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CHAPTER 1

Introduction

1.1 Preface

The following sections are intended to provide the reader with a snapshot of the key elements involved in the

present investigation as well as a foundation from which to critically assess the originality and impact of the

present research. The introduction begins with a general overview of empathy and its importance for social

function. A brief history of empathy research is provided next, highlighting how challenging it has been to

capture the inherent complexities of the empathic experience involving both brain and behavioral responses

measured using implicit and explicit tools. Special attention is placed in the history section on some of

the most consequential studies on empathy to provide the reader with a proper sense of the limitations that

informed current research procedures. The neural underpinnings of empathy are explored next, followed by

a summary of empathy research in autistic populations. The notion of autism being an empathy condition is

challenged against the backdrop of a growing body of literature suggesting otherwise. Finally, the unifying

rationale and objectives for the thesis are introduced. While this chapter is not designed to be a comprehensive

review, more detail, background, and rationale for each component of the investigation are provided in the

respective chapters to come.

1.2 The Human Experience of Empathy

The social and conspecific-reliant nature of humanity has long been the subject of intrigue and research.

The ability to appropriately navigate complex social environments and interactions requires distinct but re-

lated cognitive and emotional capabilities. Prosocial behaviors like cooperation, kindness, and collaboration

amongst social partners are essential for human survival and prosperity (Howe, 2012; Carter et al., 2011).

Intended to promote social good standing, these positive and helpful behaviors are thought to arise from im-

portant foundational antecedent empathic skills (Eisenberg and Miller, 1987; Eisenberg et al., 2005). While

many species demonstrate cooperative and collaborative behaviors, our enhanced capacity to engage in verbal

and nonverbal forms of empathy, to read and express internal emotional states, and to act upon these separate

but related information streams is thought to be a core feature of what makes us human (Howe, 2012).

1.3 History of Empathy Research

Contemporary empathy research dates back to the 1940s, when the construct was empirically quantified

through descriptive and experimental approaches (Gladstein, 1984; Neumann et al., 2015). This early period
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also marks the origin of a wide variation in empathy definitions that were influenced by the respective fields

(i.e., social, psychology, development) assessing this phenomenon. Each discipline, with their own perspec-

tives, developed field-specific measures to quantify what is otherwise an abstract and subtle social experience.

This lack of precision in definition led to opposing views on how to study, interpret, and report empirical find-

ings. While there is some consensus emerging from more recent studies, significant advancements are still

hampered by the lasting influence of unclear definitions (Hall and Schwartz, 2019). This section will cover

some of the more historically relevant opposing views and findings by introducing and highlighting methods

and approaches employed in early psychology, social, and neuroscience research.

1.3.1 Unidimensional Approaches

Since its inception as a research topic, separate views on how to define empathy gave way to two tracks of

method development. One track focused on the more cognitive aspects of empathy like the ability to mentally

take on the perspective of someone other than yourself, while the other focused more on the vicarious affective

experience of witnessing another person’s feelings and emotional states. Several popular measures ensued

from cognitive, and to a lesser extent, affective takes on empathy including Dymond’s scale for empathic

ability (Dymond, 1949), and the Questionnaire Measure of Emotional Empathy (QMEE; Mehrabian and

Epstein (1972), respectively. These are further discussed as exemplars of the state of empathy research in the

mid-20th century and the path from these early contributions to current methods.

1.3.1.1 Dymond’s Empathic Ability Scale

The Empathy Ability Scale (Dymond, 1949) characterized empathy as the projection of an internal represen-

tation of the self onto another person’s thoughts, feelings, and actions in an effort to understand that person’s

experiences. To measure this, participants used a five-point scale to rate themselves and one other participant

on six personal traits (i.e., friendly/unfriendly, secure/insecure, and follower/leader) after a brief period of

getting to know each other. Participants were also asked to rate themselves as they believed the other partici-

pant would rate them and finally, to rate the other participant as they would rate themselves on the same six

personal traits. Empathy scores were calculated as the total points that prediction ratings of others deviated

from their actual self ratings such that higher scores indicated lower empathy (i.e., my empathy score = other

people’s self ratings - my prediction ratings of them). Although it was a promising direction and one of the

first of its kind, the Empathy Ability scale was found to exhibit questionable validity and to be subject to

social and cultural biases (Lindgren and Robinson, 1953).

Social and/or cultural desirability bias occurs when there is a consistent uneven distribution of self-report

ratings that favor desirable traits. On separate assessments, Dymond’s Empathic Ability Scale exhibited an
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uneven distribution of ratings on their 5-point scale for questions like “How friendly or unfriendly do you

think you are to him or her?” that favored higher scores like “4- fairly friendly” and made it unclear whether

answers were based on true empathic abilities or culturally/socially reinforced concepts of how they should

feel and act. The inclination to answer survey questions based on socially desirable and favorable traits varies

with social and cultural norms that serve as a baseline for what answers place the respondent in a favorable

position (Nederhof, 1985).

1.3.1.2 Mehrabian and Epstein’s Questionnaire Measure of Emotional Empathy

Separate from the cognitive role-taking and inference view of empathy, the vicarious and somewhat abstract

emotional facet of empathy was also difficult to measure using self-report and physiological tools available

in the latter half of the 20th century. Early paper and pen emotional empathy questionnaires were also subject

to social desirability biases while physiological metrics were yet too premature for reliable comparative use.

In an effort to correct for social biases inherent to popular personality assessments of the time, Mehrabian

and Epstein developed the Questionnaire Measure of Emotional Empathy (QMEE), a questionnaire struc-

tured to assess various aspects of emotional empathy like emotional contagion and sympathetic tendency

(Mehrabian and Epstein, 1972). Items in the final measure included 33 statements like “I like to watch people

open presents” and “When a friend starts to talk about his problems, I try to steer the conversation to some-

thing else”. The softer verbiage of these items captures affective empathy responses (e.g., how they would

respond) without explicitly asking participants what their empathic response is (e.g., ‘I am sympathetic to

my friend’s problems’, see Table 1.1 for a full list of items). For each statement, participants were asked to

rate their degree of agreement using a Likert-like scale ranging from “very strong agreement” to “very strong

disagreement”. The survey’s validity was assessed by administration in two separate contexts that invoke

emotional empathy: 1) aggression and 2) helping behaviors (Mehrabian and Epstein, 1972).

Aggression experiments followed Buss’s teacher-student format (Buss, 1961). Briefly, participants were

made to believe that they had been assigned the teacher role at random and would present a ’student’ with a

series of questions. The student role was played by a confederate who was part of the research team). Partic-

ipants were instructed to reinforce ‘students’ for correct answers or administer a shock for incorrect answer

responses that were pre-determined by the researcher. Confederate-students were either in the same room as

the participant or in an adjacent room and were never really shocked but trained to act as if they had been.

For their experiment testing the effects of empathic tendency on helping behaviors, Mehrabian and Epstein

paired college-age participants with seemingly distraught confederates in a waiting room. Confederates were

trained to present a volunteer opportunity for participants under the guise that their volunteered time would

help confederates execute their own psychology experiment in order to pass their course.
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In their aggression experiments, Mehrabian and Epstein found that participants with higher scores on

the QMEE were less likely to punish confederates for their wrong answers if the confederate was sitting in

the same room with them. Conversely, those who scored lower on their empathy measure were shocking

confederates at comparable rates irrespective of whether the person was in the same room with them or in an

adjacent room where they could be heard but not seen. It is worth noting that experiments using the student-

teacher format as described by Buss (1961) are now considered unethical, given the use of deception and the

potential for the belief that one is administering shocks to cause significant psychological distress (Miller,

2009).

In their helping experimental scheme, participants were asked to complete a series of personality assess-

ments designed to capture traits like emotional dependence and approval seeking tendencies in addition to

the QMEE. Participants’ characteristic emotional states were also assessed using the Mehrabian and Russell

(1974) three independent scale model (e.g., pleasure, arousal, and dominance). After about 20 minutes, ex-

perimenters paused the personality assessments to inform participants that they would listen to music in a

separate room with another person (a confederate), report their own reactions to the music, and predict each

other’s reactions. After 5 minutes, both the participant and confederate were moved into a ‘waiting room’

for an additional 3-minute period during which the confederate was instructed to make a plea for help. The

tendency to help was measured as the amount of time participants were willing to volunteer in half hour in-

crements. The authors found that empathic tendency significantly predicted helping tendency and suggested

that empathic people are receptive to the needs of their peers and colleagues.

Towards the goal of developing a reliable measure, Mehrabian and Epstein used a more dimensional

approach and carefully worded question items against social desirability bias (Table 1.1). However, the

authors may have inadvertently introduced a different type of bias, consistency bias, by having participants

complete the personality assessments and commitments to help on the same day. It is possible that answering

questions about empathic ability may have influenced participants to behave in a manner that was more

consistent with their responses and not with how they really felt in the moment or would behave under

more general circumstances. Nevertheless, their main findings suggested that there is a direct correlation

between empathic tendency and emotional arousal (as measured by Mehrabian and Russell’s three factor

theory of emotion) whereby higher empathy individuals tend to be more emotionally aroused to the positive

and negative experiences of others. The utility of the QMEE was supported by this finding, underscoring

its utility in both positive and negative contexts. This initiative to identify and quantify the relation between

empathy and arousal further emphasized the inherent multidimensional nature of empathy.
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1.3.2 Multidimensional & Multimodal Approaches

Early self-report empathy measures not only struggled with items that were confounded by social norms but

also with conflicting definitions and perspectives on how to operationalize and measure empathy. While uni-

dimensional measures provided significant insights, later studies began exploring separate facets of cognitive

and emotional empathy, considering the interplay between sympathy (a general concern for others) and mo-

tivation towards prosocial behaviors (a product of empathy) in their research designs. For example, Coke

et al. (1978) suggested that taking on the perspective of others (i.e., someone in need) engenders emotional

empathy which in turn produces helping behaviors. They proposed a two-stage model involving both a cog-

nitive appraisal of the physiological arousal induced by observing someone in need of help and an emotional

response salient enough to trigger the motivation for prosocial behavior.

By 1980, this new framework for a more integrated multidimensional conceptualization of empathy was

gaining ground (Hogan, 1969; Feshbach, 1975; Coke et al., 1978). The work of Davis (1980, 1983) in

developing the Interpersonal Reactivity Index (IRI) was instrumental in promoting this shift toward multidi-

mensionality. The IRI was among the first well validated measures designed to tap into several separate but

related components of empathy and is currently among the most cited empathy measurements. The survey

includes four 7-item subscales (Perspective Taking (IRI-PT), Fantasy (IRI-FS), Empathic Concern (IRI-EC),

Personal Distress (IRI-PD), each with its own score thus allowing for the assessment of how each component

influences empathic behavior. Davis (1980) structured the PT subscale to gauge participants’ inclination to

spontaneously adopt other people’s point of view, the FS to tap into respondents’ tendencies to transpose

themselves imaginatively into the feelings and actions of fictitious characters in books, movies, and plays,

the EC subscale to measure “other-oriented” feelings of sympathy and concern for unfortunate others, and

the PD subscale to assess “self-oriented” feelings of anxiety and uneasiness in tense interpersonal contexts.

The success of the IRI can be largely attributed to its four-subscale design. This dimensional feature has

been exploited by empirical empathy studies based on the definitions and constructs of empathy of interest.

Studies adopting a multidimensional definition have combined the four scales to derive a total empathy score,

while others chose subscales based on specific subconstructs of interest (Wang et al., 2020). This flexible

adaption of the IRI has maximized its utility across various disciplines, making it the most common measure

in empathy research (Wang et al., 2020). The IRI has been reported to have good concurrent and convergent

validity in a large sample of American college students (Davis, 1983) but also been adapted and validated

across several languages like Spanish (Lucas-Molina et al., 2017; Garcia-Barrera et al., 2016) and French

(Gilet et al., 2013). Popular as it may be, however, the IRI is not without limitations.

Self-report questionnaires like the IRI are often subject to limited ecological validity. Limited ecological

6



validity occurs when the results from assessments, often administered in controlled settings, are not transfer-

able to real life situations. Further, self-report measures require people to think in hypotheticals making them

more likely to tap into what might happen in an ideal context rather than a more representative or real-time

situation. This inherent abstract thinking required by these questionnaires also limits their utility in clinical

populations that struggle with this level of self-reflection, such as autism.

To circumvent this and aforementioned challenges, self-report measures are now frequently accompa-

nied by performance and behavior tasks that offer more objective metrics than self-impressions (Dunning

et al., 2003; Brackett et al., 2006; Donaldson et al., 2022). Performance and behavior tasks include discrete

skill or ability assessments (e.g., emotion recognition) and physiological measures (e.g., functional brain net-

works), respectively. Together they provide unique insights about people’s lived experiences from explicit

and implicit perspectives that may or may not always converge. For example, a person may report that an

emotionally charged image depicting someone in pain has no effect on them (explicit), but an elevated heart

rate (implicit) might suggest otherwise.

Use of the well-validated International Affective Picture System (IAPS) repository of emotionally charged

images as stimuli has been a popular approach to tap into empathy and related constructs (Bradley and Lang,

2007; de Sousa et al., 2010). The IAPS provides a normative set of emotionally charged images for use in

experimental research (Lang et al., 1997). The Multifaceted Empathy Test (MET) for example, used IAPS

photos showing people in realistic emotionally charged situations to tap into cognitive and emotional empathy

simultaneously (Dziobek et al., 2008). The MET asseses emotional empathy by asking participants to rate

their level of emotional relatedness to the person in the picture, and cognitive empathy by asking participants

to label the emotion of the person in the picture (Dziobek et al., 2008). A third measure quantifies arousal by

asking participants to rate how excited the images make them feel. The MET is a well validated computer task

that has now been used for indexing emotional and cognitive components of empathy in clinical conditions

like autism (Dziobek et al., 2008; Poustka et al., 2010; Mazza et al., 2014), psychopathy (Foell et al., 2018),

and broader clinical conditions (Irorutola et al., 2020). Validation was assessed against the long-standing

standard survey of empathy: Dziobek et al. (2008) reported that the MET’s emotional and cognitive sub

scales are well correlated with corresponding IRI subscales like IRI-PD and IRI-PT, respectively. In Chapter

2, I use the MET to extend previous autism findings by using the MET in a single large cohort of broad age

range and test for age, sex, and valence effects.

The MET task described above constitutes explicit measures of empathy, and its measure of emotional

empathy may be susceptible to many of the same biases as self-report questionnaires. Implicit methods that

are less susceptible to social biases include reflexive facial expressions (Sonnby–Borgström, 2002; Drimalla

et al., 2019) and autonomic physiological responses like the skin conductance response (SCR; Levenson and
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Ruef 1992) . The SCR serves as an index of transient autonomic activity, while reflexive facial expressions

provide behavioral compliments to emotion recognition. These separate channels of empathy responses have

seldom been investigated simultaneously using a single task. Drimalla et al. (2019) is among such few studies

with their investigation on the contribution of facial mimicry (i.e., facial expressions matching the expression

of another person) to cognitive and emotional empathy using the MET. The authors reported positive associ-

ations between inter-individual differences in emotional and cognitive empathy and degree of facial mimicry

(Drimalla et al., 2019). Facial mimicry has been measured using electromyography (EMG), manual behav-

ioral coding systems such as Paul Ekman’s Facial Action Coding System (FACS; Ekman and Friesen 1978a;

Ekman et al. 2002), and more recently, using automated facial coding (AFC) algorithms built on the FACS

system. In Chapter 3, I use AFC to interrogate spontaneous facial expression production, an implicit proxy

for empathy, in response to emotionally charged images of human facial expression. Notably, all the methods

covered so far came about from the influence and at the mercy of advancements and maturation of social-

cognitive psychology as a discipline. The development and advancement of neuroscientific methods like

functional magnetic resonance imaging (fMRI) made it possible to gain important insights on the circuits

involved in empathy. fMRI tools offer another implicit way to measure physiological activity and identify

behavioral brain markers that are less susceptible to social biases. Important and relevant findings regarding

the neural basis of empathy are discussed in the following section.

1.4 Neural Basis of Empathy

Many human brain imaging studies suggest that observing the emotional states of others recruits brain net-

works involved in the firsthand experience of those same emotions (Preston and de Waal, 2002; Keysers et al.,

2004; de Vignemont and Singer, 2006). Specifically, a collective of neuroimaging empathy studies have con-

sistently identified task-specific blood oxygen level-dependent (BOLD) response in several emotional and

cognitive specific brain regions including the anterior insula (AI; Singer et al. 2004), dorsal anterior mid-

cingulate cortex (daMCC; Fan et al. 2013), inferior frontal gyrus (IFG; Nummenmaa et al. 2008), temporo-

parietal junction (TPJ; Frith and Frith 2001), prefrontal cortex (PFC; Schulte-Rüther et al. 2010; Amodio and

Frith 2006), and to a lesser extent, somatosensory cortices (Keysers et al., 2004). The importance of these

regions for empathy constructs is further supported by findings that trauma-based injuries to these areas can

induce sudden emotional and cognitive social impairments (Rowe et al., 2001; Channon and Crawford, 2010).

