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CHAPTER 1: INTRODUCTION 

 

This chapter is significant compromised of published review in Cellular and Molecular 

Immunology.  

 
Reinfeld, B.I., Rathmell, W.K., Kim, T.K. and Rathmell, J.C.  The therapeutic implications

  of immunosuppressive tumor aerobic glycolysis. Cell Mol Immunol 19, 46–58 

 (2022). https://doi.org/10.1038/s41423-021-00727-3 

 
 

It has been reproduced with the permission of the publisher and my co-authors Drs. TK 

Kim, W. Kimryn Rathmell, and Jeffrey C. Rathmell.  Additional sections on metabolism of 

non-T cells and the metabolic implications of transforming mutations have been added 

for completeness.  
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 In 2011, Hanahan and Weinberg added “Deregulating Cellular Energetics” and 

“Avoiding Immune Destruction” to the six previous Hallmarks of Cancer. These hallmarks 

remained at the revision of this document in 2022. Since this seminal paper, there is a 

growing consensus that these new hallmarks are not mutually exclusive but rather 

interdependent. The following introduction will summarize how founding genetic events 

for tumorigenesis ultimately increase tumor cell glycolysis that not only supports the 

metabolic demands of malignancy but also provides an immunoprotective niche, 

promoting malignant cell proliferation, maintenance, and progression. Mechanisms by 

which altered metabolism contribute to immune impairment are multifactorial: (1) the 

metabolic demands of proliferating tumor cells and activated immune cells are similar, 

thus creating a situation where immune cells may be in competition for key nutrients. (2) 

the metabolic byproducts of aerobic glycolysis directly inhibit anti-tumor immunity while 

promoting a regulatory immune phenotype. (3) The gene programs associated with 

upregulation of glycolysis also result in the generation of immunosuppressive cytokines 

and metabolites. With this perspective, we will shed light onto important considerations 

for development of new classes of agents targeting cancer metabolism. These types of 

therapies can impair tumor growth, but also pose a significant risk to stifle anti-tumor 

immunity. 

The fundamental discovery that led to the field of tumor metabolism is Otto 

Warburg’s description that tumor tissues utilize glucose and produce lactate in the 

presence of oxygen (Warburg et al., 1924). Based on these findings Warburg proposed 

the cancer cell-centric model that the disruption of the mitochondrial electron transport 

chain was necessary for tumorigenesis and thus a commonality between all cancer 
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cells (Warburg, 1956). However, these early studies failed to recognize the duality of 

metabolic demands by both the tumor cells themselves and other resident cells in the 

tumor microenvironment (TME). Importantly, more recent established literature 

implicates reprogramming of cell metabolism as essential for immune cell fates. In the 

context of a tumor, metabolic networks are crucial for immune cells ability to eliminate 

tumors (Andrejeva & Rathmell, 2017). 

 It is now clear that all dividing cells upregulate glucose metabolism to meet the 

biosynthetic demands of proliferation(Vander Heiden et al., 2009). Even though glycolysis 

produces limited ATP, this metabolic program supports the necessary pathways for de 

novo lipid, nucleotide, and amino acid synthesis with great efficiency.  This applies to both 

proliferating tumor cells with deregulated cell cycle and to the activation of immune cells, 

which undergo rapid transitions from quiescent to proliferative when confronted with 

appropriate stimuli. Further, the field of immunometabolism demonstrated that different 

immune subsets implement and require distinctive metabolic programs to accomplish 

their diverse effector functions, indicating that the metabolism of proliferating cells share 

some but not all features (O'Neill et al., 2016). Because both tumors and immune cells 

implement generally similar metabolic programs, this review will evaluate possible 

synergistic interactions between cancer metabolism targeting therapies and cancer-

modulating immunotherapies. Inhibitors developed to target cancer metabolism may 

therefore, counterproductively, hinder immunotherapy efficacy.  

Common signaling and mutational events that regulate glycolysis  
 

The structure of metabolic signaling is shared amongst most mammalian cells. 

Critically, the phosphoinositide 3 kinase (PI3K)/Akt/mechanistic Target of Rapamycin 
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Complex 1 (mTORC1) pathway plays a key role to induce anabolic metabolism for cell 

growth(Orozco et al., 2020; Saxton & Sabatini, 2017; Ward & Thompson, 2012) (Figure 

1.1). Canonically, this pathway becomes activated when growth factors bind to receptor 

tyrosine kinases (RTKs), or g-coupled protein receptors (GPCRs). Class 1A PI3K are 

activated via binding of their regulatory SH2 containing domains to phosphorylated 

tyrosines on the cytoplasmic tails of RTKs. The regulatory domain of Class IB PI3K 

interact with the beta and gamma subunits of the activated G proteins in the presence of 

activating ligand. In both situations, conformational changes in these regulatory PI3K 

proteins promote activation of the PI3K catalytic kinase domain, p110 (Fruman et al., 

2017). Active p110 in turn phosphorylates membrane phosphoinositides, increasing 

levels of AKT activating PIP3(3,4,5). Additionally, active Ras bound GTP can drive 

PIP3(3,4,5) accumulation via binding to p110 kinase within the Ras binding domain of 

PI3K (Rodriguez-Viciana et al., 1996). AKT ultimately recognizes PIP3(3,4,5) via its PH 

domain leading to subsequent activation by PDK1, and mTORC2, via phosphorylation at 

threonine 308 (Alessi et al., 1997) and serine 473 (Sarbassov et al., 2005), respectively. 

With these two posttranslational modifications, AKT becomes active and is therefore able 

to increase cellular glycolysis (Elstrom et al., 2004).  

AKT has a diverse collection of cellular targets that promote cell growth and 

prevent apoptosis. AKT activation results in the phosphorylation of Glut1 (Rathmell et al., 

2003) and GLUT4 (Kohn et al., 1998), allowing for translocation of these glucose 

transporters to the cellular membrane where they promote glucose uptake. Hexokinase 

(HK), the first commitment step of glycolysis, is also regulated by AKT (Rathmell et al., 

2003) HK is rate limiting for glycolysis, and its activity irreversibly fixes glucose inside the 
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cell. When HK is phosphorylated, it associates with the mitochondria to become more 

active (Majewski et al., 2004) . Additionally, active AKT directly regulates 

phosphofructokinase 2, which in turn increases cellular fructose 2,6 

bisphosphate(F2,6BP) (Deprez et al., 1997). This metabolite acts a positive regulator of 

the rate-limiting step of glycolysis, phosphofructokinase 1, which is responsible for making 

fructose 1,6 bisphosphate. Therefore, AKT activation promotes glycolytic flux via 

increased glucose uptake and elevating basal glycolytic rate.  

Ultimately, mTORC1 is the key cellular metabolic signaling hub. (Figure 1.1). This 

protein complex integrating metabolite availability and growth factor signaling. The AKT 

can increases mTOR signaling by phosphorylating TSC2 (Inoki et al., 2002) and PRAS40 

(Kovacina et al., 2003), two separate negative regulators of mTOR. The role of these 

pathways has been reviewed extensively in many cell types (Saxton & Sabatini, 2017; 

Waickman & Powell, 2012) mTORC1 activity promotes anabolic metabolism. 

Downstream of mTORC1, glucose-dependent synthesis of nucleotides and lipids occurs 

via phosphorylation of p70S6 kinase (pS6K) and 4EBP1. Activated mTOR promotes 

transcription of Hypoxia Inducible Factor 1 (HIF1), the main transcriptional regulator of 

glycolysis (Land & Tee, 2007), and then CAP-dependent translation of this key protein 

(Duvel et al., 2010). Other key downstream transcriptional effectors of mTORC1 signal 

are the transcriptional regulator of lipid metabolism, Sterol Regulatory Element Binding 

Protein (SREBP), and c-Myc. To ensure proliferation in the presence of sufficient 

metabolic substrate, mTORC1 induces this anabolic program only when sensing 

adequate intracellular levels of essential amino acids from its position on the surface of 

the lysosome (Wolfson & Sabatini, 2017). 
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 The transcription factors HIF1, HIF2 and c-Myc play crucial roles to promote 

glycolysis at a transcriptional level (Figure 1.1). HIF1 and HIF2 are oxygen dependent 

transcription factors which bind to HIF response elements throughout the genome to 

induce a glycolytic gene expression program. In normoxia, HIF1 is inactivated by prolyl 

hydroxylase enzymes (PHDs). The PHDs hydroxylate HIF1 at proline residues 402 and 

562, which then promote ubiquitination and ultimately degradation via the E3 ubiquitin 

ligase VBC complex containing the von Hippel Lindau (VHL) tumor suppressor as the 

targeting component (Epstein et al., 2001; Ivan et al., 2001; Jaakkola et al., 2001; Yu et 

al., 2001). In hypoxia, the PHDs are inhibited and therefore VHL can no longer recognize 

the HIF family of transcription factors. Then, the HIF subunit accumulates, binds to 

HIF1/ARNT (a homolog with DNA binding capacity) and translocates to the nucleus 

(Semenza & Wang, 1992). HIF1, together with the transcriptional co-activator p300, 

promotes transcription of glycolytic genes including Glut1, HK2, aldolase, and lactate 

dehydrogenase (LDH), to increase cellular uptake and utilization of glucose. Active HIF1 

elevates Vascular Endothelial Growth Factor (VEGF), leading to increased cellular 

oxygenation and metabolic substrate availability through formation of new blood vessels.  

It is worth noting that HIF1 has a closely related homolog seen in multicellular 

eukaryotes, HIF2. These two proteins have non-redundant functions. HIF1 and HIF2 

predominate at different oxygen tensions (Holmquist-Mengelbier et al., 2006). 

Additionally, these two transcription factors bind an overlapping and yet unique set of 

genes. For example, both HIF1 and HIF2 regulate Glut1 and VEGF expression but 

HIF1 specifically regulates hexokinase expression while erythropoietin is only 
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responsive to HIF2 levels (Keith et al., 2011). In different human cancers, either HIF1 

or HIF2 or in some cases both factors can be negative prognostic indicators of outcome 

(Keith et al., 2011). Currently, we do not understand what extrinsic/tissue specific factors 

govern the wide variety of transcription control that is HIF-dependent across tissues or 

disease contexts. Therefore because of the pleiotropic effects of these two key hypoxia 

transcriptional regulators (especially in cancer cells), we will reference genes regulated 

by either of these factors as hypoxia regulated genes.  

Glycolytic genes are also regulated by the myc family of oncogenes. Myc proteins 

heterodimerize with Max and bind to gene promoter containing E boxes to ultimately drive 

glycolytic gene transcription. Myc is unusual as a transcription factor because it interacts 

broadly across the genome and can associate with paused RNA polymerase II to increase 

transcript elongation (Rahl et al., 2010). Therefore, it can amplify expression of a diverse 

set of active genes with easily accessible chromatin. It comes as no surprise that the Myc 

family of transcription factors can regulate most of the enzymes related to glycolysis given 

that these proteins are expressed basally in most cell types. Of the many glycolytic genes 

myc regulates, myc accumulation can also increase the expression levels of Glut1, PFK, 

Glyceraldehyde 3-Phosphate Dehydrogenase, Phosphoglycerate Kinase, Enolase and 

Phosphoglucose Isomerase (Osthus et al., 2000). Additionally, many promoters of 

glycolytic genes were found via chromatin immunoprecipitation to contain Myc-Max 

bound E-boxes (Kim et al., 2004). Active Myc is known to also promoting glutaminolysis, 

which can maintain mitochondrial anaplerosis (Wise et al., 2008) in addition to increasing 

ribosome and mitochondrial biogenesis (Kim et al., 2008). 
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p53 opposes aerobic glycolysis  
 

p53 is generally viewed as an antagonist of Warburg metabolism (Napoli & Flores, 

2017) (Figure 1.1). Typically, cellular levels of p53 are low given that MDM2 ubiquitinates 

p53, marking it for proteasomal degradation. However, upon a wide variety of cellular 

stressors, MDM2 is inhibited, p53 is stabilized and exerts its senescent/proapoptotic 

function via binding to DNA and changing cellular gene expression. By increasing SCO2 

expression, p53 is viewed a key regulator of oxidative metabolism. SCO2 is necessary 

for the assembly of the cytochrome C complex where O2 is the final electron acceptor 

(Matoba et al., 2006). p53 negatively regulates glycolysis through inhibiting transcription 

of Glut1 and Glut4 (Schwartzenberg-Bar-Yoseph et al., 2004) in addition to blocking Glut3 

mobilization via decreasing active levels of NF-kB (Kawauchi et al., 2008). Active p53 

also results in the accumulation of TIGAR, a protein whose activity shunts glucose into 

the pentose phosphate pathway (PPP) in addition to inhibiting PFK1 by decreasing 

available pools of F2,6BP (Bensaad et al., 2006). At times of high levels of cellular stress, 

p53 directly binds and inhibits the activity of glucose-6-phosphate dehydrogenase, the 

rate limiting enzyme of the PPP (Jiang et al., 2011). Blocking G6PD prevents de novo 

nucleotide synthesis and promotes apoptosis via limiting pools of necessary nucleotides 

for DNA repair.  
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Figure 1.1: Activation of classical oncogenes and loss of canonical tumor suppressors results in 
elevated tumor glycolysis. Oncogenes are depicted in green, while tumor suppressors are depicted in 
red. White gene products are not implicated in malignancy through genetic events. Ultimately, genetic 

activation of the PI3K/AKT/mTOR pathway increases the glycolytic transcription factors HIF1 and myc. 

phospho-AKT also promotes increase glycolytic rate by phosphorylating/hyperactivating a myriad of 
glycolysis associated substrates, Glut1/4, Hexokinase 2 (HK2) and Phosphofructose Kinase 2 (PFK2).  The 

oncogenic transcription factors HIF1 and Myc bind promoters of genes related to glycolysis. HIFs can be 

stabilized through mutations that result in Krebs cycle dysfunction or inactivate machinery required for 
proteasomal degradation. Active p53 prevents the transcription of these genes in addition to shunting 
glucose into the PPP. 

Activating oncogenic mutations increase PI3K/mTOR signaling tone and tumor 
glycolysis  
 

Mutations causing constitutive activation of growth factor receptor pathways can 

stimulate increased cancer cell glycolysis (Figure 1.1). An often mutated or 

overexpressed protein in cancer is the epidermal growth factor receptor (EGFR) and 

its 3 homologs (HER2, HER3 and HER4) (Table 1.1). Via their extracellular domain 

(which HER2 lacks), this receptor family binds to the epidermal growth factor family of 

ligands, promoting dimerization. In this dimerized conformation, the intracellular kinase 

phosphorylates their intracellular domains at tyrosine residues. These phosphotyrosine 

residues act as docking sites for proteins with SH2 domains like the regulatory subunit 

of PI3K. Signaling through this family of receptors is thought to canonically activate both 
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the mitogen activated protein kinase pathways (MAPK) and the PI3K/mTOR pathway 

(Yarden, 2001). In most cases, mutations in these receptors promote phosphorylation 

of these intracellular tyrosines without binding ligand. Additionally, in some tumor types, 

there are amplifications of one of these receptors, increasing the total amount of 

phosphotyrosine and signaling tone through this pathway. For example, 15-20% of non-

small cell lung cancer patients contain activating mutation in EGFR (da Cunha Santos 

et al., 2011). Blocking glycolysis, with 2-DG (an inhibitor of HK) restored sensitivity to 

tyrosine kinase inhibitors for cell lines harboring EGFR T790M mutations (TKIs) (Kim 

et al., 2013). Additionally, over 25-30% of all breast cancer patients have amplifications 

of HER2 (Loibl & Gianni, 2017). As expected, HER2 amplified mouse mammary tumors 

demonstrate increased radiolabeled glucose uptake via F18-Florodeoxyglucose (FDG) 

positron emission tomography (PET) and inhibition of HER2 either with a monoclonal 

antibody or TKI decreases tumor FDG-PET avidity (Miller et al., 2009).  

As mentioned earlier, activated Ras can increase PI3K activity directly by binding 

to the p110 subunit (Figure 1.1) Activating Ras mutations are key features of lung 

(Roman et al., 2018) and pancreatic cancer (Bryant et al., 2014) (where 90% of patients 

have K-Ras G12X mutations) (Table 1.1). It has been shown overexpressing oncogenic 

Ras in fibroblasts increases VEGF expression. This increase of VEGF is dependent on 

the HRE in the 5’ promoter, indicating that activated Ras increases glycolytic HIF 

signaling (Mazure et al., 1996).  

 Increases in PI3K related signaling can also originate from amplifications of the 

kinase itself, or mutations that remove regulatory control of this kinase (Figure 1.1). 

PIK3CA is amplified in a number of tumor types including breast, cervical, gastric, lung, 
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ovarian, and prostate (Courtney et al., 2010) (Table 1.1).  Additionally, there are three 

hotspot mutations, two commonly found in the helical domain (E542K, E545K). These 

mutations prevent the regulatory p85 from repressing p110s kinase activity. The other 

common mutation (H1047R) occurs in the kinase domain, which promotes constitutive 

activation. There are also gain of function mutations in the p85 regulatory subunit that 

promote activation of p110 without engaging phosphotyrosines or activated G proteins 

(Courtney et al., 2010). Mutations that activate the downstream kinase, AKT, follow a 

similar structural pattern (Figure 1.1, Table 1.1). All three variants of AKT can have 

gain of function mutations, which promote membrane localization and increased activity 

without changes in membrane levels of PIP3(3,4,5). AKT2 appears to be the only variant 

of this protein that is amplified across cancer types. In colorectal cancer, groups have 

described gain of function mutations in the AKT activating enzyme, PDK1 (Parsons et 

al., 2005). Through these mutations and amplifications of PI3K and AKT, increased 

signaling tone resulting in elevated mTOR activation contributes to enhanced tumor 

glycolysis.  

Myc’s role as an oncogene is supported by the fact that it is the 3rd most amplified 

gene in all human cancer (Figure 1.1, Table 1.1) (Zack et al., 2013). A classic example 

of myc driven oncogenesis occurs in Burkitt’s Lymphoma. The molecular diagnostic 

hallmark of this disease is the t(8;14) chromosomal translocation that results in the myc 

oncogene located downstream of the immunoglobulin heavy chain promoter (Haluska 

et al., 1986). This genetic event results in myc accumulation. Ectopic overexpression 

of myc in glioblastoma cells results in the expected increase in glucose uptake, and 

lactate production. However, by increasing cellular glycolysis, these cells become 
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vulnerable to NAPMT inhibition. NAPMT is the rate limiting step in the NAD salvage 

pathway, and therefore inhibiting this enzyme in myc high cells induces death due to 

limited availability of NAD (Tateishi et al., 2016).   

Loss of tumor suppressors also increases tumor glycolysis 

Loss of function mutations in tumor suppressors can lead to increased 

PI3K/AKT/mTOR tone in transformed cells (Table 1.2) PTEN is a negative regulator of 

Gain of 

Function

Type of 

mutations
Tumor Type Role in metabolism Evidence of mutations impacting cell metabolism

Myc

Amplification

Translocations

Ewing’s Sarcoma

Lymphoma

Neuroblastoma

Promotes glucose 

utilization via 

transcription of  

GLUT1, PFK, 

G3PD, PGK, enolase, 
and Pgi,

1:.Deregulation of glucose transporter 1 and glycolytic gene expression by

c-Myc1

2:Evaluation of Myc E-Box Phylogenetic Footprints in Glycolytic Genes by

Chromatin Immunoprecipitation2

3:Myc-Driven glycolysis is a therapeutic target in glioblastoma3

4:Global metabolic reprogramming of colorectal cancer occurs at adenoma

stage and is induced by MYC4

AKT

Amplification,

Point mutation

Breast

Colon

Endometrial

Melanoma

Ovarian

Translocation of 

GLUT1/3, HK 

activation, PFK2 

activation mTOR 

activation via 
inhibition of TSC1/2,

1:Akt Stimulates Aerobic Glycolysis in Cancer Cells5

2:Akt Maintains Cell Size and Survival by Increasing mTOR-dependent

Nutrient Uptake6

3:Akt regulation of glycolysis mediates bioenergetic stability in epithelial

cells7

4:Selective eradication of cancer displaying hyperactive Akt by exploiting

the metabolic consequences of Akt activation8

PDK1
Amplification

Breast

Gastric

Colorectal

Lung

Prostate
Thyroid

Activates AKT at 

S374

1:PDK1-dependent Metabolic reprogramming dictates metastatic potential

in breast cancer9

2:PDK1 potentiates upstream lesions on the PI3K pathway in breast

carcinoma10

3:Pyruvate Dehydrogenase Complex Activity Controls Metabolic and
Malignant Phenotype in Cancer Cell11

PI3K

Amplification,

Point Mutation

Breast

Cervical

Endometrial

Gastric

Glioma

Head and Neck 

carcinoma

Lymphoma

Liver

Lung

Prostate

Pancreas

Thyroid

Essential 

for AKT activation

1:Oncogenic PIK3CA mutations reprogram glutamine metabolism in

colorectal cancer12

2:Suppression of insulin feedback enhances the efficacy of PI3K

inhibitors13

3:PIK3CA Mutational Status Is Associated with High Glycolytic Activity in
ER+/HER2‚àí Early Invasive Breast Cancer: a Molecular Imaging Study

Using [18F]FDG PET/CT14

4:The PIK3CA E542K and E545K mutations promote glycolysis and

proliferation via induction of the b-catenin/SIRT3 signaling pathway in

cervical cancer15

5:Phosphoinositide 3-Kinase p110β activity: Key Role in Metabolism and

Mammary Gland Cancer but not Development16

6:Kinase-dependent and -independent functions of the p110β

phosphoinositide-3-kinase in cell growth, metabolic regulation and

oncogenic transformation17

7:PI3Kδ inhibition by idelalisib in patients with relapsed indolent

lymphoma18.

HER2

Amplification,

Point Mutation

Breast

Cholangiocarcinoma 

Colon

Lung

Ovarian
Salivary Duct, 

Upstream activator of 

PI3K/AKT/mTOR

1:Inhibition of mammalian target of rapamycin is required for optimal

antitumor effect of HER2 inhibitors against HER2-overexpressing cancer

cells.

2:Optical Imaging of Glucose Uptake and Mitochondrial Membrane

Potential to Characterize Her2 Breast Tumor Metabolic Phenotypes

3:Tyrosine Phosphorylation of Mitochondrial Creatine Kinase 1 Enhances

a Druggable Tumor Energy Shuttle Pathway19

EGFR

Amplification,

Point Mutation

Colon 

Lung

Glioma

Upstream activator of 

PI3K/AKT/mTOR

1:Glycolysis Inhibition Sensitizes Non-Small Cell Lung Cancer with T790M

Mutation to Irreversible EGFR Inhibitors via Translational Suppression of

Mcl-1 by AMPK Activation20.

2:Enhanced Glycolysis Supports Cell Survival in EGFR-Mutant Lung

Adenocarcinoma by Inhibiting Autophagy-Mediated EGFR Degradation21

3: EGFR-Induced and PKCε Monoubiquitylation-Dependent NF-

κB Activation Upregulates PKM2 Expression and Promotes

Tumorigenesis22

RAS
Mutation

Colon 

Lung

Rectal

Pancreas

Activator of PI3K 

signaling cascade via 

RBD

1:Oncogenic transformation and hypoxia synergistically act to modulate

vascular endothelial growth factor expression23

2:Oncogenic KRAS supports pancreatic cancer through regulation of

nucleotide synthesis24

3:Oncogene ablation-resistant pancreatic cancer cells depend on

mitochondrial function25

Table 1.1:Across tumor types, gain of function mutations drive increase cellular glycolysis 
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the PI3K/AKT/mTOR pathway. PTEN is a lipid phosphatase that catalyzes the 

transformation of AKT-activating PIP3(3,4,5) to PIP2(3,4). PIP2(3,4) is not recognized by 

the PH domain of AKT and therefore limits downstream mTOR signaling (Figure 1.1). 

Therefore, PTEN loss results in accumulation of PIP3(3,4,5) and excess activation of AKT 

(Myers et al., 1998). PTEN loss is the most common aberration in the PI3K pathway seen 

across cancer patients. This gene can be inactivated by loss of function mutations, 

deletions, or epigenetic silencing of the loci. Ingenuity pathway analysis examining 

transcripts from PTEN depleted melanoma cells, demonstrates an increase in glycolysis 

is secondary to losing this tumor suppressor (Cascone et al., 2018). 

Another protein known to negatively regulate the mTOR pathway is LKB1/STK11. 

This kinase phosphorylates AMPK (Saxton & Sabatini, 2017), which is a kinase that 

directly inhibits mTOR via phosphorylation of TSC2 and RAPTOR. AMPK and mTOR 

have opposing effects in cells. mTOR integrates proliferative signals (i.e. growth factors) 

and nutrients (i.e. amino acids), to ultimately promote a proliferative and glycolytic 

metabolic program (Saxton & Sabatini, 2017) . AMPK, conversely, is active at high 

AMP/ATP ratio, indicating a need to replenish cellular energy sources, promoting 

oxidative phosphorylation and fatty acid oxidation. In Peutz Jurgers, a familial 

hamartomatous syndrome, patients have germ line mutations inactivating LKB1. 

Additionally, 15-30% of NSCLC and 20% of cervical cancers harbor loss of function 

mutations in LKB1. As expected, cells with LKB1 loss have high levels of HIF1, 

increased glucose uptake and lactate production (Faubert et al., 2014).  

Not surprisingly, loss of another negative regulatory complex of mTOR, the 

tuberous sclerosis complex (compromised of the proteins TSC1/TSC2) results in the 
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familial tumor syndrome, tuberous sclerosis (Table 1.2). TSC1/2 under normal 

physiological conditions suppress mTOR activation by acting as a GTPase activating 

protein for RHEB (Tee et al., 2003; Zhang et al., 2003), the necessary co-activator for 

mTORC1 (Tabancay et al., 2003) (Figure 1.1). Mouse embryonic fibroblasts (MEFs) 

deficient in TSC1 or TSC2 have increased glucose uptake, lactate production which is 

dependent on mTOR activation and transcription of the oncogenic pyruvate kinase 

isoform (PKM2) downstream of HIF1. These TSC2 deficient MEFs are more sensitive 

to glycolysis inhibition or rapamycin then their WT control (Sun et al., 2011). Additionally, 

a new model of lymphangiosarcoma, where TSC1 is specifically deleted in endothelial 

cells, results in the development of tumors reliant on autocrine VEGF signaling. From this 

mouse model, Sun and colleagues uncovered a positive correlation between mTORC1 

activation with HIF1, VEGF, c-myc and Ki67 levels in a collection of human 

lymphangiosarcoma samples (Sun et al., 2015).  

Loss of p53 is the most common event in human cancer (Figure 1.1). As discussed 

earlier, this protein has a unique ability to promote oxidative metabolism and promote 

usage of the PPP. A group used a novel chemical activator of p53 to show that by re-

activating p53 in transformed cells, glycolytic genes like HK as well as glycolytic 

transcriptions factors myc and HIF1 could be repressed. However, this ability was 

abolished in Tp53 null cell lines, illustrating that activating wild type p53 alone can 

decrease tumor glycolysis (Zawacka-Pankau et al., 2011).  

Genetic elevation HIF1 is another hallmark of cancer  
 

Through a variety of genetic mechanisms, The HIFs can be permanently stabilized, 

promoting constant aerobic glycolysis (Table 1.2). In over 90% of clear cell renal cell 
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carcinoma (ccRCC), VHL is lost most. This most commonly occurs commonly by deletion 

of chromosomal arm 3p or inactivating mutation but can also occur by promoter 

hypermethylation (Cancer Genome Atlas Research, 2013; Turajlic et al., 2018).  Without 

this ubiquitin ligase, the HIFs become hydroxylated but cannot be degraded in normoxia. 

Loss of VHL results in decrease in mitochondrial biogenesis (Zhang et al., 2007) and an 

increase in FDG PET signal (Thomas et al., 2006) in pre-clinical models of ccRCC. 

Additionally, aberrations in Krebs cycle can stabilize HIFs. There are a host of 

familial paraganglioma/pheochromocytoma syndromes where patients have germline 

mutations in different members of the succinate dehydrogenase complex (Malinoc et al., 

2012; Vanharanta et al., 2004) in addition to Hereditary Leiomyomatosis and Renal Cell 

Carcinoma syndrome where patients harbor loss of function mutation in another Krebs 

cycle enzyme, fumarate hydratase (Tomlinson et al., 2002) (Table 1.2).  Both succinate 

(Selak et al., 2005) and fumarate (Isaacs et al., 2005; Pollard et al., 2005) accumulate in 

these cancer syndromes, inhibiting the diverse family of alpha ketoglutarate dependent 

dioxygenases like the PHDs. Therefore, the HIFs cannot be hydroxylated and thus are 

not recognized by VHL. In the FH deficient RCCs, this accumulated fumarate increases 

glycolysis via two additional mechanism: (1) inhibition of PTEN (Ge et al., 2022) and (2) 

mitochondrial replication (Crooks et al., 2021). There is also growing appreciation for the 

transforming properties of IDH1/2 mutant tumors, seen most often in gliomas and myeloid 

malignancies. With these neomorphic IDH mutations, tumor cells accumulate the onco-

metabolite 2HG, which also inhibits alpha ketoglutarate dependent dioxygenases and 

raises cellular HIF levels (Xu et al., 2011).  
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 Over 75% of cancers harbor mutations predicted to result in a glycolytic phenotype 

(Meric-Bernstam et al., 2015) when re-analyzing sequencing data from over 2000 

patients. It comes as no surprise, therefore, that altered metabolism and increased 

glucose uptake are intimately associated with transformation and are both central cancer 

hallmarks(Hanahan & Weinberg, 2011; Pavlova & Thompson, 2016). Nevertheless, most 

measurements of tumor metabolism are conducted on cell lines in vitro or in bulk chunks 

of heterogeneous tumor tissues in vivo.  These in vitro or bulk measurements may simplify 

or miss key aspects of the metabolism of individual cells due to the altered nutrients 

Loss of 

Function

Type of 

mutations
Tumor Type

Role in 

metabolism
Evidence of mutations impacting cell metabolism

VHL

Inactivating

promoter 

hypermethylation, 

chromosomal 

deletion

ccRCC

PNETs

paraganglioma

Negative regulator 

HIF TFs

1.HIF-1 Inhibits Mitochondrial Biogenesis and Cellular Respiration in VHL-Deficient

Renal Cell Carcinoma by Repression of C-MYC26

2.Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney

cancer27

I3.sotope Tracing of Human Clear Cell Renal Cell Carcinomas Demonstrates

Suppressed Glucose Oxidation In Vivo28

p53

Inactivating,

Dominant 

negative

Bladder

Breast 

Colon

Esophageal 

Lung

Li-Fraumeni

Ovarian

Pancreas

Prostate

Promotes 

cytochrome C 

assembly, negative 

regulator of 

GLUT1/3/4 G6PD, 

activates TIGAR to 

inhibit 2,6FBP

1.P53 Regulates Mitochondrial Respiration29

2.The Tumor Suppressor p53 Down-Regulates Glucose Transporters GLUT1 and

GLUT4 Gene Expression30

3.p53 regulates glucose metabolism through an IKK-NF-kappaB pathway and inhibits

cell transformation31.
4.TIGAR, a p53-Inducible Regulator of Glycolysis and Apoptosis32

5.P53 regulates biosynthesis through direct inactivation of glucose-6-phosphate

dehydrogenase33

6.Regulation of monocarboxylate transporter MCT1 expression by p53 mediates

inward and outward lactate fluxes in tumors34

TSC1

TSC2

Inactivating

Deletion

Bladder

Endometrial

Lung

Melanoma 

Renal
Tuberous 

Sclerosis Syndromes 

Negative regulator 

of mTOR

1.Constitutive Activation of mTORC1 in Endothelial Cells Leads to the Development

and Progression of Lymphangiosarcoma through VEGF Autocrine Signaling35

2.Mammalian target of rapamycin up-regulation of pyruvate kinase isoenzyme type M2

is critical for aerobic glycolysis and tumor growth36

3.Glucose deprivation in tuberous sclerosis complex-related tumors37

 4.Autophagy-Dependent Metabolic Reprogramming Sensitizes TSC2-Deficient Cells to

the Antimetabolite 6-Aminonicotinamide38

LKB1/

STK11

Inactivating

IO resitant Lung 

Cancer

Peutz-Jegher 

Syndrome

Positive regulator 

of AMPK

1.Loss of the tumor suppressor LKB1 promotes metabolic reprogramming of cancer

cells via HIF-139

2.LKB1/KRAS mutant lung cancers constitute a genetic subset of NSCLC with

increased sensitivity to MAPK and mTOR signaling inhibition40

3.LKB1 deficiency in T cells promotes the development of gastrointestinal polyposis41

FH

SDH

IDH1/2

Inactivating

Acute Myeloid 

Leukemia

Cholangiocarcinoma

Gliomas

Paragangliomas

Familial Renal 

Carcinoma 

Key enzymes in the 

Krebs Cycle

Accumulation 

of aKG-
like oncometaboilte

s

which stabilize 

HIFs

1.UOK 262 cell line, fumarate hydratase deficient (FH-/FH-)

hereditary leiomyomatosis renal cell carcinoma: in vitro and in vivo model of an

aberrant energy metabolic pathway in human cancer42

2.Mutations in SDHD, a mitochondrial complex II gene, in hereditary paragnaglioma43

3.Cancer-associated IDH1 mutations produce 2-hydroxyglutarate44

4.Suppression of antitumor T cell immunity by the oncometabolite (R)-2-

hydroxyglutarate45

PTEN

Inactivating 

Chromosomal del

etion

Breast

Endometrial

Glioma

Melanoma

Negative regulator 

of AKT, increasing 

membrane bound 

activating PIP3

1. Increased Tumor Glycolysis Characterizes Immune Resistance to Adoptive T Cell

Therapy46

2.Inhibiting PI3KB with AZD8186 regulates key metabolic pathways in PTEN-

null tumors47

I3.ncreased Concentrations of Fructose 2,6-Bisphosphate Contribute to the Warburg
Effect in Phosphatase and Tensin Homolog (PTEN)-deficient Cells48

4.Hexokinase 2-Mediated Warburg Effect Is Required for PTEN and p53-Deficiency

Driven Prostate Cancer Growth49

5.PTEN Suppresses Glycolysis by Dephosphorylating and Inhibiting

Autophosphorylated PGK150

Table 1.2: Common loss of function mutations in tumor suppressors promote glycolytic 
upregulation in human malignancies 



 17  

available in vitro and the diversity of cellular components and spatial heterogeneity in the 

whole tissues.  The interplay of cancer cell, stromal, and immune cell metabolism in vivo, 

therefore, has not been well disentangled and displays the challenges and opportunities 

to dissect this arena to better treat this heterogenous disease. 

Warburg Metabolism as essential feature of infiltrating immune cells 

 Previous reviews have extensively discussed the steps required to generate anti-

tumor immunity (Chen & Mellman, 2013) as well as the conditions for efficacious 

immunotherapy (Galluzzi et al., 2018). To have proper antigen shedding, antigen 

presentation, immune cell activation, immune effector function and ultimately memory 

generation, the anti-tumor compartment of tissue resident dendritic cell (DC), M1 

macrophages, Natural Killer (NK) Cells and Th1/CTLs requires complex metabolic 

reprogramming. The field of immunometabolism now provides a framework to understand 

the necessary metabolic changes that promote the effective T cell response to cancer 

and how cancer cells and immune cells may interact in the tumor microenvironment. 

These studies illustrate the similarities and differences among these diverse cell types, 

and how nutrient limitations and molecular cues in the TME promote immune cell 

dysfunction, regulatory immune cell subsets, and a niche for tumor maintenance and 

proliferation. The same set of principles have also been applied to myeloid maturation, 

tumor cell phagocytosis, NK cell licensing, and DC antigen presentation where ultimate 

immune cell fate and function are inextricably linked to unique metabolic programs that 

produce targetable vulnerabilities.  
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Metabolic diversity underlies divergent T cell phenotypes and function 
 

 Consistent with aerobic glycolysis as a program for proliferative metabolism, 

activated anti-tumor cells employ the same aerobic glycolysis as transformed tumor cells 

to perform their function (Andrejeva & Rathmell, 2017). T cells must express the master 

regulator of glycolysis, HIF1, in addition to the main glucose transporter, Glut1 

(Macintyre et al., 2014) to perform their anti-tumor function. In T cells, HIF1 and c-Myc 

protein abundance increases with activation. T cells are unable to proliferate in response 

to activation with loss of c-Myc but can proliferate with loss of HIF1 (Wang et al., 2011) 

(Figure 1.2A). HIF1 is not dispensable for sustained effector function, as this 

transcription factor is essential for anti-tumor immune responses in adoptive cell transfer 

(ACT) models and immune checkpoint blockade (ICB) (Palazon et al., 2017) (Doedens 

et al., 2013). In line with these observations, T cells with genetically constitutive HIF 

activation via loss of the hydroxylation proteins (PHD1/2/3), have increased glycolytic rate 

and have increased ability to eliminate lung metastasis in a metastatic model of 

melanoma (Clever et al., 2016). 

 Not only is glycolysis essential for T cell proliferation and activation, but each T cell 

subsets employs a different metabolic program to gain differential effector functions 

(Kaymak et al., 2021). Th1 and CD8 cytotoxic T cells, for example, are dependent on 

uptake of glucose and glutamine through Glut1 and ASCT2 but may be independent of 

the glutamine metabolism enzyme Glutaminase (GLS). All the while, Th17 cells rely on 

both uptake and GLS (Johnson et al., 2018).  Conversely, regulatory T cells may be 

enhanced when glutamine uptake is suppressed.  It is important, therefore, to consider 
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how the metabolic constraints of the TME may promote one T cell or myeloid subset over 

the other. (Figure 1.2B). Additionally, forced expression of the canonical Treg 

Transcription factor, FoxP3, decreases active AKT and Glut1 cell surface mobilization, 

illustrating that lineage and metabolic function are intricately linked (Basu et al., 2015). 

Recent data supports that oxidative metabolism is necessary for Treg function in the TME. 

Strikingly, mice with Treg specific mitochondrial complex three deficiency have potent anti-

tumor immunity due to loss of functionality of these suppressive cells (Weinberg et al., 

2019)  (Figure 1.2B). This oxidative program includes the uptake of TME lactate to 

sustain Treg suppressive function (Watson et al., 2021).  

Figure 1.2: The unique metabolic features of T cell subsets. A: T cell activation via the TCR results in 
glycolytic reprogramming and a significant increase in mitochondrial metabolism. Recent tracing 
experiments demonstrates that glucose is metabolized into both lactate and into Krebs cycle intermediates 
in vivo. These metabolic changes are dictated by the oncogenic transcription factors HIF and myc.  B: Pro 
tumor Tregs are more oxidative in comparison to their anti-tumor counterparts. These tumor promoting cells 
can metabolize lactate in the TME, convert it to pyruvate via LDH and use this substrate as mitochondrial 
fuel. The Treg identity marker FOXP3 drives this substantial increase in mitochondrial biogenesis and 
function while recently mitochondrial complex 3 has been shown to be crucial for ultimate Treg suppressive 
function. 

Co-receptor engagement alters metabolism in the tumor microenvironment 
 

Often overlooked is that the two most clinically relevant checkpoints, CTLA4 and 

PD-1, are negative regulators of T cell glycolysis (Fig 1.3). Engagement of the T-cell 



 20  

co-stimulatory receptor CD28 by the ligands B7.1 or B7.2 leads to mobilization of Glut1 

and reprogramming for anabolic metabolism via PI3K-AKT and mTORC1. Conversely, 

CTLA4 both competes for binding with B7.1 and B7.2 and can directly recruit the 

phosphate SHP2 to inhibit CD28 and TCR signaling and restrict Glut1 translocation, 

glucose uptake and T cell activation (Frauwirth et al., 2002).  Thus, blockade of CTLA4 

in ICB removes an inhibitory brake to result in increased CD28 and TCR signaling and 

greater levels of T cell aerobic glycolysis. Recent work from Zappasodi et al. 

demonstrates that CTLA4 inhibition on TME resident Tregs alters their oxidative 

program to promote a more glycolytic phenotype. With this shift in metabolism towards 

increase glucose utilization, Tregs become functionally impaired and thus create a 

more pro-inflammatory, anti-tumor microenvironment (Zappasodi et al., 2021). Similar 

phenotypes have been shown when Tregs have been exposed to pathogen association 

molecular patterns, where engagement with immunogenic substrates results in 

increase Treg glycolysis and compromised suppressive activity (Gerriets et al., 2016). 

This shift is consistent with enhanced PI3K-Akt-mTORC1 signaling, as genetic deletion 

of the lipid phosphatase, PTEN, led to enhanced Akt-mTORC1 signaling that 

destabilized Treg and led to an inflammatory autoimmunity (Huynh et al., 2015; 

Shrestha et al., 2015). 

PD-1, another critical immune T cell checkpoint with that has been successfully 

targeted in the clinic, also negatively regulates T cell glycolysis and mitochondrial 

metabolism (Patsoukis et al., 2015). The interaction of PD-1 with PD-1 ligand (PD-L1) 

blocks glycolysis through the inhibition of PI3K/PKB/mTOR pathway and the 

downregulation of Glut1 (Boussiotis et al., 2014). However, PD-1 ligation can also 
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activate AMPK, that triggers fatty acid B-oxidation (FAO) while restraining utilization of 

and branched chain amino acids (Patsoukis et al., 2015; Sharpe & Pauken, 2018). T 

cell differentiation into effectors requires glycolysis as described above in CD28, so PD-

1 may block terminal differentiation by inhibiting glycolysis. In contrast, CTLA-4 inhibits 

glycolysis but not FAO (Patsoukis et al., 2015). PD-1 blockade restores T cell glycolysis 

and IFN production in T cells (Staron et al., 2014). These two negative regulatory 

pathways do differ in their mechanism of mTORC suppression (Figure 1.3A). PD-1 

decreases upstream PI3K activity where as CTLA4 increases Protein Phosphatase 2a 

and SHP activity to inactive AKT(Parry et al., 2005). While the metabolic implications 

of CTLA4 and PD-1 blockade remain under study, the direct role to suppress anabolic 

Akt-mTORC1 directed signaling suggests that metabolic reinvigoration may be a 

contributory mechanism of action (Figure 1.3C).  

Unsurprisingly, other T cell inhibitory checkpoints also impact metabolic fate of 

tumor infiltrating T Cells (Figure 1.3A/B). In line with the suppressive role of PD-

1/CTLA4 on T cell metabolism, inhibitory co-receptors are now known to decrease the 

metabolic rate of activated T cells. Lymphocyte activation gene 3 (LAG-3) deficient 

naïve CD4 T cells reveal increased oxygen consumption and enhanced glycolysis via 

activated STAT5 signaling (Previte et al., 2019). The interaction of TIGIT on T cells with 

CD155 on stomach cancer dampens glucose uptake, decreases T Cell glycolysis and 

the expression of Glut1 and hexokinase 2 (HK2) (He et al., 2017). Additionally, TIM3 

engagement down-regulates glucose uptake and consumption by down-regulating 

Glut1 expression (Lee et al., 2020). Stimulation of GITR, a co-inhibitory receptor, 
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augments metabolic activities in T cells (Sabharwal et al., 2018). Thus, each co-

receptor has distinct function on T cell metabolism. 

 Activating T Cell co-receptors, conversely, can improve metabolic fitness of 

activated T Cells.  4-1BB agonism activates the liver kinase B1 (LKB1)-AMP-activated 

protein kinase (AMPK)-acetyl-CoA carboxylase (ACC) signaling pathway, which is 

important for the metabolism of glucose and fatty acids (Choi et al., 2017) . Although 4-

1BB co-signaling contributes glycolysis, it induces a higher mitochondrial oxidative 

phosphorylation leading to the generation of memory T cells rather than the 

differentiation into effector cells by CD28. 4-1BB signaling also enhances mitochondrial 

capacity even in exhausted T cells via p38-MAPK activation (Menk et al., 2018). Recent 

studies demonstrate that the 4-1BB intracellular signaling domain in chimeric antigen 

receptor T cells promotes mitochondrial biogenesis and improves oxidative metabolism 

(Kawalekar et al., 2016; Long et al., 2015). In line with the metabolic reprogramming 

described above, 4-1BB ligation induces Glut1 expression (Choi et al., 2017).  The 

stimulation of ICOS, another immunoglobulin superfamily member, enhances 

glycolysis via activation of mTORC1 and mTORC2 as well as Glut1 induction (Zeng et 

al., 2016). Another TNF receptor superfamily member, OX40 is highly expressed with 

Glut1 in metabolically active CD4+ T cells (Palmer et al., 2017). OX40 regulates 

glycolysis and lipid metabolism in Tregs and promotes T cell expansion and the 

differentiation of memory T cells (Pacella et al., 2018). CD27, normally expressed in 

resting T cells provides strong co-stimulation. CD27 agonism induces the expression 

of genes for glycolysis, glutaminolysis and fatty acid synthesis (Buchan et al., 2018). 
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The increased expression of Pim-1 by CD27 co-signaling may play the role on 

glycolysis (Beharry et al., 2011; Peperzak et al., 2010). 

