies genes or regulatory elements, such as enhancers, that

are known to be enriched at boundaries without disrupting the TAD architecture. A deeper mechanistic

understanding of TAD formation will be critical to further understanding how TAD-boundary disruption

contributes to both rare and common disease at potentially nucleotide-level and cell-type resolution.

Our finding of divergent patterns of TAD boundary heritability enrichment for different traits (enrich-

ment for hematologic, immunologic, and metabolic traits versus depletion for psychiatric and dermatologic

traits) suggests that the 3D genome architecture might play differing roles in the genetic architecture of

different traits. As a preliminary test of this hypothesis, we evaluated the relationship between boundary

stability and intra-TAD heritability enrichment. We find that, for traits with heritability depletion at bound-

aries (psychiatric, dermatologic traits), TADs with stable boundaries have greater intra-TAD heritability

enrichment (Fig. 6.32). Thus, for these traits, we speculate that stable boundaries might function to insulate

important intra-TAD functional elements (e.g., enhancers or genes). This idea is consistent with previous

work showing that super-enhancers are insulated by the strongest boundaries (in a single cell type)200. How-

ever, for the boundary-enriched traits (hematologic, immunologic, metabolic), we hypothesize that essential

functional elements are enriched at the stable boundaries (rather than inside the TAD). This is supported by
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previous work that detected a positive association between genome-wide binding of CTCF, a transcription

factor intimately involved in TAD boundary formation, and eczema, an immunologic trait that we identified

as part of the boundary-enriched trait cluster160. Thus, it will be important to further explore how TAD

boundaries (or other functional elements at TAD boundaries) might play different regulatory roles in differ-

ent traits and diseases. This will be especially interesting to consider from an evolutionary perspective in

light of evidence that certain subtypes of TADs, depending on the regulatory role of genes they contain, are

under different selective pressures210.

Finally, we identify substantial variation among 3D maps across cell types. Whereas TAD stability

across cell types is greater than expected by chance, our findings expand the number and diversity of com-

pared cell types and identify a large proportion of boundaries unique to single cell types (see Supplemental

Text 6.2 in Appendix 2). Furthermore, using our measurement of cell-type stability to stratify TAD bound-

aries identifies meaningful biological differences: stable boundaries are enriched for common-trait heri-

tability, evolutionary constraint, and functional elements. Although we identify this enrichment for stable

boundaries, we anticipate that cell-type-specific TAD boundaries often have functional significance relevant

to their context; however, we are underpowered to detect trait-heritability enrichment in cell-type-specific

TAD boundaries.

Several limitations should be considered when interpreting our results. First, they are based on available

Hi-C data and existing methods for calling TADs. The Hi-C data were generated by different groups, so there

could be batch- or protocol-specific effects. However, previous work suggests that biological differences

dominate lab-of-origin effects in comparisons of structural similarity198. Furthermore, we showed that the

conclusions are robust to the computational method used (Fig. 6.31) and that our stability results are not

contingent on the specific set of cell types considered (Fig. 6.28). Nonetheless, higher-resolution Hi-C

across diverse cell types in multiple replicates is needed. Second, there is no standard for defining TAD

boundaries. We use two complementary approaches and show our conclusions are robust. The first approach

considers heritability across the 3D structural landscape by partitioning TADs and their flanking regions into

20 equal-size bins and enable comparison with previous work123. The second defines fixed-size boundaries

at multiple resolutions: 40, 100, and 200 kb. Continued efforts to integrate data from multiple TAD-calling

algorithms to more precisely define TAD boundaries, especially given their hierarchical nature, will further

refine our observations201,210. Despite the complexities inherent in identifying TAD boundaries, our findings

replicate with all our boundary definitions and with different TAD calling pipelines.

Here, we introduce a method for quantifying the stability of a TAD boundary across cell types and

demonstrate enrichment of complex-trait heritability, sequence-level constraint, and CTCF binding among

stable TAD boundaries. Our work suggests the utility of incorporating 3D structural data across multiple cell

types to aid context-specific non-coding variant interpretation. Starting from this foundation, much further

work is needed to elucidate the molecular mechanisms, evolutionary history, and cell-type-specificity of

TAD-structure disruption. Furthermore, although we have focused on properties of TAD boundaries stable

across cell types, it will also be valuable to identify differences in TAD boundary stability across species and

find human-specific structures across diverse cell types196. Finally, as high-resolution Hi-C becomes more

prevalent from diverse tissues and individuals, we anticipate that computational prediction of personalized
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cell-type-specific TAD structure141,142 will facilitate understanding of how specific genetic variants are likely

to affect 3D genome structure, gene regulation, and disease risk.

3.4 Methods
We examine heritability and functional annotation enrichment across the 3D genome landscape in two ways:

(1) across the genome in windows centered and scaled around each TAD and (2) in fixed-size TAD bound-

aries defined with varying resolution (40–200 kb) at the ends of each TAD. We then characterize the stability

of TAD boundaries across diverse cellular contexts. By splitting boundaries into quartiles of stability—from

those unique to a single tissue to those shared across many tissues—we test whether there is a relationship

between boundary stability and annotation enrichment. The annotations considered include contribution to

complex trait heritability enrichment, base-pair-level evolutionary constraint, CTCF binding, and genic con-

tent. We demonstrate the robustness of our results by using multiple definitions of TAD boundaries, TADs

called by a variety of methods, and different measurements of the annotations investigated to replicate our

experiments.

Defining TADs

TAD maps for 37 different cell types were obtained from the 3D genome browser (Table 6.7)202. All TAD

maps were systematically predicted from Hi-C data with the hidden Markov model (HMM) pipeline from

Dixon et al.111,116,202. The maps were defined with respect to the same 40 kb windows, except in the case of

seven cell types (GM12878, HMEC, HUVEC, IMR90, K562, KBM7, and NHEK) that were defined with

respect to 25 kb windows. For details about the length and number of TADs per map, see Supplemental

Text 6.2 in Appendix 2.

Quantifying partitioned heritability with S-LDSC

We conducted partitioned heritability by using stratified-LD Score Regression v1.0.1 (S-LDSC) to test

whether an annotation of interest (e.g., TADs or TAD boundaries) is enriched for heritability of a trait75,90.

We considered GWAS summary statistics from a previously described representative set of 41 diseases and

complex traits (average n = 329,378, M = 1,155,239, h2
SNP = 0.19, Table 6.8)92,144–153. Previous studies

using these traits had GWAS replicates (genetic correlation > 0.9) for six traits (BMI, height, high choles-

terol, type 2 diabetes, smoking status, years of education). For these, we considered only the GWAS with

the largest sample size. All GWASs involved subjects of European ancestry only. We used 1000 Genomes

for the LD reference panel175 and HapMap Project Phase 3 (HapMap 3)176 excluding the MHC region

to estimate heritability enrichment and standardized effect size. Heritability was estimated from common

variants with minor-allele frequency (MAF) > 0.05, and standard errors were computed by LDSC via a

block-jackknife.

Heritability enrichment

S-LDSC estimates the heritability enrichment, defined as the proportion of heritability explained by single-

nucleotide polymorphisms (SNPs) in the annotation divided by the proportion of SNPs in the annotation.
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The enrichment of annotation c is estimated as

Enrichmentc =
%h2

(c)

%SNP(c)
=

h2
(c)/h2

|c|/M

where h2
(c) is the heritability explained by common SNPs in annotation c, h2 is the heritability explained

by the common SNPs over the whole genome, |c| is the number of common SNPs that lie in the anno-

tation, and M is the number of common SNPs considered over the genome75,92. To investigate trends

across all traits, we computed the average heritability enrichment and a confidence interval. When com-

pared to meta-analysis using a random-effects model conducted with Rmeta75,92,207,211, the trends are con-

sistent (Fig. 6.17); therefore, we report results based on averaging to simplify interpretation and reduce

over-representation of higher-powered GWAS traits.

Standardized effect size

In contrast to heritability enrichment, the standardized effect size (τ∗
c ) quantifies effects that are unique to

the focal annotation compared to a set of other annotations92,155. The estimate of τ∗
c is conditioned on

86 diverse annotations from the baseline v.2.1 model; these include coding, UTR, promoter and intronic

regions, histone marks (H3K4me1, H3K4me3, H3K9ac, and H3K27ac), DNase I hypersensitivity sites

(DHSs), chromHMM and Segway predictions, super-enhancers, FANTOM5 enhancers, GERP annotations,

MAF bins, LD relation, and conservation annotations75,155,169.

Heritability enrichment across the TAD landscape

We partitioned the genome with respect to TAD annotations by using two different strategies. In the first,

motivated by Krefting et al.123, we considered TADs plus 50% of their total length flanking each side and

subdivided these into 20 equal-sized partitions. Hence, the center 10 bins (6–15) are inside the TAD. Bins

1–5 are upstream of the TAD, and 16–20 are downstream of the TAD. In cases where a TAD is adjacent

to another TAD, the ± 50% region flanking the TAD (bins 1–5 and 16–20) often partially extends into a

neighboring TAD (Fig. 6.18A). However, the ± 50% flanking region extends into the center of a neighboring

TAD less than 20% of the time (Fig. 6.18B). We ran S-LDSR on these 20 bins across TAD maps from 37

cell types to calculate heritability enrichment over 41 traits. We investigated the heritability enrichment (or

depletion) trends averaged across all traits and cell types, by cell type, and by trait. Second, we analyzed

heritability in fixed-size TAD boundary windows of 40, 100, and 200 kb (see subsection on TAD stability

below).

For the analyses by cell type and by trait, we clustered the heritability landscapes to determine whether

related cell types or related traits had similar patterns of heritability across the 3D genome. To do so,

correlation distance was used as the distance metric with average linkage clustering. When clustering traits

by their heritability landscape across the 3D genome, we identified two agglomerative clusters and termed

these “boundary enriched” and “boundary depleted.”
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Evaluating robustness on other TAD callers

To assess the influence of technical variation of TAD calling on our findings, we assessed the heritability

patterns in human embryonic stem cells across TADs called by seven diverse methods (Armatus, Arrowhead,

DomainCaller, HiCseg, TADbit, TADtree, and TopDom). The TADs were called and published by Dali et

al.212 with Hi-C from Dixon et al.116

Sequence-level conservation across the TAD landscape

We considered PhastCons element overlap and score to quantify evolutionary constraint across the TAD

landscape. Other researchers previously determined PhastCons elements by fitting a phylo-HMM across a

group of 46 vertebrate genomes to predict conserved elements213. We downloaded these conserved element

loci from the UCSC table browser179,208. Each element has a score describing its level of conservation (a

transformed log-odds score between 0 and 1000). We intersected the PhastCons elements with regions of

interest (e.g., TAD boundaries) across the TAD landscape. Across each region, we quantified the number of

PhastCons base pairs (regardless of score) and the average PhastCons element score.

Evolutionary constraint in TADs versus boundary windows

To specifically measure the constraint in TAD boundaries versus TADs, we investigated base-pair-level

conservation at 100 kb TAD boundaries (below) and matched randomly shuffled equally sized windows in

TADs. For the windows in TADs, we shuffled the 100 kb boundaries for each of the 37 cell types three

times and required them to fall inside TADs (n = 111). For both the TAD boundaries and TAD set, we

calculated overlap with conserved (PhastCons) elements. To investigate whether conserved element overlap

is influenced by the density of CTCF binding and exons, we repeated this analysis after subtracting bases

(from both the boundaries and TAD windows) overlapping CTCF ChIP-seq peaks or exons.

Quantifying boundary overlap and stability

For each cell type, we defined a set of boundaries with regard to the same windows across the genome.

100 kb boundaries

We defined 100 kb boundaries (results shown in main text) as regions 100 kb upstream of the TAD start

and 100 kb downstream of the TAD end. For example, if a TAD was at chr1: 2,000,000–3,000,000, we

would define its TAD boundaries to be at chr1:1,900,000–2,000,000 (boundary around the start) and chr1:

3,000,000–3,100,000 (boundary around the end). To quantify stability, we examined each 100 kb window

across the genome. We removed boundaries that had any overlap with genomic gaps (centromeric/telomeric

repeats from UCSC table browser)179,208. If there was a TAD boundary in the window for any of the cell

types, we counted how many cell types (out of 37) shared the boundary. If only one cell type had a boundary

at that location, it was considered a “unique” boundary, whereas if it was observed in many cell types, it was

considered “stable.” These boundaries were divided into quartiles of cell-type-stability.
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40 kb and 200 kb bookend boundaries

To test whether our results were robust to different resolutions of boundary definitions, we defined 40 kb

and 200 kb bookend boundaries (see results in Supplemental Text 6.2 in Appendix 2). 40 kb boundaries

are 40 kb windows surrounding (±20 kb) TAD start and stop sites. For example, if a TAD was located at

chr1: 2,000,000–3,000,000, we would define its TAD boundaries to be at chr1: 1,980,000–2,020,000 and

chr1: 2,980,000-3,020,000. 200 kb bookend boundaries are 200 kb upstream of the TAD start and 200 kb

downstream of the TAD end. For example, if a TAD was at chr1: 2,000,000–3,000,000, we would define its

TAD boundaries to be at chr1: 1,800,000–2,000,000 and chr1: 3,000,000–3,200,000. We removed bound-

aries that had any overlap with genomic gaps179,208. Both sets of boundaries were divided into quartiles of

cell-type-stability.

Boundaries distant from genomic gap or blacklist regions

To investigate whether boundaries near genome assembly gaps or repetitive sequences affect the relationship

between annotation enrichment and stability quartile, we defined a very conservative set of 100 kb TAD

boundaries by excluding those within 5 Mb of a genomic gap (UCSC table browser179,208) or blacklist

region (209).

Germ-layer-informed boundary-stability measure

Of the 37 cell types considered, some are more closely related than others, therefore we grouped 34 of

them by germ-layer origin (endoderm [n = 12], mesoderm [n = 13], ectoderm [n = 9]; Table 6.7). Germ

layers for each of the cell types were defined via ENCODE documentation of common cell types203,204.

Embryonic stem cell, mesendoderm, and trophoblast were omitted because they have no single germ-layer

classification. We defined a measurement of stability on the basis of whether each 100 kb boundary (above)

was found in cells from one, two, or all three germ layers.

Quantifying TAD boundary similarity across cell types

To quantify TAD boundary similarity between two cell types, we calculate the Jaccard similarity coefficient

by counting the number of shared boundaries (intersection) and dividing by the total boundaries over both

tissues (union). For the TAD boundary similarity heatmaps, we clustered the cell types by using complete

linkage (i.e., farthest neighbor) with the Jaccard distance (1-stability).

Heritability and annotation enrichment by TAD boundary stability

Complex-trait heritability

S-LDSC was conducted on each quartile of stability for all 41 traits. Partitions for each quartile include

TAD boundaries of that stability (see above). We computed a linear regression on log-scaled enrichment

values by regressing log10(heritability enrichment) on quartile of stability. by regressing log10(heritability

enrichment) on quartile of stability.
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Evolutionary constraint

Evolutionary constraint was quantified by PhastCons213 as described above. The PhastCons elements were

intersected with the TAD boundaries, partitioned by stability. The two overlap quantifications are the num-

ber of PhastCons base pairs per boundary regardless of score (base pairs per boundary) and the average

PhastCons element score per boundary (average score of elements in the boundary).

CTCF enrichment

CTCF binding sites were determined through ChIP-seq analyses from ENCODE203,204. We downloaded all

CTCF ChIP-seq data with the following criteria: experiment, released, ChIP-seq, human (hg19), all tissues,

adult, BED NarrowPeak file format. We excluded any experiments with biosample treatments. Across all

files, the CTCF peaks were concatenated, sorted, and merged into a single file; thus, overlapping peaks were

merged into a single larger peak. We quantified the number of CTCF ChIP-seq peaks per TAD boundary

(peaks per boundary) and the number of CTCF peak base pairs overlapping each boundary (base pairs per

boundary).

Genes and protein-coding genes

RefSeq genes were downloaded from the UCSC table browser179,208,214 and filtered to include coordinates

of only one transcript per gene (the longest) and only autosomal and sex chromosome genes. From the

simplified list of RefSeq genes, a subset of protein-coding genes was also created (these were identified on

the basis of RefSeq accession numbers starting with NM). The simplified RefSeq gene list contains 27,090

genes. The simplified protein-coding RefSeq gene list contains 19,225 genes. We quantified the number of

genes or protein-coding genes per TAD boundary stratified by boundary stability.

Housekeeping genes

Housekeeping genes (N = 3804) are from Eisenberg & Levanon215. We retrieved the coordinates by in-

tersecting with the RefSeq genes (above), resulting in coordinates for 3681 genes (coordinates for a small

number of genes were not found in the RefSeq list)179,208,214. We quantified the number of housekeeping

genes or protein-coding genes per TAD boundary stratified by boundary stability.

Defining GWAS phenotypic classes

To determine whether similar traits had similar heritability patterns across the 3D genome, we defined

eight different phenotypic classes (Table 6.8): cardiopulmonary (n = 4), dermatologic (n = 7), hematologic

(n = 5), immunologic (n = 4), metabolic (n = 7), neuropsychiatric (n = 8), reproductive (n = 4), and skele-

tal (n = 2). Our clusters originated from domains in the GWAS Atlas159; however, the categories were

modified to place more emphasis on disease pathophysiology instead of organ system (e.g., Crohn disease

and Rheumatoid Arthritis were moved from the gastrointestinal and connective-tissue categories, respec-

tively, to an immunologic category). Similar categories were also combined (e.g., metabolic and endocrine,

cardiovascular and respiratory).

52



Data analysis and figure generation

All analyses were conducted with the hg19 genome build. Intersections of genomic regions were com-

puted with the pybedtools wrapper for BedTools181,216. Data and statistical analyses were conducted in

Python 3.5.4 (Anaconda distribution) and R 3.6.1. Figure generation was aided by Matplotlib, Seaborn, and

Inkscape182–184. This work was conducted in part with the resources of the Advanced Computing Center for

Research and Education (ACCRE) at Vanderbilt University, Nashville, TN.

Data and Code Availability

The datasets we generated are available in the TAD-stability-heritability GitHub repository [https://github.

com/emcarthur/TAD-stability-heritability]217 and at Zenodo: https://doi.org/10.5281/zenodo.3601559 and

include all results of our boundary calling (40 kb, 100 kb bookend, and 200 kb bookend) and all partitioned

heritability analysis output (by cell type and trait). The repository also contains a Jupyter notebook with

code for analysis, statistics, and figure generation.
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CHAPTER 4

RECONSTRUCTING THE 3D GENOME ORGANIZATION OF NEANDERTHALS REVEALS
THAT CHROMATIN FOLDING SHAPED PHENOTYPIC AND SEQUENCE DIVERGENCE*

4.1 Introduction
The sequencing of archaic hominin (AH) and modern human (MH) genomes has transformed our under-

standing of human history, evolution, and biology13–17. However, even with these whole-genome sequences

available, our understanding of how and why AHs differed from MHs is limited2. A major challenge in

understanding the phenotypic and sequence differences between AHs and MHs is bridging the gap between

genetic variation and function. The evolution of hominins is largely driven by changes in the regulation of

conserved proteins7–10,55,57,94, but the mechanisms through which archaic variants influence gene expres-

sion, and ultimately phenotype, are incompletely understood2,94,98.

Previous works have theorized the mechanistic effect of archaic variants on enhancers, promoters,

miRNA, cis-eQTLs, and DNA methylationColbran et al.94, Gokhman et al.96, Batyrev et al.97, and Silvert

et al.98. Yet, these studies have been unable to address a fundamental aspect of gene regulation and genome

function—the physical three-dimensional (3D) organization of the genome. Regulation of gene expression

is facilitated by the 3D looping and folding of chromatin in the cell nucleus, which is central to enhancer-

promoter (E-P) communication and insulation186–189,218–220. Thus, to fully understand the consequences of

genetic variation between AHs and MHs, we must consider the 3D genome folding. However, the role of 3D

genome organization in the divergence between AHs and MHs has never been explored because chromatin

contacts cannot be assayed in ancient DNA.

Recent deep learning methods have been developed that learn the sequence “grammar” underlying 3d

genome folding patterns140–143. We hypothesized that these deep learning methods would allow us to infer

genome-wide 3D chromatin contact maps of Neanderthals and Denisovans. Because the molecular mecha-

nisms that determine genome organization, like CTCF binding and co-localization with cohesin, are largely

evolutionarily conserved111,121, models trained using human data perform well even when applied to DNA

sequences from distantly related species, such as mouse141.

To elucidate the contribution of 3D genome folding to recent hominin evolution, we apply novel deep

learning methods for inferring 3D genome organization from DNA sequence patterns to Neanderthal, Deniso-

van, and diverse MH genomes. Using the resulting genome-wide 3D genome folding maps, we identify 167

loci that are divergent in 3D organization between AHs and MHs. We show that these 3D-diverged loci are

enriched for physical links to genes related to the function and morphology of the eye, supra-orbital ridge,

hair, lung function, immune response, and cognition. We also find that 3D genome organization constrained

recent human evolution and patterns of introgression. Finally, we evaluate the legacy of introgression on

the 3D organization of humans and identify examples where introgression imparted divergent 3D genome

folding to Eurasians. In summary, our application of deep learning to predict archaic 3D genome fold-

*This chapter is adapted from the preprint McArthur, E. et al. 2022. BioRxiv.
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ing provides a window into previously unobservable molecular mechanisms linking genetic differences to

phenotypic consequences in hominin evolution.

4.2 Results
4.2.1 Reconstructing the 3D genome organization of archaic hominins
To evaluate the role of 3D genome organization changes in recent human evolution, we apply deep learning

to infer 3D genome organization from DNA sequences of archaic hominins (AHs) and modern humans

(MHs) (Fig. 4.1). We consider the genomes of four AHs—one Denisovan and three Neanderthals, each

named for where they were discovered (Altai mountains, Vindija and Chagyrskaya caves) [13–16]. We

compare these to 20 diverse MHs from the 1000 Genomes Project (Table 6.9)175.