The respective contributions of each of these regions to emotional and cognitive empathy are summarized in

the following sections.
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1.4.1 Neural Basis of Cognitive Empathy

Cognitive empathy involves the ability to mentalize and understand another person’s perspectives and inten-

tions. Theory of mind (ToM), one aspect of cognitive empathy, involves the ability to go beyond mentalizing

and extract information from observing others to predict behavior (Shamay-Tsoory, 2011; Amodio and Frith,

2006). Much of what we know about the neural underpinnings of cognitive empathy comes from task-based

fMRI studies using ToM tasks–largely due to the popularity of the theory’s relationship with social cognition

in a variety of psychopathologies. In their review of 40 separate ToM neuroimaging studies, Carrington and

Bailey (2009) found that 37 reported recruitment of the medial PFC (mPFC), and that 23 of the 40 reported

recruitment of the TPJ. A separate meta-analysis suggests that the TPJ is important for making rudimen-

tary inferences about the intentions and perspectives of others and discriminating them from intentions and

perspectives of the self, while the mPFC is important for higher level inferences that recruit emotional and

memory inputs towards making sound behavioral decisions (Van Overwalle, 2009). To better understand how

these regions are involved in social interactions, imagine you are walking into your favorite store for some

light shopping. As you approach the door you notice that someone is holding the door open, and as you get

closer you realize that they are holding the door open for you. Flushed with gratitude, you begin to walk a

little faster- you don’t want to appear rude. The motor behavior (door held open) is assessed by the TPJ for

its social context and intention (the door is being held open for you). Information from this appraisal is sent

to the mPFC where it is further evaluated, and you conclude that this act of kindness should not be repaid

with rudeness so a signal is sent to motor and expressive language cortices for you to speed up to meet the

stranger and thank him. Thus, through the mPFC’s high degree of connectivity to the TPJ and other socially

relevant regions, these separate but related functions work together to inform our preferences and behavior in

social situations that require empathic responses.

1.4.2 Emotional Empathy

A common and everyday example of emotional empathy is emotional contagion- a phenomenon in which

someone’s feelings and associated reactions are reflected as similar feelings and behaviors in others. Emo-

tional contagion is a basic building block for human interaction that makes it possible to understand human

cognition, emotion, and behavior (Hatfield et al., 2011). The ability to understand the actions of others is cru-

cial for social organization, survival, and learning through imitation- a skill that is particularly well developed

in humans (Rizzolatti et al., 2001, 2009). The simulation theory posits that emotional contagion is achieved

by recruitment of neural ensembles during observations of others that match the neural ensembles recruited

by similar situations occurring in the self (Gallese, 2007). This line of thought was further supported by

the discovery of mirror neurons in the ventral premotor and parietal cortex of non-human primates that fired
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both when monkeys performed an action and when they watched another monkey perform the same action

(Rizzolatti and Craighero, 2004; Rizzolatti et al., 2009). This pattern suggests that the corresponding putative

human mirror neuron system (MNS) (Rizzolatti et al., 2009) may be the mechanism subserving empathy

constructs like motor empathy (yawns), and emotional contagion.

In humans, the putative MNS comprises the IFG and the inferior parietal lobule (IPL) (Shamay-Tsoory,

2011). Both the IFG and IPL are part of a network of brain areas that are engaged during externally directed

tasks, the dorsal attention network (DAN). The IFG has been particularly implicated as the neural basis for

emotional empathy and related constructs like emotional contagion, emotion recognition, and understanding

(Schulte-Rüther et al., 2007; Nummenmaa et al., 2008; Niedenthal, 2007). For example, mirror neurons that

respond to facial expressions in the IFG are thought to mediate the production of facial expressions that

mimic the observed facial expressions of others (Keysers and Gazzola, 2006). Recruitment of the IPL is also

important for identifying the motor intentions of others, information which is then projected to the TPJ for

further social evaluation (Van Overwalle, 2009).

Emotional empathy has also been linked to connectivity between the orbital, cingulate, and insular cor-

tices (Jabbi and Keysers, 2008; Decety et al., 2010; Uribe et al., 2019) The AI and dorsal anterior cingulate

cortex (dACC) are part of the salience network, responsible for assessing sensory input for affective impor-

tance and relevance. The anterior insula (AI) has been further implicated in regulating the neural integration

from the emotional, cognitive, and sensorimotor information streams important for the experience of empathy

(Menon and Uddin, 2010; Mutschler et al., 2013). A proposed mechanism for this involves the bidirectional

connectivity between anterior and posterior insula to modulate autonomic responses to salient stimuli and

functional coupling with the anterior cingulate cortex (ACC) that in turn facilitates quick access to motor

systems like the DAN (Menon and Uddin, 2010; Uddin, 2015).

1.5 Brief Summary of Empathy Research in Autism

The literature reviewed thus far comes from studies on neurotypical (NT) healthy populations but links be-

tween empathy and autism date back to the first published clinical account of the autistic profile (Kanner,

1943). In this seminal paper, Leo Kanner described autism as an affective or emotional condition in which

children preferred to play alone and lacked the ability to establish social relations with others. Autism is char-

acterized by challenges with social communication, repetitive behaviors, and atypical responses to sensory

input, with an onset in the early developmental period (American-Psychiatric-Association, 2013). Autism’s

current prevalence rate is 1 in 44 American 8-year-old children (Baio et al., 2018). It is four times more com-

mon in boys than girls (though see Krahn and Fenton 2012; Dworzynski et al. 2012), and is reported across

all racial, ethnic, and socioeconomic groups (Baio et al., 2018). Within the social domain, significant chal-
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lenges with social interactions like developing and maintaining friendships, and social cognition are hallmark

features of autism (Jobe and Williams White, 2007; Schulte-Rüther et al., 2010).

Several theories have been proposed to explain the social, cognitive, and emotional symptoms observed in

autism. Among these, Baron-Cohen et al. (1985) proposed that a ‘cognitive deficit’ could explain pervasive

social impairments in autism. Specifically, the authors suggested that ToM capabilities like mentalizing

and ascribing beliefs to others were impaired in autism, contributing to social deficits. Separately, the broken

mirror hypothesis (MNS dysfunction), has been suggested to explain dampened emotional empathy responses

in autism (Dapretto et al., 2006). A brief overview of the historical highlights of empathy research in autism

is provided here but is further discussed in chapters to come.

1.5.1 Cognitive Empathy in Autism

Cognitive empathy (CE), the ability to understand and make inferences from the perspectives of others,

studies in autism have used both self-report and performance-based tasks of social cognition. Studies using

tasks like the MET have explored cognitive empathy constructs like emotion recognition (Dziobek et al.,

2008; Mazza et al., 2014). Difficulties with recognition of emotional facial expressions have long been

documented in autism (Hobson, 1986) and even explored as potential biomarkers (Loth et al., 2018). Dziobek

et al. (2008) found that when looking at emotionally charged images, emotion labeling accuracy (cognitive

empathy) was significantly lower in high functioning autistic adults compared to neurotypical counterparts.

Mazza et al. (2014) sought to extend these findings by assessing the effect of emotional valence on empathy

using the MET in autistic adolescents. The authors reported comparably low emotion recognition accuracy to

both positive and negative images. Together, these studies strongly support a global impairment of cognitive

empathy in autistic adolescents and adults. In Chapter 2, we replicate and extend these results to show that

there is a global age group effect on emotion recognition accuracy on the MET.

Functional connectivity studies have also suggested that dysfunctional brain networks may be responsible

for empathy challenges in autism. For example, reduced vmPFC recruitment in autism during an emotion

recognition task highlights the importance of this region for processing cognitive components of empathy

(Klapwijk et al., 2016; Schulte-Rüther et al., 2010). These results are further corroborated by findings of re-

duced hemodynamic responses in the medial prefrontal cortex of young autistic adults in response to emotion-

ally charged stimuli depicting someone intentionally hurting another person compared to matched controls

(Fan et al., 2013; Lassalle et al., 2018).
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1.5.2 Emotional Empathy in Autism

Unlike cognitive empathy research in autism, emotional empathy studies have been largely inconclusive.

Self-report studies have primarily relied on the IRI and concluded that autistic populations do not score

significantly lower than NTs in the empathic concern subscale but instead score higher in the personal distress

subscale (Rogers et al., 2007; Dziobek et al., 2008). Computer tasks like the MET corroborate this finding

when considering emotional empathy as a whole (Dziobek et al., 2008; Poustka et al., 2010) but reveal

dampened emotional resonance to negative images (Mazza et al., 2014).

In contrast to these predominantly null findings, other studies do report reduced emotional empathy on

the IRI, and in response to distressing videos in autism compared to NT controls (Trimmer et al., 2017).

Trimmer et al. (2017) noted paradoxically intact physiological arousal responses in autism, however. The

authors interpret these results as suggestive of a disconnect between what is felt (physiological response)

and the interpretation of arousal in autism. Separate studies of spontaneous facial expression production in

autism have found similar patterns of altered skin conductance responses but normal facial EMG responses

to emotionally salient stimuli (Mathersul et al., 2013a) that are as strong for positive stimuli as they are for

negative stimuli (Rozga et al., 2013).

These discrepancies may be due in part to methodological differences like different sources and type

(image or video) of emotionally charged stimuli or differences in sample characteristics. Nevertheless, having

a clear understanding of the contribution of emotional empathy to the greater empathy phenotype in autism

warrants further investigation.

1.6 Summary and Objectives

Much of the groundwork for elucidating the multidimensional nature of empathy in autism had been laid out

at the beginning of this dissertation project. It was clear that separate but related lines of work were chal-

lenged by small sample sizes, empathy definitions that were not always in agreement, and varied methodolo-

gies. Further, the importance of the matter at hand was becoming increasingly apparent as rising prevalence

rates underscored the urgency for the development and validation of efficacious socio-behavioral interven-

tions. While most cognitive empathy assessments suggested a decreased capacity for emotion recognition,

understanding, and attribution, it was unclear whether this was a global effect or specific to context, age,

and emotional valence. Similarly, inconclusive emotional empathy findings incorporated both psychological

and physiological assessments in different experimental contexts making it difficult to draw firm conclusions.

Thus, the goal of this project was to address some of these limitations by investigating multiple channels of

empathy across a single sample of wide age range using the same task.

The following chapters are the culmination of this effort and address the multiplicity of empathy at the
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levels of both brain and behavior in individuals with and without autism. The first objective was to investigate

self-reported levels of emotional and cognitive empathy in the context of positive and negative emotionally

charged images using the well-validated MET (Chapter 2). The second objective was to investigate differ-

ences in spontaneous facial expression production while completing the MET (Chapter 3), using automated

facial action coding. This was accomplished under the theoretical framework that facial expression pro-

duction is inherently variable and that failure to limit inter-individual variability can lead to obscured group

differences. Lastly, the investigation bridges brain and behavior by investigating resting connectivity between

brain regions implicated in empathy (Fig 1.1) and their relation to empathy scores on the MET (Chapter 4).

The final chapter summarizes and proposes a unified interpretation of the empathic experience in autism using

collective insights from the present studies.

Figure 1.1: Cognitive Empathy Network

Cognitive Empathy: TemporoParietal Junction (TPJ);Inferior Frontal Gyrus (IFG);ventromedial PreFrontal
Cortex (vmPFC)
Emotional Empathy: Anterior Insula (AI);Anterior Cingulate Cortex (ACC);Amygdala (AMG)
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Table 1.1: Items on Mehrabian and Epstein’s Questionnaire Measure of Emotional Empathy

1 It makes me sad to see a lonely stranger in a group

2 People make too much of the feelings and sensitivity of animals

3 I often find public displays of affection annoying

4 I am annoyed by unhappy people who are just sorry for themselves

5 I become nervous if others around me seem to be nervous

6 I find it silly for people to cry out of happiness

7 I tend to get emotionally involved with a friend’s problems

8 Sometimes the words of a love song can move me deeply

9 I tend to lose control when I am bringing bad news to people

10 The people around me hove a great influence on my moods

11 Most foreigners I have met seemed cool and unemotional

12 I would rather be a social worker than work in a job training center

13 I don’t get upset just because a friend is acting upset

14 I like to watch people open presents

15 Lonely people are probably unfriendly

16 Seeing people cry upsets me

17 Some songs make me happy

18 I really get involved with the feelings of the characters in a novel

19 I get very angry when I see someone being ill-treated

20 I am able to remain calm even though those around me worry

21 When a friend starts to talk about his problems, I try to steer the conversation to something else

22 Another’s laughter is not catching for me

23 Sometimes at the movies I am amused by the amount of crying and sniffling around me

24 I am able to make decisions without being influenced by people’s feelings

25 I cannot continue to feel ok if people around me are depressed

26 It is hard for me to see how some things upset people so much

27 I am very upset when I see an animal in pain

28 Becoming moved in books or movies is a little silly

29 It upsets me to see helpless old people

30 I become more irritated than sympathetic when I see someone’s tears

31 I become very involved when I watch a movie

32 I often find that I can remain cool in spite of the excitement around me

33 Little children sometimes cry for no apparent reason
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CHAPTER 2

Multifaceted empathy differences in children and adults with autism1

2.1 Introduction

Considered a social ‘glue’ that allows for successful human relationships, empathy is an essential component

of social interactions with which individuals on the autism spectrum reportedly struggle (Baron-Cohen and

Wheelwright, 2004; Harmsen, 2019; Song et al., 2019b). Various studies investigating empathy differences

in autism have reported conflicting results, including intact empathic physiological responses (Blair, 1999;

Trimmer et al., 2017) but reduced or dampened self-reported empathy (Baron-Cohen and Wheelwright, 2004;

Trimmer et al., 2017). Notably, empathy research has been slow to develop a clear, operationalized definition

of “empathy” or its various components, and there remains no global consensus on best practices for the mea-

surement of this construct (Frankel, 2017; Preston and de Waal, 2002). Thus, early autism studies employing

different approaches to measure this inherently complex neuropsychological concept often reported findings

based on disparate empathy subconstructs (Song et al., 2019b; Cox et al., 2012; Fletcher-Watson and Bird,

2020).

Empathy has traditionally been considered to include the distinct constructs of emotional empathy, the

ability to share another person’s feelings, and cognitive empathy, the capacity to understand such feelings

(Cox et al., 2012; Shamay-Tsoory et al., 2009). A third, now increasingly differentiated component, em-

pathic concern, has recently gained consideration as part of the multifaceted nature of empathy (Jordan

et al., 2016; Zhao et al., 2019; Zickfeld et al., 2017). Empathic concern is characterized by greater oth-

ers-oriented relational mentalities and encompasses emotional sentiments (e.g., sympathy and compassion)

towards someone else’s experience. Though the distinction between emotional empathy and empathic con-

cern is subtle, emotional empathy describes sharing another’s feelings, which involves self-orientation (i.e.,

“mirroring” emotion), while empathic concern does not require having the same feeling but being aware of

and concerned about another’s feeling. This capacity for self -other distinction is considered to be crucial and

integral to the empathic experience (Håkansson Eklund and Summer Meranius, 2020).

Many studies have now explored these three constructs both separately, and to a lesser extent, in some

combination within a single autism sample. This is notable given the growing evidence that these processes

typically work together to form a unified percept (Håkansson Eklund and Summer Meranius, 2020). Thus, it

would be difficult, for example, to speculate on the underpinnings of emotional empathy differences and how

1Parts of this chapter have been adapted from ”Multifaceted Empathy Differences in Children and Adults with Autism”, published
in Scientific Reports and has been reproduced with the permission of the publisher

15



these may relate to autism features, without assessing these separate but related constructs simultaneously.

To this end, empathy differences between autistic and neurotypical (NT) individuals have been primarily

assessed using multidimensional self-report tools like the Interpersonal Reactivity Index (IRI; Lang et al.

1997), Empathy Quotient (EQ; Baron-Cohen and Wheelwright 2004), and Questionnaire of Cognitive and

Affective Empathy (QCAE; Reniers et al. 2011; see Song et al. 2019b for a review). While these well-

validated self-report measures have informative potential, they are not without limitations. Primarily, they

are subject to social desirability biases and subjective variability in interpretation that can ultimately result in

under- or over-reporting (Dziobek et al., 2008).

To address the limitations of widely-used self-report measures, Dziobek and colleagues (2008) developed

the Multifaceted Empathy Test (MET) as a performance-based measure of empathy. The MET is a comput-

erized task that assesses both emotional and cognitive empathy in response to a series of emotionally charged

facial expressions. This task was designed to be more ecologically valid than self-report measures of empathy,

in that it does not rely as heavily on the level of insight an individual has into their own emotions. The MET

was also designed to mitigate potential social desirability biases in empathy ratings by asking participants

to rate their level of arousal in response to each stimulus, which ostensibly serves as an implicit measure

of emotional empathy. This measure has contributed meaningfully to the study of empathy in autism, as

large effects of diagnosis on the cognitive empathy (i.e., emotion recognition) subcomponent of the MET

(Dziobek et al., 2008; Mazza et al., 2014; Poustka et al., 2010) indicate that group differences in empathy

demonstrated using questionnaire measures are not simply due to differences in emotional self-awareness or

social desirability biases.