 Ligands for these T cell checkpoints have metabolic implications on the TME. 

PD-L1 (also known as B7-H1) has been known as a ligand (Dong et al., 2002; Freeman 

et al., 2000) but it can receive signals as a receptor (Azuma et al., 2008; Jalali et al., 

2019) impacting cancer cell biology agnostic of the immune system. PD-L1 expression 

on tumor cells may activate AKT-mTOR pathway and in turn glycolysis in cancer cells 

to increase cancer cell glucose uptake (Chang et al., 2015). Interestingly, this type of 

metabolic reprogramming and resultant microenvironmental acidosis by lactate 

secretion combined with hypoxia can further up-regulate cancer cell PD-L1 expression 

via HIF1, and directly lead to inhibition of T cell mediated cytotoxicity (Barsoum et al., 

2014; Fischer et al., 2007) . PD-L1 blockade restores glucose levels in the tumor 

microenvironment, supporting adequate T cell function in the TME may be hampered 

by lactate  (Huang et al., 2017). Among co-inhibitory ligands besides PD-L1, the 

immunological function of B7-H3, also known as CD276, remains to be elucidated.  B7-

H3 has conflicting co-stimulatory and co-inhibitory molecules depending on different 

contexts (Wang et al., 2014). Non-immunological roles of B7-H3 include cancer 

invasion, metastasis, drug resistance in multiple different cancer (Chen et al., 2008; Liu 

et al., 2011; Tekle et al., 2012; Zhao, Li, et al., 2013; Zhao, Zhang, et al., 2013) . 

Additionally, B7-H3 intrinsically regulates cancer cell metabolism. B7-H3 expression 

positively regulates HIF1α, leading to glycolysis, lactate production and tumor growth 

(Lim et al., 2016). B7-H3 also activates AKT/mTOR pathway, that enhances glycolysis 

in breast cancers (Nunes-Xavier et al., 2016) and STAT3 pathway that promotes 
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hexokinase 2 (HK2) in colorectal cancers (Shi et al., 2019). It raises a possibility that 

co-inhibitory ligands such as B7-H3 enhance glucose metabolism in cancer cells, 

ultimately converting the TME to an overall more suppressive immune environment.  

Another B7 family member, B7-H4 is a co-inhibitory ligand although its binding partner 

has not been fully established (Sica et al., 2003). B7-H4 on donor or host immune cells 

prevents graft-versus-host disease lethality in MHC mismatched bone marrow 

transplantation models (Saha et al., 2019). The genetic deletion of B7-H4 in donor T 

cells or recipient immune cells enhances mitochondrial activity, superoxide production, 

Glut1 expression, glucose uptake and metabolism. FAO and fatty acid uptake also 

increased in B7-H4-/- T cells in murine GVHD models (Saha et al., 2019)  

 
Figure 1.3: Immunometabolic consequences of checkpoint blockade. A: Ligation of CD28, 4-1BB, 
OX40 promote increased mitochondrial metabolism and augment PI3K signaling tone. PD-1 and CTLA4 
directly suppressive mTOR activation through distinct mechanism. B: Using stimulatory antibodies against 
4-1BB and OX40 to improve T cell metabolism and enhance tumor elimination. C: Inhibition of T cell co-
stimulation via CTLA4 and PD-1 results in increased mTOR signaling. The clinical success of immune 
checkpoint blockade via of PD-1 and CTLA4 inhibition may be in the ability of these therapies to 
enhance/reinvigorate T cell metabolism in the TME. 
  

The work above supports a model where glycolytic metabolism is a component of 

anti-tumor T cells and oxidative metabolism is crucial to Treg suppressive capacity.  
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Adaptation of T cells to the TME, however, can lead to shifts in metabolism and defects 

in both glycolysis and mitochondria can directly contribute to impaired immune function.  

T cells from clear cell renal cell carcinoma (RCC) samples were found to have reduced 

glucose uptake as well as fragmented and inefficient mitochondria. Surprisingly, when 

supplemented with pyruvate, antioxidants, or potent co-stimulation through CD28 could 

rescue effector function (Beckermann et al., 2020; Siska et al., 2017). Similarly, T cells 

from mouse tumors were found to rapidly develop mitochondrial and functional defects 

and anti-tumor immunity could be restored by enhancing mitochondrial biogenesis or 

promoting lipid uptake to support more efficient mitochondrial metabolism (Zhang et al., 

2017). These data suggest that T cells may adopt multiple metabolic states in the TME. 

Enhancing aerobic glycolysis may be only one path towards anti-tumor immunity while 

enhancing mitochondrial function can be another. The mechanism through which multiple 

signal checkpoint ligands are integrated and ultimately alter the metabolic capacity of 

these crucial cells is yet to be fully elucidated. However, each pathway endows unique 

signaling and metabolic programs that can impact therapeutic efficacy and patient 

outcomes. It remains challenging with current technologies to fully dissociate these 

models, as glucose uptake may play a role to both support glycolysis as well as support 

mitochondrial metabolism through pyruvate oxidation.  The key distinction yet to be 

established may be not if T cells utilize glucose metabolism, but instead if pyruvate is 

converted to lactate or provides a mitochondrial fuel. Future therapeutic success will be 

predicated on understanding how TILs use metabolic substrate to support differentiation 

and support their anti-tumor function. 
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Metabolic differences underlie diverse TME myeloid biology 
 

In the TME, myeloid cells are quite heterogeneous (Katzenelenbogen et al., 2020; 

Molgora et al., 2020; Song et al., 2019; Tcyganov et al., 2018; Zhang et al., 2020). A 

majority of the myeloid infiltrate in mouse tumor models and the human TME are thought 

to be of monocyte origin. These cells are recruited to the TME due to tumor associated 

inflammation and tumor glycolytic gene transcription (Cai et al., 2017; W. Li et al., 2018). 

In the development from monocyte to macrophage or granulocyte precursor to neutrophil, 

these cells exist in a variety of premature cell state, typically referred to as the myeloid 

derived suppressor cell (MDSC) or immature myeloid cell (iMC). Regardless of their 

ultimate fate, the maturation from blood monocyte to a more mature, yet suppressive cell 

via M-CSF or GM-CSF, requires an PI3K/AKT/mTOR dependent upregulation of 

glycolysis (Goffaux et al., 2017; Hammami et al., 2012; Karmaus et al., 2017; Kelley et 

al., 1999; Ribechini et al., 2017; Tavakoli et al., 2017). Intriguingly, hyperglycemia alone 

can increase myelopoiesis and a peripheral accumulation of these suppressor cells 

(Nagareddy et al., 2013). Suppressive MDSCs and iMCs both increase expression of 

glycolytic machinery while residing in the TME  (Jian et al., 2017; Wu et al., 2019).  For 

MDSCs infiltration in the TME, HIF2 is needed to support their glycolytic metabolism 

(Imtiyaz et al., 2010). Recently it has been appreciated that the transcription factor, 

RORT is essential for MDSC maintenance (Strauss et al., 2015). Active RORT has 

been shown to increase glycolytic metabolism in bladder cancer (D. Cao et al., 2019)  and 

in the glucose addicted Th17 cells (Gerriets et al., 2016; Hochrein et al., 2022; Johnson 

et al., 2018). To support the glycolytic nature of MDSCs, mTOR signaling tone is elevated 

in TME infiltrating MDSCs, and treatment with rapamycin inhibits their suppressive 
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function (Deng et al., 2018). Myeloid specific mTOR deletion impairs MDSC maintenance 

in the TME and results in concomitate infiltration by anti-tumor IFN+ CTLs (T. Wu et al., 

2016). Increased glycolytic rate related promotes MDSC cell fate as well as supports the 

suppressive functionality of these cells. MDSC are dependent on extracellular glucose to 

restrict T cell proliferation (Jian et al., 2017) while iMCs require exogenous glutamine (Wu 

et al., 2019). HIF1 stabilization in MDSCs promotes PD-L1 surface expression (Noman 

et al., 2014) as well as expression of immunosuppressive enzyme, iNOS and ARG1 

(Corzo et al., 2010). It has been recently appreciated that MDSCs use glycolysis derived 

methylglyoxal, a non-enzymatic reactive species, to impair T cell proliferation and 

activation (Baumann et al., 2020).   

 Once monocyte derived myeloid cells mature into macrophages, there are 

canonically thought to possess either anti-tumor (M1-like) or protumor (M2-like) effector 

programs. It is worth noting that these two phenotypes are not truly discrete entities but 

rather a continuum of phenotypes that are quite plastic. Additionally, based on the tumor 

type and treatment modality, the prognostic significance and/or molecular phenotype of 

tumor associated macrophages (TAMs) may be quite divergent (Dannenmann et al., 

2013; Fakih et al., 2019; Fridman et al., 2017). It is well appreciated that TAM infiltration 

is correlated to an increase in glycolytic enzyme expression (D. Liu et al., 2017) and 

increased in whole tumor glucose uptake (Jeong et al., 2019). Via transcriptomic and 

metabolic labeling studies, it is appreciated that M1-like macrophages are incredibly 

glycolytic while M2-like macrophages utilize a more oxidative program (Geeraerts et al., 

2021; Jha et al., 2015; Puchalska et al., 2018; Rodriguez-Prados et al., 2010). Fitting this 

model, constitutive genetic mTOR activation increases M1 phenotypes and impairs M2 
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phenotypes (Byles et al., 2013). M1 macrophages are canonically induced with exposure 

to LPS/IFN, which have extensively been shown to stabilize HIF1, secondary to NF-kB 

activation (Blouin et al., 2004; Cramer et al., 2003; C. Li et al., 2018; Liu et al., 2016; Rius 

et al., 2008; T. Wang et al., 2017). HIF1 is stabilized in these M1-like cells due to their 

unique metabolic program, which contains a broken Tricarboxylic acid cycle (TCA) (Jha 

et al., 2015) With this program, M1 cells accumulate and oxidize succinate. This TCA 

intermediate directly modifies both HIF1 and the glycolytic transcriptional coactivator 

PKM2 to increase glycolytic gene transcription and inflammatory cytokines like IL1ß  (Mills 

et al., 2016; Palsson-McDermott et al., 2015; T. Wang et al., 2017). Therefore, as one 

would expect, LPS/IFN stimulation results in a profound increase Glut1 and MCT4 

expression (Freemerman et al., 2014; Fukuzumi et al., 1996; Z. Tan, N. Xie, S. Banerjee, 

et al., 2015). These metabolic transporters ultimately promote glucose uptake and lactate 

venting (Hard, 1970). Diverting excess glucose into the mitochondria via pyruvate 

dehydrogenase kinase knockdown in LPS stimulated M1-like cells decreases 

inflammatory cytokine response (TNF, IL1ß) while increasing M2-like phenotypes (Arg1 

and IL10 expression) (Z. Tan, N. Xie, H. Cui, et al., 2015). Even though the TCA cycle 

does not complete in full in M1-like cells, and PDK pyruvate dehydrogenase kinase is 

necessary for M1-like function, citrate is a key molecule these inflammatory 

macrophages. Transport of citrate out of the mitochondrion via acetylated SLC25a1 

(Infantino et al., 2014; Palmieri et al., 2015) and its conversion to acetate via ATP-citrate 

lyase (ACYL) is crucial for maintenance of the M1-like phenotype and inflammatory 

cytokine expression (Lauterbach et al., 2019). This increase in acetate drives de novo 

lipid synthesis via SREBP mediated transcription (Im et al., 2011).  
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Both the process of phagocytosis (Michl et al., 1976; Morioka et al., 2018) as well 

as antigen presentation  (Acosta-Iborra et al., 2009) require an increase in macrophage 

glycolysis. Vaccine responses can be enhanced by specifically stabilizing HIF1 in 

macrophages (Bhandari et al., 2013). In inflammatory models of carcinogenesis, 

increasing mTORC1 signaling genetically in macrophages increases tumor size and 

multiplicity (Katholnig et al., 2019) while mTORC1 deletion prevents TAM infiltration into 

subcutaneous tumor models (Ding et al., 2019). Prolonged HIF1 stabilization in 

macrophages promotes TAM tumor residency (Liu et al., 2014). Like MDSCs, TAMs 

require HIF1 to suppress the anti-tumor T cell response (Doedens et al., 2010). The 

anti-tumor effect of rapamycin analogs may be in part due to suppressing the activity of 

these glycolytic myeloid cells (Wenes et al., 2016). These data support a model where 

glucose utilization and signaling is at the core of both the anti-tumor and pro-tumor 

effectors of macrophages in the TME.  

As alluded to earlier, M2-like macrophages have a divergent metabolic program. 

IL4 stimulation increases mitochondrial biogenesis via PCG1ß transcription, while forced 

over expression of this factor prevents M1-like polarization (Vats et al., 2006). The 

mitochondrial fusion and oxidative metabolism secondary to IL4 stimulation is so 

significant that it prevents M1 repolarization (Van den Bossche et al., 2016). Differing from 

their inflammatory counterpart, M2 macrophages implement the non-oxidative pentose 

phosphate pathway. Glucose derived G6PD is metabolized by CARKL, while deleting this 

enzyme pushes macrophage to a more M1-like fate (Haschemi et al., 2012). Interestingly, 

in vitro glucose depletion has no effect on generation of M2-like macrophages (Wang et 

al., 2018). In comparison to M1-like cells, M2-like macrophages have a profound reliance 
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on extracellular glutamine, which is ultimately used to UDP-GlnNac important fate 

proteins like CD206 as well as increasing cellular alpha-ketoglutarate (Hinshaw et al., 

2021; Jha et al., 2015; P. S. Liu et al., 2017). It is now appreciated that the transcription 

factor C-maf drives these oxidative and anaplerotic programs, which dictate the 

suppressive functions of this subtype of macrophage (M. Liu et al., 2020). This glutamine 

utilization is so significant, that M2-like cells employ the cataplerotic enzyme Glutamine 

synthetase (GS) to increase intracellular glutamine pools from glutamate. This may be a 

metabolic vulnerability of these protumor cells given that deleting GS in myeloid cells 

prevents M2-like maturation and decreases tumor burden/tumor metastasis in vivo 

(Palmieri et al., 2017). Unlike M1 macrophages, M2 macrophages upregulate the lipid 

transport protein, CD36 when activated. M2-like cells appear to have increased reliance 

on extracellular lipids (Huang et al., 2014) where as M1-like cells synthesize their own 

lipids via SREBP as mentioned approve. 

Metabolic alterations support DC cross presentation  
 

Like antigen presenting macrophages, DCs demonstrate a wide variety of 

phenotypes, which have district roles in tissue homeostasis, inflammation and the TME 

(Brown et al., 2019; Guilliams et al., 2016) . Recent research in both treatment naïve, and 

ICB treated patients indicate that the most active anti-tumor DC is the tissue resident 

CD103+ IRF8, BATF3 conventional DCs1 (cDC1, (Durai et al., 2019; Fuertes et al., 2011; 

Hubert et al., 2020; Kurotaki et al., 2019; Meyer et al., 2018; Spranger et al., 2015; 

Spranger et al., 2017)). The human markers of cDC1 are CD141, Clec9a, XCR1 (Bachem 

et al., 2010; Crozat et al., 2010; Poulin et al., 2010). cDC1s mature in the presence of 

FLT3L and have the unique ability to cross present antigens to anti-tumor CTLs  (Mayer 
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et al., 2014; Naik et al., 2005; Waskow et al., 2008). Strong evidence now exists to support 

vaccines FLT3L induced cDC1 are more efficacious than previous generations of GM-

CSF derived DCs (Hammerich et al., 2019; Laoui et al., 2016; Wculek et al., 2019). 

Therefore, it is essential to understand the metabolic pathways that govern fate and 

function of cDC1s in the tissues to effectively generate anti-tumor immunity.  

There is significant heterogeneity in our understanding of DC metabolism, 

underlying the many different culture and in vivo techniques in which to study these cells. 

The following work summarizes what is known about cDC1 biology given the prognostic 

role of these cells in cancer. In vitro generation of cDC1s with FLT3L is accompanied with 

an increase in glucose uptake, and Glut1 surface expression. Successful generation of 

functional cDC1 in culture is dependent on glycolysis  (Kratchmarov et al., 2018). Not 

surprisingly, FLT3L activates the PI3K/mTOR pathway while treatment with rapamycin 

inhibits FLT3L driven cDC1 generation both in vivo and in vitro (Hackstein et al., 2003). 

mTORC1 deletion specifically impairs cDC1 infiltration and function in the lungs while 

promoting a more inflammatory DC phenotype (Sinclair et al., 2017).  Genetic 

hyperactivation of mTOR (via PTEN or LAMPTOR deletion) results in an accumulation of 

cDC1s in mice (Sathaliyawala et al., 2010; Scheffler et al., 2014). Supporting the 

glycolytic nature of cDC1s, hexokinase inhibition in models of inflammation specifically 

impair DC infiltration into the lungs (Guak et al., 2018).   

Other metabolic transcriptional activators regulate cDC1 glycolytic fate. L-myc is 

found to be specifically upregulated with FLT3L differentiation and DC migration into the 

tissue. Deletion of l-myc, impairs DC infiltration of a wide variety of tissues and results in 

a decreased vaccine response (Kc et al., 2014). The hippo pathway is also known to 
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support the increased oxidative and glycolytic metabolism required for successful antigen 

cross presentation by cDC1s. DC specific loss of hippo results impaired glycolytic and 

mitochondrial reprogramming, thus decreasing IL12 expression and restricting T cell 

proliferation and activation (Du et al., 2018). Exposure to IFN and Poly(I:C) results in 

stabilization of HIF1 and thus increases DC glycolysis (Pantel et al., 2014). LPS 

stimulation of cDC1s induces rapid glycolysis that is mediated by a unique axis, Tank 

Binding Kinase 1/AKT/HK. Here we appreciate that DCs bypasses PI3K/mTORs 

regulation of glycolysis (at least in early activation), typically seen in tumor cells, 

macrophages, and T cells. The metabolic consequence of increased DC glycolysis and 

mitochondrial biogenesis is to generate additional citrate and NADPH (Everts et al., 2014; 

D. Wu et al., 2016). These metabolites are crucial for the synthesis of new lipids, which 

DCs require for their exquisite increased antigen presentation (Everts et al., 2014). 

Further evidence to support the key role of lipid generation in cDC1s is that cytoplasmic 

lipid bodies are seen in more immunogenic subsets of DCs with enhanced cross 

presentation (Bougneres et al., 2009; den Brok et al., 2016; Ibrahim et al., 2012). 

In a similar vein to Tregs and suppressive myeloid cells, immunosuppressive 

tolerogenic DCs have unique metabolic features that may underlie the dysfunctional 

immune response seen in cancer patients. Tumor derived WNT5a induces a fatty acid 

oxidation program that increases DC IDO activity and suppresses DC IL12 expression 

(Zhao et al., 2018). Interestingly, dysfunctional tumor infiltrating DCs also have substantial 

lipid droplets (Herber et al., 2010).  However, in TME resident dendritic cells, these 

structures are enriched with triglycerides and oxidized lipids, which ultimately restrict 

antigen presentation (Ramakrishnan et al., 2014; Veglia et al., 2017) The origin of these 
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oxidized lipids is currently unknown (potentially consumed from the oxidative milieu of the 

TME or from the fatty acid oxidation program seen in Zhao (Zhao et al., 2018). These 

oxidized lipid species are known to activate the XBP1 axis in cDCs and ultimately prevent 

the T cell activation needed for tumor elimination (Cubillos-Ruiz et al., 2015; Osorio et al., 

2014).  

NK cells activation and licensing requires metabolic re-wiring 
 

NK cells in the TME can demonstrate substantial anti-tumor efficacy. NK cells 

become activated when engaged with stimulatory ligands in the absence of inhibitory 

ligands like MHC class one. NK cells also contribute to the anti-tumor efficacy of 

therapeutic monoclonal antibodies via antibody dependent cellular cytotoxicity and their 

surface Fc receptor, CD16. Recently, it has been appreciated that NK cells are also 

crucial for the efficacy of PD-1 blockade (Hsu et al., 2018). Activated NK cells release 

significant amounts of anti-tumor cytokines like IFN as well as kill directly through release 

of Granzyme B and Perforin. Recent evidence also has demonstrated that NK cells 

release FLT3L in the TME that promote recruitment and generation of crucial glycolytic 

anti-tumor cDCs  (Barry et al., 2018; Bottcher et al., 2018). Therefore, understanding their 

metabolic reprogramming is important to elimination cancer cells as well as perpetuating 

the cancer-immune cell cycle (Chen & Mellman, 2013).  

In line with T cells, mTORC1 activation is crucial for NK cell activation in response 

to activating receptors (Keppel et al., 2015) and the response to anti-tumor cytokines IL2, 

IL12, and IL15 (Donnelly et al., 2014; Keating et al., 2016; Marcais et al., 2014). Genetic 

deletion of mTORC1, over expression of PTEN, or acute pharmacological inhibition of 

mTORC1 in NK cells impairs granzyme B expression and cytotoxicity. Additionally, NK 
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cells stimulated in glucose-deficient media, or treated with the glycolysis inhibitor 2-

deoxyglucose (2DG) decrease pS6K levels and anti-tumor effector molecules (Briercheck 

et al., 2015; Donnelly et al., 2014; Mah et al., 2017). NK cell expression of PDK1 is needed 

for in vivo elimination of metastatic tumors (He et al., 2019; Yang et al., 2015). Further 

supporting mTORC1’s central role in NK cell activation are observations that ligation of 

the NK inhibitory receptor KLRG1 activates AMPK, a key negative regulator of mTORC1. 

Engagement of the inhibitory receptor KLRG1 prevents NK cells from proliferating in an 

AMPK dependent manner (Muller-Durovic et al., 2016). Oncolytic virus therapy that 

increases NK cell glycolysis have been shown to synergize with IL15 treatment, indicating 

that increased NK cell glycolysis can be used to generate improved NK cell 

immunotherapy (Samudio et al., 2016) (which is a growing area of adoptive cell therapy 

based on recent clinical trial excitement (E. Liu et al., 2020). Metabolic dysfunction may 

underlie defective NK cell function in the TME. Recent evidence supports that tumor 

derived TGFß can cause NK cell utilization of the gluconeogenic enzyme fructose 1,6-

bisphosphatase. Upregulation of this enzyme ultimately impairs NK mediated cytotoxicity 

by limiting the glycolytic capacity of infiltrating NK cells  (Cong et al., 2018; Slattery et al., 

2021).  

 NK cells demonstrate unique metabolic features when compared to other anti-

tumor immune cells. The anabolic fatty acid transcription factor SREBP has been shown 

to be a crucial regulator of NK cell glycolysis via inducing the citrate-malate shuttle. 

Surprisingly, SREBP-deficient NK cells have compromised oxidative and glycolytic 

metabolism and are unable to proliferate while producing significantly reduced levels of 

Granzyme B and IFN. The impairment is mediated by a decrease in the necessary citrate 
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malate shuttle enzyme, ACLY. NK cell deficits specific to SREBP loss were phenocopied 

with ACLY loss (Assmann et al., 2017). Consistent with this model, adoptive NK cell 

therapy in the B16 melanoma model was compromised with NK cell SREBP inhibition 

(Assmann et al., 2017). More recent work demonstrated that the citrate malate shuttle is 

sufficient to support active NK cell OXPHOS, while glutaminolysis appears dispensary for 

mitochondrial metabolism. Even though glutamine catabolism is not essential, glutamine 

remains an important nutrient for NK cell function. Upon IL2/IL12 stimulation, myc is 

stabilized only in the presence of extracellular glutamine. The cellular uptake of glutamine 

improves NK cell activation and tumor lysis. Surprisingly, the anti-tumor effect of 

glutamine inhibition was not dependent glutaminolysis, suggesting that the role of 

glutamine may be in part through in non-enzymatic mechanisms, such as a cofactor in 

the hexosamine pathway or as an antiporter substrate for uptake of other key immune 

activating nutrients (Loftus et al., 2018).  

Like other immune cell lineages, NK cells also demonstrate subset specific 

metabolic programs. Licensed NK cells, which recognized MHC-I deficient tumors, have 

been shown to have an increased reliance on glycolytic metabolism and glutaminolysis 

(Schafer et al., 2019), while unlicensed NK cells are more reliant on mitochondrial 

OXPHOS. These metabolic discrepancies may, however, be related to differences in 

mouse and human NK cells or that the previous interrogations of glutamine metabolism 

in mouse T cells (Loftus et al., 2018) did not subdivide NK cell phenotypes by licensed or 

unlicensed.  
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Tumor cells subvert anti-tumor immunity via production of inhibitory metabolites 
and depletion of essential metabolites in the microenvironment 
 
Lactic acid and pH as immunosuppressants:  
 
For aerobic glycolysis to proceed at elevated rates, both tumor and immune cells must 

dispose of intracellular lactate to maintain cytosolic redox balance and glycolytic flux. It 

comes as no surprise then that the main transporters for lactate, MCT1 (Miranda-

Goncalves et al., 2016) and MCT4 (Ullah et al., 2006) are transcriptional targets of 

HIF1 (Figure 1.4). With hypoxic induction of lactate generating enzyme, LDH (Firth et 

al., 1995), the TME is rich with extracellular lactate acidic protons. These H+ ions are 

exported into the extracellular space by MCT1, 3, and 4 and the Na+/H+ symporter, 

NHE1, which is also a HIF1 target (Shimoda et al., 2006). The CO2 produced from 

pyruvate oxidation becomes hydrated extracellularly and transformed into carbonic acid 

and a free proton via another HIF responsive gene, Carbonic Anhydrase IX 

(CAIX)(Mookerjee et al., 2015; Svastova et al., 2004). Therefore, the TME can be rich 

in extracellular lactate (Siska et al., 2017; Sullivan et al., 2019)  have a pH as low as 

6.0 as well as depleted of oxygen. Multiplex immunohistochemistry has confirmed that 

hypoxic areas of tumors are high in Glut1, LDH, CAIX, and MCT4 to demonstrate that 

these lactate rich, low pH environments are truly present in the TME (Figure 1.4) 

(Rademakers et al., 2011). There is now evidence that these harsh metabolic 

environments actively evade the immune system. The depletion of oxygen in tumors 

can have negative consequences on T cell fitness. Hypoxia experienced CD8 T cells 

have compromised mitochondrial metabolism and ROS tolerance, which prevent tumor 

clearance (Scharping et al., 2021).  Cancer cell expression of HIF response CAIX can 

recruit suppressive myeloid cells via expression of G-CSF (Chafe et al., 2015) while 
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melanoma patients who have high bulk glycolysis transcriptomic signature have worse 

progression free survival on PD-1 blockade (Renner et al., 2019) as well as adoptive 

cell therapy(Cascone et al., 2018) . Tumors resistant to combined ICB demonstrate 

hypermetabolic phenotypes where they produce much more lactate in vivo then their 

parental sensitive line (Jaiswal et al., 2020). Intriguingly, increasing ambient oxygen to 

60% decreases tumor cell metastasis while increasing T Cell recruitment (Hatfield et 

al., 2015).  

 Lactic acid is also now recognized as a directly immunosuppressive molecule to 

all anti-tumor immune cell types. Human and mouse effector T cells divide less, produce 

less cytokine and are less able to kill cancer cells in physiologically relevant lactic acid 

(Brand et al., 2016; Fischer et al., 2007; Mendler et al., 2012). This inhibition of effector 

activity is mediated through decreased NFAT translocation to the nucleus secondary to 

high lactate concentrations (Brand et al., 2016), decrease in intracellular pH(Fischer et 

al., 2007) and less active p38 and c-JNK/c-JUN  (Mendler et al., 2012). High levels of 

lactate also promote more regulatory T cells (Angelin et al., 2017; Watson et al., 2021) 

whose presence in the TME promotes tumor progression and metastasis across many 

tumor types (Fridman et al., 2012). These tumors promoting CD4+ T regulatory cells (T-

regs) appear to use lactate for their oxidative metabolic program, endowing them survival 

benefit in the TME rich of lactate (Angelin et al., 2017; Brand et al., 2016; Cortese et al., 

2020; Siska et al., 2017). Loss of the lactate importer MCT1 in a Treg specific manner 

resulted in improved anti-tumor function, illustrating that this metabolite acts as fuel for 

these suppressive cells (Watson et al., 2021). Recently it has been shown that lactate 

can increase Treg PD1 levels while decreasing T effector PD1, thus redirecting PD1 
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blockade to paradoxically promote Treg function (Kumagai et al., 2022).  High levels of 

lactate are also able to polarize macrophages into a more immunosuppressive M2 like 

phenotypes (Colegio et al., 2014), as demonstrated by expression of Arg1, Vegf, Fizz1, 

Mgl1 and Mgl2.  The mechanism of lactate’s immunosuppressive action is unclear in 

myeloid cells, as the immune modulatory effects of lactate do not appear governed by 

macrophage expression of GPR81, a GPCR that binds lactate (Errea et al., 2016). Lactic 

acid has been shown to inhibit the professional antigen presenting DC cytokine 

production in organoid coculture models (Gottfried et al., 2006). Like other lymphoid 

derived immune cells, NK cells cultured in physiologically relevant lactate had 

compromised cytokine release (Brand et al., 2016). To increase NK cell activity in the 

TME, tumor specific knock down of tumor LDHa correlated with increased NK tumor 

infiltration and IFN+ NK cells. The inhibitory nature of lactate in multiple classes of 

immune cells may be reminiscent of both PD-1 and CTLA4 ligation in T cells. Lactate may 

directly decrease the rate of immune cell glycolysis. One study demonstrated that high 

extracellular lactate decreased immune cell glycolysis, and limited cellular production of 

TNF in macrophages (Dietl et al., 2010). High levels of extracellular lactate may prevent 

lactate efflux out of the infiltrating immune cells to suppress continued flux through the 

glycolytic program requisite for anti-tumor function.  

Tumor acidity may be an important modulator of immune response given that 

low intra-lymph node pH regulates T cell proliferation and activation (Wu et al., 2020) 

(Figure 1.4). Ex vivo studies in acidic media show that low pH directly inhibits 

proliferation of melanoma TILs, limits activation markers like intracellular p-STAT5 and 

p-ERK, in addition to restricting production of IL2, TNF, and IFN. Treatment with 



 39  

proton pump inhibitors led to in an increase in intratumoral pH from 6.5 to 7 and 

increased the efficacy of ACT (Calcinotto et al., 2012). Further, mice drinking 

bicarbonate ad libitum had decreased tumor volume with an observed increase in CD8+ 

T cell infiltrate. Bicarbonate ultimately did improve the efficacy of ACT and ICB therapy 

in mouse models of melanoma (Pilon-Thomas et al., 2016). Modifying TME pH via 

inhibition of CAIX also increases response rates to ICB (Chafe et al., 2019). Giving 

credence to the metabolic complexity of the TME, mouse lymphomas overexpressing 

glycolytic/glutaminolytic transcription factor Myc, generate fewer tumor resident IFN 

positive NK cells. Providing these MYChi mice with exogenous bicarbonate reversed 

the acidic TME pH, and increased NK cell infiltration, NK cell phosphorylation of JNK, 

number of IFN expressing NK cells. In concordance with increased NK cell activity, 

mouse survival is increased with excess bicarbonate (Potzl et al., 2017). These studies 

suggest that mitigating the acidic TME may improve anti-tumor immune cell 

functionality and activity.  

Competition for nutrients 
 
 While intra-tumoral glucose levels may be maintained in some settings (Cortese 

et al., 2020; Siska et al., 2017; Sullivan et al., 2019) metabolic competition for glucose 

between cells in the TME may contribute to TIL dysfunction in other contexts (Chang 

et al., 2015).  Supporting a model that increased aerobic glycolysis of cancer cells can 

restrain TIL, overexpression of Pdk1, Hk2, Glut1, or c-Myc, allowed tumors that were 

normally rejected to instead grow to palpable masses (Chang et al., 2015). T cells 

purified from those glycolytic tumors had reduced ability to uptake glucose as assessed 

by the fluorescent dye 2NBDG (D’Souza et al., 2021; Sinclair et al., 2020) and express 
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inflammatory cytokines than T cells from less glycolytic tumors. Similarly, nuclear 

translocation of NFAT, a crucial T cell activation transcription factor, is dependent on 

the glycolytic intermediate, phosphoenolpyruvate (PEP) (Ho et al., 2015). In a glucose 

limited TME, this necessary event may not occur. Conversely, overexpressing the 

gluconeogenic enzyme PEPCK1, increased T cell intracellular PEP, and promoted 

increased T cell activation along with increased tumor clearance. These findings 

support a model where increasing T cell glucose availability may improve tumor 

eradication and glucose limitation may act as a tumor immunosuppressive mechanism. 

It is unclear, however, if the T cell dysfunction in these cases is due to direct metabolic 

limitations and poor access to nutrients or due to alterations in the immune infiltrate that 

occurred secondarily to a change in cancer cell physiology. It thus is not fully 

established if changes to cancer cell metabolism directly alter cancer cells fitness that 

can indirectly influence T cell function independent of glucose competition. 

Recent work has demonstrated that glucose is present in appreciable 

concentrations in many mouse models of cancer in addition to human RCC to support 

a model in which glucose is generally not a limiting feature of tumor biology. Using 

radiolabeled Positron Emission Tomography (PET) tracers, we found that myeloid cells 

surprisingly consume for per cell glucose than either cancer cells or T cells (Reinfeld et 

al., 2021). Importantly, inhibition of glutamine uptake could further increase glucose 

uptake, indicating that glucose uptake in the TME was limited by cell intrinsic metabolic 

pathways rather than limiting access to glucose.  While microenvironmental glucose 

limitations may occur, this work questions the widespread nature of glucose limitation 

and competition in the TME. When nutrients are limiting and competition does occur, it 
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may be multifactorial in that there are many diverse cell types attempting to attain and 

consume metabolic substrate. To overcome such potential resource barrier when it may 

occur, immunotherapy may improve T cell competitiveness to uptake glucose or 

promote alternative pathways and approaches to increase T cell mitochondrial 

metabolism have been shown to enhance tumor clearance (Beckermann et al., 2020; 

Siska et al., 2017). However, glucose availability across tumors may be heterogeneous 

and the degree to which glucose competition restricts TIL as a whole remains uncertain, 

as bulk measurements of glucose in tumor interstitial fluids have found that glucose can 

be readily available in diverse settings in both mouse and human tumors (Beckermann 

et al., 2020; Cortese et al., 2020; Reinfeld et al., 2021; Siska et al., 2017; Sullivan et 

al., 2019).   

Where the evidence for glucose competition is mixed, availability of some 

nutrients may become limiting in tumor microenvironments for anti-tumor immune cells.  

There is evidence, for example, that tumors and T cells may compete for the amino 

acid methionine. For proper T cell activation and cytokine production, methionine must 

be present (Sinclair et al., 2019). This essential amino acid is crucial for T cell 

generation of SAM/SAH, which are the key methyl donors in mammalian cells. With 

decreased methionine uptake, T cells demonstrate an exhausted gene signature and 

less p-STAT5 signaling. This increase in TME resident T cell apoptosis and T cell 

exhaustion in the TME is dependent on tumor cell expression of the methionine 

transporter SLC43a2. Intriguingly, in a small trial of human cancer patient’s exogenous 

methionine supplementation significantly improved T cell cytokine production and 

activation supporting this model where anti-tumor T cells require this amino acid for 
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function (Bian et al., 2020). Only one year prior, another group published (in the same 

journal no less) that dietary methionine restriction was an effective therapy for cancer 

(Gao et al., 2019). What could drive such divergent findings? (Gao et al., 2019) only 

evaluated xenograft human tumors in immune compromised animals which crucially 

lacked the methionine dependent anti tumor T cells. This series of studies emphasizes 

the crucial role immunocompetent models play in understanding TME metabolism. 

Glycolytic tumor cells influence anti-tumor immunity via inhibitory gene networks 
 
HIF driven VEGF stimulates suppressive TME 
 

 HIF1/HIF2 not only promote expression of glycolytic genes that can lead to 

lactate accumulation, reduced pH, and glucose restriction in the TME, but also promote 

expression of soluble immunosuppressive factors in the TME. VEGF is considered a 

canonical HIF target (Figure 1.4) (Mazure et al., 1996). Its induction is thought to 

promote oxygenation and deliver vital nutrients to hypoxic tissues via generation of new 

blood vessels. However, physiological VEGF concentrations prevent dendritic cell-

induced T cell activation and promote increased differentiation of tumor suppressive 

Gr-1+ myeloid derived suppressor cells (Gabrilovich et al., 1998). VEGF signaling 

through T cell VEGFR2 restricts T cell proliferation, viability, and cytotoxicity (Gavalas 

et al., 2012). Elevated VEGF also promotes high levels of the negative checkpoints, 

PD-1, TIM3 and CTLA4 on tumor infiltrating T lymphocytes (Voron et al., 2015). Myeloid 

cell VEGF suppresses NK cell activity in the TME (Klose et al., 2016).  As expected, 

treating RCC patients with the VEGF receptor inhibitor, sunitinib, decreases MDSC 

number, promotes more IFN+ T cells and depletes FoxP3+ Tregs (Ko et al., 2009). With 

these studies, it should come as no surprise that clinical trials combining VEGF 
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inhibitors and ICB are demonstrating an increased response rate than either therapy 

alone in multiple disease types (Huang et al., 2020; Rini et al., 2019). Intriguingly, 

patients with high T cell and high myeloid gene signatures appear to benefit the most 

from this combination therapy, illustrating that pre-existing immunosuppression may be 

a predictive biomarker of successful immunotherapy (McDermott et al., 2018).  

Immunosuppressive adenosine generation in the TME is secondary to HIF stabilization 

Throughout tumorigenesis, the constant cell turnover should be recognized as 

not merely consuming, but also creating a milieu replete with additional metabolites, 

including ATP and adenosine. Immunostimulatory ATP is released by dying and 

necrotic cells and can be hydrolyzed to immunosuppressive adenosine by CD39 and 

CD73 (Figure 1.4), both ecto-nucleases and targets of HIF1 (Chiu et al., 2017; 

Synnestvedt et al., 2002). Highly glycolytic tumors will convert a majority of extracellular 

ATP from apoptotic and necrotic cells into adenosine. This conversion of ATP to 

extracellular adenosine has several negative consequences on anti-tumor immunity. 

ATP itself is a damage-associated molecular pattern, (DAMP), that can activate the 

P2RX7 receptor on tissue resident CD103+ T cells to promote inflammation and 

survival of this key cell population via mitochondrial fusion (Borges da Silva et al., 

2018). Engagement of the ATP purinergic receptors on DCs increases vaccination 

response and cell surface expression of co-stimulatory molecules CD80/86 (Granstein 

et al., 2005). Conversely, engagement of adenosine receptors A2AR is anti-

inflammatory and compromises T cell proliferation (Ohta et al., 2006; Ohta et al., 2009), 

T cell cytokine release and increases inhibitory checkpoint molecules expression  

(CTLA4 and PD-1) (Sevigny et al., 2007). A2AR activation has similar negative effects 
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on NK cell proliferation and activation (Lokshin et al., 2006; Young et al., 2018). Genetic 

depletion of the A2AR receptor specifically in NK cells increased NK cell proliferation, 

tissue invasion and ultimately improved tumor elimination in multiple models (Young et 

al., 2018). In renal cell carcinoma, single agent A2AR blockade may be successful 

(Fong et al., 2020) in part due to HIF stabilization that is necessary for tumorigenesis 

in this tumor, thus creating a TME rich with adenosine (Linehan et al., 2019). Activation 

of the alternate immunosuppressive adenosine receptor, A2BR, can also suppress anti-

tumor immunity by increasing MDSC infiltration, maintenance, and myeloid VEGF 

expression (Iannone et al., 2013; Sorrentino et al., 2015). Consistent with an immune 

suppressive role for intra-tumoral conversion of ATP to adenosine, combining CD73 

blockade with ICB results in synergistic inhibition of tumor growth in preclinical models 

(Allard et al., 2013). 

 
Figure 1.4: A hostile immunosuppressive tumor microenvironment occurs secondary to tumorigenic 
mutations. High levels of nuclear myc and HIF increase tumor cell glycolysis resulting in a TME rich in 
immunosuppressive molecules. Lactate is produced as byproduct of oncogene activation. This 
transcriptional program also decreases intratumor pH, increases secretion of suppressive cytokine like 
VEGF, recruits suppressive myeloid cells via G-CSF and promotes the extracellular degradation of ATP 
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into adenosine. The combination of the metabolic perturbations and TME alterations decrease the ability of 
the anti-tumor immune compartment to conduct their requisite function (seen in less cytokine and 
granzymes in anti-tumor CD8s and NK cells). This oxidative microenvironment creates a niche where 
Tregs, lipid filled tolerogenic DCs, and suppressive myeloid cells thrive, thus promoting immune evasion 
and tumor progression. 

Combining metabolic agents with immunotherapy  

ICB has revolutionized the treatment of many metastatic cancers (Gandhi et al., 2018; 

Larkin et al., 2015; Motzer et al., 2018). However, there remains a significant need to 

enhance the activity of these treatments to drive durable remissions both in more 

patients and across more disease types. The high rates of resistance to single agent 

ICB therapies across all tumor types has led to the development of many trials to 

combine targeted therapies, chemotherapies, and other metabolism-based therapies 

with ICB in efforts to increase responses (Sharma & Allison, 2015; Xin Yu et al., 2020), 

yet agents that target cancer metabolism may also impair anti-tumor immunity.  

Because in vivo metabolism and heterogeneity can confound in vitro modeling, we 

propose that using immune-competent models of cancer will be critical to identify 

metabolism- and TME-targeting agents to limit tumor proliferation that simultaneously 

retain the capability of the immune system to eliminate tumors.  

Warburg targeting agents can harm or augment the anti-tumor response 
 

To support the increase glucose demand of TME resident cells, glutamine is 

consumed by both transformed and infiltrating cells (Altman et al., 2016; Andrejeva & 

Rathmell, 2017; Pan et al., 2016). As an anaplerotic source to maintain mitochondrial 

metabolism, amino acid pools, and to increase glutathione stores, glutamine 

metabolism is often coupled to aerobic glycolysis in proliferative cells. Broad inhibition 

of glutamine metabolism or selective inhibition of Glutaminase (GLS)/glutamine uptake 

can result in reduced tumor glycolysis and growth (Byun et al., 2020; Edwards et al., 
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2021; Leone et al., 2019; Meric-Bernstam et al., 2019; Schulte et al., 2018) (Figure 

1.5).  Importantly, while some T cells subsets rely on GLS, others, including anti-tumor 

CD4 Th1 and CD8 cytotoxic cells appear to adapt to glutamine depletion through 

increased glucose and acetate metabolism. By blocking glutamine metabolism, these 

anti-tumor cells can increase effector function (Byun et al., 2020; Edwards et al., 2021; 

Johnson et al., 2018; Leone et al., 2019; Schulte et al., 2018) while tumor cell undergo 

apoptosis due to overwhelming levels of ROS. It appears that tumor cell glutamine 

demand (Reinfeld et al., 2021) may itself restrict T cell activity in the TME . Deletion of 

GLS in triple negative breast cancer, resulted in marked increase in active TME T cells 

who acquired the excess glutamine via Slc6a14 (Edwards et al., 2021). Likewise, 

inhibition of glutamine metabolism in the TME can promote inflammatory M1 phenotype 

macrophages (P. S. Liu et al., 2017; Palmieri et al., 2017) and impair MDSC infiltration 

and function via decreased kynurenine generation (Oh et al., 2020). In both T cells and 

macrophages, the mechanism of increased differentiation with inhibition of glutamine 

appears to be in part through alteration in levels of the glutamine-derived metabolite α-

ketoglutarate, which is required for many de-methylation reactions that influence 

chromatin accessibility and gene expression (Johnson et al., 2018; P. S. Liu et al., 

2017). A potential drawback, however, may be terminal differentiation or exhaustion of 

T cells with inhibition of glutamine metabolism (Johnson et al., 2018) and GLS inhibition 

can have anti-inflammatory effects in a variety of settings (Johnson et al., 2018; Kono 

et al., 2019) that may also impair anti-tumor immunity. Combining glutamine 

metabolism antagonists with immunotherapy agents now has the potential to hinder 



 47  

cancer cell proliferation while promoting inflammatory metabolic programs in T cells 

and macrophages, although further studies are necessary. 

