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 1 

 
CHAPTER 1 

 

Introduction 

1.1  Overview 

Future climate change poses a wide variety of threats to human health and well-being 

(“IPCC - SR15,” 2018; IPCC 2022). This is especially true in low-lying coastal communities, 

where climate change is likely to affect a variety of natural phenomena including storms, sea 

level rise, coastal inundation, erosion, and precipitation (Nicholls et al. 2007). In addition, 

climatic changes and environmental stressors will impact livelihood opportunities in vulnerable 

coastal areas (Nicholls et al. 2008).  

One possible human response to climate change and other environmental stresses is 

migration. Discussions of climate-induced migration have traditionally been framed around a 

looming crisis of “climate refugees” (Myers 2002). However, this narrative has been challenged 

as overly simplistic and failing to accurately represent the true complexity of migration decisions 

(Boas et al. 2019). Recent work has shown that although climate change and environmental 

pressure can affect population mobility, those impacts may be nonlinear or even negative (Paul 

2005; Call et al. 2017). Additionally, environmental factors are rarely the only causes of 

migration (Obokata et al. 2014). Rather, migration is complex, multi-causal phenomenon that is 

impacted by both “push” factors (such as political instability, lack of economic opportunity, and 

lack of natural resources in the location of origin), as well as “pull” factors related to the 

destination location (including availability of employment, resources, and social capital). 

Intervening factors such as transportation networks, social ties, and cultural norms can further 

complicate the decision to migrate (Black et al. 2011a; Amrith 2013; Hunter et al. 2015).  



 2 

As concern for community displacement increases, it is important to understand the 

factors that impact migration and what role migration might play in adaptation to environmental 

stress. The complexity of human migration poses a challenge for researchers who aim to study 

the effects of environmental changes on population mobility, and questions remain about how to 

best model human migration to account for this complexity (McLeman 2013; Neumann and 

Hilderink 2015).  

This dissertation adds to existing knowledge of how changing environmental conditions 

and livelihood opportunities impact migration decisions in coastal Bangladesh. To address this 

objective, I developed an original agent-based model (ABM) that combines stylized 

environmental change dynamics with livelihood to investigate how these dynamics impact 

migration decisions. This research combines established earth sciences and social research with 

computational modeling to understand the coupled dynamics of human mobility and 

environmental change in Bangladesh.  

 

1.2  Study Area: Bangladesh 

Bangladesh is located on the low-lying deltaic floodplain of the Ganges-Brahmaputra-

Jamuna Delta, which includes the Ganges, Brahmaputra, Padma, and Meghna Rivers 

(Passalacqua et al. 2013) (Figure 1.1) In Bangladesh, these major rivers converge and feed into 

the Bay of Bengal, where approximately 1 billion tons of sediment are deposited annually 

(Milliman and Farnsworth 2011; Dietrich et al. 2020).  



 3 

 

Figure 1.1: Bangladesh and surrounding areas (Image: Google Earth) 

 

Bangladesh falls in a low elevation coastal zone, and as such experiences multiple 

environmental vulnerabilities such as regular flooding, extreme weather events, and sea level rise 

(Islam and Sado 2000; Dewan et al. 2007; Dewan and Yamaguchi 2009; Hallegatte 2012; 

Higgins et al. 2014; Call et al. 2017; McGranahan et al. 2007). Communities on the coastal delta 

plain of Bangladesh face a particular set of challenges as sediment transport, deposition, and 

erosion continuously create and destroy land and shape the areas where people live and work 
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(Auerbach et al. 2015). Additionally, both natural and human changes to the environment are 

causing shifts in livelihood choices (Ackerly et al. 2015; Tessler et al. 2015). It is estimated that 

more than 50 million people live in the coastal areas of Bangladesh where they are highly 

vulnerable to natural disasters and environmental shocks (Ahsan et al. 2011). More than one 

million people in this area are estimated to lose their homesteads to river erosion every year 

(Black et al. 2008).  

In Bangladesh, migration is a common method of livelihood diversification and 

adaptation to stressful natural conditions (Black et al. 2005; Amrith 2013; Martin et al. 2014; 

Alam et al. 2017). Rural to urban migration is the most prevalent form of migration in 

Bangladesh (Afsar 2003; Bryan et al. 2014; Ackerly et al. 2015; Lagakos et al. 2018, p. 20), 

especially temporary migration to adapt to seasonal poverty (Khandker 2012). Remittance 

provided by household members who have migrated can increase livelihood stability in the midst 

of agricultural instability and seasonal poverty (Call et al. 2017). However, it is unclear how 

these existing mobility patterns will be impacted by climate change.  

Environmentally induced migration has been widely studied in Bangladesh (Afsar 2003; 

Ahsan et al. 2011; Gray and Mueller 2012, p. 20; Joarder and Miller 2013; Donato et al. 2016; 

Islam 2017; Call et al. 2017; Chen and Mueller 2018). Much of this research focuses on extreme 

weather events representing rapid onset environmental change, such as cyclones (Kartiki 2011; 

Gray and Mueller 2012; Mallick and Vogt 2012, 2014; Lu et al. 2016). Other research considers 

slower onset environmental change such as salinity encroachment, temperature change, and 

precipitation (L. Perch-Nielsen et al. 2008; Call et al. 2017; Chen and Mueller 2018). However, 

there is little agreement between these studies as to how environmental changes will alter 

migration patterns.   
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1.3  Environmental Migration Research and Methods 

Migration is a complex and multi-causal phenomenon that is driven by multiple factors 

across temporal and spatial scales. Even where the environment drives migration, it can be 

compounded by social, economic, and political factors (Walsham 2010; Hunter et al. 2015). A 

popular conceptual framework of environmental migration that highlights its complexity was 

proposed by Black et al (2011). The framework, which is shown in an adapted form in Figure 

1.2, identifies economic, political, social, demographic, and environmental factors as the primary 

drivers that affect migration decisions. The unique contribution of the framework is that the 

effect of environmental drivers on a migration decision is dependent on the other factors and the 

context of the decision. In this way, environmental conditions can directly impact a migration 

decision, but also impact the decision indirectly through effects on the economic, social, 

political, and demographic drivers (Black, et al., 2011).  

 

 

Figure 1.2: Conceptual framework of how environmental change impacts migration (adapted 
from Black et al., 2011).  
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Because of the complexity and nonlinearity of environmental migration, the dynamics are 

still poorly understood and poorly quantified. In general, the study of environmental migration 

employs a variety of methods from strictly conceptual models (L. Perch-Nielsen et al. 2008; 

Renaud et al. 2011; Black et al. 2011a), to logistic regression (Koubi et al. 2016), multivariate 

regression (Hino et al. 2017), statistical analysis (Henry et al. 2003, 2004), and a few agent-based 

models (Silveira et al. 2006; Kniveton et al. 2011a; Hassani-Mahmooei and Parris 2012; Cai and 

Oppenheimer 2013; Smith 2014; Thober et al. 2018; Reid Bell et al. 2019).  Previous work 

applied machine learning to two social surveys to identify important predictors of migration in 

southwestern Bangladesh (Best et al. 2020).  One of the datasets used came from the Bangladesh 

Environment and Migration Survey (BEMS) This survey contains migration, employment, and 

livelihood histories on more than 3,000 individuals affiliated with 1,695 households. The survey 

specifically asks for histories of migration within Bangladesh, to India, and to any other country 

(Donato et al. 2016; Carrico and Donato 2019). The original dataset consists of 1,695 

observations of 1,997 distinct variables. The top 15 variables to predict the number of internal 

migrations a household reported were identified using a random forest algorithm. These 

variables included latitude, longitude, household characteristics such as number of non-workers 

and total household members, and socioeconomic indicators including whether or not a home 

owned a gas or kerosene cooker or a refrigerator. Though the random forest algorithm was able 

to identify the top predictors of internal migration from the BEMS dataset, it does little to 

explain how the top variables impact the migration decision or the dynamics of how the variables 

interact.  

Agent-based modeling is a powerful tool to analyze the dynamics of coupled human-

natural systems such as environmental migration in Bangladesh as these approaches can simulate 



 7 

nonlinear interactions among individuals and reveal how large-scale collective behavior emerges 

from individual decisions (Hassani-Mahmooei and Parris 2012). In this way, ABMs represent an 

opportunity to improve understanding of how environmental change and migration interact in 

complex social-ecological systems (Thober et al. 2018). Simulation models such as ABMs can 

address gaps in current understanding by explicitly modeling the linkages and feedbacks between 

the social and environmental systems. ABMs are also powerful tools because of their ability to 

describe decision making and the impacts of decisions in great detail (DeAngelis and Diaz 

2019). However, Thober et al. find that few existing ABMs of environmental migration fully 

integrate the social and ecological systems (2018).  

One example of agent-based modeling being applied to studying environmental migration 

in Bangladesh was identified (Hassani-Mahmooei and Parris 2012). Hassani-Mahmooei and 

Parris developed an agent-based model to simulate migration decisions between districts based 

on 10 heuristics or migration “rules”, which are primarily based on economics and prospects for 

livelihoods (2012). The model also includes “push”, “pull”, and “intervening” factors related to 

climate change scenarios, socioeconomic conditions, house ownership, and employment 

(Hassani-Mahmooei and Parris 2012). The model can impose climate shocks on agents, pushing 

them to decide to migrate and then select where to migrate. Combined with population growth 

and agent mortality, Hassani-Mahmooei and Parris use the model to predict that between 3 and 

10 million people in Bangladesh will migrate internally over 40 years (2012).  

In ABMs, agent decision-making rules are critically important to the overall model 

behavior. In ABMs of migration, decision-making has varied from simple numerical models, to 

heuristics, to more complex behavioral theory (Klabunde and Willekens 2016). A recent review 

of decision-making rules in ABMs of migration highlighted several suggestions for decision 
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rules, including that the rules should be based in decision theory as well as empirical evidence 

(Klabunde and Willekens 2016). Despite the complexity of the migration decision and the 

usefulness of ABMs in implementing decision-making processes, relatively few ABMs of 

environmental migration include behaviorally or psychologically realistic decision-making rules 

(Thober et al. 2018). Additionally, few ABMs of environmental migration include social 

networks. Previous research has established that social networks are important for migration-

related decisions (Black et al. 2011c; Hunter et al. 2015). Social networks, especially 

connections with current or previous migrants can increase the propensity of an individual to 

migrate by demonstrating feasibility, reducing risks, and increasing benefits of a move (Till et 

al., 2018). Such dynamics can help to explain chain migration, or movement in which migrants 

learn about opportunities through social relationships with previous migrants.  

Due to the complexity of human migration and the strengths of ABM in studying 

complex systems, this work primarily utilizes an agent-based approach to study environmental 

migration in coastal southwestern Bangladesh. Chapters 2 through 4 focus on the development of 

an original ABM for exploring environmental migration and livelihood dynamics. The 

development and calibration of this model use a pattern-oriented approach to reproduce 

previously identified patterns of migration from the empirical literature (Grimm et al. 1996, 

2005a). In contrast, Chapter 5 uses output data from several global circulation models (GCMs) of 

the climate system to look forward into Bangladesh’s future and begin to consider how climate 

change, especially increasing levels of extreme heat, may impact human health and productivity 

in the region.  
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1.4  Structure of Dissertation 

This dissertation is divided into the following chapters and corresponding research 

questions:  

• Chapter 1- Introduction 

• Chapter 2- Reproducing patterns of migration with an economic ABM  

o Can a simple economic model reproduce identified patterns of environmental 

migration in Bangladesh?  

o What combinations of community characteristics and livelihood choices in the 

ABM replicate these observed patterns?  

• Chapter 3- Identifying behavioral dimensions of migration with decision theory 

o How do different decision frameworks change migration dynamics and 

sensitivities under environmental stress?  

o What parameters in the behavioral models have significant impacts on migration 

dynamics?  

• Chapter 4- Exploring network effects on migration  

o How do flows of information across social networks affect patterns of migration?  

o How do network structure and size impact migration outcomes?  

• Chapter 5- Projections of future extreme heat in Bangladesh  

o How is wet-bulb temperature in Bangladesh predicted to change under various 

climate change scenarios? 

o How many dangerous heat days can be expected in Bangladesh by the year 2100? 

• Chapter 6- Conclusions and future work  
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CHAPTER 2 

 

Modeling multi-level patterns of environmental migration in Bangladesh:  

An agent-based approach 

 

A version of this chapter was published in the 2021 Winter Simulation Conference (WSC) 

Proceedings, https://doi.org/10.1109/WSC52266.2021.9715380 (2021) 

 

Abstract 

Environmental change interacts with population migration in complex ways that depend on 

interactions between impacts on individual households and on communities. These coupled 

individual-collective dynamics make agent-based simulations useful for studying environmental 

migration. I present an original agent-based model that simulates environment-migration 

dynamics in terms of the impacts of natural hazards on labor markets in rural communities, with 

households deciding whether to migrate based on maximizing their expected income. I use a 

pattern-oriented approach that seeks to reproduce observed patterns of environmentally-driven 

migration in Bangladesh. The model is parameterized with empirical data and unknown 

parameters are calibrated to reproduce the observed patterns. This model can reproduce these 

patterns when the distribution of land ownership is parameterized with a Lomax distribution and 

high levels of inequality. Future work will compare income-maximizing decisions to 

psychologically complex decision heuristics that include non-economic considerations.  
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2.1  Introduction  

Understanding how environmental and climatic stress impact human mobility is 

important for improving fundamental knowledge of coupled human and natural systems, and for 

applying that knowledge to planning regarding adaptation to climatic change. Human migration 

is complex, and environmental stress may influence migration decisions in many ways. This 

complexity has produced a range of approaches to modeling environment-migration interactions, 

with many unresolved questions about which approach is best (McLeman 2013; Neumann and 

Hilderink 2015; Piguet 2010).  

 Agent-based models (ABMs) are an especially promising approach to studying 

environmental migration. ABMs are particularly powerful in representing dynamics between 

individual-scale and collective or community-scale phenomena, and to incorporate psychological 

and sociologically complex decision processes (Thober et al. 2018; An 2012; Klabunde and 

Willekens 2016). However, only a limited number of agent-based models have been used to 

study environmental migration (Thober et al. 2018).  

 Bangladesh presents an ideal location for studying environment-migration dynamics. It is 

considered one of the most climate vulnerable countries in the world, as well as a location with a 

naturally dynamic environment and complex history of migration (Amrith 2013). Previous work 

based on longitudinal migration histories of rural households in Bangladesh found that drought-

induced crop loss had a strong effect on internal migration, whereas flooding did not, thus 

demonstrating the importance of economic disruptions for migration in the region (Gray and 

Mueller 2012). As a response to environmentally-induced livelihood disruption, Gray and 

Mueller (2012) observed that as the fraction of the community affected by an environmental 

event increased, rates of out-migration dropped at first, and then rose after the fraction impacted 
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crossed a threshold. They also found that individual households directly impacted by an 

environmental shock were less likely to migrate than other households within an affected 

community.  

 Here, I present an original ABM of internal environmental migration from rural villages 

in Bangladesh in which agents make decisions to maximize their household’s expected utility in 

the form of annual income. This work investigates whether an agent-based simulation of local 

labor markets can reproduce the two key patterns of environmental migration observed by Gray 

and Mueller (2012) in Bangladesh. The model allows both community-level and household-level 

dynamics to influence livelihood and migration decisions.  This model also serves as a starting 

point for future investigations into interactions among environmental, social, and behavioral 

influences on migration. 

 

2.2  Background 

2.2.1  Agent-based Modeling to Study Environmental Migration 

The impacts of environmental factors on population mobility are complex, and may be 

confounded or mitigated by economic, political, social, and cultural factors (Obokata et al. 2014; 

Black et al. 2011; Hunter 2005). Agent-based modeling is well-suited to analyze the interactions 

between environmental change and migration because of their ability to incorporate nonlinear 

interactions among individuals and investigate the dynamics by which large-scale collective 

phenomena emerge from individual actions (Thober et al. 2018). DeAngelis and Diaz (2019) 

emphasize that ABMs are powerful tools because they can describe decision making and the 

impacts of decisions in great detail. However, Thober et al. (2018) find that few existing ABMs 

of environmental migration fully integrate the social and ecological systems.  
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 Pattern-oriented modeling offers a valuable methodological framework for assessing 

ABMs in terms of their ability to simultaneously reproduce multiple patterns observed in a 

complex system (Grimm et al. 2005). Pattern-oriented modeling is especially useful when the 

system exhibits multiple patterns at different scales. Pattern-oriented modeling offers a 

systematic approach to selecting models and parameterizations and provides clear and useful 

criteria for testing and validating models (Grimm et al. 1996). I followed a pattern-oriented 

approach in this work because of the complexity of human migration and the availability of well-

known patterns against which to test my model (Gray and Mueller 2012). 

 Agent-based modeling had not been widely applied to environmental migration in 

Bangladesh, though two noteworthy examples were identified (Hassani-Mahmooei and Parris 

2012; Bell et al. 2021). Hassani-Mahmooei and Parris (2012) developed an agent-based model to 

simulate migration decisions between districts based on 10 heuristics as well as “push”, “pull”, 

and “intervening” factors related to climate change scenarios, socioeconomic conditions, and 

employment. Hassani-Mahmooei and Parris (2012) use the model to predict that between 3 and 

10 million people in Bangladesh will migrate internally over 40 years, especially from coastal 

areas. Bell et al. developed an ABM of household-level migration within Bangladesh, also using 

a range of “push”, “pull”, and “mooring” factors, though with more complex decision-making by 

also incorporating individual perceptions and place-attachment (Bell et al. 2021; Bell et al. 

2019). They applied this model to migration responses to different scenarios of sea level rise to 

show that sea level rise is not likely to result in migration away from coasts (Bell et al. 2021). 

The stark differences in the findings between these two works highlight the existing need to 

refine ABMs of environmental migration in the region, as well as the importance of selecting the 

correct decision-making method.    
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2.2.2  Study Area 

Bangladesh is a flat low-lying country located in the Ganges-Brahmaputra-Meghna Delta 

along the coast of the Bay of Bengal, with a strong monsoon climate. Due to its unique location 

and geological setting, Bangladesh faces many environmental vulnerabilities including seasonal 

flooding, frequent exposure to tropical cyclones, vulnerability to sea level rise, and rapid land 

erosion and accretion (Call et al. 2017; Dewan et al. 2007; Dewan and Yamaguchi 2009; 

Hallegatte 2012; Higgins et al. 2014; Islam and Sado 2000; McGranahan et al. 2007; Auerbach 

et al. 2015). Further complicating environmental vulnerability, Bangladesh is also one of the 

most densely populated countries in the world, with more than 160 million individuals living 

within an area of just under 150,000 km2 (World Bank 2021). At the same time, most people 

living in Bangladesh are highly dependent on their natural environment for livelihood 

opportunities, especially in agriculture and aquaculture (Tessler et al. 2015).  

 Migration is a common and long-standing strategy in Bangladesh for adapting to 

challenging environmental and social conditions (Alam et al. 2017; Amrith 2013; Black et al. 

2005; Martin et al. 2014). As such, environmentally induced migration has also been widely 

studied in Bangladesh (Ahsan et al. 2011; Call et al. 2017; Chen and Mueller 2018; Donato et al. 

2016; Gray and Mueller 2012, 20; Islam 2017; Joarder and Miller 2013). Regular seasonal 

migration, both rural-rural and rural-urban, plays an important role in the Bangladeshi economy 

(Mobarak and Reimão 2020; Lagakos et al. 2018; Akram et al. 2018), but migration in response 

to acute stress, such as natural disasters, has very different characteristics: it is predominantly 

rural to urban and of indeterminate duration (Mallick and Vogt 2014; Islam and Mehedi 2016; 

Kartiki 2011). There is little agreement in the literature as to how environmental changes 
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influence migration patterns, and results vary widely based on specific location, methodology, 

and type of environmental impact studied.   

 

2.2.3  Patterns of Migration 

I use a pattern-oriented approach to developing and validating my ABM. Gray and 

Mueller (2012) identified two distinct patterns of internal long-distance migration from rural 

Bangladeshi villages in response to drought-induced crop failure: 

• Pattern 1: As the proportion of a community impacted by environmental shock increases, 

rates of migration initially decrease below the baseline levels, but then increase, 

especially above a threshold where approximately 20% of the community is impacted. 