For each individual, we predict chromatin contact maps across the genome. Each contact map gives

a 2D representation of the predicted 3D chromatin physical contacts, which will refer to as “3D genome

organization”. We predict these maps using approximately 1 Mb (1,048,576 bp) tiled sliding windows

overlapping by half with Akita, a convolutional neural network (CNN) trained on high-quality experimental

chromatin contact maps (Hi-C and Micro-C)141. Each resulting contact map represents pairwise physical

3D contact frequencies at approximately 2 kb (2,048 bp) resolution for a single individual. Previous work

demonstrated that Akita accurately infers 3D contact organization at this resolution141. We only consider

windows with full (100%) sequence coverage in the MH reference, and we conservatively mask missing

archaic sequence with the human reference sequence (Figs. 6.34,6.35,6.36 and Methods).

We compare contact maps from two genomes using a “3D divergence” score, namely, one minus the

Spearman’s rank correlation coefficient (1− ρ) for all pixels in the maps. Genomic windows with more

different 3D genome maps have higher 3D divergence and, conversely, a window with lower 3D divergence

will reflect more 3D similarity (Fig. 4.1). Other divergence metrics (e.g., based on Pearson’s correlation co-

efficient and mean squared difference) are strongly correlated (Fig. 6.37). Akita is trained simultaneously on

Hi-C and Micro-C across five cell types in a multi-task framework. In the main text we focus on predictions

from the highest resolution cell type, human foreskin fibroblast (HFF). Results are similar when consid-

ering other cell types (e.g. embryonic stem cells) (Fig. 6.38), likely because of limited cell-type-specific

differences in both available experimental data and model predictions141.

4.2.2 Archaic hominin and modern human genomes exhibit a range of 3D divergence
Reconstructing the genome-wide 3D genome organization of AHs and MHs revealed genomic windows

with a range of 3D divergence (Fig. 4.2A). Most of the genome has very similar 3D genome organization

between AHs and MHs (circle example in Fig. 4.2A-B). However, we also found regions of AH-MH 3D

genome divergence. Some of these differences are changes in predicted chromatin contact intensity but

similar overall organization (diamond example in Fig. 4.2A-B). Others reveal reorganization with evidence

of new sub-organization (neo-TADs or -loops) or lost structures (fused TADs or loops) (indicated with an “x”

example in Fig. 4.2A-B). At the 95th percentile of observed divergence, differences in the contact maps are

substantial. However, because the 3D divergence measure considers the entire window, strong focal changes

may not rank as highly as structural differences that influence a large segment of the window (diamond vs.
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Figure 4.1: Reconstructing the 3D genome organization of archaic hominins.
We infer 3D genome organization from sequence across the genomes of modern humans (MHs, green) and archaic
hominins (AHs, purple). Using approximately 1 Mb (1,048,576 bp) sliding windows (overlapping by half), we input
the genome sequences into Akita, a convolutional neural network, to predict 3D genome contact maps141. The resulting
contact maps are compared between MHs and AHs to identify regions that have similar 3D genome organization (left,
low divergence) and regions that have different 3D organization (right, high divergence).

“x” examples in Fig. 4.2B).

To illustrate genome-wide patterns of divergence in 3D organization, we plotted the average divergence

of each of the AHs to five modern African individuals from different subpopulations (Fig. 4.2C). We show

the landscape of 3D divergence across the entire genome for all four AHs in Fig. 6.39. Some AH-MH

divergences are shared across all four archaics, while others are specific to a single lineage like the Deniso-

van individual (Fig. 4.2C). We only considered sub-Saharan Africans in these comparisons, because they

have low levels of AH introgression. We consider how introgressed variation in Eurasians influences 3D

divergence in a subsequent section.

4.2.3 3D genome organization diverges between AH and MH at 167 genomic loci
To consistently identify regions with divergent 3D genome organization between AH and MH, we compared

the 3D contact maps at each locus for each AH to 20 MH (African) individuals. We applied a conservative

procedure that required all 20 AH-MH comparisons to be more 3D divergent than all MH-MH comparisons

(Fig. 4.3A). In other words, the differences between the 3D genome organization of an AH to all MHs must

be more extreme than the differences between each MHs to all other MHs. Furthermore, we required the

average AH-MH 3D divergence to be in the 80th percentile of the most diverged. This identified regions

with consistent 3D differences between AHs and MHs (Fig. 4.3A, left) while excluding regions with a large

3D diversity in modern humans (Fig. 4.3A, right) (Methods).

We find 167 total AH-MH consistently 3D diverged loci: 67, 70, 71, and 73 for Altai, Vindija, Chagyrskaya,

and Denisova compared to MHs, respectively (Fig. 4.3B). 3D diverged loci are found throughout the genome

on every chromosome (Fig. 4.3B). As suggested by Fig. 4.2C, some 3D divergences are shared by all four
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Figure 4.2: 3D genome divergence between archaic hominins (AHs) and modern humans (MHs) varies across
the genome.
(A) Distribution of 3D genome divergence between AHs and modern humans MHs for 1 Mb windows across the
genome. Most windows have similar 3D genome organization between MHs and AHs (low 3D divergence). The
cumulative density function (CDF) of this distribution is overlaid in gray with percentiles on the right vertical axis.
(B) We highlight four examples (shapes) along the 3D divergence distribution illustrating low 3D divergence (left)
to high divergence (right). Each example compares a representative African MH (top, HG03105) to a Neanderthal
(bottom, Vindija) in terms of both raw score and relative percentile of 3D divergence. Examples with scores near the
95th percentile have visible contact map differences, but the type of differences vary from re-organization (neo-TADs or
TAD-fusions) to altered contact intensity (stronger vs. weaker TAD/loop). Green and purple triangles indicate regions
with increased contact frequency in MH versus AH, respectively. (C) Average 3D divergence along chromosome
7 between AHs and five representative African MHs. The error band indicates the 95% confidence interval (CI).
Comparing the 3D genomes of Neanderthals (purple) or Denisova (blue) with MHs reveals windows of both similarity
and divergence (peaks). Featured examples (gray overlays) highlight regions of 3D divergence that are shared (e.g.,
shared across all archaics) or lineage-specific (e.g., specific to the Denisovan individual).
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Figure 4.3: Regions with 3D divergence between MHs and AHs highlight loci linked to phenotypic differences.
(A) We identified genomic windows with 3D divergence between AH and MH by comparing distributions of pairwise
divergence in 3D contact maps. We used a conservative procedure that required all 20 comparisons of each AH to
20 MH (African) individuals (purple, n = 20) to be more 3D-diverged than all MH-MH comparisons (green, n =

(20
2

)
= 190) and the mean of the AH-MH divergences (purple) to be in the 95th percentile of most diverged. The left plot
shows an example that meets these criteria (chr2:204,472,320-205,520,896). The right shows an example where there
is diversity in 3D genome organization, but not an AH-MH divergence (chr1:4,194,304-5,242,880). (B) We identified
167 AH-MH 3D divergent windows across the genome. Many are shared (Euler-diagram), but some are unique to a
single lineage, with the most unique divergence in the Denisovan. (C) Contact maps for the example Neanderthal-
MH 3D divergent window shown in A (zoomed to chr2:204,722,176-205,166,592). All MHs have a smaller domain
insulated by a CTCF site (red star). In Neanderthals (Vindija and Altai), the CTCF motif is disrupted with a C instead
of a G (red dashed box, chr2:204,937,347). We predict that this leads to ectopic connections with the promoter of
ICOS (T-cell costimulator). (D) Phenotype enrichment for the 43 Neanderthal 3D diverged loci identified in B (white
dashed line). We computed functional annotation enrichment for genes physically linked to 3D-modifying variants at
these 3D divergent loci using HPO (top, n= 271) and GWAS catalog (bottom, n= 208) annotations (Methods). Within
each phenotypic domain, traits are organized along the vertical axis by significance and along the horizontal axis by
enrichment (also indicated by size). Genes nearby AH-MH 3D divergence are enriched for functions related to the
retina and visual field, skeletal morphology (notably, supra-orbital ridge), hair, lung function, immune and medication
response, and cognitive traits. Significance lines represent the P-value thresholds that controls the FDR with q = 0.05
(dotted) and q = 0.1 (dashed). (COPD: chronic obstructive pulmonary disease, AS: ankylosing spondylitis, IBD:
inflammatory bowel disease, EA: educational attainment)
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AHs (N = 7), and many are shared by all three Neanderthals (N = 43) (Fig. 4.3B). We summarize the

AH-MH 3D divergent windows in Tables 6.10.

To illustrate the properties of a AH-MH 3D divergent window, we highlight a divergent locus on chro-

mosome 2 that is nearby several immune genes (Fig. 4.3C). MHs have an approximately 140 kb loop linking

the promoter of ICOS at 204.80 Mb to a CTCF motif at 204.94 Mb. This CTCF motif is overlapped by many

ChIP-seq peaks for transcription factors (TFs) involved in determining chromatin folding (CTCF, RAD21,

SMC3, and ZNF143). The contact maps for both Vindija and Altai Neanderthal show a more prominent

“architectural stripe”—an asymmetric loop-like contact often reflecting enhancer activity108–110—starting

near the promoter of ICOS. However, in contrast to MHs, the loop does not end at the same CTCF site and

instead has greater contact frequency with a CTCF site at 205.2 Mb. Thus, the resulting loop in Neanderthals

is predicted to be over 400 kb—three times as large as the MH loop.

To determine which AH-MH nucleotide differences cause the largest change in the contact maps, we

used in silico mutagenesis (Methods). Using an African MH (HG03105) background, we inserted every

allele unique to the AH genome one-by-one and measured the resulting 3D genome divergence. This iden-

tifies the archaic variant resulting in the largest 3D organization changes between the AH and MH genomes,

a G to C change at chr2:204,937,347 (Methods). This change disrupts a high information-content site in

the CTCF binding site described above. All MHs carry an ancestral C allele, but Vindija and Altai have a

derived G allele. In summary, we predict that the Neanderthal-derived allele weakens CTCF binding leading

to reduced insulation between ICOS, a T-cell costimulator, with downstream contacts.

4.2.4 Regions with 3D divergence highlight AH-MH phenotypic differences
To explore the functional effects of AH-MH 3D genome divergence, we tested for phenotypic annotation

enrichment. We considered the 43 loci with shared divergence between MHs and all three Neanderthals

(Fig. 4.3B). Although the loci were identified at approximately 1 Mb resolution, most 3D modifications

disrupt a smaller sub-window. Thus, as described in the example above (Fig. 4.3C), we used in silico

mutagenesis to identify the AH-MH sequence change(s) that produced the largest disruption in the contact

maps. We will refer to these as “3D-modifying variants” (Methods). We then intersected the predicted 3D-

modifying variants with experimentally defined TADs to determine the genes to which they are physically

linked. Ultimately, we found 88 physical links to protein-coding genes (85 unique genes) for the 45 3D-

modifying variants in the 43 Neanderthal-MH 3D divergent loci (Tables 6.10).

We tested if these genes are enriched for phenotypic annotations using both gene-phenotype links from

rare disease (OMIM Human Phenotype Ontology [HPO] terms) and common disease databases (GWAS

Catalog 2019)221–225. 3D genome organization perturbation has been linked to both types of disease: large-

scale disruption leading to severe disease and subtle changes in regulatory insulation contributing to complex

traits disease122,132,136,154,195. We find links to 271 and 208 candidate traits from the rare and common

disease ontologies, respectively. For each trait, we test if the observed overlap with 3D divergent loci is

more than expected by chance using an empirically-generated null distribution (Methods). In summary, this

sequential process links 3D divergent windows to variants to TADs to genes and, ultimately, phenotypes

(Fig. 6.40).
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With the HPO annotations, we found enrichment for effects of these genes related to the eye (retinopathies,

optic atrophy, constricted visual field [most significant association: 27× enriched, P = 2×10−5]), skeletal

system (notably, supraorbital ridge morphology [12×, P= 0.002]), and hair (e.g. low anterior hairline [12×,

P = 0.003]) (Fig. 4.3D, top). In the GWAS Catalog annotations, we find enrichment related to intelligence

and cognition (13×, P = 0.0002), lung function (NO levels, COPD [35×, P = 0.0008]), response to certain

medications (30×, P = 0.002), immunologic response (ankylosing spondylitis, allergy, inflammatory bowel

disease [12×, P= 0.004]), and brain region volumes (putamen, subcortex [17×, P= 0.006]) (Fig. 4.3D, bot-

tom). Trait enrichments for 3D-modifying variants found in Denisova are highlighted in Fig. 6.41. Because

Denisova and Neanderthal share many alleles, some similar traits are enriched (retinopathy, intelligence,

lung function, etc.); however, overall, we find fewer enriched traits.

In summary, genomic loci with 3D divergence between Neanderthals and MHs are enriched for physical

proximity to genes associated with a diversity of traits related to the skeleton, eye, hair, lung, immune

response, brain region volume, and cognitive ability. These findings align with and expand what we know

from both the fossil-record and previous work based on variants in MHs55,59,62,63,98,156,226,227. Importantly,

our approach permitted the interrogation of variants unobserved in MHs (76% of predicted 3D-modifying

variants), and it provides a putative molecular mechanism for the phenotypic differences.

4.2.5 Relationship between sequence divergence and 3D divergence
Given that we observe 3D differences between AH and MH genomes, we quantified the relationship be-

tween 3D and sequence divergence on both genome-wide and more local scales. First, we computed the

genome-wide 3D genome divergence for all pairs of AH and MH individuals. We find the mean 3D genome

divergence largely follows sequence divergence (Figs. 4.4A,6.42). Neanderthals are the most similar in 3D

genome organization to other Neanderthals, then to the Denisova, and then to MHs (mean 3D divergences:

9.8× 10−4, 3.4× 10−3, and 4.3× 10−3, respectively). Genome-wide 3D divergence also tracks with se-

quence divergence within the Neanderthal: Vindija and Chagyrskaya are more similar than they are to the

outgroup Altai (Vindija-Chagyrskaya mean 3D divergence of 8.4×10−4 vs. Vindija-Altai of 1.0×10−3)15.

Next, we evaluated if sequence divergence and 3D divergence are correlated on the local scale. We

find a very weak positive relationship between 3D and sequence divergence at the 1 Mb window level

(Fig. 4.4B, r2 = 0.01, P = 2.3× 10−13). As suggested by the weak correlation, many windows with low

sequence divergence have high 3D divergence, and many windows with high sequence divergence have low

3D divergence.

Given the weak relationship between sequence and 3D divergence, we sought to identify some proper-

ties of sequence differences that result in large 3D divergence. Based on the importance of CTCF-binding

in maintaining 3D genome organization102,105,219,228, we quantified the effects of AH-MH nucleotide dif-

ferences overlapping CTCF binding motifs. Disruption of CTCF binding sites is important, but not all

disruptions are likely to influence 3D divergence. Leveraging additional functional genomics data on CTCF

binding and TAD boundaries, we find that the quantity, quality, and context (e.g., strength of a motif and

proximity to a TAD boundary) influence whether AH-MH sequence divergence will result in a 3D orga-

nization divergence (Fig. 6.43). For example, if a window has at least one AH-MH nucleotide difference
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Figure 4.4: 3D genome organization constrained human sequence divergence.
(A) 3D genome divergence (lower triangle) follows patterns of sequence divergence (upper triangle). AHs have more
similar 3D genome organization to each other than to 15 MHs from different 1000G super-populations. Clustering is
based on sequence divergence; see Fig. 6.42 for clustering by 3D genome divergence and data for each sub-population.
(B) Sequence divergence is only very modestly correlated with 3D genome divergence (r2 = 0.011, P = 2.3×10−13,
N = 4999). Each point represents a 1 Mb window from a genome-wide comparison between the 3D genome orga-
nization of a Neanderthal (Vindija) and African MH (HG03105) individual and the black line with band represents
a linear regression with 95% CI. Windows with large 3D divergence are enriched for MH-AH nucleotide (nt) differ-
ences overlapping a strong CTCF-bound motif within 15 kb of a TAD boundary (red) (two-tailed Mann–Whitney U
P= 0.00077). (C) To evaluate whether 3D genome organization constrained sequence divergence, we estimate the null
distribution of expected 3D divergence based on sequence differences between the Neanderthal (Vindija) and African
MH (HG03105) genomes. We shuffle observed nucleotide differences (stars) while preserving tri-nucleotide context
(colored rectangles) and predict 3D genome organization for 100 shuffled sequences for each window. Under a model
of no sequence constraint due to 3D organization, observed 3D divergence would equal the expected 3D divergence
(O = E). Alternatively, observing more 3D divergence than expected would suggest positive selection on sequence
changes that cause 3D divergence (O > E). Finally, observing less 3D divergence than expected would suggest nega-
tive pressure on sequence changes that cause 3D divergence (O < E). (D) Observed 3D divergence is significantly less
than the mean expected 3D divergence based on sequence (O < E: 88.4% of N = 4,999 windows below the diagonal,
binomial-test P < 5×10−324). The mean expected 3D divergence is on average 1.78-times higher than the observed
3D divergence (t-test P = 1.8×10−48). 3D divergence scores greater than 0.05 and nucleotide differences greater than
2250 are clipped to the baseline for visualization purpose
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overlapping a strong CTCF-bound motif near a TAD boundary (within 15 kb), the AH-MH 3D divergence

is 1.64-times greater (P = 0.00077, N = 260/4999 windows, Fig. 4.4B). Thus, we are observing complex

sequence patterns underlying 3D genome folding that could not be determined by simply considering se-

quence divergence or intersecting AH variants with all CTCF sites. This is concordant with previous results

which suggest that 3D genome folding is governed by a complex CTCF binding grammar141,142,219,228.

4.2.6 Maintenance of 3D genome organization constrained sequence divergence in recent hominin
evolution

Next, we evaluated if the pressure to maintain 3D genome organization constrained recent human sequence

evolution. We estimated whether the amount of 3D divergence between AHs and MHs is more or less than

expected given the observed sequence divergence. To compute the expected 3D divergence distribution

for each 1 Mb window, we shuffled observed nucleotide differences between an African MH (HG03105)

and AH (Vindija Neanderthal) 100 times and applied Akita to predict the resulting 3D genome divergence

(Fig. 4.4C). We controlled for the non-uniform probability of mutation across sites using a model that pre-

served the tri-nucleotide context of all variants in each window with each shuffle. For each 1 Mb window,

we compared the observed 3D divergence with the expected 3D divergence from the 100 shuffled sequences

with the same nucleotide divergence.

If the 3D genome does not influence sequence divergence, the observed 3D divergence would be similar

to the expected 3D divergence (Fig. 4.4C, bottom-middle). Alternatively, if the observed 3D divergence is

greater than expected based on sequence divergence (Fig. 4.4C, bottom-left), this suggests positive selection

on variation contributing to 3D differences. Finally, if the observed 3D divergence is less than expected

based on sequence divergence (Fig. 4.4C, bottom-right), this suggests negative pressure on variation con-

tributing to 3D differences.

We find that observed 3D divergence is significantly less than expected based on sequence divergence

(Fig. 4.4D). 88.4% of 1 Mb windows have less 3D divergence that expected based on their observed se-

quence differences (binomial-test P < 5×10−324). Genome-wide, the mean expected 3D divergence is 78%

higher than the observed 3D divergence (t-test P = 1.8× 10−48). This suggests that, in recent hominin

evolution, pressure to maintain 3D genome organization constrained sequence divergence. This aligns with

previous studies that demonstrated depletion of variation at 3D genome-defining elements (e.g., TAD bound-

aries, CTCF sites)123,137,154,196,229, but it specifically implicates 3D genome folding.

4.2.7 3D genome organization constrained introgression in MHs
Eurasian individuals have on average 2% AH ancestry due to introgression; however, AH ancestry is not

evenly distributed throughout the genome14,45,156. Our previous analyses demonstrate that AH and MH

exhibit a range of 3D genome organization divergence across the genome (Fig. 4.2C) and that pressure to

maintain 3D genome organization constrained sequence divergence (Fig. 4.4D). Thus, we hypothesized that

for a given genomic window, its tolerance to 3D genome organization variation in MHs would influence the

probability that introgressed AH DNA is maintained in MH.

To test this, we first quantified the levels of 3D genome diversity for 20 modern Africans in 1 Mb sliding
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windows across the genome. We then computed the average African-African 3D genome divergence and

term this “3D genome variability”. Genomic windows with low 3D genome variability have similar 3D

genome organization among all Africans, suggesting these loci are less tolerant of 3D folding changes. In

contrast, regions with high 3D genome variability suggest a diversity of 3D genome organization present.

Finally, we computed the amount of introgressed sequence in Eurasian populations for each window (Meth-

ods,32).

Genomic windows with high levels of introgression across Eurasians are enriched for windows with

higher 3D genome variability (Fig. 4.5A, Mann-Whitney U P = 0.0007). On average, windows with evi-

dence of introgression have 72% higher 3D genome variability than windows without introgression. More-

over, the magnitude of 3D genome variability is predictive of the average amount (proportion of bp) of intro-

gressed sequence remaining in a 1 Mb window (P = 5.7×10−9, Fig. 4.5B, vertical axis). Even when condi-

tioning on sequence variability, 3D genome variability provides additional information about the amount of

AH ancestry in a window (Fig. 4.5B, conditional P = 5.7×10−4). In other words, even if two windows have

the same level of sequence variability in MHs, windows that are more 3D variable are more likely to retain

introgressed sequence. We also find that 3D genome variability is more strongly predictive of introgression

shared among all three super-populations than an introgressed sequence unique to a single super-population

(Supplemental Text, Tables 6.11,6.12). Using earlier introgressed Neanderthal haplotype predictions from

Vernot et al.156 and other thresholds yield similar results (Figs. 6.44,6.45). Because we compute variability

in Africans with very low levels of AH ancestry, the increased 3D genome variability in MHs is not a result

of introgression.

These results suggest that 3D genome organization shaped the landscape of AH introgression in mod-

ern Eurasian genomes. Previous findings demonstrated Neanderthal ancestry is depleted in regions of the

genome with strong background selection, evolutionary conservation, and annotated molecular function

(e.g. genes and regulatory elements)44,45,53,55,56. Our results expand this to implicate the 3D genome as a

contributor to the landscape of AH ancestry in MHs today.