 Given that elevated PI3K/mTOR signaling is a commonality of all tumor types, 

Glut1 is often over expressed in cancer and expression of this transporter is correlated 

to poor patient outcome across tumor types (J. Wang et al., 2017; Yu et al., 2017). 

Glut1 inhibition have shown effective in many preclinical models of cancer (Chan et al., 

2011; Contat et al., 2020). However, these studies have been conducted in in vitro and 

xenografted in vivo models that lack the adaptive immune system. Glut1 deficiency may 

ultimately also prevent anti-tumor immune cell function (Figure 1.5). Effector CD4 and 

CD8 cells have decreased ability to proliferate or secrete effector cytokines and 

promote inflammation with genetic deletion of Glut1. Tregs, however, can be Glut1 

independent and remain suppressive with Glut1 loss (Macintyre et al., 2014). 

Additionally myeloid Glut1 loss results in a decrease in M1-like enzyme iNOS and an 

increase expression of M2 marker CD206 (Freemerman et al., 2019). CD11c+ DCs rely 

on glucose to differentiate and perform their crucial functions (Du et al., 2018). Careful 

preclinical evaluation is needed to test if Glut1 inhibitors would compromise anti-tumor 

immunity and promote regulatory Tregs and M2 like cells. A therapeutic window may 

exist where tumor Glut1 levels are relatively high in the cancer cell compartment when 

compared to immune cells. An appropriate dosing strategy would need to be developed 

to evaluate an approach where a Glut1 inhibitor could impair tumor growth and 

metabolism without overly impeding cDC1 and TIL function.  Alternatively, Glut1 

treatment may promote long lived memory T cells with capacity for prolonged control 

of tumors, in line with the effects of 2-deoxyglucose and AKT inhibition in models of 
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adoptive cell transfer (Crompton et al., 2015; Sukumar et al., 2013). Therefore, future 

studies should be rigorously conducted to properly evaluate if Glut1 inhibition in vivo 

limits T cell glycolysis or instead synergizes with ICB.   

Figure 1.5: Targeting metabolic pathways may hamper anti-tumor immunity.  Inhibition of glutamine 
pathways with antagonists like DON or GLS with CB839 promotes anti-tumor immunity. TME becomes 
enriched with glutamine, glucose, and tryptophan secondary to these pharmacologic interventions. T cell 
metabolic reprogramming with glutamine perturbations results in increased expression of anti-tumor 
molecules like granzyme B and perforin as well as improvements in mitochondrial function and increased 
glucose utilization. Glutamine starvation promotes tumor cell death in addition to death and decrease 
function of myeloid-derived suppressor cells and Tregs. Anti-tumor M1-like macrophages increase antigen 
presentation machinery and inflammatory cytokine production in response to alterations to glutamine 
metabolism. It is currently unknown how blocking glucose uptake will alter immune and tumor cell function 
in malignancy. It is possible that this therapeutic targeting of glucose metabolism may restrict anti-tumor 
immunity while inducing increase tumor growth. Or T Cells metabolic function may improve by limiting the 
metabolic stress they experience in the TME. Glucose metabolism is important for macrophage 
phagocytosis and antigen presentation, and it is currently unknown how restricting glucose will aid or inhibit 
anti-tumor function. 

Unique isoform usage creates metabolic vulnerabilities in suppressive immune 
cells 
 

Recent work has elucidated that infiltrating immune cells are more similar 

transcriptomically and metabolically than malignant cells across patients (Tirosh et al., 

2016; Xiao et al., 2019). This may be because phenotype of these infiltrating cells is 

inextricably linked to a signaling program that is shared by all patients while each 

patient’s tumors has developed their own metabolic features while responding to unique 

selective pressures in each host. These shared metabolic programs may then be 
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targeted across patients rather than developing personalized metabolic therapies for 

each patient’s disease.  

Whole genome sequencing of patients with immunodeficiency has led to the 

discovery that PI3K and PI3K𝛅 both play important roles for immune cell maintenance. 

Combined with the host of mutational data of other PI3K isoforms in solid tumors, 

targeting this pathway with small molecules has become a large area of scientific 

research. Recent advances in medicinal chemistry now allow for specific isoform targeting 

and thus have provided new insights into augmenting anti-tumor immunity without 

impairing anti-tumor immune cell glycolysis (Evans et al., 2016). PI3K isoform usage 

allows for cell type specific targeting: Malignant epithelial cells express PI3K isoforms  

and β, while myeloid cells express the  isoform (Kaneda, Cappello, et al., 2016) (Figure 

1.6).  In evaluating these PI3K compounds, it has become clear that robust anti-tumor 

immunity can be induced via inhibiting glycolytic immature suppressor cells through this 

unique PI3k variant usage. Myeloid PI3k activation is secondary to upstream activation 

by RTKs, TLRs, and IL1ß (Foubert et al., 2017; Schmid et al., 2011). These ligand binding 

events mobilize the integrin 1ß4 and release IL10 allowing for MDSC tissue infiltration 

and tumor promotion (Schmid et al., 2011). Genetic deletion or pharmacological inhibition 

of PI3K increases host immune response to both spontaneous (Kaneda, Cappello, et al., 

2016; Torres et al., 2019) and inflammatory tumors models (Gonzalez-Garcia et al., 

2010). Additionally, PI3k inhibitors synergize with ICB administration (De Henau et al., 

2016; Kaneda, Messer, et al., 2016). Secondary to myeloid PI3K loss, there is both a 

robust change in infiltrate as well as cytokines in the TME. By perturbing TME PI3K, an 

increase in infiltrating CD8 T cells and the anti-tumor conventional DC1s is observed while 
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depleting suppressive MDSCs, B regulatory cells and Foxp3+ Tregs. (X. Zhang et al., 2019) 

The MDSCs in PI3k null tumors or inhibitor treated mice are less able to suppress T cells 

and less likely to mature into M2-like macrophages (Joshi et al., 2019). T cells in these 

PI3K depleted tumors also demonstrate a more active phenotype and a larger anti-tumor 

TCR repitoire (De Henau et al., 2016). Secondary to inhibition of the PI3K,  the TME 

becomes enriched with anti-tumor factors like IFN and IL12 and depleted of 

immunosuppressive VEGF (Qin et al., 2019).  

These preclinical studies referenced above have led to late-stage clinical trials 

using PI3K inhibitors in solid tumors in combination with ICB (NCT03961698, 

NCT03711058, NCT02637531). However, it is worth noting that excessive PI3K 

inhibition may ultimately impair the anti-tumor response. PI3K is known to be expressed 

in lymphoid cells like T and NK cells as well as dendritic cells and to a lesser extent than 

myeloid cells (Gyori et al., 2017; Kaneda, Cappello, et al., 2016). Thymocyte development 

and mature CD4 cells are eliminated in PI3K KO mice (Sasaki et al., 2000). T cells are 

unable to upregulate the crucial chemokine receptor, CXCR3 (Chow et al., 2019), with 

PI3K KO (Barbi et al., 2008). In models of autoimmunity, PI3 KO T cells delayed graft 

rejection (Uehara et al., 2017), illustrating that this protein may be responsible for 

developing T cell responses. Interestingly, adoptive cell transfer of PI3k KO T cells or 

PI3k inhibitor pretreated T cells generates more memory like T cells and more robust 

anti-tumor responses in multiple cancer models (Dwyer et al., 2020; Foubert et al., 2017). 

This work Illustrates that anti-tumor immunity may not rely on T cell PI3K even though 

this isoform seems important for de novo T cell generation. Like T cells, genetic PI3K 

deletion in NK cell impairs IFN release(Tassi et al., 2007) and tissue infiltration 
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(Saudemont et al., 2009). PI3k loss also impairs cDC1 generation in models of viral 

immunity, preventing effective CD8 responses. However, current immunotherapies do not 

require de novo thymic T cell generation or peripheral DC maturation.   

Together, these studies support alterations to the traditional pharmacological 

approach in oncology. Instead of evaluating metabolic immuno-oncology agents for 

maximum tolerable doses, the focus should be on developing pharmacodynamic metrics 

that measure the dose required to receive maximal effective immune response to cancer. 

A recent publication supports this notion in that high dose (50 mg/kg) PI3k/𝛅 inhibition 

with the clinically approved Duvalisib (IPI-145) impairs the generation and proliferation of 

anti-tumor T lymphocytes. This CTL impairment ultimately counteracts the efficacy of PD-

L1 treatment in mouse models of breast cancer. Low dose treatment (15 mg/kg) with the 

same compound synergizes with PD-L1 treatment via inhibiting MDSC infiltration and 

function while promoting more active tumor specific T cells in the TME (Davis et al., 2017). 

The efficacy from this combination may come from anti-myeloid effect of the PI3k 

inhibition combined with anti Treg component of the low dose PI3k𝛅 inhibition. It is now 

appreciated that Tregs are uniquely inhibited with PI3k𝛅 inhibition when compared to 

other T cells in mouse and human tumors (Abu-Eid et al., 2014; Chellappa et al., 2019).  

These therapeutic windows may exist because of the basal differences between 

immunosuppressive cells and cytotoxic CD8s in protein isoform usage noted above.  

 Differential regulation of glycolysis in tumor and immune cells may also offer an 

opportunity to selectively suppress tumor glucose metabolism while leaving immune 

cells intact. Uniquely in clear cell renal cell carcinoma (ccRCC), HIF2 can fully 

compensate for HIF1 loss (Shen et al., 2011). This has led to the development of 
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HIF2 specific inhibitors for the treatment of ccRCC. Preclinical xenograft models(Chen 

et al., 2016; Cho et al., 2016) and early phase clinical trials (Choueiri et al., 2021; 

Courtney, Infante, et al., 2018) demonstrate efficacy of targeting this transcription factor 

in vivo in patients. This is a promising agent to combine with immunotherapy because 

HIF2 is dispersible for T cell anti-tumor immune responses in adoptive cell therapy 

models (Palazon et al., 2017). Additionally, myeloid-specific deletion of HIF2 

decreased tumor infiltration by tumor associated macrophages in hepatocellular 

carcinoma and resulted in decreased tumor cell proliferation (Imtiyaz et al., 2010) so 

these compounds may have beneficial immunostimulotory effects (Figure 1.6). This 

type of approach would allow for anti-tumor immune cells to still upregulate glycolysis 

via HIF1 without significant impairment, while halting cancer cell glycolysis.  

Figure 1.6: Isoform targeting as a strategy to hamper suppressive immune cell metabolism while 

enhancing anti-tumor immunity. PI3k is a crucial aspect of inflammatory myeloid cell recruitment into 

tumors, MDSC suppressor function and ultimate lineage commit to a M2-like macrophage. HIF2a (in 

ccRCC) and in certain myeloid subsets is key to sustaining glycolytic function. Specific inhibition of PI3K 

or HIF2a remodels the tumor microenvironment in that there is significant tumor cell death, a depletion of 
regulatory CD4s and suppressive myeloid cells, while enhancing CTL activation and cytokine release.  
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Conclusion 
 

In the pursuit of more efficacious cancer therapies, what is becoming increasingly 

clear is that immune cells in the TME implement discrete metabolic programs to promote 

tumor elimination or augment tumor progression, offering unique windows to selective 

therapeutic interventions. A variety of metabolic interventions can preferentially 

selectively eliminate tumor cells or subsets of pro-tumor immune cells, providing an 

opportunity for metabolic interventions to serve as strategies to augment checkpoint 

immunotherapy or in the future, by benefitting cellular therapy products. Many of the 

pathways that support immune function are well-established pathways, such as mTOR 

and PI3K, with increasingly selective agents available for sophisticated tuning of the 

immune cells in the TME to eradicate tumor cells. The differential dependencies on such 

metabolites as glutamine and glucose are also huge opportunities.  What is further clear 

is that these strategies offer a sophisticated strategy to harness the immune system, 

harkening for more immune competent animal models that support cancer biology 

studies. Together with these tools and insights, we are poised to make substantive 

inroads in the treatment of cancer by understanding metabolite consumption patterns in 

the diverse cell which infiltrate tumors.  
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CHAPTER 2: Cell Programmed Nutrient Partitioning in the Tumor 
Microenvironment 

 

This chapter is adapted from “Cell-programmed nutrient partitioning in the tumour 

microenvironment” published in Nature.  
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Introduction 
 

Cancer cells characteristically consume glucose through Warburg metabolism 

(Vander Heiden & DeBerardinis, 2017) a process forming the basis of tumor imaging by 

positron emission tomography (PET). Tumor infiltrating immune cells also rely on glucose, 

and impaired immune cell metabolism in the tumor microenvironment (TME) contributes 

to tumor immunological evasion (Chang et al., 2015; Ho et al., 2015; Siska et al., 2017). 

It remains uncertain, however, if immune cell metabolism is dysregulated in the TME by 

cell intrinsic programs or by competition with cancer cells for limiting nutrients. Here we 

used PET tracers to measure access and uptake of glucose and glutamine by specific 

cell subsets in the TME. Surprisingly, myeloid cells had the greatest capacity to uptake 

intra-tumoral glucose, followed by T cells and cancer cells across a range of cancer 

models. Cancer cells, in contrast, demonstrated the highest glutamine uptake. This 

distinct nutrient partitioning was cell intrinsically programmed through mTORC1 signaling 

and glucose and glutamine-related gene expression. Inhibiting glutamine uptake 

enhanced glucose uptake across tumor resident cell types, demonstrating that glutamine 

metabolism suppresses glucose uptake without glucose being limiting in the TME. Thus, 

cell intrinsic programs drive the preferential immune and cancer cell acquisition of glucose 

and glutamine, respectively. Cell selective partitioning of these nutrients may be exploited 

to develop therapies and imaging strategies to enhance or monitor the metabolic 

programs and activities of specific cell populations in the TME.  

The founding observation in cancer metabolism was that tumors consume glucose 

to produce lactate in the presence of oxygen. Aerobic glycolysis is widely observed in 

rapidly proliferating cells, including activated immune cells, to support biosynthetic 
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demands (Vander Heiden & DeBerardinis, 2017). In vivo carbon labeling studies have 

confirmed that glucose supports anabolic metabolism in transformed cells and T cells. 

(Faubert et al., 2017; Ma et al., 2019).  Glutamine metabolism provides anaplerotic fuel 

and restrains glucose-dependent differentiation and function of macrophages and T cells 

(Johnson et al., 2018; Leone et al., 2019; P. S. Liu et al., 2017). These metabolic 

pathways may become disrupted in immune cells in the TME to prevent anti-tumor 

immunity (Chang et al., 2015; Ho et al., 2015; Scharping et al., 2021; Siska et al., 2017) 

although the relative uptake and use of nutrients by diverse cells populations in the intact 

TME has not previously been directly examined. 

Glucose uptake can be measured using [18F]-fluorodeoxyglucose (FDG) positron 

emission tomography (PET) imaging to detect cancers and monitor therapeutic 

responses. Based on the metabolic needs of cancer and immune cells, depletion of TME 

glucose by cancer cells may drive nutrient competition as a metabolic mechanism of 

immunosuppression (Chang et al., 2015; Ho et al., 2015). Recent publications, however, 

have measured high micromolar to millimolar glucose concentration in the mouse and 

human TME (Cortese et al., 2020; Siska et al., 2017; Sullivan et al., 2019). Further, the 

metabolic phenotypes of T cells can persist even after removal from the TME with 

activation in monoculture with nutrient-replete media. These aberrations can be reversed 

after the specific addition of pyruvate suggesting dysfunctional glycolysis is programmed 

in these cells, rather than driven by the presense of proliferating cancer cell (Gemta et 

al., 2019; Siska et al., 2017). The extent of intrinsic metabolic programming or nutrient 

competition for limited nutrients between cancer cells and immune cells remains 

uncertain. Here we used PET probes to analyze the accessibility of glucose and 
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glutamine to specific cell subsets in the TME and show that metabolites 

partition into distinct cell populations based on cell intrinsic metabolic programs.  

Nutrients partition in the TME 
 

Immune cells may contribute significantly to glucose consumption in the TME. We 

measured nutrient abundance in the tissue interstitial fluid (IF) from freshly resected 

human renal cell carcinoma (RCC) specimens and subcutaneous murine MC38 tumors 

using mass spectrometry (Figure 2.1a-b, Table 2.1). Glucose, glutamine, and lactate 

were all detectable in the TME at similar concentrations to matched normal kidney tissue 

or plasma. In vivo glucose uptake was next directly measured to quantify the accessibility 

of glucose to distinct cell populations in the TME.  Subcutaneous MC38 tumors were 

visualized by FDG-PET imaging and per cell in vivo 18F radioactivity was measured in 

fractionated tumor cell subsets (Figure 2.1c, d). CD45 positive selection magnetic 

microbeads fractionated tumor cells into enriched CD45-, predominantly cancer cell, and 

CD45+ immune cell populations (Figure 2.1e, Figure 2.2a). Unfractionated tumor cells 

demonstrated higher FDG avidity than control tissue splenocytes (Figure 2.1f). Strikingly, 

tumor infiltrating CD45+ immune cells had greater per cell FDG uptake than CD45- cells. 

FDG autoradiography and immunohistochemistry demonstrated homogenous distribution 

of FDG and CD45+ cells, showing differential uptake was not due to spatial distribution 

favoring immune cells (Figure 2.1g-h). Immune cells also had higher FDG avidity in CT26 

and Renca subcutaneous tumors (Figure 2.1i-j, Figure 2.2b-c) and orthotopic Renca 

tumors demonstrated higher per cell FDG avidity in immune cells (Figure 2.1k, Figure 

2.2d). Infiltrating immune cells had higher FDG uptake than EPCAM+ cancer cells in both 

azoxymethane/dextran sodium sulfate-induced (AOM/DSS) inflammatory colon cancer 
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tumors and PyMT genetically engineered mouse model (GEMM) breast cancer models 

(Figure 2.1l-m, Figure 2.2e-g). These results show that glucose is available in the TME 

and preferentially partitions into infiltrating immune cells more than cancer cells across 

multiple models. 

Table 2.1: Human kidney cancer patient characteristics. 
Patients 170-248 were used for TIF analysis, 295-345 were used for pS6 analysis. N/R= not reported 

Patient 
# 

Patient 
ID Histology Grade Age 

Race 
Ethnicity 

Size 
(cm) Mechanism of Attainment 

1 170 ccRCC G3 66 White N/R 
Primary Nephrectomy at 
VUMC 

2 192 ccRCC G3 65 Black 5.4 
Primary Nephrectomy at 
VUMC 

6 213 ccRCC G4 59 White 10 
Primary Nephrectomy at 
VUMC 

9 218 ccRCC G3 56 White 6 
Primary Nephrectomy at 
VUMC 

10 219 ccRCC G1 33 White 5.6 
Primary Nephrectomy at 
VUMC 

11 220 ccRCC G3 44 White 9 
Primary Nephrectomy at 
VUMC 

12 225 ccRCC G3 79 White 7 
Primary Nephrectomy at 
VUMC  

14 227 ccRCC G3 62 White 13 
Primary Nephrectomy at 
VUMC 

15 228 ccRCC G3 67 Hispanic 8.5 
Primary Nephrectomy at 
VUMC 

16 229 ccRCC G2 74 White 5 
Primary Nephrectomy at 
VUMC 

17 231 ccRCC G2 62 White 3.5 
Primary Nephrectomy at 
VUMC 

18 234 ccRCC G4 79 White 3.5 
Primary Nephrectomy at 
VUMC 

19 235 ccRCC G2 45 White 12 
Primary Nephrectomy at 
VUMC 

20 247 ccRCC G3 38 White 6 
Primary Nephrectomy at 
VUMC 

21 248 ccRCC G2 66 White 7.6 
Primary Nephrectomy at 
VUMC 

1 295 ccRCC G1 65 White 4 
Primary Nephrectomy at 
VUMC 

2 323 ccRCC G4 84 White 8 
Primary Nephrectomy at 
VUMC 

3 333 ccRCC G3 43 White 9.7 
Primary Nephrectomy at 
VUMC 

4 345 ccRCC G2 45 White 14 
Primary Nephrectomy at 
VUMC 
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Figure 2.1: Glucose is preferentially consumed by immune cells over cancer cells. a,b Quantification 
of IF metabolites from (a) human ccRCC tumors and matched adjacent normal kidney (n=14 patients) and 
(b) murine MC38 subcutaneous tumor IF and matched plasma (n=5 mice). (c), Representative (of n>20 
mice) FDG PET image of MC38 tumor. (d) Experimental schema. (e) Representative flow cytometry 
analysis of MC38 whole tumor, CD45+, and CD45- cell fractions gated on live cells. (f) FDG avidity in 
designated cell fractions from MC38 tumors (n=5 mice). (g) Representative (of n=3 mice) tissue 
autoradiography of MC38 tumor (scale bar = 800μm). (h) Representative (of n=5 mice) IHC for CD45 in 
MC38 tumor (scale bar = 200μm). i-m, FDG avidity in designated tumor cell fractions from subcutaneous 
CT26 (n=4 mice) (i) and Renca (n=4 mice) (j) tumors; intrarenal Renca tumors (n=3 mice) (k); AOM/DSS-
induced CRC tumors (n=6 for tumor, n=11 mice for spleen) (l); and PyMT GEMM tumors (n=3 mice) (m). 
Each data point represents a biological replicate and graphs show mean and SEM. (b-c, e-m) are data from 
representative studies performed independently at least twice. P values were calculated using paired 2-
tailed t-test for (a-b) and Welch’s 2-tailed t-test for (f, i-m). * p<0.05, ** p<0.01, *** p<0.001. AOM/DSS CRC: 
azoxymethane/dextran sodium sulfate-induced colorectal cancer; ccRCC: clear cell renal cell carcinoma; 
CPM: counts per minute; FDG PET: 18-fluorodeoxyglucose positron emission tomography; GEMM: 
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genetically engineered mouse model; IF: interstitial fluid; PyMT: Polyoma virus middle T antigen; TIF: tumor 
interstitial fluid; TME: tumor microenvironment 
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Figure 2.2: Purity, viability, and yield of isolated tumor cell populations. a-f, Fraction purity, viability, 
and yield for (a) MC38 (n=5 mice), (b) CT26 (n=4 mice), and (c) Renca (n=4 mice) subcutaneous tumors; 
(d) intrarenal Renca tumors (n=3 mice); (e) AOM/DSS-induced CRC tumors (n=6 for tumors, n=11 mice for 
spleens); and (f) spontaneous PyMT GEMM (n=3 mice) tumors. (g) Representative flow cytometry analysis 
of PyMT and AOM/DSS CRC whole tumor, CD45+ immune cell, and EPCAM+ cancer cell fractions gated 
on live cells. Each data point represents a biological replicate and graphs show mean and SEM. Data are 
representative studies performed independently at least twice. AOM/DSS CRC: azoxymethane/dextran 
sodium sulfate-induced colorectal cancer; GEMM: genetically engineered mouse model; PyMT: polyoma 
virus middle T antigen. 

 
Multiple strategies validated that this approach accurately measures in vivo per 

cell glucose uptake. Immune cells isolated from MC38 tumors were confirmed as tumor-

infiltrating based on minimal labeling following intravenous administration of fluorescent 

anti-CD45 antibody that efficiently labeled immune cells in blood and spleen (Figure 

2.3a). FDG uptake had a dynamic range with a multiple-log scale of linearity (Figure 2.3b) 

and was independent of sample viability, cell yield, and tumor mass across biological 

replicates and tumor models (Figure 2.3c). To confirm that FDG uptake did not occur 

during tumor processing, unlabeled MC38 tumor single cell suspensions were incubated 

with supernatants from FDG-labeled tumors. Ex vivo FDG uptake did not substantially 

contribute to the final FDG signal (Figure 2.3d-e). Finally, to specifically examine cancer 

cells apart from other CD45- cells, Thy1.1+ MC38 cells were implanted in Thy1.1- hosts 

and isolated using Thy1.1 positive selection microbeads. Negatively selected Thy1.1- 

immune cells demonstrated higher FDG avidity than Thy1.1+ cancer cells (Figure 2.3f-

h). This approach thus specifically and quantitatively measures in vivo glucose uptake of 

cancer and immune cells in the TME. We also tested the fluorescent glucose analog 

2NBDG (N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose). Consistent with 

other in vitro findings (D’Souza et al., 2021; Sinclair et al., 2020), 2NBDG was not specific 

for glucose uptake in vivo. We observed higher 2NBDG in naïve CD4 and CD8 cells in 

comparisons to effector memory cells. This finding is in contrast to the litany of literature 



 62  

that supports T cell receptor activation drives glucose uptake. Naïve T Cells (which have 

not experienced antigen) were 2NBDGhi.  Addiitonally, comparative measures of 

radioactive FDG and 2NBDG uptake in T cells from mice co-injected with both tracers 

showed no correlation of FDG radioactivity with 2NBDG (Figure 2.4, Figure 2.5). 
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Figure 2.3: Validation of in vivo cellular FDG uptake assay. (a) Intravenous (IV) anti-CD45 PE staining 
of leukocytes from designated tissues gated on live CD45+ cells.  (b) Demonstration of dynamic range of 
18F quantification using serially diluted in vivo FDG-labelled splenocytes. (c) Correlation plots of CPM/live 
cell versus cell viability, cells counted, and tumor mass across multiple tumor cell populations. Only “CD45-

” and “Other CD45+” simple linear regressions had slopes significantly different than 0 for tumor mass (n=10 
mice). (d), FDG-labelled digest supernatant from in vivo labelled MC38 tumors was applied to FDG-naïve 
MC38 tumor single cell suspensions to determine ex vivo background FDG uptake contribution to final 
signal. (e), Cellular FDG avidity in designated ex vivo and in vivo labelled MC38 tumor cell populations (n=4 
mice/group). (f), Cellular FDG avidity in designated tumor cell fractions from MC38-Thy1.1 tumors (n=2 
mice). (g) Proportion of CD45+ and Thy1.1+ cells, cell viability, and live cell yield from MC38-Thy1.1 tumors 
(n=2 for tumors, n=5 mice for spleens). (h) Representative flow cytometry analysis of MC38-Thy1.1 tumor 
fractions. Each data point represents a biological replicate and graphs show mean and SEM. (b, d-h) are 
data from a representative study performed independently at least twice. * p<0.05, ** p<0.01, *** p<0.001. 
CPM: counts per minute. 

Figure 2.4: Flow cytometry gating scheme for in vivo 2NBDG T cell uptake. 
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Figure 2.5: In vivo 2NBDG uptake does not mirror FDG uptake. (a) Representative histograms of in vivo 
2NBDG uptake in splenic and MC38 tumor cell subsets. (b) MFI of in vivo 2NBDG uptake across spleen 
and MC38 tumor cells (n=3 mice). c-d, Representative histograms of in vivo splenic CD4 (c) and CD8 (d) 
T cell 2NBDG uptake. (e) 2NBDG staining in splenic CD4+ and CD8+ subsets (n=3 mice). (f) Schema for 
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2NBDG/FDG co-injection experiment. (g) Representative histogram of 2NBDG hi and 2NBDG lo 
populations collected via flow sorting. (h) Per cell FDG avidity of flow-sorted 2NBDGlo versus 2NBDGho 
splenic T cells (n=3 mice). Each data point represents a biological replicate and graphs show mean and 
SEM. Data are from representative studies performed independently at least twice. P values were 
calculated using the Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple comparison tests 
for (b,e), 2-tailed Welch’s t test for CD4 comparisons in (e), and a paired t-test for (h). * p<0.05, ** p<0.01, 
*** p<0.001. 2NBDG: 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl)Amino)-2-Deoxyglucose); CM: central 
memory; CPM: counts per million; EM: effector memory; FDG: fluorodeoxyglucose; Tconv; conventional 
CD4 T cell; Treg: regulatory CD4 T cell  

 

Myeloid cells uptake the most glucose in the tumor microenvironment 
 

Effector T cells and inflammatory myeloid cells both use glycolysis and are 

subjects for immunotherapeutic strategies in the TME (Andrejeva & Rathmell, 2017). 

CD3+ T cells, CD11b+ myeloid cells, and F4/80+ macrophages were abundant in MC38 

tumors without clear differences in spatial distribution or proximity to CD31+ endothelial 

cells that would suggest differential nutrient access (Figure 2.6). Characterization of 

immune infiltrates across various tumor models demonstrated diversity in immune cell 

composition (Figure 2.7). We next sought to compare the FDG uptake between tumor T 

cells, myeloid cells, and cancer cells in the MC38 model using microbeads to isolate each 

population. T cells in the TME had greater in vivo FDG avidity than resting splenic T cells 

and similar FDG avidity to cancer cells (Figure 2.8a-b, Figure 2.9a), suggesting that 

these cells are not glucose deprived. T cell glucose uptake was significantly lower, 

however, than that of the remaining CD45+ non-T cells.  
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Figure 2.6: Spatial organization of immune cells in subcutaneous MC38 tumors. Representative 
micrographs of H&E and indicated immunohistochemistry (IHC) stains of subcutaneous MC38 tumors. 
Arrows indicate positive cells on faint CD11b stain. Center column is low power overview (scale bar = 
200μm). Insets demonstrate high power images from central (left) and peripheral (right) tumor locations 
(scale bar = 20μm). Images are representative from 5 biological replicates. 
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Figure 2.7: Tumor model characterizations by flow cytometry. a-g, Spleen and tumor CD45+ immune 
cell populations from MC38 (a) (n=3 mice), CT26 (b) (n=4 mice), and Renca (c) (n=4 mice) subcutaneous 
tumors; intrarenal Renca tumors (d) (n=3 mice); spontaneous PyMT GEMM tumors (e) (n=3 mice); 
AOM/DSS CRC tumors (f) (n=6 for tumors, n=11 mice for spleens); and MC38 subcutaneous tumors grown 
in Rag1-/- mice (g) (n=6 mice). (h) Gating strategy for immune cell identification using lymphocyte and 
myeloid-focused antibody panels. Each data point represents a biological replicate and graphs show mean 
and SEM. Data from a-f are representative of independent experiments performed at least twice. DC: 
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dendritic cell; M-MDSC: monocytic myeloid-derived suppressor cell; NK cell: natural killer cell; PMN-MDSC: 
polymorphonuclear myeloid-derived suppressor cell; PyMT: polyoma virus middle T antigen; TAM: tumor-
associated macrophage 
 

To characterize the non-T cell CD45+ cells, myeloid cells were isolated using 

CD11b positive selection beads (Figure 2.8c-d, Figure 2.9b). Notably, CD11b+ myeloid 

cells displayed higher FDG uptake per cell than cancer cells and other immune cells in 

MC38 tumors. Myeloid cells from CT26 tumors displayed a similar phenotype (Figure 

2.9c-d), consistent with recent reports (Hesketh et al., 2019; Nair-Gill et al., 2010). Flow 

cytometry analysis of CD45+ CD11b+ cells from MC38 tumors demonstrated two 

dominant cell populations: Ly6G-Ly6Chi cells consistent with monocytic myeloid-derived 

suppressor cells (M-MDSC), and Ly6G-Ly6CloF4/80hiCD68+CD206hi cells consistent with 

tumor associated macrophages (TAM) (Figure 2.8e). Isolated F4/80hi cells had histiocytic 

morphology (Figure 2.8f), concordant with TAM classification. Both M-MDSC isolated 

using Gr1 positive selection beads and TAM isolated using F4/80 positive selection beads 

demonstrated high FDG avidity (Figure 2.8g-h, Figure 2.9e-f). CD11b+ cells 

demonstrated high glucose uptake even in B- and T cell-deficient Rag1-/- (Figure 2.7g), 

showing that high glucose uptake in myeloid cells is independent of adaptive immunity 

(Figure 2.9g). Conventional type 1 dendritic cells (cDC1) are critical to support anti-tumor 

CD8 T cell activity (Spranger et al., 2017). CD11b-CD11c+ cDC, displaying a 

MHCII+CD103+Ly6C- phenotype consistent with cDC1, had lower glucose uptake than 

CD11b+ myeloid cells but greater glucose uptake than cancer cells and non-myeloid 

immune cells in the TME (Figure 2.9h-j). 



 69  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure. 2.8: TME myeloid cells uptake more glucose than cancer cells. (a) Representative flow 
cytometry from CD4/8 microbead fractionated MC38 tumors gated on live cells. (b) FDG avidity in 
designated cell fractions (n=3 for tumor, n=4 mice for spleen). (c) Representative flow from CD11b 
microbead fractionated MC38 tumor gated on live cells. (d) FDG avidity in designated cell fractions (n=4 
mice). (e) Representative flow cytometry plots of MC38 tumor CD11b+ myeloid cells. (f) Representative (of 
n=2 mice) H&E-stained micrograph of F4/80 microbead-isolated TAM (scale bar = 5μm). (g-h), FDG avidity 
in designated MC38 tumor cell fractions using Gr1 (n=4 except Wh Tum n=3 mice) (g) or F4/80 microbeads 
(n=4 mice) (h). i, Representative (of n=5 mice) OCR tracings from MC38 tumor cell fractions with oligomycin 
(O), FCCP (F), and rotenone and antimycin A (R/AA). (j-k) Basal mitochondrial OCR (j) and cellular ECAR 
(k) of MC38 tumor fractions (n=5 mice). Each data point represents a biological replicate except for (i) which 
shows technical replicates of a single biological replicate, and graphs show mean and SEM. Independent 
representative studies were performed at least twice. P values were calculated using Welch’s 2-tailed t-
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test. * p<0.05, ** p<0.01, *** p<0.001. ECAR: extracellular acidification rate; M-MDSC: monocytic myeloid-
derived suppressor cell; OCR: oxygen consumption rate; TAM: tumor-associated macrophage 

 

 
Figure 2.9: MC38 and CT26 cell isolation characterization and glucose uptake in RAG1 KO mice and 
in cDC. a-b, Fraction composition, viability, and live cell yield from MC38 tumor fractions isolated using 
CD4/8 microbeads (n=3 for tumors, n=4 mice for spleens) (a) and CD11b microbeads (n=4 mice) (b). c-d, 
Cellular FDG avidity in designated CT26 tumor cell fractions using CD4/8 microbeads (n=5 for Wh Spl, n=3 
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for Spl other CD45+ and Wh Tum, n=4 mice for all others) (c) and CD11b microbeads (n=5 for spleens, 
n=3 for Wh Tum, and n=4 mice for all others) (d). c-f, Fraction composition, viability, and live cell yield from 
MC38 tumor fractions isolated using Gr1 microbeads (e) and F4/80 microbeads (f) (n=4 mice). (g) Cellular 
FDG avidity in designated MC38 tumor cell fractions from Rag1 KO mice (n=6 mice). h, Cellular FDG avidity 
in MC38 tumor cell fractions using CD11b and CD11c microbeads (n= 9 for Wh Spl, n=5 for spleen fraction, 
n=10 mice for all others). i, Fraction composition of CD11c purification (n= 9 for Wh Spl, n=5 for spleen 
fraction, n=10 mice for all others). j, Representative flow cytometry illustrating CD103 and Ly6C staining of 
cDC (CD45+ CD11b-  CD11c+ MHCII+ cells) from MC38 tumor and spleen. Each data point represents a 
biological replicate and graphs show mean and SEM. Data are representative of independent experiments 
performed at least twice. (h) includes data from two independent experiments. P values were calculated 
using Welch’s 2-tailed t-test. * p<0.05. ** p<0.01, *** p<0.001. cDC1:  type 1 conventional dendritic cell  
 

We conducted extracellular flux assays on microbead-fractionated MC38 tumors 

to validate metabolic activity of cells in the TME. Isolated F4/80+ TAM maintained higher 

basal cellular extracellular acidification rate (ECAR) and mitochondrial oxygen 

consumption rate (OCR) than tumor infiltrating T cells and cancer cells (Figure 2.8i-k). 

These studies show TAM and M-MDSC consume the most per cell glucose in the TME 

and maintain active glucose metabolism. Consistently, myeloid infiltration has been 

correlated with FDG avidity in non-tumor bearing lymph nodes in human and mouse 

gynecological malignancies (Mabuchi et al., 2020). Our data extend these findings directly 

to the TME and reveal the relative metabolic phenotypes of heterogeneous cells in the 

TME. 

mTORC1 and transcription programs support metabolism in the tumor 
microenvironment 
 

Mechanistic target of rapamycin complex 1 (mTORC1) supports anabolic 

metabolism and nutrient uptake (Saxton & Sabatini, 2017).  We observed mTORC1 

pathway activity by higher levels of phosphorylated ribosomal protein S6 (pS6) in tumor 

myeloid cells compared to other tumor cell subsets in human ccRCC, murine MC38, and 

murine CT26 tumors (Figure 2.10, Figure 2.11a-c, Figure 2.12a, Table 2.1). To 

determine whether mTORC1 supports glucose uptake in the TME, we treated MC38 

tumor-bearing mice with rapamycin for four days and measured FDG uptake in tumor cell 
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populations. Rapamycin did not affect tumor weights, glucose, glutamine, or lactate 

concentration in the TME, but significantly decreased pS6 levels, T cell infiltration, Ki67 

levels in cancer cells and T cells, and TAM cell size (Figure 2.11d, Figure 2.12b-f). 

Rapamycin treatment led to significant decreases in myeloid and cancer cell FDG uptake 

(Figure 2.11e). Extracellular flux demonstrated that in vivo rapamycin treatment 

decreased myeloid cell metabolism ex vivo, while cancer cells and T cells remained 

unchanged (Figure 2.11f-h). Tumor CD8 T cells and TAM retained phenotypic markers 

after rapamycin treatment, but CD8 T cells displayed a functionally less activated 

phenotype (Figure 2.12g-n, Figure 2.13). 

 

Figure 2.10: Flow cytometry gating scheme for pS6 analysis of human ccRCC tumors. 
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Figure 2.11: mTORC1 supports glucose uptake and metabolism in the TME. a-c, Phosphorylated 

S6 (pS6) levels in indicated cell populations by flow cytometry in human peripheral blood mononuclear cells 
(PBMC) and matched ccRCC (representative histograms (a), quantification (b) (n=4 patients) and MC38 
tumors (c) (n=4 mice). (d) Representative histograms of pS6 levels in MC38 tumor cells from mice treated 
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with rapamycin or vehicle. (e) FDG avidity in designated MC38 tumor cell fractions with rapamycin treatment 
(n=15 for Spl Veh, n=8 for CD4/8+ veh, n=9 for CD4/8+ rapa and other CD45+, and n=14 mice for all other 
groups). (f) Representative (of n=5 mice/group) OCR tracings from fractionated MC38 tumors from mice 
treated with rapamycin or vehicle with indicated injections of oligomycin (O), FCCP (F), and rotenone and 
antimycin A (R/AA). g-h, Basal cellular ECAR (g) and mitochondrial OCR (h) of MC38 tumor fractions from 
mice treated with rapamycin or vehicle (n=5 except for CD4/8+ rapa n=3 mice/group). i, PCA plot of 
metabolism-related mRNA transcripts from CD45-, TAM, M-MDSC, CD8 T cell, and CD4 T cell flow-sorted 
populations from MC38 tumors (n=3 mice). j-m, Flow cytometry quantification of HK1 (j), HK2 (k), CD71 
(l), and CD98 (m) in MC38 tumor cell populations from mice treated with rapamycin or vehicle (n=4 for veh, 
n=5 mice for rapa). c-d, i-m are representative of at least two independent experiments. (e) is the combined 
data of three independent experiments. Each data point represents a biological replicate except for (f) which 
shows technical replicates of a single biological replicate, and graphs show mean and SEM. P values were 
calculated using Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple comparison tests for (b-
c) and Welch’s 2-tailed t-test for (e-m). * p<0.05, ** p<0.01, *** p<0.001. FMO: fluorescence minus one; 
MFI: median fluorescence intensity; M-MDSC, monocytic myeloid derived suppressor cell; PBMC: 
peripheral blood mononuclear cell; pS6: phosphorylated ribosomal protein S6 (Ser235/236); Rapa: 
rapamycin 
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Figure 2.12: Effect of rapamycin treatment on the MC38 TME. (a) pS6 levels in CT26 tumor populations 
(n=5 mice). (b) MC38 tumor mass at study endpoint with rapamycin (n=20 for veh, n=19 mice for rapa). (c) 
Metabolite concentrations in tumor interstitial fluid (TIF) and matched plasma from MC38 tumor-bearing 
mice treated with rapamycin or vehicle (n=5, except for lactate and glutamine plasma and TIF veh n=4 
mice). (d) Immune cell infiltration of MC38 tumors from mice treated with rapamycin or vehicle (n=15 for 
veh, n=19 mice for rapa). Significance between rapamycin and vehicle treatment for individual populations 
indicated in legend. Significant decrease in total CD45+ cell infiltration is noted. e-f, Flow cytometry 
quantification of Ki67 positivity (e) and cell size (forward scatter, FSC) (f) from MC38 tumor populations in 
mice treated with rapamycin or vehicle (n=4 for veh, n=5 mice for rapa). g-k MC38 tumor CD3+CD8a+ T 
cell phenotypes from rapamycin or vehicle treated mice for effector memory phenotype (g), ex vivo IFNγ 
production (h), PD1 and TIM3 expression (i), LAG3 expression (j) (n=5 mice/group), and ratio of CD8 T 
cells to CD4+FOXP3+ Treg (k) (n=15 for veh, n=19 mice for rapa). (I) % M2-like TAM (CD11cloCD206hi) in 
MC38 tumors from mice treated with rapamycin or vehicle (n=15 for veh, n=19 mice for rapa). m-n, Myeloid 
suppression assay representative histogram of CD8a+ OT-I T cell dilution of CellTrace Violet (CTV) 
indicative of proliferation (m) and quantification of division index (n) for MC38 tumor myeloid cells isolated 
using CD11b microbeads from rapamycin and vehicle-treated mice (n=5 mice/group). Each data point 
represents a biological replicate and graphs show mean and SEM. Data in (a, e-j) are representative of 
independent experiments performed at least twice. (b, d, k-l) display data merged from 4 independent 
experiments. P values were calculated using the Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for 
multiple comparison tests (a) and Welch’s 2-tailed t-test (b-l, n). * p<0.05. ** p<0.01, *** p<0.001. pS6: 
phosphorylated ribosomal protein S6 (Ser235/236); Rapa: rapamycin; TIF: tumor interstitial fluid. 

 
Figure 2.13: Flow cytometry gating strategy of tumor-infiltrating T cells from rapamycin-treated 
tumors. 

 

Flow-sorted CD45- cancer cells, TAM, M-MDSC, CD8 T cells, and CD4 T cells 

from MC38 tumors were transcriptionally profiled (Figure 2.14a). In untreated tumors, 

principal component analysis and unbiased clustering based on only metabolism-related 

transcripts grouped samples by cell identity (Figure 2.11i, Figure 2.14b). Corresponding 

with increased glucose uptake in myeloid cells, gene set enrichment analysis revealed 
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relative enrichment of glucose-related pathways in M-MDSC and TAM (Figure 2.14c, 

Table 2.2). Glucose transporters demonstrated population-specific expression, with 

cancer cells and myeloid cells expressing high transcript levels of Slc2a1 (GLUT1) and T 

cells expressing high levels of Slc2a3 (GLUT3). Hexokinase isoforms Hk2 and Hk3, which 

catalyze glucose phosphorylation in cells as the rate-limiting initial phosphorylation of 

glucose in glycolysis, were most highly expressed in myeloid cells in contrast to broadly 

expressed Hk1. CD45- cancer cells displayed amino acid, lipid, and signaling-related 

transcripts, and CD8 T cells were enriched in nucleotide-related transcripts (Figure 

2.14c). Rapamycin increased glycolysis-related transcript levels, particularly in CD45- 

cancer cells, while other metabolic gene transcripts decreased, including amino acid-

related transcripts (Figures 2.15a-e). Gene expression levels and changes after 

rapamycin treatment were confirmed at protein levels by flow cytometry. Rapamycin 

treatment reduced HK1 across tumor cell populations and HK2 specifically in TAM, 

potentially underlying differences in glucose uptake and glucose flux (Figure 2.11j-k). 