This shows that individual migration decisions are strongly influenced in a non-linear 

manner by community-level impacts. 

• Pattern 2: Households that are directly impacted by environmental shock are less likely to 

migrate. Migration is costly and affected households may wish to migrate but lack the 

means to do so.  

 

 These patterns serve as the key patterns that this ABM aims to reproduce at the 

community level (Pattern 1) and the household level (Pattern 2). Both patterns demonstrate that 

household migration decisions are strongly influenced in a non-linear manner by community-

level phenomena. Gray and Mueller speculate that these effects may be due to the economic 

effects of environmental shocks on communal risk-sharing and local labor markets. Related 

research in four African countries also finds that environmental impacts on labor markets play a 
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central role in migration (Mueller et al. 2020). My model seeks to test this hypothesis as an 

explanation for the patterns in the context of purely economic decision heuristics.  

 

2.3  Methods 

2.3.1 Model Structure and Entities 

My ABM simulates household decisions whether to migrate under environmental stress. I 

use the model to study relationships between environmental stress and changing livelihood 

opportunities with regard to their impact on mobility patterns. A complete description of the 

model based on the ODD protocol (Grimm et al. 2006; Grimm et al. 2010) and model code are 

available online (Best 2021), and the ODD protocol is available in the Appendix. The model is 

implemented in Python and can be run on an ordinary computer. The model has no explicit 

spatial character. Each time step represents one year. A single model run of 20 time steps takes a 

few seconds.  

While the model is not explicitly spatial in nature, the virtual environment consists of 

entities across scales of social engagement. Different categories of entities represent individuals, 

households, and the overall community, and each category has its own attributes and behaviors. 

Individuals are primarily defined by attributes of gender, age, employment at each step of the 

model, wages, and status as a migrant or not. Each individual is assigned to a household, which 

is specified by the individuals it contains, land owned, and total wealth. Each household entity 

also has a defined head of household. The household head is defined as either the oldest adult 

male individual within the household or, if no male members are present, the oldest adult female 

member. As the primary economic and decision-making unit within the model, households also 

keep track of wealth at each step of the model. Households who own land may also hire 
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individuals from other households and keep track of their employees, payments, and expenses. In 

this way, the economic accounting of the model takes place at the household level. At the next 

level up in scale, each household belongs to a stylized origin community. The community 

contains a certain amount of total land distributed across the households, as well as livelihood 

opportunities in agriculture and both skilled and un-skilled non-agricultural employment options.  

The community of the model is also the level at which environmental shocks may occur within 

the environment. At each time step, an “environmental shock” may occur stochastically. If an 

environmental shock occurs, a specified fraction of the households within the community will be 

impacted randomly, resulting in loss of agriculture and agricultural wealth. Figure 2.1 shows a 

schematic of the model’s entities and their relationships.  

 

Figure 2.1: Class diagram of model entities with primary variables and operations. 
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 In addition to entities, the model has a series of global variables including:  

• Migration utility – The annual utility of a household sending a migrant in Bangladeshi 

taka (BDT) 

• Cost of migration – The cost of sending a migrant (in BDT)  

• Number of households 

• Number of individuals 

• Number of steps to run the model 

• Wealth factor – The mean wealth of households. Household wealth is initialized from a 

normal distribution with this factor as the mean. 

• Shock probability – The probability of an environmental shock in a time step. 

• Shock severity – Either a number between 0 and 1 or a probability distribution on the 

domain [0,1]. When a shock strikes a community, this determines the fraction of 

households that are affected. 

 

 Empirical data from the southwestern coastal region of Bangladesh was used to 

parameterize the ABM (Carrico and Donato 2019; Adams et al. 2016). For each parameter, the 

available dataset was used to fit a distribution or obtain estimates of the parameter in the case of 

salaries and expenditures (Table 2.1).  
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Table 2.1: Data sources and distributions for model parameterization 

Model parameter Distribution Source 

Wealth distribution  Normal Adams et al. 2016 

Household size distribution Poisson Carrico and Donato 
2019 

Land owned distribution Lognormal  Carrico and Donato 
2019 

Age distribution Weibull Carrico and Donato 
2019 

Wage and expenditure 
estimates 

NA Adams et al. 2016 

 

2.3.2  Process and Scheduling 

Each simulation begins by creating and initializing individuals, households, and a 

community. The number of individuals and households remain fixed throughout the model run. 

Individuals are assigned to a household, and a head-of-household is selected from the adult 

members. At the beginning of every time step, which represents one year of time, the community 

faces a stochastic risk of experiencing an environmental shock based on a pre-defined 

probability. In this case, the annual probability of an environmental shock is set to 0.2. If the 

environmental shock takes place, a specified fraction of households in the community (initialized 

at the onset of a model run as the community impact factor) will be directly impacted, resulting 

in loss of agricultural yields and wealth gained on any land owned.  

 Next, individuals who are eligible to migrate (males over the age of 14) assess their 

employment opportunities within the community. Individuals in households that own large 

amounts of land may work in agriculture on their own land. Individuals in households without 

sufficient land or that have lost crops to environmental shocks may seek agricultural 
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employment. Households with sufficient land and wealth, which have not lost crops to shocks 

may seek to hire laborers. In this case, households that are looking to hire agricultural labor may 

enter an internal labor market. Individuals who are looking for employment may also enter this 

labor market and attempt to be “hired” by a searching household. The labor market uses a 

simultaneous double auction approach to match joke seekers with possible employers based on 

what salary individuals are willing to accept and what households are willing to pay. Individuals 

who are unable to obtain agricultural employment may seek other employment within the 

community. A specified number of jobs are classified as “skilled” and pay more than unskilled 

non-agricultural jobs. At the end of the double auction, some individuals may be left without 

employment in either agriculture or non-agriculture. 

Once all individuals have found or attempted to find employment, each household 

conducts a calculation of its expected wealth, based on all individuals’ expected salaries from 

their employment. After the household aggregates the total utility of its members, it then decides 

as a household whether to send a migrant to seek employment outside the community. The 

model does not account for different possible destinations but treats migration generically as an 

economic opportunity outside the community. Each household has a DecisionMethod object 

(Figure 2.1), which provides a function that implements the decision. In my initial 

implementation described in this chapter, all households decide to migrate by maximizing their 

expected utility, but the model allows for alternate decision heuristics, which can vary from 

household to household.  

 If a household elects to send a migrant, then that individual no longer participates in the 

community but contributes to the household’s wealth by sending remittances from his destination 

at each future time-step. Each household then updates its wealth, each individual ages by one 
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year, and the time-step ends. The wealth at the end of time-step, t, is the wealth at the previous 

time-step, t-1, plus the wages of all employed members, plus any income from land that is not 

affected by environmental shocks, minus any expenses and payments to employees:  

 

Wealtht = Wealtht-1+∑ (Wagesi,t) + LandProductivityt	- 
individuals
i=1 Expensest -∑ Paymente,t

employees
e=1      

              (Eqn. 2.1) 

 

Figure 2.2 shows an overview of the model scheduling for each step. This process 

repeats for a specified number of steps (years). 

 

 

Figure 2.2: Scheduling of each step of the model for community, individual, and household 
entities. 
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2.3.3  Migration Decision 

Agent decision rules are critically important to ABMs. Decision rules in ABMs of 

migration have varied from minimalist processes, such as random Bernoulli processes, to simple 

expected utility maximization, to heuristics with intermediate complexity, to representations of 

more complex strategic and behavioral theories (Klabunde and Willekens 2016; Thober et al. 

2018). In my initial model presented here, households make migration decisions to maximize 

expected annual income. When the method of decision-making in the ABM is “utility”, then a 

simple utility maximization approach is used. The premise behind this economic approach is that 

a household will decide to send a migrant if the decision is economically beneficial. A purely 

economic model provides one plausible explanation for the observed migration patterns and 

serves as a baseline for assessing whether a simple economic decision heuristic can reproduce 

those patterns. I have designed the model to serve as a testbed for comparing different decision 

heuristics in future research. 

At the point of decision-making, each household randomly selects an eligible migrant 

from its members. Eligible migrants are any male individual over the age of 14.  The household 

then assesses whether that individual’s migration would result in a greater income, compared to 

the individual’s potential employment within the community. At this stage of the model, the 

migration decision is a simple binary. The household will elect to send a migrant if it is 

economically beneficial for the household as a whole (meaning that the benefit of migrating is 

greater than the individual’s salary within the community). If the migration will increase 

household economic utility (expected wealth) and the household has sufficient funds to meet the 

cost of sending a migrant, then that individual with successfully “migrate” from the origin 

community. After a successful migration decision, a household subtracts the cost of migration 
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from its wealth, and the “migrant” individual agent will only contribute to the model by 

contributing its income representing remittances at each subsequent step.  

 

2.4 Results 

2.4.1 Calibration of Uncertain Parameters 

 I was unable to find sufficient data for estimates of the cost of migration and the 

migration utility parameters in the model, both of which are critically important for the migration 

decision. To calibrate these parameters, I used a pattern-oriented approach to calibration (Grimm 

et al. 1996; Grimm et al. 2005). I begin by using a Latin hypercube sampling approach, which 

efficiently samples a parameter space while ensuring that all portions of the space are sampled, 

to select 100 unique parameter combinations of cost of migration and migration utility across the 

uncertain parameter space (Stein 1987; Loh 1996; Mckay et al. 2000). I then conduct simulations 

with the ABM using each of these sampled combinations of parameters. Each unique parameter 

combination is run with the ABM 100 times across a range of community impact factors from 0 

to 1 (0, 0.05, 0.1, 0.2, 0.4, 0.6, 0.8, and 1). Each simulation uses 20 steps (representing 20 years 

of time) in a simulated community of 700 individuals and 100 households. I can therefore 

compare the output of the model run with each combination of parameters to my definitions of 

the community pattern and household pattern. The criteria for matching the community pattern 

are that the minimum average number of migrations occurs above a community impact of 0 

while the maximum average number of migrations occurs above the community impact level at 

which the minimum number of migrations occurs. This operationalization therefore captures the 

initial decline followed by increase in migrations as the level of community impacted by the 
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environmental shock increases. The criterion for matching Pattern 2 is that non-migratory 

households are directly affected by more environmental shocks than migratory households.  

Whether or not the parameter combination successfully reproduces both patterns 

simultaneously is then translating into a binary variable (0 or 1) of “success”. Therefore, I can 

construct a dataset for further analysis that includes each parameter combination and a measure 

of successful pattern reproduction. I then identified regions of parameter space in which the 

patterns were satisfied by fitting support vector regression models (SVM) with radial kernels to 

the data using the Latin Hypercube samples of the migration utility and the cost of migration 

parameters as inputs and the binary indicator of successfully reproducing the pattern as the 

outcome variable (for Pattern 1 and Pattern 2). These SVM models predict the success of pattern 

reproduction across the whole parameter space (Figure 2.3a,b). I was then able to identify where 

these parameter spaces overlap, representing the area that I would expect to successfully 

reproduce both patterns (Figure 2.3c). Overall, 18% of the parameter combinations reproduced 

Pattern 1, while 27% reproduced Pattern 2. The difficulty of matching both patterns 

simultaneously is due both to the greater difficulty of matching Pattern 1 and to the lack of 

overlap between the regions of parameter space that are favorable to Pattern 1 and those 

favorable to Pattern 2. 
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Figure 2.3: Parameter combinations of migration utility and migration threshold and SVM 
predicted successes of the parameter space for Pattern 1 (a), and Pattern 2 (b). Overlap between 
the predicted spaces (a) and (b) is plotted with the successes of simultaneously reproducing both 
patterns (c). Points show parameter combinations sampled in the numerical experiments with 
green points indicating successful pattern replications and orange points indicating failed pattern 
replications. Colors show SVM predictions where green represents predicted success and orange 
represents failure. The unshaded region of (c) represents a region in which neither pattern was 
replicated. 
 
 
2.4.2 Pattern Replication 

I then ran the model 960 times using a combination of parameter values from the 

overlapping space for both patterns for which both patterns are predicted to be reproduced well 

(Figure 2.3c), in order to study the model output in greater detail. I used a migration cost of 

835,000 BDT (approximately 9,800 USD) and a migration utility of  47,250 BDT 

(approximately 560 USD), which successfully reproduced both patterns in calibration. I ran 120 

batches of simulations, where each batch ran the at varying levels of community environmental 

impact between 0 (no impact) and 1 (the entire community is impacted). Of these 120 batches, I 

aggregate the results to assess the patterns. 
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Figure 2.4: Model results of number of migrations in the community by varying levels of 
community impact. The black lines represent the mean of 120 model runs for each community 
impact factor, and the gray band represents the 95% confidence interval for the mean. 
 

 Figure 2.4 shows the average number of migrations within the community for different 

levels of community impact. The nonlinear dimension of Pattern 1 is apparent, with a decline in 

migration occurring as community impact factor increases, followed by an increase in migration 

after an impact factor of 0.6, consistent with my operationalization of Pattern 1 (Figure 2.4). The 

threshold effect is apparent, though it occurs at higher levels of community impact than 

predicted.  

 To explore Pattern 2, I compared households that had migrated during the model run with 

those that had not and counted how many times each household was directly impacted by an 

environmental shock (Figure 2.5).  Here, I observed Pattern 2 at levels of community impact 

above 0.4. For a community impact factor of 1.0, there are no unaffected households, so I cannot 

test for Pattern 2. When aggregated across all runs and levels of community impact, Pattern 2 is 

confirmed: migratory households are impacted an average of 1.41 times with a standard error of 
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0.012, while nonmigratory households are impacted an average of 1.60 times with a standard 

error of 0.007, and a chi-squared test finds the difference significant with p < 0.0005.  

 

 
Figure 2.5: Households are divided into those that have migrated (1, blue) and those that have 
not (0, red). The mean number of times a household was impacted directly by an environmental 
shock across all 120 trials is plotted with error bars indicating 95% confidence intervals of the 
mean. For community impact factors above 0.4, Pattern 2 is reproduced: non-migratory 
households were impacted by more environmental shocks than migratory households were. 
 

These runs confirmed that both patterns were reproduced, but only some aspects of 

Pattern 1 were reproduced. Some of the variation can be attributed to the inherent stochasticity in 

the model at initialization, in the timing of environmental shocks, and in determining which 

households are impacted. This also reflects the inconsistency in reproducing Pattern 1 and the 

narrow range of parameter space in which both patterns could be reproduced simultaneously.   

 

 

 



 38 

2.4.3 Exploration of Land Distribution 

Upon learning that the model was not reliably reproducing my patterns of interest, I 

elected to run the model with a different distribution of land ownership within the modeled 

community. For this version of the model, the distribution of land ownership was parameterized 

as a Lomax distribution rather than lognormal, as a Lomax distribution fits the survey data well 

and has been demonstrated as a useful distribution for describing wealth (Lorenz 1905). The 

single parameter (𝛼) (NumPy 2021) for defining the Lomax distribution of land ownership was 

taken based on a Gini coefficient calculated from previous survey data from southwestern 

Bangladesh (Carrico and Donato 2019) where 

𝛼 = 	 !
"
	%!#$%&%

$%&%
&     (Eqn. 2.2). 

The empirically observed Gini coefficient of land ownership was found to be 0.55. For reference, 

the national-level Gini index for Bangladeshi income is 0.32, indicating that communities in the 

study area experience far more unequal distribution of land ownership than income distribution 

in the country as a whole (The World Bank 2022). In addition to changing the land distribution, I 

decreased the number of agricultural jobs within the community by a factor of 5 from previous 

model results. In this updated distribution of land ownership and agricultural job availability, 

only those households with a higher amount of land owned may elect to hire workers, thus 

limiting the livelihood opportunities that individuals may seek in the model community.  

To assess the community pattern of interest for this version of the model with the updated 

land distribution, I again visualize the results of total migrations at varying levels of community 

impact factor (Figure 2.6). These results include all 150 sampled combinations of uncertain 

parameters, each run 100 times at every level of community impact factor. 95% confidence 
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intervals around the mean of all 15,000 model runs are shown in gray. I also see that Pattern 2 is 

clearly reproduced at community impact factors about 0.4 (Figure 2.7).  

 

 
 
Figure 2.6: Model results based on number of migrations in the community by varying levels of 
community impact with a Lomax distribution of land ownership. The black lines represent the 
mean of 150 model runs for each community impact factor and sampled combination of 
migration utility and cost. The gray band represents the 95% confidence interval for the mean. 
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Figure 2.7: For utility maximization results, households are divided into those that have 
migrated (1, blue) and those that have not (0, red). The mean number of times a household was 
impacted directly by an environmental shock across all trials is plotted with error bars indicating 
95% confidence intervals of the mean. For community impact factors above 0.4, Pattern 2 is 
reproduced: non-migratory households were impacted by more environmental shocks than 
migratory households were. 

 

Again, cost of migration and utility of migration (both in BDT) are uncertain parameters 

that require calibration. For utility maximization with a Gini coefficient of 0.55, 80% of the 150 

parameter combinations were able to successfully reproduce the patterns of interest. Results of 

the SVM predicted parameter space are shown in Figure 2.8. These results highlight that the 

model is now largely insensitive to the cost of migration, while the migration utility is 

successfully able to reliably reproduce the patterns of interest only below approximately 50,000 

BDT (Figure 2.8). This suggests that, when land ownership in the modeled community is 

initialized with an appropriate distribution the utility maximization does very well at reproducing 

the patterns of interest across a broad range of parameter values. It is worth noting that these 

costs of migration are very high. One possible explanation is that the cost of migrating may 
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incorporate financial cost as well as psychological costs of migration such as leaving one’s home 

and family.  

 
Figure 2.8: Parameter combinations of migration utility and migration threshold with a utility 
maximization decision method and SVM predicted successes of the parameter space for both 
patterns of interest. Points show parameter combinations sampled in the numerical experiments 
with green points indicating successful pattern replications and orange points indicating failed 
pattern replications. Colors show SVM predictions where green represents predicted success and 
orange represents failure.  
 

As a sensitivity on the value of Gini coefficient of land distribution, I repeated the model 

experiments for a Gini coefficient of 0.25 and 0.75. With the utility maximization method, a Gini 

coefficient of 0.25, representing less inequality in land distribution, was only able to reproduce 

the patterns of interest across 40% of the parameter combinations, while a Gini coefficient of 

0.75 had an 80% success rate. Furthermore, the shape of migrations across levels of community 

impact factor is impacted by the Gini coefficient, with model runs with a Gini coefficient of 0.25 

no longer showing an initial decline in migrations followed by an increase representative of the 

non-linear nature of the community pattern (Figure 2.9).  
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Figure 2.9: Model results based on utility maximization decision method of number of 
migrations in the community by varying levels of community impact and for a Gini coefficient 
on land distribution of 0.25 (top) and 0.75 (bottom). The black lines represent the mean of all 
trials. The gray band represents the 95% confidence interval for the mean. 
 

2.5 Discussion 

My model incorporates individual, household, and community-level variables and 

dynamics in order to simulate environmental migration. The model is parameterized based on 

available data from Bangladesh (Carrico and Donato 2019; Adams et al. 2016). The uncertain 

parameters of cost of migration and migration utility (benefit to migrate) are calibrated using a 

pattern-oriented approach with Latin Hypercube sampling combined with SVM regressions in 
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order to assess the parameter space (Figure 2.3). Thus, I demonstrate a novel application of 

machine learning to model parameterization and calibration.  

 Results from the initial version of the model using a lognormal distribution of land 

ownership show that the model is able to reproduce both patterns with varying rates of success. 