4.2.8 Introgression shaped the 3D genome organization of present-day Eurasians
Given the differences between AH and MH 3D genome organization at many loci, we hypothesized that

introgressed AH sequences could have introduced novel 3D contact patterns to Eurasian MHs. To test this,

we integrated Eurasians into our previous comparisons of AHs and African MHs.

For example, we found an AH-MH 3D divergent window on chromosome 7 with a striking pattern of

3D genome diversity across modern Eurasians (Fig. 4.6A). As required to be an AH-MH divergent locus,

the 3D genome divergence between all Africans and AH (Vindija Neanderthal) was consistently high. And,

out of 15 Eurasians, 11 had similar divergent organization compared to the Neanderthal 3D contact map.

However, four Eurasians had very low 3D divergence from the Neanderthal.

When examining the contact maps of this window, all Africans have a large approximately 450 kb loop

domain starting near the promoter of IGFBP3, a gene encoding insulin-like growth factor binding protein

3 (Fig. 4.6B). In contrast, Neanderthals (Vindija, Chagyrskaya, and Altai) have two smaller sub-domains

insulated by a CTCF site. Using in silico mutagenesis, we identify that the variant with the largest effect

63



Figure 4.5: 3D variable windows in MH have more evidence of AH introgression.
(A) Windows with high levels of introgression across present-day non-African populations (purple, N = 187) are more
3D-variable in modern Africans (horizontal axis) than windows without evidence of introgression (green, N = 2,799;
two-tailed Mann–Whitney U P = 0.0007). Vertical lines represent the distribution means. Introgression is called
based on Sprime32. To focus on regions consistently tolerant of AH ancestry, we considered introgression shared
across 1000 Genomes super-populations and covering at least 70% of bases in a 1 Mb window (Methods). Results
from other introgression sets and thresholds are similar (Figs. 6.44–6.45 and Tables 6.11–6.12). (B) The relationship
between sequence variability (horizontal axis) and 3D genome variability (vertical axis) with amount of AH ancestry
in a window. Darker purple indicates a higher proportion of introgression in a 1 Mb genomic window. Sequence
variability (P = 1.9 × 10−49) and 3D genome variability (P = 5.7 × 10−9) both independently predict amount of
introgression. Additionally, even when controlling for sequence variability in a window, 3D genome variability is
informative about the amount of introgression (P = 5.7×10−4).
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on 3D organization is a G to A change at chr7:46,169,621 (rs12536129). The derived A allele, which

strengthens the CTCF motif, appeared along the Neanderthal lineage. The four Eurasians (two Europeans

(EUR), two South Asians (SAS)) with 3D genome organization very similar to Neanderthals all have an

introgressed haplotype carrying the Neanderthal-derived A allele overlapping this CTCF site180. None of

the other 11 Eurasians have introgression at this site (although some have introgression in the larger 1 Mb

window). Across human populations, this introgressed allele remains at high-frequency today, especially in

Peru (28% AMR, 2% EAS, 16% EUR, 11% SAS, 0% AFR, Fig. 6.46A).

In addition to influencing the strength of a CTCF site, this introgressed allele is also an eQTL in

GTEx for the physically linked gene IGFBP3, Insulin-like growth factor-binding protein 3 (Fig. 6.46B,

P = 0.00014 in artery tissue)95. In MHs, this variant is associated with traits including standing height

(P = 9.9×10−7), fat distribution (trunk fat ratio, impedance measures, P = 1.3×10−5), and diastolic blood

pressure (P = 2.1×10−5) (Fig. 6.46C).

Of the 191 3D-modifying variants identified in 167 AH-MH 3D diverged windows, 45 are observed

in MHs (Table 6.10). Of note, 18 are common (> 5% MAF) and 6 are at high frequency (> 10%) in at

least one MH 1000 Genomes Project (1KGP) super-population which motivates the hypothesis that some

introgressed 3D changes were adaptive. We find very modest non-significant enrichment for these loci in

previously proposed adaptive haplotypes180 (2.3-fold enrichment, P = 0.24).

Given these examples of Neanderthal introgression contributing novel 3D folding to present-day Eurasians,

we searched for similar patterns genome-wide. We considered 4,749 autosomal 1 Mb windows for 15

Eurasians (total n = 71,235) to quantify the relationship between the amount of introgression and 3D simi-

larity to Neanderthals. We find that the amount of introgression (bp per window) is significantly correlated

with 3D divergence to the Vindija Neanderthal (P = 0.00011, Fig. 4.6C). Results from comparisons to the

other Neanderthals are consistent (Fig. 6.47). On average, in a 1 Mb window, if an individual has 80%

Neanderthal ancestry, their 3D genome is 2.4 times more similar to the Neanderthal 3D genome than if they

have no (0%) Neanderthal ancestry.

In summary, we find that Eurasians with more Neanderthal ancestry in a window have more Neanderthal-

like 3D genome folding patterns. Furthermore, at an example locus, we demonstrate how the influence of

Neanderthal introgression on 3D genome organization highlights a putative molecular mechanism for the

effect of Neanderthal ancestry on human traits.

4.3 Discussion
The role of 3D genome organization in human biology is increasingly recognized105,123,137,154,196,229; how-

ever, current techniques for measuring 3D folding cannot be applied to the study of ancient DNA. Fur-

thermore, despite methodological improvements in assays of the 3D genome, high-resolution experiments

across many diverse individuals, species, and cell types remain prohibitive. To address these gaps, we pro-

vide a framework for inferring 3D genome organization at population-scale that facilitates evaluation of

previously untestable hypotheses.

First, we apply this framework to resurrect archaic 3D genome organization. We find that 3D genome

organization constrained sequence divergence and patterns of introgression in hominin evolution. We cat-
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Figure 4.6: Introgression introduced novel 3D genome organization patterns to modern Eurasians.
(A) Comparison of the 3D contact maps between Neanderthal (Vindija) and 20 MHs for a window on chromosome
7 reveals that most MHs (yellow, green) have different 3D organization compared to Neanderthals. In contrast, four
MHs with introgression (purple boxes) overlapping chr7:46,169,621 (red star) have similar 3D organization compared
to Neanderthals across this part of the genome (purple). (AFR: African, SAS: Southeast Asian, EAS: East Asian,
EUR: European) This example 3D-divergent locus (B) was introgressed into MH and remains at high frequency (28%
AMR, 2% EAS, 16% EUR, 11% SAS, 0% AFR, Fig. 6.46). At this locus (zoomed to chr7:45,883,392-46,436,352),
Neanderthals and individuals with introgression have two domains insulated by a CTCF site (red box). In MHs without
introgression, this motif is disrupted with a G instead of an A (star, chr7:46,169,621, rs12536129) leading to a larger
fused domain and differential contacts with the promoter of IGFBP3. (C) The amount of introgression in a 1 Mb
window (number of bp, horizontal axis) is significantly correlated with the similarity of an individual’s 3D genome
organization to a Neanderthal’s (Vindija) genome organization (vertical axis) (P= 0.00011, n= 71,235 1 Mb windows
across 15 Eurasians). The error bars signify 95% bootstrapped CIs and the error band signifies the 95% bootstrapped
CI for the linear regression estimate.

66



alog genomic regions where AH and MH 3D genome organization diverged and illustrate how this novel

mechanism links sequence differences to phenotypic differences. Importantly, our approach permitted the

evaluation of variants unobserved in MHs, and it provides a putative molecular mechanism for AH-MH phe-

notypic differences including those that may have been selected against after hybridization (e.g. cognitive

and brain morphology traits)44,45,53–56,63. Finally, we identify regions in which introgression introduced AH

3D genome folding that are novel to MHs in Eurasians with Neanderthal ancestry. Together, these results

illustrate the power of imputing unobservable molecular phenotypes to resolve evolutionary questions about

functional divergence.

Second, we anticipate that our framework for comparing and interpreting hundreds of genome-wide 3D

genome contact maps will be helpful for testing hypotheses beyond archaic DNA. In the interpretation of

genetic variants of unknown significance, it will be key to consider the effect of inter-individual and inter-

species variation on 3D genome architecture, especially given recent evidence that even common DNA

sequence variants can influence 3D organization and human phenotypic variation136. Our work establishes

the groundwork to answer many diverse questions. For example, we illustrate how in silico mutagenesis

can highlight the role of a variant in 3D genome organization and how to integrate this with other functional

annotations. This allows us to examine the 3D effects of variants never before observed in MHs, which is

essential to non-coding variant interpretation from the lens of both evolution and disease. Our new measure

of “3D genome variability” provides genome-wide quantification of how different regions tolerate variation

in 3D genome folding. We also demonstrate a simulation approach for testing how 3D genome folding

constrains sequence evolution across the genome. Finally, we develop a method to robustly identify 3D

divergent windows between populations. With the recent growth of 3D genome in silico predictors140–143,

we anticipate that our work can provide a foundation for both hypothesis generation and prioritization of

experimental resources.

Although our approach provides many novel benefits, it also has limitations that we hope future work

will address. First, our comparisons likely underestimate 3D diversity. We only investigate windows of

the genome with complete sequence coverage. Because of ancient sample degradation, we do not have full

coverage of AH genomes. We use a conservative approach to effectively mask regions of the genome lack-

ing coverage in AHs (Fig. 6.34 and Methods). Furthermore, we only consider the effects single nucleotide

variants. We do not consider structural variation (SV) due to the challenges of calling SV accurately in

ancient samples. We anticipate new methods in ancient DNA sequencing will allow us to model the 3D

genome organization of AHs more completely. Second, our 3D genome organization comparisons are based

on a correlation-based metric. We demonstrate concordance with comparisons using other more biologically

informed methods (Fig. 6.37); however, more sophisticated methods to quantify the type and resolution of

change (e.g. neo-TAD vs TAD-fusion event, scale of TAD vs. loop) would benefit the 3D genome commu-

nity140. Third, although Akita is trained simultaneously across five cell types, 3D genome organization is

largely conserved across cell types and predictors only identify limited cell-type-specific differences. There-

fore, we focused on the highest resolution predictions in a single context (HFF). As more high-resolution

Hi-C and Micro-C becomes available across diverse cell types, our framework can be applied to identify

cell-type-specific AH-MH differences.
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Several practical caveats must be considered when interpreting some of our results. For example, to con-

duct in silico mutagenesis we manipulate every single nucleotide separately against the same background

rather than considering the prohibitively large number of possible combinatorial variant sets. Additionally,

while our null model of genome divergence accounts for context-dependent mutation probabilities, we sug-

gest that future study of the influence of 3D folding on genome evolution would benefit from the use of

forward-time genomic simulations. The annotations that link 3D-modifying variants to genes and functions

are also based on studies in MHs (HPO and GWAS). It is possible, though unlikely, that a gene disrupted in

MHs would not lead to the same traits in AHs. Finally, given the scope of our study and the nature of archaic

DNA, direct experimental validation is not possible with current technology. To date, Gorkin et al.136 pro-

vides the largest set of Hi-C across 19 MH individuals in the same cell type (LCL GM12878). However, the

resolution is too low to call chromatin loops (40 kb vs. 2 kb in our analyses), and 13 of the 19 individuals

are African and have almost no Neanderthal ancestry. Thus, we use complementary experimental data, like

CTCF ChIP-seq and experimentally-derived TAD maps, to provide independent support for the influence of

variants on 3D genome organization and to link variants with genes in true physical proximity. Moreover,

even if high-resolution Hi-C were available across many Eurasians, an experimental approach would still

not capture all AH variation, highlighting the necessity of our computational approach.

In conclusion, our framework for inferring archaic 3D genome organization provides a window into

previously unobservable molecular mechanisms which shaped the sequence and phenotypic evolution of

hominins.

4.4 Methods
Modern human and archaic genomes

Obtaining genomes

All genomic analysis was conducted using the GRCh37 (hg19) genome assembly and coordinates (www.

ncbi.nlm.nih.gov/assembly/GCF 000001405.13/). Genomic variation within modern humans (MH) came

from 1000 Genomes Project (1KGP), Phase 3 from Auton et al.175. All MH genomes were selected ran-

domly from each subpopulation with a filter for females only to facilitate comparisons of the X chromosome.

The 1KGP individuals used are listed in Table 6.9. Archaic genomes are from Prüfer et al.13 (Altai), Prüfer

et al.14 (Vindija), Mafessoni et al.15 (Chagyrskaya), and Meyer et al.16 (Denisova).

Building individual genomes

We constructed full-length genomes for each MH or AH based upon the genotyping information in their re-

spective vcf file. Given the difficulty of distinguishing heterozygous genotypes in the ancient DNA samples,

we treated all individuals as if they were homozygous (pseudo-haploid). We built each individual genome

using GATK’s FastaAlternateReferenceMaker tool230. If an individual had an alternate allele (homozygous

or heterozygous), we inserted it into the reference genome to create a pseudo-haploid, or “flattened” genome

for each individual. This procedure is illustrated in step 1 of Fig. 6.34.
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Accounting for missing data in the archaic genomes

Ancient DNA is both fragmented and degraded. These characteristics present challenges to both sequencing

and alignment, resulting in gaps in coverage, particularly in genomic regions of low complexity. To account

for this missing data, we “masked” all genomic regions lacking archaic genotyping information by reverting

nucleotide states to the hg19 reference. For analyses that compared 3D genome organization between MHs

and AHs, we masked both MH and AH genomes. This procedure is illustrated in steps 2-4 of Fig. 6.34.

Archaic genome coverage is shown in Fig. 6.35. For analyses that only considered MHs (e.g. quantifying

3D genome variability across the genome in MHs), this masking procedure was not applied.

3D genome organization predictions with Akita

After the genomes were prepared, we input them into Akita for predictions using a 1 Mb sliding window

(1,048,576 bp) overlapping by half (e.g. 524,288-1,572,864, 1,048,576-2,097,152, 1,572,864-2,621,440).

Although Akita is trained simultaneously on Hi-C and Micro-C across five cell types in a multi-task frame-

work to achieve greater accuracy, we focus on predictions in the highest resolution maps, human foreskin

fibroblast (HFF). We note that the results are similar when considering other cell types (e.g. embryonic

stem cells), likely because of limited cell-type-specific differences (Fig. 6.38). Akita considers the full win-

dow to generate predictions, but the resulting predictions are generated for only the middle 917,504 bp.

Each contact map is a prediction for a single individual, and each cell represents physical 3D contacts at

approximately 2 kb (2,048 bp) resolution. The value in each cell is log2(obs/exp)-scaled to account for

the distance-dependent nature of chromatin contacts. Darker red pixels indicate more physical contacts

and darker blue pixels denote fewer physical contacts. For all analyses, we only considered windows with

full (100%) coverage in the hg19 reference genome for a total of 4749 autosomal and 250 chromosome X

windows. Fudenberg et al.141 provides further details on the CNN architecture and training data used.

3D genome comparisons

After predictions were made on all 1 Mb windows for all individuals, we compared the resulting predictions

using a variety of measures. All measures are scaled to indicate divergence: higher indicates more difference

while lower indicates more similarity. In the maintext we transform the Spearman’s rank correlation coeffi-

cient (1−ρ) to describe 3D divergence. We consider measures based on the Pearson correlation coefficient

(1− r) and mean squared difference ( 1
n ∑

n
i=1(xi − yi)

2) in Fig. 6.37. Percentiles of 3D divergence shown

in Fig. 4.2A-B are calculated with reference to a universe of 4 AHs × 5 African MHs × 4999 genomic

windows for a total of 99,980 comparisons. Figs. 4.4A,6.42 averages the 3D divergence (1−ρ) across all

4999 1 Mb windows (lower triangle) to compare to the average number of bp differences (after the masking

procedure described above) in the same pair of individuals (upper triangle). Clustering is done with the

“complete” (Farthest Point) method.

Sequence comparisons

Some analyses compare 3D genome divergence with sequence divergence. To calculate the sequence di-

vergence between two individuals, we counted the proportion of bases at which the two individuals differ
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in the 1 Mb window. For comparisons of divergence when including AHs, we applied the same masking

procedure as used to facilitate 3D genome comparisons (i.e. windows with missingness in AHs are filled

with hg19 reference).

CTCF motif overlap

We consider how nucleotide differences in a window (between Neanderthal [Vindija] and an African MH

[HG03105]) impacts 3D genome divergence in Figs. 4.4B,6.43. We stratified variants by if they overlap a

bound CTCF motif and their distance to TAD boundaries. CTCF motifs are from Vierstra et al.231. CTCF-

bound open chromatin candidate cis-regulatory elements (cCREs) in the HFF cell type are from Abascal

et al.232. TAD boundaries in the HFF cell type are from processed MicroC data from Akgol Oksuz et

al.233. These annotations were all lifted over to hg19234. A window was considered to have a CTCF-

overlapping variant if an AH-MH nucleotide difference intersected a CTCF-bound HFF cCRE and a CTCF

motif. Results were further stratified by varying levels of motif strength (“match score” in the top 10th,25th,

50th, or any percentile), distance to TAD boundary (within 15 kb, 30 kb, or anywhere), and whether the

CTCF motif overlap occurs in the middle 50% of the 1 Mb window or not.

Empirical distribution of expected 3D genome divergence

To compute the expected 3D divergence in a window given the observed sequence divergence, we generate

genomes with shuffled nucleotide differences. We match these shuffled differences to the same number

and tri-nucleotide context of the observed sequence differences between the Neanderthal (Vindija) and an

African MH (HG03105) genome (Fig. 4.4C). Variants are not shuffled into masked regions of the genome.

For each 1 Mb window of the genome (N = 4999) we generate 100 shuffled sequences. We calculate an

empirical distribution of expected 3D divergence from comparing the contact maps of the shuffled sequences

with the MH sequence. Finally, we compare the average expected 3D divergence from this distribution to

the observed AH-MH 3D divergence.

AH-MH 3D divergent loci

Identifying loci

To identify loci with AH-MH 3D genome organization divergence, we compared the 3D contact map at each

1 Mb loci between each AH and 20 African MHs. To call a region as divergent, we required all 20 AH-MH

comparisons to be more 3D divergent than all MH-MH comparisons (Fig. 4.3A). This identifies regions

with consistent 3D differences between AHs and MHs while excluding regions with a large 3D diversity

in modern humans. We also required the minimum AH-MH 3D divergence to be in the 80th percentile or

greater of most 3D diverged (Fig, 4.2A, 3D divergence > 0.0042). Because 20 MHs do not capture the full

MH genome diversity, it is possible that these criteria would still capture 3D patterns segregating in modern

Africans that are not truly AH-MH diverged. Thus, we removed any windows where the 3D-modifying

variant determined by in silico mutagenesis (below) was observed in 1KGP MHs if it was not introgressed

(LD of r2 = 1 with introgressed variants called by Browning et al.32 or Vernot et al.156). For the counts of

70



AH-MH divergent windows (Fig. 4.3B), we considered overlapping 1 Mb windows as a single observation.

We summarize and report the AH-MH 3D divergent windows in Tables 6.10.

In silico mutagenesis

To identify the variant(s) contributing to the most prominent 3D differences in each identified AH-MH diver-

gent window, 3D-modifying variants, we use in silico mutagenesis. For example, for an Altai Neanderthal

divergent window, we identify every bp difference that is unique to the Altai genome when compared to

20 African MH genomes. In the background of the MH (HG03105) genome, we insert each different Al-

tai allele one-at-a-time. We then compare the resulting contact map between the original MH genome and

the MH genome with each Altai allele. We then identify both the allele resulting in the largest 3D diver-

gence and any other variants that contribute to a 3D divergence >= 0.0042 and term these “3D-modifying

variants” (Table 6.10).

Phenotype ontology enrichment

To test if AH-MH 3D-modifying variants are enriched near genes related to particular phenotypes we follow

a procedure visually described in Fig. 6.40. 3D-modifying variants (above) are linked to genes in their TAD

because this provides evidence of physical proximity. TADs are defined as regions between TAD boundaries

as defined with MicroC data in HFF from Akgol Oksuz et al.233 (lifted over to hg19). Genes are defined

as the longest transcript from protein-coding genes (NM prefix) from NCBI RefSeq downloaded from the

UCSC Table Browser208. Genes are linked to phenotypes from the Human Phenotype Ontology (HPO)

and GWAS Catalog 2019 downloaded from Enrichr223–225. Annotations are further grouped into pheno-

typic systems via system-level annotations from Gene ORGANizer235 and manual curation. HPO largely

considers rare disease annotations and has 1779 terms with 3,096 genes annotated221. The GWAS Catalog

largely considers common disease annotations and has 737 terms with 19,378 genes annotated222. Through

this procedure, we counted the number of ontology terms linked to the set of 3D-modifying variants. We

considered 3 different sets, those shared (intersect) by all Neanderthals (Fig. 4.3), those in any Neanderthal

(union), and those in Denisova (Fig. 6.41, Table 6.10).

We test enrichment for ontology terms linked to at least one 3D-modifying variant. While the anno-

tations are downloaded from Enrichr, we did enrichment analyses with a more appropriate null. For each

set, we shuffle the observed 3D-modifying variants into the background genome. We defined the back-

ground genome as any place where a 3D-modifying variant could have been identified (i.e. regions with

full coverage in modern humans used for Akita predictions). We then use the same procedure (Fig. 6.40

to link the shuffled variants to genes and then ontology terms. We repeat this shuffle 500,000 times to cre-

ate an empirical distribution for how many times we would observe each annotation under the null. We

used these distributions to calculate an enrichment and P-value for each ontology term. The FDR-corrected

significance level was determined empirically using these null observations (a subset of n = 50,000). We

select the highest p-value threshold that led to a V/R < Q where V is the mean number of expected false

discoveries and R is the observed discoveries (which includes both true and false positives).
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Relationship between 3D genome organization and introgression

3D genome variability

To consider how 3D organization may have constrained where we observe introgression in the genome,

we calculated 3D genome variability across the genome in MHs. Because we are not comparing these

predictions with AH 3D genome organization, we did not mask the genomes before 3D genome predictions

(above). In the same 1 Mb sliding windows across the genome, we predicted the contact maps for 20

modern Africans (because they have no or very little introgression). For each window, we calculate the

3D genome divergence between all 190
(20

2

)
pairs of contact maps. We then computed the “3D genome

variability” by taking the mean of these 190 divergences for each 1 Mb window across the genome. High

3D genome variability indicates a high average pairwise 3D divergence (i.e. diversity of 3D organization),

while low 3D genome variability indicates low pairwise 3D divergence (i.e. similar 3D organization across

all individuals).