GLUT1 levels remained unchanged (Figure 2.15f), yet iron transporter CD71 and amino 

acid transporter CD98 protein levels decreased with rapamycin treatment (Figure 2.11l-

m). 
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Figure 2.14: Metabolic transcriptional signatures of MC38 tumor cell populations. (a) Cell sorting 
scheme of MC38 tumor cell populations used for mRNA transcript analyses. (b) Clustering analysis 
heatmap of differentially expressed metabolic genes from MC38 tumor cell populations. Select genes 
annotated. (c) Reactome gene set enrichment analysis for genes most highly expressed in each MC38 
tumor population. Significantly enriched gene sets are shown and colored according to metabolic pathway. 
OXPHOS; oxidative phosphorylation; TCA; tricarboxylic acid cycle 
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Table 2.2: Genes most highly expressed in distinct MC38 tumor populations. 
Gene lists were generated based on clustering analysis of differentially expressed genes (FDR <0.01) and 
were subsequently used for gene set enrichment analysis. 

CD45- TAM M-MDSC CD8 CD4 

Fah Prdx1 Slc27a1 Ass1 Fdx1 Slc2a3 

Aox1 Akt1s1 Idh2 Nt5e Psph Adora2a 

Asns Fahd1 Naglu Haa0 Eno3 Hsd11b1 

Slc16a1 Nadk2 Ada Slc16a3 Rrm1 Ehhadh 

Gls2 Pck2 Gmpr Slc3a1 Rrm2 Pparg 

Mapk8ip1 Acat2 Ptgs1 Upp1 Ppat Nos1 

Ptges Fasn Apoe Vegfa Cad Odc1 

Ak5 Sqstm1 Gatm Cybb Shmt1 Glrx 

Pycr1 Pemt Alox5 Apoc2 Tfrc Hif1a 

Mycn Pfkm Trf Deptor Bcl2 
 

Aspa Psmb10 Idh1 Prdx5 Afmid 
 

Adh7 Txn1 Fnip2 Atox1 Pfkb1 
 

Scd1 Nme2 Car9 Gpx1 Impdh1 
 

Thbs2 Psma7 Dglucy Pgd Slc1a5 
 

Sardh Acaca Tbxas1 Ampd3 Kmt2a 
 

Mras Prkaa1 Glul Gda Plcg1 
 

Pik3r2 Gpx4 Hexa Hk3 Pik3r1 
 

Atg101 Atf4 Slc16a7 Nfe2l2 Cab39 
 

Ndufa7 H6pd Gns Slc7a11 Rpia 
 

Cox7c Ppm1a Gusb Ptgs2 Lta4h 
 

Ndufa6 Impdh2 Hexb Thbs1 Me2 
 

Acat1 Pycrl Pla2g15 Kynu Mycn 
 

Ndufa12 Agk Aldob Gad1 Gart 
 

Ndufb10 Gmps Acy1 Kmo Idh3a 
 

Ndufb2 Ampd2 Fabp5 Hdc Acadl 
 

Mat2a Mrps5 Slc16a6 Nat8l Prps1 
 

Psmc1 Ndufa4 
 

Aldh2 H2-Ke6 
 

Psma3 Sod1 
 

Mgst3 Tfam 
 

Uqcr10 Ak3 
 

Aprt 
  

Wdr45 Tecr 
 

Eno1 
  

Map3k12 Adk 
 

Uck2 
  

Prr5 Hadh 
 

Pdk3 
  

Psat1 Rptor 
 

Akt1 
  

Slc7a5 Srr 
 

Glud1 
  

Ctps Mcat 
 

Pgm1 
  

Pebp1 Shmt2 
 

Txnrd1 
  

Insr Pdp1 
 

Ern1 
  

Cbr4 Rictor 
 

Nadk 
  

Srm 
  

Akt3 
  

   
Psmb10 

  

   
Slc3a2 

  

   
Pfkl 

  

   
Pkm 

  

   
Aloa 

  

   
Mpc1 

  

   
Pgk1 

  

   
Xdh 

  

   
Taldo1 

  

   
G6pdx 

  

   
Map2k1 

  

   
Sod2 
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Figure 2.15: Effects of rapamycin on MC38 tumor population metabolic markers. a-e, Heatmaps of 
significantly altered metabolic genes between rapamycin and vehicle-treated MC38 tumor cell populations 
for indicated metabolic pathways: (a) glycolysis (b) amino acid metabolism (c) lipid metabolism (d) 
Nucleotide metabolism (e) oxidative phosphorylation. White spaces indicate non-significant changes with 
rapamycin treatment for that gene and tumor cell population. (Genes were grouped and classified manually. 
(n=3/group, except n=2 for rapamycin treated M-MDSC and CD4) (f), Flow cytometry quantification of 
GLUT1 expression in MC38 tumor populations from mice treated with rapamycin or vehicle (n=4 for veh, 
n=5 mice for rapa). Each data point represents a biological replicate and graphs show mean and SEM. AA: 
amino acid; FAO: fatty acid oxidation; NT: nucleotide; OXPHOS: oxidative phosphorylation; PPP: pentose 
phosphate pathway; PTGS: prostaglandin synthases; Reg: regulatory genes; RNR: ribonucleotide 
reductase; SLCs: solute carrier proteins; TCA tricarboxylic acid cycle 
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Cancer cells uptake relatively more glutamine and lipids in the tumor 
microenvironment 
 

Having shown that systemic glucose is preferentially consumed by tumor-

infiltrating myeloid cells, we hypothesized that other nutrients also have distinct patterns 

of uptake in the TME. Ex vivo uptake of fluorescently labelled palmitate (C16 BODIPY) 

was highest in CD45- cancer cells, corroborating transcript enrichment data and showing 

that other nutrients may partition differently than glucose in the TME (Figure 2.17a-c). 

We postulated based on transcript data that glutamine uptake would also be greatest in 

CD45- cancer cells. TME glutamine metabolism has been shown to promote cancer cell 

growth while impairing anti-tumor immunity(Leone et al., 2019).  MYCN and ATF4 drive 

glutamine utilization (Yoshida, 2020),  and Mycn and Atf4 were more highly expressed in 

MC38 cancer cells than immune cells (Figure 2.16a-b). Glutamine metabolism enzymes 

Aspa, Asns, and Gls2 were also specifically expressed in the MC38 cancer cells, as well 

as other amino acid-related transcripts Pycr1 and Slc7a5 (Figure 2.14b). Tumor-bearing 

mice were injected with 18F-(2S,4R)4-Fluoroglutamine (18F-Gln) (Zhou et al., 2017) to 

measure glutamine pool size and uptake in the TME. Subcutaneous MC38 tumors were 

18F-Gln avid (Figure 2.16c, d). In contrast to FDG, however, CD45- cancer cells     

demonstrated greater 18F-Gln avidity than CD45+ immune cells in MC38 (Figure 2.16e), 

CT26, Renca, and spontaneous AOM/DSS tumor models (Figure 2.17d-f).  
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Figure 2.16: Glutamine partitions into cancer cells in the TME. a-b, Glutamine-related transcription 
factor mRNA transcript levels of flow-sorted MC38 tumor cell populations (n=3 mice), (a) Mycn, (b) Atf4. 
(c), Representative 18F-Gln image of subcutaneous MC38 tumor. (d) 18F-Gln autoradiography image of 
subcutaneous MC38 tumor (scale bar = 800μm). (e) Cellular 18F-Gln avidity in designated MC38 tumor cell 
fractions (n=4 mice). f-g, Cellular 18F-Gln avidity in MC38 tumor cell fractions from mice treated with vehicle 
or rapamycin (f) or V9302 (g) (n=5 mice/group). (h) FDG avidity in MC38 tumor cell fractions from mice 
treated with V9302 or DMSO (n=4 for Wh Tum, CD4/8+, and other CD45+; n=8 mice for all others). i-j 
Contribution of cell populations to total MC38 tumor FDG (i) (n=10 mice) and 18F-Gln signal (n=5 mice) (j). 
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(k) Model for nutrient partitioning in the TME. Each data point represents a biological replicate and graphs 
show mean and SEM. Data are representative of at least two independent experiments. (h) shows 
combined data of two independent experiments. P values were calculated using Welch’s 2-tailed t-test for 
(e-h) and Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple comparison tests for (a-b, i-j). 
* p<0.05, ** p<0.01, *** p<0.001. 18F-Gln: 18F-4-fluoroglutamine; DMSO: Dimethyl sulfoxide; V9302: ASCT2 
inhibitor. 

 
Rapamycin reduced amino acid-related transcripts and CD98 protein levels. 

Correspondingly, rapamycin treatment sharply decreased 18F-Gln uptake in CD45- and 

myeloid cells (Figure 2.16f).  To assess the relationship between glutamine and glucose 

uptake, tumor-bearing mice were treated with V9302, a small molecule inhibitor of the 

glutamine transporter ASCT2 (Schulte et al., 2018). V9302 broadly decreased glutamine 

uptake by cells in the TME (Figure 2.16g), but increased glucose uptake in all tumor cell 

populations in the TME (Figure 2.16h). V9302 also decreased MC38 tumor mass and T 

cell infiltration (Figure 2.17g, h) and increased the frequency of tumor M2-like 

macrophages (Figure 2.17i, j). Together these data demonstrate that glutamine uptake 

and metabolism actively restrain glucose metabolism in vivo and that tumor infiltrating 

cells can access and increase glucose uptake beyond basal levels when glutamine is 

restricted. Cell-intrinsic programs of distinct tumor cell subsets thus dictate glucose and 

glutamine uptake in the TME. 
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Figure 2.17: Fatty acid and glutamine uptake and the effect of V9302 treatment on the TME. a-b, 
Representative histograms (a) and quantification (b) for ex vivo staining of C16 BODIPY by indicated MC38 
tumor cell populations from tumor single cell suspensions (n=5 mice). (c) Percent contribution to total tumor 
C16 BODIPY signal from indicated tumor cell populations (n=5 mice). d-f, Cellular 18F-Gln avidity in 
designated tumor cell fractions in CT26 (n=4 for spleen, n=3 mice for tumor) (d) and Renca (n=5 mice) (e) 
subcutaneous tumors and AOM/DSS spontaneous tumors (n=4 mice) (f). (g) MC38 tumor mass from mice 
treated with V9302 or DMSO (n=13 for V9302, n=12 mice for DMSO). (h) Immune cell infiltration of MC38 
tumors from mice treated with V9302 or DMSO (n=13 for V9302, n=12 mice for DMSO). Significance 
between V9302 and DMSO treatment in distinct populations is indicated in legend. There is no significant 
change in total CD45+ cell infiltration (n=13 for V9302, n=12 mice for DMSO). i-j, Representative plot (i) 
and abundance (j) of MC38 M2-like TAM from mice treated with V9302 or DMSO (n=13 for V9302, n=12 
mice for DMSO). Each data point represents a biological replicate and graphs show mean and SEM. Data 
are representative of at least two independent experiments. (g-j) are data combined from two experiments. 
P values were calculated using the Brown-Forsythe and Welch ANOVA with Dunnett’s T3 for multiple 
comparison tests (b,c) or Welch’s 2-tailed t-test (d-j). * p<0.05, ** p<0.01, *** p<0.001. C16 BODIPY: C16 
(4,4-Difluoro-5,7-Dimethyl-4-Bora-3a,4a-Diaza-s-Indacene-3-Hexadecanoic Acid) (fluorescent analog of 
palmitate); V9302: glutamine uptake inhibitor 
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Selective nutrient partitioning 
 

Our findings demonstrate discrete metabolic signaling regulate glucose and 

glutamine uptake within different cell subsets across the TME.  In the context of the whole 

tumor, multiplying the per cell glucose uptake by the abundance of each cell type showed 

that cancer cells accounted overall for approximately 2/3 of glucose uptake, with myeloid 

cells accounting for another 1/3. Other immune cells contributing negligibly to TME FDG 

uptake (Figure 2.16i). In contrast, glutamine and lipid per-cell and total tumor uptake were 

dominated by cancer cells (Figure 2.16j, Figure 2.17c). These results support the notion 

that glucose is not grossly limiting in the TME, and utilization is instead modulated by cell 

intrinsic programs and glutamine uptake (Figure 2.16k). 

This work reveals that diverse cell populations preferentially acquire distinct 

metabolites from a common pool of metabolites available in the TME (Kilgour et al., 2021; 

Sullivan et al., 2019). Tumor myeloid cells consume markedly more glucose than do 

tumor-infiltrating T cells or cancer cells on a per-cell basis. Additionally, tumor-infiltrating 

immune cells are more active than those in the spleen. This has implications for 

metabolism-targeting agents as well as myeloid targeting therapies. These new agents 

have the potential to either enhance or impair tumor-related inflammation. These data 

also support targeting glutamine metabolism as a specific strategy to hamper cancer cell 

growth while also increasing glucose consumption and altering immunophenotype in the 

TME as a result. Given the interest in glutamine-targeting therapeutics, our findings 

contribute a model of nutrient partitioning that supports their further development. 

Previous studies have suggested competition for glucose in the TME between 

cancer cells and T cells contributes to immunosuppression (Cascone et al., 2018; Chang 
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et al., 2015; Ho et al., 2015). Our data, however, show that glucose is not broadly limiting, 

and TME resident cells have the capacity to increase glucose uptake in vivo when 

glutamine uptake is restricted. This cell-intrinsic programming provides a new level of 

insight into the innerworkings of the TME. Here, a program of mTORC1-driven glutamine 

uptake in the CD45- cancer may suppress glycolytic gene expression and glucose 

metabolism in these cells. There is also growing evidence that glycolytic cancer cell 

transcriptional programs are associated with immunosuppressive TMEs and directly 

recruit suppressive myeloid cells (Chafe et al., 2019; C. Li et al., 2018) while TAM 

glycolysis may drive hypoxia via endothelial dysfunction (Wenes et al., 2016)  and 

cytokine production (Jeong et al., 2019). Our work supports a model where glycolytic 

tumors are immunoinhibitory not directly due to nutrient deficiencies but rather because 

of large scale microenvironmental changes which alter intrinsic cellular programming of 

immune cells.  We observe that different nutrients may follow distinct, but cell and tumor-

type specific patterns. 

Myeloid cells directly consume FDG out of proportion to the cancer cells and thus 

account for a significant fraction (30%) of measured tumor glucose uptake in PET 

imaging. These data challenge the expectation that FDG tumor avidity is primarily 

reflective of cancer cell metabolism and illustrate that FDG-PET imaging of immune 

checkpoint blockade responses reflect a significant non-tumor component. The FDG 

imaging features of a tumor may also be dependent on the type and activation state of a 

patient’s tumor immune infiltrate. Supporting this, recent work has shown increased FDG 

avidity in lung cancer is associated with CD68+ TAM, which was interpreted as an 

increase in cancer cell glycolysis due to macrophage secretion of TNFα (Jeong et al., 
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2019), not glucose uptake by TAM. Our data support the model where TAM directly 

consume FDG and thus account for a significant portion of the measured tumor glucose 

uptake. The DeBerardinis group at UTSW has also recently demonstrated that FDG 

uptake does not correlate with C13 labeling in non-small cell lung cancer patients. 

However, maximal FDG intensity does correlate with tumor proliferation and size, which 

often correlate with suppressive myeloid infiltrate (L. Cao et al., 2019; Hirayama et al., 

2012; Kernstine et al., 2020; Zhang et al., 2011). These findings also help explain 

intratumoral regional variability in FDG avidity observed on PET imaging as well as the 

PET avid nature of Hodgkin’s lymphoma, a disease entity with far more inflammatory cells 

than transformed tumor cells. Understanding the biology of distinct cell types in the 

complex TME has contributed substantially to shaping models of tumorigenesis. Our 

studies extend these approaches to evaluate in vivo metabolic features of tumor cell 

types and show that individual cell populations have distinct nutrient uptake programs 

that may play an important role in therapy response or resistance. 
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CHAPTER 3: HK3 as a myeloid specific interferon gamma stimulated gene with 
prognostic significance in clear cell renal cell carcinoma 

 

Introduction 
 

The manner in which cells metabolize glucose ultimately impacts their cellular fate 

and function. Glucose can be used for the generation of more energy (ATP), reduced 

electron donors (NADH), as well as biosynthetic substrate for new macromolecules 

(Vander Heiden et al., 2009). Additionally, glucose can suppress apoptotic signals from 

the mitochondria (Danial et al., 2003; Rathmell et al., 2003) .   

T cell subsets with divergent lineage markers and transcription factors employ 

different metabolic programs to ultimately gain their diverse effector function (Gerriets et 

al., 2015). Recently, it has been appreciated that different members of the glucose 

transporter family contribute differentially to T Cells subsets where Glut3 promotes the 

pathogenicity of Th17 cells, but not other T cell subsets (Hochrein et al., 2022)   

Glucose enters cells via the aforementioned family of SLC2a transporters by a 

passive process, facilitated diffusion. However, for glucose to remain inside the cell, and 

thus be utilized in cellular processes, it must be phosphorylated by a hexokinase (HK). 

There are four main glucose HKs (three with low Kms) that allow cells to fix glucose 

intracellularly. The high Km HK (glucokinase, GCK) is used almost exclusively by 

pancreatic beta cells to sense blood glucose and thus drive insulin secretion, 

demonstrating that the unique biochemical properties of these enzymes can be 

inextricably linked to cell function and organismal physiology (MacDonald et al., 2005). 

This is in marked contrast to HK1 expression, which is known as a house keeping gene 

and expressed throughout tissues in the body. HK2 expression is regulated by 

mTOR/hypoxia signaling, playing a key role in tumorigenesis and metastasis (Ciscato et 
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al., 2021). HK3 expression on the other hand has been often overlooked, mostly due to 

a lack of isoform specific reagents. Previous studies show that HK3 has the highest affinity 

for glucose while uniquely demonstrating both substrate and product inhibition, where 

HK1 and HK2 only demonstrate end production inhibition(Su & Wilson, 2002) (Cardenas 

et al., 1998). HK3 was originally thought as a liver specific isoform (Katzen & Schimke, 

1965). In today’s literature, HK3 is denoted as white blood cell specific hexokinase. 

However, it remains unknown which white blood cell(s) express this unique isoform.  

Besides slight differences in biochemical characteristics, HK1 and HK2 are 

different than HK3 structurally (Figure 3.1). Even though these enzymes have similar 

duplications of kinase domains, HK1/2 contain N-terminal mitochondrial binding 

sequence (MBS) where as HK3 lacks this structure completely. This mitochondrial 

binding activity is essential for HK1 and HK2 given that these isoforms sense 

mitochondrial ATP pool to promote increase glucose retention and metabolism. 

Additionally, via this domain, these two HK isoforms bind BAX/BAK, actively suppressing 

apoptosis in the presence of glucose. The divergent N-terminal domain in HK3 is essential 

to protein folding and replacing it with the HK1 or HK2 MBD results in toxic protein 

aggregates (Wyatt et al., 2010). Recent work has demonstrated that eliminating HK1’s 

mitochondrial binding leads to increased macrophage activity due to increased PPP flux 

(De Jesus et al., 2022). Given this finding, it can be hypothesized that the unique 

structural composition of HK3 (where it cannot bind the mitochondria) imparts altered 

function in the unknown cells that express this isoform.  

Myeloid cell glucose metabolism has recently been shown to be a hallmark of both 

tumor microenvironments (TME) and in brain pathology. The most glucose consuming 
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cells in many tumor models as well as the brain appear to be the CD11b+ myeloid cells 

(Reinfeld et al., 2021), (Xiang et al., 2021). However, the underlying program that 

promotes this glucose uptake phenotype is not fully appreciated. Other groups have 

demonstrated different TAM subpopulations with divergent roles in tumor progression 

consume glucose and restock the Kreb’s cycle in different patterns in vitro (Geeraerts et 

al., 2021). We observed increased pS6 levels in tumor myeloid cells. Rapamycin was 

able to lessen but not fully eliminate enhanced in vivo myeloid glucose uptake (Reinfeld 

et al., 2021).  Therefore, understanding myeloid specific metabolic programs is important 

to uncovering tumor progression and novel therapeutic targets in this era of cancer 

immunotherapy.  

In this work, we demonstrate that HK3 is a myeloid specific hexokinase in 

heterogenous tumor microenvironments, in healthy individuals and in inflammatory 

disease settings. Additionally, we show that HK3 expression is regulated the crucial anti-

tumor cytokine interferon gamma (IFN𝛾). Because of the IFN𝛾 responsive promoter of 

HK3, this gene is a poor prognosis indicator in clear cell Renal Cell Carcinoma (ccRCC). 

But since this tumor is now treated with immunotherapeutic agents that rely on functional 

IFN𝛾 signalling, elevated HK3 expression predicts better outcomes 

 

Figure 3.1: Structure and regulation of eukaryotic low Km hexokinases. HK: hexokinase, MBS: 
mitochondrial binding sequence, mTOR: mammalian target of rapamycin, HIF: hypoxia inducible factor 

 

HK3/Hk3 expression is restricted to diverse myeloid cells in the TME 
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NanoString RNA transcriptomic analysis uncovered many glycolytic genes are 

enriched in flow sorted CD11b+ cell population (GR1+ Myeloid Derived Suppressor cells 

(MDSCs), and F4/80+ Tumor Associated (TAMs)) from the MCD38 tumor 

microenvironment (TME) (Figures 2.11, 2.14). We generated differently expressed 

genes between the two myeloid populations and the other three main tumor resident cell 

populations (CD45- cancer cells, CD4+ T cells, CD8+ T cells). Not surprisingly myeloid 

identity genes like Arg1, Apoe, Cybb (NOX2) and H2.Aa (MHCII) are highly enriched in 

these CD11b+ populations (Figure 3.2A, Table 3.1). Strikingly, Hk3, has a log fold 

enrichment (6.73) greater than many known myeloid genes like Cd68, Tbxas1, and other 

MHCII components (H2.DMa) in these MDSCs and TAMs . When comparing all three low 

Km HK isoforms across these tumor fractions, it is clear that HK3 is the dominate myeloid 

isoform and is not detected in the transformed cancer cells or the lymphoid compartment 

(Figures. 3.2B-D). Interestingly, Hk1 is significantly enriched in the T lymphocytes.  

Table 3.1: Myeloid specific genes based on log fold enrichment in comparison to 
other TME resident cell types- Hk3 and Hk2 are bolded in the chart for emphasis 

Gene 
Name p value q value fold change Log Fold Change 

Fcrlb 0.000706 0.00576066 2866.5 11.4850746 

Apoe 4.00E-04 0.00329893 841.397959 9.71664451 

Itgam 0.00176 0.00917291 804.238854 9.65148023 

Fcrls 0.00177 0.00917291 565.813954 9.14418395 

H2.Aa 4.00E-04 0.00329893 347.572926 8.4411719 

Ly86 4.00E-04 0.00329893 299.306324 8.22547895 

Arg1 4.00E-04 0.00329893 288.514286 8.17249895 

Fcgr4 0.00177 0.00917291 220.321138 7.78346411 

Kynu 0.000995 0.00713238 189.857143 7.56877047 

Cybb 0.00172 0.00917291 186.09727 7.53991308 

Cd14 4.00E-04 0.00329893 178.193333 7.47729955 

H2.Eb1 4.00E-04 0.00329893 169.556075 7.40561866 

Hk3 4.00E-04 0.00329893 106.49434 6.73463294 

Btk 0.00177 0.00917291 85.4640719 6.41724615 

Cd68 0.00177 0.00917291 85.0385662 6.41004537 

Tbxas1 4.00E-04 0.00329893 81.9304636 6.35632807 

Tlr2 4.00E-04 0.00329893 71.7306035 6.16451686 
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Cd180 0.00177 0.00917291 71.6861539 6.16362259 

Trf 4.00E-04 0.00329893 71.2748032 6.15532025 

Deptor 0.00126 0.00894833 61.7 5.94719858 

Gatm 4.00E-04 0.00329893 47.8507614 5.58046998 

H2.DMa 4.00E-04 0.00329893 46.2739726 5.53212905 

Apoc2 4.00E-04 0.00329893 43.28125 5.43567026 

Ctss 4.00E-04 0.00329893 42.4570509 5.40793226 

Ms4a4a 4.00E-04 0.00329893 32.2667718 5.01197734 

Cxcl9 0.00177 0.00917291 31.755571 4.98893781 

Thbs1 4.00E-04 0.00329893 28.429311 4.82930723 

Tlr7 4.00E-04 0.00329893 23.7519231 4.56997242 

Cmklr1 4.00E-04 0.00329893 19.097653 4.25532344 

Dglucy 0.00177 0.00917291 18.2307692 4.18830353 

Car9 0.00172 0.00917291 17.612069 4.13849249 

Gda 4.00E-04 0.00329893 16.750996 4.06617498 

Slc16a7 4.00E-04 0.00329893 15.858209 3.98715794 

Ptgs2 0.0111 0.04366 14.3429578 3.84227066 

Csf3r 4.00E-04 0.00329893 12.9572368 3.69568619 

Nod2 0.00177 0.00917291 11.9700855 3.58136155 

Tlr4 4.00E-04 0.00329893 10.8411245 3.4384425 

Alox5 4.00E-04 0.00329893 9.01156812 3.17177818 

Hexb 4.00E-04 0.00329893 8.99082331 3.16845323 

Hmox1 4.00E-04 0.00329893 8.86265477 3.14773892 

Kmo 0.00172 0.00917291 8.82716049 3.14194943 

Prdx5 4.00E-04 0.00329893 8.81264601 3.13957526 

Pla2g15 4.00E-04 0.00329893 8.55169628 3.09621062 

Ctsz 4.00E-04 0.00329893 8.34688675 3.0612382 

Hexa 4.00E-04 0.00329893 8.12235133 3.02189743 

Ampd3 0.00177 0.00917291 8.09708738 3.01740305 

Cd36 0.000799 0.00578144 7.16612903 2.84119402 

Slc7a11 0.00172 0.00917291 6.6097561 2.72459704 

Gusb 4.00E-04 0.00329893 6.18519362 2.62881876 

Gns 4.00E-04 0.00329893 6.13955929 2.6181351 

Ly96 4.00E-04 0.00329893 5.68202765 2.50640585 

Nfe2l2 4.00E-04 0.00329893 5.56469248 2.47630196 

Tlr1 4.00E-04 0.00329893 5.55170576 2.47293111 

Gpx1 4.00E-04 0.00329893 5.42443079 2.43947176 

Gad1 4.00E-04 0.00329893 5.35667396 2.42133749 

Flt1 0.00667 0.02842161 5.32215743 2.41201119 

Fnip2 0.00177 0.00917291 5.27569061 2.39935996 

Itgb5 0.00177 0.00917291 5.21439083 2.38249872 

Ccl2 4.00E-04 0.00329893 5.20738689 2.3805596 

Idh1 4.00E-04 0.00329893 5.00727435 2.3240255 

Hk2 4.00E-04 0.00329893 4.75357782 2.24901378 

Tnf 4.00E-04 0.00329893 4.67262093 2.224232 
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Cd84 4.00E-04 0.00329893 4.44319037 2.15159596 

Myd88 4.00E-04 0.00329893 4.38220373 2.13165656 

Fpr1 0.000799 0.00578144 4.23913044 2.08376836 

Nat8l 0.0048 0.0208 4.23809524 2.08341601 

Bcl2a1a 4.00E-04 0.00329893 4.16562909 2.05853439 

Atox1 4.00E-04 0.00329893 4.07607025 2.02717892 

Slc2a6 0.0111 0.04366 3.77755102 1.91745124 

Neu1 4.00E-04 0.00329893 3.62313647 1.85723915 

Pgd 4.00E-04 0.00329893 3.53292383 1.82086265 

G6pdx 4.00E-04 0.00329893 3.4684123 1.79427541 

Ctsa 0.0112 0.04382857 3.38855422 1.76066986 

Cd274 0.0028 0.01325679 3.30876516 1.7262929 

Glul 0.00177 0.00917291 3.29221626 1.71905911 

Pik3cb 4.00E-04 0.00329893 3.2841185 1.71550619 

Runx1 4.00E-04 0.00329893 3.14554589 1.65331041 

Taldo1 4.00E-04 0.00329893 3.11566139 1.63953845 

Dck 4.00E-04 0.00329893 3.10015728 1.63234141 

Fabp5 4.00E-04 0.00329893 2.95888112 1.56505173 

Sod2 4.00E-04 0.00329893 2.6017282 1.37947025 

Tkt 4.00E-04 0.00329893 2.5191583 1.33294178 

Ptger4 0.0028 0.01325679 2.51227496 1.32899437 

Itgb2 0.0016 0.00917291 2.4651763 1.30169083 

Xdh 0.0028 0.01325679 2.39870354 1.26225487 

Slc16a6 0.000799 0.00578144 2.2908377 1.19587525 

Gba 4.00E-04 0.00329893 2.2361194 1.16099723 

Gmpr2 0.00177 0.00917291 2.2277512 1.15558812 

Map2k1 4.00E-04 0.00329893 2.19071064 1.13139894 

Cpt1a 0.00177 0.00917291 2.14877025 1.10351123 

Ern1 0.0048 0.0208 2.12310455 1.08617542 

Tet2 0.012 0.04403828 2.1215311 1.08510583 

Prkab2 0.00759 0.03080175 2.09280501 1.0654379 

Nadk 0.000799 0.00578144 2.07692308 1.05444778 

Idh2 0.012 0.04403828 2.04166667 1.02974734 

Ap2s1 4.00E-04 0.00329893 2.01261354 1.00907017 

Washc4 0.000799 0.00578144 2.00624522 1.00449796 

Fnip1 0.0016 0.00917291 1.97125371 0.97911347 

Usp8 4.00E-04 0.00329893 1.94417266 0.95915635 

Cbl 0.012 0.04403828 1.88552393 0.91496546 

Echs1 4.00E-04 0.00329893 1.84115983 0.88061487 

Slc3a2 4.00E-04 0.00329893 1.81728708 0.86178634 

Psmb10 0.000799 0.00578144 1.80107527 0.84885847 

Glud1 4.00E-04 0.00329893 1.79778242 0.84621843 

Pfkl 0.00385 0.01789667 1.78237733 0.83380279 

Acap2 4.00E-04 0.00329893 1.76764084 0.82182517 

Bad 0.00795 0.03192487 1.7540633 0.81070081 
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Akt1 4.00E-04 0.00329893 1.73020264 0.79094102 

Stat6 0.0016 0.00917291 1.72644099 0.78780102 

Itch 4.00E-04 0.00329893 1.69871754 0.76444599 

Pkm 0.00759 0.03080175 1.65939064 0.73065355 

Traf6 0.0048 0.0208 1.65227396 0.72445292 

Oat 0.012 0.04403828 1.6452215 0.71828183 

H2.M3 0.0016 0.00917291 1.63752956 0.71152095 

Sem1 0.0028 0.01325679 1.58751395 0.66676927 

Sdhc 4.00E-04 0.00329893 1.56380922 0.64506452 

Pgk1 0.0048 0.0208 1.55731032 0.63905646 

Nedd8 4.00E-04 0.00329893 1.53791369 0.62097454 

Lamtor2 4.00E-04 0.00329893 1.53349515 0.6168236 

Tbc1d10b 4.00E-04 0.00329893 1.53293155 0.61629328 

Lamtor5 4.00E-04 0.00329893 1.51940701 0.60350838 

Vhl 0.00557 0.02386698 1.50287632 0.58772629 

Pik3c2a 0.00319 0.01501061 1.48117625 0.56674332 

Pgm1 0.00263 0.01325679 1.47712904 0.56279587 

Ranbp2 4.00E-04 0.00329893 1.46234056 0.54827933 

Selenok 0.00759 0.03080175 1.41585407 0.50167258 

Cdk9 4.00E-04 0.00329893 1.40418397 0.48973196 

Asl 0.00385 0.01789667 1.4018297 0.48731109 

Mpc2 0.0016 0.00917291 1.39694381 0.48227399 

Ndufb8 0.0048 0.0208 1.37169972 0.4559647 

Atp6v1f 4.00E-04 0.00329893 1.37134806 0.45559478 

Snf8 0.0028 0.01325679 1.35447304 0.43773168 

Uqcr11 4.00E-04 0.00329893 1.32981159 0.41122185 

Cat 0.012 0.04403828 1.32757415 0.40879245 

Sdhb 0.0048 0.0208 1.31759785 0.39791011 

Cox6b1 0.00759 0.03080175 1.3118848 0.39164104 

Uqcrq 0.012 0.04403828 1.3040249 0.38297142 

Mtf1 0.0048 0.0208 1.24022109 0.31059733 

Ndufb4 0.012 0.04403828 1.21950791 0.28629911 

Ndufs7 0.00759 0.03080175 1.21930791 0.2860625 
 
     

     

Given this myeloid specific expression pattern of HK3, we evaluated HK3 

expression in diverse cell types across mouse and human tumor models. In examining 

scRNAseq data from metastasizing mouse models of lung cancer (LaFave Cancer Cell 

2020), Hk3 is also a myeloid specific enzyme in this genetically engineered mouse model 

while Hk2 is expressed both in cancer cells and immune cells (Figures 3.3A-C) (LaFave 
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et al., 2020). In both primary and metastatic brain malignancies (N=63 human 

patients,226 total fractions, (Klemm et al., 2020)), HK3 transcripts are only detectable in 

the resident CD11b+ microglia, and infiltrating CD11b+ macrophages and neutrophils 

(Figures 3.2E-F). We then analyzed the TISCH database (Sun et al., 2021) which 

contains RNA transcript prolife across 2x10^6 cells from 79 scRNAseq cancer studies. 

Again, we see that HK3 is an immune specific gene (Figure 3.3D), however it is important 

to note that it is only expressed in the CD11b+ neutrophils, dendritic cells, and 

macrophages (Figure 3.2G). HK3 was not expressed in either the lymphoid cells or the 

malignant cells in any of these tumor types, in line with our observation from the MC38 

model. This myeloid specific expression pattern is unique to HK3, whereas HK1 appears 

expressed to a similar level across cancer cells, immune cells and stromal cells (Figure 

3.3E), in line with its description as a catabolic housekeeping gene. Expression of HK2 is 

more variable across all cell types (Figure 3.3E). These data support that HK3 is uniquely 

a myeloid specific hexokinase in the TME, not solely a white blood cell specific gene. 

Figure 3.2: HK3 is a myeloid specific gene in the mouse and human tumor microenvironment. (A) 
Volcano plot demonstrating myeloid specific genes from flow sorted CD11b+ populations in the MC38 tumor 
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microenvironment. Red dots represent genes that are significant with an FDR<.05 Normalized RNA 
expression of Hk1 (B) Hk2 (C) Hk3 (D) across flow sorted fractions in the mouse tumor microenvironment. 
Experiement conducted in biological triplicate for each fraction. Normalized RNA expression of HK3 in 
human brain tumor microenvironment from surgically resected primary gliomas (E) or brain metastasis (F). 
Data from Klemm Cell 2020.  For B through F, error bars indicate SEMs and middle point refers to mean. 
E/F have over 200 fractions taken from 50+ both New York City and Switzerland (G): scRNA expression of 
HK3 across immune cells from 17 different scRNAseq experiments. Data take from TISCH online tool. 
Arg1: arginase 1, TAM: tumor associated macrophage, M-MDSC: monocyte myeloid derived suppressor 
cell, NK: natural killer, DC: dendritic cell, Mono:monocyte, sc: single cell. Figure 3.2G implements tumor 
naming scheme from TCGA (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-
abbreviations), Brown-Forythe One Way ANOVA with Welch test for multiple comparisons was conducted 
in panels B-D. * equals p<.05, ** equals p<.01=, ***equals p<.001.  

 

Figure 3.3: Hk3 differs in tumor cell subset expression from other low Km isoforms.  (A) UMAP from 
LeFeve Cancer Cell 2020 demonstrating cell cluster identity. Cell type specific expression of Hk2 (B) and 
Hk3 (C) from Lefeve Cancer Cell 2020. Broad cell type expression of HK3 (D), HK2 (E), HK1 (F) from many 
human tumor types. Data taken from TISCH database for D-F. UMAP: Uniform Manifold Approximation and 
Projection for Dimension Reduction Figures 3.3D-F implements tumor naming scheme from TCGA 
(https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations), 

 

HK3/Hk3 is a myeloid specific metabolic gene in healthy individuals 
 

Given the myeloid specific nature of HK3 expression in the TME stands in contrast 

to previous observation of this gene as a pan white blood cell hexokinase, we evaluated 

whether this is the case in healthy individuals. Brain tissue from epileptic patients and 

healthy blood donors (Klemm Cell 2020), as well as PBMC control data collected by 10x 

https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations
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Genomics in TISCH also support the myeloid specific nature of this metabolic enzyme 

(Figure. 3.5A-C). This strong concordance between the TME and healthy donors 

provides significant rationale to study HK3’s expression across a wider swath of human 

biology.  

By examining the GTEX dataset and normal from the TCGA (Tang et al., 2017), 

HK3 is only detectable in lymphoid organs (lymph node, spleen, thymus) and the lung. 

(Figures 3.4A and 3.5D). Across the entire GTEX, HK3 expression does correlate with 

the universal hematopoietic marker CD45 (PTPRC), (Figure 3.4B). This stands in 

contrast to HK1 and HK2, which demonstrate minimal correlation with PTPRC across the 

entire GTEX (Figure 3.5E), supporting HK3 as the white blood cell hexokinase. When 

conducting deeper correlation analysis in both lung tissue and across the entire dataset, 

it is clear that HK3 expression correlates most strongly with myeloid genes like ITGAM 

(encoding CD11b) and not lymphoid genes CD3, CD56 or CD19 nor epithelial genes like 

EPCAM (Figure 3.4C and 3.5F). Interestingly, HK3 expression correlates better with 

ITGAM than PTPRC, further supporting that HK3 is a myeloid specific gene in humans 

(Pearson R= 0.86, then CD45 = Pearson R = 0.76) (Figures 3.4B and 3.4F). Querying 

the human lung single nucleus RNAseq Atlas (Delorey et al., 2021), we observe the 

myeloid specific nature of this HK isoform, which stands in contrast to HK2 (also 

detectable in the EPCAM+ epithelia) (Figure 3.6A-E). These data again are quite similar 

to our original observation in mouse tumor models (MC38 tumor model and (LaFave et 

al., 2020)). 

We next sought to identify the time point at which HK3 is transcribed during myeloid 

development. The data from Van Galen 2020 where transformed AML cells express less 
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HK3 than infiltrating myeloid cells suggests its associated with more mature myeloid cells 

(Figure 3.2G). By conducting scRNAseq and ATACseq on mouse methocult CD34+ 

cultures at D14, we find that Hk3 chromatin openness is correlated with macrophage cell 

lineage and not precursor stem cell identity (Figure 3.4D). We also examined hexokinase 

isoform expression in publicly available human bone marrow scRNAseq (Hay et al., 

2018). Additionally, we observe HK3 expression is only detectable in monocytes, 

immature neutrophils, and neutrophils (versus the wide swath of precursor stages) in 

comparison to the widely expressed HK1 and HK2 this human bone marrow scRNA 

database. In fact, expression of HK2 appears highest in the hypoxic stromal cells, in 

accordance with its known role as a HIF target (Fig 3.5F)(Parmar et al., 2007). These 

data suggest that HK3 is solely engaged later in the myeloid development program.  

Not surprisingly, in the UK Immune proteomics database, HK3 protein expression 

is only detectable in mouse myeloid cells, with greatest expression in M-CSF generated 

macrophages (Marchingo et al., 2020) (Figure 3.4E). To confirm this unique expression 

pattern, we performed qPCR on CD11b enriched bone marrow from healthy mice 

(Figures. 3.4F and 3.6G). We observed a significant increase in Hk3 RNA level in the 

CD11b+ bone marrow cells in comparison to the total marrow as well as the CD11b- cells 

(which are a heterogenous mixture of lymphoid and progenitor cell lineages (Figure 

3.4G). Similar to our MC38 data and the human lung scRNAseq, HK1 expression does 

not vary across bone marrow cell types (Figure 3.5H), and HK2 expression is also 

elevated in these myeloid cells (Figure 3.5I). 
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Figure 3.4: In healthy individuals, HK3 is also a myeloid specific gene. (A) Pictural representation of 
restricted HK3 expression. (B) HK3 and CD45 (PTPRC) correlation across all GTEX samples. (C) HK3 
correlation with epithelial (EpCAM) myeloid (ITGAM) T cell (CD3e) or B cell (MS4A1) identity markers in 
the GTEX lung data set. (D) Heatmap from scATACseq on mouse Methocult cultures at day 14 demonstrate 
immune cell specific chromatin opening. (E) Heatmap developed from ImmPress proteomics database. 
Mass spectrometry was performed on mouse cultured immune cells and z scores were generated based 
on mass spectrometry peaks. (F) Experimental design for (generated in biorender) (G) qPCR for HK3 on 
CD11b+ enriched bone marrows. Pearson correlation used for b-c. P=0 indicatives p<1*10-99 GTEX: the 
genotype tissue expression Panel G the midpoint on the bar graph references the mean and the error bars 
represent SEM. This experiment was done in biological quadruplicate. One Way ANOVA performed in 
panel G. * equals P<.05, **** equals p<.0001. 
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Figure 3.5: HK3 myeloid specific expressions occurs at homeostasis. Bulk RNA seq HK3 expression 
levels from FACS sorted cells from healthy donors blood (A) and epileptic brains (B) from Klemm Cell 2020. 
Panels A-B the mid point represents mean while the error bars represent SEM. For A n=7 patient PBMC 
and for B n=6 epileptic brain samples that were flow sorted. Each dot represents a biological replicate (C) 
HK3 expression from 10x scRNAseq conducted on human PBMCs. Data taken from TISCH.  (D) HK3 
expression in GTEX database. (E) HK1 and HK2 correlation with CD45 (PTPRC) across entire GTEX 
dataset. (F) HK3 correlation with myeloid (ITGAM,CD11b), NK Cell (NCR1, NKp46), T cell (CD3e) or B cell 
(MS4A1/CD20) identity markers in the entire GTEX data set. Pearson correlation used for b-c. P=0 
indicative of p<1*10-99.  

 

Next, we examined what factors could be driving this cell subtype specific 

expression. In line with our mouse methocult data, scATAC sequencing data demonstrate 

that in human PBMCs, the HK3 promoter is only open in CD11b+ myeloid cells (CD14+ 

classical monocytes, CD16+ non classical monocytes, cDC1/2s) in comparison to the 

broad subsets of lymphoid cells present in these cultures (Kartha et al., 2021) (Figure 

3.7). Mouse enhancer network analysis further supports the four enhancers of Hk3 are 

only active in HSCs and myeloid cells (Figure 3.8C), while Hk2 (Figure 3.8A) and Hk1 

(Figure 3.8B) have one enhancer element which is active in almost all mature/immature 

lymphoid, myeloid, and bone marrow stromal cells. (Immungen Enhancer Network, 

(Yoshida et al., 2019)) 

These data suggest openness of the chromatin in both human and mouse myeloid 

cells, however, do not pin down regulatory factors that contribute to this relationship. The 

CHIPATLAS(Oki et al., 2018) contains approximately 15,000 chromatin 

immunoprecipitation experiments that can be unbiasedly quired to understand 

transcription factors (TFs) that bind promoters. From this data set, we observe that 

myeloid and inflammatory transcription factors can be found uniquely at the HK3/Hk3 

promoter in humans and mice. Of the 15000 human CHIP experiments in the human 

dataset, only 84 significant transcription factor specific binding events occur at the HK3 

promoter (significance=p value less < 1.0 x 10-5). Of those 84 significant studies, 77 occur 
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in blood cells supporting the original observation of HK3 as a white blood cell specific 

enzyme. The recurrent blood binding transcription factors most strongly indicate basis for 

myeloid specific expression. In this dataset, the overwhelming recurrent binding factor is 

the myeloid determining transcription factor SPI1 (encoding PU.1) (51/77 events). A 

similar pattern exists in mouse data where Spi1 protein is found most frequently at the 

Hk3 promoter, representing 116/261 significant blood transcription factor binding events 

(out of a total of 290 events across all tissue types). This is line with two publications in 

acute leukemias where PU.1 is described to bind the HK3 promoter (Federzoni et al., 

2014; Federzoni et al., 2012). Additionally, inflammatory transcriptions factors that bind 

HK3 more often than HK1 and HK2 are Signal Traducer and Activator of Transcription 1 

(STAT1) and many of the interferon regulatory factor (IRF) IRF proteins.  For HK1/Hk1 

and HK2/Hk2, there are many more nonblood cell promoter binding interactions as well 

as interactions with more widespread transcriptions factors like CTCF, MYC, RAD21 

(Table 3.2).  It is worth noting PU.1 can be found at the HK2/Hk2 promoter in both mouse 

and humans. This is in line with much of the above data and our previous result where 

the expression of HK2, as well as many other cell types throughout eukaryotic organisms. 