The ability to distinguish positive from negative emotional situations is an important feature of empathy

and drives our tendency to engage in prosocial behaviors. This important skill underlies our ability to produce

appropriate resonant behaviors that ultimately help build social rapport (Luberto et al., 2018). Although some

prior work suggests that emotional valence may moderate diagnostic group differences in empathy (Mazza

et al., 2014; Luberto et al., 2018), studies on this topic are scarce and inconsistent, and it remains unclear

whether these differences relate to autism symptomatology.

2.2 The Present Study

In light of this emerging but incomplete picture of empathy in autism, the present study explores empathy

as a multifaceted construct that is potentially modulated by valence in individuals with autism. To extend

previous findings, an age-appropriate adapted version of the MET, the MET-Juvenile (Poustka et al., 2010),

consisting of 16 positive and 16 negative emotional images (decreasing testing time to accommodate younger

participants), was administered to a large sample with a wide age range. Notably, though age effects for
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specific components of empathy have been reported (Peterson, 2014; Schulte-Rüther et al., 2014), there is

no clear agreement on how these capacities may be related to maturation (Song et al., 2019b). For example,

while some studies suggest that empathy increases with age (Peterson, 2014), others suggest that older adults

have lower empathic abilities (Phillips et al. 2002; see Sun et al. 2018 for a review). Thus, participants from

a broad age range were included in the present study thereby ensuring grounds for exploration of age effects.

Group differences in cognitive and emotional empathy (including empathic concern), were assessed globally

in the context of the hypothesis that empathy is a complex, developmental process involving emotional and

cognitive components that are moderated by stimulus valence.

2.3 Methods

2.3.1 Participants

Participants in this study were recruited from the community through posters and social media postings

as well as from a pool of participants in previous larger and longitudinal lab studies who consented to be

re-contacted. During the recruitment period, our stance on study design for case-control comparisons has

evolved; early in this period, the goal was to achieve a “clean” autism sample and thus excluded most co-

occurring psychiatric and developmental conditions within the autism group. As time has gone by, we have

seen that these samples are not representative of the population and have opted to be more inclusive and

attempt to control for co-occurring conditions in both groups analytically instead, though we have been

slower to adopt this for control groups. Thus, this sample represents a blend as our approach has evolved.

Co-occurring mental health symptoms in our autism group were screened for using the Achenbach System

of Empirically Based Assessment (ASEBA) School Age (6–18) & Adult (18–59) forms. Overall, we collected

ASEBA data on 90/184 participants (24 Autism, 66 NT). Of these, 11 Autism participants endorsed clinically

significant symptoms of depression, 8 endorsed clinically significant symptoms of anxiety, and 9 endorsed

clinically significant symptoms of ADHD. Of the 66 NT participants with ASEBA data, 3 endorsed clinically

significant symptoms of depression, and 1 participant endorsed clinically significant symptoms of ADHD.

Individuals with autism and co-occurring ADHD, anxiety, or depression were included, while those with

other psychiatric diagnoses within the past five years or co-occurring neurogenetic syndromes were excluded.

Stimulant medication use was screened for before study participation, but there were no exclusionary criteria

based on this. Of our 184 participants, 36 endorsed ‘Yes’ to taking medications and of these, 11 (all Autism)

reported using stimulant medication. In our adult subgroup, ten autistic adults (26%) reported taking an-

tidepressant medications, and in our children/adolescents subgroup, ten autistic participants’ parents (22%)

reported their child taking antidepressant medications.
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2.3.1.1 Adults

Thirty-eight adult participants with autism (21 male; mean age = 27.65) and 58 neurotypical (NT) adults

(36 male; mean age = 32.69) were included in the study. All adult participants were between the ages of 18

and 59 years and achieved full-scale IQ scores of ≥ 70 as measured by the Wechsler Abbreviated Scale of

Intelligence-Second Edition (Wechsler, 2011) (WASI-II). Autism diagnoses were confirmed by the clinical

judgment of a licensed psychologist on the research team specializing in the assessment of autism, supported

by research-reliable administration of the Autism Diagnostic Observation Schedule-2 (ADOS-2; Lord et al.

2012).

Exclusion criteria for both groups included the presence of other neurological and genetic disorders, non-

autism-related sensory impairments (e.g., uncorrected visual or hearing impairments), and substance/alcohol

abuse or dependence during the past two years. Further, individuals in the NT group were excluded if they had

reported a previous psychiatric history, cognitive or sensory impairment, use of psychotropic medications, or

clinically elevated scores on the Social Communication Questionnaire (Rutter et al., 2003) (SCQ Total score

> 15).

2.3.1.2 Children/Adolescents

Forty-five autistic children/adolescents (35 male; mean age = 11.53) and 43 neurotypical (NT) children/ado-

lescents (34 male; mean age = 11.86) were included in the study. All child/adolescent participants were

between the ages of 8 and 17 years and achieved full-scale IQ (FSIQ) scores of ≥ 70 as measured by the

WASI-II. Autism diagnoses were confirmed by the clinical judgment of a licensed psychologist specializing

in the assessment of autism, supported by research-reliable administration of the ADOS-2 and, when avail-

able, parent interviews (n = 30) that included algorithm items from the Autism Diagnostic Interview, Revised

(ADI-R) (Lord et al., 1994).

Exclusion criteria for children/adolescents were similar to those for adults with some additional consider-

ations. Mainly, for children and adolescents, behavior and co-occurring psychiatric conditions were screened

for using parent and guardian reports.

2.3.2 Ethical Considerations

The study was conducted in accordance with the Declaration of Helsinki, and all participants were compen-

sated $20 per hour of their time following each session. Written informed consent or assent forms were

signed by all participants, while informed consent was obtained from parents or guardians of minors. All

methods and procedures were approved by the Institutional Review Board for human subjects at Vanderbilt

University Medical Center and carried out following relevant guidelines and regulations on ethical human
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research.

2.3.3 Measures

The Social Responsiveness Scale–Second Edition (SRS-2) was used to measure autistic traits dimensionally

across the full sample. Adult participants in both diagnostic groups completed the SRS-2 adult self-report

form, whereas parents or guardians of children/adolescents in both groups completed the analogous caregiver-

report questionnaire, the SRS-2 School Age form. To facilitate comparison across the different groups, the

SRS-2 total scores were converted to T- scores (M = 50, SD = 10).

2.3.3.1 Empathy

Empathy was assessed multi-dimensionally using an adapted version of the Multifaceted Empathy Test, the

MET-J (Poustka et al., 2010), a validated performance-based test that separates cognitive and emotional em-

pathy based on responses to emotional faces presented with- and without- a social context in the background.

The original MET includes 50 still images depicting emotionally charged facial expressions of 25 positive

(e.g., joy, happiness) and 25 negative (e.g., sadness, anger) emotions. The adapted MET-J version used in

the present study included only 16 images each for positive and negative valence. The photographs are taken

from the International Affective Picture System (IAPS), a well-validated database of photographs designed

for standardized emotion and attention testing (Lang et al., 1997). In each trial, participants viewed an emo-

tional image and were first asked to rate their level of arousal, followed by explicit emotional empathy ratings,

and a cognitive empathy (i.e., emotion recognition) multiple choice question. Figure 2.1 depicts an example

trial on the task, recreated using a free-use stock image from the Canva.com image database.

As described by Dziobek et al. (2008), to minimize demands of self-reflection and thereby also mitigate

social desirability bias, we included an implicit assessment of emotional empathy by asking participants to

rate how calm/aroused the emotional stimuli made them feel using the Self-Assessment Manikin (SAM). The

SAM is a visual-analog scale providing scores ranging from 1 (very calm) to 9 (very aroused). Thus, for each

picture, participants were asked (1) “How excited does this picture make you” (implicit emotional empathy;

subsequently described as arousal empathy); (2) “While looking at the picture, how much do your feelings

match the X’s feelings” (emotional empathy; EE) measured on a visual Likert scale (1–9); and finally (3)

“How does this X feel?” (cognitive empathy; CE). Here an “X” represents the noun used to describe the

individuals (boy/girl/ man/woman) in the image, who varied across trials. Each trial ended with a final pre-

sentation of the emotional stimulus that provided feedback for the cognitive empathy question by displaying

the correct emotion label from among the four choices. Note that this order and wording for EE surveys are

slightly different from the original MET and MET-J, which provided feedback on CE surveys before present-
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ing explicit emotional empathy surveys. We adapted this order to ensure that EE and arousal responses were

made as reflexively as possible to the perceived emotion upon initial presentation, rather than being adjusted

based on CE feedback. All stimuli were presented as slides of variable duration (ad libitum) in random order

on a black screen.

2.3.4 Statistical Analyses

Differences in demographics (e.g., age, sex, verbal intelligence quotient, performance intelligence quotient)

and SRS-2 scores were compared between the autism and NT groups within a Bayesian framework. When the

outcome of interest was categorical (e.g., correct or incorrect emotion recognition), group differences were

examined using a Bayesian analog of the Pearson chi-squared test (Gûnel and Dickey, 1974; Jamil et al.,

2017). When the outcome of interest was a continuous variable (e.g., age), we examined mean differences

using a Bayesian analog of the Welch (unequal-variances) t-test (Kruschke, 2013). Effect sizes from each

of these tests (i.e., Cohen’s d and the odds ratio [OR]) were summarized as the posterior median and 95%

highest-density credible interval (CrI). Additionally, for all group comparisons, evidence for or against the

point null hypothesis (H0 ; i.e., no differences between groups) was quantified with a Bayes factor (Jamil

et al., 2017; Wagenmakers et al., 2010), defined as the ratio of how likely the data are under the alternative

hypothesis (H1 ; i.e., the difference between the two groups is nonzero) divided by how likely the data

are under H0. In concordance with widely-used guidelines on Bayes factor interpretation (Harold, 1961;

Wagenmakers et al., 2011), we considered BF10 values > 3 as indicating substantial evidence for H1, BF10

values < 0.333 as indicating substantial evidence for H0, and BF10 values between 0.333 and 3 as providing

inconclusive and only “anecdotal” evidence for H0 or H1. All group comparisons were performed in the R

statistical computing platform using open-source R code (Williams, 2020).

To determine the effects of various predictor variables on arousal, emotional, and cognitive empathy

while controlling for possible covariates, we used R (Team, 2018) to analyze the data at the single-trial level

using hierarchical Bayesian modeling. Trial-level MET data for arousal, emotional, and cognitive empathy

were analyzed using (generalized) linear mixed effects models ([G]LMEMs), which allowed us to model the

correlations between responses derived from the same participants as well as the same stimuli (Baayen et al.,

2008). LMEMs were used to model arousal and emotional empathy, as the 9-item scale used to derive these

outcomes had enough points to be approximated as a continuous variable (Rhemtulla et al., 2012). However,

we used a logistic GLMEM to model cognitive empathy, as individual trial data from this part of the task

consisted of binary “correct/incorrect” responses. The baseline [G]LMEM for each MET-derived outcome

included fixed effects of age group (child vs. adult), sex, autism diagnosis, and emotional valence (positive

vs. negative), as well as random intercepts for participant and stimulus (see example below for CE, Eq. 2.1).
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Random slopes were also included in this baseline model for all subject-level predictors, allowing the effects

of age group, sex, and autism status to vary by the stimulus. The decision to treat age as categorical in the

BMA was driven by the finding that performance on the CE task increased with age throughout childhood,

reaching an asymptote at approximately age 18–20, thereby indicating a difference between children and

adults rather than a true linear age trend.

CE = Dx+AgeGroup+Sex+Valence+(1|Participant)+(1+Stimulus|DxGroup+Sex+AgeGroup)

(2.1)

Where CE is cognitive empathy, and Dx is diagnostic group. For each of the three outcomes, we addi-

tionally determined if several other predictors beyond the baseline model contributed to task performance,

including the two-way and three-way interactions between age, diagnosis, and valence; verbal IQ (VIQ);

performance IQ (PIQ); and overall level of autistic traits (SRS-2 T-score). To determine whether any given

predictor should be added to the baseline model, we fit candidate models that included all combinations of

potential predictors (n = 40 potential models including the baseline). Then, using bridge sampling (Gronau

et al., 2017), we calculated the marginal likelihood of each candidate model, deriving posterior model prob-

abilities in a manner equivalent to the process of Bayesian model averaging (Hinne et al., 2020). The model

with the highest posterior probability was considered the final model for each outcome. Using these model

weights, we also computed inclusion Bayes factors (BFinc; Hinne et al. 2020), allowing us to determine the

degree of evidence for or against the inclusion of each predictor in the model. Inclusion Bayes factors are

interpretable in the same manner as BF10, with H0 being the exclusion of the variable from the model and H1

being the inclusion of the variable in the model.

Once the final model for each outcome was selected, we additionally tested all regression slopes in a

Bayesian framework, using the 95% CrI to determine whether each slope was likely to be nonzero in magni-

tude. If the full 95% CrI excluded zero, we rejected the point null hypothesis that the effect was exactly zero.

However, because this point null hypothesis is always false at the population level (Gronau et al., 2017), we

also tested these effects for practical significance (Kirk, 1996). The Bayesian framework allows for a proba-

bilistic view of the parameter estimates so that we can infer whether an effect is practically meaningful at the

population level. This is done by defining a region of practical equivalence (ROPE) (Kruschke and Liddell,

2018), an interval of parameter values considered small enough to be equivalent to zero in practice (in this

case βStd = [-0.1, 0.1] for linear models and eβStd = [0.909,1.10] for logistic models). Evidence both for

and against the true parameter value falling within the ROPE can be quantified by calculating a ROPE Bayes

factor (BFROPE), defined as the odds of the prior parameter distribution falling within the ROPE divided by
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the odds of the posterior effect size distribution falling within the ROPE (Makowski et al., 2019a,b). These

Bayes factors can be interpreted on the same scale as previously discussed for BF10 and BFinc (Harold, 1961;

Wagenmakers et al., 2011). In the case that a parameter was nonzero or a given variable was included within

the final model but the BFROPE value was smaller than 0.333, we considered this variable as not predicting

the MET outcome of interest to a practically meaningful extent. Lastly, to assess the predictive power of the

final model, we calculated the Bayesian R2 coefficient proposed by Gelman et al. (2019).

All Bayesian [G]LMEMs were fit in Stan using the brms R package (Bürkner, 2017, 2018) with weakly

informative priors, including Normal(0, 1) priors on all (standardized) regression slopes and intercept terms,

as well as default half Student t3(0, 2.5) priors on the standard deviation of each random slope or inter-

cept term. Model parameters were estimated via Markov chain Monte Carlo (MCMC) using the No U-turn

Sampler implemented in Stan (Hoffman and Gelman, 2014), with posterior distributions of each parameter

estimated using 21,000 post-warmup MCMC draws from seven Markov chains (14,000 in cases where miss-

ing data were present). Parameter summaries from these posterior distributions were operationalized as the

posterior median and the 95% CrI. Convergence for each model was confirmed by examination of Markov

chain trace plots, as well as values of the Gelman–Rubin (Rubin & Gelman, 1992) convergence diagnostic <

1.01. Missing data were handled using five-fold multiple imputations based on the random forest imputation

algorithm implemented in the missForest R package (Stekhoven and Bühlmann, 2012; Stekhoven, 2013).

2.4 Results

2.4.1 Demographics

In total, 184 participants were included in the analysis sample: 45 children and adolescents (35 male; mean

age = 11.53) with autism, and 43 neurotypical children and adolescents (34 male; mean = 11.86), 38 adults

with autism (21 male; mean age = 27.65), and 58 neurotypical adults (36 male; mean age = 32.69). The two

diagnostic groups were approximately equivalent in terms of sex ratio (OR = 1.091, 95% CrI [0.583, 2.003],

BF10 = 0.177), although they significantly differed with respect to age (d = 0.457 [0.146, 0.773], BF10 = 22.2),

full-scale IQ (d = 0.532 [0.224, 0.846], BF10 = 94.4), VIQ (d = 0.657 [0.326, 1.010]), and SRS-2 T-scores (d=

-2.896[-3.478,-2.349]). Additionally, the NT group had numerically higher PIQ scores on average than the

autistic group, although the Bayes factor indicated only “anecdotal” evidence in favor of a group difference

(d = 0.284 [-0.021, 0.588], BF10 = 1.59).

2.4.2 Hierarchical Bayesian Models

Model selection procedures indicated that cognitive empathy scores were best predicted by a model including

all baseline predictors and VIQ score (P(MBL+V IQ|Data) = 0.405; R2
Bayes = 0.257[0.242,0.272]).The poste-
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rior inclusion probability of VIQ was relatively high (PV IQ = 0.734), although the inclusion Bayes factor for

VIQ did not meet the a priori threshold of 3 (BFinc = 2.76). Inclusion Bayes factors also provided substantial

evidence against the inclusion of all interaction terms, PIQ, and SRS-2 T-score as predictors of cognitive

empathy (Table 2.1).