Genomic windows with evidence of introgression

To define genomic regions with Neanderthal ancestry we used “segments” identified by Browning et al.32

using Sprime, a heuristic scoring strategy that compares high-LD regions in a target admixed population

(i.e., Europeans) with an unadmixed outgroup (i.e., Africans) to identify putatively introgressed regions.

We considered a set of Sprime-identified segments shared (intersection) among East Asians (EAS), EUR,

and SAS. We repeat the analysis using a more stringent subset of Sprime segments that (1) have at least

30 putatively introgressed variants that could be compared to the Altai Neanderthal genome and (2) had

a match rate of at least 30% to the Altai Neanderthal allele (Neanderthal filter). We also considered the

introgressed Neanderthal haplotypes previously identified by Vernot et al.156 identified using the S* statistic.

Finally, we consider introgressed segments unique to a single population (EAS, EUR, or SAS). Because

these introgression calls only consider autosomes, we do not use the X chromosome for these analyses.

Results from these sets of Neanderthal ancestry are in Figs. 4.5,6.44,6.45 and Tables 6.11,6.12.

In the main text (Fig. 4.5), we compare the 3D genome variability between 1 Mb windows with no

introgression (0%) versus windows where at least 70% of the bp have evidence of introgression. Other

thresholds are shown in Fig. 6.44.

Predicting the amount of introgression

To test if 3D genome variability can be uniquely informative to predict tolerance of introgression, we con-

ducted a simple linear regression. We predict the amount of introgression in a 1 Mb window while condi-

tioning on the amount of sequence variability in a window. Y = B0 +B1X3D variability +B2XSequence Variability,

where Y is the proportion of the 1 Mb window with evidence of introgression defined using the previ-

ously described sets of Neanderthal ancestry. For comparison, we also conducted some regressions where

Y was modeled from only 3D variability or sequence variability alone. Results from these models are in

Figs. 4.5B,6.45, Tables 6.11,6.12.
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Individual-level introgression calls

We used introgression calls in 1KGP individuals from Chen et al.180, which applied IBDmix with the Al-

tai Neanderthal genome to identify introgressed segments in MHs. We identified windows with AH-MH

divergence with evidence of introgression by intersecting with the introgression calls.

We also test the relationship between the amount of introgression an individual has and their 3D diver-

gence from AHs. For each window, we compare the amount of introgression (% of bp) for an individual in a

1 Mb window with that individual’s 3D divergence from Neanderthals. We do this analysis for 15 Eurasians

across 4,749 1 Mb autosomal windows (total n = 71,235). In Fig. 4.6C we compare Eurasians to the Vindija

Neanderthal 3D genome and in Fig. 6.47 we compare to Altai and Chagyrskaya. We also repeat the analysis

removing windows with no evidence (0% bp) of introgression.

eQTL and PheWAS analysis

eQTL analysis and plots were generated using the Genotype-Tissue Expression (GTEx) Project (V8 release)

Portal (lifted over to hg19)95. PheWAS results are from the GWAS Atlas and consider 4756 traits159. Allele

frequencies come from 1KGP Phase 3175.

Examples

The examples visualized in Figs. 4.3,4.6 are annotated using the UCSC genome browser234. They were

each manually zoomed to highlight the regions of interest. We use ENCODE open chromatin candidate

cis-regulatory elements (cCREs)232 to highlight promoters (promoter-like signature, pink) and enhancers

(proximal [orange] and distal [yellow] enhancer-like signature) combined from all cell types downloaded

from the UCSC table browser (lifted over to hg19)208. We use Transcription Factor (TF) ChIP-seq Clusters

(130 cell types) from ENCODE 3236,237 downloaded from UCSC table browser208. We show the motif

sequence logo with reference to the positive strand of hg19.

Data analysis and figure generation

The datasets we generated are available in the GitHub repository “neanderthal-3d-genome” available here

https://github.com/emcarthur/neanderthal-3D-genome/ which will be formally cited and versioned upon

publication.

All genomic coordinates and analysis refer to Homo sapiens (human) genome assembly GRCh37 (hg19),

unless otherwise specified. All P values are two-tailed, unless otherwise specified. All measures of central

tendencies are means, unless otherwise specified. Data and statistical analyses were conducted using Python

3.6.10 (Anaconda distribution), Jupyter Notebook, BedTools v2.26, and PLINK 1.9177,181. Figure generation

was significantly aided by Matplotlib, Seaborn, and Inkscape182–184.

Data availability

The publicly available data used for analysis are available in the following repositories. MH genome

vcfs are from 1000 Genomes Project (1KGP) (ftp.1000genomes.ebi.ac.uk/vol1/ftp/data collections/1000
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genomes project/release/20190312 biallelic SNV and INDEL/175. Archaic genotypes are from the follow-

ing repositories: Altai Neanderthal13 (ftp.eva.mpg.de/neandertal/Vindija/VCF/Altai/), Denisova (ftp.eva.

mpg.de/neandertal/Vindija/VCF/Denisova/)16, Vindija Neanderthal14 (ftp.eva.mpg.de/neandertal/Vindija/VCF/

Vindija33.19/), and Chagyrskaya Neanderthal15 (ftp.eva.mpg.de/neandertal/Chagyrskaya/VCF/). Introgressed

variants and segments are from Sprime Version 1 (https://data.mendeley.com/datasets/y7hyt83vxr)32. An al-

ternative set of introgressed variants and segments are from S*156]. Individual level 1KGP introgression calls

are from the Akey Lab180.

CTCF motifs are from genome-wide motif scans v1.0231, CTCF-bound open chromatin candidate cis-

regulatory elements (cCREs) in the HFF cell type (https://screen.encodeproject.org/ > Downloads > by cell

type > HFF-Myc male newborn originated from foreskin fibroblast, lifted-over to hg19)232, TAD boundaries

in the HFF cell type are from processed MicroC data available at the 4D nucleome data portal (https://data.

4dnucleome.org/experiment-set-replicates/4DNES9X112GZ/, lifted-over to hg19)233. RefSeq genes, TF

ChIP-seq Clusters, enhancer and promoter cCREs are downloaded from the UCSC Table Browser (https:

//genome.ucsc.edu/cgi-bin/hgTables)208. Gene ontology annotations are downloaded from Enrichr (https://

maayanlab.cloud/Enrichr/#libraries)223–225. System-level groupings of disease ontology terms were aided by

Gene ORGANizer annotations(http://geneorganizer.huji.ac.il/downloads/)235. eQTL data is from the GTEx

Portal (https://www.gtexportal.org/, lifted-over to hg19)95. PheWAS results are from the GWAS Atlas (https:

//atlas.ctglab.nl/)159.

Code availability

Akita is in the “basenji” GitHub repository available here https://github.com/calico/basenji/tree/master/

manuscripts/akita141. The “neanderthal-3d-genome” GitHub repository (above) contains a Jupyter notebook

with custom code used for data analysis and all figure generation.
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CHAPTER 5

CONCLUSIONS

5.1 Summary
The goal of this dissertation was to synthesize interdisciplinary methods and data to quantify the relation-

ships between the recent human evolution, 3D genome organization, gene regulation, and complex human

disease. The aims were to:

• Comprehensively quantify the contribution of Neanderthal ancestry to diverse human traits. (Chap-

ter 2)

• Map the relationship between 3D genome architecture and the genetic architecture of complex traits

(Chapter 3)

• Reconstruct the 3D genome organization of Neanderthals to evaluate how chromatin folding shaped

human evolution (Chapter 4)

Chapter 2 addressed a gap in our understanding of how Neanderthal ancestry influences trait variation

in modern humans. These results expand our understanding of the consequences of introgression in several

ways. First, we use partitioned heritability to consider the genome-wide effects of introgression, overcoming

limitations of previous work that only studied individual loci. Additionally, previous work found evidence

for depletion of functional elements in regions of the genome with Neanderthal ancestry. Our work goes

beyond these proxies for function to demonstrate depletion for contribution to diverse complex traits. De-

spite this depletion, we found that introgressed variants shared across multiple Neanderthal populations

are enriched for heritability contribution to several traits with potential relevance to human adaptation to

non-African environments, including hair and skin traits, autoimmunity, chronotype, bone density, lung

capacity, and menopause age. Integrating our findings, we proposed a model in which selection against

introgressed functional variation was the dominant trend (especially for cognitive traits); however, for a few

traits, introgressed variants provided beneficial variation via uni-directional (e.g., lightening skin color) or

bi-directional (e.g., modulating immune response) effects.

Chapter 3 transitioned to investigate the 3D genome architecture across diverse cell types to demonstrate

its relevance to evolutionary conservation and trait-associated variation. Although the 3D genome has an

established role in rare disease, this work demonstrated that genetic variation in TAD boundaries contributes

more to complex-trait heritability, especially for immunologic, hematologic, and metabolic traits. We also

unify seemingly contradictory findings about evolutionary pressures across the 3D genome landscape: we

suggest that even though TADs are shuffled, the boundary-defining sequences are under more constraint than

the sequences within the TAD. We also demonstrate that TAD boundaries shared across cell types are further

enriched for complex-trait heritability, evolutionary constraint, CTCF binding, and housekeeping genes.

Ultimately, we highlight how considering the 3D genome across cell types provides valuable context for

understanding the genome’s functional landscape and enabling variant interpretation that takes 3D structure

into account.

75



Chapter 4 synthesized knowledge about 3D genome folding with outstanding questions about the mech-

anism of archaic variation contribution to phenotype. Using novel deep learning tools we reconstruct the

3D genome organization of Neanderthals and Denisovans. Using the resulting 3D contact maps, we iden-

tify 167 regions with 3D genome divergence between AHs and MHs and find enrichment for phenotypes

related to the eye, supra-orbital ridges, hair, lungs, immune response, and cognition. We demonstrate that

the 3D genome organization constrained sequence divergence and patterns of introgression in hominin evo-

lution. Finally, we highlight loci where modern Eurasians inherited novel 3D genome folding from AH

ancestors. Together, our findings illustrate the power of inferring molecular phenotypes to reveal previously

unobservable biological differences.

5.2 Future directions
Given the complexity of the human genome, many of the models and ideas presented in this dissertation

simplify certain aspects of both evolution and genome folding that are presently unknown. Yet, these models

build the foundation for future hypotheses and discovery. Detailed limitations specific to each aim are

included at the end of each chapter. Here, I will synthesize limitations with common threads across all the

presented work to highlight big-picture avenues for future exploration.

5.2.1 Replication across diverse populations
Despite advances in genome sequencing, there are still significant gaps in equitable representation across

populations in human genomics research. For example, non-European participants represent only 22% of

individuals in GWAS222,238, despite the vast majority of the world’s population living in Africa and Asia239.

This not only hinders our knowledge about biology, but it also prohibits equitable benefits of genomics to

all. However, there are reasons to be hopeful as the number of the non-European individuals respresented

in GWAS has increased five-fold from 4% in 2009 thanks to community engagement, increased diversity

of scientists, better funding, and work by many consortia239,240. Increasing diversity and sample sizes will

permit further population-specific investigations into the architecture of complex traits.

This will be especially important in the context of understanding the contribution of archaic hominin

variation to traits across the globe. Many of the associations we and others have found are related to inter-

action with the environment (e.g., immune response, skin color). Because humans in different populations

have faced unique environments and challenges, I hypothesize that the genome-wide consequences of in-

trogression are different across populations. Furthermore, studies across diverse humans will facilitate a

better understanding of Denisovan ancestry because it is population-specific. Accordingly, recent work

has built upon our findings to begin addressing these gaps. Dannemann227 used summary statistics from

GWAS cohorts of 212,000 individuals in Biobank Japan to identify population-specific associations with

Neanderthal DNA. Koller et al.241 conducted phenome-wide association studies (PheWAS) of Denisovan

and Neanderthal alleles in participants of six different ancestries in the UK Biobank to highlight the spe-

cific contribution of Denisovan introgression to East Asian populations across diverse phenotypes. Both

studies were limited by sample size and power differences that impeded the ability to compare results with

European-ancestry cohorts. New statistical methods can also address this concern. For example, S-LDXR242
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aims to highlight population-specific associations. Ultimately, as sample-sizes increase and consistent phe-

notype data in biobanks become more available, I envision that the application of our framework will provide

important insights into the diverse selective pressures humans faced and how they lead to disease today.

A more diverse catalog of modern human genetic variation would also benefit our mechanistic un-

derstanding of the non-coding genome. Although all human populations share underlying biology, most

variants are population-specific239. Understanding the consequences of a given variant provide insight into

the function of that part of the genome; thus, sampling diverse individuals will make conclusions more ro-

bust and our models more accurate. Accordingly, our results mapping the relationship between 3D genome

architecture and the architecture of complex traits should be replicated across diverse populations. Improve-

ments in statistical methods to calculate partitioned heritability will also enable more robust conclusions.

For example, cov-LDSC can be applied in admixed populations243, and I anticipate methods will be devel-

oped to estimate partitioned heritability by meta-analyzing across populations, even when the sample size

for sub-populations are smaller244.

Finally, models to predict 3D genome organization can be applied to diverse populations to identify vari-

ation in 3D folding. While larger-scale 3D genome organization is conserved across species105,111,119–121, I

hypothesize that finer-scale loops are more population specific136. Creating a genome-wide catalog of 3D

genome organization across diverse populations may highlight differences between populations that lead to

trait variation.

5.2.2 Consideration of rare variation
In addition to most genetic variation being population-specific, most genetic variation is also rare and ob-

served in less than 5% of the population (MAF < 0.05)239,245. The work in this dissertation that leverages

GWAS data with heritability analyses only considers the effect of common variation on traits (MAF ≥ 0.05).

Future work should consider the effects of rare and ultra-rare variation. New methods, larger LD reference

panels, and greater sample size now permit preliminary investigations into the genome-wide effect of rare

variation (0.5% ≤ MAF < 5%) to complex traits169. Progress in sampling rare variation should be united

with the efforts to increase diversity: an increased sample size should not come at the convenience of ex-

cluding diverse populations.

Extension of these results to consider rare variation should provide insight towards interpreting the

effect of both Neanderthal variation and 3D genome context. As more humans have been sequenced, an

increasing number of archaic ancestry segments have been identified. Early (2014) estimates suggested that

approximately 20%44 of archaic genomes exist in modern humans. This was revised to 40%31 (2020), and

more recent methods to detect introgression have proposed that closer to 93%30 (2021) of the human genome

has evidence of admixture or incomplete lineage sorting. Identifying this archaic ancestry is exciting, but

most of these archaic variants segregate at very low frequencies in present-day populations, which makes

phenotypic associations more difficult. I hypothesize that considering rare variants will highlight more

deleterious trait-associated variation under negative selection, even though the heritability they explain is

small169.

In the context of the 3D genome, our work was motivated by studies of ultra-rare structural variation
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(SV) disrupting 3D genome structure. Many of the SVs that disrupt 3D organization (e.g., via TAD bound-

ary rearrangement) cause neurological and developmental traits105,122,132. Thus, I originally hypothesized

that common variants in TAD boundaries would associate with related traits. Instead, we found that TAD

boundaries enriched for the heritability of metabolic, hematologic, and immunologic traits. However, this

only considers common variation. In light of these results, I now hypothesize that negative selection purged

common variation in TAD boundaries with consequences for the brain and development traits154. To resolve

these differences, we must quantify the 3D genome contribution to traits across the allele-frequency spec-

trum169,245. This may reveal which parts of the genome are more intolerant to 3D genome variation which

is critical for understanding the genetic architecture of rare and common disease.

5.2.3 Applications to other mechanisms of gene regulation
This work specifically considers the role of the 3D genome in evolution and disease; however, this is only

one piece of the gene regulatory puzzle. Our work, along with others that considered methylation96,97 and

gene regulation prediction models94, have demonstrated the potential to impute molecular phenotypes to

mechanistically link genotype to phenotype to ask diverse questions. Together, these studies provide a

foundation that can be used to consider other mechanisms of gene regulation. Owing to more data and

improved deep learning architectures, novel methods that predict molecular phenotypes from sequence have

emerged. For example, SpliceAI models mRNA splicing and predicts cryptic splice mutations246. Some

methods also directly predict gene expression. For example, Basenji2247, ExPecto248, and Enformer249

predict genomic tracks including open chromatin (e.g., DNase), histone modifications (e.g., H3K27ac), and

CAGE gene expression. Applying these to both archaic and modern human genomes will paint a picture of

gene regulatory landscapes to facilitate comparisons.

This dissertation demonstrates the utility of imputing molecular phenotypes of extinct species for which

we would never be able to assay 3D genome structure or RNA levels. However, these methods can also

be applied across present-day humans to answer outstanding questions. For example, although we have

the technical capability to measure RNA expression across multiple individuals in multiple cell types at

population-scale, it would be impractical. Consequently, imputing gene regulation has demonstrated fruit-

ful in highlighting genes and pathways implicated in disease via transcriptome-wide association studies

(TWAS)250,251. I hypothesize that integrating 3D genome organization predictions (or other molecular

predictions) with phenotype data may provide a complementary benefit. This hypothesis is preliminar-

ily supported by Gorkin et al.136 who identified common sequence variants that influence experimentally-

determined 3D folding and demonstrated that these differences correlate with epigenomic and transcriptomic

annotations. However, these Hi-C data were only for 19 individuals, in one cell type, and were low resolu-

tion. I propose a 3DWAS (3D genome-wide association study) as an intriguing idea to directly quantify the

contribution of differential 3D genome folding across cell types on traits or gene expression at population-

scale.
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5.2.4 Evaluation of differences across cell types and species
Finally, as alluded to in the Introduction (Chapter 1), our understanding of the “how” and “why” of chro-

matin folding is still in its infancy: genome-wide assays of chromatin configuration are just a decade old104.

Early studies largely characterized 3D genome organization, especially TADs, as conserved across cell

types111,112,116–118 and species105,111,119–121. Consequently, models that infer folding from sequence can

only predict limited cell type differences141. However, with increasingly high-resolution maps, single-cell

Hi-C, and samples from diverse tissues and species, we are now appreciating the diversity in 3D genome

organization and its implications for cell-type differences154,198 and evolution199,252.

These differences across species and cell types make the “chromatin folding problem” even more com-

plex; however, it also poses exciting questions about how the genome encodes such a diversity of 3D orga-

nization patterns. The aim of current 3D genome prediction models is simply to “learn” how to best predict

the experimental map. However, the architecture and goal of these deep learning models could be adjusted

to incentivize predictions of cell-type or species-specific regions. In addition to better models, increased

availability of data across cell types will allow for better training that may enable novel applications. For ex-

ample, high-quality cell-type-specific predictions will be necessary to evaluate the consequences of variation

in rare disease cohorts, especially as many rare diseases have tissue-specific consequences (e.g., neurologic,

cardiac). Increased data availability will also facilitate comparisons that could identify species-specific or

cell-type-specific patterns of 3D genome folding. In Chapter 3, we were under-powered to test for a re-

lationship between cell-type-specific TAD boundaries and heritability contribution to specific traits. More

robust detection of cell-type-specific chromatin features may provide the necessary resolution to consider

the relationship between cell types and traits in the context of the 3D genome.

In addition to comparisons between experimental maps, I anticipate that comparisons between exper-

imental and predicted maps may provide opportunities to test hypotheses about the “code” underlying

genome folding across contexts. For example, when models trained in humans were applied to mice, they

predicted mouse 3D genome structure poorly in certain regions141. Notably, these poorly predicted regions

contain B2 SINE elements, which harbor CTCF motifs and have expanded in Muridae lineages141. Thus,

identifying regions where real maps and predictions differ could provide clues to the evolution and cell-type

specificity of 3D genome folding mechanisms.

We are in the midst of a genomics revolution. The influx of genome sequences and complementary func-

tional data will enable exciting investigations into some of the future directions outlined here, among others

we cannot even conceptualize yet. However, as genome sequencing becomes more inexpensive and routine,

this acceleration will pose new challenges. Human genomes differ at up to 5 million sites78, and the major-

ity of this variation is in the enigmatic non-coding genome. To interpret this vast amount of variation, this

dissertation highlights that we must consider the role of the 3D genome given its importance to both our risk

for disease and our evolutionary history.
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CHAPTER 6

APPENDICES
6.1 Appendix 1: Supporting information for Chapter 2

Supplemental Text
Crohn’s disease risk in Vindija-matching variants
The heritability enrichments across traits for Vindija-matching variants are highly correlated with those for
the Altai-matching variants (r2 = 0.93, Fig. 6.3B-C). However, heritability enrichment for Crohn’s disease is
higher in Vindija-matching variants than in other introgressed sets (2.1-fold vs. 1.1-fold enriched, Fig. 6.3C).
We note that, given the large overlap between the variant sets that match Altai and Vindija (Jaccard simi-
larity = 77%), the increased enrichment is not significant genome-wide (P = 0.4). Nonetheless, to explore
the specific loci underlying this difference, we identified variants that contribute more to the heritability
enrichment in Vindija-matching set compared to Altai-matching variants. We found that these introgressed
Crohn’s disease associated variants have diverse evolutionary histories. For example, as expected, we iden-
tify several variants that appeared on the Neanderthal lineage after the split of the ancestors of the Vindija
and Altai Neanderthals among the introgressed alleles most associated with Crohn’s disease (Fig. 6.7B).
In addition, we observe ancestral variants from before the divergence of AMH and Neanderthals that were
lost in AMHs and the Altai Neanderthal, but that remained in Vindija. These ancestral Crohn’s disease risk
variants were reintroduced to AMH by introgression (Fig. 6.7A)58.