That does not appear to be the case with HK3 where its expression is restricted to myeloid 

cells.  In concert, these findings support the cell programmed nature of HK3 utilization in 

eukaryotic organismal homeostasis as a myeloid specific hexokinase.   
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Figure 3.6: In human lungs and bone marrow, HK3 is expressed in mature myeloid cells in contrast 
to the other low Km isoforms: (A) UMAP of cell identities from Delray 2020 scNucSEQ of cadaver lungs. 
EPCAM (B), ITGAM (CD11b) (C) HK3 (D) and HK2 (E) expression across cell populations from Delorey et 
al. 2020 Biorxiv. F: Heatmap of low Km HK isoforms from Hay et al. Exp Hematology 2018 which conducted 
scRNAseq on 8 healthy human BM donors. F: Enrichment of CD11b+ cells from qPCR experiments in 
figures 3.5/3.6. HK1 (G) and HK2 (H) expression in myeloid vs non myeloid bone marrow fractions. For 
panels G-I midpoint on the bar graph references the mean and the error bars represent SEM. This 
experiment was done in biological quadruplicate. Labels generated for F originate from Hay et al. 2018. 
One Way ANOVA performed in panel H/I,  *** equals p=.0001, ****=, p<.0001   

Figure 3.7: Chromatin Openness at human HK3 promoter across immune cell types. Tracks are from  
Katha et al. biorvix.org 2021 and are deposited at UCSC. cDC: conventional dendritic cell. Mgk: 
megakaryocyte. HSPC: hematopoietic stem progenitor cell, Treg: CD4+ T regulatory cell. 
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Figure 3.8: Chromatin state of transcriptional elements from Low Km HKs supports the myeloid 
specific nature of HK3. Heatmap of enhancer elements from mouse (A) Hk1 (B) Hk2 (C) Hk3 from Yoshida 
Cell 2019. Labels for each cell type generated by Yoshida Cell 2019. Red lines divide population into 
different lineages 

 
Table 3.2- CHIPATLAS summary data for TF binding interactions across human and 
mouse HK1/HK2/HK3 

Human 
Significant  
Binding Studies 

Significant 
Studies in Blood 
cells 

Most 
Recurrent 
Event 

HK1 866 141 (16%) GATA1 (26x) 

HK2 809 331(40%) CTCF (166x) 

HK3 87 76 (87%) SPI1 (51x) 

Mouse    

Hk1 124 76 (61%) Rad21 (35x) 

Hk2 676 305 (45%) Ctcf (60x) 

Hk3 290 261(90%)  Spi1(116x) 
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HK3/Hk3 is an inflammation associated myeloid specific metabolic gene.  
 

In addition to our tumor studies, which demonstrate that myeloid cells consume 

the most glucose in the tumor microenvironment, another group has found that the brain 

resident phagocytic myeloid cells (CD11b+ microglia) in Alzheimer’s Disease consume 

the most glucose (Xiang et al., 2021).  These microglia also are the major expressor of 

HK2/HK3 in the non-inflamed human epileptic brain (Figures 3.3A-B). Single-Nuc-

sequencing from human spinal cords confirms that there is enhanced glucose fixing 

capacity of these supporting cells (Figures 3.9A-C) (Yadav et al., 2022) . With this 

evidence, we next evaluated glucose uptake in a model of asthma to see if this enhanced 

glucose consuming phenotype of myeloid occurs in additional tissues and inflammatory 

diseases. Using an Alternaria model, we find that CD11b+ myeloid cells consume the 

most per cell glucose in the inflamed asthmatic lung (Figure 3.10A). This finding in 

concert with recently published literatures supports the notion that in many inflammatory 

conditions, myeloid cells have an enhanced glucose uptake phenotype. (Reinfeld et al., 

2021; Xiang et al., 2021)  

 

 

 

 

Figure 3.9: Human microglia express similar patterns of low Km HKs to tumor associated myeloid 
cells: Expression of (A) HK1 (B) HK2 (C) HK3 HK2 and HK3 in human spinal chord via single-nucRNAseq.. 
Light blue/teal groups are microglia. Groups on the left (red/purple) are supporting astrocytes, and groups 
on the right (green/yellow) different subpopulations of neurons 

 
To address the role of HK3 in glucose consuming inflammatory 

microenvironments, we evaluated HK3/Hk3 levels across inflammatory diseases in 
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humans and mice. To our surprise, increased Hk3 expression is not ubiquitously 

observed with inflammation. It is significantly increased in the hearts of mice who 

experienced heart attacks both during the repair phase (d7) and during fibrosis (d28) 

(Figure 3.10B). However, there is no significant no changes in HK3 expression in a 

genetic model of immune checkpoint related myocarditis (Figure 3.10C), which is known 

to have significant myeloid infiltrate, (Balko, 2022; Wei et al., 2021). This suggests that 

specific inflammatory stimuli may regulate HK3’s expression and utilization. In evaluating 

a meta-analysis of over 10,000 inflammatory bowel disease patients (Massimino et al., 

2021),  HK3 is significantly elevated in the affected bowel tissue when compared to 

healthy control (in rectums colons and ileums from ulcerative colitis (UC) and Crohn’s 

Disease (CD) patients Figure 3.10D). Additionally, HK3 expression is elevated in 

monocytes from patients with CD when compared to monocytes from healthy controls 

demonstrating that this inflammatory factor driving HK3 expression may be systemic and 

not localized to the tissue (nearly significant FDR is 1e-10, and p= 2*10-8). Therefore, we 

evaluated HK3 expression in whole blood in a variety of inflammatory conditions in a 

previously published Vanderbilt cohort (Aune et al., 2017).  What becomes apparent is 

that HK3 is the dominate hexokinase expressed in human blood in healthy individuals 

and increases in inflammatory conditions like UC, CD, and Sjogren’s syndrome (Figure 

3.10E). This is in contrast to less inflammatory syndromes such as irritable bowel 

syndrome and fibromyalgia, where HK3 expression is unaltered. Additionally, HK3 levels 

additionally with therapy in patients with multiple sclerosis. HK3’s increase in this 

subgroup of immunopathologies stands in stark contrast to HK1 and HK2 as well as other 

canonical glycolytic genes associated with immune activation (e.g., SLC2a1 and GLUT1). 
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Similarly, in COVID patients (julian.knight@well.ox.ac.uk & Consortium, 2022), it is 

apparent that HK3 expression in the blood increases with COVID severity while GLUT1 

expression remains relatively stable (Figure 3.10F). HK3 expression is the lowest in non-

hospitalized COVID patients (community COVID) and highest in intubated critical COVID 

patients, again suggesting that a systemic factor can regulate HK3 expression (Figure 

3.10G).  

Figure 3.10: Inflammatory myeloid cells increase HK3 expression both in disease sites and the 
blood. (A) FDG uptake assay in mouse model of Asthma. N=3 biological replicates (B) qPCR conducted 
on mouse hearts after experimental induced myocardial ischemic injury. (C) qPCR conducted on 6-12 week 
old mice with genetic predisposition for myocarditis. (D) Volcano plots of HK3 expression in Ulcerative 
Colitis and Crohn’s Disease across bowel tissue and blood monocytes. (E) Heatmap of blood-based RNA 
expression of glycolytic enzymes across inflammatory setting from Aune et al. Autoimmnunity 2017. 
Expression of SLC2A1 (F) and HK3 (G) in whole patient blood across COVID disease severity.  FDR: false 
discovery rate, SLC2A1: Glut1 transcript name, IP: inpatient .P-values indicate result of Welch’s 2-tailed t-
test * equal p<0.05, ** equal p<0.01. for panel A. In panel B One Way ANOVA was performed with multiple 
comparison testing ** equals p=.0031,**** equals p<.0001. Error bars in A-C represent SEM, and midpoint 
represents mean. Box plots in F and G represent 25-75 quartile range. Midpoint is the median. Each point 
in this figure is a biological replicate. 
 

 

HK3/Hk3 expression is regulated by IFN𝛄 
 

Given the relationship between HK3 and inflammation, we stimulated myc 

immortalized mouse bone marrow derived macrophages (iBMDMs) with an array of 

cytokines. We observe that Hk3 expression is induced by IFN𝛾 stimulation (Figure 3.11A) 
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at 18 hours. This is consistent with the fact that STAT1 has been found to bind the 

HK3/Hk3 promoter in mice and humans (Table 3.2). HK3 expression levels are 

unchanged with other inflammatory cytokines like IL-1ß, IL-4 and IL-6. We. Additionally, 

no significant changes in the other hexokinases were seen with these stimuli (Figures 

3.11B-C). qPCR was validated by western blot at 24 hours (Fig. 3.11D), where there is a 

large HK3 induction with IFN𝛾 stimulation. Given that other cell types do not express Hk3, 

we wondered if IFN𝛾 was sufficient to induce HK3 expression in cancer cells. Strikingly, 

IFN𝛾 driven HK3 expression only occurs in the CD11b+ iBMDMs. Colorectal, lung or 

melanoma cell lines do not express this hexokinase isoform with 24 hours of IFN𝛾 

treatment (Figure 3.11E). However, this is not due to loss of response to IFN𝛾 in the 

cancer cells, however as these 3 mouse cancer cell lines upregulate PD-L1 after 24 hours 

of IFN𝛾 stimulation (Figure 3.1F). This is in alignment with the CHIP-ATLAS data, 

because mouse STAT1 HK3 promoter binding interaction was only observed in CD11b+ 

myeloid cells and not cells from solid organs (Table 3.3).  

IFN𝛾 is known to play a role in the metabolically active M1 macrophage. M1 

macrophages are canonically stimulated with LPS and IFN𝛾 to induce this phagocytic, 

anti-tumor gene transcriptional program. This classical stimulation results in a hyper 

metabolic cell that upregulates all three isoforms (Figure 3.11 G-I). From the cytokines 

tested, IFN𝛾 alone induces HK3 expression in contrast to HK1 and 2. Additionally, from 

examining human scATAC/RNA sequencing data from Kartha et al. 2021 (Kartha et al., 

2021) IFN𝛾 alone opens the chromatin in myeloid cells specifically at the HK3 promoter 

and thus drives HK3 expression. Chromatin opening and transcriptional engagement 

does not happen in the presence of other inflammatory stimuli like lipopolysaccharide or 
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Phorbol myristate acetate or in B or T cells with the same sample (Figure 3.11J-L and 

Figure 3.12E). Additionally, the expression of HK3 is decreased in the presence of the 

JAK1/2 inhibitor Ruxolitinib (100 or 250 nM) at both the RNA and protein level (Figures 

3.11M-N), confirming the regulation of HK3 by IFN𝛾.  

Figure 3.11: HK3/Hk3 as a bona-fide myeloid specific interferon gene in mouse and human cells. 
qPCR for Hk3 (A), Hk2(B), Hk1(C) with host of inflammatory stimuli at 18 hours post stim in iBMDMs. (D) 
Western blot of iBMDM lysates given IFN𝛾 for 24hrs. (E) IFN𝛾 effect on HK1, HK2, and HK3 protein across 

mouse cancer cell lines and iBMDMs. (F) PD-L1 protein expression examined by flow cytometry in mouse 
cancer cell lines and iBMDMs with 24 hours IFN𝛾. qPCR for Hk1 (G), Hk2 (H), and Hk3 (I) with canonical 

M1 stimuli. (J) scATAC tracks from Kartha et al. 2021 from CD14+ monocytes stimulated with IFN𝛾, LPS 

or PMA. (K) Plotting of HK3 chromatin opening on UMAP from Kartha et al. 2021: (L) IFN𝛾 psuedotime 

from Kartha et al. 2021. Ruxolitinib effect on HK3 expression at (M) RNA and (N) protein level at 100/250 
nm doses. IL: interleukin TGF: transforming growth factor, IFN: Interferon LPS: lipopolysaccharide, 
PMA:Phorbol myristate acetate, DORC= domain of regulatory chromatin, Rux:ruxolitinib. In panel One Way 
ANOVA was conducted. All cytokine stims were compared to the vehicle **** equals p<.0001. In all bar 
graphs, error bars represent SEM, and midpoint represents mean. To generate the SEMs, experiments 
were conducted in technical triplicates. These panels have been repeated at least than and demonstrate 
identical trends. Western blots all have been replicated at least once and follow the same trends as qPCR 
data 

 
Table 3.3-. Significant STAT1-HK3 promoter interactions in human and mouse collected from 
CHIPAtlas Database 

Human Study ID Antigen Cell class Cell 
Fold 

Enrichment 

 SRX212648 STAT1 Blood CD14+ Mono 2.61 

 SRX212650 STAT1 Blood CD14+ Mono 1.99 
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 SRX197292 Stat1 Blood Macrophages 156.9 

Mouse SRX498829 Stat1 Blood Macrophages 19.44 

 SRX2417352 Stat1 Blood Macrophages 17.57 

 SRX109335 Stat1 Blood Macrophages 16.69 

 SRX109333 Stat1 Blood Macrophages 15.91 

 SRX109331 Stat1 Blood Macrophages 15.27 

 SRX109337 Stat1 Blood Macrophages 14.31 

 SRX109339 Stat1 Blood Macrophages 12.62 

 SRX5255298 Stat1 Blood Macrophages 10.55 

 SRX5255296 Stat1 Blood Macrophages 9.53 

Even though many of these mechanistic in vitro studies were performed in 

immortalized myeloid cells, we performed analogous studies in primary bone marrow 

macrophages and indeed found that HK3 is uniquely elevated by IFN𝛾 alone at the RNA 

and protein level (Figure 3.12A-D). Additionally, examining previously reposited 

microarrary datasets (Immgen Gene Skyline). we find that HK3 expression increases with 

IFN𝛾 in myeloid cells where as IFN𝛼 has an intermediate to minimal effect on HK3 (Figure 

3.12F). Expression of HK1 and HK2 are quite different in that IFN𝛼 can induce their 

expression and detection of these changes occurs in lymphoid cells (e.g., B cells for HK2) 

(Figures 3.12G/H). As mentioned previously, M1 macrophages are thought to be 

generated by IFN𝛾 signalling. In the TISCH database, there are 7 studies that identify M1 

and M2 populations in their human tumor scRNAseq dataset. In six of these seven 

datasets, the M1 macrophages have more HK3 transcripts than the other myeloid cells 

found in the tumor microenvironment, supporting HK3 as an IFN𝛾 driven gene in human 

malignancy (Figure 3.12I).  

In concert, these data suggest that IFNγ plays a strong role in inducing HK3 

expression in myeloid cells. This is in stark contrast to many of the other papers examining 

the impact of HK3 in bulk tissues(Tuo et al., 2020; Xu et al., 2021). Groups have identified 
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HK3 expression as part of many poor prognostic signatures and thus attribute its role in 

tumor biology to increase in cancer cell. The data collected in this work argue instead that 

elevated HK3 in bulk tissue is a marker of myeloid cell infiltration as well as interferon 

activation, which can in turn promote tumorigenesis, and metastasis. 

Figure 3.12: Validation of HK3 as a myeloid specific IFNy regulated enzyme qPCR conducted on 
mouse bone marrow derived macrophages, examining Hk1 (A) Hk2 (B) Hk3 (c)  expression. (D)  Canonical 
M1 stimuli effect on human Hk3 protein levels. (E): UMAP from Kartha et al. 2021 biorxiv.org demonstrating 
cell identities. IFNg/a impact on HK3 (F), HK2 (G), HK1 (H) expression elevated by RNA microarray. (I) 7 
studies from the Tisch database where HK3 expression can be compared across diverse myeloid subsets.  
F-H use labels generated by Immune Gene Skyline analysis. I implements tumor naming scheme from 
TCGA (https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations), One Way 
ANOVA performed in panels A-C. * p<.05, ** p<.01 A-C plot the SEMs and mean. These experiments were 
done by a collaborator, the error bars are generated from biological replicates 

 

Regulation of HK3 supports it role as a biomarker in the inflammatory ccRCC 
 

Our group has previously shown that ccRCC has the greatest amount of CD8 

infiltrate of any solid tumor (Siska et al., 2017). Surprisingly, even though ccRCC patients 

have a low tumor mutational burden and this tumor type is not associated with chronic 

carcinogen exposure (in contrast to other immunotherapy responsive tumor types like 

bladder lung and melanoma), CD45 (PTPRC) as well as the pan macrophage marker 



 111  

CD68 are expressed to the greatest degree of all solid tumors (Figures. 3.13 A-B) 

(GEPIA TCGA data). Using our 180 patient ccRCC tissue microarray, we validated this 

finding via CD68 immunofluorescence where we see macrophages are abundant in 

human ccRCC tissues (Figure 3.13C). Interestingly, CD68 protein level in this Vanderbilt 

cohort correlates with advanced tumor stage (Figure 3.13D). 

Figure 3.13: HK3 as a poor prognostic marker in ccRCC. Expression levels (Log2(fpkm)) for PTPRC (A) 
and CD68 (B) genes across 24 TCGA cancer types (N=9264. Tumor types were sorted (descending) in 
function of the median expression . Box-and-whisker plot shows the sample median and lower and upper 

quartiles according to a confidence interval. KIRC box-and-whisker plot is indicated in light red, while LAML 
and DLBC box-and-whisker plots are shown in light blue (hematopoietic tumor types).(C) Representative 
Immunofluorescence for CD68 in ccRCC patient sample. (D) Correlation between CD68 protein level and 
outcomes in Vanderbilt 157 patient tissue microarray. (E): Expression level of HK3 across 24 TCGA cancer 
types (N=9264). Tumor types were sorted (descending) in function of the median expression. Box-and-
whisker plot shows the sample median and lower and upper quartiles according to a confidence interval. 
KIRC box-and-whisker plot is indicated in light red, while LAML and DLBC box-and-whisker plots are shown 
in light blue (hematopoeitic tumor type).CPTAC ccRCC HK3 protein expression as determined by mass 
spectrometry compared to adjacent normal kidney tissue (F) as well as across different stages of ccRCC 
(G). (H) Kaplan Meier curve  evaluating HK3 expression level impact on patient overall survival.  (I) Term 
Geneset Enrichment Analysis (GSEA) was performed using genes significantly expressed (FDR<0.05) 
between tumors expressing high and low levels HK3 (mean cutoff). All pathways had FDR<0.05 and 
significance represented as -log10(FDR). (J-K) ccRCC tumors were categorized according to high and low 
HK3 (N=9264). J) Box-and-whisker plots show CiberSortX profiles for M0 macrophages, M2 Macrophages, 
Neutrophils and CD8+ T cells for HK3 high (red) and low (blue) expressing ccRCCs TCGA samples. K) 
Box-and-whisker plot shows HK3 expression levels for TREM2 high (red) and low (blue) expressing 
ccRCCs (n=157 patients). Significance was assessed by two-sample Wilcoxon (Mann-Whitney) 
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test.Clinical Proteomic Technology Assessment for Cancer,  ccRCC: clear cell renal cell carcinoma, TPM: 
transcript per million, Mɸ=macrophage, For A/B/E, tumor naming scheme from TCGA 
(https://gdc.cancer.gov/resources-tcga-users/tcga-code-tables/tcga-study-abbreviations), In panel A and 
G, One Way Anova performed. * equals p<.05. In panel F,J,K Mann Whitney test performed, **** equals 
p<.0001. P values listed for CiberSortX and TREM2 comparisons. 
 

Given our data that suggests myeloid cells play a role in ccRCC progression, we 

wanted to evaluate the role of in this highly inflammatory malignancy. Median HK3 RNA 

expression is higher than almost all solid tumors (Figure 3.13E). As shown in earlier 

figures, hematopoietic cells, the lung parenchymal macrophages as well as the CD11b+ 

microglia express HK3 at baseline. Therefore, it is not surprising that tumors from those 

organs (including lymphomas and leukemias) have elevated HK3 expression in 

comparison to ccRCC. In alignment with the RNA data from the TCGA, HK3 protein 

abundance is significantly elevated in ccRCC tumors when compared to adjacent normal 

kidney (Figure 3.13F) (Clark et al., 2019). Not surprisingly, given the glycolytic nature of 

ccRCC(Courtney, Bezwada, et al., 2018; Linehan et al., 2019), HK1 and HK2 are also 

significantly elevated at the protein level in ccRCC tumors (Figures 3.14A-B). HK3 levels 

are the highest in the metastatic stage IV tumors and demonstrate significant elevation in 

comparison to the localized stage I and stage III disease (Figure 3.13G). HK2 is not 

different among tumor stages while HK1 levels are similar between non metastatic stage 

III and metastatic stage IV tumors (Figures 3.14C-D). These data suggest that HK3 and 

the cells which express it may promote ccRCC progression and metastasis. 

Recently it has been reported that elevated HK3 expression in the TCGA is 

associated with poor outcome in ccRCC (Xu et al., 2021). (Figure 3.13H). They 

documented that HK3 expression level increases with known factors of aggressiveness 

(grade and stage) in both the TCGA and a new Chinese ccRCC cohort. What was 

overlooked in that publication is that this poor prognostic role is unique to HK3 (Figures 
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3.14E-F) and not present in the other two low Km isoforms. Additionally, there RNA 

analysis was not validated with CPTAC protein database expression from the same 

tumor. It is worth noting HK3 expression is not prognostic in almost every other tumor 

type (including the two other common RCC histotypes, papillary and chromophobe 

(Figures 3.14G-H). Elevated HK3 expression predicts worse overall survival in in only 

three tumor types: Prostate Adenocarcinoma, Uveal Melanoma and ccRCC. On the other 

hand, HK3 expression is correlated with improved overall survival in cutaneous 

melanoma. This unique pattern of prognostic ability demonstrates a potential context 

specific role for this gene, in line with the in vitro observation that only one cytokine that 

we tested, IFN𝛾, can greatly dictate HK3 expression.  

Figure 3.14: HK3’s poor prognostic features are unique when compared to other low Km  
Hexokinases. HK1 (A) HK2 (B) protein expression level between normal and tumor tissue. HK1 (C) and 
HK2 (D) protein expression as a function of ccRCC tumor stage. Kaplan Meier curves evaluating prognostic 
role of HK1 (E), and HK2 (F) in ccRCC. Kaplan Meier curve examining prognostic role of HK3 in papillary 
RCC (G) and chromophobe RCC (H). HK1 (I) and HK2 (J) levels in Trem2hi (blue) vs TREM2lo (red) patients. 
In panels A-B, I-J Mann Whitney test performed, **** p<.0001. In C-D, One Way ANOVA performed. 
P<.01=** 
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Recently, a model where HK3 is expressed in the tumor cells and drives hyper 

inflammatory immune infiltrate has been proposed. To evaluate this possibility, we 

conducted hallmark pathway analysis comparing the HK1Hi/Lo, HK2Hi/Lo, HK3Hi/Lo to each 

other. We find that HK3 elevated tumors are associated only significantly 3 gene sets: 

Allograft rejection, immune activation, and IL6-Stat3 signaling (Figure 3.14I). This stands 

in stark contrast to HK1 and HK2 where elevation of these two enzymes are associated 

with oncogenic, pro-proliferative hallmarks like mTORC signaling, EMT, and multiple 

immune activation pathways(see Table 3.4). These HK3hi tumors have a unique infiltrate, 

significantly enriched with unpolarized macrophages, M2, neutrophils and CD8 T cells (as 

predicted by Cibersort) (Figure 3.13J). In support of the TCGA and CPTAC findings, we 

evaluated Vanderbilt related cohorts to interrogate the relationship between HK3 

expression and other known poor prognostic features. In our 180 patient TMA, we have 

previously reported that patients who have TREM2+, C1q+ macrophages have poor 

outcomes (Obradovic et al., 2021). We observe significantly higher HK3 expression in the 

TREM2+ gene signature elevated patients further supporting HK3 expression in poor 

outcome patients (Figures 3.13K). Interetsingly, HK1 expression is significantly higher in 

the TREM2hi patients but no differences in expression are seen in HK2 (Figures 3.14 I-

J). 

Table 3.4: GSEA terms generated in HK1hi, HK2hi, and HK3 hi tumors. Red hallmarks are associated 
with metabolism. Green are associated with immune repones 

HK1 HK2 HK3 
HALLMARK_EPITHELIAL_MESENCHYMAL_

TRANSITION 

HALLMARK_EPITHELIAL_MESENCHYMAL_

TRANSITION 

HALLMARK_ALLOGRAFT_REJ

ECTION 

HALLMARK_INFLAMMATORY_RESPONSE HALLMARK_HYPOXIA 
HALLMARK_INFLAMATORY_

RESPONE 

HALLMARK_COMPLEMENT HALLMARK_TNFA_SIGNALING_VIA_NFKB 
HALLMARK_IL6_STAT3_SIGN

ALING 

HALLMARK_G2M_CHECKPOINT HALLMARK_ALLOGRAFT_REJECTION 
 



 115  

HALLMARK_MTORC1_SIGNALING HALLMARK_INFLAMMATORY_RESPONSE 
 

HALLMARK_UV_RESPONSE_DN HALLMARK_IL6_JAK_STAT3_SIGNALING 
 

HALLMARK_KRAS_SIGNALING_UP HALLMARK_G2M_CHECKPOINT  

HALLMARK_TNFA_SIGNALING_VIA_NFKB HALLMARK_COMPLEMENT 
 

HALLMARK_APOPTOSIS HALLMARK_GLYCOLYSIS  
HALLMARK_HYPOXIA HALLMARK_E2F_TARGETS  

HALLMARK_ESTROGEN_RESPONSE_EARLY HALLMARK_COAGULATION 
 

HALLMARK_APICAL_JUNCTION HALLMARK_APOPTOSIS  

HALLMARK_IL6_JAK_STAT3_SIGNALING HALLMARK_MTORC1_SIGNALING 
 

HALLMARK_ESTROGEN_RESPONSE_LATE HALLMARK_KRAS_SIGNALING_UP 
 

HALLMARK_ANGIOGENESIS HALLMARK_ESTROGEN_RESPONSE_EARLY 
 

HALLMARK_ALLOGRAFT_REJECTION HALLMARK_ESTROGEN_RESPONSE_LATE 
 

HALLMARK_GLYCOLYSIS 
HALLMARK_INTERFERON_GAMMA_RESPO

NSE  
HALLMARK_E2F_TARGETS HALLMARK_ANGIOGENESIS  

HALLMARK_PROTEIN_SECRETION 
HALLMARK_UNFOLDED_PROTEIN_RESPO

NSE  
HALLMARK_UNFOLDED_PROTEIN_RESPO

NSE 
HALLMARK_APICAL_JUNCTION 

 
HALLMARK_COAGULATION HALLMARK_P53_PATHWAY  

HALLMARK_MITOTIC_SPINDLE HALLMARK_MYC_TARGETS_V1  

HALLMARK_IL2_STAT5_SIGNALING HALLMARK_IL2_STAT5_SIGNALING 
 

HALLMARK_MYC_TARGETS_V1 HALLMARK_MYC_TARGETS_V2  
HALLMARK_NOTCH_SIGNALING HALLMARK_UV_RESPONSE_DN  

HALLMARK_MYOGENESIS HALLMARK_KRAS_SIGNALING_DN  
HALLMARK_P53_PATHWAY HALLMARK_MITOTIC_SPINDLE  

HALLMARK_INTERFERON_GAMMA_RESPO

NSE 
HALLMARK_MYOGENESIS 

 
HALLMARK_MYC_TARGETS_V2   

HALLMARK_REACTIVE_OXYGEN_SPECIES_

PATHWAY   

HALLMARK_TGF_BETA_SIGNALING 
  

HALLMARK_APICAL_SURFACE   
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To further investigate the expression of HK3 in ccRCC cancer cells HK3 

expression, we examined a more recent scRNAseq ccRCC dataset in a conventional 

UMAP/Seurat approach (Bi et al., 2021). This contrasts with the three ccRCC 

experiments in the TISCH database that clearly demonstrate isolated HK3 expression in 

monocytic macrophages (Figure 3.2G), Again, HK3 is only detectable in the myeloid cells 

(Figures 3.15A-B) With the myeloid specific expression of HK3, this dataset was re-

clustered just to examine the myeloid populations (Figure 3.16A). Myeloid cluster 9 is a 

HK3 enriched cluster which also other myeloid defining genes like FCG3a (CD16), 

Cathepsin S (CTSS) S100a4 and FCN1 (Figure 3.15C-D). In line with our in vitro data, 

other genes that are unique to this cluster are IFTIM2/3 which suggest these cells have 

elevated IFNγ signaling. Expression of HK1 in the myeloid subcluster is ubiquitous, in line 

with its observation as a housekeeping gene (Figure 3.16B). However, myeloid cluster 6 

is HK2hi along with other metabolic genes such LDHA, GLUL and GAPDH (Figure 3.16C-

D). Correlation analysis across the entire ccRCC TCGA, HK3 expression correlates better 

than HK2 and HK1 with other cluster 9 genes like LST1, CD52, IFITM3, AIF while HK2 

correlates more strongly with the metabolic genes found in cluster 6 (Figs 3.15 E-F). 

These data suggest that subset specific expression of these hexokinase isoforms and 

given the divergence in prognostic roles, the HK3+ myeloid may play large role in tumor 

progression and response to therapy. 
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Figure 3.15: HK3+ myeloid cells in the ccRCC tumor microenvironment promote response to 
immune checkpoint blockade. (A)/(B) scRNAseq expression of HK3 Bi et al. 2021. (C) HK3 expression 
in myeloid subsets. (D) Cluster 9 (HK3hi) specific gene set. (E) HK3 levels via RNAseq in VEGFi 
neoadjuvant trial (Wood et al. JCI insight 2020). (F) Heatmap of a subset of myeloid relate genes and low 
Km hexokinases across NMF subtypes from Motzer Cancer Cell 2021 RNA expression of CD16 (FCGR3a) 
(G) and HK3 (H) across seven unique RCC subtypes. Pre Tx: pre-pazopanib treatment, Post Tx: post-
pazopanib treatment, NMF: non-negative matrix factorization, IMDC: International Metastatic Renal Cell 
Carcinoma Database Consortium, Angio:angiogenic, Ox: oxidative  T-eff: T effector, snoRNA: small 
nucleolar RNAs. For E, Stats are Wilcoxon sign ranked tests with FDR correction. If no stars are on the 
plot, p-value is ns, ** equals 0.001<p<0.01, Box and whisker plots used for panel E. Connected dots in E 
demonstrate paired samples. Dots in G-H represent outlies 
 



 118  

Figure 3.16: HK2hi and HK3hi  myeloid from the ccRCC TME, have distinct transcriptional programs. 
(A) Myeloid sub-clustering from Bi et al. 2021. HK1 (B) and HK2 (C) expression in myeloid subclusters in 
this ccRCC dataset. (D) Gene expression program specific to cluster 6 (HK2hi myeloid cells). (E) Correlation 
of HK3 and HK2 with myeloid cluster 9 specific genes across ccRCC TCGA data (F) Correlation of HK3 
and HK2 with myeloid cluster 6 specific genes across ccRCC TCGA data. Pearson Correlation used for E-
F. P-value=0 is when p<1*10-99 

 
A standard therapy for RCC patients is vascular endothelial growth factor tyrosine 

kinases inhibitor (TKI), however ultimately all patients develop resistance. Previous work 

suggests myeloid cells can contribute to this TKI resistance (Finke et al., 2011). Analyzing 

data from a neoadjuvant pazopinib study (Wood et al., 2020), we observe that HK3 

expression significantly increases with neoadjuvant VEGF blockade whereas HK1 and 

HK2 do not (Figures 3.15E, 3.17A-B). This indicates that this myeloid specific 

inflammatory hexokinase may be playing a role in TKI resistance. The latest treatment 

paradigm for ccRCC patients is combination VEGF and immune checkpoint blockade or 

combination checkpoint blockade. Motzer 2020 (Motzer et al., 2020) developed 7 

NMFclusters that predict response to combination IO/TKI vs single agent TKI. In NMF 

cluster four (IFN𝛾hi cluster who benefit from IO-TKI combo), have elevated expression of 
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HK3 as well as other myeloid genes in multiple datasets seen to be associated with HK3 

expression (FCGR3a (CD16), C1q isoforms, TREM2) (Figure 3.15 F-H). Interestingly, 

HK1 demonstrates the highest expression in cluster 6 while HK2 is elevated in cluster 3 

(Figure 3.17C-D), both of which demonstrate the worst outcomes on either therapy. 

Interestingly, HK3 expression does not appear to predict prognosis in a cohorts of 

melanoma patients treated with checkpoint blockade (Yang et al., 2021)  (Fig 3.17E).  

Figure 3.17: Supplemental data to HK3+ myeloid cells in the ccRCC tumor microenvironment 
promote response to immune checkpoint blockade. (A)HK1 and (B)HK2 expression in ccRCC patients 
receiving neoadjuvant TKI from Wood et al. JCI Insight 2020. (C) HK1 and (D) HK2 expression in metastatic 
ccRCC patients receiving VEGF TKI alone or TKI+ immune checkpoint blockade from Motzer et al. Cancer 
Cell 2021. (E) HK3 level on pretreatment biopsy between responders and non-responders in combined 
Melanoma cohort receiving immune checkpoint blockade inhibitors. (F) Kaplan Meier curve examining 
impact of HK3 expression on melanoma patients undergoing treatment with immune checkpoint blockade 
For A-B, Wilcoxon sign ranked test + FDR correction was performed. If no stars are displayed on plot, P-
value is ns equals p>0.05, * equals 0.01<p< 0.05, ** equals 0.001<p<0.01. For panel E/F, p values are 
generated by Cancer Immu database. Unfortunately, in the publication and website there is no statement 
how this p values were generated. Connected dots in A-B demonstrate paired samples. Dots in C-D 
represent outliers. Box and whisker blots used for C-D. 
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In total these data support HK3 as a unique biomarker due to its cell specific 

expression as well as its regulation by IFN𝛾. Thus, detecting HK3 expression in ccRCC 

may indicate that a given patient has immune infiltrate rich in myeloid cells as well as the 

necessary anti-tumor cytokine IFN𝛾 for response to checkpoint blockade.  

Discussion  
 

In this work, we validate our original finding of HK3 as a myeloid specific gene 

across eukaryotic biology. This approach implements many different large datasets to 

confirm our initial observation from one mouse tumor model (MC38). By examining 

scRNAseq data from a host of mouse models and human TMEs, we confirmed the 

housekeeping function of HK1. HK2 appears to be expressed in myeloid cells and 

proliferating tumor cells, whereas HK3 is solely an immune specific gene.  Diving further 

in the data indicates that HK3 is truly a myeloid specific gene, with no documented 

expression in lymphoid cells. There are two interesting examples of non-infiltrating 

immune cell HK3 expression in the TISCH database. In Azizi et al., 2018, expression of 

HK3 is found in “myofibroblasts”, however these cells express canonical TAM markers 

like CD11b+, CD163 indicating that these cells are most likely misannotated. Van Galen 

et al., 2020 documents HK3 expression in the transformed myeloid cells from patients 

with acute myelogenous leukemia, however its expression is 4x less than in the infiltrating 

non mutated myeloid cells. This difference between cancer and infiltrating myeloid cells 

suggests HK3 expression may be elevated in mature myeloid cells in comparison to the 

more primordial stem cells, which was further validated by analysis Hay et al. 2018.  

This myeloid specific expression is endowed by binding of transcription factor, 

SPI1 to the HK3 promoter. This has previously been observed in human leukemic cells, 
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but not examined in non-transformed immunocytes (Federzoni et al., 2014; Federzoni et 

al., 2012). Through scATAC sequencing, we observe that only myeloid cells have open 

chromatin surrounding HK3 in both humans and mice whereas the other low Km HKs can 

be expressed by all cell types throughout the organism. It is apparent, however that HK2 

also is enriched in myeloid cells. This mixed HK2+/HK3+ dual positivity in myeloid cells 

may underlie there persistent glycolytic phenotype multiple disease settings across 

different organs (Reinfeld et al., 2021; Xiang et al., 2021)  Currently, it is unknown whether 

SPI1 plays a role in opening the surrounding chromatin in the HK2 and HK3 promoters 

or whether different components of the transcriptional machinery play a role in making 

these glucose fixing active in myeloid cells.  

In examining expression of HK3 in inflammatory microenvironments, we observe 

that certain inflammatory cues robustly induce HK3, both in the tissue of interest as well 

as the blood. This peripheral increase in HK3 suggests that the factor is soluble. Following 

these observations, we stimulated myeloid cells with a host of cytokines in vitro and find 

that IFN𝛾 alone can drive transcription and translation of HK3. This is in line with the 

significant elevation of HK3 in patients with severe COVID, given that IFN high blood 

signatures predict poor outcomes (julian.knight@well.ox.ac.uk & Consortium, 2022). 

Mechanistically, we observe that STAT1 binds the HK3 promoter in mice and humans. 

This binding is restricted to myeloid cells. HK3 is reduced in the presence of the ruxolitinib, 

a clinical grade JAK1/JAK2 inhibitor. In total, these data support that HK3 is a myeloid 

specific IFN𝛾 stimulated gene. This fits a paradigm where many metabolic genes are 

upregulated to support the phenotype associated with anti-viral immunity. Two examples 

of metabolic genes that are also IFN𝛾 targets are main M1 marker iNOS and SLC25a1, 
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which is known to be crucial for synthesis of acetyl-CoA in macrophages (Infantino et al., 

2014). It is worth noting, that in these studies, we did not try type III interferons like lambda 

and other inflammatory cytokines like TNF𝛼. Therefore, future work may take an even 

broader to understanding HK3 induction. 

Given the direct role inflammation plays in HK3 regulation, our group wondered if 

it could be used as a biomarker in ccRCC. This tumor type is highly inflamed and 

responds well to immune checkpoint blockade (Diaz-Montero et al., 2020). In support of 

the negative prognostic role of tumor inflammation in ccRCC, HK3 increases with stage 

of malignancy at a protein level, and high RNA expression predicts poor outcome (Xu et 

al., 2021). It appears that individual myeloid cell populations express these low Km HKs 

preferentially. HK2 is associated with a more mature glycolytic TAM (myeloid cluster 6), 

while HK3 appears to be associated with more immature, potentially non-classical 

monocyte (myeloid cluster 9). Future work will implement flow sorting techniques to 

further investigate the myeloid subtype that expresses these enzymes to the greatest 

extent.  

ccRCC is currently only treated with therapies that modify the TME. In the setting 

of VEGF TKI, HK3 is the only low Km hexokinase that increases specifically with 

neoadjuvant treatment. This is in alignment with the knowledge that VEGF TKI resistance 

is associated with a myeloid infiltration program (Finke et al., 2011). Additionally, ccRCC 

patients with high IFN𝛾 and high myeloid gene signatures are known to benefit from 

checkpoint blockade (McDermott et al., 2018; Motzer et al., 2020). In line with these prior 

observations, the IFN𝛾hi NMF cluster 4 patients also have the highest level of HK3. This 

further supports IFN𝛾-HK3 relationship seen in our in vitro culture system. Intriguingly, 
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the other two low Km HKs are elevated in the two worst subgroups of patients (clusters 3 

and clusters 6) and do not cluster with the same myeloid genes as HK3 (CD14, CD16 , 

C1q isoforms). This data provides rationale to inhibit TME glycolysis to make a more 

immunostimulatory microenvironment. However, that glycolysis inhibition must not limit 

the IFN𝛾 network which is driving the increase in HK3 in these cluster 4 patients TME 

(Reinfeld et al., 2022).  
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CHAPTER 4: Materials and Methods 

Prism was used for all bar graphs and heatmaps generated in this document 

unless otherwise noted. Hypothesis testing occurred in prism  Biorender was used for the 

following figures 1.1,1.2,1.3,1.4,1.5,1.6, 3.1, 3.4F 

 

Patient samples 

Fresh histology-confirmed clear cell renal cell carcinoma (ccRCC) tumors and 

matched normal tissue were surgically removed from 14 patients. Supplementary 

Information Table 1 contains relevant patient and tumor information. Tumor and matched 

normal kidney were processed by mechanical dissociation (human tumor setting two on 

Miltenyi gentleMACS™) in HBSS with calcium chloride and magnesium 

chloride.  Mechanical dissociation was followed by enzymatic digestion in 435U/mL 

deoxyribonuclease I (Sigma-Aldrich, D5025) and 218U/mL collagenase (Sigma-Aldrich, 

C2674) in RPMI supplemented with 10% FBS, 1% glutamine, 1% pen/strep, 1% Hepes, 

and 0.1% 2-Mercaptoethanol for 30-45min, depending on tissue toughness, at room 

temperature with 17 rpm agitation. Tissue digests were washed with HBSS without 

calcium chloride, magnesium chloride, or magnesium sulfate and then incubated in 5mM 

EDTA for 20min at room temperature with 17rpm agitation. Tumor and matched normal 

kidney digests were washed with HBSS with calcium chloride and magnesium chloride. 

Then they were passed through a 70μm filter and ACK-lysed. Patient peripheral blood 

mononuclear cells (PBMC) were isolated by density gradient centrifugation using Ficoll-

Paque (GE Healthcare, 17144002) in SepMate-50 tubes (Stemcell Technologies, 85450) 

and subsequently ACK-lysed. Single cell suspensions were frozen in 90% FBS 10% 
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DMSO. Batched tumor and matched PBMC were thawed, rested for 10min at 37°C, 

counted, stained, and analyzed for flow cytometry. All studies were conducted in 

accordance with the Declaration of Helsinki principles under a protocol approved by the 

Vanderbilt University Medical Center (VUMC) Institutional Review Board (protocol 

#151549). Informed consent was received from all patients prior to inclusion in the study 

by the Cooperative Human Tissue Network at VUMC. 

 

Interstitial fluid collection & LC/MS metabolite analysis 

Tissue interstitial fluid (TIF) was collected from freshly resected ccRCC tumor and 

matched normal kidney tissue. Specimens were centrifuged against a 0.22μm nylon filter 

(Corning CLS8169) at 4°C for 5 minutes at 300g. Flow-through TIF was flash-frozen and 

stored at -80°C prior to batch analysis. Mouse blood was collected via submandibular 

vein, aliquoted immediately into EDTA, and centrifuged for 10min at 850g at 4°C. Plasma 

supernatant was collected and then cleared by centrifugation for 20min at 3000g at 4°C. 

Liquid chromatography/mass spectrometry (LC/MS) quantitation of metabolites was 

performed as described previously (Sullivan et al., 2019) . 

 
 

Mice 

C57BL/6J (000664), BALB/cJ (000651), and Rag1 KO (002216) were obtained 

from the Jackson Laboratory. All mouse procedures were performed under Institutional 

Animal Care and Use Committee (IACUC)-approved protocols from Vanderbilt University 

Medical Center and conformed to all relevant regulatory standards. Mice were housed in 

ventilated cages with at most 5 animals per cage and provided ad libitum food and water. 
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Mice were on 12 hour light/dark cycles which coincided with daylight in Nashville, TN. The 

mouse housing facility was maintained at 68-76°F and 30-70% humidity. For injectable 

tumor models, 8-20 week old male and female mice were used. Mice were euthanized if 

humane endpoint was reached (2cm dimension, ulceration, weight loss >10%). V9302 

treatments were administered intraperitoneally twice daily for five days at 25mg/kg for 

FDG uptake or once at 75mg/kg 3hr prior to 18F-Gln injection. Rapamycin treatments were 

administered intraperitoneally daily for four days at 2mg/kg dissolved in 2% DMSO 30% 

Polyethylene Glycol 300 (Sigma Aldrich 202371), and 5% Tween 80 (sigma Aldrich 

P1754).  