In the best-fitting model, autism diagnosis was associated with a practically significant reduction in per-

formance on cognitive empathy (CE) trials (OR = 0.726, 95% CrI [0.587, 0.906], BFROPE = 3.70). This effect

of group on CE is depicted in Fig. 2.1A. Moreover, age group was an even larger predictor of performance,

with children across both diagnostic groups displaying significantly lower emotion recognition accuracy than

adults (OR = 0.604 [0.462, 0.795], BFROPE = 37.80). Neither female sex (OR = 1.113 [0.917, 1.352], BFROPE

= 0.110) nor negative valence (OR = 0.545 [0.267, 1.071], BFROPE = 1.609) significantly predicted perfor-

mance on the cognitive empathy trials, although there was insufficient evidence to conclude that valence was

unrelated to the chance of a correct response. Lastly, although higher VIQ significantly predicted higher

performance on cognitive empathy trials (OR = 1.126 [1.037, 1.218] per standard deviation increase in VIQ),

there was substantial evidence that this effect was too small to be practically significant (BFROPE = 0.213).

When predicting emotional empathy, model selection procedures indicated that the most likely model

included all baseline predictors as well as the interaction between diagnosis and valence. Inclusion Bayes

factors supported only the inclusion of diagnosis × valence interaction term in the final model (BFinc = 5.59),

along with the exclusion of most other predictors (Table 2.1).

The best-fitting model displayed a large effect of valence, with lower reports of shared feelings for nega-

tive emotions (β = -0.647 [-0.800,-0.489], BFROPE = 4.89 × 105), as well as small and practically insignificant

main effects of diagnostic group (β = -0.059 [-0.255, 0.142], BFROPE = 0.057), sex (β = -0.073 [-0.275,0.138],

BFROPE = 0.072), and age group (β = 0.025 [-0.175,0.2124], BFROPE = 0.042). The interaction between diag-

nosis and valence was statistically significant, although the ROPE Bayes factor was equivocal concerning its

practical significance (β = 0.188 [0.066, 0.307], BFROPE = 1.075). Although both diagnostic groups reported

empathizing more with positive than negative emotions, this difference was larger in the NT group (d = 0.647

[0.489, 0.800]) than the autism group (d = 0.459 [0.315, 0.614]). This interaction is depicted in Fig. 2.2B.

When predicting ratings of arousal, the best-fitting model was found to include all baseline predic-

tors as well as the interaction between age group and valence (P(MBL+Age∗Valence|Data) = 0.677; R2
Bayes =

0.466[0.451,0.480]). Inclusion Bayes factors demonstrated strong support for the inclusion of the age group

× valence interaction (BFinc = 147), as well as the exclusion of all other potential predictors (Table 2.1).

Coefficients in the best-fitting model indicated practically insignificant effects of autism diagnosis (β =-

0.045 [-0.232,0.145], BFROPE = 0.046), age (β = 0.084 [-0.118,0.289], BFROPE = 0.079), sex (beta = -0.024

[-0.234,0.179], BFROPE = 0.048), and emotional valence (β = -0.137 [-0.342,0.071], BFROPE = 0.160). How-
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ever, these effects were qualified by a statistically and practically significant interaction between age and

valence (β = -0.269 [-0.390,-0.149], BFROPE = 16.3). Across both diagnostic groups, children reported sig-

nificantly higher arousal ratings for positive stimuli compared to negative stimuli (d = 0.403 [0.195, 0.609]),

whereas no significant effect of valence was seen in adult participants (d = 0.137 [-0.071, 0.342]). This

interaction effect is illustrated in Fig. 2.3.

Figure 2.1: Example trial for ‘thrilled’ emotion depicted on MET-J task.
The surveys read 1) “How excited does this picture make you” (implicit emotional empathy/arousal empathy),
2) “While looking at the picture, how much do your feelings match the boy’s feelings (emotional empathy;
EE, and 3) “How does this boy feel?” (cognitive empathy; CE). Cognitive empathy emotion label options are
1) thrilled, 2) surprised, 3) proud, 4) happy. The slides for this trial example were designed on PowerPoint
using a free-use stock image from the Canva.com image database.

Figure 2.2: Group comparisons for (A) mean accuracy in emotion recognition for cognitive empathy
surveys, and (B) mean resonance rating for emotional empathy surveys.

2.5 Discussion

Using a multidimensional approach, this study is consistent with previous findings of practically equivalent

levels of emotional empathy between autistic and NT groups despite a significant effect of diagnosis on

cognitive empathy. These findings also complement Dziobek et al. (2008), by extending the comparison
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Figure 2.3: Age group comparisons for mean emotional arousal ratings to positive and negative emotionally
charged facial expressions.

to test for valence effects. To our knowledge, only one other group has assessed emotional valence effects

in autism using the MET (Mazza et al., 2014), which reported that autistic adolescents displayed reduced

emotional empathy for facial expressions of negative emotions compared to controls, a difference that was

not present for positive emotions. Notably, the findings of Mazza and colleagues differ from those of the

current study, which found that ratings of emotional empathy were approximately equal between groups for

negatively-valenced stimuli, although neurotypical individuals provided higher average ratings for positively-

valenced stimuli. The present study further extends Mazza et al. (2014), results by assessing age group effects

and utilizing a substantially larger child/adolescent autism sample. With regards to age, our Bayesian analysis

indicates that children and adolescents across both diagnostic groups had greater difficulty with emotion

recognition than adults, although the main effect of the age group on self-ratings of arousal and emotional

empathy was small and practically insignificant.

Valence effects in our analyses were only significant in models predicting emotional empathy and arousal.

For emotional empathy, the significant interaction between valence and diagnostic group indicated that pos-

itive facial expressions elicited greater emotional resonance than negative facial expressions across both

groups, but that this difference was greater in neurotypicals compared to autistic individuals. In the arousal

empathy Bayesian Model Averaging (BMA) analysis, the small and practically insignificant main effects for

emotional valence and age group were qualified by a strong and practically significant interaction between

these predictors. That is, the increase in arousal elicited by positive facial expressions relative to negative
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ones was more pronounced in our child and adolescent group compared to the adult group.

In the current study, we observed higher ratings for shared feelings to positive versus negative facial

expressions that interacted with the diagnostic group but not with age. This may reflect a neurotypical ad-

vantage for better self-other distinction for negative valence compared to autistic individuals that persists

across age. In other words, contrary to previous reports of unequivocally intact emotional empathy in autism

(Dziobek et al., 2008; Baron-Cohen, 2011), emotional empathy may differ somewhat in autism when valence

is considered. The contrast between greater resonance to positive emotions compared to negative emotions

across neurotypical development may also be partially attributable to the effect of positivity biases for am-

biguous emotions. In some neurotypical adults, ambiguous facial expressions like ‘surprise’ tend to get rated

as positive, an effect that seems to be moderated by the regulatory influence of the prefrontal cortex (Totten-

ham et al., 2013). Thus, the lower degree of separation between emotional resonance ratings to positive and

negative emotions in autism may also be reflecting neural differences in top-down emotion processing.

Supporting the cognitive vs. affective empathy dichotomy, Cox et al. (2012) reported distinct intrinsic

functional connectivity (FC) dynamics in healthy adult brains for self-reported cognitive and emotional em-

pathy. Using a difference score (cognitive–emotional), this group found emotional empathy dominance (neg-

ative scores) to be associated with stronger functional connectivity between social-emotional brain regions

like the amygdala and ventral anterior insula (Cox et al., 2012). By contrast, cognitive empathy dominance

(positive scores) correlated with greater FC in areas like the ventral anterior insula and superior temporal sul-

cus, both of which have been implicated in social-cognitive processes (Cox et al., 2012; Fan et al., 2013; Gu

et al., 2015). This distinction also becomes relevant when considering the implications of valence-specific

evidence for empathy differences in autism, like impairments in the ability to understand when social ex-

periences warrant resonating with negative emotions, a feature that has been linked to aggressive behaviors

(Eisenberg and Miller, 1987; Miller and Eisenberg, 1988; Pouw et al., 2013).

The present study had various strengths and limitations to consider. Amongst the strengths, our study

included a wide age range in which we were able to replicate previous findings from research conducted

primarily in adolescent and adult samples and extend findings to a larger group of younger individuals. Ad-

ditionally, the use of robust statistical approaches allowed us to report on the practical significance of our

findings as well as to test for equivalence between diagnostic groups on these empathy measures. Ours is

among the first to combine several important approaches in a single study: examining empathy multidimen-

sionally, testing both children and adults, and examining positive and negative emotional valence separately.

These advances facilitate a significant step forward in our understanding of empathy in autism.

This study was limited by the exclusion of individuals with low IQ (FSIQ < 70) to ensure understanding

of the task instructions. Future efforts to address this limitation should include objective psychophysiological
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empathy measures that do not require an explicit behavioral response or abstract thinking. An additional

limitation is the fact that the current study did not include measurements of trait alexithymia (Bagby et al.,

2020), which has been proposed to mediate the relationship between diagnoses of autism and performance

on tasks tapping multiple facets of empathy (Fletcher-Watson and Bird, 2020; Bird and Cook, 2013; Bird and

Viding, 2014). Another limitation is that we did not measure prosocial behavior propensity and interrogate

how emotional resonance and emotional concern may contribute to prosocial tendencies. In retrospect, we

would have also liked to complement our findings by including at least one additional validated empathy

questionnaire to compare and enrich our understanding of multimodal empathy assessment.

It should also be noted that a growing literature further improving ecological validity by utilizing dyadic

conversational interactions (typically involving richer but less emotionally charged stimulation than the static

but highly emotional faces used in the MET) has described a “double empathy” problem with assumptions

made from empirical research in empathy and autism (Milton, 2012; Edey et al., 2016; Morrison et al.,

2020). These reports critique the use of neurotypical people as a reference point and conclude that differences

are diminished when autistic individuals are partnered with one another, suggesting that an empathy deficit

(at least in the relatively emotionally neutral context of an initial conversation with a new person) should

be reframed as a feature of the interaction rather than the individual 55. Finally, The MET utilizes static

emotional faces, which limits the ecological validity of the task. Following the example of recent studies that

use dyadic interactions to characterize social differences in autism (Morrison et al., 2020; Qualls and Corbett,

2017; Rolison et al., 2015), future studies should continue to balance ecological validity with experimental

control under a framework that does not assume a neurotypical reference point.

The self-report nature of the MET’s design, albeit task-based, still confers some susceptibility to social

desirability biases. This is one potential explanation for the increased emotional relatedness feelings reported

by our neurotypical adult sample, who may be more impacted by social desirability bias (Kirchner et al.,

2012). The specificity of this difference in facial expressions depicting positive emotions and not negative

emotions, however, warrants further investigation. Future efforts should aim to collect more implicit measures

of emotional empathy such as skin conductance, spontaneous facial expressions, and neural measures of

empathic response. Within the context of conflated definitions and methodologies employed in previous

research, the resulting confusion from conflicting academic reports on the autistic ‘empathy deficit’ has not

been without effect on the autistic population. Over-generalizations on this matter have been described as

‘unwarranted’ and ‘dehumanizing’ by autistic self-advocates (Cohen-Rottenberg, 2013). Because of this

negative impact potential, future work should also take great care to develop methodologies based on clearly

defined empathy concepts as well as reporting and interpreting results using a more humane framework.

In conclusion, the current study finds autism differences in specific components of empathy. We report
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impaired cognitive empathy in autism, a valence by diagnostic group effect in emotional empathy, and a

valence by age group effect for arousal empathy. In both diagnostic groups, emotion recognition as mea-

sured by our cognitive empathy survey was significantly greater in adults than in children and adolescents.

Improved emotion recognition by adulthood across groups may reflect lifelong practice effects from both typ-

ical social settings and training effects of social interventions. Further investigations would benefit from an

analysis that accounts for potential confounds like co-occurring mental health symptoms or training effects

on the ability of individuals with autism to recognize emotions. Our empathy findings suggest that emotion-

ally charged stimuli, specifically hedonically negative stimuli, may be actively recruiting separate perceptual

pathways that are distinctly altered in autism. Thus, better elucidating how specific components of empathy

are affected in autism is crucial for informing target-specific social interventions seeking to improve empathic

capacities and social outcomes.
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Table 2.1: Bayesian Modeling Results

Cognitive Empathy

Best Fit Predictor OR [95% CrI] BF10 BFinc BFROPE PROPE

Diagnosis (Autism) 0.726 [0.587,0.906] 6.854 3.677 0.00

Sex (F) 1.113 [0.917,1.352] 0.179 0.110 0.00

Age group (Child/Adolescent) 0.604 [0.462,0.795] 58.271 37.80 0.00

Valence (Negative) 0.545 [0.267,1.071] 1.633 1.609 0.00

Verbal IQ Z-score 1.126 [1.037,1.218] 2.949 2.760 0.213 0.00

Emotional Empathy

Best Fit Predictor β [95% CrI] BF10 BFinc BFROPE PROPE

Diagnosis (Autism) -0.059 [-0.255,0.142] 0.121 0.057 0.594

Sex (F) -0.073 [-0.275,0.138] 0.135 0.072 0.544

Age group (Child/Adolescent) 0.025 [-0.175,0.214] 0.103 0.042 0.671

Valence (Negative) -0.647 [-0.80,-0.49] 1.61 x 10-6 4.89 x 105 0.000

Diagnosis x Valence 0.188 [0.066,0.307] 3.521 5.59 1.075 0.076

Arousal Empathy

Best Fit Predictor β [95% CrI] BF10 BFinc BFROPE PROPE

Diagnosis (Autism) -0.045 [-0.232,0.145] 0.104 0.046 0.653

Sex (F) -0.024 [-0.234,0.179] 0.110 0.048 0.640

Age group (Child/Adolescent) 0.084 [-0.118,0.289] 0.143 0.079 0.517

Valence (Negative) -0.137 [-0.342,0.071] 0.253 0.160 0.345

Age group x Valence -0.206 [-0.390,-0.149] 89.300 147 16.3 0.005

Practically significant predictors for each empathy component are shown in bold.
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CHAPTER 3

Identifying and Describing Subtypes of Spontaneous Empathic Facial Expression Production in

Autistic Adults1

3.1 Introduction

Within the socio-emotional domain of autism symptoms, the capacity to understand and use nonverbal com-

munication is central to developing and maintaining healthy social relationships throughout the lifespan (De-

cety and Jackson, 2006) and facilitates learning and workforce outcomes (Johnson and Johnson, 1997). Per-

sistent social difficulties translate to difficulties developing and maintaining social relationships throughout

adulthood and are associated with depression, anxiety, loneliness, and isolation (Volkmar et al., 2014). Given

the pervasiveness and impact of socio-emotional difficulties in autism, many social skills intervention pro-

grams are designed to facilitate training in socially relevant nonverbal cue usage, production, and understand-

ing through in-person and technology-based paradigms (Soares et al., 2021). Beyond providing structured

opportunities to learn and practice social skills, these programs have been shown to improve social metrics

like friendship quality, and social functioning, and to reduce feelings of loneliness in youth and adult autistic

groups (Gates et al., 2017; Spain and Blainey, 2015).

Though they are not yet considered standard-of-care, emerging automated technology systems supported

by machine learning have facilitated the administration and improved the accessibility of autism services like

social skills interventions (DiPietro et al., 2019). Supervised and unsupervised machine learning approaches

hold promise for predicting outcomes and facilitating the identification of clinical subgroups based on symp-

tom profiles (Jacob et al., 2019). Current applications for computational methods in autism research include

diagnostic methods (Song et al., 2019a), the analysis of facial expression production (Gordon et al., 2014;

Leo et al., 2018), and behavioral and physiological signals (Sharma et al., 2017). Facial expression pro-

duction and reciprocity are key components of socio-emotional constructs like emotional regulation (Gross

and John, 2003) and the success of social interactions (Halberstadt et al., 2001). Within the autistic popula-

tion, facial expressions are found to be different in appearance metrics like social congruence, frequency, or

duration (Trevisan et al., 2018). In practice, these differences may lead to negative evaluations from peers

and reduce the overall quality of social interactions (Stichter et al., 2010). Interestingly, previous reports do

not suggest that facial expression intensity is affected in autism (Keating and Cook, 2021), despite prevalent

clinical descriptions of both “flat affect” (Capps et al., 1993; Stagg et al., 2014) and “exaggerated” expres-

1Parts of this chapter have been adapted from “Identifying and Describing Subtypes of Spontaneous Empathic Facial Expression
Production in Autistic Adults”, published in Journal of Neurodevelopmental Disorders and has been reproduced with the permission of
the publisher
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sions (Faso et al., 2015; Wozniak et al., 2017). One possible explanation is that within autistic populations,

distinct subgroups of extreme high and low levels of expressivity average one another out and mask group

differences that are not uniform in direction. Computational approaches such as k-means clustering can help

to differentiate this scenario from a true lack of group difference in facial expression intensity.