Contribution of selection to observed heritability enrichment
We hypothesized that selection contributed to the heritability enrichment observed among introgressed vari-
ants for certain traits. Many tests for selection are confounded by introgression, but high frequencies in
modern populations suggest selection for introgressed alleles33,35. On a variant-level, introgressed variants
with high frequency in modern Europeans (> 21% MAF) contribute more to the heritability enrichment than
rarer variation (Fig. 6.8), suggesting that after introgression these trait-associated variants increased in fre-
quency in European populations potentially due to selection. Irrespective of their origin, common variants
contribute more to complex trait heritability than rarer variants. However, this MAF-dependent architecture
pattern is consistent with the action of selection on variants affecting complex traits155,253. To further in-
vestigate the type of selection, we find that, on a haplotype level, genomic windows that contribute most to
the heritability of sunburn and white blood cell count overlap more putatively adaptive introgressed haplo-
types than expected by chance35,180 (Fig. 6.9, Sunburn: P = 0.02 [q = 0.09]; WBC: P = 0.02 [q = 0.09]).
Together, these findings support our hypothesis that selection acted differently on Neanderthal variation
associated with different traits.

Relationship between introgression and morningness at NMUR2
We identify multiple windows near NMUR2 with a positive relationship between Neanderthal LD pro-
file and morning person status. We focus on two windows (at chr5:151745423-151931514) nearest to
NMUR2 with the strongest positive relationship to morningness (overall r = +0.91, Fig. 6.16A-C). This
positive correlation suggests that increased LD to Neanderthal alleles is associated with an increased propen-
sity to be a morning person. The variants most associated with morningness at this locus are all intro-
gressed (Fig. 6.16B-C), but they have different histories: some are Neanderthal-derived (e.g. rs4958561:
P = 9× 10−12, Fig. 6.16D and some were lost ancestral alleles reintroduced through introgression (e.g.
rs10045463: P = 3×10−12). In addition, 168 of 169 introgressed variants in high LD in this window neg-
atively associate with expression of NMUR2 in frontal cortex cells from GTEx95 (Fig. 6.16E, rs4958561:
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P = 1 × 10−9 [Bonferroni critical value P = 1 × 10−3 ]). In a PheWAS across the UK Biobank, traits
most associated with this introgressed haplotype (tagged by rs4958561) include ease of getting up in the
morning (P = 1× 10−14), chronotype (P = 2× 10−12), morningness (P = 4× 10−12), sedentary behavior
(P = 4× 10−9), and tea intake (P = 1× 10−8) (all pass Bonferroni correction P = 1× 10−5)159. NMUR2
encodes the Neuromedin-U receptor 2, a receptor for neuromedins U (NMU) and S (NMS) that phase shifts
circadian rhythm activity254–256. In vivo, NMU shows circadian expression in rat brains in response to
melatonin and a genetic overexpression screen in zebrafish larvae identified Nmu to promote hyperactivity
through Nmu receptor 2257,258. Integrating these data, we hypothesize that Neanderthal introgressed alleles
downregulate NMUR2 in the brain leading to an association with increased morning person propensity.

There are four clusters of morningness-associated variants at this broader locus (within 1 Mb of rs4958561),
further suggesting the putative biological importance of this region to chronotype. The first cluster, pictured
in Fig. 6.16 and discussed above, is tagged by rs4958561 and rs10045463, which are both introgressed vari-
ants. The second cluster’s lead SNP is rs17489682 (P = 7.4×10−13) which is also introgressed. The third
cluster’s lead SNP is rs2910032 (P = 1.9× 10−13) and this cluster does not contain introgressed variants;
however, rs4958561 (introgressed tag SNP) and rs2910032 are not in high LD (r2 = 0.046). The fourth
cluster’s lead SNP is rs4533947 and is not introgressed (P = 4× 10−12). rs4958561 (introgressed SNP)
and rs4533947 are in moderate LD (r2 = 0.39). Therefore, we believe cluster 1’s association with morn-
ingness (shown in the figure) is driven by the Neanderthal introgressed variants. While we cannot fully
exclude that some of the signal observed at rs4958561 is not shared by the cluster of variants 330 kb down-
stream (rs4533947), we find this to be unlikely due to the degree of LD (r2 = 0.39) and the similarly strong
association at both loci (P = 9×10−12 and P = 4×10−12).
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Figure 6.1: Defining genomic regions with Neanderthal ancestry.
Of the introgressed segments defined by Browning et al. 2018 we consider those observed in any of the European
subpopulations (CEU, TSI, FIN, GBR, IBS), (A) that have at least 30 putative introgressed variants that are comparable
to the Altai Neanderthal genome (after filtering, these segments have an average of 116 comparable variants) and (B)
that these putative introgressed variants have at least 30% match to the Altai Neanderthal allele. After filtering, these
segments have a 76% match on average. (C) The size distribution of these independently identified segments after
applying these two filters. We also consider the union of these sets (black). Ultimately, we define 1345 segments
that have a median length of 299 kb (IQR: 174 – 574 kb). This set is used in Fig. 2.1B. (CEU: Utah Residents with
Northern and Western European Ancestry, TSI: Toscani in Italia, FIN: Finnish in Finland, GBR: British in England
and Scotland, IBS: Iberian Population in Spain).
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Figure 6.2: Trait heritability patterns in regions with Neanderthal ancestry and introgressed variants are con-
sistent when defined based on variants identified by S* from Vernot et al. 2016.
(A) Similar to Fig. 2.1B, we show that traits (n = 41) are broadly depleted of heritability in regions with Neanderthal
ancestry defined using haplotypes from S* (0.93x background expectation, two-tailed one-sample t-test P = 1×10−5).
The boxplot centers represent medians, the boxes are bounded by the first and third quartile, and the Tukey-style
whiskers extend to a maximum of 1.5 × IQR beyond the box. Traits (Crohn’s disease) with depletion less than 0.7 are
plotted on the baseline. (B) For a set of Altai-matching Neanderthal introgressed variants identified by S*, we show the
trait-by-trait partitioned heritability analysis. Bars for individual traits represent heritability enrichment estimates and
error bars are standard errors calculated by LDSC using a block jackknife (n = 200). Trait heritability depletion less
than 0.125 are truncated. This set includes 132,296 variants and is comparable to the Altai-matching “set 1” variants
identified by Sprime (N = 138,774) which is shown in Fig. 6.4A. (C) Trait heritability compared between Sprime-
identified Altai-matching “set 1” introgressed variants (x-axis) and S*-identified high-confidence variants (y-axis), are
highly correlated (r2 = 0.79).
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Figure 6.3: Trait heritability patterns in regions with Neanderthal ancestry and introgressed variants are con-
sistent when defined based on match to the Vindija Neanderthal genome.
(A) Similar to Fig. 2.1B, we show that traits (n = 41) are broadly depleted of heritability in regions with Neanderthal
ancestry defined using Vindija-matching haplotypes from Sprime (0.92x expectation, two-tailed one-sample t-test
P = 1× 10−5). The boxplot centers represent medians, the boxes are bounded by the first and third quartile, and the
Tukey-style whiskers extend to a maximum of 1.5 × IQR beyond the box. Traits (Crohn’s disease) with depletion less
than 0.7 are plotted on the baseline. (B) For a set of Vindija-matching Neanderthal introgressed variants, we show
the trait-by-trait partitioned heritability analysis. Bars for individual traits represent heritability enrichment estimates
and error bars are standard errors calculated by LDSC using a block jackknife (n = 200). Trait heritability depletion
less than 0.125 are truncated. This set includes 167,927 variants and is comparable to the Altai-matching “set 1”
variants (N = 138,774) which is shown in Fig. 6.2A. (C) Trait heritability compared between Altai-matching “set 1”
introgressed variants (x-axis) and Vindija-matching variants (y-axis), are highly correlated (r2 = 0.93). 66% of traits
are more enriched for heritability in Altai-matching variants compared to Vindija-matching variants (bottom right
triangle, one-tailed Binomial test P = 0.03). Heritability of Crohn’s disease is the one trait that is notably enriched in
Vindija-variants (2.1-fold) compared to Altai-variants (1.1-fold).
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Figure 6.4: Patterns of complex trait heritability are similar across four different sets of Neanderthal intro-
gressed variants.
From the most stringent set of Altai-matching variants observed in Europeans (set 1, A) to the most inclusive set of
introgressed variants observed in any subpopulation (set 4, D), we show the heritability enrichment (or depletion)
ordered by magnitude. Bars for individual traits represent heritability enrichment estimates and error bars are standard
errors calculated by LDSC using a block jackknife (n = 200). Traits with depletion less than 0.125 are truncated. Set
4 (D) is the same as Fig. 2.1C. The relationship between Set 4 (D) and Set 1 (A) is shown in Fig. 2.1D. Details of each
set are in the methods.
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Figure 6.5: Partitioned heritability enrichment P-values are not biased by the allele frequency distribution.
non-introgressed common variants. We tested whether the minor allele frequency (MAF) distribution for introgressed
variants could alone be responsible for the number of traits with significant enrichment or depletion observed. We
generated 200 sets of random variants matching the MAF distribution of the Altai-matching variant set in 10 bins (5-
7%, 7-10%, 10-13%, 13-17%, 17-21%, 21-26%, 26-32%, 32-38%, 38-44%, 44-50%). We chose the Altai-matching
variant set because its distribution is the most skewed compared to the set of all 1000G variants (the most variants
in the 5-7% bin and fewest in the 44-50% bin). For the 200 MAF-matched random sets, we calculated P-values for
h2 enrichment (or depletion) for each trait with S-LDSC (which uses a block jackknife approach). For each trait,
we plot a P-value qq-plot and calculate the two-tailed Kolmogorov–Smirnov test to assess if the P-values from the
MAF-matched random variant h2 enrichment tests follow the uniform distribution. We find no P-value inflation for
any of the 41 traits (K-S FDR-controlled q = 0.145−0.977). Thus, the test is well calibrated and the results observed
for the introgressed variants are not due to their allele frequency distribution alone.
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Figure 6.6: Schematic of likely evolutionary trajectories and ages of introgressed alleles in the different sets
considered.
We represent possible evolutionary histories for different sets of putatively introgressed variants considered in our
study (not to scale). For each set of possible observed genotypes (observed indicated by colored label) in modern
Europeans (EUR), Vindija Neanderthal (V) and Altai Neanderthal (A), the most likely evolutionary trajectories under
parsimony assumptions are depicted. The introgressing Neanderthal (I) genotype is inferred. The branch on which
the introgressed allele appeared in each scenario is depicted by a bolt. The two major scenarios that we interpret
as “younger” are introgressed variants that (1) appeared after the split of the introgressing population from Vindija
and related populations and (2) appeared after the split of Altai and Vindija. In the second set, the modern European
genotype will only match the Vindija Neanderthal but not the Altai Neanderthal. Alternatively, “older” variants arose
prior to the split between Vindija and Altai populations; throughout the paper these are referred to as the “Altai-
matching set” and we demonstrate that these “likely older” variants are enriched for trait heritability. Altai-matching
variants that are not observed in Vindija Neanderthal are rare (N = 5,685 out of 900,902 total introgressed variants), but
are also classified as “likely older” because two independent mutation events (on the Altai lineage and the introgressing
population lineage) is less likely than scenarios where the genotype is unobserved in Vindija for other reasons (e.g.,
not sequenced, allele was not fixed). We note that these evolutionary histories are a simplification and not all sites
matching each pattern followed the trajectories shown.
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Figure 6.7: Variants that contribute to Crohn’s Disease risk observed in Vindija that are absent in Altai have
diverse evolutionary origins.
(A) rs17467144 is a missense variant in MUC19 tagging a region associated with Crohn’s disease on chr12 (P =
1×10−17). The A allele is the ancestral allele that was lost in AMHs but was maintained in Vindija and Chagyrskaya
Neanderthals and reintroduced to Eurasian populations. (B) rs17768654 is a missense variant in TTC6 tagging a region
nominally associated with Crohn’s disease on chr14 (P = 1.7×10−3). The G allele is the ancestral allele. The A allele
is Neanderthal-derived, likely after the split of younger Neanderthal populations (Vindija/Chagyrskaya) from Altai.
The A allele was then introgressed into Eurasians and is associated with Crohn’s disease risk. These associations
contribute to the Crohn’s disease heritability enrichment seen in Vindija-matching variants when compared to Altai-
matching variants (Fig. 6.3C).
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Figure 6.8: Introgressed variants at higher allele frequency in modern European populations contribute more
to trait heritability than rarer variants.
Partitioned heritability was calculated on the Altai-matching introgressed variants (Fig. 2.1C, S4A) stratified by minor
allele frequency (MAF). The number of Altai-matching introgressed variants that fall in each MAF bin are 24,598,
16,016, and 3,923 respectively for 5-10%, 10-21%, and 21-50% (70,544 variants with frequency < 5% are not in-
cluded). Each dot represents heritability enrichment or depletion of one of the traits (n = 41) (legend in Fig. 2.1).
Traits with heritability depletion less than 0.05 are truncated. P-values are from two-tailed two-sample t-tests. The
boxplot centers represent medians, the boxes are bounded by the first and third quartiles, and the Tukey-style whiskers
extend to a maximum of 1.5 × IQR beyond the box.
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Figure 6.9: Neanderthal introgressed regions that disproportionately contribute to heritability of sunburn and
WBC count are enriched in haplotypes with evidence of adaptive selection.
For the eight traits investigated in Fig. 2.3, we identified regions that contribute to directional trait heritability (see
2.4:Methods, Fig. 2.4). We intersected these regions of interest with high-frequency haplotypes with evidence of
adaptive selection identified by (A) Gittelman et al. 2016 and (B) Chen et al. 2020. This observed overlap is reported
as a fraction in each sub-figure (e.g., we identify 29 Sunburn-related regions of interest; two of these overlap Gittelman
haplotypes [2/29]). The histogram is an empirical distribution (n = 10,000 permutations) for the expected overlap of
the heritability-enriched regions of interest with the adaptive haplotypes. Empirical observations equal to or more
extreme than the observed overlap are in red and are used to calculate the empirical one-tailed P-value. For example,
we observe that 2/29 Sunburn-related regions of interest overlap Gittelman haplotypes; under the null, you would
expect this (or more overlap) 1.7% of the time (P = 0.017, FDR q = 0.09).
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Figure 6.10: Patterns of complex trait heritability across 405 traits organized by DOMAIN across four different
sets of Neanderthal introgressed variation.
Across four sets of Neanderthal introgressed variation (from most stringent to least stringent [2.4:Methods]), we show
the trait heritability enrichment (or depletion) across 21 phenotypic domains (across n = 405 traits). Domains are
ordered by the magnitude of the median enrichment in Set 1 variants for comparison across sets. Results from Set 1
are the same as those depicted in Fig. 2.2A. Each point represents heritability enrichment or depletion of one trait in
Altai-matching introgressed variants. The boxplot centers represent medians, the white Xs denote means, the boxes
are bounded by the first and third quartile, and the Tukey-style whiskers extend to a maximum of 1.5 × IQR beyond
the box. Traits with depletion less than 0.125 are plotted on the baseline for visualization.
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Figure 6.11: Patterns of complex trait heritability across 405 traits organized by CHAPTER across four differ-
ent sets of Neanderthal introgressed variation.
Across four sets of Neanderthal introgressed variation (from most stringent to least stringent [2.4:Methods]), we show
the trait heritability enrichment (or depletion) across 31 phenotypic chapters (across n = 405 traits). Chapters are
ordered by the magnitude of the median enrichment in Set 1 variants for comparison across sets. Each point represents
heritability enrichment or depletion of one trait in Altai-matching introgressed variants. The boxplot centers represent
medians, the white Xs denote means, the boxes are bounded by the first and third quartile, and the Tukey-style whiskers
extend to a maximum of 1.5 × IQR beyond the box. Traits with depletion less than 0.125 are plotted on the baseline
for visualization.
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Figure 6.12: Patterns of complex trait heritability across 405 traits organized by SUBCHAPTER across four
different sets of Neanderthal introgressed variation.
Across four sets of Neanderthal introgressed variation (from most stringent to least stringent [2.4:Methods]), we show
the trait heritability enrichment (or depletion) across 62 phenotypic subchapters (across n = 405 traits). Subchapters
are ordered by the magnitude of the median enrichment in Set 1 variants for comparison across sets. A subset of
the results from Set 1 is the same as those depicted in Fig. 2.2B-E. Each point represents heritability enrichment or
depletion of one trait in Altai-matching introgressed variants. The boxplot centers represent medians, the white Xs
denote means, the boxes are bounded by the first and third quartile, and the Tukey-style whiskers extend to a maximum
of 1.5 × IQR beyond the box. Traits with depletion less than 0.125 are plotted on the baseline for visualization.
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Figure 6.13: Directionality of effects for introgressed variants with the strongest trait associations is stable at
different significance levels and pruning thresholds.
For eight traits, we intersected introgressed Altai-matching Neanderthal alleles (LD-expanded to r2 = 1) with the
genome-wide significant variants from each GWAS. After pruning for linked variants, we plot the number of sig-
nificantly associated introgressed variants by their direction of effect (risk-increasing or risk-decreasing [legend]).
Fig. 2.3A shows this result for the threshold P < 1× 10−8 and pruning threshold of r2 = 1. Here, we show these
results are consistent at different thresholds ([A, B, C] P < 1×10−8; [D, E, F]; P < 5×10−8; [G, H, I] P < 1×10−6)
and different LD pruning thresholds ([A, D, E] r2 = 1; [B, E, H] r2 > 0.8; [C,F,I] r2 > 0.5). Black numbers above the
bars represent P values (one-tailed χ2 goodness of fit test).
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Figure 6.14: Neanderthal alleles confer genome-wide uni-directional effects for some traits.
We use signed LD profile regression to consider the direction of effect over all introgressed variants, not just those
with the largest effects. Here, we only consider eight traits with evidence of heritability enrichment in introgressed
variants. For each variant (genome-wide, n = 1,187,349), we plot the marginal correlation (α̂) of the variant to
the trait versus the Neanderthal LD profile (Rν). Increased signed LD Profile reflects increased conditional LD to a
Neanderthal introgressed allele. For visualization, we bin Rν into 10 equally spaced intervals and plot the average α̂

with 95% bootstrapped confidence intervals. The correlation between Rν and α̂ indicates the genome-wide direction
of effect. For example, the positive correlation for sunburn indicates a significant uni-directional relationship genome-
wide between Neanderthal introgressed alleles and risk for sunburn (empirical null distribution P = 0.001, q = 0.02,
same as Fig. 2.3B). Other traits show directionality similar to the P-value threshold analysis (Fig. 2.3A). For example,
the Neanderthal LD profile correlates with risk for younger menopause age (r f =−0.091%) and increased propensity
to be a morning person (r f = 0.033%). The remaining traits (like autoimmune disease and WBC Count) do not
show consistent directionality genome-wide; instead, these traits have genomic windows where Neanderthal alleles
contribute in risk-increasing directions and other windows with risk-reducing directions (i.e., bi-directional). Results
for all 41 representative traits are in Table 6.6.
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Figure 6.15: Windows with strong correlations between Neanderthal LD profile and trait-association highlights
genes implicated in introgression’s effect on sunburn risk and chronotype.
A) The genomic window (chr9:16,641,651-16,787,775) overlaps BNC2 and has a positive relationship (r =+0.82) be-
tween Neanderthal LD profile and sunburn risk. Supporting this association, the starred variant (rs10962612; EUR AF:
0.73; AFR AF: 0.02) was previously shown to tag an introgressed haplotype and associate with childhood sunburn risk
and poor tanning62,161. Among these regions, we identify many promising candidates, including one nearby SPATA33
which has been implicated in tanning response, facial pigmentation, and skin cancer259 and one nearby MC1R which is
a key genetic determinant of pigmentation and hair color62. (B) The genomic region shown highlights three windows
(chr2:239,292,973-239,382,296, chr2:239,398,170-239,456,308, chr2:239,457,097-239,488,435) around ASB1 with a
negative relationship between Neanderthal LD profile and morning person status. The scatter plot shows this negative
correlation (r =−0.92) for chr2:239,292,973-239,488,435; hence, increased Neanderthal LD profile is associated with
increased eveningness. Supporting this association, the starred variant (rs3191996; EUR AF:0.12; AFR AF; 0.00) was
previously identified as an archaic allele associated with preference for being an evening person62. For each exam-
ple, we display the genomic region overlapped by the identified window(s) of interest (dark yellow box), genes, all
Altai-matching Neanderthal-introgressed variants (black marks). For the region in light yellow, we display a scatter
plot between the variant’s Neanderthal LD Profile (Rν) and trait marginal correlation (α̂). Each variant is colored by
its maximum LD to an introgressed variant. We display the evolutionary history (dendrogram) of each discussed tag
variant (blue star) with its allele frequency in Africans (AFR) and Europeans (EUR) (pie charts).
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Figure 6.16: Correlations between Neanderthal LD profile and trait-association at NMUR2 highlight putative
mechanisms for the effect of introgression on morningness.
(A) We discover a positive relationship between Neanderthal LD profile and morning person status in two
regions (dark yellow boxes, chr5:151,745,423-151,793,214, chr5:151,826,774-151,931,514) near NMUR2.
(B) The Manhattan plot for this region highlights that introgressed variants have the strongest association
to the morning person GWAS (blue star, P = 9 × 10−12 at rs4958561). We note that the variant most
strongly associated with morningness (rs10045463: P = 3× 10−12) is introgressed; however, it is a rein-
troduced ancestral allele (lost in AMHs but reintroduced through introgression, not pictured). There are
additional clusters of both introgressed and non-introgressed variants significantly associated with morn-
ingness downstream of the highlighted region (Supplemental Text 6.1); however, they are only in moderate
LD (r2 = 0.046− 0.39) with the other non-introgressed clusters, suggesting that this particular signal is
likely driven by variants on the introgressed haplotype. (C) The scatter plot shows the positive relationship
(r =+0.91) for chr5:151,745,423-151,931,514 (entire light yellow box) which indicates Neanderthal intro-
gression at this locus is associated with increased morningness. (D) The starred variant (rs4958561) is de-
rived in Neanderthals (N) and at 28% frequency in modern Europeans (EUR) with 1% frequency in Africans
(AFR)(1000G super-populations). (E) This haplotype (tagged by rs4958561) is an eQTL in which Nean-
derthal alleles associate with increased NMUR2 expression in frontal cortex (two-tailed t-test P = 1×10−9)
and cortex (not shown; P = 9× 10−5). The boxplot centers represent medians and the boxes are bounded
by the first and third quartiles.
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Table 6.1: Traits used for partitioned heritability analyses with S-LDSC.
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Table 6.2: Heritability enrichment for introgressed variants.
Heritability enrichment and depletion results with confidence intervals and statistics for Neanderthal introgressed
variants shown in Fig. 2.1C. P-values are calculated empirically by LDSC using a block jackknife (n = 200). q-values
are corrected for multiple comparisons using the Benjamini-Hochberg FDR-correction at the 0.05 level. Confidence
intervals are at the 95% level.