 

Cell lines for chapter 2 

The MC38 and CT26 cell lines were provided by Barbara Fingleton and grown in 

DMEM supplemented with 10% FBS. The RenCa cell line was obtained through ATCC 

and grown in RPMI 1640 supplemented with 10% FBS, 4mM glutamine, 25mM HEPES, 

essential amino acids, and sodium pyruvate. Cells were trypsinized, washed twice in 

PBS, and 1x106 cells were injected subcutaneously in 100-200μL of PBS on mouse 

flanks. Subcutaneous tumors grew for 14 days prior to analysis. The MC38-EL-Thy1.1 

cells were generated using a transposon based engineering approach with plasmids that 

were described previously (O'Neil et al., 2018). MC38 cells were electroporated using the 

NEON transfection system (ThermoFisher) according to manufacturer’s 

recommendations for adherent cell lines. 5 million MC38 cells were suspended in 

electroporation buffer containing 5μg of the plasmid pCMV-M7PB and 15μg of the 

plasmid pT-EL-thy1.1, which is a bicistronic transposon vector driving expression of an 
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enhanced firefly luciferase as well as Thy1.1 antigen. Cells were magnetically sorted 

based on expression of Thy1.1 using magnetic beads (Miltenyi 130-121-273). MC38-OVA 

cells were generated and provided by Richard O’Neil. Cell lines were regularly tested for 

mycoplasma via PCR and all cells used in downstream assays were confirmed negative.  

 
 

Orthotopic renal implantation 

For intrarenal RenCa injections, survival mouse surgery was performed according 

to a method previously described (Tracz et al., 2014). Briefly, mice were anesthetized by 

isoflurane inhalation at 2-3% and placed on a warming recirculating water pad set at 37°C 

to maintain body temperature. Using sterile surgical techniques, a 1-cm incision was 

made in the skin running parallel to the spine, slightly below the ribcage on the right flank. 

Next, a 1-cm incision was made in the muscle layer in the same location. Using gentle 

pressure on the mouse abdomen, the right kidney was exteriorized. 5x104 Renca cells 

resuspended in 100μL of PBS were injected using a 29-gauge needle inserted through 

the renal capsule into the cortical space. The injection site was swabbed using sterile 

gauze and the kidney was returned to the body cavity. The abdominal wall was closed 

using 6-0 monofilament absorbable sutures (AD Surgical; S-D618R13), and the skin was 

closed using wound clips. Analgesic was provided pre-surgery and 24 hours post-surgery 

in the form of ketoprofen injections at 5 mg/kg. Wound clips were removed 7 days 

following the surgery. Tumors were analyzed 28 days after cancer cell injection. 

 

Spontaneous mouse tumor models 

PyMT GEMM mice were bred by crossing male transgenic mice expressing the 

polyoma virus middle T antigen (PyMT) oncoprotein under the MMTV-LTR (Jackson 
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Laboratory 022974) with wildtype females on a similar B6/FVB mixed background. The 

GEMM mice were from a colony in which all mice expressed two Vhl alleles in which exon 

1 is flanked by loxP sites (Jackson Laboratory 012933) but did not express a Cre 

transgene and were thus effectively wildtype. Once weaned, female mice were palpated 

twice a week and tumors were measured in three dimensions with digital calipers. Mice 

were collected when any tumor had grown to a size of 1 cm in diameter in any dimension, 

around 5 months of age. Virgin female littermates were used in these studies. 

The AOM/DSS inflammatory colorectal cancer model was used as previously 

described (Becker et al., 2005; Parang et al., 2016). In brief, bedding was mixed to 

normalize microbiome two weeks prior to experimental initiation. 8-12 week-old C57BL/6J 

mice were intraperitoneally injected with 12.5 mg/kg AOM and exposed to three 4-day 

cycles of 3% to 4% DSS (TdB Labs 9011-18-1). Each DSS cycle was followed by a 16-

day recovery period. Prior to sacrifice, colonoscopy was performed to confirm tumor 

development. Mice were weighed every other day throughout the experiment. Mice were 

euthanized 6-8wk after completing the last cycle of DSS. Colons were dissected and 

tumor tissue was isolated from the mucosa. 

 

PET-CT imaging 

For individual studies, a group of MC38 tumor-bearing mice were food-restricted 

overnight. Then the mice received a retro-orbital injection of ~ 37 MBq/0.1 mL of 18F-FDG 

and were returned to plate-warmed cages. Forty minutes later, the mice were 

anesthetized under 2% isofluorane and imaged an Inveon microPET (Siemens 

Preclinical, Knoxville TN) for 20 min. Data from all possible lines of response (LOR) were 



 129  

saved in the list mode raw data format. The raw data was then binned into 3D sinograms 

with a span of 3 and ring difference of 47. The images were reconstructed into transaxial 

slices (128 x 128 x 159) with voxel sizes of 0.0815 x 0.0815 x 0.0796 cm3, using the MAP 

algorithm with 16 subsets, 4 iterations, and a beta of 0.0468. For anatomical co-

registration, immediately following the PET scans, the mice received a CT scan in a 

NanoSPECT/CT (Mediso, Washington DC) at an x-ray beam intensity of 90 mAs and x-

ray peak voltage of 45 kVp. The CT images were reconstructed into 170 x 170 x 186 

voxels at a voxel size of 0.4 x 0.4 x 0.4 mm3. The PET-CT images were uploaded into 

Amide (www.sourceforge.com) and volumetric regions-of-interest were drawn around the 

tumors. The PET images were normalized to the injected dose and the mean radiotracer 

concentration within the ROIs were determined. 

 
18F autoradiography 

Mice were handled and injected similarly to previously described for the PET-CT 

imaging, but without overnight fasting. Tumors were harvested, embedded in optimal 

cutting temperature compound (OCT, Fisher 23-730-571), and frozen on dry ice. Tumors 

were cut into 10μm sections and imaged in a Beta Imager (Biospacelabs, France) for 1 

hr. Regions-of-interest (ROIs) were drawn around the resulting tumor and spleen images 

and the counts in each ROI were compared. 

 

In vivo 18F-FDG and 18F-Gln nutrient uptake assay 

Tumor-bearing mice were retro-orbitally injected with 1mCi of FDG or 18F-Gln 

synthesized at VUMC (Hassanein et al., 2016). During radiotracer uptake, mice were 

conscious and had access to food and water. Mice were euthanized and spleen and 
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tumors were harvested 40min after radiotracer administration. Single cell suspensions of 

splenocytes were prepared by physical dissociation followed by ACK-lysis. Tumors were 

chopped, mechanically dissociated on the Miltenyi gentleMACS™ Octo Dissociator with 

Heaters (setting implant tumor one) and digested in 435U/mL deoxyribonuclease I 

(Sigma-Aldrich, D5025) and 218U/mL collagenase (Sigma-Alrich, C2674) at 37°C for 

30min. After enzyme treatment, tumors were passed through a 70μm filter and ACK-

lysed. Cells were resuspended in MACS buffer (PBS +2% FBS +2mM EDTA) and 

counted using trypan blue with the TC20™ Automated Cell Counter (Bio-Rad). In some 

cases, tumors from different mice were pooled to achieve higher tumor cell number prior 

to fractionation to ensure sufficient 18F signal and were ultimately analyzed as biological 

replicates. Next, tumor cell suspensions were fractionated using serial magnetic bead 

positive selection according to the manufacturer’s instructions (all Miltenyi mouse kits: 

CD45 TIL 130-110-618, EPCAM 130-105-958, Thy1.1 130-121-273, CD4/8 TIL 130-116-

480, CD11b 130-049-601, F4/80 130-110-443, Gr1 130-094-538, CD11c 130-125-835, 

CD8 TIL 130-116-478, CD4 TIL 130-116-475). Briefly, cells were resuspended at 10 

million total cells/90μL MACS buffer and 10μL microbeads for 15min. Then, cell 

suspensions were applied to LS columns (Miltenyi 130-042-401) in Miltenyi 

QuadroMACS™ Separators, washed, and eluted according to manufacturer’s 

instructions. Fractions were resuspended in 1mL of media; 10μL were used for trypan 

blue staining and TC20 cell count, ~50μL were stained for flow cytometry determination 

of fraction cellular composition, and 900μL were transferred into 5mL tubes to measure 

radioactivity. 900μL of 2mL splenocyte suspensions and 5 million total cells from the 

unfractionated whole tumor were also assayed for radioactivity. The Hidex Automatic 
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Gamma Counter was used with 1min read times to measure time-normalized 18F counts 

per minute (CPM) for each sample. To determine per cell 18F-nutrient avidity, time-

normalized CPM was divided by the number of viable cells as determined by trypan count. 

Harvested tissues and cell fractions were kept on ice or at 4°C in RPMI 1640 

supplemented with 10% FBS except when noted.  

 

Flow cytometry 

Single cell suspensions obtained from tumors and spleens were incubated in Fc 

block (1:50, BD  553142) for 10min at room temp, stained for surface markers for 15min 

at room temp, washed with FACS buffer (PBS +2% FBS) once, and resuspended in FACS 

buffer for analysis on a Miltenyi MACSQuant Analyzer 10 or 16. For intracellular staining, 

the eBioscience™ Foxp3/transcription factor staining buffer kit (Fisher 00-5523-00) was 

used. For intracellular cytokine staining, tumor single cell suspensions were incubated for 

4hr at 37°C 5% CO2 in supplemented RPMI with PMA (50ng/mL, Sigma Aldrich P8139-

1MG), ionomycin (750ng/mL, Sigma Aldrich I0634-1MG), and GolgiPlug (1:1000, BD 

555029), and processed using the BD Cytofix/Cytoperm™ Fixation and Permeabilization 

Solution (ThermoFisher BDB554722). Surface staining was performed as described 

above, cells were fix/permed for 20min at 4°C, and then stained for intracellular markers 

for at least 30min at 4°C. Ghost Dye Red 780 viability dye (1:4000, Cell Signaling 18452S) 

was used identically to surface antibodies. The anti-mouse and cross-reactive antibodies 

used were: CD45 BV510 (1:1600, 30-F11, Biolegend 103138), B220 e450 (1:400, RA3-

6B2, ThermoFisher 48-0452-82), CD11b e450 (1:1600, M1/70, ThermoFisher 48-0112-

82), CD11b FITC (1:1600, M1/70, Biolegend 101206), CD8a AF488 (1:1600, 53-6.7, 

Biolegend 100723), CD8a BV510 (1:600, 53-6.7, BD 563068), CD8a APC (1:200, 53.6-
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7, BD 17-0081-82), Ly6C FITC (1:4000, HK1.4, Biolegend 128006), CD11c PE (1:1000, 

N418, BioLegend 117308), FOXP3 PE (1:125, FJK-16s, ThermoFisher 12-5773-82), pS6 

Ser235/236 PE (1:100, D57.2.2E, Cell Signaling 5316S), CD4 PerCP-Cy5.5 (1:600, RM4-

5, BioLegend 100540), Ly6G PerCP-Cy5.5 (1:800, 1A8, BioLegend 127616), F4/80 PE-

Cy7 (1:800, BM8, BioLegend 123114), NKp46 PE-Cy7 (1:200, 29A1.4, BioLegend 

137618), CD3 PE-Cy7 (1:200, 17A2, BioLegend 100220), CD3 FITC (1:200, 17A2, 

BioLegend 100204), CD3 APC (1:200 17A2, BioLegend 100236), CD206 APC (1:500, 

C068C2, BioLegend 141708), GLUT1 AF647 (1:500, EPR3915, Abcam ab195020), 

EPCAM PE (1:1500, G8.8, BioLegend 118206), Thy1.1 PerCP-Cy5.5 (1:2000, HIS51, 

ThermoFisher 45-0900-82), Thy1.1 FITC (1:2000, HIS51, ThermoFisher 11-0900-85), 

CD45 PE (1:1600, 30-F11, ThermoFisher 12-0451-83), Ly6C BV570 (1:400, HK1.4, 

BioLegend 128030), CD68 BV605 (1:200, FA-11, BioLegend 137021), HK1 AF647 

(1:100, EPR10134(B), Abcam ab197864), HK2 AF647 (1:200, EPR20839, Abcam 

EPR20839), CD71 APC (1:100, RI7217, BioLegend 113820), CD98 PE (1:400, RL388, 

ThermoFisher 12-0981-81), MHCII I-A/I-E APC (1:4000, M5/114.15.2, BioLegend 

107614), CD103 PE-Cy7 (1:200, 2E7, BioLegend 121425), LAG3 e450 (1:100, 

eBioC9B7W, ThermoFisher 48-2231-82), PD1 PE (1:100, 29F-1A12, BioLegend 

135206), TIM3 APC (1:100, RMT3-23, BioLegend 119706), IFNγ APC (1:250, XMG1.2, 

BioLegend 505810), CD25 e450 (1:500, PD61.5, ThermoFisher 48-0251-82), CD44 PE-

Cy7 (1:1000, IM7, BioLegend 103030), and CD62L APC (1:200, MEL-14, ThermoFisher 

17-0621-82), CD69 FITC (1:200, H1.2F3, BioLegend), TCF1 AF647 (1:200, C64D9, Cell 

Signaling), TBET PE-Cy7 (1:100, eBio4B10, eBioscience  25-5825-82), EOMES PE 

(1:100, Dan11mag, eBioscience 12-4875-82), Perforin APC (1:100, eBioOMAK-D, 
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eBioscience 17939280), Granzyme B PE (1:100, NGZB, eBioscience 12-8898-80), IL-2 

PE (1:100, BD 554428), and TNFα PE-Cy7 (1:200, MP6-XT22, BioLegend 506324). The 

anti-human antibodies used were: CD45 BV421 (1:400, HI30, BioLegend 304032), CD3 

APC (1:200, UCHT1, BioLegend 300439), CD11b PerCP-Cy5.5 (1:200, ICRF44, 

BioLegend 301328), CD14 BV510 (1:200, M5E2, BioLegend 301842), CA9 AF647 

(1:200, 303123, R&D Systems FAB2188R-100UG), and Human Fc Block (1:50, BD 

564220). For in vivo intravenous CD45 PE labelling, MC38 tumor-bearing mice were 

injected with 5μg anti-CD45 PE diluted to 150 μL in PBS via tail vein and euthanized 5min 

later. For ex vivo fluorescent palmitate uptake, tumor single cell suspensions were 

incubated for 1hr in Krebs buffer (125mM NaCl, 2.5mM KCl, 25mM NaHCO3, 1mM 

NaH3PO4, 1mM MgCl2, 2.5mM CaCl2, pH 7.2) at 37°C 5% CO2, incubated with BODIPY™ 

FL C16 (1μM in Krebs buffer, Thermo D3821) for 45min, washed twice with FACS, and 

then stained for surface markers. For the myeloid suppression assay, microbead-isolated 

CD11b+ myeloid cells were co-incubated with 100,000 CellTrace Violet-labelled (CTV, 

Thermo C34557) OT-I splenocytes per well in a 96-well plate in the presence of 1μg/mL 

SIINFEKL peptide for 3 days prior to analysis by flow cytometry. Mitochondrial mass was 

measured with 200nM MitoTracker Green FM (Invitrogen M7514) and mitochondrial 

membrane potential was measured with 150nM TMRE (Lifetech T-669) staining for 30min 

at 37°C 5% CO2 in complete media. Flow cytometry data were analyzed using FlowJo 

v10.7.1. NIH Tetramer Core Facility for provided the SIINFEKL PE tetramer (1:1000). 
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In vivo 2NBDG and flow sorting 

 2NBDG (Cayman Chemical 11046) was dissolved in PBS at 5 mM (1.71 mg/mL) 

and 100μL (500ng) was injected retro-orbitally. Mice were sacrificed 40 minutes later and 

tumor cells and splenocytes were harvested as indicated above. Splenic T cells were 

isolated according to manufacturer’s instructions using the Pan T cell Isolation Kit 

(Miltenyi 130-095-130). 2NBDGhi/lo cells were collected on the Nanocellect (San Diego, 

USA) WOLF cell sorter and subsequently gamma counted as described in the 18F-FDG 

and 18F-Gln nutrient uptake assay. 

 

Immunohistochemistry and light microscopy 

MC38 tumors were fixed overnight in 10% formalin and then switched to 70% 

ethanol. Single color IHC was performed by Vanderbilt University Medical Center 

Translation Pathology Shared Resource. Staining was conducted on the Leica Bond Max 

IHC stainer. All steps besides dehydration, clearing and coverslipping are performed on 

the Bond Max. Slides were first deparaffinized. Antigen retrial and antibody dilution were 

altered for maximal staining with each antibody. For CD11b staining (Catalog # NB110-

89474, Novus Biologicals, Centennial, CO) slides were placed in a Protein Block (Ref# 

x0909, DAKO, Carpinteria, CA) for 10min prior to staining. Then, the slides were 

incubated in epitope retrieval 2 solution for ten minutes, and subsequently stained 

(1:10,000 dilution).  For CD3 staining (Ab16669, abcam, Cambridge, MA), epitope 

retrieval 2 solution for 10min prior to staining (1:250 dilution). For F4/80 staining (NB600-

404, Novus Biologicals LLC, Littleton, CO), epitope retrieval was conducted in proteinase 

K for 5 minutes prior to primary antibody staining (1:300 dilution). Rabbit anti rat 

secondary (BA-4001, Vector Laboratories, Inc., Burlingame, CA) was used at a 1:2000 
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dilution for 15min for antigen detection. For CD31 staining (Cat.# DIA-310, Dianova, 

Hamburg, Germany,), epitope retrieval occurred in epitope retrieval 2 solution for 20min 

and then subsequently stained (1:75ul dilution). Staining with Biotinylated anti rat (Cat.# 

BA-4000, Vector Laboratories, Inc., Burlingame, CA) was used for antigen detection at a 

1:2000 dilution for 15min. For CD45lca staining (cat# HS-427 017, SySy (Synaptic 

Systems), Goettingen, Germany) epitope retrieval occurred in epitope retrieval solution 2 

for 20min, followed by primary antibody (1:500 dilution. Rabbit anti-rat secondary (BA-

4001, Vector Laboratories, Inc., Burlingame, CA) was used at a 1:2000 dilution for 15min 

to detect the antigen. The Bond Refine (DS9800, Buffalo Grove, IL, USA) detection 

system was used for visualization. Images were captured using an Olympus BX53 

microscope (Olympus Corporation, Center Valley, PA), an Olympus DP73 camera, and 

Olympus cellSens Standard imaging software version 1.17. Low-power images were 

captured with a 4X objective lens and high-power images were captured with a 40X 

objective lens. 

MC38 anti-F4/80 microbead-fractionated TAM were mounted onto slides using 

Wescor Cytopro cytocentrifuge and stained with hematoxylin and eosin following 

manufacturer’s guidelines (Fisher 23-122952). Images were captured under oil 

immersion (100x objective) using an Olympus BX53 microscope (Olympus Corporation, 

Center Valley, PA), an Olympus DP73 camera, and Olympus cellSens Standard imaging 

software. 

 

Extracellular flux assay 

Tumor cell fractions were obtained as described above. Each fraction was plated 

at 200,000 live cells/well in technical quadruplicate on a Cell-Tak-coated plate (Corning 
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354240) in Agilent Seahorse RPMI 1640 supplemented with 10mM glucose, 1mM sodium 

pyruvate, and 2mM glutamine. Cells were analyzed on a Seahorse XFe 96 bioanalyzer 

using the Mitostress assay (Agilent 103015–100) with 1μM oligomycin, 2μM FCCP, and 

0.5μM rotenone/antimycin A. For in vitro activated T cells, 150,000 live cells/well were 

plated. Data were analyzed in Agilent Wave software version 2.6. 

 

Cell sorting and mRNA transcript analysis 
 

CD45+ and CD45- tumor cell fractions were obtained as described above. Cell 

fractions were stained for the indicated surface markers and viability dye and sorted on a 

BD FACSAria III cell sorter. RNA was isolated from tumor cell populations and unstained 

whole tumor single cell suspensions using the Quick-RNA™ Microprep Kit (Zymo R1050) 

according to manufacturer’s instructions. RNA transcripts were quantified using the 

NanoString nCounter Metabolic Pathways Gene Expression Panel (XT-CSO-MMP1-12) 

according to manufacturer’s instructions. Transcript counts of 768 genes enriched in 

cellular metabolic pathways were analyzed using NACHOv1.0.1 (Canouil et al., 2020), an 

R package for parsing, visualization, quality control, and normalization designed for 

NanoString nCounter data. While parsing raw transcript counts, manufacturer-designated 

housekeeping genes were used to normalize between samples: Abcf1, Agk, Cog7, 

Dhx16, Dnajc14, Edc3, Fcf1, G6Pdx, Mrps5, Nrde2, Oaz1, Polr2a, Sap130, Shda, 

Stk11ip, Tbc1d10b, Tbp, Tlk2, Ubb, Usp39. Sample quality was evaluated based on 

normal ranges provided by the manufacture for 1) binding density (0.1-2.25), 2) Field of 

View (<75), 3) Positive Control Linearity (<0.95), and 4) limit of detection (<2). Samples 

were excluded if they failed any of the four conditions. The third replicates of M-MDSC 

Rapa and CD4 Rapa were excluded as outliers for abnormal positive control linearity and 
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limit of detection, respectively. Normalization was performed using geometric means 

based on housing genes, positive, and negative controls. The normalized data from this 

experiment has been deposited in Geo and can be accessed at GSE165223.  Principal 

component analysis was performed using “FactoMineRv2.3”(LÍ et al., 2008)  package in 

R. Differentially expressed metabolic genes were identified using a one-way ANOVA 

performed on transcript count across samples. P-values were adjusted for multiple testing 

using Benjamini & Hochberg false discovery rate using the “p.adjust” R function. For 

metabolic genes passing an adjusted p-value <0.01, we performed hierarchical clustering 

across samples and genes using default settings with the 'seaborn' package (version 

v0.11.0) in Python. Based on the hierarchical clustering, we grouped genes and 

performed gene set enrichment analyses using gProfiler (Raudvere et al., 2019)  with 

Reactome gene sets compared to all genes. “Metabolism” was the most highly enriched 

pathway for each cell type and was excluded from bar graphs for space. Differentially 

expressed genes between the rapamycin and vehicle treated samples for each cell type 

were identified using “edgeR” (Robinson et al., 2010) (version 3.28.1). First, the 

dispersion (variance of transcript counts) was estimated using the function 

"estimateDisp". Next, the differential expression between conditions was evaluated using 

a likelihood ratio test for a negative binomial generalized log-linear model. We considered 

transcripts with a false discovery rate < 10% and/or a 2-tailed t-test p-value <0.01 as 

being differentially expressed. All analyses were performed using the R (version 4.0.2). 
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MC38 RNA analysis  
 

Volcano plot and bar graphs (A/B/C/D generated in Figure 3.2 used data generated 

from (Reinfeld et al., 2021)). Briefly, RNA was purified from flow sorted populations CD8s, 

CD4, TAMs, MDSCs, and CD45- cancer cell from the MC38 model and then analyzed on 

the NanoString mouse metabolic panel. The data normalized using the n-counter 

software as described above. This data is publicly available at NCBI GEO GSE165223. 

Log fold changes of genes were computed by comparing enrichment in the two myeloid 

fractions (Ly6chi MDSCs, and F4/80hi TAMS) in comparison to the TME resident cell types 

(CD45- tumor cells, CD4+ T Cells and CD8+ T Cells). Wilcox test done on each gene for 

differences between Myeloid vs not myeloid. FDR correction was done to adjust for 

multiple comparisons (reported as q-value). Red dots dominate genes that are significant 

after considering these multiple comparisons. 

 

Brain TME RNA analysis 
 

Data from 3.2E/F, 3.5A/B originates from Klemm et al. Cell 2020. Like our 

NanoString analysis, the Joyce group flow sorted for populations of interested across 

human PBMC, epileptic brain tissue, primary gliomas, and brain metastasis. After flow 

sorting, RNA was extracted and sequenced from each fraction. This data was generated 

to describe the unique immune environment in brain malignancies. Normalized data is 

available at this website https://joycelab.shinyapps.io/braintime/. HK3 expression across 

all flow sorted populations was exported for analysis 

 

 

https://joycelab.shinyapps.io/braintime/
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Holistic single cell RNAseq data across multiple TMEs  
 

Data from 3.2G, 3.3E/F/G, 3.12I originates from TISCH database (Sun et al., 2021)  

(http://tisch.comp-genomics.org/home/). This dataset contains 79 different scRNA 

experiments and allows for users to find unique patterns of cellular expression of genes 

of interest.  To pair the data down, we filtered datasets that contained myeloid annotations 

for Figure 3.2G. This analysis excluded studies that had myeloid cell types but no 

documented HK3 expression. For Figure 3.3E-G, studies were filtered out when they did 

not contain three populations of interest (immune, stromal and malignant). Datasets 

annotated with the cell type “other” were excluded because it remains unclear what other 

cell annotation refers across these diverse studies. For Figure 3.10I, we filtered for studies 

that contained M0, M1, and M2 annotations so that we could directly compare HK3 

expression across different subtypes of macrophages. Figure 3.4C was taken from 

TISCH as well (data originates from experiment named PBMC_60K_10X).  

 

scRNA expression from mouse lung cancer  
 

Data for Figures 3.3A-C originates from LeFave et al. Cancer Cell 2020. This study 

performed scRNA/scATAC sequencing on mouse models of lung cancer as they 

metastasized.  The R Shiny-based web application for data visualization is accessible 

here: https://buenrostrolab.shinyapps.io/lungATAC/.  Expression of HK2 and HK3 were 

queried in this database. UMAP outputs with cell subtype clustering are included in the 

manuscript. The raw data is publicly available at Gene Expression Omnibus (GEO) under 

GSE134812, GSE145192, and GSE151403, GSE145194, GSE134812, GSE145192. 

 

http://tisch.comp-genomics.org/home/
https://buenrostrolab.shinyapps.io/lungATAC/
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GTEX analysis  
 

GEPIA (http://gepia.cancer-pku.cn/) was used to generate the pictorial 

representation of HK3 expression across adjacent normal human tissues taken for the 

the cancer genome atlas (TCGA) in Figure 3.3A. Violin plots generated for HK3 

expression across organs was exported directly from the GTEX portal 

(https://gtexportal.org/home/gene/HK3). Data for this panel was filtered to excluded 

repeated samples from the same organ (i.e. multiple brain locations are deposited in 

GTEX, but only one was graphed for conciseness). Exclued tissues had no detectable 

HK3 expression. GEPIA correlation analysis was used to perform correlations found in 

Figures 3.4B/C, 3.5E/F, 3.16E/F. Pearson’s correlation co-efficient were used. GEPIA 

does not report small p values as number, but instead presents them as p=0. The low Km 

HKs were correlated to either all GTEX data available on GEPIA, or solely the lung GTEX 

data (due to the lungs elevated HK3 expression). These differences are denoted in the 

figures, legends, and text. Similar correlations were performed in Figures 3.15E/F. These 

figures examined Myeloid Cluster 6/9 specific genes and the correlation between these 

genes to HK2 and HK3. For this analysis in Figure 3.15, only the KIRC (ccRCC) tumor 

data was used.  

 

MethoCult © assay 
 

Hematopoietic progenitors were harvested from mouse femurs by flushing the 

marrow. From the single cell suspension, the Miltenyi HSC isolation was used. These Lin-

,c-KIT+ cells were plated in Methocult© for 14 days. At day 14, the cells were collected 

from the methocult culture, resuspended appropriate to appropriate cell numbers and 10 

https://gtexportal.org/home/gene/HK3
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scRNA/ATAC sequencing was performed by the Vantage core. Doctoral Dalton 

Greenwod performed the heatmap analysis.  

 

ImPress proteomics data 
 

TMT labeled Mass spectrometry was performed on cultured mouse immune cells 

given a variety of stimuli (Marchingo et al., 2020). Specific culture conditions are outlined 

at http://immpres.co.uk/. To make the heatmap in Figure 3.4E, Z scores for Hk1/2/3 

protein expression were exported from this online database.  

 

CD11b+ purification  
 

Bone marrow cells were harvested from flushed mouse long bones from 6-12 week 

old WT C57B6 mice (purchased from Jacks). Myeloid cells were purified using CD11b+ 

magnetic bead isolation (130-049-601) from Miltenyi as previously described in Reinfeld 

Madden et al. 2021. Purification was verified using Miltenyi MACSquant10 flow cytometer. 

Cells were stained similarly to Reinfeld Madden Nature et al 2021.  

 

qPCR protocol 
 

RNA was isolated using Qiagen RNeasy kits. 10 uL of BME was added to 1 mL of 

RLT lysis buffer. Resulting RNA was quantified using NanoDrop. Meridian Bioscience 

cDNA sensi fast kit was used to generate cDNA from 1 ug of RNA (BIO-65053). This 20 

uL reaction was diluted with 100 uL of H20. Subsequently, 10 uL of this diluted cDNA was 

further filuted in 190 uL of water.  5 uL of this 1:20 diluted stock cDNA was included in a 

11 uL qPCR reaction using 5.5 uL of the 2x BioRad SSO qPCR mixture. 0.5 uL of 5uM 

http://immpres.co.uk/
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FWD and reverse qPCR primer were used for reaction. Real-time PCR was conducted 

with the SYBR Green PCR kit (Bio-Rad) using a Bio-Rad CFX Connect Real-time System, 

with the threshold cycle number determined by Bio-Rad CFX manager software V.3.0. 

Reactions were performed in technical triplicate and the threshold cycle numbers were 

averaged. Data normalized to GUSB or TBP expression.  Repeat pipettor was used to 

aliquot both cDNA and primer containing master mix in 96 well plate. 

Table 4.1: qPCR primer sequences for mouse low Km Hexokinases 

Gene FWD RVS 

Hk1 GTGGACGGGACGCTCTAC TTCACTGTTTGGTGCATGATT 

Hk2 TGATCGCCTGCTTATTCACGG AACCGCCTAGAAATCTCCAGA 

Hk3 TGCTGCCCACATACGTGAG GCCTGTCAGTGTTACCCACAA 

GUSB/TBP primers provided by CS Williams lab. qPCR from freshly derived bone marrow 

macrophages were conducted by Dr. Farnaz Nejad in the Ardehali Lab at Northwester 

 

Single nucleus lung sequencing 
 

Single Nucleus sequencing on human lungs was conducted by the Delorey et al. 

2021. The data available under accession number GSE16291. This data is an early 

release from (Delorey et al., 2021). Data is publicly available in this Broad single cell 

viewer 

(https://singlecell.broadinstitute.org/single_cell?type=study&page=1&terms=lung). Using 

this viewer, UMAPs demonstrating cell cluster identity and illustrating expression of 

EPCAM, ITGAM, HK2 and HK3 were exported.  

 

 

 

https://singlecell.broadinstitute.org/single_cell?type=study&page=1&terms=lung
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scRNAseq on human bone marrow 
 

Data for heatmap in Figure 3.6E originates from Hay, et al. Exp Hematol 2018.  

This study conducted scRNAseq on 8 bone marrow samples derived from healthy donors.  

It is publicly reposited at http://www.altanalyze.org/ICGS/HCA/Viewer.php. Normalized 

RNA counts for Hk1/2/3 were exported and used to generate a heat map. 

 

scATAC peaks from human PBMC 

Kartha, et al. bioRxiv.org 2021 examines the role of inflammatory stimuli on 

chromatin openness in human PBMC. The scATAC tracks are deposited on the USCS 

genome browser. The following set of tracks   

(https://genome.ucsc.edu/s/vkartha/stimATAC_Control1h_cellTypes) were used in 

Figure 3.7 to examine HK3 promoter openness across the 16 annotated cell types in this 

data set. The following sets of tracks 

(https://genome.ucsc.edu/s/vkartha/stimATAC_CD14_conditions) were used to 

generated Figure 3.11J. This set of tracks allows the viewer to examine HK3 promoter 

openness with 1 hr of IFN𝛾, PMA or LPS stimulation.  This data is reposited in a shinyapp 

(https://buenrostrolab.shinyapps.io/stimFigR/). The shinyapp was used to generate the 

UMAPs that were used in Figure 3.11 K/L to show domain domains of regulatory 

chromatin activation for HK3 and IFN𝛾 pseudotime in this data set. The shinyapp was 

used to generate the UMAP of cell indentities found in Figure 3.12E.  

 

Enhancer network analysis of low Km HKs 
 

Data from Yoshida, et al. Cell 2019 is deposited on Immungen.com, under the 

enhancer network tool (http://rstats.immgen.org/EnhancerControl/index.html). For each 

http://www.altanalyze.org/ICGS/HCA/Viewer.php
https://genome.ucsc.edu/s/vkartha/stimATAC_Control1h_cellTypes
https://genome.ucsc.edu/s/vkartha/stimATAC_CD14_conditions
https://buenrostrolab.shinyapps.io/stimFigR/
http://rstats.immgen.org/EnhancerControl/index.html


 144  

low Km hexokinase, the data from “Open Chromatin Activity in Immune Cells” was 

exported and made into heatmaps (Figure 3.8A-C). This data differs from Kartha et al. 

2021 because it originates from mouse scATAC sequencing, whereas Kartha, et al. 

implements human PBMC. The RNaseq and ATACseq data reported in Yoshida et al. 

2019 can be found at GSE100738. Processed ATAC-seq data and called peaks can be 

found at: https://sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv 

 

CHIP-ATLAS transcription factor binding analysis 
 

Transcription factor enrichment analysis was conducted on the “ChIP:TF and 

others” data set across the Homo Sapiens (hg38) and mus musculus (mm10) across all 

cell types. Summarized data is found in Tables 3.2-3.3. This dataset has over 15155 

transcription factor binding experiments for humans and 13000 for mice. Blood cells are 

comprised of a plurality of the cells studied in both specifies (4441/15155 human (29%), 

3600/13,156 (27%)). All significant epitope tag-promoter binding interactions (GFP and 

biotin) were excluded from this analysis. All transcription factor promoter interactions 

reported in this paper have a p<1*10-5. Enrichment analysis done for HK1/Hk1, HK2/Hk2, 

HK3/Hk3 in both mouse and humans. The publication of this online tool can be found Oki 

Ohta, et al. EMBO Rep. 2018. 

 

Single nucleus spinal cord sequencing 
 

Data collected from Yadav and Matson, et al. bioRvix.org 2022 

(https://vmenon.shinyapps.io/hsc_biorxiv/). The tissue for this study was collected from 7 

organ donors.  This dataset identifies 65 unique cell types in the human spinal cord. Like 

https://sharehost.hms.harvard.edu/immgen/ImmGenATAC18_AllOCRsInfo.csv
https://vmenon.shinyapps.io/hsc_biorxiv/
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the GTEX analysis above, repeating cell subtypes with no HK1/HK2/HK3 expression were 

filtered out to increase clarity. This data can be found in figure 3.9 

 

Alternaria model of asthma  

For Alternaria-induced lung inflammation, mice were anesthetized with isoflurane and 

challenged intranasally with 8μg Alternaria extract (Greer Laboratories) every 3 days for 

4 total challenges before analyzing the day after the final challenge (Palmer et al., 2019). 

In order to perform the FDG uptake study, the mice were injected with tracer 40 minutes 

prior to sacrifice. The remainder of this experiment performed in a manner similar to prior 

publication Reinfeld Madden et al. 2021.  

 

Hk3 expression in mouse myocardial infarctions 
 

Cardiac tissue from Pdcd1,Ctla4 KO mice was harvested similarly to {Wei, 2021 #358}. 

Myocardial infarctions were performed similar to {Terker, 2021 #627}. RNA was 

harvested from freshly isolated tissue, and qPCR was performed as described above.  

 

 

IBD TAMMA analysis 
 

Massimino et al. 2021 established on online tool to examine RNAseq data from 26 

published Crohn’ s Disease and Ulcerative Colitis studies, representing over 10,000 

patients. On this tool, it is possible to compare RNA expression of human genes across 

many impacted tissues from patients with inflamatory bowel disease. Comparisons done 

in this analysis were between matched tissues in healthy and diseased patients. The four 

comparisons conducted in this analysis were HK3 levels in (1) Rectums in UC vs control, 
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(2) Colons in UC vs control, (3) Ileums in CD vs control, as well as (4) Blood monocytes 

from CD patient’s vs blood monocytes from healthy controls. Padjusted is 7.2*10^-9 for 

HK3 in blood monocytes between CD and healthy. All the other p values are less than 

the FDR for this basal analysis (1x10-10). This data appears in Figure 3.10D. 

 
 

Glucose fixing enzyme expression in autoimmunity analysis 
 

Data from Aune et al. 2017 is publicly available. This study evaluates blood RNA 

signatures from a host of VUMC patients with autoimmune diseases. The expression of 

the Low Km HKs and GlUT1 were taken from Supplemental data file 1 in Aune 

Autoimmunity 2017. The GEO accession number for the raw data is GEO92472. This 

data appears in 3.10E 

 

COMBAT COVID19 database RNA expression 
 

The COMBAT COVID study examined blood RNA expression across different 

populations of patients who had the novel coronavirus (COVID19). Expression of SLC2a1 

(GlUT1) and HK3 were quired in the COMBAT COVID database. This shiny app 

developed by the consortium authors (https://shiny.combat.ox.ac.uk/shiny/diffexpr/) was 

used to examine expression. Log Normalized RNA seq data can be seen here 

https://zenodo.org/record/6120249#.YlIBINPMIqw.  

 

Culture conditions for cell line work in chapter 3 
 

iBMDMs, B16, MC38, and LLC cell lines were grown in DMEM with 4.5 g/l glucose 

+ 10% FBS and Pen/Strep. For stimulation assays, cells were plated 1x105 in a six well 

https://shiny.combat.ox.ac.uk/shiny/diffexpr/
https://zenodo.org/record/6120249#.YlIBINPMIqw


 147  

plate and allowed to grow for 36 hours. Then the cells were stimulated with cytokine from 

8-24 hours. The dosing of the cytokines was performed at the following concentrations: 

IFN𝛾 50 ng/mL, LPS 10 ng/mL, IFN𝛼 50 ng/mL, IL6 10 ng/mL, TGF𝛽 13.3 ng/mL, IL4 50 

ng/mL, IL1𝛽 20 ng/mL. Ruxolitinib was given at doses of 100 nm and 250 nm. The cells 

were given Ruxolitinib and IFN𝛾 at the same time (8 hrs for RNA analysis, 24 for protein).  

 

Protein Extraction/Western Blot Protocol 
 

Whole cell lysate was extracted using radioimmunoprecipitation assay (RIPA) 

buffer supplemented with 1x Halt protease and phosphatase inhibitors (Thermo Fisher 

Scientific). Cells in 6 well plates were lysed in 100 uL of RIPA + Thermo Halt diluted 1:100. 

These tubes then sat on ice for 15 minutes. After lysis, cells were spun at 15,000g for 15 

minute to pellet Protein concentration was quantified with a Pierce BCA assay (Thermo 

Fisher 23227). All lysates were quantified in technical triplicates at 1/10 dilution. Samples 

were boiled with 4x Laemmli buffer (BME 1:10 diluted). 20-40 ug of protein/lane were run 

in TGX 4-20% gels. They were run at 100v for approximately one hour (until the dye front 

reached the bottom of the cassette). 

Transfers were conducted using the Transblot turbo multi-MW setting. Blots were 

blocked in 5% milk resuspended in TBST for at least 1 hour at room temperature. Primary 

antibodies were diluted as follows HK1 (Cell Signaling Technologies 1:1000), HK2 (Cell 

Signaling Technologies 1:1000), HK3 (curtsey of the Ardehali Lab (1:2000), actin (1:2500 

Abcam) and stained at 4% overnight in 5% Milked resuspended in TBST. Blots were then 

washed at least three times for 10 minutes in TBST at room temperature. After sufficient 

washing, appropriate secondary antibodies were added at 1:40k dilution, resuspended in 
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5% milk in TBST. Secondary incubation occurred at room temperature for 45 minutes. 

Then the blots were washed at least 4 times in TBST and imaged on the BioRad Gel 

imager under the chemiluminescence protocol. The ThermoPhemto and Pico ECL 

reagents were used to visualize bands. These products are diluted 1:1 prior to placing on 

the blots for 5 minutes.  

 

Immungen microarrary gene skyline analysis 
 

Hk1,Hk2,Hk3 were queried at this online data portal that’s examines the impact of 

IFN𝛼/IFN𝛾stimulation on transcription across a variety of CD45+ cell types from mice 

(http://rstats.immgen.org/Skyline_microarray/skyline.html). From this website, the data 

can export as a spreadsheet and the graphs were made in prism.  Data is present in 

Figures 3.12F-H. 

 

Pan TCGA expression of immune genes 
 

Processed and normalized RNAseq data were obtained for 9264 tumor samples 

across 24 cancer types from The Cancer Genome Atlas (TCGA) (Rahman et al., 2015). 

These data and corresponding clinical data are available under Gene Expression 

Omnibus (GEO) accession number (GSE62944). Expression levels (log2(fpkm)) of select 

genes (PTPRC, CD68 and HK3) Figures 3.13A-B,E respectively were assessed these 

genes between the 24 cancer types included in the TCGA dataset. 

 

CD68 immunofluorescence  
 

Human ccRCC TMA was provided by Scott Haake and VUMC pathology. Paraffin-

embedded TMA slides were prepared for immunofluorescence and stained with CD68 

http://rstats.immgen.org/Skyline_microarray/skyline.html
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(cell signaling #76437) as previously described (Sorrelle et al., 2019). Briefly, slides were 

deparaffined in xylene and rehydrated in serial ethanol dilutions. Antigen retrieval was 

performed by heating slides for 17 min in Tris EDTA buffer, pH 9 in a pressure cooker at 

110˚c. Slides were cooled to room temperature and then blocked with 2.5% horse serum 

(vector labs). After blocking, slides were incubated overnight at 4˚c with anti-CD68, 

dilution 1:500 in 2.5% horse serum.  Slides were then incubated in anti-rabbit HRP 

secondary (vector labs) for 1hr at room temperature the following day and subsequently 

incubated in 1:500 Opal 570 (akoya) for 10 minutes.  Slides were then mounted and cover 

slipped using antifade gold mount with DAPI. Stained images were acquired using a 

Keyence digital microscope and analyzed with Fiji software for analysis. Quantification of 

CD68 was done by measuring total amount of CD68 divided by total area of tissue.   

 

CPTAC data analysis 

For tumor vs normal comparison, data was taken from 

https://cprosite.ccr.cancer.gov/#/. Expression of HK1/2/3 were queried in this database in 

ccRCC. This data can be seen in Figures 3.13F,3.14A-B. For normalized expression 

across kidney cancer stages, data was exported from 

https://pdc.cancer.gov/pdc/analysis/dbe94609-1fb3-11e9-b7f8-

0a80fada099c?StudyName=CPTAC%20CCRCC%20Discovery%20Study%20-

%20Proteome as a GCT data set, which allows stage information to be retained with 

normalized protein expression. This data can be found in Figures 3.13G, 3.14C-D. 

 

 

https://cprosite.ccr.cancer.gov/#/
https://pdc.cancer.gov/pdc/analysis/dbe94609-1fb3-11e9-b7f8-0a80fada099c?StudyName=CPTAC%20CCRCC%20Discovery%20Study%20-%20Proteome
https://pdc.cancer.gov/pdc/analysis/dbe94609-1fb3-11e9-b7f8-0a80fada099c?StudyName=CPTAC%20CCRCC%20Discovery%20Study%20-%20Proteome
https://pdc.cancer.gov/pdc/analysis/dbe94609-1fb3-11e9-b7f8-0a80fada099c?StudyName=CPTAC%20CCRCC%20Discovery%20Study%20-%20Proteome
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Survival analysis in TCGA 
 

Survival Analysis in TCGA performed in GEPIA. HK1, HK2, HK3hi/lo expression 

was set at the median value. The impact of HK1/HK2/HK3 on ccRCC survival was 

examined as well as the impact of HK3 on papillary and chromophobe survival. These 

analyses can be found in Figures 3.13H, 3.14E-H. 

 

Hallmark analysis of HK1hi/HK2hi/HK3hi tumors 
 

RNAseq data for the ccRCC TCGA samples (KIRC; N=485) was obtained from 

GSE62944 (Rahman et al., 2015). Differential gene expression analyses between HK1, 

HK2 ,HK3 high and low expressing tumors was calculated using the linear models 

(Limma) with correction for multiple testing (Ritchie et al., 2015). ccRCCs were 

categorized as high or low for HK3 expression implemented the mean as the cutoff. 