3.1.1 The Present Study

The symptomatic heterogeneity in autism suggests a need for more adaptive and personalized social skill

intervention programs. Empathy has long been considered a sub-domain of the social communication diffi-

culties present in autism (Harmsen, 2019), but more current evidence suggests a much more nuanced picture

(Quinde-Zlibut et al., 2021) given the multi-faceted nature of empathy measurement. Advanced social skill

interventions programs would benefit from a more concrete and empirical understanding of the different ex-

pressiveness profiles within the autistic population (e.g., “flat affect” vs. “exaggerated” or “inappropriate” fa-

cial expressions as measured by gold standard diagnostic instruments) and how they differ from neurotypicals

(NT) before deploying facial expression production and reception training. To this end, we cluster autistic

and neurotypical adults separately based on their facial expressions within the socially relevant context of

empathy.

3.2 Methods

Our primary objective for this paper was to explore whether the altered patterns of facial expression pro-

duction metrics in autism reflect the dynamic and nuanced nature of facial expressions or a true diagnostic

difference. To this end, we collected facial videos during an experimental study, derived a set of automated

facial expression features from the videos using the iMotions affect recognition toolkit (iMotions, 2021), and

applied an exploratory unsupervised learning approach on the feature sets for our autistic and NT participants

separately to derive interpretable clusters.

3.2.1 Participants

A total of 84 participants, originally part of a larger study, were included in this analysis. The current sam-

ple (n = 84) consisted of 27 autistic participants (12 female, 14 male, 1 other) and 57 neurotypical (NT)

participants (21 female, 36 male). All participants in this sample were adults between the ages of 18 & 59

years. Participants were pre-screened using the Wechsler Abbreviated Scale of Intelligence Second Edition

(WASI-II) Wechsler (2011), with Full Scale IQ (FSIQ) scores ≥ 70. Participants also completed the Social

Responsiveness Scale-2 (SRS-2), a self-report questionnaire that measures autistic traits Constantino and

Gruber (2012).
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Autism diagnoses for participants were confirmed by the clinical judgment of a licensed psychologist spe-

cializing in the assessment of autism, supported by research-reliable administration of the Autism Diagnostic

Observation Schedule-2 (ADOS-2) Lord et al. (2012). Exclusion criteria for both our autistic and NT groups

included the presence of other neurological and genetic disorders, non-autism related sensory impairments

(e.g., uncorrected visual or hearing impairments), and substance/alcohol abuse or dependence during the past

two years. Further, individuals in the NT group were excluded if they had reported a previous psychiatric

history, cognitive or sensory impairment, use of psychotropic medications, or clinically elevated scores on the

Social Communication Questionnaire (Rutter et al., 2003). Individuals with autism and co-occurring ADHD,

anxiety, or depression were included, while those with other recent psychiatric diagnoses within the past 5

years or co-occurring neurogenetic syndromes were excluded. All participants provided informed consent

and were compensated $20 per hour of their time following each session. All procedures were approved by

the Institutional Review Board for human subjects at Vanderbilt University Medical Center.

3.2.2 Study Procedure

We captured participants’ facial expressions while they completed an adapted version of the Multifaceted

Empathy Test (MET) (Dziobek et al., 2008), a validated multidimensional computer-based task that sepa-

rates arousal, emotional, and cognitive components of empathy. A full description of the MET can be found

in Quinde-Zlibut et al. (2021); briefly, the adapted version presently used includes 32 emotionally charged

photographs depicting positive and negative scenarios and is known as the MET-J (Poustka et al., 2010).

When presented with each image, participants were asked to rate their level of arousal, emotional related-

ness (emotional empathy), and finally to label the emotion (i.e., emotion recognition) via a multiple choice

question (cognitive empathy).

In the present study, the task was designed to be compatible with the iMotions v.6 computer software

platform for biosensor integration (iMotions, 2021). The facial expressions of interest for the cluster analysis

were recordings from emotional empathy trials where participants viewed an emotional image (of either

positive or negative valence) and were asked to answer: “While looking at the picture, how much do your

feelings match the boy’s feelings?”. Note that while the previous example is for a photograph of a boy,

the task included standardized and validated images of males and females of all ages from the International

Affective Picture System (Lang et al., 1997).

3.2.3 Data Collection

All participants in the MET study worked individually in the same well-illuminated testing room using a

webcam-enabled laptop, which facilitated the collection of facial videos. The videos were processed post hoc
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using the iMotions AffDex SDK. The AffDex engine works by detecting 33 points around major facial land-

marks (e.g., eyes, nose, mouth, etc.; Figure 3.1), tracking and analyzing them throughout stimuli presentation

to identify and classify 20 ‘facial action units’ (AUs; e.g., upper lip raise, outer brow raise) (McDuff et al.,

2016). Likelihood scores are computed based on the probability that detected AUs are equal to evaluations

made by a human rater. Facial expressions or AUs with probabilities below 10% are considered to be of high

uncertainty and are thus given likelihood scores of 0. The algorithm, based on Ekman & Friesen’s Emotional

Facial Action Coding System (EMFACS) (Ekman and Friesen, 1978b), then uses combinations of these facial

AUs to compute likelihood scores for the presence of 7 core emotions (joy, anger, fear, disgust, contempt,

sadness, and surprise), and summary metrics like, facial engagement/expressiveness and emotional valence.

The AffDex channels of interest, derived from the video frames at a frequency of 30Hz, are further defined

below:

1. Engagement/Expressiveness: A general measure of overall facial expressiveness, computed as the av-

erage of the highest evidence scores from upper (Brow raise, Brow furrow, Nose wrinkle) and lower

face region (Lip corner depressor, Chin raise, Lip pucker, Lip press, Mouth open, Lip suck, Smile),

respectively.

2. Valence: A measure of the affective quality of the facial expression, i.e., how positive or negative the

associated emotion is. Increased positive valence was determined in AffDex by high likelihood of AUs

like Smile and Cheek Raise, while increased negative valence was determined by high likelihood of

AUs like Inner Brow Raise, Brow Furrow, Nose Wrinkle, Upper Lip Raise, Lip Corner Depressor, Chin

Raise, Lip Press and Lip Suck.

The decision to focus on these summary metrics was made a priori to maximize objectivity and avoid

confounds related to assumptions about emotion. Likelihood scores for AUs offer a more concrete and in-

terpretable metric across clinical groups than emotion scores. AffDex scores for AUs typically recruited for

expressions of joy (smile) and anger (brow furrow) were found to be significantly correlated to the corre-

sponding EMG metrics (zygomaticus mayor/corrugator supercilii) (Kulke et al., 2020). We decided against

comparing groups based on emotions (e.g., joy, sadness) because AffDex validation studies suggest that the

algorithm’s classification of emotion channels is still too premature for comparative use (Stöckli et al., 2018;

Magdin et al., 2019). Further, the autism-specific FACS and electromyography (EMG) literature is still scant

and inconclusive (Weiss et al., 2019; Mathersul et al., 2013b)- making it difficult to develop hypotheses re-

garding how specific AUs are recruited in this population. Derived from individual AUs, summary metrics

allow for group comparisons without making assumptions about emotional states underlying specific facial

expressions, which may vary by group. Thus, we decided to assess facial expression in terms of overall
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Figure 3.1: Example of the 33 AffDex detected points around the major landmark facial features.
Note that the two points between the lips is one point that was captured during slight movement.

production (i.e., overall AUs activated in response to stimuli) and appropriateness (i.e., overall congruence of

AUs activated in response to stimuli).

3.2.4 Approach for Clustering the Autism & NT groups

3.2.4.1 Feature Selection

For each group (NT & autism), we constructed a set of four features from the data processed through iMo-

tions. The features, listed below, reflect overall levels of facial expressiveness and emotional valence of

participants under two different experimental conditions: (a) When they responded to images evoking posi-

tive emotion valence, and (b) When they responded to images evoking negative emotion valence. For each

participant, we computed the average peak expressiveness and valence scores across trials depicting images

of positive and negative emotional valence.

1. Expressiveness (−): Average peak expressiveness score for images with negative valence.
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2. Expressiveness (+): Average peak expressiveness score for images with positive valence.

3. Valence (−): Average peak emotion valence score for images with negative valence.

4. Valence (+): Average peak emotion valence score for images with positive valence.

The coefficient of variation (
SD

Mean
) was computed for each constructed feature, as a variance-based

feature selection criterion. All four features had coefficients of variation > 20%, and were included for

clustering. Contrary to values from the engagement channel (which range from 0-100), values from the

valence channel range from −100-100 with negative values indicating negative affect, 0 indicating neutral

affect, and positive scores indicating positive affect. Thus, to avoid any potential order-of-magnitude-related

feature biases within groups, each feature was Z-score standardized across participants. This was done to

account for range differences in participants’ responses between the engagement and valence variables and

prevent higher values from unduly influencing clusters.

3.2.4.2 K-Means Clustering

A K-means algorithm was applied on the processed feature set of each group (autism & NT) using the k-

means implementation available in the cluster package (Maechler et al., 2021) in the R environment for

statistical computing Team (2018). K-means is a distance-based algorithm that clusters data points based on

how similar they are to one another. Similarity is defined as the Euclidean distance between points such that

the lower the distance between the points, the more similar they are. Likewise, the greater the distance, the

more dissimilar they are (Leonard and Rousseeuw, 1990). In practice, the K-means algorithm clusters data

points using the following steps:

1. Choice of an optimal value for k clusters: For the present analysis we used the total within sum of

squares (WSS) method. This involves comparing how the WSS changes with increasing number of

clusters and identifying the number of clusters associated with the biggest drop in WSS. In our case,

the optimal number of clusters determined by this method was k = 2 for both the autism and NT cluster

analyses.

2. Random assignment of each data point to an initial cluster from 1 to K: This step involves matching

each participant with the closest centroid in an n-dimensional space where n corresponds to the number

of features (in this case n = 4).

3. Centroid Recalculation: After participants are assigned to k clusters, the centroids are recalculated as

the mean point of all other points in the group.
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4. Cluster Stabilization: Steps 2 and 3 are repeated until participants are no longer reallocated to another

centroid.

In order to validate assumptions made about the variance of the distribution of each attribute, the resulting

clusters were visually assessed for linear boundaries, and based on their average silhouette widths, a measure

of how similar each data point is to its own cluster compared to other clusters. Positive silhouette (Si) values

indicate appropriately clustered data (the closer to 1, the better the data was assigned). Negative Si values

indicates inappropriately clustered data while Si values of 0 indicate that the data point falls between two

clusters.

The stability of the resulting clusters was assessed by bootstrap resampling of the data without replace-

ment and computing the Jaccard similarities of the original clusters to the most similar clusters in the re-

sampled data. Jaccard similarity values measure the ratio of points shared between two clusters and the total

number of points across both clusters. The mean over the bootstrap distribution of similarity values serves as

an index of the stability of the cluster and is henceforth referred to as the Jaccard Index (JI) (Hennig, 2007).

Clusters yielding Jaccard Index values < 0.6 are considered to be highly unstable, between 0.6 and 0.75 to be

indicative of patterns within the data, ≥ 0.75 to be valid and stable, and ≥ 0.85 to be highly stable (Hennig,

2008). One hundred bootstrap resampling runs were carried out in R using the clusterboot function in the

fpc package (Hennig, 2020) and the kmeansCBI interface function corresponding to our clustering method.

3.2.5 Within Group Comparisons

Within groups, clusters were compared using a robust, non-parametric effect-size statistic, Cliff’s delta (Cliff,

1993; Feng and Cliff, 2004) using the orddom package (Rogmann, 2013) in R. Delta does not require any

assumptions regarding the shape or spread of two distributions and estimates the probability that a randomly

selected observation from one distribution is larger than a randomly selected observation from another distri-

bution, minus the reverse probability. Possible delta (δ ) values range from −1 to 1, where values of 0 indicate

a complete overlap of groups and values of −1 or 1 indicate that all the values in one group are larger than

all the values in the other.

Our variables of interest for this analysis included age, average peak engagement/expressiveness, average

emotion congruence, and all the SRS-2 subscales. Average peak engagement/expressiveness was calculated

as an average of the expressiveness scores to both negative and positive images. Average congruence was

calculated as the average number of instances when a participant’s valence scores matched the emotional

valence of the MET images (i.e., when the valence score was greater than 0 and the image was positive,

the facial expression was marked as congruent). This metric was calculated across trials as a more intuitive

measure of how appropriate participants’ facial expressions were in relation to the valence of the stimuli.
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3.2.6 Between Group Comparisons of Stable Clusters

For the purpose of determining whether there is a true difference in facial expressiveness, we conducted

autism-NT group comparisons on the stable sub-types identified through the separate autism and NT cluster

analyses. Separate robust ANOVAs were computed for average peak engagement and average valence. This

analysis was implemented in R using the bwtrim function in the WRS2 package (Mair and Wilcox, 2020).

Briefly, the function adopts a between-within subjects design (i.e., one between-subjects variable and one

within-subjects variable) to identify effects based on trimmed means. The trimmed mean discards a specified

percentage of values at both ends of a distribution, providing an alternative to the arithmetic mean that is less

sensitive to outliers. For both dependent variables, the between-within subjects ANOVA was calculated on

the 10% trimmed mean.

3.2.7 Exploratory Analyses

Finally, we ran exploratory correlation tests between average engagement and the emotion recognition scores

from the MET-J study (Quinde-Zlibut et al., 2021), overall ADOS-calibrated severity scores, and SRS sub-

scales (social cognition and social awareness) to better understand the relationship between these variables.

3.3 Results

3.3.1 K-means Clustering

3.3.1.1 Autism Cluster Analysis

The k-means model identified two clusters (further characterized in Fig 3.2a) within our autism sample (N =

27). The autism clusters were assessed visually (Fig 3.3a), by silhouette (Si) analysis, and the Jaccard Index

(JI):

1. Cluster 1 (n = 19) with an average Si of 0.56 and JI = 0.886

2. Cluster 2 (n = 8) with an average Si of 0.14 and JI = 0.759

Subgroup comparisons revealed that Cluster 1 differed from Cluster 2 in average engagement/expressiveness

(δ = 0.934,p < .001), and average congruence (δ =−0.434,p = 0.035). Cluster 2 was therefore character-

ized as a less stable (Si=0.14), more exaggerated group whose facial expressions were less congruent with

the stimulus’ emotional valence (Fig 3.4a). The clusters did not differ in age or any SRS-2 subscale (Table

3.1).

3.3.1.2 NT Cluster Analysis

The k-means model identified two clusters (further characterized in Fig 3.2b), within our NT sample (N=57).

The NT clusters were assessed visually (Fig 3.3b), by silhouette (Si) analysis, and the Jaccard Index (JI) :
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1. Cluster 1 (n=39) with an average Si of 0.55 and JI = 0.858

2. Cluster 2 (n=18) with an average Si of 0.20 and JI = 0.762

Subgroup comparisons revealed that Cluster 1 differed from Cluster 2 in average engagement/expressive-

ness (δ = 0.940,p < .001), and average congruence (δ = −0.625,p < .001). Cluster 2 was therefore also

characterized as a less stable (Si=0.20), more exaggerated group whose facial expressions were less congru-

ent with the stimulus’ emotional valence (Fig 3.4b). The clusters did not differ in age or any SRS-2 subscale

(Table 3.2).

The group of NTs that appear on the edge of the convex hull in Cluster 1 reflect participants who on

average displayed minimal expressivity/engagement in response to emotionally charged stimuli. We refrained

from excluding these participants in subsequent analyses because we felt that minimal engagement scores in

this NT cluster would be informative compared against the more stable autism cluster.

Figure 3.2: K-means Clusters by Group

Number of (a) autistics (ASD; n = 27) and (b) neurotypical (NT; n = 57) adults in each cluster grouped by
engagement (High, Low) and gender (Male, Female) Brown/tan: Cluster 1, Blue: Cluster 2

3.3.2 Comparison of the Stable Autism and NT Clusters

We selected and compared the two more stable subgroups within our autism and NT samples to identify

whether these differed in average congruence, facial expressiveness, and valence in response to emotional

images. We found no group difference in average congruence across images (δ = 0.09,p > .05). For ex-

pressiveness/engagement, the between-within trimmed-means ANOVA revealed a significant difference be-

tween groups (F(1,38.58) = 5.02,p = .03; Fig 3.5a), no within group effect of image valence (F(1,47.59) =

0.54,p > .05; Fig 3.5b), and a non-significant group by image valence interaction (F(1,47.59) = 0.27,p >

.05). The between-within trimmed-means ANOVA fit for the valence of facial expressions in response to
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Figure 3.3: Clusters found in (a) autistic (n=27) and (b) NT adults (n=57)

The autism cluster analysis revealed a larger more stable cluster (Cluster 1, n = 19) and a smaller, less stable
cluster (Cluster 2, n=8). The NT cluster analysis revealed a larger more stable cluster (Cluster 1, n=39) and
a smaller, less stable cluster (Cluster 2, n=18).

emotional images did not reveal significant between group differences F(1,33.44) = 3.78,p > .05), within

group differences in response to positive versus negative images F(1,33.14) = 1.98,p > .05), or a group by

image valence interaction F(1,33.14) = 1.39,p > .05).