Pattern 2 is reproduced with a high rate of success across the bottom half of the parameter space 

(Figure 2.3b). In contrast, Pattern 1 was only reproduced inconsistently, and primarily in the 

upper half of the parameter space (Figure 2.3a). While the majority of model runs with varying 

parameter combinations were able to reproduce an increase in migration with increasing scale of 

environmental impact, the initial decline in migration followed by an increase at an 

approximately 20% threshold was more difficult to reproduce, which could indicate that the 

processes that generate the non-linear aspects of Pattern 1 are less fully captured within the 

current model dynamics. This resulted in a narrow range of parameter combinations that were 

able to successfully reproduce both patterns simultaneously (Figure 2.3c). The high costs of 

migration that the model predicts may indicate that the patterns are generated when economic 

opportunities within a community are depleted so much that even high costs to migrate may be 

worthwhile for households looking for economic opportunity elsewhere. 

 Despite the lower frequency of success in reproducing the details of Pattern 1, the 

nonlinear dynamics of the pattern are apparent, even with the lognormal distribution of land 

(Figure 2.4). Pattern 2 is reproduced consistently for aggregated model runs, and when 

disaggregated by community impact factor, I find that this pattern appears only for community 

impact factors of 0.4 and above and becomes stronger for larger impact factors (Figure 2.5). 

However, when I change the model so that land ownership is initialized using a Lomax 

distribution and empirically-derived Gini coefficient, the model performs very well at 
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reproducing the patterns of interest across a wide range of parameter combinations (Figures 2.6, 

2.7, 2.8). For the community-level pattern of interest, I see that the overall aggregated model 

runs using the utility maximization method converge narrowly and demonstrate the nonlinear 

element of this pattern. I also see that, for this method, the threshold of scale of the community 

impacted by an environmental event above which migrations begin to increase is at 

approximately 20% (0.2), as expected based on the pattern definition (Figure 2.6). The utility 

maximization method results show that the household-level pattern in which households that are 

impacted directly by an environmental shock are less likely to migrate, is also reproduced at 

levels of community impact above 40% (Figure 2.7). Overall, 80% of the total 150 unique 

parameter combinations of migration cost and migration utility were able to successfully 

reproduce both patterns of interest simultaneously. Evaluation of the parameter space using a 

radial SVM method shows that this decision-method is insensitive to migration cost in the 

sampled parameter space and largely insensitive to migration benefit in the parameter space less 

than approximately 50,000 BDT (Figure 2.8).  

 Interestingly, I also find that the model performance is sensitive to the Gini coefficient 

used to define the Lomax distribution of land ownership. I see that model performance remains 

high when higher levels of community inequality (Gini index of 0.75) but declines in successful 

pattern replication at lower levels of inequality (Gini index of 0.25) (Figure 2.9). This non-

intuitive finding highlights the importance of land and wealth distribution in the shape of the 

migration outcomes, where high levels of inequality within the community yield the patterns of 

interest. These results show that, with the proper land distribution, the utility maximization 

method reproduced the patterns across the majority (80%) of the parameter space sampled. This 

suggests that the phenomena that generate the empirical patterns of interest (the underlying 
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processes that produce the patterns of migration found by Gray and Mueller 2012 in rural 

Bangladesh) are captured in the model structure and utility maximization design. In other words, 

the patterns are insensitive to the values of uncertain parameters and inseparable from the ABM 

structure, governed by livelihood choices and an internal labor market. 

 

2.6  Conclusions 

I developed an ABM that simulates environmental migration through the impacts of 

environmental shocks on local labor markets. I used a pattern-oriented approach to calibrating 

and testing the model based on two patterns of interest in the empirical literature. Pattern 1 

captures the dynamics of nonlinear interactions between household and community-level 

phenomena, with a pronounced threshold of community-impact above which out-migration 

increases. Pattern 2, in contrast, captures household level dynamics, with households that have 

not been directly affected by an environmental shock migrating more than households that have 

been directly affected.  

 The simple economic model successfully reproduced these patterns with high consistency 

when the proper land distribution is used. Despite this finding, it is known that decisions to 

migrate away from one’s home village involve far more than economic considerations. There is 

great hedonic value in connections to one’s home community (Mallick and Schanze 2020) and it 

is also well-known that more generally, considerations such as risk- or loss-aversion and social 

norms can powerfully influence responses to hazards and opportunities (Beckage et al. 2020; 

Gilligan 2018; Laciana et al. 2007). Social networks also appear to play important roles in 

migration decisions (Till et al. 2018; Hunter et al. 2015; Thober et al. 2018). Thus, a purely 

economic model of decision-making around migration might not be sufficient to reproduce the 
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details of actual human behavior and it is notable that this simple model performs as well as it 

does. My model does not attempt to capture psychological and sociological aspects of decision-

making. In the following chapter, I will investigate more complex decision heuristics. 

 I designed this model to work as a test bed for comparing different decision be flexible, 

so new capabilities can be added easily and without disrupting the base structure and scheduling. 

In addition to incorporating richer decision rules, future work will also investigate the impacts of 

future scenarios of environmental and climatic change. In the coming decades, growing 

environmental stress and accelerating change will make it increasingly important to understand 

how environmental change interacts with population mobility, ABMs have the potential to 

provide insights into these complex processes.  
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CHAPTER 3 

 

Psychological models of decision-making in an agent-based model of environmental 

migration 

  

Abstract 

Environmental migration is an example of a complex coupled human and natural system with 

dynamics that operate across multiple spatial and temporal scales. Agent-based modeling (ABM) 

has demonstrated potential for studying such complex systems, especially where individual 

decision-making is an important component. In this work, I use an original ABM of 

environmental shocks, livelihood opportunities, and migration decisions to study dynamics of 

environmental migration in rural Bangladesh. I present results using a behaviorally complex 

method based on the Theory of Planned Behavior. I hypothesized that a more behaviorally 

complex decision method which incorporates social networks and community norms would more 

successfully reproduce the patterns of migration. However, using a pattern-oriented approach to 

reproduce two key patterns of migration from the empirical literature, I demonstrate that the 

psychologically motivated decision-making method is less consistently able to reproduce the 

patterns of interest compared to a simple economic method. Despite this, the level of community 

inequality in distribution of land ownership remains critically important for patterns of migration 

outcomes. In this way, my model suggests that community-level inequality has significant 

implications for migration in the study area.   
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3.1  Introduction 

 As climate change and environmental degradation place increased pressure on 

populations around the world, critical questions remain related to how such environmental stress 

may influence human migration decisions. Migration is a complex phenomenon influenced by 

many social, political, and cultural factors in addition to environmental conditions (Hunter 2005; 

Black et al. 2011b). With this complexity, it is unclear how environmental change interacts with 

migration and mobility in different contexts (Boas et al. 2019). To study the interactions between 

environmental change and human migration decisions, environmental migration may be 

considered as an example of a complexed coupled human and natural system, with aspects that 

operate across multiple spatial and temporal scales (Liu et al. 2007).  

 While many studies of environmental migration rely on empirical correlations between 

environmental or climatic conditions and rates of human migration, agent-based modeling 

(ABM) has become a potentially useful tool for simulating the dynamics and linkages within a 

coupled human and natural system that govern environmental migration (Thober et al. 2018). As 

previously described, ABM is a kind of modeling that simulates dynamics between individual 

actors (or agents) and their environment (Railsback 2019). A strength of ABMs is their ability to 

highlight how the combination of individual actions can generate non-intuitive collective 

behavior at the system level, known as emergence. This makes them a useful tool for studying 

environmental migration and understanding how large-scale migration outcomes may emerge 

from individual behaviors (Thober et al. 2018). ABMs also allow for a detailed and deliberate 

incorporation of decision-making rules into the model (DeAngelis and Diaz 2019).  

ABMs of migration and environmental migration use a wide range of decision-making 

methods from simple probability distributions to complex behavioral models informed by 
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psychology (Klabunde and Willekens 2016). There also exists a tension in modeling of coupled 

human and natural systems between the idea of “keep it simple stupid” (KISS) and “enhancing 

the realism of simulation” (EROS) (Jager 2017; Schlüter et al. 2017). It is not always clear, 

especially when simulating human behavior, how much complexity is needed in a model. 

Additionally, there are challenges related to operationalizing behavioral theories including 

uncertainty surrounding how to translate theoretical concepts into code (Ernst 2010; Jager 2017; 

Muelder and Filatova 2018). 

Due to combined environmental and population pressures, Bangladesh is widely 

considered to be one of the most climate-vulnerable countries in the world. In addition, many 

citizens of Bangladesh, especially in rural communities, rely on agriculture for livelihood 

(Ackerly et al. 2015; Tessler et al. 2015). People in Bangladesh are highly mobile, and internal 

migration, especially seasonally from rural to urban locations for livelihood diversification, is not 

uncommon (Khandker 2012; Martin et al. 2014; Lu et al. 2016; Alam et al. 2017). In this way, 

migration can serve as a way for Bangladeshis to adapt to changes in their natural environment 

as well as seek livelihood opportunities (Black et al. 2005). In this dynamic, complex setting, it is 

unclear how future climate change and environmental pressure may impact mobility in 

Bangladesh. The unique combined environmental and human conditions as well as existing 

patterns of mobility in Bangladesh make it a useful area for studying environmental migration.  

 In this work, I am interested in studying the dynamics of internal migration from rural 

communities in Bangladesh impacted by an environmental shock that impacts agricultural 

livelihoods, such as drought. I present results from my original ABM designed and validated 

using a pattern-oriented approach, as described in Chapter 2. In this expansion of the model, I 

present results using a behaviorally complex method of migration decision-making based on the 
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Theory of Planned Behavior (TPB). I then use machine learning to calibrate and evaluate the 

effectiveness of each decision-making method in reproducing the patterns used for the pattern-

oriented approach. Based on the known complexity of migration decisions, I hypothesize that the 

decision-making method based on the behavioral psychology TPB will successfully reproduce 

empirical patterns of environmental migration in rural Bangladesh.  

 

3.2 Background: Decision-Making in ABMs  

As mentioned previously, agent-based modeling (ABM) has been demonstrated as a 

useful tool for studying environmental migration. Simulation models such as ABMs can address 

gaps in current understanding by explicitly modeling the linkages and feedbacks between the 

social and environmental systems (Thober et al. 2018). Yet, in ABMs, agent decision-making 

rules are critically important to the overall model behavior. In ABMs of migration, decision-

making has varied from simple numerical models, to heuristics, to more complex behavioral 

theory (Klabunde and Willekens 2016). A review of decision-making rules in ABMs of 

migration highlighted several suggestions for decision rules, including that the rules should be 

based in decision theory as well as empirical evidence (Klabunde and Willekens 2016). 

Generally, behavioral models of migration posit that a potential migrant will choose to migrate if 

the move provides an expected benefit such as economic utility or risk reduction and the barriers 

to migrating are not insurmountably high (Klabunde and Willekens 2016). Within this 

framework, the decision-making itself may be further complicated by the inclusion of values and 

norms, network influences, and cognitive processes. This review found that the two most 

common methods for decision-making within ABMs of migration were utility-based methods 
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and methods based on the Theory of Planned Behavior (TPB) (Klabunde and Willekens 2016). 

Based on this finding, I elect to implement both methods in my model.  

Simpler behavioral models of migration may use a purely economic method of decision-

making, such as a utility maximization function. Klabunde and Willekends (2016) refer to these 

models as “microeconomic expected utility maximization” (2016). They offer an example of a 

model of migration from East to West Germany based on an expected utility (Heiland 2011). 

Agents in this simulation make the decision to migrate based on employment opportunities in the 

destination location. Several other models in Klabunde and Willekens’ review (2016) depend on 

a function to maximize utility in the form of income, social capital, or expected income (Silveira 

et al. 2006; Biondo et al. 2012).   

Klabunde and Willekens also review what they call “psycho-social and cognitive 

models” of migration decision-making in ABMs, which they use to include models that 

incorporate theories from social and behavioral psychology (2016). A commonly used example 

is the Theory of Planned Behavior (TPB). TPB is a popular behavioral theory in which decisions 

are influenced by agent attitudes towards a behavior, community norms, and agent perceived 

control over the success of the behavior (Ajzen 1991, 2002). These three aspects are then 

weighed and integrated to estimate the behavior intention, or likelihood of an agent acting on the 

behavior. This decision-making theory has been employed by Kniveton et al. in their ABM of 

migration under drought conditions in Burkina Faso (2011). More recently, TPB, drawing upon 

Kniveton et al. (2011) was employed in an ABM of migration and changing demographics in the 

Maldives (Speelman et al. 2021). This theory is of interest because it incorporates multiple levels 

of influence on the agent decision, including community dynamics and individual perceptions.  
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It is often unclear what level of behavioral complexity is necessary in ABMs of 

environmental migration, though the methods used can be critical for model output and insights 

gained from the model. In the literature, there exists a tension between those who argue for the 

simplest methods possible (“keep it simple stupid”) and those who argue that models of human 

behavior must include as much cognitive complexity as possible to more fully capture necessary 

dynamics (“enhancing the realism of simulation”) (Jager 2017). Ultimately, such decisions and 

assumptions are determined by the modeler, and the appropriate level of behavioral complexity 

likely depends on the specific modeling objective.   

Beyond the model presented here and in previous work, there are two known examples of 

agent-based models to study environmental migration in Bangladesh. The models use very 

different decision-making methods, with Hassani-Mahmooei and Parris (2012) using decision 

heuristics to determine migration based on previous studies and survey results (Hassani-

Mahmooei and Parris 2012). In the second ABM in this context, Bell et al. use more complex 

decision-making that includes individual consideration of place-attachment and environmental 

risk perceptions (Bell et al. 2021). Further highlighting the importance of decision-making 

assumptions in these ABMs, these two models come to almost opposite conclusions, with 

Hassani-Mahmooei and Parris predicting significant future migration away from coastal regions 

of Bangladesh, and Bell et al. projecting in-migration towards coastal areas even under future 

sea-level rise scenarios.  
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3.3 Methods  

3.3.1 Model Structure and Scheduling 

My ABM, which was first presented in Chapter 2 of this dissertation, uses a multi-scalar 

approach to simulating environmental migration by incorporating agents with characteristics and 

decision-making at the individual, household, and community level within a stylized origin 

community. Expanding the model from Chapter 2, I incorporate an additional decision-making 

method based on TPB (Figure 3.1). Global-level variables incorporated since the previous 

version of the model (Best et al. 2021) and expanding from Chapter 2 include:  

• Decision – Specified method for migration decision-making. Possible values include 

“utility” for utility maximization, “TPB” for Theory of Planned Behavior, and others.  

• Network type – Type of network structure for social networks within the community. 

Possible values include “preferential”, “random”, “small-world”, “fully-connected”, and 

“none”. At this stage, the network type is set to “small-world”.  

• Network size – The average number of other households that each household is connected 

to within the social network.  At this stage, the network size is set to 15.  

 

As with the previous version of the model, each model simulation is started by 

initializing the population of individuals, households, and the community. In this version of the 

model, at the point of the migration decision, the household then the specified decision-making 

method to decide whether to send an individual as a migrant. Each household has a 

DecisionMethod object (Figure 3.1), which provides a function that implements the decision 

based on either a utility maximization approach or TPB. 
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Figure 3.1: Class diagram of model entities with primary variables and operations. The decision 
method inherits different methods for household agents to make the decision to send a migrant or 
not. Currently, the decision may be based on a utility maximization (MaxUtility) or theory of 
planned behavior (TPB).   
 

3.3.2 Decision-making  

As described, agent decision-making rules are especially important within ABMs. 

Decision rules in ABMs of migration have varied from minimalist processes, such as random 

Bernoulli processes, to simple expected utility maximization, to heuristics with intermediate 

complexity, to representations of more complex strategic and behavioral theories (Klabunde and 

Willekens 2016; Thober et al. 2018). I have designed my ABM flexibly to allow for the modeler 

to specify and test multiple decision-making methods. In this work, I compare a simple economic 

method of migration decision-making with a more complex, behaviorally informed, method 
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based on the Theory of Planned Behavior (TPB). At the onset of the model run, the modeler may 

select which method households will use when making a migration decision. As there are 

multiple plausible methods by which migration decisions may be made, this flexible modeling 

approach is beneficial in that it does not limit model results and conclusions to a single approach. 

Other decision-making methods may be more useful for other research questions or 

implementation in different contexts, and this model allows for simple implementation.  

When the decision method in the ABM is set to “TPB”, the Theory of Planned Behavior 

option is used. In this implementation of the migration decision, the households draw upon the 

Theory of Planned Behavior in which the decision to migrate is based on a behavioral intent (I) 

informed by a combination of perceived behavioral control (PBC), behavioral attitudes (BA), and 

social norms (SN) where 

𝐼 = 𝑃𝐵𝐶 ∗ 𝐵𝐴 ∗ 𝑆𝑁     (Eqn. 3.1). 

PBC is a binary variable indicating the deciding household’s belief in their ability to successfully 

migrate if they decide to do so. In the model, PBC is based on behavioral control (BC). BC is 

calculated as a linear combination of a household’s own past experiences with migrating (0 or 1 

indicating whether a household has successfully previously sent a migrant), network experiences 

with migrating (0 or 1 indicating whether any other household within the deciding household’s 

network has successfully sent a migrant), and an asset rate based on the household’s wealth and 

the cost to migrate. 

The asset rate is calculated using a logistic function 

𝐴𝑠𝑠𝑒𝑡𝑅𝑎𝑡𝑒 = 	 !
!#	(!"#

     (Eqn. 3.2) 

where k is a scaling factor specified at model initialization and x is the fraction of a household’s 

wealth that would be necessary to migrate (i.e., meet the cost to migrate). Therefore,  
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𝑥 = )(*+,-$$./%01*,%2&_425,
)(*+,-$$

    (Eqn. 3.3). 

From these terms, BC is then calculated as  

𝐵𝐶 = 𝑤1 ∗ 𝐴𝑠𝑠𝑒𝑡𝑅𝑎𝑡𝑒 + 𝑤2 ∗ 𝑂𝑤𝑛𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝑤3 ∗ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 (Eqn. 3.4) 

where w1, w2, and w3 are the weights on each part of behavioral control and must sum to 1. 

These weights are initialized at the beginning of the model simulation and later calibrated using 

the pattern-oriented approach. PBC, which determines the behavioral intent (I) is then based on a 

random number being less than or equal to BC.  

 Behavioral attitude (BA) in Eqn. 3.2 is based on an individual migrant’s characteristics 

and how they related to that individual’s propensity to migrate as well as the perceived benefit to 

migrating. For propensity, a Maxwellian distribution is used with a peak parameter that is 

informed by the individual’s age and perceived benefit to migrate. The Maxwellian distribution 

is selected because of its flexibility and the ability to define a peak and shape of the distribution 

informed by empirical knowledge of migration behaviors. Perceived benefit of the migration is 

calculated using a utility calculation similar to that used in the utility maximization decision-

making method and assessing whether or not the migration would result in a net increase of 

wealth compared to the individual’s other employment option.  

Finally, social norms (SN) are based on the decisions of the household’s networked peers.  

SN serves as a scalar on overall behavioral intent I and is calculated by 

𝑆𝑁 = 1 +	#	77	/%01*,(8	%&	&(,)219
#	77	%&	&(,)219

    (Eqn. 3.5) 

The ultimate behavioral intent (I), as mentioned, is the product of PBC, BA, and SN. A random 

number is then drawn to determine if I translates into a successful migration decision (meaning 

that the household elects to send the migrant). Figure 3.2 clarifies the implementation of TPB in 

this model.  
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Figure 3.2: Schematic overview of components included in the Theory of Planned Behavior 
(TPB) method for households deciding whether to send a migrant. TPB combines behavioral 
attitudes, social norms, and perceived behavioral control to form a behavioral intent.  

 

 

3.3.3 Pattern-oriented Approach 

 To assess the model’s ability to capture relevant dynamics of environmental migration in 

the southwestern Bangladesh context, I elect to employ a pattern-oriented approach similar to the 

approach used in Chapter 2. Pattern-oriented modeling allows us to assess the ABMs ability to 

reproduce multiple patterns of interest that emerge from the complex dynamics being studied 

(Wiegand et al. 2003; Klügl and Karlsson 2009; Grimm and Railsback 2012). Here, I utilize the 

pattern-oriented approach to both calibration and validation of the model.  
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 As a reminder, I identify two patterns of interest related to internal migration from rural 

Bangladeshi villages influenced by a specific environmental shock of drought-induced crop 

failure (Gray and Mueller 2012). These patterns are: 

• Community pattern: As the proportion of a community impacted by environmental 

shock increases, rates of migration initially decrease below the baseline levels, but then 

increase, especially above a threshold where approximately 20% of the community is 

impacted. This shows that individual migration decisions are strongly influenced in a 

non-linear manner by community-level impacts. 