Functional annotation of differentially expressed genes (FDR<0.05) was performed using 

Term Geneset Enrichment Analysis (GSEA)(Subramanian et al., 2005) (Mootha et al., 

2003).This data can be found in Table 3.4 as well as Figure 3.13I. 

 

CiberSortX on HK3hi tumors 
 

Digital flow cytometry to estimate immune cell infiltration in each tumor was 

performed using CiberSortX (Newman et al., 2019). Significance for CiberSortX profiles 

between high and low HK3 expressing tumors was assessed by two-sample Wilcoxon 

(Mann-Whitney) test. This data can be found in Figure 3.13J. 
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Analysis of genes in TREM2hi tumors 
 

For TREM2 analyses, RNAseq data for 157 ccRCC tumors was obtained from 

Obradovic et al. 2021. Raw counts were preprocessed and normalized 

(varianceStabilizingTransformation) using DESeq2 (Love et al., 2014). TREM2hi tumors 

were identified based on the signature derived from Obradovic et al. 2021. Genes with an 

FDR<0.05 were considered significantly different in the TREM2hi vs TREM2lo cohort. This 

data can be found at Figures 3.13K, 3.14I-J. 

 

Single cell analysis of Bi et al 2021.  
 

Sample analysis was done using Scanpy. Scanpy is a scalable toolkit for analyzing 

single-cell gene expression data built jointly with anndata. It includes preprocessing, 

visualization, clustering, trajectory inference and differential expression testing. The 

processed single cell RNA-Seq data was deposited by Bi et al., 2021 and was accessed 

via the Single Cell Portal: 

https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-

reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-

summary.  

First, droplets with greater than 3000genes per count, and/or more than 5% of 

counts attributed to mitochondrial genes were removed prior to analysis. To normalize 

each cell by total counts over all genes, so that every cell has the same total count after 

normalization, counts per cells were then normalized to 10k counts per cell. The sample 

was next log transformed for further preprocessing. Lastly, droplets with less than 200 

genes per cell, and genes in 3 or less cells were also removed in the preprocessing stage. 

https://anndata.readthedocs.io/
https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary
https://singlecell.broadinstitute.org/single_cell/study/SCP1288/tumor-and-immune-reprogramming-during-immunotherapy-in-advanced-renal-cell-carcinoma#study-summary
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The resulting merged Anndata object dataset included 20,947 cells and 26516 genes 

detected genes across the eight samples.  

Principal components analysis (PCA) was performed on the integration-

transformed expression matrix, and the first 48 principal components were used for 

Leiden clustering of cells with a resolution parameter of 1. Uniform manifold 

approximation and projection (UMAP) was performed on the same PCs with 10 nearest 

neighbors for visualization in two dimensions. From here, figures provided demonstrating 

lineage and HK1, HK2, and HK3 expression were generated using the previously 

demonstrated annotations by Bi et al. The lineage data can be found in Figures 3.15A-B. 

To investigate the myeloid lineage further, an Anndata object was generated using 

the lineage characterization by Bi et al. generating a new Anndata object data set with 

3938 cells and 26516 genes. To address batch effects across samples, the new Myeloid 

Lineage dataset was batch corrected using ComBAT. 

https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.combat.html. ComBAT 

corrects for batch effects by fitting linear models, gains statistical power via an EB 

framework where information is borrowed across genes. The Myeloid lineage data can 

be found at Figures 3.15C,3.16A-C. 

Principal components analysis (PCA) was performed on the batch-corrected 

expression matrix, and the first 30 principal components were used for Leiden clustering 

of cells with a resolution parameter of 1. UMAP was performed on the same PCs with 

10 nearest neighbors for visualization in two dimensions. From here, figures provided 

demonstrating leiden clusters, and expression patterns for HK1, HK2, and HK3 were 

https://scanpy.readthedocs.io/en/stable/generated/scanpy.pp.combat.html
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generated. Genes were then ranked leiden clusters of interest using the Wilcoxon rank-

sum test. These gene lists can be found in Figures 3.15D,3.16D. 

 

Low Km HK expression in the setting of neoadjuvant TKI therapy 
 

 Wood CG et al. 2020 conducted a clinical trial of neoadjuvant pazoponib 

treatment in patients with non metastic ccRCC. RNAseq was performed on matched 

normal tissue, tumor prior to treatment and tumor post treatment. Log normalized data 

was provided by Dr. Ben Vincent.  

 

IMmotion 151 data analysis 
 

IMmotion 151 randomized patients to VEGF TKI alone (sutent) or VEGF inhibitor 

+ aPDL1 anget (Bevicizumab+Atezolizumab). Tissue prior to treatment was collected and 

ultimately RNA was collected. Prior work performed RNAseq on these samples and 

generated 7 theranostic clusters using a non-negative matrix factorization algorithmn. For 

the heatmap in Figure 3.15F, the RNAseq data provided by Genetech was log 

transformed. Row normalized z scores are shown in the heatmap. Columns are sorted by 

NMF group which is published in Motzer et al., Cancer Cell 2021. Rows are clustered with 

hierarchical clustering. Heatmap made using the complex heatmap package (Gu et al., 

2016) For Figures 3.15 G/H, 3.17 C/D, log transformed expression of the genes of 

interested was plotted.  

 

Cancer Immu Database Analysis 
 

Cancer Immu has combined multiple datasets where patient genomic and 

transcriptomic data are correlated to outcome on anti-PD1 and/or anti-CTLA4 therapy 



 154  

(http://129.59.197.30:3838/Cancer-Immu/) (Yang et al., 2021). To generate a cohort 

similar to the size of Motzer et al. 2021, all the melanoma datasets with pretreatment 

biopsies were collated. In total this represent 219 patients. HK3 RNA levels were 

examined in responding and non-responding patients. Additionally, the impact of HK3 on 

patient overall survival was analyzed. 
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Chapter 5: Discussion 

The implications of this dissertation are wide reaching in the practice of human 

medicine and basic cancer biology. The mainstay technique developed in this work, to 

trace glucose (or any F18-based tracer into different cell fractions in a tissue 

microenvironments), pushes in vivo metabolic studies into the single cell era of biology. 

For the past 150 years, whether they be histological, genomic, transcriptomic, 

metabolomic, or proteomic analysis, bulk tissues have been used in the field of cancer 

biology. Thus, it has been difficult to tease out how the diverse cell population of a tumor 

contributes to any described phenotype. Only recently (the last 10 years) have single cell 

(sc) studies become commonplace and those are mostly currently restricted to RNA or 

DNA sequencing (Gohil et al., 2021). Today, applying these technologies spatially across 

tissue specimens is occurring more frequently, but still is rare (B. Chen et al., 2021; Hoch 

et al., 2022). Therefore, we still do not understand the metabolic programs of individual 

cell subsets in the TME today. 

 

Technical advances in dissecting cell population metabolic programs 
 

There are limitations with current technologies that restrict our ability to decern 

individual cell metabolic programs. Conducting single cell studies for ultimate 

metabolomic analysis is challenging because many metabolites have short half-lives 

(seconds to minutes) and thus require immediate freezing of the tissue to make precise 

and accurate measurements. This rapid procurement of tissue prevents single cell 

digestion, flow sorting, or other mechanisms to separate cell population prior to analysis. 

Therefore, our understanding of the metabolic TME until this time is a weighted average 
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of metabolic program activity in each cell type multiplied by the tissue abundance of that 

cell of interest. So, it is possible to see significant changes in a specific metabolic 

pathway, without any specific cell type increasing that program much greater than 

baseline. For example, Faubert et al. 2017 demonstrates that in lung tumors circulating 

lactate is consumed and used as metabolic substrate (Faubert et al., 2017). However, we 

have little idea at this moment which cells are performing this specific metabolic task. Is 

it the transformed tumor cells or is it the infiltrating or supporting stroma metabolizing the 

lactate? There is recent evidence that M1 macrophages can use lactate molecules to 

modify their histones and drive transcription of M2 genes (D. Zhang et al., 2019) to have 

a more pro-tumor pheontype. Therefore, it would not surprising if tumor infiltrating myeloid 

cells were using this lactate for their suppressive function and thus contributing to the 

labeling pattern seen by Faubert et al. 2017.  

To address the previous generation of bulk metabolomics in the TME, this project 

undertook a novel technological advancement to evaluate metabolic uptake across cell 

subtypes in the TME. By using F18 tracers like FDG, these studies are inherently clinically 

relevant given the widespread adoption of this technology. Another benefit of this 

approach is that radioactive substrates are given at tracer doses. By not using saturating 

concentrations, there is less concern that administration of the compound of interest 

changes activity of cellular enzymes and glucose hormonal regulation due to the 

exogenous supplementation of tracer of interest. This contrasts with C13 labeling patterns 

which often follow patterns of mass action (Li et al., 2022). For the purpose of this work, 

Li and colleagues demonstrates that increasing C13-glucose intravenously alters insulin 

levels in the mice where they are performing metabolic flux analysis.  Additionally, some 
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tracers like FDG are functionally inert once taken up by cells (end-tracers). Therefore, 

concern about metabolite turnover becomes negligible in the final reading of cellular 

radioactivity.  

Using this new set of tools, we were able to observe that myeloid cells consume 

more glucose than other cells in both the TME (Reinfeld et al., 2021) and inflammatory 

microenvironments (Chapter 3). This observation (which at first seems paradoxical to the 

Warburg effect) has been validated by numerous groups in the time around and following 

its publication. FDGhi lung tumors were shown to have overall higher levels of CD68 

(Leitner et al., 2022), a pan macrophage marker. Josh Rabinowitz’s group examined the 

fate of C13 glucose across mouse organs and observed that immune organs are the only 

location where C13-gluocse is rapidly consumed into glycolytic intermediates (TeSlaa et 

al., 2021). These immune tissues (spleen and blood) are inherently rich in myeloid cells 

when compared to solid organs. Additionally, a group examined FDG uptake in the 

Alzheimer’s brain, and demonstrate that the CD11b+ phagocytic microglia are glucose 

consuming in this disease state (Xiang et al., 2021). Therefore, our observation that these 

myeloid cells are programed to constantly consume glucose appears to be a hallmark of 

many biological systems.  

 It is worth noting, that at the time, other groups are employing diverse techniques 

to profile the metabolism of individual cell populations. These technologies have been 

used on flow sorted bone marrow (DeVilbiss et al., 2021),  C13 labeling in vivo (Lau et 

al., 2020), as well as spatial MALDI-TOF imaging combined with C13 labeling (Wang et 

al., 2022). These studies support our study’s insights into the notion that individual cell 

populations have unique metabolic properties that promote their physiological function. 



 158  

Additionally, these groups have used these studies to illustrate that in vivo metabolic 

labeling patterns differ profoundly from previous metabolic understandings derived from 

in vitro studies. Ma et al. 2019 demonstrated that T Cells in antigen response oxidize 

more glucose than expected while Lau et al. 2020 elucidated that cancer associated 

fibroblasts can drive mitochondrial oxidation of glucose in cancer cells. These findings 

were not previously appreciated because cell culture media contains supraphysiological 

concentrations of most substrates that when provided at those doses can alter metabolic 

activity and pathway reliance (Cantor et al., 2017; Rossiter et al., 2021). The focus on 

culturing cells in isolation in vitro creates interpretable data but prevents an understanding 

of how heterotypic cell interactions drive metabolic programs. Ultimately this effort for 

reproducible models (by having single cell types cultured in metabolic excess) limits the 

translatability of many previous papers in the field of cancer metabolism when the in vivo 

microenvironment is rich in diverse cell types, has orders of magnitude differences in 

some metabolites and has three-dimensional structure. These three features are not 

considered in traditional cell culture today even though all known to alter cancer cell 

behavior and aggressiveness   

Given the heretical nature of our myeloid increased glucose uptake finding, it is 

important to discuss the historical evidence that supports this work. Warburg’s initial 

observations, both that tumors continue to make lactate in the presence of oxygen and 

that lactate accumulates in tumor draining veins, suffer from experimental design 

limitations of his time. These observations occurred in bulk tissue in immunocompetent 

animals. Therefore, it is possible that myeloid and lymphoid cells in these models were 

contributing to the values he observed. Additionally, Warburg’s manometry studies where 
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he observed that tumors do not respirate as expected happened ex vivo in tumor slices 

rich with immune cells in solutions with excess metabolic substrate. His work was not 

modeling the physiological glucose concentration (0.5 mM-2mM). Realistically, the 

phenotypes he observed could have been from saturating metabolic pathways and not 

replicating the actual in vivo concentrations.  Therefore, the data put forth in this thesis 

may support Warburg’s original view of the TME. Glucose is constantly consumed, and 

lactate is made in the space Virchow and later Dvorak noted as “the wound that would 

not heal” (Dvorak, 1986). We observe that in every model we tested, the tumor FDG 

uptake is greater on a per cell basis than the spleen. This work suggest that the myeloid 

cells contribute significantly to the glucose consumption, yet it remains unclear which cell 

population is directly responsible for the lactate accumulation.  

Therefore, a main future direction of this work is to repeat similar studies but with 

infusing C13 as opposed to F18 metabolites. The power of C13 in these types of studies 

would allow our group to see if glucose has different cellular fate in these TME resident 

cell types. Based on the differences in HK isoform usage across cell times, I would 

hypothesize that, these diverse cells do ultimately flux glucose into different subcellular 

metabolic pathways. Myeloid cells are most likely diverting glucose into more cytosolic 

metabolic programs (like the PPP), while lymphoid cells and cancer cells are oxidizing 

this vital nutrient and using in the mitochondria. However, we cannot make those claims 

based on our F18 studies because they solely demonstrate metabolic uptake.  

As alluded to previously, Lau et al. 2020 used C13 glucose in vivo in an approach 

to see how individual cell population use glucose in the pancreas cancer TME. In this 

work, mice were labeled overnight, tumors were digested at 37ºC, and then the single cell 
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suspensions were flow sorted to obtain populations of interest. They examined C13 

labeling in macromolecules (like cell membranes and overall protein content) to describe 

differential metabolic activity across divergent cell types. The overnight labeling was 

necessary to increase C13 label in large macromolecule end products that would not 

degrade throughout the process of obtaining pure single cell populations. This minimizes 

potential artifacts that can occur during the 37ºC tissue digestion and room temperature 

flow sorting process. Since that work was published, Sigma-Aldrich now sells a 

collagenase that works at 4ºC. Therefore, the same studies in Chapter 2 could be 

conducted in the cold room, to evaluate the contribution of serum glucose glycolytic 

intermediates within these different TME resident populations. The labeling could happen 

over a shorter time (with 40 minutes-1 hour) in alignment with the human studies from the 

DeBerardinis lab (Courtney, Bezwada, et al., 2018; Faubert et al., 2017; Johnston et al., 

2021). In this approach, one could theoretically look at intermediate metabolites directly, 

which the Vander Heiden group was unable to do. As mentioned previously, Rabinowiz 

group (Wang et al., 2022) has now also developed iso-imaging, where the isotopically 

labeled glucose is infused in the mice, organs are harvested and then MALDI-TOF spatial 

mass spectrometry is performed on the tissue. By staining serial sections with immune 

markers, it could be possible to see differences in labeling in immune rich sections of 

tumors vs immune poor. However, this technology has a relatively large resolution (50 

uM) so it would be unable to say if a given metabolite went into a tumor macrophage or 

a cancer cell specifically. Their recent publication can analyze the intermediate 

metabolites (like lactate).  The Rabinowitz group used this technology to validate their 

previous finding that kidney tissue can uptake exogenous citrate to stock the Kreb’s Cycle 
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(Jang et al., 2019). With the MALDI-TOF imaging, this group beautifully demonstrated 

that it is the kidney cortical epithelia, which undergo the citrate catabolism while the 

medullary cells do not consuming this available metabolite.  

 Another interesting comparison would be to feed the mice C13-glucose chow and 

compare the observations of consumed isotopes versus infused isotope. The 

implementation of dietary manipulation as the treatment of cancer is a rapidly growing 

field, yet little interest is garnered from basic science discoveries and rigorous pre-clinical 

models. It would behoove the field to understand how metabolites consumed in the diet 

contribute to the biomass of the TME for doctors to provide patients with appropriate 

council on diet. Understanding these differences, would help contextualize many of the 

current claims made based on pre-clinical studies that use infused tracers or examine 

steady state metabolomic profiles.   

A major limitation to the F18 technique is the relatively sort half-life and the 

institutional barriers to flow sort populations of interest. The short half-life restricts how 

many successive bead sorts can be performed. Based on our studies, it appears that 2-

3 consecutive sorts can be performed to ensure that enough radioactive signal is present 

to have reliable data that demonstrates biologically significant differences. Increasing the 

amount of bead sorts and thus increasing the number of half-lives prior to reading the 

samples, would create smaller differences between the cell fractions. Besides the time 

aspect of using the beads purification, they are limitations in that enrichment of rare 

populations is not technically possible for low abundant cell types. Maximally, the 

commercial beads result in a 5-10x fold enrichment. So, if a desired cell population is less 

than 1% of the total TME, it is hard to generate very pure fractions. We observed this 
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phenomenon when bead sorting for the CD103+, CD11c+ conventional dendritic cell 1 

(cDC1). There is significant enrichment for this cell type, and we observe increase 

glucose uptake in the cDC1 enriched fraction, however, it is not an ideal average purity 

to make strong claims (approximately 20% of the events). Understandably the VUMC flow 

core will not permit us to use radioactive material on their machines. With a flow sorter, 

we could get at least 5, if not more, very pure, and very specific populations of interest, in 

a shorter amount of time. However, we would probably have to stagger mouse injections 

and standardize the time difference between mouse injection and reading the samples 

on the Hidex gamma counter to eliminate all sources of variability. With this type of 

equipment in hand, we could make stronger assertions about the glucose uptake capacity 

of different myeloid and T Cell subsets. Additionally, we could evaluate glucose uptake in 

the non-tumor non CD45+ compartment like fibroblasts or endothelial cells.  

 

Improving clinical imaging to better reflect cancer cell specific metabolic 
programs 
 

Moving forward, this work conceptually can contribute to the field of molecular 

diagnostics. FDG-PET imaging is a hallmark of cancer care. Interestingly, it can also be 

used to diagnose different inflammatory conditions that lack any proliferating malignant 

cells (Love et al., 2005). However, it is not an effective imaging modality in all tumor types, 

in conflict with Warburg’s original postulate that increased glucose uptake is a hallmark 

of cancer. The most striking example is the lack of clinical utility of PET imaging in ccRCC 

(Liu, 2016) . This disease is quintessentially a metabolic tumor type (Linehan et al., 2019). 

Almost all patients lose VHL functionality, thus stabilizing the metabolic transcription 

factor (HIF). Recently, in vivo C13 glucose studies from the DeBerardinis group confirmed 
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increased in vivo glycolytic flux into lactate labeling in 5 human ccRCC patients (Courtney, 

Bezwada, et al., 2018). Even though FDG imaging has been demonstrated to not be 

helpful clinically, in research studies it has been noted that patients with very aggressive 

often metastatic ccRCC (which is known to have even more inflammation) have FDG PET 

positive tumors and metastases (Majhail et al., 2003). This profoundly confusing fact led 

to the generation of the experimental schema implemented in Chapter 2 where our group 

sought strategies to evaluate the cellular uptake of FDG in immune and tumor cells from 

the TME. 

Our data suggest that FDG uptake can be a surrogate for many processes other 

than cancer cell proliferation in the TME. The DeBerardinis group has published that there 

is in fact little correlation between FDG uptake and glycolytic C13 labeling in human lung 

cancer patients (Kernstine et al., 2020). In this study, FDG avidity did positively correlate 

with proliferation (Ki67), tumor size, and lactate uptake. Therefore, it may not be 

surprising that FDG signal could indicate large immune infiltrates, and/or myeloid cells 

disposing of dead cellular debris from the wasteland which is the TME. Additionally, in 

today’s world of clinical immuno-oncology, a new therapeutic paradigm that is being 

ushered in across tumor types is to ultimately activate the patient’s immune system to 

recognize their malignancy. Therefore, it has been that documented that some patients 

may have increases in FDG uptake on immunotherapy agents (as if their tumor was 

progressing), but ultimately demonstrate a positive response to therapy (Aide et al., 

2019). This is one of the many paradigms of pseudoprogression that make traditional 

radiographic tumor assessment difficult in an age of cancer immunotherapy.   
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Given this possibility for lack of clinical correlation with traditional views on FDG 

uptake (where increase in signal is a correlate for tumor progression), there is a focus on 

the development of immune specific tracers. Groups have added radioactive nuclides 

(e.g., Zr89 or Ga68) to antibodies/nanobodies that recognize key immune oncology 

targets (e.g., PD1, PDL1 (Niemeijer et al., 2018) , and CD8 (Tavare et al., 2016)). These 

tools may be useful in selecting patients to receive therapy (i.e., if the tumor is PD1 PET 

positive), the target is present in the TME. However, these tools face large barriers to 

track patient response to therapy, which is a large source of clinical ambiguity. CD8 T 

cells are prognostic in almost all tumor types but are anti prognostic in ccRCC. PDL1 and 

PD-1 also have apposing prognostic significance across disease subtypes. It remains 

unclear how these types of markers will change while a patient is on therapy and how 

that might differ in responding and non-responding patients. We also currently do not 

appreciate whether those changes are consistent across histotypes of cancer and 

locations of metastasis. It can be hypothesized that in each tumor type where 

immunotherapy is used today, the PD1/PDL1/CD8 PET could be divergent. In one tumor 

type, these markers of immune activation all increase as a patient’s tumor shrinks and, in 

another subtype, the markers decrease as the patient’s tumor continues to grow. Certain 

biomarkers, like tumor mutational burden and tissue PD-L1 expression, demonstrate 

histotype specific benefits. So, it is reasonable to predict that similar limitations may exist 

when radioactive antibodies are used to evaluate the same targets. This perspective 

originates from the fact that neither PD-L1 nor TMB are predictive of ccRCC checkpoint 

blockade response. Zero percent of ccRCC patients have a TMB > 10 mutation 
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/Megabase (the FDA approved tissue agnostic biomarker for 𝛼PD-1 treatment). However, 

these drugs do provide survival benefit in unselected ccRCC patients (Valero et al., 2021).  

 Additionally, in clinical medicine today there is little infrastructure for the 

implementation of Zr89 or Ga68 across 100,000s of patients. These checkpoint blockade 

therapies are currently the most widely and most adopted therapy in oncology. The 

demand will only increase as these drugs are used in earlier stages of treatment.  

Therefore, companion imaging diagnostics need to rely on infrastructure that are already 

widely abundant. Since FDG is the most common PET scan in clinical medicine today, 

cyclotrons and clinical protocols already exist for F18 based tracers. F18 is the preferred 

radionuclide to attach metabolic substrates and thus makes them more translatable for 

patients today. Due to F18 having a relatively short half-life (110 minutes), it is less ideal 

to use this radionucleotide with antibodies or protein binding moieties that have different 

binding kinetics then small molecule catabolism.  

Therefore, an approach that specifically image cancer cell metabolism may be the 

best method to track the diverse landscape of cancer therapeutics today. In clinical 

oncology in 2022, clinicians use a variety of immunotherapy, radiotherapy, targeted 

therapy, and chemotherapeutics. Ultimately, clinicians need imaging modalities that 

communicate whether the tumor cells are growing or dying. Does the patient in front of 

me require more therapy or is it safe to stop this therapy to prevent more toxicities? It 

appears understanding cancer cell metabolism within the TME in vivo, can allow for this 

type of diagnostic.  It is not a novel concept to use more diverse radioactive metabolic 

substrates to examine tumor growth: groups have developed tracers that examine other 

metabolic pathways in vivo. Our studies in Chapter 2, use a F18-Gln that has been used 
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to image patients in many studies (Li et al., 2019; Schulte et al., 2017). However, these 

types of metabolic tracers have not been rationally designed. Instead, groups have used 

models of cancer cell metabolism where the transformed cell is the dominate consumer 

of all metabolic substrate. Therefore, any widely available metabolite could be an ideal 

imaging tool in cancer. I coin this view of cancer metabolism as “the hungry hungry hippo 

hypothesis” (H4). Cancer cells continue to consume all available nutrients with little regard 

for the TME and other selective pressures that exist within it.   

 Our studies suggest that this notion is not true for all metabolites.  At least for 

some metabolites (like glucose), individual cell populations (CD11b+ myeloid) have gene 

transcriptional programs that promote consumption of one metabolite instead of another. 

Using the H4 model is problematic to select an ideal tracer because the TME is filled with 

proliferating lymphocytes, myeloid cells, endothelial cells, fibroblasts and thus 

metabolites that are associated with pro-growth, pro-proliferation programs may be 

uptake by multiple cell types (similar to FDG) (Andrejeva & Rathmell, 2017). These types 

of proliferation associated metabolic tracers would not help a clinician or radiologist 

decern between cancer cell and immune cell activation.  

Another common mechanism to evaluate the feasibility of a metabolic tracer is in 

examining bulk RNA sequencing data and validating these metabolic trends with tissue 

IHC from the mouse tumor models or human tumor type of interest. These analyses, 

however, are insufficient to argue if that the catabolism of the metabolite of interest would 

be performed by transformed cells or by the cast of infiltrating stroma. Groups today are 

improving their target validation processes with conducting co-

immunohistochemistry/immunofluorescence to examine which cell types are expressing 
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the catabolic enzyme or transporter of interest. Sadly, these types of tissue studies are 

not truly necessary to design and synthesize new tracers. It is worth noting that Glut1 

protein levels were much higher on the MC38 tumor cells in vivo than any immune cell 

population (as assessed by flow cytometry). Yet, these cancer cells do not retain elevated 

levels of FDG. This suggests that the rate limiting enzymes for tracer metabolism (in the 

case of FDG, the HKs) may be a better predictor of cell fate than the transporters 

themselves. 

Our data would suggest that tracers that examine fatty acid catabolism or 

glutamine catabolism would be more specific for evaluating tumor growth. We evaluated 

the F18-glutamine uptake in a series of mouse tumor models but did not evaluate the F18 

fatty acids like oleate which has been used previously in pre-clinical studies (DeGrado et 

al., 2010; Witney et al., 2014). Additionally, the C16-BODIPY study conducted in Chapter 

2 occurred ex vivo, thereby decreasing the translational aspect of that finding. Dr. Marcia 

Haigis’ group, however, did publish similar findings, that fatty acids are consumed by 

CD45- tumor cells (Ringel et al., 2020). This increase in fatty acid catabolism contributes 

to the increase in tumor aggressiveness in obesity.   

The framework used in Chapter 2 can be used to find develop tumor specific 

metabolic substrate. Historically papers would suggest that RNA transcriptomics has little 

role in predicting functional metabolic patterns (Aird et al., 2021; Lee et al., 2014). 

Interestingly, this was not observed in our work. Our NanoString metabolism data would 

predict that the myeloid cells consume glucose and cancer cells metabolize glutamine 

and fatty acids. Using a series of different approaches, we did in fact see that unique 

pattern that was predict by the NanoString analysis. Why could there be divergence in 
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our case where the transcriptomics conducted reliably predict metabolic labeling 

patterns? One reason is that prior attempts to validate RNA transcriptomics and 

metabolomics originated from bulk RNA-sequencing where there is contamination from 

the many diverse cell populations in the TME. Additionally, groups have tried to implement 

in vitro derived signatures in non-physiological media on plastic substrates and applied 

them to bulk in vivo data sets. Our approach is quite different in that we separated out the 

cells of interest from an in vivo model, subsequently performed deep transcriptomic 

characterization and then followed that up by cellular tracing techniques. This provides 

promise that as scRNA sequencing technology improves to ultimately provide deeper, 

richer datasets, we can predict and thus evaluate more specific metabolic tracers for the 

detection and monitoring of cancer cell progression. Today, it is very difficult to use 10x’s 

sc data to appropriately do so because of the small amount of UMIs/cell returned in this 

platform. Another area for growth in the integration of single cell transcriptomics and 

metabolic assessment is spatial scRNA sequencing. However, the ROIs on the 10x 

Visium assay as well as the Nanostring Geomx platform are relatively large (50 µm). Thus 

each ROI contains multiple cell types in different proportions, creating a situation where 

deconvolution is necessary to find cell type specific metabolic programs. This is like the 

limitations presented by spatial metabolomics at this junction(Wang et al., 2022).  It is 

worth noting that both companies claim to be unveiling subcellular tissue-based RNA-

transcriptomic platforms in the Fall of 2022, (CosMx and Visium HD) unfortunately after 

the completion of this thesis (He et al., 2022). But these high definition platforms will be 

immensely helpful for further metabolic probing of the TME.  
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It is worth considering that our CD45- tumor cell fraction is heterogenous and 

compromised of important CD45- stromal cells like fibroblasts and endothelial cell 

populations. We created Thy1.1+ MC38 cell line and show that when these modified 

MC38 are specifically enriched with Thy1.1 beads, we observe the same phenotype, that 

immune cells consume more per cell glucose than transformed tumor cells. This approach 

can be further used and modified to go deeper into the metabolic programs of cancer 

cells. Cancer cell lines are easily amendable to lentiviral transduction or piggybac 

transposon insertion of this gene,Thy1.1. Thy1.1 is preferred in comparison to other tumor 

cell labeling strategies because other groups have shown that this congenic marker is 

less immunogenic (McKenna et al., 2011) (in comparison to GFP or other florescent 

proteins (Day et al., 2014; Grzelak et al., 2022)). Therefore, the generation of more 

syngeneic Thy1.1+ cancer cell lines would be helpful with the goal of harvesting RNA 

specifically from these Thy1.1+ cells after growth in vivo. With RNA collected specifically 

from these Thy1.1+ cancer cells from the TME, it would be possible to directly compare 

in vitro vs in vivo RNA programs. Additionally, one could experimentally alter numerous 

in vitro variables (growth media, 3D cultures, co-culture with immune cells) and 

interrogate how these culture modifications can alter cancer cell metabolism and 

transcriptomes to align more with the observed in vivo phenotypes.  

A potential use for a series of Thy1.1+ murine cancer cell models would be to 

evaluate if there are shared metabolic programs across cancer types or if a disease 

specific approach may be needed to develop more ideal radiotracers. By purifying bona-

fide tumor cells from relatively viable in vivo tumor models (MC38, RenCa, MLLAF9, 

EMT6) and then performing next generation RNA-seq, it would be powerful to examine 
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metabolic phenotype across cell lineages and mouse backgrounds. If enrichment of the 

same metabolic pathway were observed across these heterogenous cancer model, it 

would support the notion that there are shared metabolic features of oncogenic 

transformation. I would hypothesize an increase in glutamine catabolism is shared by all 

of these models based on our prior F18 experiment. Additionally, there may be quite 

divergent programs that are cell line specific and thus present opportunities for validation 

and new tracer development.  

With these new cell lines, it would also be possible to examine the protein content 

or metabolic content (using techniques alluded to earlier by Lau et al. 2020) of these 

Thy1.1+ cells specifically using Thy1.1+ beads to lessen the cell stress during purification. 

Conducting these studies in immunocompetent and immunodeficient hosts (or with 

depleting antibodies) could allow for a dissection in how individual immune cell population 

alter cancer cell metabolic processes and/or protein expression.   

 

Impact of cancer cell lineage on metabolic program 
 

 In collecting data for Chapter 2, I was surprised by the results from a study 

implementing a melanoma tumor model, YUMM, because it did not follow our typical 

pattern of myeloid glucose enrichment. In a study in collaboration with Ann Richmond’s 

lab, we evaluated FDG uptake in one of the YUMM mouse melanoma models on anti- 

glutamine therapy (V9302). In this model, which is rich in myeloid cells, we see equal 

glucose uptake between the YUMM melanoma cells and the CD11b+ cells. Here we see 

again that this Warburgian H4 is not true, because myeloid cells and tumor cells have 

equivalent glucose consumption. The YUMM cancer cells are not the dominate consumer 

of glucose on a live per cell basis. However, it was striking that these YUMM cells per cell 
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glucose uptake was much higher than the other models we used in our studies. The 

YUMM model is the only non-epithelial derived cancer model we examined; therefore, it 

becomes a natural question to ask whether cell of origin impacts metabolic phenotype. 

Melanomas are derived from neural crest stem cells, and thus it may not be surprising 

that they can engage in a transcriptional program that allows for heightened cellular 

glucose uptake whereas our other models were derived from mutant epithelia. The brain 

is an FDG positive organ at baseline, therefore certain transcriptional and phenotypic 

aspects of this lineage may promote glucose uptake at baseline. 

 With that observation where melanomas may have increased glucose uptake 

when compared to epithelial tumors, it would be intriguing to examine glucose uptake in 

tumors that originate from other stem cell populations. There are robust mouse models 

of acute lymphoid and myeloid leukemias (Kohnken et al., 2017) (ALL and AML 

respectively). AMLs arise in cells that are HK2+ elevated at baseline and have the ability 

to express HK3. Therefore, I would hypothesize that these tumor models take up more 

glucose than the infiltrating myeloid cells. Using an ALL model would be an appropriate 

control to evaluate whether all hematopoietic tumors cell can be highly glycolytic or that 

it is endowed to a certain subset of hematopoietic derived tumors. It would also be of 

interest to compare the labeling patterns in models of chronic myeloid leukemias vs acute 

leukemias given the basal difference in proliferation rate. A similar experiment could be 

done comparing more acute B cell leukemias, indolent lymphomas (follicular-like, 

aggressive lymphomas (diffuse large B cell), and multiple myeloma models. In each of 

these B Cell malignancies, a different progenitor drives disease progression. Therefore, 
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this study could act a surrogate to see the effect of developmental stage on malignant 

cell metabolism. 

The Bosenberg lab at Yale has derived the YUMM cell lines from primary mouse 

melanomas with many different combinations of BRAF, PTEN, P53, Ras, etc. mutations 

to phenocopy the diversity of the tumors seen in the melanoma cancer genome atlas 

project (Meeth et al., 2016). Therefore, this set of tools presents an opportunity to evaluate 

the role of cancer mutation on tumor cell metabolic phenotype in vivo. A hallmark of 

modern cancer biology is the notion these distinctive genetic mutations dictate cancer cell 

phenotype. This observation has driven the development of personalized genomic 

therapies for cancer. However, there are very few situations where genomic mutation 

alone predicts response to therapy. Usually, inhibitor sensitivity requires the patient to 

harbor the druggable mutation and for that mutation to be in a tumor of a specific tissue 

type. For example, Vemurafenib (a BRAF V600E specific inhibitor) results in durable 

responses to melanoma and a few other rare tumor types (sarcomas, gliomas, etc.), 

however, as a single agent, it has mimical efficacy in V600E+ gastrointestinal 

malignancies (Subbiah et al., 2020). Additionally, recent advances in sequencing 

technology have allowed groups to deeply sequence histologically normal tissue. To the 

surprise of most cancer geneticists, histologically normal tissue from patients of all ages 

is enriched with mutations known to drive tumor formation (Martincorena et al., 2018; 

Moore et al., 2020). In combination, these observations suggest that mutation alone is 

insufficient to drive an oncogenic phenotype.  

Given these recent findings, I hypothesize that the cell of origin has a greater 

impact on cell metabolism than the different mutations. In the line with the notion that 
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YUMM cell lines could behave quite similarly, even though they harbor different 

mutations, Meeth et al. 2016 demonstrated minimal differences in immune infiltrate in four 

of the YUMM cell lines they examined. Therefore, I would expect to see all the YUMM 

cancer cell lines to exhibit glucose uptake to a similar level to myeloid cells regardless of 

the gene mutation the cell line possesses. No one mutation in the YUMM cells would 

ultimately alter the degree of glucose uptake. Another set of exciting experiments would 

be to make these same oncogenic mutations in lung cancer models,  and compare the 

uptake pattern across tumors that are genetically identical but derived from different cell 

lineages. This would be in line with recent data from Richard White’s group that the basis 

for different mutational events in acral melanoma vs cutaneous melanoma is the 

oncogenic transforming capacity of the stem cell of origin (Weiss et al., 2022). They used 

zebrafish models of melanoma to show that acral melanoma oncogenes only cause 

tumors in the fish fins, whereas cutaneous melanoma oncogenes cannot induce 

transformation in the fin. Interestingly, the fish fin shares developmental lineage as the 

soul of the human foot, and thus provides compelling evidence in solid tumors that the 

stem cell of origin dictates whether an oncogenic event can be transforming. Similar work 

has been done in acute myeloid leukemias, where it is clear than only some progenitor 

states can be permissive for oncogenic transformation (Fisher et al., 2019).  Therefore, I 

would support a model where the stem cell, or more broadly the histotype of tumor origin 

dictates the metabolic phenotype of the malignancy of interest. This does not, however, 

contradict our potential search for a cancer cell specific tracer. Given the shared nature 

of the program for cancer invasion and metastasis and that almost all cancer mutations 
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activate downstream mTOR signalling, it could be possible to find an upregulated 

metabolic pathway that could be targeted or imaged across malignancy.  

It would also be potentially of interest to compare the metabolic uptake of the same 

cell line in different organs (like the lungs, brain, or kidney). It has recently been 

appreciated that certain tissue microenvironments can restrict metastasis. The oxidative 

microenvironment of skeletal muscles prevents breast cancer cells from successful 

colonization (Crist et al., 2022). Therefore, one can imagine the unique metabolic milieu 

of each organ driving selective pressures that force alterations in the cancer cell or 

immune cell metabolic program. I would imagine given the amount of data we and other 

groups have generated, that the myeloid cells would be glucose consuming in all tissues 

(as seen with the intrarenal RenCa model, and the validation of the MC38/CT26 

phenotype in the AOM/DSS model). But for other metabolites, the organ metabolic set 

point, may drive new catabolic programs. Using genetically defined cell lines that 

metastasize to many organs could help interrogate some of those questions. 

 

Enhanced cancer cell glycolytic reserve as a barrier to therapeutic targeting 
 

Another peculiar observation when conducting these series of experiments 

occurred when conducting the Seahorse Glycolysis stress test on fractions purified from 

the MC38 TME. From a historical perspective, the Glycolysis Stress Test is the most 

similar assay to Warburg’s original manometry studies. In the seahorse analyzer, cells 

are provided glucose acutely while the probes record the oxygen consumption and lactate 

formation that occurs in response to providing exogenous glucose. All the cell types from 

the tumor microenvironment can convert this extracellular glucose (10 mM, ~10x greater 

than what is available in the TME) into lactate to a similar degree. Then after glucose 
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stimulation, oligomycin (a mitochondrial complex five inhibitor) is provided to examine the 

magnitude of reserve glycolysis. What become noticeable in this assay is that all immune 

cell populations from the TME have negligible reserve glycolysis. However, the CD45- 

cancer cells do have a significant amount of glycolysis reserve. Similar results have been 

seen by the Beckerman lab, where oligomycin has minimal impact on the ECAR of tumor 

infiltrating lymphocytes in the Glycolysis Stress test (Beckermann et al., 2020).  This 

experiment in total demonstrates that even though these MC38 cells are consuming less 

glucose than the myeloid cells (as seen in our FDG assay), when given an opportunity, 

they can increase glucose catabolism to a level greater than infiltrating cells. This assay, 

however, could be an artifact of the supraphysiological dose of glucose provided. A 

hallmark of any seahorse assay is to give these high doses of metabolic substrate to 

prevent the cells from running out of biochemical fuel during the experiment. However, it 

would be interesting to phenocopy the tumor glucose level by decreasing the 

concentration of glucose in the first injection and see how altering the exogenous glucose 

levels impacts ECAR as well as the spare glycolytic reserve.  

This finding has profound implications for targeting cancer cell metabolism in the 

TME. It may indicate that cancer cells have more flexibility when their metabolic 

substrates are limited. How is this flexibility is endowed and what pathways are these 

substrates being shunted into during times of stress is yet to be determined. It appreciated 

that genetic mutations in cancer cells promote more primordial epigenetic states that 

allow cancer cells to engage in a wide variety of cellular programs that should not be 

accessible to a healthy mature cell population (phenotypic plasticity).  
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It also may be concerning that immune cells have minimal spare glycolysis ability. 

Therefore, immune cells may be exquisitely sensitive to anti-glycolysis agents. This 

provides some evidence why previous pharmacological attempts to develop anti-

glycolysis agents like 2DG and 3-BPA may have not worked in human tumors. This class 

of drugs may ultimately exhibit anti-inflammatory properties like killing tumor resident T 

cells and promoting Treg differentiation before anti-tumor immunity or tumor cell death 

can be induced.  

 

Targeting Cancer Specific Glutamine Metabolism  

 Our work suggests that glutamine metabolism is significantly elevated in the 

malignant epithelia at a transcriptomic and functional metabolic level. What is striking is 

that all aspects of glutamine metabolism are increased in the CD45- compartment: 

Glutamine uptake, glutaminolysis as well as general amino acid synthesis. This suggest 

that targeting only one aspect of glutamine metabolism (e.g. CB839 for the specific 

blockade of GLS) may be insufficient at reducing tumor burden. Instead, more broad anti-

glutamine approaches would be needed to induce tumor regression. Dr. Johns Powell’s 

group has extensively worked with DON and similar derivates (JHU-DON) to block all 

glutamine utilizing enzymes (Leone et al., 2019; Oh et al., 2020). However, this strategy 

has been quite toxic. It is yet to be seen how JHU-DON potentially alters the safety prolife 

of these glutamine antagonist agents. This molecules is still in early phase clinical trials.  

 Recently it has been noted that moonlighting abilities of metabolic enzymes may 

contribute to cancer cell growth more than their enzymatic function (Zhao et al., 2022). 

This finding suggests that solely targeting enzymatic activity with molecules like DON and 
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CB839 (a GLS inhiibtor) may be insufficient to induce cell death.  Our NanoString 

transcriptomic analysis does provide intriguing anti-glutamine targets in the tumor TME 

with potentially fewer side effects than the pan anti-glutamine strategy of DON.  Also, 

these targets do not rely on enzymatic function of individual metabolic genes. We 

observed increases in two crucial glutamine regulating transcription factors, Mycn and 

Atf4 in the CD45- cells. MYCN/Mycn is not expressed in the T cell or myeloid immune 

compartments (NanoString, Immpress database, Klemm et al. 2020), while ATF4/Atf4 

activation in immune cells is known to promote tumor growth and generally be 

immunosuppressive (Chen & Cubillos-Ruiz, 2021; Cubillos-Ruiz et al., 2017; Cubillos-

Ruiz et al., 2015; Song et al., 2018). It is worth noting that there is some expression of 

Mycn in NK cells, in line with the role of glutamine in NK cell activation (Loftus et al., 

2018).  In previous generations of medicinal chemistry, targeting transcription factors like 

Mycn and Atf4 was the holy grail. However recent advances in degrader technology make 

this much more possible today than in previous years (Hanzl & Winter, 2020). Groups 

have already found natural products that result in the proteasomal degradation of the 

glycolytic myc isoform, c-myc. (Losuwannarak et al., 2020; Sriratanasak et al., 2020). 

Therefore, a degrader-based approach for tumor cell specific glutamine catabolism 

transcription factors may lead to anti-metabolic strategies that do not focus on enzymatic 

activity, but rather restrict expression of whole clusters of metabolic genes.  

 

Structure and function of hexokinases impact whole organismal health 
 

The hexokinases are some of the most widely studied genes in human biology. 

Glucose fixation and metabolism are some of the earliest discoveries in biology at the 
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turn of the 20th century. The original work mostly done in bacteria could not predict the 

variety of mechanisms in which eukaryotic organisms would perform such a seemingly 

simple biochemical task (phosphorylation of glucose). Multicellular organism do so by 

implementing multiple HK isoforms with unique biochemical properties and regulatory 

elements. The clinical entity of diabetes lead to the molecular understanding of 

glucokinase (GCK, the high Km hexokinase that is mostly beta cell specific), which 

demonstrates how evolutionarily fine-tuned these enzymes are to maintain organismal 

homeostasis. The understanding of beta cell biology and the role GCK plays in sensing 

blood glucose became essential to understanding the clinical phenotype of both type 1 

and type two diabetes. When patient’s lose beta cells due to inflammatory cell death (type 

1), or when their beta cells no longer appropriately sense blood glucose (type 2), there is 

insufficient blood insulin to drive glucose catabolism in the entire the organism. The 

inflammation associated with diabetes has been recently described to alter GCK activity 

via citrullination, leading to beta cell glucose insensitivity (Yang et al., 2022).  Therefore, 

it reasonable to assert that understanding the biological role, cell type specific nature as 

well as the post translational modifications of the other hexokinases is important to 

organismal function as well as disease pathogenesis.  