3.3.3 Exploratory Analyses

Within group correlations between average engagement and emotion recognition suggests that in autism,

higher expressivity/engagement is associated with poorer performance in the emotion recognition component

of the MET-J study (ρ = −0.45,p = 0.05). We observed a weaker and opposite trend in the NT group of

increased emotion recognition performance with more expressivity/engagement (ρ = 0.20,p> 0.05; Fig 3.6).

Average expressivity/engagement was not correlated to ADOS-calibrated severity scores (ρ = −0.13,p >

0.05), the social cognition (ρ = 0.11,p > 0.05), or social awareness (ρ = 0.06,p > 0.05) subscales of the

SRS-2 in our stable autism sample.
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Figure 3.4: Average congruence and expressiveness/engagement scores found in (a) autistic and (b) neurotyp-
ical adult clusters.

Figure 3.5: Average expressiveness/engagement scores found (a) between stable groups across images and
(b) within stable groups in response to negative and positive images.
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Figure 3.6: Correlations between emotion recognition accuracy (%) and average engagement across all emo-
tional images for autistic and NT participants in the more stable clusters.

3.4 Discussion

Our main finding was that a subset of autistic adults in our sample show heightened spontaneous facial

expressions regardless of image valence. We used automated facial coding and a clustering approach to limit

inter-individual variability that may have otherwise obscured group differences in previous studies, allowing

an “apples-to-apples” comparison between autistic and neurotypical adults. We did not find evidence for

greater incongruous (i.e., inappropriate) facial expressions in autism. Taken together, our self-report and

expressivity findings point to a higher degree of facial expressions recruited for emotional resonance in autism

that may not always be adaptive (e.g., experiencing similar emotional resonance regardless of valence). These

findings build on previous reports indicating that facial expression intensity is not diminished in autism, and

suggest the need for intervention programs to focus on emotion recognition and social skills in the context of

both negative and positive emotions. These findings are further discussed in relation to current literature in

the sections to follow.

In this study, a primary goal was to use computational approaches to address discrepancies in the literature

on spontaneous empathic facial expressions in autistic adults. Facial expression as a means of registration and

communication of emotion is a highly nuanced behavioral phenomenon characterized by high inter-individual

variability (Holberg et al., 2006) and strong developmental effects (Profyt and Whissell, 1991). The literature

is further complicated by the use of a variety of research methods, with drastic differences in the method
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of eliciting facial expressions (ranging from explicitly asking participants to produce a facial expression to

eliciting spontaneous expressions with a nonsocial (e.g., a foul odor) or a social (e.g., another face making

an expression) stimulus). Studies also differ in the method of measuring facial expressions (ranging from

coding by observers who may or may not have formal training in facial coding (Ekman and Friesen, 1978b),

to electromyography of facial muscles, or automated algorithms for coding facial action). Thus, methodolog-

ical and individual variability has presented a challenge to a clear understanding of how facial expression

production differs in autism. A recent meta-analysis (Trevisan et al., 2018) found that, across various ap-

proaches, autistic people on average appear to differ on the quality and frequency of facial expressions, but

are largely similar to neurotypicals in the intensity and timing of facial expressions. However, given that the

studies in those analyses included a range of the aforementioned variations and noted moderating effects of

individual factors, there is still a considerable lack of clarity on the effect of autism on spontaneous empathic

facial expressions specifically, which are more likely to relate to empathy than elicited/requested expressions

or spontaneous expressions to non-social stimuli.

For this reason, we focused on spontaneous facial expressions to images depicting an emotional face–a

variant of facial mimicry. We restricted our sample to adults and used automated facial coding to capture

participants’ spontaneous facial expressions when viewing images of other people in emotionally charged

situations. These data were then subjected to clustering analyses to isolate reliable subgroups based on overall

levels of facial expressiveness or engagement. We found that both autistic and non-autistic adults could be

separated into two clusters: a larger cluster with relatively lower overall expressivity and more within-cluster

homogeneity in the recruitment of spontaneous facial expressions, and a smaller cluster that exhibited higher

expressivity overall but with significant variability between individuals in the cluster.

To limit the potential for inter-individual variability in this nuanced behavior to obscure meaningful dif-

ferences, we used only the larger and more stable cluster in each group for subsequent group analyses. Our

three primary findings in this subset were surprising. First, the autistic group showed higher overall facial

engagement or expressivity in response to the emotional images, without significant effects of image valence

or an interaction between image valence and group. Second, counter to predictions based on the appropriate-

ness of facial expressions to the social situation, the two groups did not differ on congruency (the extent to

which the participant’s facial expression matched that in the image) or in their valence experience in response

to either positive or negative images. Finally, in the autistic adults, higher levels of facial expressivity were

negatively related to accuracy in the emotion recognition task, while a weaker trend was opposite in direction

for the neurotypical group. We will explore each of these findings below.

Our primary finding that a sample of autistic adults, from which a small cluster of variable but highly

expressive individuals was already removed, still showed higher levels of facial expressivity in response to
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emotional images. This finding is consistent with reports of intact facial mimicry in autism (Schulte-Rüther

et al., 2017), more intense spontaneous facial expressions in adolescents with autism during non-social con-

texts ?, as well as with the findings of a large meta-analysis (Trevisan et al., 2018) demonstrating that autistic

individuals do not show diminished intensity of facial expressions across contexts. Indeed, we find that in

the context of spontaneous response to emotionally charged images, autistic adults on average respond with

more facial expressivity. In our previous work using the same stimuli (Quinde-Zlibut et al., 2021), both

groups experienced greater self-reported emotional resonance (i.e., emotional empathy) to positive versus

negative images. There was also significantly less differentiation between self-reported emotional resonance

to positive versus negative emotional images in our autistic group. For this reason, we expected interac-

tions between group and valence in spontaneous facial expressions, which are thought to reflect emotional

resonance/empathy. However, we did not detect any interactions, suggesting that these spontaneous facial

expressions may represent more than simply a reflection of emotional resonance.

The presence of subgroups and group differences based on intensity and congruence of facial expressions

in both the neurotypical and autistic samples without the accompanying differences in the congruence or

appropriateness of facial expressions between the two more stable clusters suggest a possible role for indi-

vidual differences in the affective and sensorimotor aspects of facial expression production. Motor programs

to produce a spontaneous facial expression in response to an emotional image may be initiated as expected,

suggesting intact feedforward input from amygdala to facial motor circuitry (Gothard, 2014). However, in

autistic adults, the end result of executing this program is an amplified facial expression, which could reflect

altered use of sensory feedback from facial skin and muscle to both facial motor and affective brain regions.

While we did not find significant relations between clinical variables such as ADOS calibrated severity

scores or SRS subscale score and our main outcome measure of facial engagement, we noted an interesting di-

chotomy in the way that facial engagement associates with accuracy of emotion recognition on the MET-J. For

the autistic group, higher facial engagement/expressivity was related to lower emotion recognition (i.e., cog-

nitive empathy). One interpretation of this unexpected finding is that increased facial expressivity is an effect,

rather than a cause, of social difficulty. As adults engage in a task that is challenging to them—identifying the

emotions of another person—increased facial engagement could arise from increased concentration or worry

(Rozin and Cohen, 2003). An alternative interpretation is that amplified facial expressions may contribute

to social difficulty. Previous studies suggest that these two interpretations may be mutually related; adults

with autism are more tolerant of exaggerated emotional facial expressions than neurotypical adults, and this

is thought to reflect a rule-based strategy employed by autistic adults when learning to interpret emotional

facial expressions (Walsh et al., 2014), a process that may involve amplified facial mirroring in an attempt to

learn the associations.
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Limitations and Future Directions

Our finding of equivalent valence in the more stable clusters does not preclude a subset of individuals charac-

terized by inappropriate or incongruous facial expressions, as is commonly described clinically in a minority

of people on the spectrum. Indeed, the smaller and less stable cluster in our autism sample may represent

this subset of the autistic population. A limitation of this study is the small sample size that prevented us

from further defining this subgroup. Our small sample size also warrants well-powered follow-up studies to

confirm the present results.

Other limitations of the study include the use of static stimuli rather than dynamic or interactive social

stimuli, thus future work should consider alternative paradigms that more closely align with real-world social

situations that elicit spontaneous facial expressions. We based our decision to derive within-group clusters on

preliminary analyses demonstrating poor cluster assignment when the autism-NT data were pooled. While

this lack of specificity for autism precludes classification, it points to the highly variable nature of facial

expression use across our sample regardless of diagnostic status.

Algorithm-based metrics of emotion, trained on people without autism, are likely to lead to results that

are not applicable to autism. We address this concern by limiting our choice of metrics to overall engagement

and valence (distinct from AffDex-classified emotions like ‘joy’ or ‘surprise’) which are solely based on

facial actions and compared against the probability that they are equal to scores from human coders. Future

complementary studies should include complete FACS coding assessments of separate clusters to identify

AU-specific differences. In this scenario, the combination of AFC, clustering, and FACS could reduce the

amount of FACS coding hours considerably.

Currently, socio-emotional autism literature is dominated by top-down paradigms that do not address the

inherent reciprocity in dyadic interactions (Milton, 2012; Edey et al., 2016; Morrison et al., 2020)- thereby

limiting our understanding of social phenomena to a stereotypical “norm”. Indeed, the presence of a smaller,

more expressively variable cluster in our NT sample suggests that the expressivity patterns observed in the

smaller autism cluster may not be so “atypical”. Both the autism, and social skill intervention fields will

benefit from future work that explores socio-affective phenomena from this less biased framework. Future

studies should also examine this phenomenon in child and/or adolescent samples and individuals with co-

occurring intellectual disability to better understand the influence of development and cognitive ability.
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Table 3.1: Aggregated statistics on age, facial expressiveness, emotion congruency and social responsiveness
survey (SRS-2) scores for the two autism clusters.

Variable
Autism: Cluster 1 (n=19) Autism: Cluster 2 (n=8)

δ (95% CI) p.value
Median SD Median SD

Age (years) 25.97 9.75 22.50 4.36 -0.289 (-0.651, 0.18) 0.203

Expressiveness/Engagement 6.61 7.56 40.08 15.29 0.93 (0.731, 0.985) 0

Average Congruence 98.80 2.53 97.24 2.59 -0.434 (-0.736, 0.012) 0.035

SRS-2 (T-scores)a

Social Awareness 61.00 10.42 57.50 13.73 -0.158 (-0.593, 0.349) 0.548

Social Cognition 63.00 10.51 68.00 10.51 0.388 (-0.121, 0.736) 0.103

Social Communication 69.00 11.34 64.00 13.99 -0.039 (-0.536, 0.477) 0.891

Social Motivation 71.00 11.4 64.00 15.15 -0.132 (-0.611, 0.419) 0.656

Restricted Interests &

Repetitive Behaviour
73.00 12.36 67.50 16.45 -0.184 (-0.63, 0.353) 0.508

p.values in bold indicate statistically significant differences between the clusters.

Table 3.2: Aggregated statistics on age, facial expressiveness, emotion congruency and social responsiveness
survey (SRS-2) scores for the two neurotypical (NT) clusters.

Variable
NT: Cluster 1 (n=39) NT: Cluster 2 (n=18)

δ (95% CI) p.value
Median SD Median SD

Age (years) 29.63 7.68 32.42 13.12 0.099 (-0.281, 0.453) 0.615

Expressiveness/Engagement 2.79 3.69 25.95 12.61 0.94 (0.826, 0.98) 0

Average Congruence 99.72 1.64 96.62 6.16 -0.625 (-0.817, -0.308) 0

SRS-2 (T-scores)a

Social Awareness 44.00 7.86 44.00 7.59 -0.038 (-0.349, 0.281) 0.822

Social Cognition 44.00 7.76 44.00 6.26 0.066 (-0.245, 0.364) 0.68

Social Communication 45.00 8.01 44.00 7.00 -0.096 (-0.402, 0.229) 0.565

Social Motivation 51.00 9.13 52.00 8.64 0.093 (-0.221, 0.39) 0.563

Restricted Interests &

Repetitive Behaviour
45.00 6.04 47.00 9.93 0.189 (-0.152, 0.49) 0.268

p.values in bold indicate statistically significant differences between the clusters.
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CHAPTER 4

The Neural Basis Of Cognitive Empathy in Autism

4.1 Introduction

There is now substantial empirical evidence for impaired cognitive empathy in autism. In our own study,

discussed in Chapter II, we have used the Multifaceted Empathy Test-Juvenile (MET-J; Dziobek et al. 2008) to

show lower accuracy of emotion recognition or emotion labeling of positive and negative human expressions

in a large sample of broad age range (Quinde-Zlibut et al., 2021). Indeed, autism differences in behavioral

indices of cognitive empathy like emotion recognition accuracy and theory of mind have been consistently

reproduced across samples, contexts, and age groups (Dziobek et al., 2008; Mazza et al., 2014; Quinde-Zlibut

et al., 2021; Kleinman et al., 2001). Efforts to elucidate neural correlates for these outcomes suggest that

atypical cognitive empathy in autism is related to connectivity among brain regions implicated in subserving

interoception, social-cognitive processes, and autonomic monitoring in neurotypical development (Frith and

Frith, 2001; Decety and Jackson, 2004; Amodio and Frith, 2006; Schulte-Rüther et al., 2007; Fan et al., 2011;

Cox et al., 2012; Shi et al., 2020).

Statistical and technological advancements in social neuroscience have made it possible to learn much

about the neural correlates of empathy through structural MRI (Banissy et al., 2012), and functional con-

nectivity MRI (Fan et al., 2011). Task-based functional connectivity studies in autism suggest that regions

showing different connectivity patterns during cognitive empathy tasks are functionally important for cog-

nitive and emotional processes like assessing external inputs for affective importance and value (anterior

insula & anterior cingulate cortex; Fan et al. 2013; Lockwood 2016), emotion recognition, mimicry, and

understanding (inferior frontal gyrus; Iacoboni 2005; Shamay-Tsoory 2011), self-other social referencing

(temporoparietal junction; Frith et al. 2003; Saxe and Kanwisher 2004; Quesque and Brass 2019), and mak-

ing socially and emotionally informed decisions (amygdala & ventromedial prefrontal cortex; Amodio and

Frith 2006; Adolphs 2010).

Much of what we know about a possible core empathy network comes from functional MRI studies

that interrogate empathy using performance-based MRI tasks that capture state rather than trait capacities

(Uribe et al., 2019). The distinction between state and trait is much like that of climate and weather, one

describing long-term patterns in weather conditions and the other describing short term atmospheric changes,

respectively. While both capture important personality concepts, traits make up characteristic patterns of

people’s thoughts, feelings, and behaviors that generalize across similar situations and experiences. On the
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other hand, states are patterns of thought, feelings, and behavior in response to very specific and particular

situations (Schmitt and Blum, 2020). Thus, as the literature supporting a core empathy network that differs

in autism grows, it is difficult to ascertain what findings are generalizable to concepts and situations more

common to people’s everyday life and what is confined to the controlled nature of the lab setting.

Resting state functional connectivity (rs-FC) measures the temporal correlation of spontaneous blood

oxygenation level dependent (BOLD) activity in brain regions that are spatially separated (Woodward and

Cascio, 2015). The BOLD neuroimaging technique measures the relative change in oxygenated and deoxy-

genated blood in the presence (task-based fMRI) or absence (rs-fMRI) of a task by detecting its magnetic

susceptibility. In the absence of a task, rs-FC captures low frequency oscillations across brain regions that,

if correlated, are assumed to be part of intrinsic networks of functional brain organization (Fox and Raichle,

2007; Woodward and Cascio, 2015). These intrinsic functional networks are thought to be established, at

least in part, through experience over time and across contexts (Fair et al., 2009; Lewis et al., 2009; Zhu

et al., 2011). The task-independent nature of this method also offers advantages for use in clinical popu-

lations like autism that may not be able to meet the cognitive demands of task-based fMRI (Fornito and

Bullmore, 2010). Beyond capturing intrinsic properties that are more stable, allowing for a more generalized

characterization of brain function, rs-FC also mitigates concerns about task-based confounds like motivation

and performance influencing case- control group differences.