• Household pattern: Households that are directly impacted by environmental shock 

within the community are less likely to migrate. These households may not have the 

financial means to migrate after experiencing an environmental shock and resulting 

economic losses. 

 

This ABM aims to reproduce both patterns, which capture outcomes at both the 

community and household levels.  

 

3.3.4 Machine Learning for Model Calibration  

Similar to Chapter 2, I begin by using a Latin hypercube sampling approach to select 150 

unique parameter combinations across the uncertain parameter space. I then conduct simulations 

with my ABM using each of these sampled combinations of parameters. When calibrating the 

model using the TPB decision method, I have additional uncertain parameters beyond cost and 

utility of migration calibrated in Chapter 2. With TPB, cost of migration and utility of migration 

are still uncertain and require calibration. In addition, values of k (Eqn 3.3), as well as weights 
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on TPB components w1, w2, and w3 k (Eqn 3.5) where w1 + w2 + w3 = 1 are uncertain. While 

the general approach to calibration is the same, I therefore have five uncertain parameters to 

sample and calibrate simultaneously, rather than just two. Due to the higher dimensionality of the 

uncertain parameter space, I use a Patient Rule Induction Method (PRIM) rather than SVM. 

PRIM is a method used for “bump-hunting” or identifying regions of higher concentration of a 

certain outcome variable (Friedman and Fisher 1999; Nannings et al. 2008). This method allows 

us to identify areas in the explored TPB parameter space with high concentrations of “success” 

in reproducing both patterns of interest. The PRIM method is implemented using the 

supervisedPRIM package in R (Shaub 2016).  

 

3.4 Results  

3.4.1 Assessing Theory of Planned Behavior 

To assess the community pattern of interest, I visualize the results of total migrations at 

varying levels of community impact factor for the TPB decision method (Figure 3.3). For these 

model runs, I use a Gini coefficient of 0.55 estimated from empirical survey data for initializing 

the Lomax distribution of land ownership (Carrico and Donato 2019). These results include all 

150 sampled combinations of uncertain parameters, each run 100 times at every level of 

community impact factor. 95% confidence intervals around the mean of all 15,000 model runs 

are shown in gray. From these results, I see that TPB (Figure 3.3) shows an initial decrease in 

overall outmigration, followed by an increase as community impact factor increases. This is 

representative of the community pattern of interest.  
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Figure 3.3: Model results based on TPB decision method of number of migrations in the 
community by varying levels of community impact. The black lines represent the mean of all 
trials. The gray band represents the 95% confidence interval for the mean. 
 

 

To assess the household pattern, I divide households from each model run into those that 

have migrated at all and those that have not during the period of the run. I then compare the 

number of times that each household was directly impacted by an environmental shock across 

the migratory and non-migratory households and for each level of community impact factor. I 

show these results for the TPB (Figure 3.4). As previously described, a successful reproduction 

of the household pattern would be that non-migratory households are impacted by the 

environmental shocks more frequently than the migratory households. With TPB, the household 

pattern is not clearly reproduced across the majority of model runs, as there is little difference 

between migratory and non-migratory households (Figure 3.4).   
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Figure 3.4: For TPB results, households are divided into those that have migrated (1, blue) and 
those that have not (0, red). The mean number of times a household was impacted directly by an 
environmental shock across all 120 trials is plotted with error bars indicating 95% confidence 
intervals of the mean. Pattern 2 is not clearly reproduced. 

 

3.4.2 Evaluating Successful Parameter Space  

 Results reported thus far have included output from all model runs and uncertain 

parameter combinations. To assess the successful parameter combinations of the 150 

combinations tested, I aggregate the results of all the runs at each combination and evaluate them 

against the community pattern and household pattern criteria.  

For the TPB decision method, cost and utility of migration are uncertain parameters that 

require calibration, in addition to parameter k, and weights on the perceived behavioral control 

(BC) components. With TPB-based decision-making and a Gini coefficient of 0.55, only 33% of 

the 150 parameter combinations were able to successfully reproduce the patterns of interest. As 

the uncertain parameter space is five dimensions, it is more difficult to visualize the PRIM 

results. However, the PRIM predicts a box around the area of the parameter space where the 
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highest concentration of successful pattern reproduction occurs. The PRIM algorithm predicts 

this area of success in an area between 30,900 and 63,360 BDT for migration utility, between 

807,200 and 1,097,600 BDT for migration cost, between 3.15 and 17.94 for k, between 0.39 and 

1.0 for the weight on assets (w1), between 0 and 0.53 for the weight on the household’s own 

experience with migration (w2), and between 0 and 0.8 for weight on migration experience 

within the social network (w3) (Eqn. 3.4). 

I can then further evaluate the points in the parameter space that fall within the PRIM 

predicted area for successfully reproducing the migration patterns of interest. When I evaluate 

the points within the PRIM area, I see that these points occur when weight on assets (w1) is 

highest, with a mean of approximately 0.5, which w2 and w3 are smaller and both approximately 

0.25 (Figure 3.5).  

 

 
Figure 3.5: Distribution of weights on the components of behavioral control in the TPB 
decision-making method for parameter combinations that were predicted to successfully 
reproduce both migration patterns of interest. w1, which is the weight on the assets rate.  
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3.4.3 Importance of Land Distribution 

I repeated the model experiments for a Gini coefficient of 0.25 and 0.75. With the TPB 

method, a Gini coefficient of 0.25 was able to reproduce the patterns of interest across only 27% 

of the parameter combinations, while a Gini coefficient of 0.75 had a 33% success rate. Again, 

the shape of migrations across levels of community impact factor is significantly impacted by the 

Gini coefficient (Figure 3.6).  

 

 
Figure 3.6: Model results based on TPB decision method of number of migrations in the 
community by varying levels of community impact and for a Gini coefficient on land distribution 
of 0.25 (top) and 0.75 (bottom). The black lines represent the mean of all trials. The gray band 
represents the 95% confidence interval for the mean. 
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3.5  Discussion 

 In this work, I present results of my original ABM of environmental migration dynamics 

in rural Bangladesh and incorporate a psychological model of migration decision-making. 

Importantly, my model is designed to allow for flexibility in the decision-making method utilized 

by households to decide whether or not to send a migrant. With this flexible ABM, I can evaluate 

and compare decision-making, which makes the model a useful testbed for studying what factors 

and psychological processes dominate the emergence of known migration outcomes in the 

region. Here, I present model results using migration decision method based on TPB, a 

psychologically complex approach that incorporates knowledge-share across social networks and 

community norms.  

Compared to the utility maximization method first presented in Chapter 2, the TPB 

method shows a wider spread in migration outcomes, as indicated by the 95% confidence 

intervals (Figure 3.3). Still, in the aggregated results, I see the nonlinear dynamics of the 

community-level pattern, where migrations initially decline and then increase again as the scale 

of community impacted by the environmental shock increases. However, the threshold above 

which migrations increase is predicted at 10% (Figure 3.3). The household-level pattern is not 

clearly reproduced in the aggregated results of the TPB method, as there is not a discernable 

difference in the number of times migratory households were directly impacted by a shock as 

compared to non-migratory households (Figure 3.4). Overall, the TPB had a lower rate of 

success (33%) across the total 150 unique parameter combinations of migration cost, migration 

utility, shape parameter k, and TPB-related weights which were able to successfully reproduce 

both patterns of interest simultaneously. Evaluation of the parameter space using a PRIM 

algorithm is useful in identifying areas of higher density of successful pattern reproduction. From 
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this, I identify that the TPB is more successful in pattern reproduction when the weight on assets 

is significantly higher than weights on a household’s own past experiences and the past 

experiences of households within a social network (Figure 3.5). The weight on the asset rate 

incorporates household wealth and economics, suggesting that the TPB performs the best when 

economics dominate the behavioral control element.  

 Similar to the results of the utility maximization method presented in Chapter 2, with 

higher inequality (Gini coefficient = 0.75), I see that TPB model runs maintain their previous 

rates of successful pattern reproduction. However, the threshold of community impact scale 

above which migrations begin to increase is shifted higher compared to the initial runs (from 

10% to 60% for TPB) (Figures 3.3, 3.6). In contrast, less inequality in land ownership (Gini 

coefficient = 0.25) caused the success rate to decrease and lose the nonlinear element of the 

community-level pattern (Figures 3.6).  

While the model using TPB was able to reproduce the patterns of interest at various 

parameter combinations, the rate of success (33%) was much lower than that of the utility 

maximization method y (80%). Additionally, the results of the TPB model runs are more highly 

sensitive to specific parameter combinations. While I can use PRIM to identify the parameter 

ranges that are more likely reproduce the patterns, the results depend greatly on those values at 

model initialization. In this way, it seems as though the underlying phenomena that generate the 

patterns of migration are not inextricable from the model structure when TPB decision-making is 

used. In this case, the simpler model is more successful in capturing the dynamics of interest. 

Interestingly, the distribution of land ownership, specifically inequality in land ownership, were 

critical for model performance with both the simple economic model and the behaviorally 
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complex model. This finding suggests that future environmental migration research in the study 

area should pay close attention to economic inequality.  

 

3.6  Conclusions 

My initial hypothesis for this work was that the behaviorally complex TPB decision-

making method would more successfully reproduce the patterns of interest than a simple utility 

maximization method entirely dependent on economics. I developed this hypothesis due to the 

known complexity of migration decisions, including the importance of social networks and 

norms in influencing those decisions (Thober et al. 2018; Till et al. 2018a; Mallick and Schanze 

2020). While it remains true that individual migration decisions are personal and complex, my 

results indicate that a model based on TPB is no better able to capture the decision-making 

processes to reproduce emerging patterns. This suggests that, in this specific context of rural 

Bangladesh, behavioral psychology is not better than pure economics when considering the 

drivers of environmental migration. This finding is important and suggests that modelers should 

use caution when incorporating behavioral complexity into models, as such added complexity 

may be unnecessary and hinder performance.  

 This work also further allowed us to identify the distribution of inequality in land 

ownership as a critical parameter influencing migration outcomes. This was true for both the 

utility maximization and TPB decision-making methods, supporting the robustness of this 

finding. Previous empirical and theoretical work has identified household wealth as an important 

factor influencing a household’s ability to afford to send a migrant and ability to adapt in place 

after environmental change (Adams 2016; Mallick and Schanze 2020). However, this model 

identifies community-level inequality, not just individual household wealth as a critical factor for 
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migration outcomes. The idea that community-level inequality is an important influence on 

environmental migration from a community could have important policy implications for 

policymakers looking to support resilience in communities in the form of either migration or 

non-migration (McLeman et al. 2016). This finding may also direct future empirical work in 

which community-level inequality and migration are more thoroughly investigated.  

Finally, this work demonstrates the usefulness of a flexible ABM structure that can serve 

as a test bed for different decision-making methods rather than assuming a specific method, 

especially when an ABM is utilized for hypothesis testing. As more ABMs continue to 

incorporate behavioral psychology in decision-making, this flexibility is important. Some 

questions in certain contexts may be adequately modeled with simple decision rules, while others 

may be strengthened by behavioral complexity. This will vary across contexts and different kinds 

of coupled human and natural systems being investigated.   

 

3.7 References  

Ackerly, B.A., Anam, M.M., Gilligan, J., 2015. Environment, political economies and livelihood 

change, in: Mallick, B., Etzold, B. (Eds.), Environment, Migration and Adaptation: 

Evidence and Politics of Climate Change in Bangladesh. AH Development Publishing 

House (AHDPH), Dhaka, Bangladesh. 

Adams, H., 2016. Why populations persist: mobility, place attachment and climate change. Popul 

Environ 37, 429–448. https://doi.org/10.1007/s11111-015-0246-3 

Adams, H., Adger, W.N., Ahmad, S., Ahmed, A., Begum, D., Lázár, A.N., Matthews, Z., 

Rahman, M.M., Streatfield, P.K., 2016. Spatial and temporal dynamics of 



 75 

multidimensional well-being, livelihoods and ecosystem services in coastal Bangladesh. 

Scientific Data 3, 160094. https://doi.org/10.1038/sdata.2016.94 

Ajzen, I., 2002. Perceived Behavioral Control, Self-Efficacy, Locus of Control, and the Theory 

of Planned Behavior1. Journal of Applied Social Psychology 32, 665–683. 

https://doi.org/10.1111/j.1559-1816.2002.tb00236.x 

Ajzen, I., 1991. The theory of planned behavior. Organizational Behavior and Human Decision 

Processes, Theories of Cognitive Self-Regulation 50, 179–211. 

https://doi.org/10.1016/0749-5978(91)90020-T 

Alam, G.M.M., Alam, K., Mushtaq, S., 2017. Climate change perceptions and local adaptation 

strategies of hazard-prone rural households in Bangladesh. Climate Risk Management 17, 

52–63. https://doi.org/10.1016/j.crm.2017.06.006 

Assaduzzaman, M., Filatova, T., Coenen, F., Lovett, J., 2020. Freedom of choice to migrate: 

adaptation to climate change in Bangladesh. International Journal of Sustainable 

Development & World Ecology 27, 652–661. 

https://doi.org/10.1080/13504509.2020.1754959 

Bell, A.R., Wrathall, D.J., Mueller, V., Chen, J., Oppenheimer, M., Hauer, M., Adams, H.J., 

Kulp, S., Clark, P., Fussell, E., Magliocca, N., Xiao, T., Gilmore, E., Abel, K., Call, M., 

Slangen, A.B.A., 2021. Migration towards Bangladesh coastlines projected to increase 

with sea-level rise through 2100. Environ. Res. Lett. https://doi.org/10.1088/1748-

9326/abdc5b 

Bernzen, A., Jenkins, J.C., Braun, B., 2019. Climate Change-Induced Migration in Coastal 

Bangladesh? A Critical Assessment of Migration Drivers in Rural Households under 



 76 

Economic and Environmental Stress. Geosciences 9, 51. 

https://doi.org/10.3390/geosciences9010051 

Best, K.B., Gilligan, J.M., Baroud, H., Carrico, A.R., Donato, K.M., Ackerly, B.A., Mallick, B., 

2020. Random forest analysis of two household surveys can identify important predictors 

of migration in Bangladesh. J Comput Soc Sc. https://doi.org/10.1007/s42001-020-

00066-9 

Biondo, A.E., Pluchino, A., Rapisarda, A., 2012. Return Migration After Brain Drain: A 

Simulation Approach. JASSS 16, 11. 

Black, R., Adger, W.N., Arnell, N.W., Dercon, S., Geddes, A., Thomas, D., 2011. The effect of 

environmental change on human migration. Global Environmental Change 21, S3–S11. 

https://doi.org/10.1016/j.gloenvcha.2011.10.001 

Black, R., Natali, C., Skinner, J., 2005. Migration and inequality. World Bank Washington, DC. 

Boas, I., Farbotko, C., Adams, H., Sterly, H., Bush, S., van der Geest, K., Wiegel, H., Ashraf, H., 

Baldwin, A., Bettini, G., Blondin, S., de Bruijn, M., Durand-Delacre, D., Fröhlich, C., 

Gioli, G., Guaita, L., Hut, E., Jarawura, F.X., Lamers, M., Lietaer, S., Nash, S.L., Piguet, 

E., Rothe, D., Sakdapolrak, P., Smith, L., Tripathy Furlong, B., Turhan, E., Warner, J., 

Zickgraf, C., Black, R., Hulme, M., 2019. Climate migration myths. Nature Climate 

Change 9, 901–903. https://doi.org/10.1038/s41558-019-0633-3 

Carrico, A.R., Donato, K., 2019. Extreme weather and migration: evidence from Bangladesh. 

Popul Environ. https://doi.org/10.1007/s11111-019-00322-9 

DeAngelis, D.L., Diaz, S.G., 2019. Decision-Making in Agent-Based Modeling: A Current 

Review and Future Prospectus. Front. Ecol. Evol. 6. 

https://doi.org/10.3389/fevo.2018.00237 



 77 

Ernst, A., 2010. Social Simulation: A Method to Investigate Environmental Change from a 

Social Science Perspective, in: Gross, M., Heinrichs, H. (Eds.), Environmental 

Sociology. Springer Netherlands, Dordrecht, pp. 109–122. https://doi.org/10.1007/978-

90-481-8730-0_7 

Friedman, J.H., Fisher, N.I., 1999. Bump hunting in high-dimensional data. Statistics and 

Computing 9, 123–143. https://doi.org/10.1023/A:1008894516817 

Gray, C.L., Mueller, V., 2012. Natural disasters and population mobility in Bangladesh. 

Proceedings of the National Academy of Sciences 109, 6000–6005. 

https://doi.org/10.1073/pnas.1115944109 

Grimm, V., Berger, U., DeAngelis, D.L., Polhill, J.G., Giske, J., Railsback, S.F., 2010. The ODD 

protocol: A review and first update. Ecological Modelling 221, 2760–2768. 

https://doi.org/10.1016/j.ecolmodel.2010.08.019 

Grimm, V., Frank, K., Jeltsch, F., Brandl, R., Uchmański, J., Wissel, C., 1996. Pattern-oriented 

modelling in population ecology. Science of The Total Environment, Modelling in 

Environmental Studies 183, 151–166. https://doi.org/10.1016/0048-9697(95)04966-5 

Grimm, V., Railsback, S.F., 2012. Pattern-oriented modelling: a ‘multi-scope’ for predictive 

systems ecology. Philosophical Transactions of the Royal Society B: Biological Sciences 

367, 298–310. https://doi.org/10.1098/rstb.2011.0180 

Grimm, V., Railsback, S.F., Vincenot, C.E., Berger, U., Gallagher, C., DeAngelis, D.L., 

Edmonds, B., Ge, J., Giske, J., Groeneveld, J., Johnston, A.S.A., Milles, A., Nabe-

Nielsen, J., Polhill, J.G., Radchuk, V., Rohwäder, M.-S., Stillman, R.A., Thiele, J.C., 

Ayllón, D., 2020. The ODD Protocol for Describing Agent-Based and Other Simulation 



 78 

Models: A Second Update to Improve Clarity, Replication, and Structural Realism. 

JASSS 23, 7. 

Grimm, V., Revilla, E., Berger, U., Jeltsch, F., Mooij, W.M., Railsback, S.F., Thulke, H.-H., 

Weiner, J., Wiegand, T., DeAngelis, D.L., 2005. Pattern-Oriented Modeling of Agent-

Based Complex Systems: Lessons from Ecology. Science 310, 987–991. 

https://doi.org/10.1126/science.1116681 

Hassani-Mahmooei, B., Parris, B.W., 2012. Climate change and internal migration patterns in 

Bangladesh: an agent-based model. Environment and Development Economics 17, 763–

780. https://doi.org/10.1017/S1355770X12000290 

Heiland, F., 2011. The Collapse of the Berlin Wall: Simulating State-Level East to West German 

Migration Patterns. https://doi.org/10.1007/978-3-7908-2715-6_5 

Hunter, L.M., 2005. Migration and Environmental Hazards. Population and Environment 26, 

273–302. https://doi.org/10.1007/s11111-005-3343-x 

Jager, W., 2017. Enhancing the Realism of Simulation (EROS): On Implementing and 

Developing Psychological Theory in Social Simulation. JASSS 20, 14. 

Khandker, S.R., 2012. Seasonality of income and poverty in Bangladesh. Journal of 

Development Economics 97, 244–256. https://doi.org/10.1016/j.jdeveco.2011.05.001 

Klabunde, A., Willekens, F., 2016. Decision-Making in Agent-Based Models of Migration: State 

of the Art and Challenges. European Journal of Population 32, 73–97. 

https://doi.org/10.1007/s10680-015-9362-0 

Klügl, F., Karlsson, L., 2009. Towards Pattern-Oriented Design of Agent-Based Simulation 

Models, in: Braubach, L., van der Hoek, W., Petta, P., Pokahr, A. (Eds.), Multiagent 



 79 

System Technologies, Lecture Notes in Computer Science. Springer Berlin Heidelberg, 

pp. 41–53. 