HK1 and HK2 have been a large focus of biology because they are expressed 

across all cell types and sit at the intersection of glucose and mitochondrial metabolism. 

Their canonical role in metabolic pathways is to phosphorylate glucose while sensing 

mitochondrial ATP pools. If there is insufficient ATP or too much G6P (the end-product of 

its reaction), glycolysis is halted. Interestingly, these enzymes can have moonlighting 

functions where they perform tasks not in line with glucose catabolism. For example, HK2 
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is described as a pattern recognition receptor able to sense some subtypes of bacterial 

cell walls (Wolf et al., 2016). Because glucose metabolism is known to cause divergent 

cell function and fate, these enzymes are linchpins for phenotypic development across 

many human biological systems.  

HK2 has been a large source of focus because of its unique regulation by mTOR. 

It is canonically thought of as a hypoxia inducible gene (Garcia et al., 2019). Therefore, 

its expression is increased in cancer cells (which have mTOR activating events from 

genetic alterations in EGFR, RAS, PI3K, LKB1, TSC1/2, AKT ,PTEN)(Reinfeld et al., 

2022). Additionally, HK2 expression increases in active immune cells that are rich in the 

TME as well as many human immunopathologies. T Cell receptor engagement, B cell 

receptor ligation, macrophage PAMP activation, NK cell degranulation, and dendritic cell 

antigen presentation are all associated with increases in pS6, and HIF stabilization (even 

in normoxia, see Chapter 1). Therefore, the role of glucose in these crucial immune 

activating events has been examined extensively across immunology 

 

Uncovering HK3’s myeloid specific nature via deep bulk transcriptomic analysis 
on flow sorted populations 
 

The discovery of HK3 as a myeloid specific interferon gamma induced gene has 

wide implications for myeloid immunometabolism and cancer biomarkers. As our work 

suggests myeloid cells are incredibly glucose consuming in the TME. The underlying 

mechanism is in part due to increased mTOR signaling (as seen by elevated pS6 and 

HK2 protein via flow cytometry) that these cells possess basally. However, blocking 

mTOR signaling was only able to partially decrease the elevated glycolytic phenotype in 

these cells.  
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Our NanoString analysis demonstrated that these CD11b+ cells have a unique 

enrichment in glycolytic genes at baseline. The most interesting enrichment is of the white 

blood cell Hexokinase, HK3. This gene has a log 6.5-fold increase in HK3. This gene has 

a log fold increase in the same order of magnitude with other widely accepted myeloid 

specific genes like CD68 and components of MHCII. We implemented many bioinformatic 

approaches to validate this finding across mouse and human biology. We see a stringkly 

similar pattern  in the TME and some inflammatory microenvironments.  

A crucial question is how this gene has been overlooked over the past forty years. 

A relatively crude explanation is a true lack of commercially available reagents that can 

detect HK3 specifically. These enzymes have high amounts of homology (>80%) and 

very similar catalytic domains, making it difficult to generate an isoform specific antibody. 

Non-specific antibodies that recognize HK3 would not pose a problem in the study of 

HK1/2 because of the limited expression of this one isoform across eukaryotic cells 

(Wilson, 2003). Additionally, the unique pattern of expression combined with the need to 

stimulate the cells with an inflammatory cytokine to get robust induction, makes it more 

difficult to study. But still, many approaches examine HK3 at the RNA level, while mass 

spectrometry proteomics do not rely on antibodies for isoform detection. Based on our 

group’s experience in performing transcriptomic analysis on the RenCa and MC38 model, 

HK3 expression is minimal when examining the whole tumor single cell suspensions. This 

is intuitive because myeloid cells make up a minority of the population. Therefore, to 

appreciate this enzyme’s uniquely limited expression, flow sorting of myeloid and non-

myeloid populations of interest are required. 
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Flow sorting can allow for understanding of individual cell populations in the TME, 

however most groups are not interested in transcriptomic changes across cell types from 

different lineages. In most studies, RNA is purified from the same cell type (like a T cell) 

either from different treatment condition (+/- checkpoint blockade), with differential 

expression of a marker (Lag3hivs Lag3lo) or  with a known phenotypic difference (TEMRA 

vs Tscm). Therefore, groups have not developed significant many datasets that would 

allow for metabolic comparison across cell types. Klemm Cell 2020 did follow a similar 

scheme as our MC38 NanoString study, and at the gene level, HK3 demonstrates the 

identical trend. It is only detectable in CD11b+ cells in the human TME across multiple 

disease setting. Interestingly in this data we also observe that MYCN is elevated in the 

primary glioma cells in comparison to the infiltrating CD45+ cells, suggesting that our flow 

sorting approach maybe more robust than previously appreciated.  In accordance with 

elevated glioma MYCN, Craig Thompson’s group has described that radioactive 

glutamine is a suitable approach to image primary brain tumors (Venneti et al., 2015).  

A reasonable response would be that scRNA sequencing could overcome the 

issue of lack of comparison across cell lineages. With the latest technology from 10x 

Genomics, in one experimental condition it is possible to characterize the transcriptome 

of 1000s-10000s diverse cells without requiring the bias of flow sorting for a population of 

interest. This in theory solves the problem that myeloid cells, T cells, and cancer cells will 

be compared to each other. Technically, this is true, yet the lack of sequencing depth 

currently available on the 10x Genomics platform hampers its ability to characterize 

metabolic cell state. There are only 50k reads that align to 1000-2000 unique genes per 

cell (Wang et al., 2021). This is only 5-10% of the entire proteome that is captured via this 
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method. Additionally, genes associated with cell phenotype like CD11b and CD3𝜀, will 

represent an overwhelming amount of reads in each cell. Therefore, on the 10x platform 

most of the genes in each cell will not be characterized. For the many of the genes that 

are captured, only a handful of reads will be observed. This ultimately makes comparisons 

across cell type or treatment groups difficult and statistically unpowered, even though it 

is economically feasible.  

Not surprisingly, given that metabolic genes are not often associated with cell 

phenotype and function and are often viewed as housekeeping genes, these metabolic 

enzymes are not preferentially expressed in the top 5-10% of genes in a cell. Therefore, 

metabolic genes may suffer from extreme drop out in many of these datasets. For 

example, our lab has generated preliminary data by performing single nucleus 

sequencing on 3 human ccRCC. In these samples, across all TME cell types, detection 

of HK1/HK2/HK3 is minimal. There are no differences in expression across cell type 

clusters because the genes are so rarely detected. Single nucleus sequencing is 

regarded as a better tool at dissecting cell specific programs because nuclear RNA is 

more linked to cell type and to purify the nuclei requires minimal tissue processing, 

handling, and flow sorting/bead enrichment. Additionally, it can be easily conducted on 

cryo-preserved tissue slices that many groups have already banked for other analyses. 

Nuclei purification does bias towards capturing epithelial and myeloid cells nuclei and 

underrepresents lymphoid populations in solid tumors (Slyper et al., 2020). I have directly 

compared scRNAseq and snRNAseq in mouse kidneys from the Humphrey’s lab and 

snSeq is better at detecting the myeloid specific nature of Hk3. This gives credence to 

the potential usefulness of this sequencing approach in comparison to single cell 
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methods.  However, in the case of our ccRCC tumors and expression hexokinases, due 

to low coverage available on the 10x platform, snSeq is still insufficient to capture these 

enzymes.  

Additionally, we probed for the expression of the three low Km HKs in the scRNA 

from Obradovic et al. 2021 and once again, see minimal expression of these metabolic. 

The approach implemented in this used to ultimately uncover TREM2+ macrophages as 

a driver of disease pathogenesis was VIPER, which allowed for imputation of protein 

activity. This approach seems ideal to examine metabolic gene activity across cell types 

in the TME. However, since these HKs were never found in the original scRNA 

sequencing (just like in our labs snRNA approach), the protein activity could not be 

imputed. In total, these results illustrate the technical limitations of the 10x platform to 

probe cell metabolic state.    

There is an alternative (yet more expensive) approach, the Smartseq platform. 

This technology increases the reads two log fold (2-4 million reads per cell, on average) 

however that technology only allows for a few 100s of cells to be sequenced (Wang et 

al., 2021). With more reads approximately, 5000 genes can be found in each cell (1/4 of 

the proteome). This Smartseq platform is more likely to replicate information gained from 

bulk transcriptomics, but by only probing the transcriptome of so few cells, one is unable 

to fully characterize the tissue microenvironment that one is studying.  

While scRNAseq is still powerful and can generate future populations of interest 

whose metabolic program can be dissected using other assays, it is insufficient to directly 

probe cell metabolic state. If one is to conduct a scRNAseq study to examine metabolic 

program, the Smartseq platform is probably better due to better coverage of the whole 
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transcriptome combined with deeper sequencing. However, the small number of cells 

ultimately sequenced on the Smartseq platform may make it difficult to probe the inter 

and intracell type heterogeneity. So, it may be worthwhile to flow sort individual 

populations to ensure that the cell type of interest is included in this (expensive) 

experiment. And thus, we have returned to square one, where flow sorting was necessary 

prior to our NanoString analysis, which provided robust and easy to interpret data.  

 

HK3’s unique properties drive further mechanistic study 

What aspects of HK3 biology support its further study? (1) HK3 has the lowest Km 

for glucose. Thus, the cells this isoform should be able to bind more glucose. We in fact 

see that myeloid cells do consume more glucose in tumors, in the inflamed lung, while 

other groups have shown this phenotype in the brain (Xiang et al., 2021) (2) Additionally, 

HK3 appears to evolutionarily split off from HK1/2 at an earlier time, suggesting that other 

evolutionary forces may shape its functional role (Cardenas et al., 1998; Ureta et al., 

1987). (3) HK3’s is expressed in a very narrow subset of cells. It appears across 

organisms, that myeloid cells (monocytes, macrophages, neutrophils, dendritic cells, 

eosinophils) specifically transcribe this enzyme. These facts together support that it may 

have an entirely different role in cell function. An interesting proxy for these unique 

features comes from a recent pre-print that evaluated the ability for human glycolytic 

enzymes to complement a yeast strain deficient in cellular glycolysis. Of the 25 enzymes 

of glycolysis that this group probed, only one ortholog was unable to support cellular 

growth on glycolytic substrate, HK3. This result suggests that HK3 has little to do with 

producing pyruvate but rather plays another role in the cell (Boonekamp et al., 2021). 
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Since yeast are a single cell organism, it also suggests that HK3 may be linked to the 

formation of multi-cellular organisms with diverse cell compartments that divide biological 

tasks.  

To describe new aspects of HK3 biology, I over expressed GFP-tagged human 

HK3 in the immortalized mouse macrophage cell line and the mouse colorectal cancer 

cell line MC38. The original goal was to use these cell lines to conduct GFP pulldowns 

and describe HK3s unique binding partners as well as post translational modifications 

that impact its cellular localization or function. However, to my surprise, even with puro 

selection, both cell lines lost expression of the HK3-GFP construct over time. The empty-

GFP vector however remained 100% GFP-positive. Differing methods of splitting and 

passaging the cells all the while in puromycin, the isogenic HK3 OE cell lines would 

fluctuate between 40-60% GFP-positivity in both cell backgrounds. This preliminary data 

further supports that HK3, even though it performs glucose phosphorylation, may differ 

from its isozymes. 

 

HK3 as a tumor suppressor? 
 

It does not appear as if the HK3 OE lead to a growth advantage but instead these 

cultures would demonstrate massive cell death when HK3 was overexpressed. These 

results, though frustrating and surprising are quite interesting. HK1 and HK2 have been 

over expressed in many cell lines and are associated with a pro-growth and anti-apoptosis 

phenotype. Glucose and its catabolism are traditionally viewed as oncogenic components 

of cancer proliferation and progression.  When over expressing the human HK3 in mouse 

cell lines, I have observed that the mouse HK1/2 isoforms decrease, demonstrating that 

the cells are least maintaining or potentially increasing their glucose uptake. However, in 
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these two cell lines, this ability to handle this glucose is disentangled from a pro-growth 

phenotype. This suggests that the fate of glucose after fixation by HK3, is not associated 

with cell growth (in line with the yeast complementation data). One possibility is that HK3 

Vmax does decrease as glucose concentration rises above 1 mM glucose concentrations, 

therefore overall cellular HK activity may be less when this enzyme becomes the 

dominate cellular isoform (via lentiviral over expression) (Su & Wilson, 2002). This 

possibility can be further explored by conducting commercially available hexokinase 

activity assays. If HK3 substrate inhibition comprises cell proliferation, one would expect 

to see less total HK activity in the OE lines in comparison to the empty vector. Additionally, 

I attempted to expand these cultures in glucose abundant conditions (25 mM). It may be 

worthwhile to see if the %GFP positivity of the HK-GFP OE cells increases as the glucose 

concentration is lowered. It could be hypothesized that HK3 in glucose abundance is not 

advantageous to growth but may be important as the glucose concentration decreases to 

concentrations that replicate the tissues, where the cells who express this enzyme 

perform their function. 

These experimental observations are in line with the fact that HK3 is never 

expressed in the cancer cell compartment across human and mouse cell lines. Cancer 

cells are widely accepted to have altered epigenetic states that allow for the 

misexpression of proteins that should developmentally be restricted to them. This ability 

is the basis of immuno-oncology therapies which target the expression of melanoma 

associated antigens (MAGEs) (Weon & Potts, 2015). MAGEs are placental and germ cell 

genes that are mis-expressed by melanoma tumors and have been shown to evoke 
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immune responses. Additionally in the TME there are many inflamatory cytokines that 

one could imagine induce this enzyme.   

Based on the notion that increase glucose metabolism drives cancer cell 

proliferation, HK3 inherently should be oncogenic. One would expect that cancer cells 

(maybe even to a greater myeloid leukemias) would enhance the expression of this 

enzyme. But across the TCGA, mouse tumor models, scRNA datasets, and even in 

myeloid disease, cancer cells do not upregulate HK3, especially in comparison to the 

myeloid cells that infiltrate these diverse settings. 

So wh ycould increasing HK3 be ultimately deleterious to cancer cell function? 

Work from the DeBerardinis group and others have recently described that mitochondrial 

metabolism of glucose is necessary for aggressive tumor phenotypes in mice and 

humans (Hensley et al., 2016; Johnston et al., 2021). Intriguingly, Data that Dr. 

DeBerardinis has shared in many talks, but not yet publish convincingly demonstrates 

that patients with lung tumors with increased C13-glucose→citrate labeling have a shorter 

overall survival than patients who demonstrate more canonical glucose to lactate labeling. 

Interestingly, this enhanced C13 citrate enrichment does not correlate to any known 

prognostic indicator like tumor mutational subtype or tumor stage, suggesting that this 

increase in mitochondrial metabolism may be a clinically useful biomarker for selecting 

patients with aggressive disease. Additionally, other groups have shown that 

mitochondrial deficient cancer cell lines when injected into mice do not form tumors until 

they coopt host mitochondrion (A. S. Tan et al., 2015). Human AML leukemia PDXs do 

the same process where when grown in NOD-SCID mice, they hijack the host 

mitochondria in the process of engraftment (Moschoi et al., 2016). This previously 
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overlooked aspect of tumor metabolism can now be imaged in vivo.  A group at UCLA 

developed an OXPHOS detecting F18 tracer and demonstrate that this novel imaging 

agent accumulates in genetically engineered models of mouse lung cancer (Momcilovic 

et al., 2019). This data in concert do suggest that mitochondrial itself as well as the 

catabolism of glucose into the TCA cycle is a feature of aggressive malignancy. These 

data directly challenge another of Warburg’s key contribution to the cancer literature. 

Warburg argued that mitochondrial dysfunction was a commonality between all tumors. 

However, his manometry studies do not necessarily demonstrate dysfunction of whole 

mitochondrion in heterogenous tumor slices, instead they demonstrate a preference for 

turning available glucose substrate into lactate when stimulated with supraphysiological 

doses of this sugar.  

Cytosolic glucose processing as a myeloid specific cell program 
 

Therefore, could the downstream consequences of HK3 activity be opposed to 

mitochondrial metabolism? HK3 , lacking the mitochondrial domain, may be diverting 

glucose into other glycolytic pathways like the PPP. The Ardehali group has demonstrated 

that blocking HK1’s mitochondrial binding increase C13 glucose a labeling into the PPP 

and diverts the label away from glycolytic intermediates and citrate (De Jesus et al., 

2022). Given that HK3 is inherently disassociated with the mitochondria (given its lack of 

MBS), it can be hypothesized that its basal function is to potentially divert glucose carbons 

in the PPP. To test that hypothesis, C13-glucose labeling studies could be conducted with 

the HK3 OE vs empty vector cell lines I have created. Even though these cells proliferate 

less, I would expect PPP intermediates to have an enriched labeling pattern in the OE 

cells vs the empty vector cells. Alongside, HK1 and HK2 could be overexpressed in the 
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same background, and if the labeling is restricted  in glycolytic intermediates when 

HK1/HK2 are overexpressed, it would strongly suggest that HK3 diverts glucoses cellular 

fate away from the mitochondria in contrast to its isozymes. It may be crucial to conduct 

these studies at lower, more physiological glucose concentrations, to increase the activity 

of HK3 and thus observe the labeling differences. 

Given that HK3 expression is tightly related to myeloid fate, a simple question is 

there evidence that myeloid cells are inherently sensitive to alterations in HK activity? The 

simplest answer is by looking at inborn errors of metabolism. Neutropenia is a described 

clinical component of disorders where patients are lacking G6PT transporter (SLC37A4) 

or the endoplasmic reticular G6P phosphatase, G6PC3. These mutations result in a well-

known syndrome known as Glycogen Storage Diseases (GSD1b). In the G6PT deficient 

patients, a crucial ER transporter is lost and thus there is accumulation of a G6P-like 

bacterially derived molecule (anhydroglucitol) in the cytoplasm. This molecule then 

becomes phosphorylated by endogenous cytoplasmic HKs to become 1,5-

anhydroglucitol-6-phosphate and then intern inhibiting the family of low Km Hexokinases 

(Veiga-da-Cunha et al., 2019). Recently a small clinical trial employed empagliflozin (a 

SGLT2 inhibitor) to block anhydroglucitol uptake in patients with GSD1b. The group 

observed restoration of neutrophil function and clinical benefit in all four patients on trial, 

indicating that modifications to neutrophil glucose flux can alter immune function 

(Wortmann et al., 2020).  A similar pathophysiologic sequence of events arises in patients 

who lose G6PC3, where they cannot decrease cytoplasmic G6P levels enzymatically 

(Kiykim et al., 2015). Therefore, the accumulation of G6P directly inhibits the HKs. Both 

defects are somatic, and thus should theoretically impact all the cells in the host. 
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However, the main phenotype in both patient cohorts is a potentially fatal neutropenia. 

This suggests that neutrophils (a subtype of myeloid cell) are exquisitely sensitive to 

inhibition of the HKs and thus it could be hypothesized that HK3 supports their fate and 

function. Mature neutrophils have very minimal mitochondrial content or oxidative 

respiration (Maianski et al., 2004). This may underlie their exquisite sensitivity to 

cytoplasmic HK inhibition due to G6P accumulation where other cells have mostly 

mitochondrial HKs. Thus, the compartmentalization of these enzymes s protects an 

overwhelming majority of the host cells from the toxic effects of G6P in patients with or 

loss of function mutations in G6PC3 or G6PT. 

Another set of myeloid specific inborn errors of metabolism that may be relevant 

to HK3 function is the family of chronic granulomatous diseases (Arnold & Heimall, 2017). 

Patients present with a host of atypical infections due to loss of phagocytic efficacy in 

myeloid cells. The phagocytic defect arises from non-functional NADPH oxidases and 

thus cannot generate anti-microbial superoxide. To generate this cellular superoxide, 

myeloid cells must generate increased NADPH. NADPH is made in the from the oxidative 

PPP, and thus would be secondary to HK3 cytosolic glucose phosphorylation. Therefore, 

HK3 may be restricted to myeloid cells to increase cellular supply of NADPH to support 

their anti-microbial cellular function.  

Recently myeloid cells have been described to have an intact NAD synthesis via 

the kynurenine pathway and NAD salvage pathway at rest (Minhas et al., 2019). 

Previously, the salvage has been extensively studied because primordial cancer cells 

upregulate this pathway to support their increased growth phenotype. It appears that this 

increase in NAD generation is occurring while these myeloid cells have a basal elevated 
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glycolytic rate. Yet these cells are not as proliferative and do not divide as often as cancer 

cells. So, why would these two seemingly distant metabolic pathways be linked myeloid 

cells? The Vander Heiden’s group has described that cellular NAD levels support a cell’s 

ability to continually ferment lactate (i.e., aerobic glycolysis).  Essentially pyruvate to 

lactate oxidation continues at elevated rates in metabolically active cells to generate free 

NAD (Luengo et al., 2021). Therefore, it is possible to imagine that HK3 levels are 

elevated in myeloid cells to help assist in increased NAD levels to support continual 

glucose metabolism (which is basally elevated due to HK2/HK3 dual positivity). 

Additionally, this newly synthesized NAD can be the substrate for more NADPH 

generation which as mentioned above is crucial in the fate and function of myeloid cells.  

There is evidence that HK3 may play a role in this enhanced ability to generate 

NAD. Recently the human blood proteoform atlas has been published with data 

demonstrating immune cell specific to protein expression and protein binding partners 

(Melani et al., 2022). (https://blood-proteoform-atlas.org/proteins). HK1 has no described 

binding partners in this data and its expression is in lymphocytes (specifically T cells). 

This is the same trend we observed in the MC38 TME at the RNA level (adding credence 

to the robust nature of our NanoString approach). HK3 demonstrates the expected 

enrichment in neutrophils, eosinophils, monocytes and unexpectedly in HSCs. In this 

dataset, HK3 is found to have 11 binding partners where the only metabolic enzyme it 

interacts with is PRPS1. PRPS1 synthesizes PRPP, which has two crucial enzymatic 

roles that may play a part in the HK3-myeloid immunometabolism paradigm. PRPP is the 

first product after the oxidative PPP and can be diverted into de novo nucleotide 

synthesis. PRPP is also the necessary co-factor for NAMPT (a crucial member of the 
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NAD salvage pathway, which mentioned above is utilized by myeloid cells basally) to 

generate NMN from NAM (Hove-Jensen et al., 2017).  PRPS1 has been described as a 

target of the main fructose hexokinases (ketohexokinase (Li et al., 2016)) and its activity 

can be regulated by AMPK in brain tumor cells (Qian et al., 2018). Preliminary data from 

our group demonstrates that HK3 expression is the most elevated when iBMDMs are 

exposed both to IFN𝛾 and metabolic stress (1 mM glucose or 10 mM rapamycin 

treatment). In both situations, pS6 is significantly decreased. We have not yet probed or 

altered the AMPK axis, but the decrease in pS6 is suggestive that AMPK may be more 

active. These features taken together could suggest that active AMPK+ IFN𝛾 synergize 

to increases HK3 expression which then diverts glucose into the PPP, all the while 

potentially activating PRPS1 to increase NAD synthesis to further support the glycolytic 

nature of these cells during a period of metabolic and microbial stress. There is evidence 

that de novo nucleotide synthesis (which could be the product of increases PRPS1 activity 

and thus more PRPP) is enhanced in TAMs. Hallbook et al.  demonstrates that TAMs in 

pancreatic cancer have higher rates of de novo nucleotide synthesis and export these 

newly synthesized DNA precursors into the TME interstitial space and cell culture media 

(Halbrook et al., 2019). They find that this increase in nucleotides promotes tumor 

resistance to the FDA approved anti-nucleotide chemotherapy, gemcitabine. This paper 

comments that this behavior seems wasteful in terms of diverting a large source of carbon 

to export a biosynthetic molecule that these typically non-proliferating cells do not need. 

However, now understanding myeloid specific expression of HK3, it is intriguing to 

hypothesize that this accumulation in nucleotides may be a byproduct of a metabolic 
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program focused on generating sufficient NAD to sustain their immunosuppressive 

glycolytic function in the harsh environment of the TME.  

 

Hk3-/-  mice demonstrate no alterations in anti-tumor immunity, but suggest role 
of this isozyme in granulocytes 
 

In pursuit of demonstrating the role of HK3, we used bone marrow from HK3-/- mice 

to reconstitute RAG hosts. After 12 weeks, we implanted MC38 tumors in these mice, 

with the hypothesis that HK3 loss would result in larger tumors. HK3 as a marker of M1 

macrophages may be a component of an anti-tumor phagocytic response. Therefore, 

these tumor-associated myeloid cells would have decreased anti-tumor function, and thus 

the mice would have larger tumors. However, the MC38 tumors grew to similar sizes in 

the HK3 WT and KO mice. In these tumors, we conducted our FDG uptake assay as well 

as extensive flow cytometry analysis to characterize the infiltrate. In line with the lack of 

growth phenotype, there were no difference in glucose uptake across tumor fractions. 

The only statistically significant alteration across 14 flow panels, was an increase in 

Ly6G+ PMN-MDSC Ki67+ in both the tumors and the blood. This interestingly correlated 

with a decrease in neutrophils in the blood prior to tumor implantation. These data hint 

that Hk3 may have a greater role in granulocytes (PMN-MDSCs and neutrophils) than 

monocytes. This is in line with a decades old observation that hexokinase in granulocytes 

is almost completely cytoplasmic where other leukocytes have hexokinases activity in 

mitochondrial fractions (Rijksen et al., 1982). This also is in accordance with the clinical 

neutropenia seen GSD1b and G6PC3 deficiency where decrease in cytoplasmic HK 

activity (due to G6P accumulate) results in a selective neutrophil defect. These patients 

do not have monocyte deficiencies. The increased cytoplasmic HK activity was published 
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prior to the understanding of the sequence of these three low Km isoforms and their unique 

regulation. Unfortunately, PMN-MDSCs and neutrophils are not very abundant in the 

MC38 TME. They are more represented in other tumor models (especially those in the 

Balbc background, such as RenCa and 4T1). Therefore, it is not surprising that losing a 

granulocyte specific gene and thus altering granulocyte function had no impact on overall 

tumor growth or T cell immunity in this C57B6 tumor model. 

 The expression of HK3 in many of these datasets analyzed in Chapter 3 appears 

enriched in monocytes and macrophages. However, with the above results, it became 

apparent to ask whether HK3 levels are different between monocytic and granulocytic 

cells. A contributory reason to the minimal amount of data concerning 

neutrophils/granulocyte HK3 levels is that these cells are notoriously difficult to study and 

purify from tissues because small disturbances can cause their activation and induce their 

degranulation. Degranulated neutrophils form neutrophil extracellular traps (NETs). 

These extracellular structures are DNA rich structures and are used to prevent bacteria 

from invading the host. It is technically not feasible to perform flow cytometry or RNA seq 

on these neutrophils that have undergone NETosis. Therefore, in single cell tissue 

dissociations these neutrophils rarely make it to through the tissue processing to 

ultimately be clustered on the UMAP or detected via flow cytometry. Additionally, PBMCs 

which are often used for in these studies are prepared using Ficoll gradients and thus 

granulocytes (like neutrophils) are inherently excluded from the analysis. However, in one 

instance, we do see that HK3 is much higher in TME neutrophils even compared to other 

CD11b cells (Klemm et al., 2020).  Recently in our group, another graduate student 

(Melissa Wolf) conducted deep RNA sequencing on M-MDSCs, PMN-MDSCs, and TAMS 
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from the RenCa model. It is very clear that Hk3 is many times higher in the PMN MDSCs 

in comparison to the monocytic MDSCs and their more mature counter the TAMs. Future 

in vivo studies with HK3 should focus on tumor models where tumor associated 

neutrophils play a role in tumor progression.  

It has been recently established that Glut1 is elevated in neutrophils when 

compared to other CD45+ cells in mouse tumor models and mouse blood. This increase 

in Ly6g+ Glut1 is associated with a glycolytic phenotype that supports tumor growth. Loss 

of Glut1, specifically in these granulocytes, results in less tumor growth and increased 

response to radiotherapy in genetically engineered models of primary lung cancer (Ancey 

et al., 2021). Therefore, it would be hypothesized that HK3 as the main HK in these 

neutrophils could play a role in tumor immunity and metastatic progression. Interestingly, 

a group has recently published that HK3 elevation is a predictor of immune response in 

lung cancer (Tuo et al., 2020), although this group attributes HK3 expression to the 

transformed cancer cells and not the TME infiltrating immunocytes even though HK3 

levels  anti-correlate to tumor purity.  

 

HK3 prognostic role in ccRCC 
 

Uniquely, HK3 expression appears to correlate with poor prognosis in ccRCC. In 

this tumor type, it is widely established that increased tumor associated inflammation 

correlate with worse disease outcomes and tumor progression. Therefore, it is not 

surprising that HK3 as an inflammatory myeloid gene correlates with poor prognosis. An 

ongoing question is whether elevated HK3 is a marker of a certain type of myeloid cell in 

the TME. Across many datasets, HK3 expression correlates with the gene CD16 

(FCGR3a). This gene is expressed highly on neutrophils, granulocytic MDSCs, non-
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classical monocytes and NK cells. Based on the GTEX and scRNAseq data, we can 

assume that the expression in minimal in the NK cells.  In scRNA sequencing data it 

appears to be more associated with the non-classical monocyte program, however this 

may be due to the lack of neutrophils at the time of sample processing due to the technical 

difficulties alluded to above.  

There are recent studies that implicate myeloid cells in the ccRCC TME. Mass 

cytometry demonstrates that myeloid cells are the second most abundant cells in the TME 

after CD8 T cells (Chevrier et al., 2017). Groups have taken IHC approaches to show that 

both M1 and M2 markers predict poor prognosis (Dannenmann et al., 2013; Xu et al., 

2014) . We now also appreciate via scRNA approaches that TREM2+ C1q macrophages 

(Braun et al., 2021; Obradovic et al., 2021) increase with stage and grade, aligning with 

our HK3 result in the Vanderbilt TMA and the TCGA.  

Intriguingly, there is historical literature that examines the clinical value of 

neutrophil to lymphocyte ratio in RCC. This metric can predict patient outcomes prior to 

treatment as well as patients undergoing immune-checkpoint blockade. Meta-analyses 

demonstrate that increased neutrophil to lymphocyte ratio is an indicator of poor 

prognosis in all RCC patients (X. Chen et al., 2021). Traditionally in oncology, increased 

neutrophils and decreased lymphocyte counts demonstrate underlying bone marrow 

output that would be expected in patients with advanced disease (and thus higher NLR 

rations). Recent studies have shown that if the NLR ratio decreases on checkpoint 

blockade, patients are more likely to respond (Lalani et al., 2018). This intuitively makes 

sense given that these patients with decrease NLRs are most likely having increases in 

lymphocytes and thus getting the desired anti-tumor immunity associated with generating 
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more lymphoid immune cells. Yost et al. 2019 demonstrates that the T Cell responding to 

checkpoint blockade are not the clones in the tumor prior to treatment, but rather blood-

based clones repopulating the TME (Yost et al., 2019). So, increases in these lymphocytic 

cells peripherally may suggest this population is growing and then infiltrating into in the 

TME. Even though there are many studies investigating NLR and ccRCC, there is only 

one study that evaluates neutrophils on RCC growth (Song et al., 2015). This study 

demonstrates aggressive disease has an increase in CD66b in the RCC tumor tissue. 

CD66b can be a marker of both granulocytic MDSCs and neutrophils, but in total  this 

finding suggests that granulocytes play a role in the RCC TME that has been overlooked. 

Mechanistically, this group evaluated the impact of neutrophils on RCC cell lines in co-

culture assays and demonstrate that neutrophils can increase the HIF2𝛼 signaling axis in 

ccRCC cell lines, increasing their proliferation rate. Therefore, the contribution of ccRCC 

tumor associated neutrophils may be already targeted with the generation of new HIF2𝛼 

inhibitors (recently approved for VHL patients and under trial for the treatment of RCC in 

combo with TKIs and ICB). 

A first pass at the ccRCC TCGA dataset demonstrates that many 

neutrophilic/granulocytic markers are elevated in the ccRCC microenvironment. There 

are genes related to neutrophil chemotaxis (CCL4, CXCL8, CXCL16) as well as genes 

related to neutrophilic phenotype (CD16, CD32, CD33, CD15, Lox1, CD84, CD64, MIF, 

MMP9 and CXCR6). The neutrophilic chemoattractant CXCL8/IL8 has been implicated in 

ccRCC patient response to immunotherapy (Yuen et al., 2020). Given the elevated HK3 

in the ccRCC TME and its correlation with poor outcome, it is warranted to conduct tissue 

studies, flow cytometry on primary tumors and blood to evaluate the role of granulocytic 
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MDSCs and neutrophils in ccRCC. It would be worthwhile to stain for more granulocytic 

markers (e.g., CD66b, CD15, and CD16) as well as NETs in the tumor tissue. Future 

studies conducting spatial RNA sequencing may be able to disentangle the myeloid 

heterogeneity in RCC and how these cells contribute to the necrotic core and hyper-

vascular periphery of ccRCC. With our HK3 findings, I would hypothesize that these 

granulocytic cells are elevated in patients with more advanced disease (higher grade and 

stage) as well as in metastatic vs primary tumors. I would anticipate that patients 

responding to IO will have increases in the lymphoid compartment and decreases in these 

cells both in the blood and primary tumor. This paradigm is worthwhile to study in RCC 

because tumor associated neutrophils in other disease types often are associated with 

increases in tumor angiogenesis. These granulocytes can often be larger sources of 

VEGF in part due to their HIF active metabolic program. We observed that an intertumoral 

ncreases in HK3 in patients receiving VEGF TKI. These agents are thought to kill ccRCC 

cells, by increasing hypoxia due to vascular collapse. However, the only low Km HK that 

demonstrates a treatment effect if this HK3. This could be hypothesized due to increase 

in neutrophil infiltration thus supplying additional VEGF to ultimately circumvent VEGF 

pathway inhibition. 

Going forward, with the knowledge of HK3 as potential granulocyte specific gene, 

a key aspect will be between articulating the role of granulocytic MDSCs vs neutrophils 

in RCC. These cells have very little differences that can be established on a protein level, 

making them challenging to study. Many of the markers mentioned above overlap 

between these two cell types. Therefore, it remains unclear where cell may be driving the 

prognostic features of HK3 in ccRCC. It is worth noting, however that these cells do have 
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different densities where in PBMC the G-MDSCs are purified with other immune cells, 

and the neutrophils are below the Ficoll gradient.  Therefore, granulocytic markers can 

be observed in the PBMC of cancer patients. Future work should focus on evaluating 

protein and RNA expression from both cell types to see if HK3 goes up with terminal 

neutrophilic differentiation or whether it is heightened in this protumor intermediate G-

MDSC stage.  

HK3 uniquely appears to be relevant in ccRCC. Why is that the case? ccRCC has 

a unique mutational profile that may drive this relationship. ccRCC is the only tumor type 

with VHL mutations in the TCGA. Patients with hereditary VHL syndrome get a series of 

rare tumors (hemangioblastomas, pheochromocytomas) and ccRCC. Therefore, loss of 

function of this tumor suppressor is associated with a narrow set of malignancy unlike 

other tumor predisposition syndromes like Li-Fraumeni (somatic p53 loss) where patients 

develop tumors in almost all organ systems. This phenotype suggests that there is 

interplay between the tumor stem cell of origin, the organ of tumor origin, mutational event 

and immune microenvironment that ultimately contribute to ccRCC pathogenesis.  

 

Targeting HK3hi cells using new therapeutic paradigms 
 

Ultimately with the pharmacological tools of the 21st century, it is possible to target 

HK3 specifically and potentially modify the immune landscape of the TME. In this era of 

immune oncology, the field focuses on hot or cold TMEs. However, this perspective is 

narrow in scope give that tumor “hotness” is typically defined by T cell related gene sets 

or the crucial anti-tumor cytokine IFN𝛾. Although often overlooked, almost all tumors are 

rich in myeloid infiltrate. This returns to another foundational cancer observation by the 

pathologist Rudolf Virchow, where he observed that cancer is the chronic wound. He 
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noted the neutrophils and monocytes that are often responsible for tissue repair after 

injury are also abundant in tumors. Therefore, strategies that alter myeloid biology may 

even have broader scope than the paradigm changing immune checkpoint blockade 

therapy.  

 Given the result that Glut1 KO in granulocytes results in smaller lung tumors and 

better response to radiation therapy, decreasing granulocyte glycolysis is potentially a 

worthwhile TME target. Neutrophils decrease in the periphery and have elevated 

proliferation markers to when Hk3 is specifically knocked out in the bone marrow. 

Previous attempts to target TME glycolysis have been too broad and not focused on 

eliminating cell-type specific metabolic programs. Both pre-clinical and clinical models 

have employed 2DG to block hexokinase activity in all cell types in the TME. This 

approach is too toxic due to the glycolytic nature of human brain tissue. Additionally, 

groups have developed GLUT1 or GLUT1/3 inhibitors. However, based on our data and 

data from autoimmune models, it would be hypothesized that these drugs could ultimately 

limit anti-tumor efficacy prior to inducing tumor cell death (Healey et al., 2021). This 

approach may also abolish T cell memory, which may be underlying successful 

therapeutic responses in non-immunotherapeutic paradigms like radiotherapy, 

chemotherapy, and targeted therapy. The unique metabolic features of granulocytes 

(MitoLo, cytoplasmic HKhi) combined with the viability of the mice embryos deficient in HK3 

suggest that with targeted approaches, the protumor impact of neutrophils can be 

targeted safely.  

The success of mRNA technologies for the induction of robust COVID immunity 

demonstrate that nucleic acid therapy can be given to humans with minimal adverse 
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effects (Polack et al., 2020). These nucleic acids payloads can induce a productive and 

profound immune response. Recently, the treatment of Spinal Muscular Atrophy has been 

revolutionized by the antisense RNA treatment that results in appropriate gene splicing 

(Finkel et al., 2017). These children who were born with fatal motor neuron diseases now 

are reaching ages never previously seen. Given the success of both paradigms, it is 

reasonable to imagine treatment with RNAi technologies that can decrease HK3 

expression acutely. The acute depletion of HK3 may be necessary to see a biological 

effect. In our mouse model, we used a model of chronic HK3 depletion, which may have 

allowed for altered HK1/2 dynamics to support myeloid cell biology. Acutely knocking 

down this gene down at the time of tumor formation may exhibit greater benefit because 

of the potential compensation from other isoforms. HK1 and HK2 can be expressed as 

isoforms that lack the mitochondrial-binding domain. These truncated splice variants have 

been shown to be elevated in diseases like obesity and diabetes (De Jesus et al., 2022).  

The exquisite specificity of HK3 for myeloid cells would limit the potential of off target 

effects. Additionally, the exogenous RNA may activate PRRs in the TME and enhance 

anti-tumor immunity.  

Another benefit of the RNA approach is that multiples targets can be engaged 

simultaneously. We observe that the non-granulocytic myeloid cells additionally have 

higher levels of HK2. It is appreciated in cancer biology that HK2 is a pro-proliferative 

gene. Yet, in T cells, the HK2 specific deletion has no impact on any in vivo or in vitro 

phenotype (Mehta et al., 2018). This work clearly demonstrates that HK2 is robustly 

induced with TCR stimulation, however its loss is negligible to T cell phenotype or function 

in a plethora of models. From our analysis across tumor types, HK1 is the dominate T cell 
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hexokinase (seen in our Nanostring as well as the human Proteoform database). 

Therefore, combined targeting of TME HK2/HK3 with RNAi technologies may have a 

desirable impact of decreasing myeloid and tumor cell glycolysis while leaving T cell 

glycolysis intact.  

Increasing the number of targets would theoretically increase the potential risk of 

off target effects. The dose limiting toxicity of 2DG was neurological and it would be 

unexpected that lipid nanoparticles can cross the blood brain barrier whereas 2DG is a 

glucose analog. More specificity can be added to this RNAi strategy by adding 

mannosylated sugars to only target M2 macrophages (binding via CD206) as done by the 

Yull/Gorgio groups at Vanderbilt (Ortega et al., 2016).  

Another new pharmacological approach is using targeted protein degradation 

(Hanzl & Winter, 2020). This paradigm relies on relatively large molecules that have two 

biologically active components, one binding a ubiquitin ligase and another component 

binding a protein of interest. These molecules promote proteasomal degradation of 

proteins in a specific manner by forcing the addition of ubiquitin on the protein of interest. 

The most successful example of molecules in this class are thalidomide and it family  of 

immunomodulatory drugs (IMiDs). IMiDs work by targeted degradation of the B cell 

specific transcription factors IZKF1/3 and thus these molecules are biologically active in 

plasma cell malignancies like multiple myeloma (Kronke et al., 2014). This degrader 

approach also overcomes the similarity of the ATP binding pockets across HK1/2/3. The 

homology between these domains would have made it difficult to generate small 

molecules against the catalytic domain of each isozyme. Additionally, these enzymes can 

have moonlighting functions that would not be inhibited by ATP mimetics.  
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The degrader paradigm is exciting because these molecules only need to bind a 

protein surface or pocket, not an active site. Therefore, small molecules can be generated 

against the unique HK3 N-terminus and then placed on degrader scaffolds that promote 

VHL or CRBN binding to promote proteasomal degradation. In ccRCC, it would be 

compelling to use a VHL dependent degrader because these molecules would cause no 

degradation in the VHL-/- cancer cells but would promote degradation in the surrounding 

VHL+ stroma. This strategy could demonstrate that targeting a stromal associated 

program has anti-tumor efficacy, like 𝛼PD1 inhibition. This in contrast to mutation specific 

TKIs or chemotherapy in which the mechanism of action is by inducing apoptosis of 

rapidly proliferating cells.   

It is interesting to note that of all the previously FDA approved therapies for ccRCC 

(IL2, VEGF TKI, 𝛼PD1, IFN𝛼), direct cancer cell cytotoxicity is not a major mechanism of 

action. Instead, these therapies alter TME constituents to promote cell death via hypoxia 

or via immune activation. However, this may not be the paradigm for ccRCC permanently. 

Currently HIF2𝛼 inhibitors are in advanced stage clinical trials and have demonstrated 

signs of efficacy. They effectively control ccRCCs in VHL disease patients and have been 

approved in that setting recently (Jonasch et al., 2021). It is known that myeloid HIF2𝛼 

can contribute to cancer development (Imtiyaz et al., 2010). So, these therapies may also 

decrease myeloid glycolysis and thus myeloid immunosuppression. In total, these 

observations, support HK3 as a target in ccRCC because it fits a paradigm where altering 

TME gene programs can ultimately impact ccRCC patient outcomes.  

Another pharmacological strategy can rely on targeting different post translational 

modifications (PTM) that drive the differences in localization of HK1/2 vs HK3. This 
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paradigm has been used in the inhibition of RAS isoforms in malignancy. There are three 

RAS isoforms in humans: HRAS, NRAS, and KRAS. A series of lipid installing events 

occur post translationally that help traffic this oncogene to the cell membrane (Rowinsky 

et al., 1999). As this field progressed, much interest was in the development of 

farnesyltransferase inhibitors that would prevent these three isoforms from being placed 

on the inner leaflet of cell membrane. With this mis-trafficking it was hypothesized that 

RAS would no longer be able to transduce its pro-growth signals. However, these drugs 

failed in KRAS and NRAS mutated tumors because other lipoyl-transferases can bypass 

the farnesylation mark. (like adding a geranylgeranylation mark) (Storck et al., 2019; 

Whyte et al., 1997). This geranylgeranyl permits KRAS/NRAS to reach the cell membrane 

and to constitutively signal. HRAS however is singularly reliant on the farnseyl group and 

thus these inhibitors do have clinical benefit in HRAS mutated tumors (Gilardi et al., 2020). 

Unfortunately, HRAS is the least mutated of the RAS isoforms in cancer, This example 

demonstrates that it may be possible to target HK3 by understanding its unique PTMs 

and how this isoforms traffics from ribosomes into the cytoplasm. Performing IP/Mass 

spectrometry in the HK3-GFP cell lines discussed earlier will be helpful in identifying those 

marks and potentially targeting to decrease cytoplasmic HK3 activity. 
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