99



Domain Enr
(media
n)

Deplet
ion
(media
n)

Enr
(mean)

Depletion
(mean)

Lower
CI

Upper
CI

P q N
(traits)

Dermatological 2.602 NA 2.719 NA 2.351 3.145 0.006 0.039 3

Body structures 2.135 NA 1.907 NA 1.323 2.750 0.018 0.063 6

Endocrine 1.668 NA 1.738 NA 1.384 2.183 0.042 0.109 3

Respiratory 1.429 NA 1.291 NA 1.087 1.532 0.011 0.046 16

Gastrointestinal 1.425 NA 1.256 NA 0.838 1.882 0.385 0.524 3

Mortality 1.314 NA 1.293 NA 1.009 1.658 0.089 0.187 7

Social
interactions

1.208 NA 1.259 NA 0.928 1.707 0.172 0.302 10

Immunological 1.133 NA 0.971 1.030 0.734 1.284 0.837 0.837 14

Ear, nose, throat 1.103 NA 0.904 1.106 0.389 2.099 0.829 0.837 4

Neurological 1.064 NA 0.922 1.085 0.710 1.197 0.557 0.650 10

Muscular 1.034 NA 1.165 NA 0.774 1.753 0.540 0.650 3

Skeletal 1.030 NA 1.142 NA 1.009 1.293 0.047 0.110 24

Nutritional 1.014 NA 0.770 1.299 0.516 1.150 0.212 0.343 28

Cardiovascular 0.984 1.017 0.855 1.169 0.602 1.214 0.399 0.524 13

Metabolic 0.951 1.052 0.948 1.055 0.862 1.037 0.253 0.379 52

Reproduction 0.934 1.070 0.928 1.077 0.673 1.280 0.659 0.729 12

Psychiatric 0.918 1.089 0.901 1.110 0.766 1.042 0.171 0.302 67

Activities 0.915 1.093 0.776 1.288 0.600 0.965 0.024 0.073 66

Environment 0.828 1.207 0.684 1.461 0.478 0.909 0.011 0.046 31

Ophthalmological 0.707 1.415 0.562 1.779 0.325 0.824 0.005 0.039 22

Cognitive 0.659 1.518 0.512 1.954 0.373 0.702 0.002 0.039 11

Table 6.3: Domain enrichment for 405 traits.
For each of the phenotypic domains, we list the median and mean heritability enrichment. These results are also
plotted in Figs. 2.2A, 6.10. For those domains which are depleted (enrichment below 1), we also report the fold-
depletion (1/Enrichment). Domains are ordered by their median enrichment. P-values are from two-tailed one-sample
t-tests. q-values are corrected for multiple comparisons using the Benjamini-Hochberg FDR-correction at the 0.05
level. Confidence intervals are at the 95% level. The mean enrichment, confidence intervals, and P-values were
calculated on the log-transformed enrichment values.
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Table 6.4: Chapter enrichment for 405 traits.
For each of the phenotypic chapters, we list the median and mean heritability enrichment. These results are also
plotted in Fig. 6.11. For those subchapters which are depleted (enrichment below 1), we also report the fold-depletion
(1/Enrichment). Subchapters are ordered by their median enrichment. P-values are from two-tailed one-sample t-
tests. q-values are corrected for multiple comparisons using the Benjamini-Hochberg FDR-correction at the 0.05 level.
Confidence intervals are at the 95% level. The mean enrichment, confidence intervals, and p-values were calculated
on the log-transformed enrichment values.
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Table 6.5: Subchapter enrichment for 405 traits.
For each of the phenotypic subchapters, we list the median and mean heritability enrichment. These results are also
plotted in Figs. 2.2B-E and Fig. 6.12. For those subchapters which are depleted (enrichment below 1), we also report
the fold-depletion (1/Enrichment). Subchapters are ordered by their median enrichment. P-values are from two-tailed
one-sample t-tests. q-values are corrected for multiple comparisons using the Benjamini-Hochberg FDR-correction at
the 0.05 level. Confidence intervals are at the 95% level. The mean enrichment, confidence intervals, and P-values
were calculated on the log-transformed enrichment values.
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S-LDSC partitioned h2 SLDP direction of effect

Phenotype h2 Enr SE P rf Z P q mu SE(mu)

AutoimmuneDz 3.934 1.475 0.028 6.97E-04 1.064 0.287 0.592 2.11E-07 2.03E-07

Balding 2.269 0.699 0.068 1.52E-03 0.189 0.850 0.914 1.33E-06 2.00E-06

MenopauseAge 2.205 1.148 0.293 -9.06E-04 -1.020 0.308 0.592 -5.58E-07 5.38E-07

Sunburn 2.078 0.865 0.208 1.82E-03 3.184 0.001 0.020 9.94E-07 2.98E-07

HairColor 1.935 1.277 0.465 -4.79E-04 -0.628 0.530 0.714 -5.33E-07 6.59E-07

SkinColor 1.883 1.363 0.508 4.54E-04 0.873 0.383 0.604 3.45E-07 4.23E-07

FVC 1.819 0.448 0.069 -5.37E-04 -0.154 0.878 0.914 -4.41E-07 1.08E-06

Heel_T_Score 1.780 0.499 0.126 -7.20E-04 -1.180 0.238 0.592 -7.75E-07 6.43E-07

Tanning 1.752 1.451 0.592 -8.12E-04 -1.759 0.079 0.592 -6.06E-07 3.38E-07

MorningPerson 1.625 0.458 0.174 3.28E-04 0.589 0.556 0.714 1.80E-07 3.02E-07

Eczema 1.544 0.742 0.459 -8.00E-04 -1.456 0.145 0.592 -3.80E-07 2.61E-07

EosinophilCount 1.528 0.414 0.202 -9.39E-04 -1.247 0.212 0.592 -7.97E-07 6.55E-07

WBCCount 1.510 0.310 0.100 -1.42E-04 -0.222 0.824 0.913 -1.15E-07 5.45E-07

FEV1_FVC_Ratio 1.303 0.383 0.430 -6.82E-04 -1.351 0.177 0.592 -6.02E-07 4.36E-07

DermDz 1.204 1.390 0.884 -2.30E-05 -0.033 0.973 0.973 -6.97E-09 2.19E-07

WaistHipRatio 1.199 0.309 0.517 6.75E-04 0.587 0.557 0.714 4.60E-07 6.42E-07

T2D 1.197 0.484 0.681 9.20E-05 0.137 0.891 0.914 3.35E-08 2.48E-07

SmokingStatus 1.119 0.301 0.694 -8.24E-04 -1.235 0.217 0.592 -4.48E-07 3.57E-07

RDW 1.114 0.394 0.772 1.09E-03 0.763 0.446 0.677 9.21E-07 1.00E-06

CrohnsDz 1.103 0.696 0.882 -8.98E-04 -0.664 0.507 0.714 -1.13E-06 1.65E-06

Resp_ENT_Dz 1.102 0.498 0.836 -5.65E-04 -1.017 0.309 0.592 -2.25E-07 2.21E-07

Height 1.028 0.272 0.918 -2.00E-04 -0.372 0.710 0.832 -2.92E-07 7.65E-07

NumChildrenBorn 0.960 0.820 0.961 1.36E-03 0.723 0.470 0.688 4.14E-07 5.23E-07

UC 0.933 0.760 0.929 -2.96E-04 -0.291 0.771 0.878 -2.91E-07 1.03E-06

YearsOfEd 0.915 0.236 0.718 4.35E-04 0.551 0.581 0.722 2.78E-07 4.99E-07

BMI 0.908 0.248 0.711 -6.41E-04 -1.439 0.150 0.592 -5.74E-07 4.05E-07

MenarcheAge 0.888 0.251 0.657 7.30E-04 0.913 0.361 0.592 6.33E-07 6.54E-07

Schizophrenia 0.888 0.440 0.798 -2.72E-03 -3.438 0.001 0.012 -3.22E-06 8.58E-07

RBCCount 0.878 0.310 0.692 1.48E-03 1.363 0.173 0.592 1.33E-06 1.13E-06

SystolicBP 0.867 0.233 0.568 -9.65E-04 -1.770 0.077 0.592 -7.74E-07 4.38E-07

ASD 0.835 0.934 0.860 3.31E-03 1.597 0.110 0.592 2.92E-06 1.86E-06

Hypothyroidism 0.804 0.406 0.631 1.09E-03 1.464 0.143 0.592 4.29E-07 2.85E-07

RA 0.683 0.906 0.725 1.35E-03 1.427 0.154 0.592 1.04E-06 7.07E-07

PlateletCount 0.683 0.290 0.281 -5.65E-04 -1.209 0.226 0.592 -5.96E-07 5.57E-07

Neuroticism 0.535 0.508 0.373 1.25E-03 0.926 0.354 0.592 7.25E-07 7.27E-07

FirstBirthAge 0.477 0.470 0.270 -9.79E-04 -0.914 0.361 0.592 -3.77E-07 4.02E-07

LDL 0.314 0.914 0.456 -6.33E-04 -0.476 0.634 0.764 -2.93E-07 6.72E-07

DepressiveSxs -0.027 1.042 0.336 -1.08E-03 -1.014 0.311 0.592 -4.00E-07 4.36E-07

HDL -0.177 0.706 0.102 1.18E-03 1.039 0.299 0.592 5.58E-07 5.65E-07

HighCholesterol -0.322 0.457 0.006 -5.09E-04 -0.919 0.358 0.592 -1.96E-07 2.19E-07

Anorexia -0.956 1.100 0.085 -9.30E-03 -4.892 1.00E-06 4.1E-05 -5.21E-06 1.44E-06

Table 6.6: Partitioned heritability and direction of effect results for 41 representative traits.
For 41 traits, we calculated partitioned heritability and direction of effect for the Altai-matching introgressed variants
(Set 1, 2.4:Methods). The first set of columns describes the partitioned heritability results calculated with S-LDSC
(enrichment, standard error [SE], and P-value). Enrichments above 1 indicate depletion. The second set of columns
describes the direction of effect results calculated with SLDP (functional correlation [r f ], Z-score, corresponding
P-value, mu, and mu standard error [see 2.4:Methods]). P-values are calculated from an empirical null distribution
described in Reshef et al.160. q-values are corrected for multiple comparisons using the Benjamini-Hochberg FDR-
correction at the 0.05 level. Positive Functional correlations and Z-scores indicate a positive relationship with the trait
in introgressed variants, whereas negative values indicate a negative relationship with the trait (all with reference to
the coding of the GWAS).
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6.2 Appendix 2: Supporting information for Chapter 3

Supplemental Text
TAD maps and length
TAD maps for 37 different cell types were obtained from the 3D genome browser (Table S1). All cell
types were available in hg19 format, except the liver data, which we downloaded in hg38 and used the
UCSC liftOver tool to convert to hg19179,260.The median TAD length across all cell types is 1.15 Mb (IQR:
0.71 - 1.82 Mb) and the median number of TADs per cell type is 1844 (IQR: 1625 - 2277). We observed
an inverse relationship between TAD length and number of TADs in a cell type: cells with longer TADs
have fewer TADs (Fig. S17). Primary tissues have longer TADs, whereas naı̈ve cell types like stem cells
and de-differentiated leukemia cell-lines have shorter TADs (Fig. S17). This is consistent with previous
examination of neuronal development which found that, during differentiation, TAD number decreases with
a corresponding increase in size129.

Similarity between TAD maps
Our finding of TAD map similarity among functionally similar cell types contrasts with previous work by
Sauerwald et al. (2018)190 that found that most similar TAD map pairs have no biological connection;
however, they investigate a different set of cells (predominantly cancer cell lines) . Comparisons with highly
mutated cancer cell lines that may not reflect natural boundary patterns. Both our results and the Sauerwald
et al. (2018)190 comparisons could be influenced by batch effects because the Hi-C data considered were
generated by different groups. However, an important follow-up by Sauerwald et al. (2020)198 finds that lab
specific differences have little impact on TAD map similarity comparisons and that cell type is the greater
driver of biological variation in TAD structures.

Our similarity quantifications agree with some previous estimates. We find that the median pairwise
Jaccard similarity for all 37 x 37 cell type comparisons is 0.18 (IQR: 0.15 - 0.23), 0.32 (IQR: 0.26 - 0.37),
0.41 (IQR: 0.35 - 0.47) at 40 kb, 100 kb, and 200 kb resolution, respectively. Our pairwise Jaccard similarity
between 200 kb boundaries (0.41) aligns with previous analyses that examined cell type TAD map similarity
among larger windows have reported similarity coefficients between 0.4 - 0.5190,198. At a finer resolution,
Rao et al.117 reported Jaccard indices from 0.21 - 0.30 for comparisons of GM12878 to each of IMR90,
HMEC, HUVEC, K562, KBM7 and NHEK117,190. The Jaccard similarity for our comparisons of these cell
types is 0.24 - 0.37 (40 kb resolution).

Overall, this variability in TAD similarity across different cell types highlights the sensitivity of stability
comparisons to the definition of TAD boundaries used. For example, the median pairwise Jaccard similarity
between 40 kb boundaries across 21 tissues defined by Schmitt et al.118 is 0.106 (IQR: 0.086 - 0.123). How-
ever, they collapsed boundaries to 200 kb “boundary regions” to conclude that TAD boundaries are highly
stable (stating that over 35% of TAD boundaries are present in 21 of 21 tissues). These previous studies
often investigated more homogenous groups of cell types which could lead to higher estimates of stability.
Ultimately, we stress than when interpreting claims of similarity between TAD maps of different cell types,
the method of defining TADs (versus loop domains or boundary “regions”), the genomic resolution, and the
breadth of cell types considered should be considered for context.
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Figure 6.17: Meta-analysis of heritability patterns across cell types yields similar results to averaging.
TADs across 37 cell types, heritability is enriched near regions flanking TADs when meta-analyzed across 41 common
complex phenotypes. When combining data across traits, the heritability enrichment results are consistent using
random-effects meta-analysis model (here) versus averaging (r2 = 0.85, P = 7× 10−9), Fig. 3.2A). The error band
signifies a 99% confidence interval.
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Figure 6.18: Overlap between region flanking TADs and neighboring TADs.
In Fig. 3.2 and 3.4A-C we analyzed TADs plus 50% of their total length on each side and subdivided this region into
20 equal-sized partitions. Bins 1-5 and 16-20 “bookend” the TAD, while the center bins 6-15 are inside the TAD.
Because TADs are often adjacent, we quantify how often the ±50% region flanking the TAD (bins 1-5,16-20) overlaps
a neighboring TAD. Per partition across the TAD landscape (x-axis) we calculate the proportion of bases that overlap
(A) any part of a neighboring TAD and (B) the middle 20% of a neighboring TAD. A higher proportion of the partitions
further from the edge of the TAD overlap a neighboring TAD, as expected. At the bin farthest from the TAD (bins
1 and 20), 80-90% extend into a neighboring TAD. However, less than 20% extend into the center of a neighboring
TAD.
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Figure 6.19: TAD boundaries are enriched for heritability.
When defining TAD boundaries as the 100 kb region flanking TADs, boundaries are generally enriched for heritability
across 41 common complex traits (blue box, 1.07x, P = 0.001). These are the same data shown in Fig. 3.3C; however,
the boundaries are not stratified by their stability across cell types. When we split the traits into the clusters defined
in Fig. 3.4, Boundary-enriched traits are further enriched for trait heritability (purple box, 1.16x, P = 1×10−7) while
Boundary-depleted traits show no significant enrichment (green box, 0.97x, P = 0.06). These are the same data shown
in Fig. 3.4 and 3.4F, respectively, without stratification by stability across cell types. These findings are consistent
with the heritability patterns across the TAD landscapes shown in Fig. 3.2A, 3.4B-C, but with fixed-window 100 kb
boundary definitions.
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Figure 6.20: TAD boundaries are more conserved than windows inside TADs.
We quantified evolutionary sequence conservation in terms of (A) the proportion of base pairs in a region overlapping a
conserved element identified by PhastCons and (B) by the element-wise average PhastCons conservation score across
the region. Using these two measures we compared base pair level conservation in 100 kb TAD boundaries (blue) and
matched 100 kb windows shuffled inside TADs (n = 111, gray). When considering the entire 100 kb window, TAD
boundaries have more overlap with PhastCons elements and a higher average PhastCons element score than windows
in TADs (left bars). When considering the 100 kb windows with CTCF ChIP-seq peaks removed, TAD boundaries
still have more overlap and higher score than windows in TADs (middle bars). When considering the 100 kb windows
with all exons removed, TAD boundaries have less overlap with PhastCons elements, but the remaining PhastCons
elements still have a higher conservation score (right bars).
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Figure 6.21: Trait heritability conditioned on 86 annotations.
In contrast to heritability enrichment, the standardized effect size (τ∗c ) quantifies effects that are unique to the focal
annotation compared to a set of other 86 annotations (e.g. regulatory annotations, evolutionary conservation, coding
regions, LD, minor allele frequency). When meta-analyzed across all traits, the standardized effect sizes for partitions
across the 3D genome are non-significant compared to the unconditioned enrichment analyses (Fig. 3.2). This indicates
that enrichment for these known annotations (e.g., CTCF binding sites and genes) across partitions explains much of
the observed heritability enrichment for regions flanking TADs. Each line represents the standardized effect size
meta-analyzed across all traits for that cell type (n = 37). The error bands signify 99% confidence intervals.
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Figure 6.22: Histograms of boundary stability based on alternate definitions of TAD boundaries.
Histograms of TAD boundaries by the number of cell types they are observed in (their “stability”) colored by quartiles.
In addition to the 100 kb bookend boundary definitions (Fig. 3.3B), our supplemental analysis investigates (A) 40 kb
centered boundaries and (B) 200 kb bookend boundaries. Using the 40 kb definition, 33.9% of boundaries are unique
to a single context and 2.0% of boundaries are observed in 25+ of 37 cell types. Using the 200 kb definition, 14.0% of
boundaries are unique to a single context and 18.3% of boundaries are observed in 25+ of 37 cell types.
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Figure 6.23: Biologically similar cell types cluster by TAD map similarity.
Clustering for 37 cell types using the pairwise Jaccard similarity metric with colors labelling cellular groups for (A)
40 kb boundaries, (B) 100 kb boundaries, and (C) 200 kb boundaries.
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Figure 6.24: Relationship between heritability enrichment and boundary stability is robust to different bound-
ary definitions.
Over all traits, there is a positive relationship between boundary stability and heritability enrichment using 40 kb
boundaries (A, P = 0.61), 100 kb boundaries (Fig. 3.3C, P = 0.006), and 200 kb boundaries (D, P = 2 × 10−5).
For traits in the boundary-enriched cluster (Fig. 3.4B), there is a stronger positive relationship between boundary
stability and heritability in 40 kb boundaries (B, P = 0.06), 100 kb boundaries (Fig. 3.4D, P = 2× 10−6), and 200
kb boundaries (E, P = 3× 10−14). For traits in the boundary-depleted cluster (Fig. 3.4C), there is a weak negative
relationship between boundary stability and heritability using 40 kb boundaries (C, P = 0.09), 100 kb boundaries
(Fig. 3.4F, P = 0.09), and 200 kb boundaries (F, P = 0.01). Error bars/bands signify 95% confidence intervals.
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Figure 6.25: The enrichment of stable TAD boundaries for genes is robust to gene set and boundary definitions.
The relationship between increased TAD boundary stability and gene overlap using 40 kb boundaries (A,D,G), 100
kb boundaries (B,E,H), and 200 kb boundaries (C,F,I). We also demonstrate this trend using three types of genes: all
RefSeq genes (A-C), protein-coding genes (D-F), and housekeeping genes (G-I). Panel H is shown in the main text
(Fig. 3.3F). TAD boundary stability quartiles are defined by the empirical distributions shown in Fig. 6.22A (40 kb),
Fig. 3.3B (100 kb), and Fig. 6.22B (200 kb). Boundaries in the first quartile are unique to a single cell type, while
boundaries in higher quartiles are stable across multiple cell types. Error bars/bands signify 95% confidence intervals.
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Figure 6.26: The enrichment of stable TAD boundaries for sequence-level conservation is robust to boundary
definitions.
The relationship between increased TAD boundary stability and sequence-level conservation quantified (via PhastCons
element overlap) considering 40 kb boundaries (A & D), 100 kb boundaries (B & E), and 200 kb boundaries (C &
F). We also demonstrate this trend holds with two different measures of evolutionary conservation: number of bases
overlapping PhastCons elements (A-C) and average PhastCons element score per boundary (D-F). Panel B is shown
in the main text (Fig. 3.3D). TAD boundary stability quartiles are defined by the empirical distributions shown in
Fig. 6.22A (40 kb), Fig. 3.3B (100 kb), and Fig. 6.22B (200 kb). Boundaries in the first quartile are unique to a single
cell type, while boundaries in higher quartiles are stable across multiple cell types. Error bars/bands signify 95%
confidence intervals.
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Figure 6.27: The enrichment of stable TAD boundaries for CTCF binding is robust to boundary definitions.
The relationship between increased TAD boundary stability and CTCF binding considering 40 kb boundaries (A & D),
100 kb boundaries (B & E), and 200 kb boundaries (C & F). We also demonstrate this trend holds with two different
quantifications of CTCF overlap: count of CTCF ChIP-seq peaks per boundary (A-C) and number of CTCF ChIP-seq
peak bases overlapping each boundary (D-F). Panel B is shown in the main text (Fig. 3.3E). TAD boundary stability
quartiles are defined by the empirical distributions shown in Fig. 6.22A (40 kb), Fig. 3.3B (100 kb), and Fig. 6.22B
(200 kb). Boundaries in the first quartile are unique to a single cell type, while boundaries in higher quartiles are stable
across multiple cell types. Error bars/bands signify 95% confidence intervals.
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Figure 6.28: Heritability enrichment and conservation at TAD boundaries stable across cell types replicates
using a germ-layer-informed measure of stability.
Of the 37 cell types considered, some are more closely related than others, therefore we grouped 34 of them by germ
layer (endoderm [N = 12], mesoderm [N = 13], ectoderm [N = 9]; Table S1). We then quantified stability based
on whether the boundary was found in one, two, or all three germ layers. (A) The proportion of 100 kb boundaries
that fall into each stability measurement. For example, if a boundary was found in muscle, spleen, and mesenchymal
stem cells, but no other tissues, it is a “mesoderm-only” boundary and in the “1” category for germ layer stability.
If a boundary was found in muscle, cortex, and lung, it is a boundary found across all three germ layers and in the
“3” category for germ layer stability. These examples were assigned the same level of stability in the raw cell type
count measure because they are both present in 3/37 cell types (Fig. 3.3, 3.4D, and 3.4F). Increased stability using this
germ layer informed measure is correlated with increased: (B) complex trait heritability enrichment (P = 0.002), (E)
conserved bases (overlap with PhastCons elements, P = 2×10−14), (F) CTCF binding (overlap with ChIP-seq peaks,
P = 3× 10−97), and (G) housekeeping genes (P = 3× 10−58). When we split the traits into the clusters defined in
Fig. 3.4, (C) the positive correlation between boundary stability and trait heritability is even stronger for the subset of
traits in the boundary-enriched cluster (P= 2×10−5), while (D) the boundary-depleted traits show no significant trend
between boundary stability and trait heritability (P = 0.49). Respectively, these replicate the results in Figs.. 3.3C-F,
3.4D, and 3.4F with the germ-layer stability measurement. All error bars/bands signify 95% confidence intervals.
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Figure 6.29: Removing boundaries near genomic gaps or blacklist regions increases the correlations between
stability and functional attributes.
In Figs. 3.3C-F we note that there is a positive trend between TAD boundary stability quartile and functional anno-
tation; however, we find that the fourth quartile “drops-off” and has equal or slightly lower enrichment compared to
the third quartile. We hypothesize that this trend is, in part, due to technical factors. For example, TADs must be
called at the starts and ends of chromosomes, centromeres, and assembly gaps in all tissues. This may create highly
stable TAD boundaries independent of their functional significance. To test this, we apply a conservative filter and
remove all boundaries within 5 MB of a genomic gap or blacklist region. Across TAD boundary stability quartiles, we
replicate the correlation between increased cell type stability and increased (A) complex trait heritability enrichment
(P = 0.03), (B) conserved bases (overlap with PhastCons elements, P = 0.0002), (C) CTCF binding (overlap with
ChIP-seq peaks, P = 1×10−37), and (D) housekeeping genes (P = 1×10−18). The enrichment “drop-off” is reduced
or absent in the relationship with heritability, CTCF, and genes suggesting that technical bias partially contributes to a
drop-off of enrichment in the fourth quartile. All error bars/bands signify 95% confidence intervals.
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Figure 6.30: Traits in the boundary-depleted cluster and boundary-enriched cluster do not differ in GWAS
parameters.
(A) Number of GWAS SNPs (P = 0.78, t-test with equal variances), (B) Number of individuals in the GWAS (P =
0.92), or (C) SNP-based heritability (P = 0.88). Error bars signify 95% confidence intervals.