Liu, J., Dietz, T., Carpenter, S.R., Folke, C., Alberti, M., Redman, C.L., Schneider, S.H., 

Ostrom, E., Pell, A.N., Lubchenco, J., Taylor, W.W., Ouyang, Z., Deadman, P., Kratz, T., 

Provencher, W., 2007. Coupled Human and Natural Systems. ambi 36, 639–649. 

https://doi.org/10.1579/0044-7447(2007)36[639:CHANS]2.0.CO;2 

Lu, X., Wrathall, D.J., Sundsøy, P.R., Nadiruzzaman, Md., Wetter, E., Iqbal, A., Qureshi, T., 

Tatem, A., Canright, G., Engø-Monsen, K., Bengtsson, L., 2016. Unveiling hidden 

migration and mobility patterns in climate stressed regions: A longitudinal study of six 

million anonymous mobile phone users in Bangladesh. Global Environmental Change 38, 

1–7. https://doi.org/10.1016/j.gloenvcha.2016.02.002 

Mallick, B., Schanze, J., 2020. Trapped or Voluntary? Non-Migration Despite Climate Risks. 

Sustainability 12, 4718. https://doi.org/10.3390/su12114718 

Martin, M., Billah, M., Siddiqui, T., Abrar, C., Black, R., Kniveton, D., 2014. Climate-related 

migration in rural Bangladesh: a behavioural model. Population and Environment 36, 85–

110. https://doi.org/10.1007/s11111-014-0207-2 

McLeman, R., Faist, T., Schade, J., 2016. Introduction: Environment, Migration, and 

Inequality—A Complex Dynamic, in: McLeman, R., Schade, J., Faist, T. (Eds.), 

Environmental Migration and Social Inequality, Advances in Global Change Research. 

Springer International Publishing, Cham, pp. 3–23. https://doi.org/10.1007/978-3-319-

25796-9_1 



 80 

Muelder, H., Filatova, T., 2018. One Theory - Many Formalizations: Testing Different Code 

Implementations of the Theory of Planned Behaviour in Energy Agent-Based Models. 

JASSS 21, 5. 

Nannings, B., Abu-Hanna, A., de Jonge, E., 2008. Applying PRIM (Patient Rule Induction 

Method) and logistic regression for selecting high-risk subgroups in very elderly ICU 

patients. International Journal of Medical Informatics 77, 272–279. 

https://doi.org/10.1016/j.ijmedinf.2007.06.007 

NumPy, 2021. numpy.random.pareto — NumPy v1.21 Manual [WWW Document]. URL 

https://numpy.org/doc/stable/reference/random/generated/numpy.random.pareto.html 

(accessed 12.7.21). 

Railsback, S.F., 2019. Agent-based and individual-based modeling: a practical introduction, 2nd 

edition. ed. Princeton University Press, Princeton, NJ. 

Schlüter, M., Baeza, A., Dressler, G., Frank, K., Groeneveld, J., Jager, W., Janssen, M.A., 

McAllister, R.R.J., Müller, B., Orach, K., Schwarz, N., Wijermans, N., 2017. A 

framework for mapping and comparing behavioural theories in models of social-

ecological systems. Ecological Economics 131, 21–35. 

https://doi.org/10.1016/j.ecolecon.2016.08.008 

Shaub, D., 2016. supervisedPRIM: Supervised Classification Learning and Prediction using 

Patient Rule Induction Method (PRIM). 

Silveira, J.J., Espindola, A.L., Penna, T.J.P., 2006. An agent-based model to rural-urban 

migration analysis. Physica A: Statistical Mechanics and its Applications 364, 445–456. 

https://doi.org/10.1016/j.physa.2005.08.055 



 81 

Speelman, L.H., Nicholls, R.J., Safra de Campos, R., 2021. The role of migration and 

demographic change in small island futures. Asian and Pacific Migration Journal 30, 

282–311. https://doi.org/10.1177/01171968211044082 

Tessler, Z.D., Vorosmarty, C.J., Grossberg, M., Gladkova, I., Aizenman, H., Syvitski, J.P.M., 

Foufoula-Georgiou, E., 2015. Profiling risk and sustainability in coastal deltas of the 

world. Science 349, 638–643. https://doi.org/10.1126/science.aab3574 

Thober, J., Schwarz, N., Hermans, K., 2018. Agent-based modeling of environment-migration 

linkages: a review. Ecology and Society 23. https://doi.org/10.5751/ES-10200-230241 

Till, C., Haverkamp, J., White, D., Bhaduri, B., 2018. Understanding climate-induced migration 

through computational modeling: A critical overview with guidance for future efforts. 

Journal of Defense Modeling & Simulation 15, 415–435. 

https://doi.org/10.1177/1548512916679038 

Wiegand, T., Jeltsch, F., Hanski, I., Grimm, V., 2003. Using pattern-oriented modeling for 

revealing hidden information: a key for reconciling ecological theory and application. 

Oikos 100, 209–222. https://doi.org/10.1034/j.1600-0706.2003.12027.x 

 

 

 
 
 
 

 

 

 

 



 82 

CHAPTER 4 

 

Social network size and typology do not significantly impact migration outcomes  

in agent-based model 

 

Abstract 

Social networks have been established as important for human migration decisions, including 

environmental migration. Despite this, few agent-based models of environmental migration 

include social network influences, and no known models that investigate the implications of 

social network size and typology. Here, I use an original agent-based model of environmental 

migration in Bangladesh to test the impacts of network size and shape on migration outcomes. 

The model uses a decision-making method based on the Theory of Planned Behavior and 

includes consideration of the behavior of other households within a network. With this model, I 

test several network typologies: fully connected, small-world, preferential, and random. I also 

test various network sizes. Model results show that, in this context, social network typology and 

size do not significantly change the shape of migration outcomes from the modeled community. 

Larger networks slightly increase the overall level of out-migration. Results suggest that the role 

of social networks in influencing environmental migration is context and model specific, but it 

remains important to consider in future ABM work.  
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4.1 Introduction 

Understanding information transfer through social networks and how that information 

impacts migration decisions has important implications for the study of human migration. This is 

especially true in the era of social media and increased information flows through widespread 

communication technologies such as smart phones (Boas, 2017). Previous research has 

established that social networks influence migration decisions (Black et al. 2011c; Hunter et al. 

2015). Social networks, especially connections with individuals living in a possible community 

of destination can increase the propensity of an individual to migrate by demonstrating 

feasibility, reducing risks, and increasing benefits of a move (Till et al., 2018). Such dynamics 

can help to explain chain migration, or movement in which migrants learn about opportunities 

through social relationships with previous migrants (MacDonald and MacDonald 1964).  

Despite the importance of social networks on migration, few agent-based models (ABM) 

of migration explicitly include social networks, which may be due to the complexity of modeling 

these networks (Thober et al. 2018). As part of the complexity of social networks, it is unclear 

how the typology and size of a network may influence migration decisions. ABMs of 

environmental migration may be especially useful for exploring such questions, as they can serve 

as a testbed to vary network effects and see how migration outcomes respond. This work utilizes 

the original ABM of migration, livelihood, and environmental shock in Bangladesh to test how 

network size and typology impact migration from a community when agents use a decision-

making method based on the Theory of Planned Behavior (TPB) and where social norms 

influence that decision.  
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4.2 Background 

4.2.1 Social Networks and Migration 

Social network analysis aims to understand the relationships between individuals based 

on social ties (Scott 2017; Bilecen et al. 2018; Bilecen and Lubbers 2021). In general network 

analysis, based on graph theory, a network consists of a set of nodes or vertices that may be 

connected by a number of edges (Krause et al. 2007). Information or resources may pass 

between nodes via edges. Social network theory has had a wide range of applications in 

behavioral science, psychology, sociology, biology, and more (Krause et al. 2007).  

Migration, whether environmentally influenced or not, is understood to be influenced by 

social networks (Bilecen and Lubbers 2021). For example, the body of research on “chain 

migration” uses, in part, social networks to explain how migration flows may be perpetuated 

(MacDonald and MacDonald 1964; Massey and España 1987; Massey 1990; Massey and Aysa-

Lastra 2011; Black et al. 2011b). But the effects of social networks on migration are not 

straightforward. Social network ties and strong community cohesion within an origin may work 

to inhibit migration, whereas social ties in a potential destination may facilitate migration and 

destination selection (Haug 2008; de Haas 2010; Till et al. 2018b; Mallick et al. 2021). Having 

social ties in a destination may migration to that destination more desirable due to the support 

that those ties may offer (Brooks and Waters 2010; Findlay 2011).  

In the case of environmental migration, social networks are also likely important for the 

migration decision. Especially as most environmental migration is shorter distance, the decision 

to move and the selection of a destination is likely to be strongly influenced by social network 

effects (Findlay 2011). Current or former migrants may pass information about migration 

experience through networks, potentially lowering the cognitive and emotional burden of 
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moving. In addition to information flows, migrants may transfer resources across networks. 

Remittances received from migrants in a destination can be very important for members of a 

network that remain in an origin, including for building adaptive capacity and resilience to 

environmental stress (Warner et al. 2010; Szabo et al. 2018). Despite the theoretical recognition 

of the importance of social networks in migration-studies, the majority of research in the area 

remains qualitative (Bilecen and Lubbers 2021).  

 

4.2.2 Social Networks in ABMs of Environmental Migration 

 As described, ABMs may be especially useful for studying environmental migration, 

including the role of social networks. In their review of 15 ABMs of environmental migration, 

Thober et al. consider the inclusion of social networks as one of their review criteria (2018). For 

their review, social networks are counted only if they are explicitly modeled social connections 

(including remittances and information exchange). Agents who compare their circumstances to 

those of other agents without explicitly modeled social linkages are not considered to be part of a 

social network (Thober et al. 2018). With this definition of modeled social networks, Thober et 

al. found only four existing ABMs of environmental migration that explicitly include social 

network effects (2018).  

In Berman et al.’s ABM of an arctic community in Old Crow, Yukon, social networks are 

included in that households can share hunting gear with other households in return for a fraction 

of the borrowing household’s harvest (2004). This exchange between households is meant to 

represent familial ties within the community, across which households will share resources. 

However, the networks are abstracted in the model, and households will select a random other 

household to share resources with (Berman et al. 2004). In this way, the social networks in this 
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model are implemented for resource exchange within the community rather than explicitly 

related to the migration decision.  

  For Naivinit et al.’s model of agriculture and labor migration in Thailand, social 

networks are included in the form of dependents that a household must care for (2010). The 

presence of dependents in a household impacts an individual’s decision to migrate and whether 

to migrate temporarily or permanently because the dependents require the care of a working 

household member (Naivinit et al. 2010). In this way, social ties within households are modeled 

as kinship ties. These kinship connections do impact the migration decision in that they may 

have a rooting effect on potential migrants who have familial obligations at home. However, this 

model does not include network interactions between households or any mention of network 

structures.  

 Smith includes a more complex representation of social networks in their model of 

migration and changes in rainfall in Tanzania (2014). Their model includes social influence 

across multiple levels including at the point of migration decision-making. In this model, agents 

representing farmers can share information and personal views about migration between both 

social and labor networks (Smith 2014). These social norms influence the agent decision-making 

process. In this way, the decision-making is dynamic and influenced by the experiences within 

the networks. In other words, the behavior of agents can influence the behavior of other 

networked agents in the future. While the networks effects here are more complex and directly 

integrated into the migration decision, networks are entirely random and other network structures 

are not explored (Smith 2014).  

 The fourth and final ABM that Thober et al. (2018) identify as including social networks 

is Kniveton et al.’s ABM of migration and changing climate in Burkina Faso (2011). This model, 
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similar to my model presented here, uses a migration decision-making method based on the 

Theory of Planned Behavior (TPB) (Kniveton et al. 2011b). In this model, agents move around 

an explicit environment and may exchange information about migration histories with other 

agents that they encounter. Similar to Smith (2014), agents may influence each other’s future 

decisions through information that they exchange and social influence. In the TPB based 

decision method, norms are also influenced by peer choices across a network. Again, the 

network structure is entirely random. Agents in this model are randomly connected to 50 other 

agents who they may exchange information and experiences with (Kniveton et al. 2011b).  

 As Thober et al. (2018) identified, very few ABMs of environmental migration include 

social networks and those that do vary in their complexity and how networks do or do not 

influence the migration decision. Of the four ABMs that include any kind of network influence, 

none test different network structures or systematically assess the influences of network typology 

and size. This work, therefore, begins to fill this gap in the literature by first implementing an 

explicit social network and then by exploring the role of network typology and size on migration 

outcomes.  

 

4.3 Methods 

4.3.1 Model Structure 

For this work, I use the original ABM of environmental migration which has been 

described in detail in this dissertation. The model is designed to incorporate multi-scalar 

(community, intra-household, household, and individual) influences on household migration 

decisions under differing levels of environmental stress within the community.  As previously 

described, each time step of the model represents one year of time, and the model is run for 20 
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steps for each experimental run. The model is built using an object-oriented approach in Python3 

with entities representing individuals, households, and the overall community. Each type of entity 

has unique attributes and behaviors (Best et al. 2021). For example, individuals have attributes of 

age, sex, and employment. Model runs may be designed at the global-level, where users provide 

initializing values including run time, number of individuals, number of households, decision-

method, and other specifications. For this work, the decision-method is set with a value of “TPB” 

to specify a Theory of Planned Behavior method. Importantly, the model also includes global 

variables to specify network typology and network size.  

 

4.3.2  Social Network Effects in Decision-making  

My ABM was designed to allow for maximum flexibility in agent decision-making 

processes. In this way, the modeler can specify at the start of a model run which method 

household agents will use to decide whether or not to send a migrant at any time step. My 

previous work demonstrated that a simple utility maximization decision-making method was 

successful in reproducing empirically based patterns of migration, even outperforming a more 

complex method based on Theory of Planned Behavior (TPB). However, the more complex, 

behaviorally informed TPB method allows us to investigate the impacts of social networks where 

the utility maximization method does not. For this reason, this stage of research focuses on the 

TPB method.  

When the decision method is set to “TPB”, consistent with the behavioral theory, the 

decision to migrate is based on a behavioral intent (I) informed by a combination of perceived 

behavioral control (PBC), behavioral attitudes (BA), and social norms (SN) (Ajzen 1991, 2002) 

where 
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𝐼 = 𝑃𝐵𝐶 ∗ 𝐵𝐴 ∗ 𝑆𝑁     (Eqn. 4.1). 

 Network influences come into play for both PBC and SN. PBC is a binary variable 

representing the household’s perceived ability to successfully migrate. Here, PBC is based on 

behavioral control (BC). BC is calculated as a linear combination of a household’s own past 

experiences with migrating (0 or 1 indicating whether a household has successfully previously 

sent a migrant), network experiences with migrating (0 or 1 indicating whether any other 

household within the deciding household’s network has successfully sent a migrant), and an asset 

rate based on the household’s wealth and the cost to migrate. From these terms, BC is then 

calculated as  

𝐵𝐶 = 𝑤1 ∗ 𝐴𝑠𝑠𝑒𝑡𝑅𝑎𝑡𝑒 + 𝑤2 ∗ 𝑂𝑤𝑛𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝑤3 ∗ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 (Eqn. 4.2) 

where w1, w2, and w3 are the weights on each part of behavioral control and must sum to 

1. These weights are initialized at the beginning of the model. I see, then, that w3 is the weight 

on the network effects. In previous stages of this analysis, I showed that empirically based 

patterns of environmental migration were more successfully reproduced when the highest weight 

was placed on economic assets (meaning that w1 was the highest weight). For this work, because 

I am more interested in the effects of social networks rather than pattern reproduction, I assign a 

higher value to w3, the weight given to social network experience. For these experiments, I set 

w3 to 0.7 and both w1 and w2 are set at 0.15.  PBC, which determines the behavioral intent (I) is 

then based on a random number being less than or equal to BC.   

Network effects also come into play in this model directly with the variable SN, which 

captures the amplifying effect of social norms. SN is based on the decisions of the household’s 

networked peers. SN is calculated by 

𝑆𝑁 = 1 +	#	77	/%01*,(8	%&	&(,)219
#	77	%&	&(,)219

    (Eqn. 4.3) 
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In this equation, #HH refers to number of households. Therefore, higher rates of migration 

within the network will increase the behavioral intent, I.  

 

4.3.3 Network Structures 

 When initializing a new model run, the modeler must set two global variables related to 

social network size and typology:  

• Network type – Type of network structure for social networks within the community. 

Possible values include “preferential”, “random”, “small-world”, and “fully-connected”, 

as described below.  

• Network size – The average number of other households that each household is connected 

to within the social network.  

Networks between households are implemented using the “NetworkX” package in 

Python3 (Hagberg et al. 2008). In general, networks consist of nodes (in this case households), 

and edges representing connections between nodes (Borgatti and Halgin 2011; Sasaki et al. 2016; 

Bilecen and Lubbers 2021). Information or resources may be exchanged between nodes across 

networks.  

Networks may have different typologies or structures (Figure 4.1). A fully connected 

network means that each node is connected to every other node, or in this context, all households 

are connected to one another in a network. The fully connected network is specified using the 

complete_graph() function in NetworkX.  As its name suggests, a random network selects other 

households randomly to be included in a network. The random network is implemented using the 

fast_gnp_random_graph() function in NetworkX, which implements a random network with a 

specified number of nodes and probability of an edge (Batagelj and Brandes 2005). 
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Figure 4.1: Examples of network typologies. From Sasaki et al. 2016. 

 

In this work, I also implement a small-world network and a preferential network. The 

small-world network is implemented using the watts_strogatz_graph() function in NetworkX 

(Watts and Strogatz 1998). As the name suggests, this function implements a small-world 

typology as described by Watts and Strogatz (1998). A small-world network is designed as a 

network structure between completely structured and completely random. In this typology, each 

node is connected to its k nearest neighbors, with some edges then being replaced by random 

edges (Watts and Strogatz 1998). The preferential network typology is implemented using the 

barabasi_albert_graph() function in NetworkX, which uses a Barabasi-Albert approach to 

preferential connections (Barabasi and Albert 1999).  
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Here, I run model experiments varying the network typology with a TPB decision-

making method and with all other parameters held constant. I then vary the network size with a 

small-world network type.  

 

4.4 Results 

4.4.1 Network typology 

To first test network typology, I run my model 100 times at varying levels of community 

environmental impact (community impact factor) for each network typology (fully connected, 

random, small-world, and preferential). I first assess total migrations across community impact 

factors for the fully connected community (Figure 4.2). I see highly non-linear behavior across 

the varying levels of community impact to the environmental shock, with an initial increase in 

migration followed by a decline until an impact factor of approximately 0.6 when migrations 

increase again (Figure 4.2).  

Next, I run the same experiment with the remaining network typologies where the 

average number of connections for each household is 50 (out of 100 possible connections). I 

show results across the three typologies by decreasing randomness (Figure 4.3). I begin with a 

random network typology (Figure 4.3a), followed by a small-world (Figure 4.3b), and finally 

preferential (Figure 4.3c). For all the network typologies, I see a very similar shape in the out-

migrations by community impact factor as compared to the fully connected network typology. 

Again, I see an initial increase in migration as environmental impact increases, followed by a 

decline, and an increase again at a community impact factor of 0.6. The total numbers of 

migration are also similar between the network typologies, with the random network structure 

predicting slightly fewer total migrations (Figure 4.3).  
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Figure 4.2:  Model results of total number of migrations from the community by varying levels 
of community impact and with a fully connected network typology. The black lines represent the 
mean of 100 model runs for each community impact factor. The gray band represents the 95% 
confidence interval for the mean. 
 