The aforementioned benefits and scarce extant rs-FC literature on cognitive empathy differences in autism

motivated the present study. Thus, the first objective was to replicate previous task-based findings of group

differences across the network of regions involved in cognitive empathy using resting state data. The second

objective was much more exploratory- to gauge the behavioral relevance of distinct rs-FC patterns, we in-

vestigated how diagnostic group interacts with connectivity between specific region pairs to predict emotion

recognition accuracy, our measure of cognitive empathy. In line with a small but growing body of literature

reporting that differences in task-based network configurations are reflected at the intrinsic level (Smith et al.,

2009; Tavor et al., 2016), we hypothesized that the FC patterns among empathy relevant regions would be

more similar among individuals within but not across diagnostic group. Based on previous findings on im-

paired self-other distinction and mentalizing in autism (Bernhardt et al., 2014; Lombardo et al., 2010), we

hypothesized that interactions between diagnostic group and the connectivity between cognitive regions like

the TPJ and vmPFC would be most predictive of percent mean emotion recognition accuracy.
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4.2 Methods

4.2.1 Participants

Participants in this study were from a pool of participants in a larger and longitudinal lab study who agreed

to be recontacted and who were recruited from the community through social media and flyers. The present

sample (n = 76) consisted of 37 Autism (27 males, ages 8-35) and 39 participants with neurotypical develop-

ment (26 males, ages 8-34) who completed the MET as previously reported in Quinde-Zlibut et al. (2021). All

participants were pre-screened using the Wechsler Abbreviated Scale of Intelligence Second Edition (WASI-

II) (Wechsler, 2011), for full-scale IQ scores greater than or equal to 70. Autism diagnoses were confirmed

by the clinical judgment of a licensed psychologist specializing in the assessment of autism, supported by

research-reliable administration of the ADOS-2 and, when available, parent interviews that included algo-

rithm items from the Autism Diagnostic Interview, Revised (Lord et al., 1994).

Exclusion criteria for both groups included the presence of other neurological and genetic disorders, non-

autism related sensory impairments (e.g., uncorrected visual or hearing impairments), and substance/alcohol

abuse or dependence during the past two years. Further, individuals in the NT group were excluded if they had

reported a previous psychiatric history, cognitive or sensory impairment, use of psychotropic medications, or

clinically elevated scores on the Social Communication Questionnaire (SCQ Total score 15) (Rutter et al.,

2003).

4.2.2 Cognitive Empathy

Participants completed an adapted version of the well-validated computer-based Multifaceted Empathy Test,

the MET-J as described in Quinde-Zlibut et al. (2021). Briefly, the test involves presenting participants 32

images of male- and female- human expression from the International Affective Picture System (IAPS) (Lang

et al., 1997). The set of images included both positive and negative emotionally charged expressions across a

broad age range. After viewing each image, participants were asked a set of three questions designed to parse

out emotional (EE) and cognitive empathy (CE). Emotional empathy was assessed by asking participants

to rate their level of arousal and rate their level of emotional resonance (i.e., “how much do your feelings

match the boy’s feelings”). Cognitive empathy was assessed by asking participants to label the emotion of

the human expression via multiple choice. As this is the one aspect of empathy that has been consistently

reported to be a challenge in autism, CE measured as percent mean emotion recognition accuracy, was the

behavioral outcome of interest in the present study.
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4.2.3 Ethical Considerations

The study was conducted in accordance with the Declaration of Helsinki and all participants were compen-

sated $20 per hour of their time following each session. Written informed consent or assent forms were

signed by all participants, while informed consent was obtained from parents or guardians of minors. All

methods and procedures were approved by the Institutional Review Board for human subjects at Vanderbilt

University Medical Center and carried out in accordance with relevant guidelines and regulations on ethical

human research.

4.2.4 Neuroimaging Data Acquisition and Processing

Neuroimage data acquisition and processing took place in the Vanderbilt University Institute of Imaging

Science Center for Computational Imaging XNAT (Har, 2016; Huo et al., 2018). Image processing followed

closely after methods used in Huang et al. (2021).

4.2.4.1 Acquisition of Structural and Resting State Scans

High-resolution T1-weighted anatomical images were acquired via sagittal slices with 1mm3 voxel resolu-

tion, TR=8.0 msec, TE= 3.7 msec, flip angle = 70, and acquisition matrix = 256 x 256 x 170 on a Siemens

Tim Trio 3T scanner with a 32-channel head coil.

Resting state images were acquired using an echo planar imaging (EPI) sequence (3x3x4 mm voxels,

TR=2s, flip angle 79, and acquisition matrix 80 x 80 x 28) for approximately 6min 46s duration (203 vol-

umes).

4.2.4.2 Neuroimage Pre-Processing

The Computational Anatomy Toolbox 12 (CAT12, version 12.5; http://www.neuro.uni-jena.de/cat/) was used

to segment anatomical images into gray matter, white matter, and cerebrospinal fluid (CSF). Resting state

scans were preprocessed in SPM12 and were (1) realigned to a mean scan, (2) co-registered with the native

space structural scan, then (3) underwent resting-state denoising procedures: bandpass filter (0.01– 0.1 Hz),

regression of CSF and white matter signal, regression of 12 motion parameters (6 translation and rotation

parameters and their first derivative). All resting state scans went through a quality assurance procedure that

included calculating framewise displacement (FD) and temporal signal to noise ratio (tSNR). Scans with a

median FD > 0.5 were excluded from further analysis.

4.2.4.3 Region of Interest Masks

Given that cognitive empathy related processes are thought to occur through interactions and connectivity

between limbic (emotional) and cognitive structures (Decety et al., 2012), our final mask included regions
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important for both cognitive and emotional processes. Left and right insular regions (posterior, mid, anterior)

were generated using cytoarchitecturally-defined regions of interest (ROIs) defined by Farb et al. (2013).

Left and right amygdala regions (centromedial, basolateral nuclei) were generated using the Juelich atlas

(Amunts et al., 2005) in the FMRIB Software Library (FSL) by thresholding the corresponding maps at 50%.

FSL offers a comprehensive tool library for analyzing MRI, fMRI, and diffusor tensor imaging (DTI) data.

The left and right temporoparietal junction (TPJ) ROIs were generated using the anterior and posterior TPJ

maps from the Mars et al. (2012) temporoparietal junction parcellation in FSL, thresholding at 50%. A small

percentage of overlapping voxels were assigned to the anterior TPJ. Left and right inferior frontal gyrus maps

(pars triangularis and pars opercularis) were generated using the Harvard-Oxford cortical atlas (Desikan et al.,

2006) in FSL, thresholding the corresponding maps at 50%.

A single mask was generated for the left ventromedial prefrontal cortex (vmPFC), the dorsal anterior

cingulate cortex (dACC) and right supplemental motor area (SMA) due to their proximity to midline. The

left vmPFC map was generated from connectivity-based parcellations in Jackson et al. (2020), selecting for

the ventral connectivity cluster (threshold at 80% intensity) and using available maps from NeuroVault, an

open data repository for brain maps (https://neurovault.org/collections/4798/). The dACC and rSMA masks

were generated as 8mm spheres from the peak activation coordinates for cognitive-evaluation > affective-

experiential empathy and affective-perceptual empathy contrasts, respectively, in Fan et al. (2011).

4.2.4.4 Functional Connectivity

Functional connectivity was computed by Pearson correlating time series data between every pair of ROIs,

resulting in 21 X 21 symmetric FC matrices.

4.2.5 Statistical Analyses

Differences in continuous (age, FSIQ), and count (sex) demographic variables were compared between the

autism and control group using Welch’s unequal variances t-test and chisq.test functions in the stats R pack-

age, respectively. The diagnostic group difference in emotion recognition accuracy (i.e., cognitive empathy)

found in the larger study (Quinde-Zlibut et al., 2021) and reported in Chapter 2 was confirmed using Welch’s

unequal variances t-test.

4.2.5.1 Multivariate Distance Matrix Regression

Towards our first objective of confirming that the rs-FC network for cognitive empathy is different in Autism,

we used the multivariate distance matrix regression (MDMR) approach (Anderson, 2001) to test the associa-

tion between diagnostic group and the similarity in rs-FC patterns across our sample arranged and computed
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as a distance matrix (D). A motion parameter, median frame-wise displacement (FD), was also simultane-

ously tested and included in this analysis as a predictor of no interest. Association tests are achieved by

decomposing the sums of squares of the distance matrix into a portion attributable to regression onto pre-

dictor variables (in our case diagnostic group and motion), and a portion due to residual. This analysis was

carried out using the MDMR package in the R statistical software by passing the diagnostic group predictor

and distance matrix outcome to the mdmr function.

In the context of this study, the MDMR method allowed us to study the association between diagnostic

group and rs-FC measurement profiles while avoiding common challenges in traditional univariate general

linear model methods like correcting for multiple comparisons by reducing the total number assessments

required (Bennett and Miller, 2010; Shehzad et al., 2014). The procedure, as outlined by Anderson (2001), is

a three-step process that includes:

1. Computing the distance between all pairs of individuals (N) with respect to a given set of dependent

variables (e.g., patterns of brain connectivity) for obtaining a N × N distance matrix (D)

2. Calculating a PseudoF (Fp) statistic to test the hypothesis that one or more regressor variables (such as

diagnostic group) have no relationship to variations in the distance or dissimilarity among individuals

3. Testing the significance of the Fp statistic using permutation tests.

The output of this analysis provides information on the pseudo proportion of explained variance (R2
p) and

significance of each predictor. Because the Fp is analogous to an F-statistic from the standard ANOVA model,

significant predictors with R2
p = k can therefore be interpreted as explaining k x 100% of the variation in the

similarity of the individual connectivity patterns. The statistical significance of each predictor was calculated

using a null distribution generated from 5,000 permutations.

4.2.5.1.1 Geodesic Distance- A Measure of (Dis)Similarity

We computed the distance matrix for MDMR using the geodesic distance metric of similarity. In geometry, a

geodesic describes a curve that represents the shortest path between two points on a curved surface. There is

extensive evidence that functional connectivity correlation matrices are objects that lie on non-linear, curved

surfaces known as positive semidefinite cones (Boyd et al., 2004; Venkatesh et al., 2020; Abbas et al., 2021).

Thus, Venkatesh et al. (2020) proposed the geodesic distance as a more geometry-aware approach to simi-

larity indices of functional connectivity matrices (which are a specific example of a correlation matrix) that

considers their non-linear properties.

A single geometry-aware distance matrix was generated for the connectivity matrices of all participants

(N = 76) by adapting the distance FC function found in https://github.com/makto-toruk/FC geodesic.
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Briefly, this involved wrapping the function within a nested loop that would compute and store the geodesic

distance of any given matrix against itself and all other matrices. Pair-wise distances were arranged into a

symmetric 76 x 76 distance matrix (D) for use in multivariate distance matrix (MDMR) regression.

4.2.5.2 Exploratory Regressions

Our second objective was to identify what region-to-region pairwise correlations explain more inter individual

variance in percent mean emotion recognition accuracy, our measure of cognitive empathy with observed

group differences. To do this we ran several linear regression models to test the interaction between diagnostic

group and each pairwise correlation of interest using the lm function in the stats package. To minimize the

total number of models to run, we selected pairwise correlations of regions that are consistently involved in

cognitive empathy according to the literature (Schulte-Rüther et al., 2007, 2010). Except for the IFG regions

(pars triangularis and pars opercularis), we averaged connectivity across hemispheres where possible. Since

activity in the left IFG is consistently related to language and verbal capacities (Dapretto and Bookheimer,

1999; Haller et al., 2005; Hagoort, 2005), we included the average of right pars triangularis and right pars

opercularis as right IFG only. Thus, the final list of regions included in this analysis are as follows: basolateral

amygdala, anterior TPJ, posterior TPJ, left ventromedial prefrontal cortex, right inferior frontal gyrus, and

anterior insula (see Table 4.1).

4.3 Results

There were no significant group differences in age (t = -1.81, p = 0.07), FSIQ (t = -1.42, p = 0.16), or sex

(X2 = 0.12, p = 0.73) in our autism-control comparisons. In this smaller subset of participants previously

reported on in Quinde-Zlibut et al. (2021) and Chapter 2, we also found a significant group difference in

emotion recognition accuracy (t = -3.29, p = 0).

4.3.1 Multivariate Distance Matrix Regression

Using the multivariate distance matrix regression (MDMR) approach we found that the rs-FC patterns among

empathy-relevant regions are more similar for individuals within group (Autism-Autism, NT-NT) than indi-

viduals across groups (Autism-NT) (Fp = 0.017, p = 0.024, Figure 4.1). Motion was also significantly more

similar within groups than across groups (Fp = 0.019, p = 0). The percentages of variance explained for each

significant predictor, and for the total model were modest at best (1.6% for group, 1.8% for motion, and 3.5%

for the total).
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Figure 4.1: Geodesic distances by comparison group

4.3.2 Exploratory Analysis

To explore the behavioral relevance of a cognitive empathy network that is more similar among autistics

compared to controls, we regressed emotion recognition accuracy, our measure of cognitive empathy, onto

diagnostic group, 15 separate pairwise correlations (Table 4.1), and the interaction between group and each

pairwise correlation. Of all the tested models, two had interaction terms that were significant predictors of

emotion recognition accuracy:

EmotionRecognitionAccuracy = Dx+BLA : pT PJ+Dx∗BLA : pT PJ (4.1)

EmotionRecognitionAccuracy = Dx+BLA : rIFG+Dx∗BLA : rIFG (4.2)

Where Dx stands for diagnostic group, connectivity between two regions is represented with ‘:’, BLA

stands for basolateral amygdala, pTPJ in (Eq. 4.1) is posterior TPJ, and rIFG in (Eq. 4.2) is right inferior

frontal gyrus. In (Eq. 4.1) there was a significant diagnostic group by BLA:pTPJ interaction (t = -2.34,
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p = 0.022), while the main effect for diagnostic group (t = 2.53 , p = 0.015) but not BLA:rIFG pairwise

correlation (t = 1.51 , p = 0.135) was significant. In (Eq 4.2) there was a weak diagnostic group by BLA:rIFG

interaction (t = -2.01, p = 0.048), while the main effect for diagnostic group (t = 3.24, p = 0.001) but not

BLA:rIFG pairwise correlation (t = 1.43 , p = 0.157) was significant. Results for the remaining models in this

exploratory analysis can be found in Table 4.1. Visual inspection of the geodesic distances by comparison

indicates greater variability within the autism group (Autism-Autism) compared to between groups (Autism-

NT) and within control group (NT-NT) distances. On average, the three comparison groups had similar

distances yet the median distance score for Autism-Autism comparisons was slightly smaller (Figure 4.1).

4.4 Discussion

Using a combination of resting state functional connectivity and a geometry-aware metric of similarity, the

geodesic distance, we found that the connectivity among regions important for cognitive empathy are more

similar for individuals within the same diagnostic group than between diagnostic groups. Separately, our ex-

ploratory analysis for identifying neural correlates of emotion recognition in autism point to two potentially

important pairwise relationships: connectivity between 1) the basolateral amygdala with the posterior tem-

poroparietal junction and 2) the basolateral amygdala with the right inferior frontal gyrus. The role of these

regions should be interpreted with caution, however, as we did not correct for the multiple tests performed in

this exploratory step.

Our MDMR finding is consistent with previous neuroimaging studies that report autism specific connec-

tivity patterns among empathy relevant brain regions (Shi et al., 2020). Visual inspection of the geodesic

distances by comparison group provided additional insights to our MDMR results. Figure 4.1 suggests that

the diagnostic group-specific similarity in connectivity is related to degree of variability such that Autism-

Autism distances are more variable and still slightly more similar to each other than Autism-NT and NT-NT

distances. We did find it surprising that the geodesic distances between the connectivity patterns of our

autism and neurotypical participants were not much different than the differences observed within group for

neurotypicals or autistics. Nevertheless, the presence of a task-independent connectivity profile in empathy

relevant regions that is more similar among autistics points to a promising avenue for further elucidating

autism specific connectivity using resting state methods of neuroimaging with low cognitive demands.

The multivariate MDMR method offers several advantages over traditional univariate strategies that test

the association between phenotypic measures and only one functional connection at a time (Cole et al., 2010).

Primarily, it avoids the need for conducting many statistical tests that increase the potential for false positive

decisions by testing the simultaneous contributions of entire functional connectivity sets to phenotypic vari-

ables of interest. Thus, given that empathy is thought to be driven by patterns of synchronous activity across
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distributed brain regions, this multivariate approach likely offers a more accurate representation of the rela-

tionship between empathy-relevant connectivity and diagnostic phenotype (Varoquaux and Craddock, 2013;

Shehzad et al., 2014). This advantage also circumvents the need to meet any a priori assumptions or limit

the number of regions to assess making it possible to test various networks and thus serve as a guide for

follow-up correlation studies with better regional specificity (Shehzad et al., 2014).

To this end, we conducted an exploratory analysis to identify potential candidates driving a rs-FC pattern

among regions relevant for cognitive empathy that is more similar within than between groups. However, the

present study does not have enough power to avoid the very same pitfalls that the MDMR approach over-

comes, thus we cannot be sure that our findings from this secondary analysis would replicate. At best, we

can speculate in our interpretation of these results that our autistic participants likely engaged a different neu-

ral strategy for emotion recognition that relies more on emotional-cognitive coupling than our neurotypical

controls. A positive relationship between emotion recognition accuracy and the BLA connectivity with self-

referential social cognitive regions like the pTPJ and rIFG in autism would suggest that autistic individuals

access their own emotional states to better understand emotions in others.