117



3DGenomeBrowser

Armatus

Arrowhead

DomainCaller

HiCSeg

TADbit

TADtree

TopDom

0.8

1

1.4

+50%50%

h2  E
nr

ic
hm

en
t 

0.6

TAD
Genomic position

1.2

0.8

1

1.4

+50%50%

h2  E
nr

ic
hm

en
t 

0.6

TAD
Genomic position

1.2

(Dixon pipeline)

A

B

Boundary-enriched
cluster

Boundary-depleted
cluster

Figure 6.31: Patterns of heritability enrichment across the 3D genome in human embryonic stem cells (ESC)
are robust to the TAD calling algorithm used.
(A) Heritability enrichment landscape over TADs in ESCs called by eight different algorithms for traits in the
boundary-enriched cluster. Similar to the results shown in Fig. 3.4B (which use TADs from the Dixon pipeline),
regions flanking TADs are enriched for heritability compared to TADs. (B) Heritability enrichment landscape over
TADs in ESCs for traits in the boundary-depleted cluster. Similar to the results shown in Fig. 3.4C (which use TADs
from the Dixon pipeline), TADs are centrally enriched for heritability. Error bands signify 95% confidence intervals.
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Figure 6.33: Average TAD length in a cell type negatively correlates with number of TADs.
Across 37 cell types, there is an inverse relationship between TAD length and number of TADs. Organ/tissue cell types
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bands signify the IQR.
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Table 6.7: Cell types used for all analyses from the 3DGenomeBrowser.
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Table 6.8: GWAS traits used for heritability analyses and phenotypic cluster membership.
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6.3 Appendix 3: Supporting information for Chapter 4

Supplementary Text
When evaluating the relationship between 3D genome variability and introgression (Results section 4.2.7:“3D
genome organization constrained introgression in MHs”), we considered a variety of subsets of genomic
windows to fully explore these results. We show that the maintext results (Fig. 4.5) replicate when using ear-
lier introgressed Neanderthal haplotype predictions from Vernot et al.156 and other thresholds (Figs. 6.44,6.45).
We also find that 3D genome variability is more strongly predictive of introgression shared among all three
super-populations than an introgressed sequence unique to a single super-population (Table 6.11). We hy-
pothesize this is because the maintenance of a haplotype across diverse populations indicates stronger tol-
erance of the AH 3D organization pattern in diverse human genomic contexts. Additionally, 3D variability
is relatively more informative about the amount of introgression when only considering windows of the
genome with any introgressed sequence present (Table 6.12). Thus, we hypothesize that in 1 Mb windows
with strong purifying selection against a large-effect introgressed variant (e.g., a deleterious protein-coding
variant), 3D genome variability is less relevant. Ultimately, the pressures shaping the landscape of intro-
gression across the genome were multi-factorial, but we demonstrate that 3D genome organization likely
played a role.
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Supplementary Figures
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Find regions of missingness in archaic genomes. 
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Figure 6.34: Handling missingness in the archaic hominin genomes.
We constructed full-length genomes for each MH or AH based upon their genotyping information. Here, we illustrate
a schematic of the procedure used to account for the challenges of archaic DNA. (1) Given the difficulty of distin-
guishing heterozygous genotypes in the ancient DNA samples, we treated all individuals as if they were homozygous
(pseudo-haploid). If an individual had an alternate allele (homozygous or heterozygous), we inserted it into the ref-
erence genome to create a pseudo-haploid, or “flattened” genome for each individual (hightlighted in red boxes). (2)
Because of gaps in coverage resulting from the challenges of ancient DNA, particularly in genomic regions of low
complexity, we “masked” all genomic regions lacking archaic genotyping information by reverting nucleotide states
to the hg19 reference (yellow box). For analyses that compared 3D genome organization between MHs and AHs, and
MHs we do this masking procedure for both [3] MHs (green box) and [4] AHs (blue box) to facilitate appropriate
comparisons. [5] We run Akita on each processed genome separately and then compare the resulting contact maps.
By filling both genomes with the same sequence, there will be no differences between the AH-MH predictions or
resulting comparisons. Although AHs and MHs certainly did not have the same genome sequences in these regions
of missingness, we preferred this as a conservative approach to minimize identifying regions of interest if there were
missing data. For example, we illustrate that at the nucleotide *, although we observe an MH alternative allele (T),
it gets masked and replaced with the hg19 reference (G) because that locus is not comparable to AH genomes. Many
of the regions of missingness are shared by all or most of the AHs because those regions are just inherently difficult
to sequence (Fig. 6.35). However, at the nucleotide **, we illustrate another example where an allele observed in the
Vindija genome (C) is masked with hg19 reference (A) so that it facilitates comparisons between the AHs (some of
which have missingness at that locus).
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Figure 6.35: Archaic hominin sequence coverage across the genome.
Ancient DNA fragmentation and degradation present challenges to both sequencing and alignment resulting in gaps
in coverage, particularly in genomic regions of low complexity. Here, we show coverage across the genome for
the 4 AHs. The horizontal axis represents genomic loci at the same sliding approximately 1 Mb window resolution
(N = 4,999) used to do all analyses (Methods). The vertical axis unit is the proportion of bp with coverage (for the 1
Mb window). Bins without full coverage in modern humans (often near centromeres or telomeres) are excluded from
all analyses and this figure. The bottom trace (black, labeled “all”) represents the union of the missing segments for all
4 AHs. These regions are masked (Methods, Fig. 6.34) to facilitate 3D genome and sequence variation comparisons.
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Figure 6.36: 3D divergence in 1 Mb genomic window is weakly correlated with coverage.
Because we mask archaic missingness (Methods, Fig. 6.34,6.35), regions with less coverage have more masking and
the resulting processed sequences may have less AH-MH sequence variation. For 1 Mb windows across the genome
(N = 4999), we compare AH (Vindija Neanderthal) and African MH (HG03105) 3D divergence (vertical axis) with
the amount of coverage in that window (horizontal axis). The amount masked is equal to 1−coverage. 3D divergence
is positively correlated with coverage (r2 = 0.001, P = 0.01). This is likely because there is more opportunity to
find variation that results in contact map changes when less of the region is masked; however, this correlation is very
weak suggesting that more coverage of the archaic genomes may not uncover many additional examples of divergent
organization.
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Figure 6.37: Alternative measures of contact map comparison correlate with the 3D divergence derived from
the Spearman’s rank correlation coefficient.
In the main text, we compare chromatin contact maps using a 3D divergence score based on Spearman’s rank correla-
tion coefficient (1−ρ). Here, for the same windows across the genome (N = 4999), we compare AH (Vindija Nean-
derthal) and African MH (HG03105) predictions using this Spearman-derived 3D divergence to others based on (A)
Pearson’s correlation coefficient (1− r) (r2 = 0.964) and (B) mean squared difference ( 1

n ∑
n
i=1(xi − yi)

2) (r2 = 0.383).
We also compare (C) these alternative measures (mean squared difference vs. Pearson’s correlation) to each other
(r2 = 0.378). The correlations between all measures are highly significant (all P < 5×10−324).
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Figure 6.38: 3D genome organization comparisons with chromatin contact maps from embryonic stem cell
(ESC) are similar to those from human foreskin fibroblast (HFF).
For the same windows across the genome (N = 4999), we compare AH (Vindija Neanderthal) and African MH
(HG03105) predictions in embryonic stem cell (ESC) (vertical axis) versus human foreskin fibroblast (HFF) (hori-
zontal axis) cell types. The comparisons across cell types are highly correlated regardless of the measure used to
quantify their divergence. We consider comparison measures defined using the (A) Spearman correlation (r2 = 0.95),
(B) Pearson correlation (r2 = 0.96), and (C) mean squared difference (r2 = 0.88) (all P < 5×10−324).
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Figure 6.39: AH-MH 3D divergence across the whole genome.
Across the genome, we plotted the average divergence of each of the AHs to five modern African individuals from
different subpopulations. The horizontal axis represents genomic loci at the same sliding 1 Mb window resolution
(N = 4,999) used to do all analyses (Methods). This expands Fig. 4.2C from chr7 to the whole genome. The error
band indicates the 95% CI. Comparing the 3D genomes of Neanderthals (purple) or Denisova (blue) with MHs reveals
windows of both similarity and divergence (peaks).
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Figure 6.40: Method for linking 3D divergent windows to test phenotype ontology term enrichment.
To test if differences in AH-MH 3D organization are enriched near genes related to particular phenotypes we follow a
procedure that sequentially links 3D divergent windows to variants to TADs to genes and, ultimately, to phenotypes.
We identify AH-MH 3D divergent windows in Fig. 4.3A–B. We consider three different sets of AH-MH divergent
windows, those shared (intersect) by all Neanderthals, those in any Neanderthal (union), and those in Denisova.
Results from the set shared by all Neanderthals (N = 43 windows) are shown in the main text (Fig. 4.3D). In each 1
Mb 3D divergent window, we identify the variant(s) contributing to the most prominent 3D differences using in silico
mutagenesis (lightning bolt) (Methods). 3D-modifying variants are then linked to protein-coding genes (black bars) in
their TAD (gray rectangle) because this provides evidence of physical proximity. Genes are linked to phenotypes from
the Human Phenotype Ontology (HPO) and genome-wide association studies (GWAS) Catalog 2019. Through this
procedure, we counted the number of ontology terms linked to the set of 3D-modifying variants. We test enrichment
for ontology terms linked to at least one 3D-modifying variant using a shuffling approach to create an empirical
distribution for how many times we would observe each annotation under the null. We used these distributions to
calculate an enrichment and P-value for each ontology term. The specific data sets used in this procedure are detailed
in the Methods. Counts of the number of windows, 3D-modifying variants, genes, and phenotypes for each set are in
Table 6.10. Results for enrichment are in Figs. 4.3D,6.41.
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Figure 6.41: Phenotype ontology enrichment across other sets of AH-MH 3D divergent windows implicate
similar phenotypes.
When testing if differences in AH-MH 3D organization are enriched near genes related to particular phenotypes, we
used three different sets of AH-MH 3D divergent windows (rows) and two different sets of gene-phenotype links
(columns). The top set is from 43 3D-divergent windows shared by Neanderthals (intersect) (also shown in the main
text, Fig. 4.3D). The middle is from 110 divergent windows in any Neanderthal (union). The bottom is from 73
divergent windows in Denisova. Each volcano plot has enrichment on the horizontal axis and significance on the
vertical axis which were calculated with reference to a shuffled null distribution (n = 500,000, Methods). Each point
represents one ontology term. Only terms linked to the 3D divergent windows in each set were tested for enrichment or
depletion. The most significant 10 terms are labeled if P < 0.05 (dotted line). Similar to the Neanderthal (intersection)
set, phenotypes related to the retina, hair, immune response, skeleton, cognition, and lung capacity are highlighted.
Additional phenotypes at nominal significance include traits related to the heart, muscle, cancer, and bone density.
Details about the process to link the 3D divergent windows to genes and phenotypes are in the Methods and Fig. 6.40.
Details about the number of windows, variants, and phenotypes considered for each set are in Table 6.10.
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Figure 6.42: Full pairwise heatmaps clustered by both sequence 3D divergence and sequence divergence.
We calculated the mean genome-wide 3D divergence for all pairs of AH and MH individuals (oranges) to compare with
the genome-wide mean sequence divergence (grays). Fig. 4.4A displays these heatmaps when clustered by sequence
divergence. Fig. 4.4A is reproduced in (A) with the full labels of all 1KGP individuals and their sub- and super-
population information. (B) We also show the heatmap clustered by 3D genome divergence. Overall, global patterns
of 3D genome divergence follow global patterns of sequence divergence. Lists of 1KGP individuals used and their
abbreviation codes are defined in Table 6.9.
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Figure 6.43: 3D genome divergence depends on both the strength and context of the CTCF motif disrupted.
Based on the importance of CTCF-binding in maintaining 3D genome organization, we quantified the effects of
AH-MH nucleotide differences overlapping CTCF binding motifs on 3D divergence. Given the complexity in the
“grammar” of encoding 3D genome organization, we hypothesized that not all CTCF disruptions are equally likely
to influence 3D divergence. Fig. 4.4B demonstrates this. But, here we replicate this with other thresholds and filters.
We considered if each 1 Mb window (N = 4,999) had a sequence difference between a Neanderthal (Vindija) and a
MH (HG03105) genome that overlapped a CTCF site. We plotted the distribution of 3D divergence in a window by
whether there was a “CTCF overlapping variant” (red) or not (blue). We further filtered windows by multiple annota-
tions describing the context and strength of the CTCF site overlapped. First, we stratified windows by if the “CTCF
overlapping variant” occurs within the middle half of the 1 Mb window (right vertical axis). Second, we stratified
windows by the proximity of the “CTCF overlapping variant” to a TAD boundary (anywhere, within 30 kb, or within
15 kb) (left vertical axis). Finally, we stratified windows by the strength of the overlapped CTCF motif in percentiles
(any, top 50%, 25%, or 10%) (horizontal axis). All three features describing context and strength are informative about
the likelihood of 3D divergence. For example, when filtering for the strongest CTCF motifs overlapped by a variant,
3D divergence increases 1.96-fold compared to 1.11-fold if strength is ignored (bottom left vs. bottom right). When
considering by proximity to TAD boundaries, 3D divergence always increases when a “CTCF overlapping variant” is
closer to a TAD boundary (4th row vs. 6th row). This illustrates that our approach has learned the complex sequence
patterns underlying 3D genome folding that could not be determined by simply intersecting AH variants with all CTCF
sites.
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Figure 6.44: Windows with evidence of AH introgression are more 3D variable in MHs even when using differ-
ent definitions of introgression.
Genomic windows with high levels of introgression across present-day non-African populations (purple distribution)
are more 3D-variable in modern Africans (horizontal axis) than windows without evidence of introgression (green
distribution). In the main text, we considered introgression defined by segments from Browning et al.32 (first column)
covering at least 70% of bases in a 1 Mb window (second row). This identifies 187 autosomal 1 Mb windows with
introgression and 2,799 without (same figure as Fig. 4.5A). Here, we show that this trend is consistent even when
using different sets of introgressed haplotypes (columns) and thresholds for overlap (rows). Sprime segments are from
Browning et al.32. Sprime segments with Neanderthal-matching filter are a subset of the Browning et al.32 introgressed
segments that have 30 putatively introgressed variants that could be compared to the Altai Neanderthal genome and
had a match rate of at least 30% to the Altai Neanderthal allele. S* Vernot segments are from Vernot et al.156. Vertical
lines represent the distribution means. P-values are from a two-tailed Mann–Whitney U test.
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Figure 6.45: 3D variable windows in MH have more evidence of AH introgression even when using different
definitions of introgression.
For three different sets of introgressed haplotypes (A-C), we plot the relationship between sequence variability (hor-
izontal axis) and 3D genome variability (vertical axis) with amount of AH ancestry in a window (purples). Darker
purple indicates a higher proportion of introgression in a 1 Mb genomic window. 3D genome variability is defined
as the average modern-African pairwise 3D genome diversity. Sequence variability is defined as the average pairwise
nucleotide differences per modern-African in a 1 Mb window. P-values correspond to the significance of sequence
variability or 3D genome variability to predict amount of introgression in a 1 Mb window. 3D genome variability
is predictive of the amount of introgression both independently and when conditioned on sequence variability for all
three sets of introgression. For, A,B, and C, respectively, introgressed haplotypes are from Sprime segments, Sprime
segments with a Neanderthal-sequence match filter, and S* segments. A is shown in the maintext in Fig. 4.5B. Sprime
segments are from Browning et al.32. Sprime segments with Neanderthal-matching filter are a subset of the Browning
et al.32 introgressed segments that have 30 putatively introgressed variants that could be compared to the Altai Nean-
derthal genome and had a match rate of at least 30% to the Altai Neanderthal allele. Vernot segments are from Vernot
et al.156.
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Figure 6.46: rs12536129 is a high-frequency introgressed allele with regulatory and phenotypic associations.
In Fig. 4.6A–B, we describe an AH-MH 3D divergent window that was introgressed into some modern Eurasians.
In silico mutagenesis of this window revealed a G to A change at chr7:46,169,621 (rs12536129) associated with the
largest change in 3D genome organization. (A) Across human populations, this introgressed allele remains at high-
frequency today, especially in Peru (28% AMR, 2% EAS, 16% EUR, 11% SAS, 0% non-admixed sub-Saharan AFR).
Purple bars represent the frequency of the introgressed Neanderthal-derived allele. (B) This introgressed allele is also
an eQTL in GTEx for the physically linked gene IGFBP3, Insulin-like growth factor-binding protein 3 (P = 0.00014
in artery tissue)95. (C) In MHs, this variant is associated with traits including standing height (P = 9.9× 10−7), fat
distribution (trunk fat ratio, impedance measures, P = 1.3×10−5), and diastolic blood pressure (P = 2.1×10−5). This
figure was generated with the GWASAtlas from Watanabe et al.159 and is sorted by domain and P-value. The dotted
line represents a highly conservative Bonferroni corrected P-value (1.05× 10−5) for testing 4756 traits (including
many correlated traits and GWASs in which the SNP was not tested).
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Figure 6.47: Amount of introgression is negatively correlated with 3D divergence to all Neanderthal individuals.
The amount of introgression in a 1 Mb window (number of bp, horizontal axis) is significantly correlated with the
similarity of an individual’s 3D genome organization to a Neanderthal’s genome organization (vertical axis). This is
demonstrated across all three Neanderthal individuals: Vindija in the top panel (also shown in Fig. 4.6C), Chagyrskaya
in the middle, and Altai at the bottom. We hypothesize the trend is weakest in Altai because it is less related to the
introgressing Neanderthal population compared to the Vindija Neanderthal14. The left column considers all 4,749
autosomal 1 Mb windows for 15 Eurasians (total n = 71,235, 1KGP individuals in Table 6.9). In the right column,
this trend also holds when you remove 1 Mb windows with no (0 bp) introgression in the 15 considered Eurasian
individuals n = 11,346. The P-values are the significance of the correlation. The error bars signify 95% bootstrapped
confidence intervals and the error band signifies the 95% bootstrapped confidence interval for the linear regression
estimate.
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Supplementary Tables