I then repeat this experiment of varying network typologies, but this time with 

households only having a network size of five (out of 100 possible connections). Again, I show 

results across the three typologies by decreasing randomness (Figure 4.4). Like the previous 

experiment with higher network connectivity, I see similar shapes in out-migration by 

community impact factor compared to the fully connected typology and between the other 

typologies.  
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Figure 4.3: Model results of total number of migrations from the community by varying levels 
of community impact and with a random (a), small-world (b), and preferential (c) network 
typology and with 50% network connectivity. The black lines represent the mean of 100 model 
runs for each community impact factor. The gray band represents the 95% confidence interval 
for the mean. 
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Figure 4.4: Model results of total number of migrations from the community by varying levels 
of community impact and with a random (a), small-world (b), and preferential (c) network 
typology and with 5% network connectivity. The black lines represent the mean of 100 model 
runs for each community impact factor. The gray band represents the 95% confidence interval 
for the mean. 
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4.4.2 Network Size 

For my experiments to investigate network size, I use the small-world network typology 

and vary the network size parameter which specifies the average number of connections for each 

household. As mentioned, my previous experiment used a network size of 50. Here, I run the 

model with network sizes of five, 20, and 75. Again, I run the model for each network size and 

each level of community impact 100 times (Figure 4.5). I show that increasing network size 

does have a modest effect on overall numbers of out migration, with a network size of five 

producing the lowest number of migrations across all community impact levels (Figure 4.5a). 

With a network size of five, total migrations do not exceed 230, whereas they exceed 255 with a 

network size of 75 (Figure 4.5c).  

Across the network sizes, I again see a similar shape in migration across varying 

community impact levels. I see an initial increase in migrations, followed by a decline as 

community impact increases, and an increase again beginning at 0.6. However, only for a 

network size of five do I see that migrations at the highest levels of community impact 

eventually exceed migrations at lower levels of impact, which is consistent with the pattern of 

interest previously used in this work (Figure 4.5a). I also see a broader range in the 95% 

confidence interval bands for the larger networks, suggesting that social networks add variability 

to the model.  
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Figure 4.5: Model results of total number of migrations from the community by varying levels 
of community impact and with a small-world network typology and a network size of five (a), 20 
(b), and 75 (c). The black lines represent the mean of 100 model runs for each community impact 
factor. The gray band represents the 95% confidence interval for the mean. 
 



 98 

4.5 Discussion and Conclusions 

 In this work, I use my ABM of environmental migration in Bangladesh to test the effect 

of social network typology and size on migration outcomes. I show that network typology does 

not significantly alter model predicted migrations. For fully connected, random, small-world, and 

preferential network structures, migrations show similar non-linear behavior across varying 

levels of community impact to environmental shocks (Figure 4.2, 4.3, 4.4). Focusing on the 

small-world typology, I also demonstrate that the size of the social network has a modest effect 

on the number of migrations, while the shape of the migration outcome remains largely 

consistent (Figure 4.5).   

Admittedly, these (non)results are not the most exciting, but they are important in that 

they contribute to our understanding of how network size and typology impact outcomes in 

ABMs. As previously mentioned, very few ABMs of environmental migration include any 

explicit representation of social networks (Thober et al. 2018). This model incorporates social 

networks and allows for flexibility in network typology and size. Even though my results show 

that network typology is largely unimportant for my model under current parameters and 

formulation, it is necessary that I be able to ask and answer whether or not that is the case. To my 

knowledge, this is the first such study of network typology in environmental migration ABMs.  

My results are also not meant to suggest that social networks are not important for 

migration when previous research has shown that they are. These findings only suggest that 

social network size and typology is unimportant for migration predicted from this model to study 

this specific context. Another key caveat is that social networks may be important if 

implemented differently in my model, as different operationalizations of theory in ABMs have 

been shown to yield very different results (Muelder and Filatova 2018). Also, as I discussed, 
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network effects may operate in many ways to influence migration (such as destination location, 

“rooting” effects, chain-migration, etc.), and this model only considers the ways that networks 

may impact social norms and perceived behavioral control. If my model was investigating 

destination selection or return migration, then the network effects might be very different and 

possibly significant.   

This study lays the groundwork for several opportunities for future work. For example, I 

plan on investigating how modeled migrations may respond when household agents have 

heterogeneous network typologies and sizes. I also plan to expand this ABM and incorporate 

different behavioral theories beyond TPB such as theories related to Protection Motivation 

Theory and place attachment theory (Rogers 1975; Adams 2016). It is possible that social 

network size and structure may prove to be important under different methods of migration 

decision-making. In this case, my model is designed to implement different network structures 

and systematically compare results.  

Though varying social network typology and size for this model and configuration did 

not drastically change migration outcomes, social networks may prove to be very important for 

other models of different conditions. For this reason, I suggest that future ABMs of 

environmental migration, firstly, include social networks explicitly and, secondly, allow for the 

flexibility to vary network typologies. 
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CHAPTER 5 

 

Number of dangerous heat days in Bangladesh will increase with future climate change 

 

Abstract 

Extreme heat poses a threat to human health, especially in less developed countries. The 

combined effect of heat and moisture is captured in wet bulb temperature (WBT). Using an 

ensemble of climate model runs and adjusted model runs, I present a range of future scenarios of 

WBT in Bangladesh. Annual number of days exceeding a dangerous threshold of 30 oC WBT are 

expected to rise in northern and southern (coastal) Bangladesh under various global warming 

levels (GWL’s) with the potential of exceeding 20 to 30 days based on the most conservative 

models and exceeding 100 days in adjusted models. Annual consecutive dangerous heat days 

could exceed 30 days by 2100, suggesting risks of prolonged heat exposure. Maximum annual 

WBT is shown to likely exceed 32 oC, with some projections exceeding 35 oC. Even 

conservative estimations of warming would also have serious implications for health and 

productivity.  
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5.1  Introduction 

Future climate change poses a wide variety of threats to human health and well-being 

(Intergovernmental Panel on Climate Change, 2018; Patz et al., 2007). One such threat is the 

direct impacts of rising global temperatures and heat stress on human health (Kjellstrom, 2009; 

Kovats & Hajat, 2008; Luber & McGeehin, 2008; Xu et al., 2020). Heat stress is already the 

leading cause of fatalities from natural phenomena and heat-related deaths are expected to 

increase due to anthropogenic climate change (Dahl et al., 2019; Knutson & Ploshay, 2016; 

Matthews et al., 2017; Sherwood & Huber, 2010). This threat is especially concerning in regions 

of the world that are less developed and have a large percentage of population that lives and 

works without access to air conditioning, as these populations are more vulnerable to extreme 

heat (Lundgren et al., 2013).  

Bangladesh is highly vulnerable to climate change (Black et al., 2008; Passalacqua et al., 

2013; Walsham, 2010). Rural communities in Bangladesh, where it is estimated that two-thirds 

of workers are dependent on agriculture as a primary source of livelihood, are especially 

vulnerable to environmental conditions (World Bank, 2016, p. 200). While future precipitation, 

flooding, exposure to natural disasters, and even salinity encroachment have received widespread 

attention by researchers studying climate impacts in Bangladesh, extreme temperatures in 

Bangladesh have been the subject of fewer studies (Chen & Mueller, 2018; Dasgupta et al., 

2015; Haque & Jahan, 2015; Karim & Mimura, 2008).   

Extreme heat has direct implications on human health. Exposure to extreme heat is 

especially dangerous for the very young, very old, and those with preexisting medical conditions 

(Chan & Yi, 2016; Coffel et al., 2017). Under hot conditions, it is critical for people to be able to 

cool down either by escaping the heat or by thermal regulating through sweat evaporation, but 
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the ability to cool down through sweat evaporation largely depends on air humidity (Davis et al., 

2016). For this reason, indicators of heat stress that depend solely on measures air temperature 

may not sufficiently capture the impacts of heat on human health. One indicator of heat stress 

that incorporates both temperature and humidity is wet bulb temperature (WBT), which is 

utilized for this work (Li et al., 2017; Raymond et al., 2020; Wang et al., 2019; Willett & 

Sherwood, 2012). 

It is broadly understood that humans cannot survive in environments where WBT 

exceeds 35 oC, as this is the point where thermal regulation by sweat evaporation is not possible, 

and core body temperatures will rise (Coffel et al., 2017; A. J. McMichael & Dear, 2010; 

Raymond et al., 2020; Sherwood & Huber, 2010). Even below the deadly threshold, high 

temperatures can be dangerous, especially for physical laborers who work outdoors (Kjellstrom, 

2009, 2016; Riley et al., 2018). This poses threats to worker health and productivity in places 

where heat and humidity are high (Dunne et al., 2013). As climate change is projected to 

increase global temperatures, future WBT is also expected to increase, especially in tropical 

locations that experience high temperatures and humidity levels (Diffenbaugh & Scherer, 2011; 

Hyatt et al., 2010). Existing work has shown that some parts of the world may exceed the deadly 

threshold of 35 °C with future climate change, rendering these places inhospitable to human life 

without air conditioning (Pal & Eltahir, 2016; Sherwood & Huber, 2010). Not only would this 

dramatically impact human health, but also energy demand, agriculture, recreation, and more 

(Kang et al., 2019). For this reason, some scholars have argued that WBT beyond 35 °C may 

represent a limit to human’s ability to adapt to climate change (Pal & Eltahir, 2016).   

Though increases in future temperatures pose a threat to human health and 

socioeconomic growth in Bangladesh, the possible magnitude of such threats is poorly 
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understood and not broadly studied with climate models. Some work has used regional models to 

predict temperature, precipitation, and monsoon strength across South Asia, without particular 

focus on Bangladesh (Bhaskaran et al., 2012; Immerzeel, 2008; Rajib Mohammad Adnan et al., 

2011; Saeed et al. 2021; van Oldenborgh et al., 2018). Other work has investigated projected 

changes to temperature and precipitation in Bangladesh by 2100 under climate change scenarios 

but has not made the connection to human health (Caesar et al., 2015; Islam et al., 2008).  

Due to its tropical climate and large percentage of population working outdoors in 

agriculture and other labor, Bangladeshi communities are highly vulnerable to future heat 

exposure. To this end, this work investigates future projections of WBT in Bangladesh under 

various global warming levels (GWL’s), using an ensemble of global climate model runs from 

the Community Earth System Model Large Ensemble Project (CESM-LE) (Kay et al., 2015). 

Using CESM-LE, I predict how WBT will evolve in Bangladesh by assessing annual days 

exceeding a dangerous threshold for human health, consecutive days above this threshold, and 

annual maximum WBT. I further contextualize the results from the CESM-LE model by 

comparing results to historical weather station data and results from the Coupled Model 

Intercomparison Project 5 (CMIP5) (Taylor et al., 2011).  

 

5.2  Materials and Methods  

5.2.1  Calculating WBT from CESM-LE Model Runs 

CESM-LE is an ensemble of 35 model runs, each of which consists of full coupling 

between land, atmosphere, ocean, and sea ice (Kay et al., 2015). Model spatial resolution is 

approximately 1o by 1o grids (Kay et al., 2015). I compiled data from each of the 35 ensemble 

members from the year 1920 to 2100 under RCP 8.5 forcing (Riahi et al., 2011). I extracted 
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variables for daily maximum temperature (Tmax) in Kelvin, daily minimum temperature (Tmin) in 

Kelvin, daily average specific humidity, and daily surface pressure for analysis from model 

results. I then restricted data to a range of latitude and longitude from 88o to 92.5o E and 20.5o to 

26.5o N, representing the geographic range of Bangladesh. I selected two grid cells located in 

northern Bangladesh and southern, coastal Bangladesh for regional comparison.   

From daily data from the CESM-LE, daily WBT was calculated by first calculating near-

surface relative humidity (RH) at both Tmax and Tmin (daily maximum/minimum near-surface 

temperature) from near-surface specific humidity (q), and surface pressure (P), using the 

following equations:  

(Eqn. 5.1)  

 

                 (Eqn. 5.2) 

 

where e is the vapor partial pressure of water, is a constant (0.622) based on the specific gas 

constants for dry air and water vapor, and es is the saturation vapor pressure as a function of 

temperature calculated based on Clausius-Clapeyron’s equation. All input values in Eqn. 5.1 and 

Eqn. 5.2 are provided in SI units. RH is in percent from 0 to 100. From RH, the equation from 

Stull (Eqn. 5.3) is used to calculate the WBT with the calculated RH at both Tmax and Tmin (Stull, 

2011) 

𝑊𝐵𝑇 = 𝑇𝑎𝑡𝑎𝑛 E0.151977(𝑅𝐻 + 8.313659)
!
"P + atan(𝑇 + 𝑅𝐻) − atan(𝑅𝐻 − 1.676331)	 

 +	0.00391838(𝑅𝐻)
%
&	 atan(0.023101𝑅𝐻) − 4.585035           (Eqn. 5.3)  

where temperatures are in oC.   

 

𝑒 =
𝑞𝑃
𝜀  

𝑅𝐻 = 100	 × 	
𝑒
𝑒𝑠	
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5.2.2  Comparison to Historical Data  

In order to compare CESM-LE results to historical observations, I obtained weather data 

from 34 weather stations across Bangladesh from the Bangladesh Meteorology Department, 

capturing daily minimum temperature, maximum temperature, and relative humidity data from 

1988 to 2017. Data from one station (Chittagong) were dropped because of data quality 

concerns. The remaining stations were filtered to split northern and coastal stations.  Northern 

stations were selected as any station with latitude greater than 24.5o N and between 89o and 91o E 

longitude. Coastal stations were selected as stations with less than 23.5o N latitude and between 

89o and 91o E longitude. This filtering resulted in a remaining 3 stations in northern Bangladesh 

(Rangpur, Mymensingh, and Bogra) and 9 stations in coastal Bangladesh (Khepupara, 

Patuakhali, Bhola, Satkhira, Barisal, Khulna, Madaripur, Jessore, and Chandpur) (Fig. S5).  

Historical RH, which is a single daily value representing daily maximum RH, was 

adjusted to calculate an estimated daily average RH. This was done by calculating daily average 

temperature (Tav) as the average between daily Tmax and Tmin and then calculating the saturation 

pressure (esat) at Tav and Tmax. RH at Tmax was then calculated as the reported RH multiplied by the 

ratio of Psat at the daily average temperature and Psat at the daily Tmax. This adjusted RH and 

historical Tmax were used to calculated daily maximum WBT at each weather station (Stull, 

2011). Annual mean Tmax, RH, and WBT from the northern and coastal stations were compared 

to annual maximum values from CESM-LE (Fig. S1, S2).  

For northern Bangladesh, mean CESM-LE Tmax is, on average, 0.64 °C cooler than mean 

historical data. For coastal Bangladesh, mean CESM-LE Tmax is, on average, 2.3 °C cooler than 

mean historical data. In northern Bangladesh, mean model RH is an average of 9.0% less than 

mean historical RH. In coastal Bangladesh, mean model RH is an average of 0.97% less than 
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mean historical RH. Finally, mean maximum annual predicted WBT for northern Bangladesh is 

2.4 °C less than mean historical WBT while mean annual maximum predicted WBT for coastal 

Bangladesh is 2.3 °C cooler than mean historical WBT. Despite these discrepancies, mean model 

results fall within a standard deviation of historical data for each of the variables assessed (Fig. 

S1, S2). This comparison to historical data indicates that estimates of WBT from the CESM-LE 

model ensemble are likely conservative, as they underestimate Tmax, RH, and WBT. Furthermore, 

the model is unable to reproduce extremes in the historical data.  

 

5.2.3  CESM-LE Adjustment Informed by CMIP5  

To further assess the validity of CESM-LE predictions, I compared results of the CESM-

LE runs to results from the fifth phase of the Climate Model Intercomparison Project (CMIP5) 

obtained from colleagues at the National Oceanic and Atmospheric Administration (NOAA) 

(Taylor et al., 2011).  CMIP5 data used in this analysis was from the same climate model used in 

CESM-LE but with slightly updated physics. CMIP5 also allowed us to consider RCP 4.5 and 

RCP 6.0 emissions scenarios, which represent more optimistic future emissions.  

Annual mean Tmax from CMIP5 was, on average, 1.6 oC warmer than CESM-LE in 

northern Bangladesh, and 0.77 oC warmer in coastal Bangladesh. CMIP5 annual mean RH was 

approximately 2.4% lower (drier) in northern Bangladesh and 2.5% higher (wetter) in coastal 

Bangladesh as compared to CESM-LE. These differences corresponded to WBT that was higher 

by, on average, 0.75 oC in northern Bangladesh and 1.09 oC in coastal Bangladesh. These results 

again indicated drier, cooler conditions predicted with CESM-LE, especially in coastal 

Bangladesh. Based on this finding of differences between CESM-LE and CMIP5 model 
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predictions, I devised a method to adjust the CESM-LE predicted WBT based on the relationship 

between CESM-LE and CMIP5 data. 

I evaluated the difference between CMIP5 daily maximum WBT and CESM-LE daily 

maximum WBT. To do so, daily values were plotted in density plots for both models from the 

years 1950 to 2100, representing 55,114 observations for coastal and northern Bangladesh each 

in order to select an appropriate method for adjusting CESM-LE results. I fit a linear regression 

to the data using the lm( ) function in R against several variables, including RH. The intercept, 

coefficient, and R2 results for coastal and northern Bangladesh linear models are given in Table 

S1. CESM-LE RH was selected as the variable based on which to conduct the adjustment of 

CESM-LE versus CESM-LE WBT due to a higher value of R2 for test regression. I also fit a 

LOESS model to the data to allow for non-linearity. Both the linear model and LOESS model 

were plotted on the density plots (Fig S6).   

The linear model and LOESS model of difference in WBT as a function of CESM-LE 

RH were used to conduct the adjustment of CESM-LE model results based on CMIP5 results. To 

apply the adjustments, the linear and LOESS models previously fit to the data were used to 

predict the difference between CESM-LE and CMIP5 based on CESM-LE predicted RH. This 

difference was then applied to each daily CESM-LE maximum WBT for each ensemble 

member.  

Finally, I compare the adjustment annual mean WBT max from CESM-LE, linear 

adjusted CESM-LE, LOESS adjusted CESM-LE, CMIP5, and historical data (Fig. S7). Though 

there are challenges associated with the historical weather station data due to uncertainties, I see 

that both the linear and LOESS adjustments to the CESM-LE data bring the predicted WBT 

closer to the WBT calculated from the weather station data. A full description of adjustment 



 113 

methodology can be found in Supporting Materials in the Appendix. The adjustments to 

CESM-LE predictions help to highlight the spread of possible future scenarios and inherent 

uncertainty in the climate models.  

 

5.2.4  Assessing GWLs  

Due to limitations of RCP’s, especially the possibility that RCP 8.5 may be an 

unrealistically extreme scenario, I focus my results on the impacts of GWL’s of 1.5o C, 2.0o C, 

3.0o C, and 4.0o C (Burgess et al., 2020; Ho et al., 2019; Pielke & Ritchie, 2021; Ritchie & 

Dowlatabadi, 2017b, 2017a). GWL’s allow us to move beyond the idea of emissions scenarios, 

and instead focus on outcomes at various levels of warming.  

With the CESM-LE RCP 8.5 data, I establish a 30-year reference period of 1950 to 1970 

and use NASA observational GISS Surface Temperature Combined Land-Surface Air and Sea-

Surface Water Temperature Anomalies (Land-Ocean Temperature Index, LOTI) to adjust for 

preindustrial levels (GISS Team, 2020; Lenssen et al., 2019). 30-year periods corresponding to 

GWL’s in global CESM-LE model output were calculated for each of the 35 CESM-LE 

ensemble members based on previously established methodology (Abiodun et al., 2019; Naik & 

Abiodun, 2020). These time intervals for each GWL were then applied to the CESM-LE data and 

adjusted CESM-LE results.  

  

5.3  Results 

5.3.1  Annual Dangerous Heat Days  

I use a WBT threshold of 30 oC to define dangerous conditions, as this is a level that 

would be dangerous for outdoor workers and other individuals with increased vulnerability to 
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heat exposure while still falling within a range where human adaptation may be possible 

(Kjellstrom et al., 2009). This level also corresponds to a “dangerous” heat stress risk level 

according to the NOAA National Weather Service Heat Index, with WBT above 31 oC 

corresponding to “extreme danger” (Im et al., 2017). Using daily WBT, I estimate the annual 

number of days above the 30 oC threshold for northern and coastal Bangladesh at daily 

maximum and minimum temperatures (Fig. 5.1). At the baseline, under a GWL of 0 oC, WBT in 

Bangladesh does not exceed the dangerous level of 30 oC based on the unadjusted CESM-LE, 

but after a GWL of  3 oC the annual number of days above this threshold increases rapidly (Fig. 