Superpopulation Subpopulation ID Subpopulation Description
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EAS CDX HG00978 Chinese Dai in Xishuangbanna, China
EAS CHB NA18595 Han Chinese in Beijing, China
EAS CHS HG00560 Han Chinese South
EAS JPT NA19077 Japanese in Tokyo, Japan
EAS KHV HG01851 Kinh in Ho Chi Minh City, Vietnam
EUR CEU NA12006 Utah residents (CEPH) with Northern and Western European ancestry
EUR FIN HG00285 Finnish in Finland
EUR GBR HG00261 British in England and Scotland
EUR IBS HG01519 Iberian populations in Spain
EUR TSI NA20795 Toscani in Italia
SAS BEB HG03823 Bengali in Bangladesh
SAS GIH NA20876 Gujarati Indian in Houston, TX
SAS ITU HG03772 Indian Telugu in the UK
SAS PJL HG03016 Punjabi in Lahore, Pakistan
SAS STU HG04099 Sri Lankan Tamil in the UK
AFR GWD HG03539 Gambian in Western Division, The Gambia
AFR LWK NA19378 Luhya in Webuye, Kenya
AFR MSL HG03212 Mende in Sierra Leone
AFR YRI NA18870 Yoruba in Ibadan, Nigeria
AFR ESN HG03105* Esan in Nigeria
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AFR ESN HG03105 Esan in Nigeria
AFR ESN HG03499 Esan in Nigeria
AFR ESN HG03511 Esan in Nigeria
AFR ESN HG03514 Esan in Nigeria
AFR ESN HG02922 Esan in Nigeria
AFR GWD HG03539 Gambian in Western Division, The Gambia
AFR GWD HG03025 Gambian in Western Division, The Gambia
AFR GWD HG03028 Gambian in Western Division, The Gambia
AFR GWD HG03040 Gambian in Western Division, The Gambia
AFR GWD HG03046 Gambian in Western Division, The Gambia
AFR LWK NA19378 Luhya in Webuye, Kenya
AFR LWK NA19017 Luhya in Webuye, Kenya
AFR LWK NA19434 Luhya in Webuye, Kenya
AFR LWK NA19445 Luhya in Webuye, Kenya
AFR LWK NA19019 Luhya in Webuye, Kenya
AFR MSL HG03212 Mende in Sierra Leone
AFR MSL HG03086 Mende in Sierra Leone
AFR MSL HG03085 Mende in Sierra Leone
AFR MSL HG03437 Mende in Sierra Leone
AFR MSL HG03378 Mende in Sierra Leone

Table 6.9: 1000 Genomes Project (1KGP) individual genomes used for 3D genome predictions.
The top set of individuals were used in the initial 3D genome survey (Figs. 4.2, 4.4A) and introgression analyses
(Fig. 4.6). The bottom set of African individuals was used to more robustly call AH-MH 3D genome divergence
windows (Fig. 4.3) and to calculate MH 3D genome variability (Fig. 4.5). For consistency, the genome of HG03105
was used for all examples.
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Sequence variability 3D genome variability

marginal P conditional P marginal P conditional P

Browning
introgressed
haplotypes

introgression SHARED
across populations

1.9E-49 1.3E-44 5.7E-09 0.00057

introgression UNIQUE to
one population

0.039 0.019 0.14 0.066

Browning
introgressed
haplotypes with
Neanderthal filter

introgression SHARED
across populations

1.1E-28 3.3E-25 1.2E-07 0.00047

introgression UNIQUE to
one population

0.067 0.014 0.00054 0.00013

Vernot introgressed
haplotype

introgression SHARED
across populations

0.015 0.054 0.0015 0.005

introgression UNIQUE to
one population

0.48 0.79 0.0094 0.012

Table 6.11: Both 3D genome and sequence variability are more important in predicting introgression shared
across super-populations than introgression unique to a single super-population.
When considering the relationships between 3D genome variability, sequence variability, and amount of introgression
(Supplemental Text, Figs. 4.5, 6.45), we consider introgression that was shared across 1KGP super-populations (EAS,
EUR, SAS) (white rows) compared to introgression unique to only one super-population (gray rows). We find that
3D genome variability (last two columns) is more strongly predictive of introgression shared among all three super-
populations. The analysis was replicated on three sets of introgressed haplotypes. Browning introgressed haplotypes
are Sprime segments Browning haplotypes with Neanderthal-matching filter are a subset of the Browning et al.32

introgressed segments that have 30 putatively introgressed variants that could be compared to the Altai Neanderthal
genome and had a match rate of at least 30% to the Altai Neanderthal allele. Vernot haplotypes are S* segments from
Vernot et al.156.
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Sequence variability 3D genome variability

marginal P conditional P marginal P conditional P

Browning
introgressed
haplotypes

ALL windows (N = 4749) 1.90E-49 1.30E-44 5.70E-09 0.00057
ONLY windows with any
evidence of introgression
(N = 1950)

0.0004 0.0072 1.90E-06 3.00E-05

Browning
introgressed
haplotypes with
Neanderthal filter

ALL windows (N = 4749) 1.10E-28 3.30E-25 1.20E-07 0.00047
ONLY windows with any
evidence of introgression
(N = 1604)

0.042 0.19 0.0001 0.00038

Vernot introgressed
haplotype

ALL windows (N = 4749) 1.50E-02 5.40E-02 0.0015 0.005
ONLY windows with any
evidence of introgression
(N = 2657)

3.40E-05 8.40E-07 0.00068 1.60E-05

Table 6.12: Compared to sequence variability, 3D variability is a relatively more informative predictor of
amount of introgression when considering windows of the genome with any introgression.
When considering the relationships between 3D genome variability, sequence variability, and amount of introgression
(Supplemental Text, Figs. 4.5, 6.45), we consider a subset of windows with any evidence of introgression (gray rows)
compared to all windows (white rows). 3D variability is relatively more informative about the amount of introgression
when only considering windows of the genome with any introgressed sequence present (last column). The analysis was
replicated on three sets of introgressed haplotypes. Browning introgressed haplotypes are Sprime segments Browning
haplotypes with Neanderthal-matching filter are a subset of the Browning et al.32 introgressed segments that have 30
putatively introgressed variants that could be compared to the Altai Neanderthal genome and had a match rate of at
least 30% to the Altai Neanderthal allele. Vernot haplotypes are S* segments from Vernot et al.156.
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and Carmel, L. “Reconstructing the DNA methylation maps of the neandertal and the Denisovan”.
In: Science 344.6183 (May 2014), pp. 523–527. ISSN: 10959203. DOI: 10.1126/science.1250368.

[97] Batyrev, D., Lapid, E., Carmel, L., and Meshorer, E. “Predicted Archaic 3D Genome Organization
Reveals Genes Related to Head and Spinal Cord Separating Modern from Archaic Humans”. In:
Cells 9.1 (Dec. 2019). ISSN: 20734409. DOI: 10.3390/cells9010048.

[98] Silvert, M., Quintana-Murci, L., and Rotival, M. “Impact and Evolutionary Determinants of Nean-
derthal Introgression on Transcriptional and Post-Transcriptional Regulation”. In: American Journal
of Human Genetics 104.6 (June 2019), pp. 1241–1250. ISSN: 15376605. DOI: 10.1016/j.ajhg.2019.
04.016.

[99] Sullivan, L. H. The tall office building artistically considered. Philadelphia: J.B. Lippincott Co.,
1896.

[100] Boveri, T. “Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomenin-
dividualität”. In: Archiv für Zellforschung 3 (1909), pp. 181–268.

[101] Rabl, C. “U¨ ber Zellteilung”. In: ().

[102] Rowley, M. J. and Corces, V. G. “Organizational principles of 3D genome architecture”. In: Nature
Reviews Genetics 19.12 (Dec. 2018), pp. 789–800. ISSN: 14710064. DOI: 10.1038/s41576- 018-
0060-8.

[103] Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. “Capturing chromosome conformation”. In:
Science 295.5558 (2002), pp. 1306–1311. ISSN: 00368075. DOI: 10.1126/science.1067799.

[104] Lieberman-Aiden, E., Van Berkum, N. L., Williams, L., et al. “Comprehensive mapping of long-
range interactions reveals folding principles of the human genome”. In: Science 326.5950 (Oct.
2009), pp. 289–293. ISSN: 00368075. DOI: 10.1126/science.1181369.

[105] Dixon, J. R., Gorkin, D. U., and Ren, B. “Chromatin Domains: The Unit of Chromosome Organiza-
tion”. In: Molecular Cell 62.5 (June 2016), pp. 668–680. ISSN: 10974164. DOI: 10.1016/j.molcel.
2016.05.018.

147

https://doi.org/10.1371/journal.pgen.1003864
https://doi.org/10.1016/j.ajhg.2019.02.008
https://doi.org/10.1073/pnas.1405138111
https://doi.org/10.1073/pnas.1405138111
https://doi.org/10.1038/s41559-019-0996-x
https://doi.org/10.1038/ng.2653
https://doi.org/10.1126/science.1250368
https://doi.org/10.3390/cells9010048
https://doi.org/10.1016/j.ajhg.2019.04.016
https://doi.org/10.1016/j.ajhg.2019.04.016
https://doi.org/10.1038/s41576-018-0060-8
https://doi.org/10.1038/s41576-018-0060-8
https://doi.org/10.1126/science.1067799
https://doi.org/10.1126/science.1181369
https://doi.org/10.1016/j.molcel.2016.05.018
https://doi.org/10.1016/j.molcel.2016.05.018


[106] Krietenstein, N., Abraham, S., Venev, S. V., et al. “Ultrastructural Details of Mammalian Chro-
mosome Architecture”. In: Molecular Cell 78.3 (May 2020), 554–565.e7. ISSN: 10974164. DOI:
10.1016/j.molcel.2020.03.003.

[107] Hsieh, T. H. S., Cattoglio, C., Slobodyanyuk, E., Hansen, A. S., Rando, O. J., Tjian, R., and Darzacq,
X. “Resolving the 3D Landscape of Transcription-Linked Mammalian Chromatin Folding”. In:
Molecular Cell 78.3 (May 2020), 539–553.e8. ISSN: 10974164. DOI: 10.1016/j.molcel.2020.03.002.

[108] Vian, L., Pȩkowska, A., Rao, S. S., et al. “The Energetics and Physiological Impact of Cohesin
Extrusion”. In: Cell 173.5 (May 2018), 1165–1178.e20. ISSN: 10974172. DOI: 10.1016/j.cell.2018.
03.072.

[109] Fudenberg, G., Imakaev, M., Lu, C., Goloborodko, A., Abdennur, N., and Mirny, L. A. “Formation
of Chromosomal Domains by Loop Extrusion”. In: Cell Reports 15.9 (May 2016), pp. 2038–2049.
ISSN: 22111247. DOI: 10.1016/j.celrep.2016.04.085.

[110] Kraft, K., Magg, A., Heinrich, V., et al. “Serial genomic inversions induce tissue-specific architec-
tural stripes, gene misexpression and congenital malformations”. In: Nature Cell Biology 21.3 (Feb.
2019), pp. 305–310. ISSN: 14764679. DOI: 10.1038/s41556-019-0273-x.

[111] Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S., and Ren, B. “Topolog-
ical domains in mammalian genomes identified by analysis of chromatin interactions”. In: Nature
485.7398 (Apr. 2012), pp. 376–380. ISSN: 00280836. DOI: 10.1038/nature11082.

[112] Nora, E. P., Lajoie, B. R., Schulz, E. G., et al. “Spatial partitioning of the regulatory landscape of the
X-inactivation centre”. In: Nature 485.7398 (2012), pp. 381–385. ISSN: 00280836. DOI: 10.1038/
nature11049.

[113] Sexton, T., Yaffe, E., Kenigsberg, E., Bantignies, F., Leblanc, B., Hoichman, M., Parrinello, H.,
Tanay, A., and Cavalli, G. “Three-dimensional folding and functional organization principles of the
Drosophila genome”. In: Cell 148.3 (2012), pp. 458–472. ISSN: 10974172. DOI: 10.1016/j .cell .
2012.01.010.

[114] Jackson, D. A. and Pombo, A. “Replicon clusters are stable units of chromosome structure: Evidence
that nuclear organization contributes to the efficient activation and propagation of S phase in human
cells”. In: Journal of Cell Biology 140.6 (1998), pp. 1285–1295. ISSN: 00219525. DOI: 10.1083/jcb.
140.6.1285.

[115] Ma, H., Samarabandu, J., Devdhar, R. S., Acharya, R., Cheng, P. C., Meng, C., and Berezney, R.
“Spatial and temporal dynamics of DNA replication sites in mammalian cells”. In: Journal of Cell
Biology 143.6 (1998), pp. 1415–1425. ISSN: 00219525. DOI: 10.1083/jcb.143.6.1415.

[116] Dixon, J. R., Jung, I., Selvaraj, S., et al. “Chromatin architecture reorganization during stem cell
differentiation”. In: Nature 518.7539 (Feb. 2015), pp. 331–336. ISSN: 14764687. DOI: 10 .1038 /
nature14222.

[117] Rao, S. S., Huntley, M. H., Durand, N. C., et al. “A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping”. In: Cell 159.7 (Dec. 2014), pp. 1665–1680.
ISSN: 10974172. DOI: 10.1016/j.cell.2014.11.021.

[118] Schmitt, A. D., Hu, M., Jung, I., et al. “A Compendium of Chromatin Contact Maps Reveals Spa-
tially Active Regions in the Human Genome”. In: Cell Reports 17.8 (Nov. 2016), pp. 2042–2059.
ISSN: 22111247. DOI: 10.1016/j.celrep.2016.10.061.

[119] Dekker, J. Two ways to fold the genome during the cell cycle: Insights obtained with chromosome
conformation capture. 2014. DOI: 10.1186/1756-8935-7-25.

148

https://doi.org/10.1016/j.molcel.2020.03.003
https://doi.org/10.1016/j.molcel.2020.03.002
https://doi.org/10.1016/j.cell.2018.03.072
https://doi.org/10.1016/j.cell.2018.03.072
https://doi.org/10.1016/j.celrep.2016.04.085
https://doi.org/10.1038/s41556-019-0273-x
https://doi.org/10.1038/nature11082
https://doi.org/10.1038/nature11049
https://doi.org/10.1038/nature11049
https://doi.org/10.1016/j.cell.2012.01.010
https://doi.org/10.1016/j.cell.2012.01.010
https://doi.org/10.1083/jcb.140.6.1285
https://doi.org/10.1083/jcb.140.6.1285
https://doi.org/10.1083/jcb.143.6.1415
https://doi.org/10.1038/nature14222
https://doi.org/10.1038/nature14222
https://doi.org/10.1016/j.cell.2014.11.021
https://doi.org/10.1016/j.celrep.2016.10.061
https://doi.org/10.1186/1756-8935-7-25


[120] Dekker, J. and Heard, E. Structural and functional diversity of Topologically Associating Domains.
2015. DOI: 10.1016/j.febslet.2015.08.044.

[121] Vietri Rudan, M., Barrington, C., Henderson, S., Ernst, C., Odom, D. T., Tanay, A., and Hadjur,
S. “Comparative Hi-C Reveals that CTCF Underlies Evolution of Chromosomal Domain Architec-
ture”. In: Cell Reports 10.8 (Mar. 2015), pp. 1297–1309. ISSN: 22111247. DOI: 10.1016/j.celrep.
2015.02.004.
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A. O., Suvà, M. L., and Bernstein, B. E. “Insulator dysfunction and oncogene activation in IDH mu-
tant gliomas”. In: Nature 529.7584 (2016), pp. 110–114. ISSN: 14764687. DOI: 10.1038/nature16490.

[136] Gorkin, D. U., Qiu, Y., Hu, M., et al. “Common DNA sequence variation influences 3-dimensional
conformation of the human genome”. In: Genome Biology 20.1 (Nov. 2019), pp. 1–25. ISSN: 1474760X.
DOI: 10.1186/s13059-019-1855-4.

[137] Fudenberg, G. and Pollard, K. S. “Chromatin features constrain structural variation across evolu-
tionary timescales”. In: Proceedings of the National Academy of Sciences of the United States of
America 116.6 (Feb. 2019), pp. 2175–2180. ISSN: 10916490. DOI: 10.1073/pnas.1808631116.

[138] Dill, K. A., Ozkan, S. B., Shell, M. S., and Weikl, T. R. “The protein folding problem”. In: Annual
Review of Biophysics 37 (2008), pp. 289–316. ISSN: 1936122X. DOI: 10.1146/annurev.biophys.37.
092707.153558.

[139] Jumper, J., Evans, R., Pritzel, A., et al. “Highly accurate protein structure prediction with Al-
phaFold”. In: Nature 596.7873 (July 2021), pp. 583–589. ISSN: 14764687. DOI: 10.1038/s41586-
021-03819-2.

[140] Belokopytova, P. and Fishman, V. “Predicting Genome Architecture: Challenges and Solutions”. In:
Frontiers in Genetics 11 (Jan. 2021), p. 1776. ISSN: 16648021. DOI: 10.3389/fgene.2020.617202.

[141] Fudenberg, G., Kelley, D. R., and Pollard, K. S. “Predicting 3D genome folding from DNA sequence
with Akita”. In: Nature Methods 17.11 (Oct. 2020), pp. 1111–1117. ISSN: 15487105. DOI: 10.1038/
s41592-020-0958-x.

[142] Schwessinger, R., Gosden, M., Downes, D., Brown, R. C., Oudelaar, A. M., Telenius, J., Teh, Y. W.,
Lunter, G., and Hughes, J. R. “DeepC: predicting 3D genome folding using megabase-scale transfer
learning”. In: Nature Methods 17.11 (Oct. 2020), pp. 1118–1124. ISSN: 15487105. DOI: 10.1038/
s41592-020-0960-3.

[143] Zhou, J. “Sequence-based modeling of genome 3D architecture from kilobase to chromosome-
scale”. In: bioRxiv (May 2021), p. 2021.05.19.444847. DOI: 10.1101/2021.05.19.444847.

[144] Sudlow, C., Gallacher, J., Allen, N., et al. “UK Biobank: An Open Access Resource for Identifying
the Causes of a Wide Range of Complex Diseases of Middle and Old Age”. In: PLoS Medicine 12.3
(Mar. 2015), e1001779. ISSN: 15491676. DOI: 10.1371/journal.pmed.1001779.

[145] Hormozdiari, F., Gazal, S., Van De Geijn, B., et al. “Leveraging molecular quantitative trait loci to
understand the genetic architecture of diseases and complex traits”. In: Nature Genetics 50.7 (2018),
pp. 1041–1047. ISSN: 15461718. DOI: 10.1038/s41588-018-0148-2.

[146] Boraska, V., Franklin, C. S., Floyd, J. A., et al. “A genome-wide association study of anorexia
nervosa”. In: Molecular Psychiatry 19.10 (2014), pp. 1085–1094. ISSN: 14765578. DOI: 10.1038/
mp.2013.187.

[147] Smoller, J. W., Kendler, K., Craddock, N., et al. “Identification of risk loci with shared effects on five
major psychiatric disorders: A genome-wide analysis”. In: The Lancet 381.9875 (2013), pp. 1371–
1379. ISSN: 1474547X. DOI: 10.1016/S0140-6736(12)62129-1.

[148] Jostins, L., Ripke, S., Weersma, R. K., et al. “Host-microbe interactions have shaped the genetic ar-
chitecture of inflammatory bowel disease”. In: Nature 491.7422 (2012), pp. 119–124. ISSN: 14764687.
DOI: 10.1038/nature11582.

[149] Okbay, A., Baselmans, B. M., De Neve, J. E., et al. “Genetic variants associated with subjective
well-being, depressive symptoms, and neuroticism identified through genome-wide analyses”. In:
Nature Genetics 48.6 (2016), pp. 624–633. ISSN: 15461718. DOI: 10.1038/ng.3552.

150

https://doi.org/10.1038/nature16490
https://doi.org/10.1186/s13059-019-1855-4
https://doi.org/10.1073/pnas.1808631116
https://doi.org/10.1146/annurev.biophys.37.092707.153558
https://doi.org/10.1146/annurev.biophys.37.092707.153558
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.1038/s41586-021-03819-2
https://doi.org/10.3389/fgene.2020.617202
https://doi.org/10.1038/s41592-020-0958-x
https://doi.org/10.1038/s41592-020-0958-x
https://doi.org/10.1038/s41592-020-0960-3
https://doi.org/10.1038/s41592-020-0960-3
https://doi.org/10.1101/2021.05.19.444847
https://doi.org/10.1371/journal.pmed.1001779
https://doi.org/10.1038/s41588-018-0148-2
https://doi.org/10.1038/mp.2013.187
https://doi.org/10.1038/mp.2013.187
https://doi.org/10.1016/S0140-6736(12)62129-1
https://doi.org/10.1038/nature11582
https://doi.org/10.1038/ng.3552


[150] Barban, N., Jansen, R., De Vlaming, R., et al. “Genome-wide analysis identifies 12 loci influencing
human reproductive behavior”. In: Nature Genetics 48.12 (2016), pp. 1462–1472. ISSN: 15461718.
DOI: 10.1038/ng.3698.

[151] Teslovich, T. M., Musunuru, K., Smith, A. V., et al. “Biological, clinical and population relevance of
95 loci for blood lipids”. In: Nature 466.7307 (2010), pp. 707–713. ISSN: 14764687. DOI: 10.1038/
nature09270.

[152] Okada, Y., Wu, D., Trynka, G., et al. “Genetics of rheumatoid arthritis contributes to biology and
drug discovery”. In: Nature 506.7488 (2014), pp. 376–381. ISSN: 00280836. DOI: 10.1038/nature12873.

[153] Ripke, S., Neale, B. M., Corvin, A., et al. “Biological insights from 108 schizophrenia-associated ge-
netic loci”. In: Nature 511.7510 (2014), pp. 421–427. ISSN: 14764687. DOI: 10.1038/nature13595.

[154] McArthur, E. and Capra, J. A. “Topologically associating domain boundaries that are stable across
diverse cell types are evolutionarily constrained and enriched for heritability”. In: American Journal
of Human Genetics 108.2 (Feb. 2021), pp. 269–283. ISSN: 15376605. DOI: 10.1016/j.ajhg.2021.01.
001.

[155] Gazal, S., Finucane, H. K., Furlotte, N. A., et al. “Linkage disequilibrium-dependent architecture
of human complex traits shows action of negative selection”. In: Nature Genetics 49.10 (2017),
pp. 1421–1427. ISSN: 15461718. DOI: 10.1038/ng.3954.

[156] Vernot, B., Tucci, S., Kelso, J., et al. “Excavating Neandertal and Denisovan DNA from the genomes
of Melanesian individuals”. In: Science 352.6282 (2016), pp. 235–239. ISSN: 10959203. DOI: 10.
1126/science.aad9416.

[157] Neale Lab: Heritability of ¿4,000 traits & disorders in UK Biobank. 2018.

[158] FinnGen. FinnGen research project. 2018.
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