5.1). By a GWL of 4 oC, the mean of the model ensemble predicts more than 21 days annually 

above the danger threshold at daily maximum temperatures in northern Bangladesh, and more 

than 12 days in coastal Bangladesh. At this GWL, both areas are expected to also experience at 

least one day where the minimum WBT exceeds the 30 oC threshold. Upper bounds of the 

unadjusted ensemble predictions estimate 71 dangerous days in the north and 61 in the 

south.  However, the CESM-LE adjustments based on CMIP5 show that days annually above the 

danger threshold may start increasing as early as the 1.5 oC GWL, especially in northern 

Bangladesh, and reach as many as 100 days in both northern and coastal regions by a GWL of 4 

oC (Fig. S3).  

 



 115 

 

Figure 5.1. Annual number of days above 30 oC WBT dangerous threshold by GWL. CESM-LE 
predicted annual days above dangerous threshold of WBT at daily maximum temperature (red) 
and daily minimum temperature (blue) under baseline (0), and GWL’s of 1.5, 2, 3, and 4o C. 
Solid line in boxes represents the median, while top and bottom limits of colored boxes indicate 
75% and 25% percentiles respectively. Vertical lines span to the largest value within 1.5 times 
interquartile range above 75% (up) and the smallest value within 1.5 times the interquartile range 
below 25% (down).  
 

5.3.2 Consecutive Dangerous Heat Days and Prolonged Heat Exposure  

Prolonged exposure to extreme heat, without relief, may increase risks to human health 

(Sharma et al., 2019). For this reason, the days where minimum temperatures exceed a dangerous 

threshold can provide additional insights into future human health risks. My analysis suggests 

that up to 13 days may be above the dangerous threshold at daily minimum temperatures in 

northern Bangladesh, and up to 25 days in coastal Bangladesh with 4 oC of global warming for 

the unadjusted CESM-LE output (Fig. 5.1). To further investigate risks of prolonged exposure to 

extreme heat, I also analyzed annual consecutive days above the 30 oC WBT threshold (Fig. 5.2). 

Consecutive days above the dangerous threshold at the maximum daily temperature could exceed 
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30 days in both northern and coastal Bangladesh under a GWL of 4 oC in unadjusted CESM-LE 

projections. In addition, the number of consecutive days where the dangerous WBT threshold is 

exceeded at the daily minimum temperature is also expected to rise. Here, coastal Bangladesh 

could experience between 5 and 15 consecutive days of dangerous heat without any relief, even 

at night, while northern Bangladesh could experience up to 10 days of dangerous heat without 

relief. The adjustments suggest even more severe prolonged heat exposure, with coastal 

Bangladesh potentially experiencing more than 30 and northern Bangladesh experiencing more 

than 20 consecutive days of extreme heat without relief (Fig. S4).  

 

 

Figure 5.2. Annual number of consecutive days above 30 oC WBT dangerous threshold by 
GWL. CESM-LE predicted annual consecutive days above dangerous threshold of WBT under 
various GWL’s at daily maximum and daily minimum temperatures for northern and coastal 
Bangladesh.  
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Bangladesh experiences a tropical monsoonal climate, with the rainy season lasting from 

June to October every year. By dividing each year of data into a rainy season from June to 

October, and a dry season capturing the remaining months, I can assess the seasonality of 

extreme WBT. Especially in coastal Bangladesh, the majority of annual days above a dangerous 

threshold occur during the rainy season (Fig. 5.3).  

 

 

Figure 5.3. Annual number of days above 30 oC WBT dangerous threshold divided into 
rainy and dry season by GWL. Model predicted annual days above dangerous threshold of 
WBT for northern and coastal Bangladesh split into rainy season (June – October) and dry 
season.  

 

5.3.3  Annual Maximum WBT  

I am also interested in annual maximum WBT, not just the number of days exceeding a 

dangerous threshold, as even a single day of extreme heat can be dangerous. Though results 

show that WBT in Bangladesh is not expected to exceed the deadly 35 oC threshold in the 
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unadjusted CESM-LE runs, it is expected to exceed 32 oC in both northern and coastal 

Bangladesh under a GWL of 4 oC (Fig. S8). The adjusted models show that maximum WBT 

could exceed 33 oC in both northern and coastal Bangladesh, with the LOESS adjustment 

showing exceedances of 34 oC even under the 3 oC GWL (Fig. S8). In northern Bangladesh, the 

LOESS adjustment predicts that WBT could exceed 34 oC with a maximum prediction of 35.3 

oC, exceeding the 35 oC deadly threshold. In coastal Bangladesh, the linear and LOESS 

adjustments are quite similar, and predict a maximum WBT between 32.1 and 33.7 oC.  

 

5.4  Conclusions  

These results highlight the potential dangers of future increases in WBT in Bangladesh 

under different GWL’s. At a GWL of 4 oC, my results indicate that as many as 40% of days out 

of every year could exceed a level that is dangerous for the health of vulnerable people and 

outdoor laborers. Such a scenario could have implications for communities in coastal Bangladesh 

who already experience severe environmental challenges such as frequent cyclones, flooding, 

and salinity encroachment. Even under lesser GWL’s, these results suggest that extreme heat as a 

result of anthropogenic climate change will be a challenge that Bangladesh will face in the 

future. By analyzing consecutive days above the dangerous threshold, my results also suggest 

that Bangladeshis living in coastal communities will experience more days without any relief 

from the heat. While wealthier households will be able to escape the heat with access to air 

conditioning, poorer households will not have such an escape (Im et al., 2017). The seasonality 

of dangerous WBT may pose additional challenges for people trying to adapt to extreme heat, as 

the monsoon season is also a time when annual flooding and waterlogging are likely to occur, 

creating additional environmental pressures.  
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 In this work, it is also important to consider annual maximum WBT. The adjustments 

did show the possibility of WBT exceeding the deadly threshold of 35 oC in northern 

Bangladesh. However, even the conservative maximum WBT of 32 oC predicted would 

undoubtedly result in increases in mortality and morbidity for Bangladeshi communities, 

especially in individuals who are very old, very young, or have a pre-existing medical condition. 

32 oC WBT could also have health impacts for the majority of the Bangladeshi individuals who 

earn their livelihood through physical labor outdoors, including agricultural workers, rickshaw 

drivers, and others. Physical limitations on productivity caused by heat could further entrap 

already vulnerable laborers into conditions of poverty (Diffenbaugh & Burke, 2019). Due to 

uncertainties in these models, it is difficult to assert whether or not WBT in Bangladesh will 

reach the 35 oC deadly threshold in the future. Despite this, comparison to historical data 

highlights that both CESM-LE and CMIP5 do not sufficiently capture extremes in 

meteorological conditions. Historical data shows that WBT’s exceeding 33 oC, though rare, have 

already been recorded in Bangladesh, and it is reasonable to expect that such conditions will 

become more frequent and reach 35 oC with future warming.  

Beyond the obvious impacts on human health and productivity, the projected increases in 

WBT from this analysis would likely also have impacts on food production, access to freshwater, 

disease transmission, and energy use in Bangladesh, to name a few (A. J. McMichael & Dear, 

2010). It is also possible that these changes in WBT could result in human migration, as people 

leave increasingly inhospitable environments in attempt to adapt (Cattaneo & Peri, 2016; C. 

McMichael et al., 2012; Mueller et al., 2014; Xu et al., 2020). Future work is necessary to 

explore these additional implications of WBT increases in Bangladesh. This work does not 

attempt to quantify losses in terms of human health or productivity associated with future 
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increases in WBT in Bangladesh, though it is clear that the effects would be significant. This 

work is also unable to detect finer scale spatial differences in WBT across Bangladesh, such as 

differences between urban and rural environments, which would be important to understand in 

future work (Fischer et al., 2012; Oleson et al., 2015).  
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CHAPTER 6 

 

Conclusions  

6.1 Summary 

 As I have consistently discussed in this work, environmental migration is highly 

complex. The decision for a household or an individual to migrate or stay in an environmentally 

vulnerable location is influenced by factors that cross multiple spatial and temporal scales. These 

processes are especially complicated in Bangladesh, where a dynamic natural environment, 

highly mobile population, and unique social setting converge.  

The purpose of this work was to develop an original ABM and use that model to explore 

environmental migration dynamics in Bangladesh. In Chapter 2, I present the initial version of 

the ABM using a simple utility maximization decision-making method. I asked the research 

questions: 1) Can a simple economic model reproduce identified patterns of environmental 

migration in Bangladesh? and 2) What combinations of community characteristics and livelihood 

choices in the ABM replicate these observed patterns? I found that a simple economic model 

reproduces the patterns of interest with a high level of success when the distribution of land 

ownership is initialized correctly. I also developed and demonstrated a machine learning method 

combined with a pattern-oriented approach for model calibration to identify successful parameter 

combinations. 

Chapter 3 expanded my ABM to include more complex decision-making based on the 

psychological Theory of Planned Behavior. I found that the simple utility maximization method 

performed better than the more complex method at reproducing the migration patterns of interest. 

As with the utility maximization method, I found that the distribution of land ownership in the 
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simulated community was critically important for migration outcomes with the TPB method. 

Specifically, using a Lomax distribution to initialize household land ownership based on an 

empirical Gini coefficient significantly improved model performance. The finding that 

community-level inequality plays a key role in migration outcomes is important and could 

inform both policy and future research.  

In Chapter 4, I investigate more fully the role of social networks within the ABM. I test 

several different network structures and sizes and compare the migration outcomes across model 

runs. I find that the network structure does not have a significant effect on migration outcomes 

with the model, while increasing network size does increase overall rates of outmigration. This 

result suggests that network typologies are less important than expected within the model. This is 

consistent with my findings that, for these patterns and in this context, economics are dominant 

in the migration decisions of agents.  

Finally, in Chapter 5 I deviate from my focus on the ABM to look towards the future of 

the climate in Bangladesh. I find that wet bulb temperature is expected to increase in Bangladesh 

in the future under all global warming scenarios tested. Wet bulb temperatures could reach 

dangerous levels by 2100, especially during the humid and hot monsoon season. These high 

temperatures are expected to be especially dangerous for outdoor workers and people who do not 

have access to air conditioning.  

 

6.2 Future Work 

There is much future work needed to continue to understand these dynamics and several 

immediate opportunities to expand the ABM. As a next step in this research, I aim to work with 

social psychologists to further develop the representation of decision-making in my ABM to 
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incorporate additional psychological theory. Eventually, I plan to develop a participatory game to 

collect data from communities in Bangladesh so that stakeholder input can be directly 

incorporated into the model design. Data collected from the game will provide insights into how 

players weigh different factors to make a migration decision, as well as how decisions are made 

under uncertain conditions. In this way, the model can continue to be expanded in a straight-

forward way and used as a test bed for various theories. In addition, I aim to expand the model to 

include destination locations rather than just origins. This modification would enable the model 

to be used to also consider the ways in which social networks influence destination selection and 

decision-making surrounding return migration.  

In general, more research is needed to understand how environmental change and climate 

change may interact with human mobility, especially as climate change pressures continue to 

increase. In conducting this research, communities must be at the forefront and local voices 

should be centered. Specifically, researchers should consider how our research can be useful in 

supporting the decisions of households that are impacted, whether they choose to migrate or to 

stay in place. There is significant opportunity to expand participatory modeling methods in this 

area.  

Finally, while agent-based modeling and other forms of modeling are undoubtedly useful 

in studying environmental migration, they are not the only relevant methods. Beginning to 

understand environmental migration requires transdisciplinary collaboration as well as sincere 

community engagement. Ultimately, we must remember that this work is about people and their 

decisions, aspirations, and wellbeing. Future work should consider how to incorporate individual 

input, stories, and lived experience into all stages of research and modeling.  
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APPENDIX 

 

A. ODD FOR AGENT-BASED MODEL OF ENVIRONMENTAL MIGRATION IN 
BANGLADESH 

 
Kelsea Best 

1 OVERVIEW 

1.1 Purpose 

The purpose of the model is to simulate household migration decisions in Bangladesh under 
environmental pressure. The model seeks to understand how environmental stress in the form of 
drought and drought-induced agriculture loss, as well as changing livelihood opportunities, 
impact mobility patterns. The model allows the user to implement multiple decision-making 
frameworks including decision-making informed by utility maximization, theory of planned 
behavior, protection motivation theory, and a mobility-potential based method. 
Future versions of the model will also explore how social networks impact migration decisions 
through the exchange of information and resources between origin and destination locations, 
including different kinds of destinations. 

1.2 Entities, state variables, and scales 

This model consists of individuals and household entities. Individuals have a gender, age, and 
employment, as well as a household that they are assigned to. Households consist of individuals. 
Other entities include the decision class and community class. The household will access the 
decision method from the decision class in order to decide whether or not to send a migrant. The 
decision class allows for the user to select a decision-making method from available methods 
including utility maximization and Theory of Planned Behavior (TPB). 

Each household is connected to a community entity. In the simple model, the community 
represents the origin location. The community has associated employment opportunities. In a later 
version of the model, destination locations will be incorporated as types of community including 
Dhaka, Khulna, and another rural location. These destinations will also have associated 
employment opportunities that individuals can assess. Destinations will also have an associated 
risk and cost to move. Communities, individuals, and households are all situated within an 
environment which will stochastically experience a shock at a given time step. An environmental 
shock will impact community opportunities as well as individual households. 
Agents will also keep track of their location where they are residing at each time step. To represent 
social networks, agents will be able to exchange information about migration histories and wealth 
histories freely with a random set of other households. 
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UML diagram of the model structure 

1.2.1 Global variables 

• decision – decision method to be used to make migration decision (options include “utility”, 
“tpb”, “pmt”, “mobility”, or “hybrid”) 

• shock_method – type of environmental impact simulated, this can be “shock” for a 
stochastic environmental shock or “slow_onset” for a gradual impact 

• mig_util – utility to migrate successfully 
• mig_threshold – wealth threshold to migrate 
• num_hh – number of households 
• num_individuals – number of individuals 
• init_time – initialization time (automatically 0) 
• tick – tracks time progression in model 
• ticks – total number of ticks for model to run 
• migrations – tracks overall migrations taken globally 
• wealth_factor – factor to initialize household wealth 
• ag_factor – productivity factor for land that households own 
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• origin_comm – origin community (calls community class) 
• comm_scale – proportion of community that is impacted by an environmental shock 
• jobs_avail – number of non-agricultural jobs in community 
• network_type – type of social network for agents to use (options include “small_world”, 

“random”, “preferrential”, or “none”) 
• network_size– size of each household’s social network 
• individual_set – stores individuals and data 
• hh_set – stores households and data 

There are also several global variables related to specific decision-making methods including 
weights for TPB and PMT (w1, w2, w3 such that w1 + w2 + w3 = 1, k which is a scaling factor, 
and threshold which is the household threshold for PMT.) 

1.2.2 Individual class variables 

• unique_id 
• age 
• gender (‘M’ or ‘F’) 
• hh – stores idea of household that individual belongs to 
• employment 
• salary 
• employer 
• can_migrate –True/ False if inidivdual is eligible to migrate 
• head –True/ False if individual is a head of household 
• migrated – True/ False if individual has migrated 
• wta – Salary that individual is willing to accept from a potential employer 

1.2.3 Household class variables 

• unique_id 
• wealth – total wealth in household 
• hh_size – size of household (integer) 
• individuals – data frame that stores individuals that belong to that household 
• head – stores individual who is head of household 
• land_owned – value of land owned by household 
• network– other households within the social network 
• network_moves – how many times a household within the social network has sent a migrant 
• land_impacted – True/False if household’s land was impacted by environmental shock 
• wta – willing to accept 
• wtp – willing to pay 
• employees – stores employees hired by household 
• payments – stores payments household owes to employees 
• expenses – stores any household expenses 
• total_utility – utility of household summed over individuals 
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• total_util_w_migrant – utility if household sends a migrant 
• num_shocked – tracks how many times a household is impacted by an environmental shock 
• land_prod – stores how much wealth a household gains from its land. If a household is not 

impacted by a community shock, then this is currently ag_factor * land_owned. If a 
household’s land is impacted, then this is zero. 

• secure – True/False if household has enough wealth to pay for basic food. This represents 
whether or not a household falls beneath a poverty threshold. Currently, this security 
threshold is based on the World Bank definition of poverty as less than $1.90 USD per 
person, per day. 

• wellbeing_threshold – Calculates the threshold below which a household is not secure. 
Based on the World Bank definition of poverty as less than $1.90 USD per person, per day, 
or approximately 20,000 BDT per year per member of household. 
 

• someone_migrated – tracks how many times the household has sent a migrant 

Theory of Planned Behavior (TPB) specific household variables include: - control – perceived 
behavioral control - attitude – household attitude towards migration - network_fact – impact of 
social network on social norms - w1, w2, w3 such that w1 + w2 + w3 = 1 – weights aspects of 
perceived behavioral control - k – logistic regression scale for asset rate 

1.2.4 Decision class variables 

• outcome – True/ False for outcome of decision 

1.2.5 Community class variables 

• impacted – True/False if community is impacted by environmental shock 
• scale – Percent of community impacted by environmental shock 
• jobs_avail – Number of low-paying non-agricultural jobs available in the community 

(i.e., construction, rickshaw driver, etc.). This may decrease if the community is impacted 
by an environmental shock. 

1.3 Process overview and scheduling 

Each simulation starts with creation of a set of individuals, households, and a community. 
Individuals are assigned to a household, and households assign a head of household. These 
individuals and households are stored in data frames. Initial individual and household traits can 
be set randomly or pre-assigned. 

At each step, the origin community will face a probabilistic risk of drought as an environmental 
shock, if the “shock_method” is set to “shock”, which will impact agriculture and employment 
opportunities. Households will check to see if their land has been impacted by the environmental 
shock. Individuals will then update their eligibility to migrate and then assess employment 
opportunities within the community and select an opportunity based on utility and being able to 
perform the job (for example, old enough to work in agriculture and owning land). If the 
“shock_method” is specified as “slow_onset”, then instead the agricultural productivity of the land 
in community gradually declines by a specified percentage at each step. 
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After each individual has selected an employment opportunity within the community, the 
household will aggregate utility across individuals and then, at the household level, the decision 
to send a migrant or not will be assessed based on the decision-making method implemented by 
calling the decision class. This decision will be recorded. If a household elects to send a migrant, 
then that individual will no longer participate in the ABM but will contribute to the household’s 
wealth at each step of the model (until later versions in which the agent will go to a specific 
destination and later have the option to return-migrate). Eventually, there will be a probability of 
the migration failing, in which case the migrant will not contribute to the household’s wealth. 
Eventually, households can also decide to move based on exchanging information and resources 
across their networks as well as past experience. 
The number of ticks will increase by 1 at each step, and each individual will age by one year. Data 
will be collected at each tick and stored in data_set. 

 

Sequence of actions 

2 DESIGN CONCEPTS 

2.1.1 Basic Principles 

This model is based on the literature on environmental migration, which describes both push and 
pull factors as being important in migration decisions, as well as the importance of social 
networks. The ABM is used to attempt to reproduce patterns of migration in response to flooding 
and drought-induced crop failure in rural Bangladesh (Gray & Mueller, 2012). Three key 
patterns that are identified in this work are: 
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• As the proportion of a community impacted by crop loss increases, rates of migration also 
increase, especially above a threshold of approximately 20% of community households 
impacted. Therefore, community-level impacts are important for household migration, and a 
critical threshold may exist. 

• Households that are directly impacted by crop loss are less likely to migrate, suggesting that 
a barrier exists to migrating for more vulnerable households. 

• Wealthier households are more likely to migrate. 

The decision-making elements of the model are based on behavioral theories including Theory of 
Planned Behavior, Protection Motivation Theory, and Motivation Potential. 

2.1.2 Emergence 

Emergence will arise in the form of how rates of migration change throughout the model run. 
When specific destination locations are included, emergence could also provide insights into 
where migrants will move and future populations in each destination and origin community. It is 
also possible that comparisons across networks of agents will show that certain networks are 
more mobile than others, which will be evident by comparing migration histories. 

2.1.3 Adaptation 

Individuals and households adapt to changes in their environment by changing their livelihood 
choices as opportunities in the community change. In later versions of the model, households 
may also adapt by updating their beliefs about migration based on past experiences or 
experiences of other households within their networks, which in turn impacts their likelihood of 
making a migration trip. Sending a migrant is, of course, another adaptation that households can 
make. 

2.1.4 Objectives 

Agents evaluate an objective based on the decision-making method to maximize utility, 
minimize risk, or a combination. 

2.1.5 Learning 

Agents will learn both from their own experiences as well as the experiences of agents in their 
network. 

2.1.6 Prediction 

Agents do not make predictions about the future, but they may consider risks associated with a 
decision based on own histories or histories of other agents in their network. 

2.1.7 Sensing 

Agents are able to sense all of their own traits and the traits in their current community. They are 
also able to assess migration histories of agents in their social network. 
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2.1.8 Interaction 

Households interact by sharing information about their migration histories and wealth histories 
with other households within their network. Household agents can give and receive information 
within their network and make decisions based on this information. Households can also transfer 
resources in the form of remittances across their networks. 

2.1.9 Stochasticity 

Stochasticity may be included in the initialization of the model in terms of agent traits and social 
network connects. Stochasticity is also present in the implementation of environmental shock 
risk at each step. Stochasticity will be incorporated to determine whether or not a migration trip 
was successful, based on a probability of failure. 

2.1.10 Collectives 

Households connected by social networks can share information about their migration 
experiences with one-another. They can also share resources. 

2.1.11 Observation 

The model records all household migration histories, histories of environmental impact, and 
tracks wealth over time. On the larger level, the model will also track populations in origin and 
destination communities over time, total migrations, and the evolution of wealth in the 
community. 

3 DETAILS 

3.1 Initialization 

Currently, the model is initialized with a number of ticks for the model to run, number of 
individual agents, number of household agents, a decision method to be used, and a migration 
utility. Agent (household and individual) traits can be randomly initialized based on a 
parameterization from BEMS data or other sources of data. 

3.2 Input data 

None. 

3.3 Submodels 

3.3.1 Model level functions 

• generate network This creates the social network based on the total number of households in 
the community, the size of each network, and the type of network. Network type is specified 
by the model user as part of model initialization and can include random, small-world, 
preferential, or none. This function then generates a graph object that is passed to each 
household to implement their own social networks. 
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• double_auction Individuals who are looking for employment and households that are 
looking for employees can enter the double auction. Individuals will look for households 
whose wtp is greater than their wta. If they find such a household, their salary will be set as 
the average between wtp and wta, and their employer will set to that household id. The 
individual’s id will be appended to the household’s employer list. The double auction will 
run for a specified number of rounds or until there are no longer any individuals looking for 
work or households looking to hire. Individuals who are unable to find employment within 
the double auction may attempt to take a lower paying, non-agricultural job if there are 
avail_jobs within the community. 

• data_collect Collects data from the model at each step including migration histories and 
wealth. 

• tick_up Ticks the model up at the end of each step, ages each individual, and resets the 
community’s environmental schock. 

3.3.2 Household class functions 

• gather_members Households collect individuals to be in their household. They randomly 
select the number of individuals given by hh_size from the individual set. 

• assign_head Households assign head of household to the oldest male member of the 
household. If there are no male members, then the oldest female is assigned as head of 
household. 

• check_land Ask households to check to see if their land has been impacted in the case of an 
environmental shock. If a household’s land is impacted, then their wealth experiences a 
stochastic decrease, and their land productivity goes to zero. 

• migrate Households select a potential migrant from their set of individual household 
members who are eligible to migrate. Households may then decide, based on the decision 
method to send a migrant by calling the decision class. If the household does decide to send 
an individual migrant, then someone_migrated is increased by 1, and the individual no 
longer participates in the model beyond contributing to household wealth. 

• sum_utility The household sums the total utility across all individuals. This is done by 
asking each individual in the household what his/her salary is and summing them for the 
household. Here, the household also checks if it is secure or not (above poverty threshold), 
based on the total earnings. 

• hire_employees If a household’s land has not been impacted, then it updates the number of 
employees that it can hire based on its land owned and its wtp. Household updates its wtp 
and wta. wtp is calculated as the household’s land_productivity / (num_employees + 1). wta 
is calculated as the household’s wellbeing_threshold / hh_size. 

• update_wealth At the end of each tick, all households update wealth by summing across the 
employment of individuals within the household (or migrants that have successfully 
migrated). Updated wealth is calculated as: 
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𝑊𝑒𝑎𝑙𝑡ℎ = 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑊𝑒𝑎𝑙𝑡ℎ + 𝐴𝑙𝑙𝑆𝑎𝑙𝑎𝑟𝑖𝑒𝑠 + 𝐿𝑎𝑛𝑑𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 − 𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠
− 𝑃𝑎𝑦𝑚𝑒𝑛𝑡𝑠𝑇𝑜𝐸𝑚𝑝𝑙𝑜𝑦𝑒𝑒𝑠 

• set_network The household sets its network based on the model’s graph object generated by 
generate_network(). Each household stores a list of other households that it is connected to 
in its network. 

• check_network The household checks to see if other households within its social network 
have been impacted by an environmental shock and if they have sent a migrant. In this way, 
each household can learn from its own experiences as well as the experiences of its 
network. 

3.3.3 Individual class functions 

• age_up Individuals increase their age by 1 after each tick. 

• check_eligibility Individuals check to see if they are eligible to migrate (currently, only 
male individuals older than 14 years old are eligible). 

• find_work Each individual will look for work within the community. Individuals with a 
large amount of land (representing large land owners) may work in agriculture on their own 
land. If an individual is not part of a household with enough of its own land (small land 
owners or landless), the individual may seek agricultural employment with another 
household by entering the internal. labor market. If wtp > wta, then the individual may gain 
employment with another household. If supply is not greater than demand, then the agent 
does not find work in agriculture with another household. Individuals who are unable to 
obtain employment in the labor market may also attempt to seek non-agricultural 
employment by checking the avail_jobs within the community. There are a specified 
number of jobs that are “skilled” and pay more than “unskilled” non-agricultural jobs. 

3.3.4 Community class functions 

• shock Probabilistically experience a drought year based on the annual risk. If a drought 
occurs, then community work opportunities will be updated based on a decline in the utility 
of agriculture. 

3.3.5 Decision class functions 

• decide This part of the model will implement the decision method for households to decide 
whether or not to send a migrant. If the decision conditions are achieved, then outcome is 
updated to True. 

– utility_max - simple utility maximization 
– tpb - Theory of Planned behavior. Households draw upon the Theory of Planned 

Behavior in which the decision to migrate is based on a behavioral intent (I) 
informed by a combination of perceived behavioral control(PBC), behavioral 
attitudes (BA), and social norms (SN). Where 𝐼 = 𝑃𝐵𝐶 ∗ 𝐵𝐴 ∗ 𝑆𝑁 

PBC is a binary variable based on behavioral control (BC). BC is a combination of a household’s 
own past experiences with migrating (0 or 1), network experiences with migrating (0 or 1), and 
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an asset rate based on the household’s wealth and the cost to migrate. The asset rate is calculated 
using a logistic function: 

𝐴𝑠𝑠𝑒𝑡𝑅𝑎𝑡𝑒 = 1/(1 + 𝑒.𝑘 ∗ 𝑥) 

where k is a scaling factor specified at model initialization and x is (the household’s wealth - the 
cost to migrate) / the household’s wealth. 

BC is then calculated as 
𝑤1 ∗ 𝐴𝑠𝑠𝑒𝑡𝑅𝑎𝑡𝑒 + 𝑤2 ∗ 𝑂𝑤𝑛𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 + 𝑤3 ∗ 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝐸𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒 

where w1, w2, and w3 are the weights on each part of behavioral control and must sum to 1. 

PBC is then based on a random number being less than or equal to BC. 
Behavioral attitudes (BA) are based on an individual migrant’s characteristics and how they related 
to that individual’s propensity to migrate as well as the perceived benefit to migrating. For 
propensity, a Maxwellian distribution is used with a peak parameter that is informed by the 
individual’s age and gender where men or more likely to migrate than women. Perceived benefit 
is a binary (0, 1) using a utility calculation and assessing whether or not the migration would result 
in a net increase of wealth compared to the individual’s other employment option. 
Finally, social norms (SN) are based on the decisions of the household’s networked peers. SN 
serves as a scalar on PBC and BA and is given by 

𝑆𝑁 = 1 + (𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑛𝑛𝑒𝑡𝑤𝑜𝑟𝑘/𝑚𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑠𝑖𝑧𝑒) 

The behavioral intent (I), as mentioned, is the product of PBC, BA, and SN. A random number is 
then drawn to determine if I translates into a successful migration decision (meaning that the 
household elects to send the migrant). 

• pmt - Protection Motivation Theory. Households draw upon Protection Motivation Theory 
in which the decision to migrate is based on a threat appraisal (T) followed by a coping 
appraisal (A). 

The threat appraisal (T) is based on perceived vulnerability (V) and severity (S). S is based on 
the number of times the community has been impacted by an environmental shock, while V is 
based on the amount of wealth that a household stands to lose if impacted by an environmental 
shock. 

𝑇 = 𝑆𝑥𝑉 

where T must then exceed a threat threshold to move to the coping appraisal. 

From there, coping appraisal (A) is based on response efficacy (RE), self-efficacy (E), and cost 
efficacy (CE). RE is based on past migration experiences in the network, E is based on the 
household’s own past experience migrating, and CE uses the same logistic function form as the 
asset rate in TPB. 
Then, 

𝐴 = 𝑤1 ∗ 𝑅𝐸 + 𝑤2 ∗ 𝐸 + 𝑤3 ∗ 𝐶𝐸 

again, where w1, w2, and w3 are weights on each element and must sum to 1. 
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A random number is then drawn to determine if A translates into a successful migration decision 
(meaning that the household elects to send the migrant). 
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B. Supplementary Materials for Chapter 5 

Chapter 5: Number of dangerous heat days in Bangladesh will increase with future climate 
change 
 
 

 
 
Fig. S1. Comparison of average maximum temperatures and relative humidity between 
CESM-LE and CMIP5 in northern Bangladesh. Average daily maximum temperature (a.), 
daily relative humidity (b.), and daily WBT (c.) for northern Bangladesh. Black lines represent 
the CESM-LE runs (mean is sold, dashed lines are upper and lower bounds of ensemble 
members), green line represents CMIP5 run, all under RCP 8.5, and pink line represents mean of 
historical weather station data.   
 
 
 

 
 
Fig. S2. Comparison of average maximum temperatures and relative humidity between 
CESM-LE and CMIP5 in coastal Bangladesh. Average daily maximum temperature (a.), daily 
relative humidity (b.), and daily WBT (c.) for northern Bangladesh. Black lines represent the 
CESM-LE runs (mean is sold, dashed lines are upper and lower bounds of ensemble members), 
green line represents CMIP5 run, all under RCP 8.5, and pink line represents mean of historical 
weather station data.   
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Fig. S3. Annual days above 30 oC WBT dangerous threshold for CESM-LE and two 
CMIP5 adjustments. Annual days above a 30 oC dangerous threshold are indicated for raw 
CESM-LE model predictions, CESM-LE predictions adjusted with a linear regression, and 
CESM-LE predictions adjusted with a LOESS regression, and CMIP5 predictions. Solid lines 
indicate the average of the 35 model ensemble members, and dashed lines indicate the upper and 
lower ranges given by the ensemble. Results indicated for northern (a.) and coastal (b.) 
Bangladesh.  
 
 
 

 
Fig. S4. Annual number of consecutive days above 30 oC WBT dangerous threshold, 
CMIP5 adjusted models. Model predicted annual consecutive days above dangerous threshold 
of WBT for northern (a.) and coastal Bangladesh (b.) from the year 2000 to 2100 at daily 
maximum temperatures. Solid lines indicate the average of the 35 model ensemble members, and 
dashed lines indicate the upper and lower ranges given by the ensemble.  
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Fig. S5. CMIP5 predicted annual number of days above 30 oC WBT dangerous threshold 
under three RCP emissions scenarios. Model predicted annual days above dangerous threshold 
of WBT for northern (a.) and coastal (b.) Bangladesh from the year 2000 to 2100 at daily 
maximum temperature.  
 
 
 

 
 
Fig. S6. Locations of weather stations used for historical comparison. Map of Bangladesh 
indicating the locations of weather stations used for historical comparison.  
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Table S1. Linear regression results for coastal and northern Bangladesh. Results for linear 
regressions in both regions are shown for difference between CMIP5 and CESM-LE daily 
maximum WBT as a function of CESM-LE daily maximum RH and as a function of CESM-LE 
daily maximum WBT.   
 

Linear Model Region Intercept Coefficient R2 

Diff WBT ~ CESM-LE 
RH 

Coastal -0.540886 0.026176 0.04003 

 Northern -0.7607331 0.0283621 0.04763 
Diff WBT ~ CESM-LE 
WBT 

Coastal -0.10378 0.04958 0.01404 

 Northern -0.287218 0.044784 0.01002 
 
 
 

 
 
Fig. S7. Density plots of differences between CMIP5 and CESM-LE daily maximum WBT 
versus CESM-LE daily maximum RH. Daily difference between CMIP5 and CESM-LE 
ensemble mean daily maximum WBT was plotted against CESM-LE ensemble mean daily 
maximum RH for the years 1950 to 2100 to evaluate an appropriate adjustment to CESM-LE 
model predictions informed by CMIP5. Daily values are shown with color representing density 
and linear regressions (red line) and LOESS regression (blue line) are plotted. Results indicated 
for northern (a.) and coastal (b.) Bangladesh.  
 
 
 
 
 
 



 147 

 
Fig. S8. Maximum annual WBT from 1950 to 2100 for both CESM-LE and adjusted CESM-LE. 
Maximum annual WBT in northern (a.) and coastal (b.) Bangladesh are relatively steady from 
1950 to 2000 and then begin to increase steeply through 2100. Solid lines indicate the average of 
the 35 model ensemble members, and dashed lines indicate the upper and lower ranges given by 
the ensemble.  
 
 
 

 
Fig. S9. Annual mean maximum WBT for CESM-LE, CESM-LE adjustments, and 
CMIP5. Annual mean maximum WBT are displayed for raw CESM-LE model predictions 
(black), CESM-LE predictions adjusted with a linear regression (red), CESM-LE predictions 
adjusted with a LOESS regression (blue), CMIP5 (green) model output, and historical data 
(pink) from 1950 to 2100. Solid lines show ensemble means, and dashed lines show the 
maximum and minimum range of values from each ensemble. Results indicated for northern (a.) 
and coastal (b.) Bangladesh.  
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Full Description of CESM-LE Adjustment Informed by CMIP5 Results  

Evaluating appropriate adjustment  

In order to make an appropriate adjustment of the CESM-LE model output informed by the 

CMIP5 results, we further investigated the relationship between CESM-LE and CMIP5 data. To 

begin, we evaluated the difference between CMIP5 daily maximum WBT and CESM-LE daily 

maximum WBT versus several variables, including CESM-LE WBT and CESM-LE RH. Daily 

values were plotted in density plots for both models from the years 1950 to 2100, representing 

55,114 observations for coastal and northern Bangladesh each in order to select an appropriate 

method for adjusting CESM-LE results.  

 

In addition to the density plots (Figure S7), we fit a linear regression to the data using the lm( ) 

function in R. The intercept, coefficient, and R2 results for coastal and northern Bangladesh 

linear models are given in Table S1. CESM-LE RH was selected as the variable based on which 

to conduct the adjustment of CESM-LE versus CESM-LE WBT due to a higher value of R2 for 

test regression, demonstrating a better explanation of the relationship between the CESM-LE 

value and the difference between CESM-LE and CMIP5 WBT.  

 

For coastal Bangladesh, the model predicts an increase of ~0.026 K/% Kelvin difference between 

CMIP5 WBT and CESM-LE WBT with every percent increase in CESM-LE RH. For northern 

Bangladesh, the model predicts an increase of ~0.028 K/% Kelvin difference between the models 

for every percent increase in CESM-LE RH. Both models have a low R2 . This low explained 

variance is largely caused by differences in differences in short-term atmospheric variability 

(weather) between the CESM-LE and CMIP5. When the regression is recalculated with 10-year 
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averages to reduce weather-related noise, the R2 becomes 0.1815 for coastal Bangladesh and 

0.1569 for northern Bangladesh.  

 

The loess( ) function was also used to fit the LOESS model to the data. A LOESS (short for local 

regression) is a non-parametric approach that fits multiple regressions locally and allows for non-

linearity. Both the linear model and LOESS model were plotted on the density plots (Fig S7).  

 

Adjustments applied to CESM-LE data 

The linear model and LOESS model of difference in WBT as a function of CESM-LE RH were 

used to conduct the adjustment of CESM-LE model output based on CMIP5 results. We 

determined that these adjustment methods were more appropriate than applying a constant 

adjustment to CESM-LE WBT because of the closer relationship between humidity and WBT. In 

addition, the differences between the CESM-LE output and CMIP5 were not constant over time. 

We applied both a linear and LOESS adjustment to account for the potential nonlinearity in the 

relationship. The application of two different corrections further allows for studying uncertainties 

associated with the particular choice of the correction itself. To apply the adjustments, the linear 

and LOESS models previously fit to the data were used to predict the difference between CMIP5 

and CESM-LE based on CESM-LE predicted RH. This difference was then added to each daily 

CESM-LE maximum WBT for each ensemble member.  

 

Results indicate that the predicted annual number of days above the 30 oC dangerous threshold 

are sensitive to the adjustment and the adjustment method (Fig. S3, Table 1). The raw CESM-

LE predicts approximately 56 days above the dangerous threshold, while the linear adjustment 
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predicts 128 days, and the LOESS adjustment predicts 109 days in northern Bangladesh by 2100. 

In coastal Bangladesh, the raw CESM-LE model predicts 45 days, the linear adjustment predicts 

148, and the LOESS adjustment predicts 127 days above the dangerous heat threshold by the 

year 2100. Similarly, results of annual maximum WBT are sensitive to the choice of adjustment 

method, though the choice of adjustment method is less important for coastal Bangladesh, while 

the LOESS adjustment significantly increases predicted maximum WBT in northern Bangladesh 

as compared to the linear adjustment (Fig. S8).  

 

When we compare annual mean WBT between CESM-LE model to the adjustments, we see that 

the differences in annual mean WBT are more modest. In coastal Bangladesh, the mean 

difference in mean annual maximum WBT is approximately 1 K for both the linear and LOESS 

adjustments. In northern Bangladesh, this difference is even less with a mean difference of 0.75 

K between the raw model and linear adjustment, and 0.87 K between the raw model and the 

LOESS adjustment.  Fig. S9 shows these differences in annual mean WBT and includes CMIP5 

results for comparison. We see that both adjustment methods cause the CESM-LE ensemble 

results to more closely follow CMIP5 results. We also can observe that CMIP5 output, which 

consists of a single observation of a model run, is much noisier that an ensemble with CESM-LE, 

even when looking at annual means of WBT. However, the adjustments of CESM-LE remove 

the noise associated with the single observation from CMIP5, further demonstrating the value of 

an ensemble of models in their ability to offer more stable results in addition to ranges of 

uncertainty caused by variation in ‘weather’ between the different ensemble members.  

 

Comparisons of adjusted and raw CESM-LE data, CMIP5 data, and historic data  
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Finally, we compare the adjustment annual mean WBT max from CESM-LE, linear adjusted 

CESM-LE, LOESS adjusted CESM-LE, CMIP5, and historical data (Fig. S9).  

 

Though there are challenges associated with the reliability of the historical weather station data 

due to uncertainties in the station data collection, the linear and LOESS adjustments to the 

CESM-LE data bring the predicted WBT output closer to the WBT calculated from the weather 

station data (Fig. S9). However, the historical weather data station data still shows higher WBTs 

on average than either the adjusted CESM-LE or CMIP5.  

 