Such a relationship would align with previous work reporting preferential recruitment of regions impor-

tant for gaining access to information of the self during cognitive empathy tasks in autism Schulte-Rüther

et al. (2010); Lombardo et al. (2010); Bernhardt et al. (2014). Thus, if autistic individuals tap into their own

emotions during emotion recognition tasks, it follows that accuracy would decrease when there is a mis-

match between felt and observed emotions. It also follows that the social consequences of such a mismatch

would scale with increasingly complex emotions and warrants further investigation to better understand the

developmental effects of emotion recognition using more dynamic and socially relevant stimuli.

4.4.1 Limitations and Future Directions

There are several limitations to the present study, some of which have been already acknowledged. Primarily,

the MDMR multivariate approach for neuroimaging studies is an improvement over univariate tests but lacks

regional specificity. While helpful for identifying potential network differences related to phenotypes, it

is difficult to fine tune hypotheses to specific neural connections of interest. To do so would require well

powered, region of interest-specific, follow-up studies. Our exploratory findings should be interpreted with

caution and warrant further investigations on larger samples of a broad age range to replicate and extend the

present study by addressing the effects of age, IQ, and sex on neural correlates of cognitive empathy abilities

in autism. Future directions also include further elucidating the role of brain regions important for self-other

distinction and testing for effects of laterality on emotion recognition strategies.
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Table 4.1: Exploratory Regression Models

Independent Variables Coefficients
B (SE)

t p R2adj F(df) p

Intercept
Dx

BLA : AI
Dx * BLA : AI

55.22 (1.93)
9.43 (2.60)

-22.32 (13.34)
21.95 (17.66)

28.616
3.62
-1.67
1.24

0
0.001
0.099
0.218

0.126 4.61(3,72) 0.005

Intercept
Dx

BLA : aTPJ
Dx * BLA : aTPJ

56.07(1.81)
8.09(2.60)

14.14(12.51)
-6.07 (16.95)

30.92
3.11
1.51

-0.395

0
0.003
0.252
0.694

0.1135 4.2 (3,72) 0.009

Intercept
Dx

BLA : pTPJ
Dx * BLA : pTPJ

56.74(1.69)
6.29(2.53)

20.97(13.86)
-44.95 (19.182)

33.49
2.486
1.51
-2.34

0
0.015
0.135
0.022

0.157 5.66 (3,72) 0.002

Intercept
Dx

BLA : vmPFC
Dx * BLA : vmPFC

56.91(1.79)
7.96(2.51)
4.11(6.75)

0.69 (11.17)

31.73
3.18
0.61
0.06

0
0.002
0.544
0.951

0.100 3.79 (3,72) 0.014

Intercept
Dx

BLA : rIFG
Dx * BLA : rIFG

56.87(1.72)
7.74(2.39)

22.82(15.95)
-43.18 (21.47)

33.15
3.24
1.43
-2.01

0
0.002
0.157
0.048

0.140 5.09 (3,72) 0.003

Intercept
Dx

AI : aTPJ
Dx * AI : aTPJ

57.51(2.82)
6.84(4.34)

-3.89(10.26)
5.07 (14.73)

20.38
1.57
-0.38
0.34

0
0.120
0.706
0.732

0.094 3.59 (3,72) 0.0176

Intercept
Dx

AI : pTPJ
Dx * AI : pTPJ

55.09(2.19)
9.02(2.81)

-12.86(11.05)
0.22 (15.66)

25.08
3.21
-1.16
0.014

0
0.002
0.248
0.988

0.124 4.55 (3,72) 0.0056

Intercept
Dx

AI : vmPFC
Dx * AI : vmPFC

56.94(1.80)
9.43(2.59)

5.42(11.71)
12.68 (14.73)

31.61
3.64
0.46
0.86

0
0.001
0.645
0.392

0.143 5.19 (3,72) 0.003

Intercept
Dx

AI : rIFG
Dx * AI : rIFG

60.69(3.06)
4.68(4.30)

-23.81(14.95)
20.10 (19.96)

19.85
1.09
-1.59
1.01

0
0.281
0.116
0.317

0.124 4.54 (3,72) 0.008

Intercept
Dx

aTPJ : pTPJ
Dx * aTPJ : pTPJ

57.98(1.96)
8.32(2.53)

-10.91(9.50)
-15.59 (11.79)

29.63
3.28
-1.19
-1.32

0
0.002
0.255
0.191

0.254 9.52 (3,72) 0

Intercept
Dx

aTPJ : rIFG
Dx * aTPJ : rIFG

54.47(2.39)
10.58(3.01)

-16.27(12.26)
21.21 (14.97)

22.71
3.51
-1.33
1.42

0
0.001
0.189
0.161

0.117 4.34 (3,72) 0.007

Intercept
Dx

aTPJ : vmPFC
Dx * aTPJ : vmPFC

54.58(2.55)
8.67(3.29)

12.48(11.19)
-2.36 (14.15)

21.41
2.64
1.12
-0.17

0
0.010
0.268
0.868

0.124 4.53 (3,72) 0.006

Intercept
Dx

pTPJ : vmPFC
Dx * pTPJ : vmPFC

56.84 (1.78)
7.26 (2.56)

-5.58 (11.97)
14.13 (15.91)

31.86
2.83
-0.47
0.88

0
0.006
0.642
0.378

0.103 3.87 (3,72) 0.0126

Intercept
Dx

pTPJ : rIFG
Dx * pTPJ : rIFG

56.84 (1.78)
7.26 (2.56)

-5.58 (11.97)
14.13 (15.91)

31.86
2.83
-0.47
0.88

0
0.006
0.642
0.378

0.103 3.87 (3,72) 0.0126

Intercept
Dx

vmPFC : rIFG
Dx * vmPFC : rIFG

56.37 (1.76)
8.31 (2.46)
-9.98 (8.57)
10.84 (12.40)

32.04
3.38
-1.17
0.87

0
0.001
0.248
0.385

0.109 4.06 (3,72) 0.01
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CHAPTER 5

Conclusion and Future Directions

5.1 Conclusion

The social relevance of empathy to help us understand, communicate, and interact with others effectively has

been conceptually understood for a long time. Yet, contemporary research seeking to quantify and identify

atypical qualities of empathy that are clinically relevant has been largely stalled by differences in operational

definitions and methodology (Hall and Schwartz, 2019). Philosophy research has largely emphasized the

importance of empathy for morality and cultural advancements, psycho-social accounts have focused on the

developmental implications of empathy, and more recently, cognitive neuroscience has increased our under-

standing of the neurobiological basis for how we come to engage empathy in our day-day lives. Recent

studies seeking to find better agreement across these disciplines point to an evolutionary advantage of auto-

nomic nervous systems in group-living animals that are sensitive to the behaviors of others for basic survival

and social well-being (Howe, 2012; Singer and Lamm, 2009).

Towards a more unified understanding of empathy components that could serve as practical intervention

targets, advancements in implicit and explicit methods have encouraged the use of more holistic approaches

for investigating the interplay between brain and behavior. Thus, as our understanding of the empathic ex-

perience reaches new depths, we can begin to disentangle various components of empathy that are affected

in clinical populations. In autism, empathy is related to social and communication symptomatology. So-

cial symptoms like the ability to establish and maintain relationships rely on cognitive skills like an ability

to infer the intentions of others towards themselves and equally important, towards other social partners.

Communication symptoms include the use of non-verbal cues like facial expressions and body gestures to

transmit social intentions to social partners. These separate but related processes are subserved by specific

brain networks whose connections are shaped by experience and development.

One overarching goal for the present study was to generate a unified hypothesis and characterization

of empathy differences in autism that leveraged findings from separate lines of research. A clearer, more

integrated understanding began to emerge as studies began to approach the empathy problem using a biopsy-

chosocial framework. Better agreement in operationalized definitions of empathy that consider the individual

contributions of affective and cognitive components certainly helped this effort along. Yet, as more and more

studies began adopting this dual framework, empathy research in autism was challenged by disagreement in

reports of intact (Dziobek et al., 2008) and dampened emotional empathy (Gu et al., 2015; Mul et al., 2018).
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My own literature review suggested that discrepancies were likely attributable to varied methods using im-

plicit physiological versus explicit self-report indices of emotional empathy. Separately, theoretical models

on the hedonic properties of empathy began to emerge (Williams, 1990), but few autism studies explored

empathy as a valence-dependent construct (Ashwin et al., 2007; Mazza et al., 2014). Finally, evidence for

atypical neural responses in autism was largely limited to empathy for pain studies using in-scanner tasks

that can be challenging and of low utility for use with individuals with significant autism symptoms (Fan

et al., 2013; Lassalle et al., 2018). Together, these limitations presented critical gaps in our understanding of

empathic behavior and brain function across the autism spectrum.

The present study sought to address these limitations using a single task, the Multifaceted Empathy Test-

Juvenile (MET-J; Dziobek et al. 2008), and a single large cohort of a broad age range. Together, the methods

we have employed across all three projects better capture the multidimensional nature of empathy and how its

various components differ in autism. The MET survey results presented in chapter 2 support reports of global

cognitive empathy challenges in autism and provide new valence-specific insights regarding emotional empa-

thy. We found a valence by diagnostic group effect in emotional empathy of greater contrast when resonating

to positive versus negative stimuli in our neurotypical development group that was not as distinguishable in

our autism group. We also found a significant valence by age group interaction when predicting self-report

arousal ratings indicating that relative to negative facial expression images, positive facial expressions elicited

greater arousal in children and adolescents but not in our adult groups.

Our study of spontaneous facial expression production (FEP) in response to images of emotionally

charged negative and positive facial expressions provided implicit empathy insights. While we expected

to find atypical FEP in autism, we did not expect to find that high variability was not autism specific. Af-

ter accounting for inter-individual variability in both groups, we found that over FEP was still significantly

higher in our autism group compared to our neurotypical development group. Subsequent exploratory corre-

lation analysis revealed that high expression was related to lower emotion recognition accuracy in autism but

higher emotion recognition accuracy in neurotypical controls. Finally, we have shown that task-dependent

functional connectivity differences found in autism among empathy regions are also present at rest. The

following sections will discuss these findings in relation to current research.

The findings discussed in Chapter II challenge the traditional claim that autism is characterized by an

empathy deficit (Kanner, 1943; Baron-Cohen et al., 1985). The work presented here does not support such

an overgeneralization. Instead, we have shown that emotional empathy, an affective component, is intact

in autism and that a more nuanced picture emerges when considering the valence of the experience. The

valence of emotionally charged facial expressions did not differentiate the degree of emotional resonance in

autism as much it did in our neurotypical controls. In autism, emotional resonance was similar in response to
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both positive and negative facial expressions, while for controls, there was less resonance with negative than

with positive expressions. The adaptive implications of this are twofold. First: relatively stronger emotional

resonance in autism to negative scenarios may lead to behaviors that impede social connection and thus have

negative social consequences. Second: unregulated emotional resonance in negative contexts could lead

to challenging mental health burdens. In fact, studies investigating the role of emotion regulation on social,

mental, and physical outcomes suggest that there is a positive relationship between emotion dysregulation and

negative outcomes across these three characteristic domains of autism symptomatology (Cai et al., 2018).

Regarding cognitive empathy, we found that emotion recognition capabilities are challenged in autism

regardless of whether the observed emotions were of positive or negative valence. This finding is in line with

theory of mind studies in autism and suggests that autism is more broadly affected by increasingly complex

socio-cognitive demands. We also report age effects indicating that children in our neurotypical development

(ND) and autism groups displayed significantly lower emotion recognition accuracy than adults. Recognizing

discrete emotions from faces is characteristic skill and feature of neurotypical development (Bornstein and

Arterberry, 2003) that is continually refined with perceptual learning and helps communicating complex emo-

tional states (Pollak et al., 2009). In line with this, we found that performance on the CE task increased with

age throughout childhood, reaching an asymptote at approximately age 18–20. To this point, Schulte-Rüther

and colleagues suggest that autistic adults develop compensatory mechanisms to meet empathic demands

of emotional resonance and emotion recognition (Schulte-Rüther et al., 2010). They report age-dependent

decreases in neural recruitment of empathy network regions in neurotypical controls that coincided with ei-

ther increasing or unchanged age-dependent neural recruitment in autism (Schulte-Rüther et al., 2014). These

findings point to a potential sensitive period during which neurodevelopmental changes important for emotion

recognition typically occur and a potential age window for targeting empathy skill training.

We were also interested in exploring the relationship between emotion recognition and spontaneous FEP.

Based on facial expression autism studies’ suggestion that autistic facial expressions are atypical in appear-

ance (Trevisan et al., 2018), we expected that unsupervised machine learning methods like k-means clustering

would differentiate our neurotypical and autistic adults based on overall FEP. Instead, we found that the k-

means approach better differentiated each diagnostic group into a larger, less variable subgroup and a smaller,

more variable subgroup. The larger subgroups were characterized by lower overall FEP and greater congru-

ency between expressed and observed emotions while the smaller subgroups exhibited greater FEP but lower

congruency between the observed and expressed emotion.

These findings are of import regarding their comparative value in that the presence of smaller more ex-

pressive, more variable, and less congruent groups in both our ND and autism samples suggests that exag-

gerated expressivity is not an autism-specific feature. Yet, there was still greater facial expression production
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in autism even after controlling for inter-individual variability. This was an unexpected result given that pre-

vious reports do not suggest that facial expression intensity is affected in autism (Keating and Cook, 2021)

despite prevalent clinical descriptions of both “flat affect” (Capps et al., 1993; Stagg et al., 2014) and “ex-

aggerated” expressions (Faso et al., 2015; Wozniak et al., 2017). Yet the presence of this subtle difference

of greater overall expressivity could lead to negative evaluations from peers and reduce the overall quality of

social interactions (Stichter et al., 2010). Further, facial expression production and reciprocity are important

for socio-emotional constructs like emotional regulation Gross and John (2003) and the success of social

interactions (Halberstadt et al., 2001).

5.1.1 A Unified Hypothesis to the Empathy Problem in Autism

The collective findings of the present study highlight and support the importance of self-other distinction

as an integral capacity for the experience of empathy. Relatively less self-reported emotional resonance to

negative stimuli in controls may reflect better self-other distinction in negative contexts compared to autistic

individuals. We further show that this advantage persists across development. We have shown that task-

dependent neural substrates of empathy are represented in intrinsic functional connectivity among empathy

network regions. We also preliminarily identified two regions important for self-other distinction in social

contexts that when coupled with the amygdala are related to better emotion recognition in autism but not

neurotypical controls. In line with findings from Schulte-Rüther et al. (2010, 2014), this points to a potential

compensatory mechanism to emotion recognition in autism that relies on the self-experienced emotion in

response to others. In the process of making sense of the self-experienced emotion, it is possible that autistics

rely on implicit sensory feedback from facial expressions more than neurotypical controls which would ex-

plain the overall increase in expressivity and lower emotion recognition when the felt and observed emotions

do not match.

5.1.2 The Double Empathy Problem

The comparative work discussed thus far comes from studies attempting to explain and characterize autism

as a deviance from normal development and cognitive functioning. This long standing case-control design

and framework has recently been challenged by critiques on the use of neurotypical people as a “normal”

reference point and suggest that social challenges between neurotypical and autistic individuals reflect a more

reciprocal, double empathy problem (Milton, 2012). For example, findings of diminished social-cognitive

differences when autistic individuals are partnered with one another, suggest that reports of empathy deficits

should be reframed as features specific to interactions rather than the individuals themselves (Edey et al.,

2016; Morrison et al., 2020).
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In the context of the present study, we are limited to one half of the empathy problem as we explore

autistic responses to static stimuli depicting neurotypical facial expressions. A more precise characterization

of empathy in autism would explore the same concepts presented in this study using images from autistic

individuals in equally emotionally charged scenarios. This approach would also provide helpful insights

and a more balanced understanding on the empathy experience of neurotypicals towards autistic individuals.

Further, as the empirical evidence supporting a more dimensional conceptualizing of autism grows, studies

should favor the use of stimuli that is more representative and neurodiverse inclusive (Sonuga-Barke and

Thapar, 2021).

5.1.3 Summary of Future Directions

This study opens exciting avenues for future research. Primarily, we are interested in complementing our

sensory feedback hypothesis of increased facial expression production in autism as a mechanism for emo-

tion recognition by testing for sensory threshold differences in face. The basis for this curiosity stems from

empirical reports that the ability to recognize and understand people’s faces is challenged by clinical and ex-

perimental disturbances to sensorimotor processing in the face like facial paralysis and mechanical blocking,

respectively (Wood et al., 2016).

Separately, a big limitation of task-based studies in autism is that any findings speak only to higher

functioning autistics that meet a full-scale IQ score of 70 or higher. This exclusionary criterion is typically

put in place to ensure that participants understand their rights as research participants and that they can meet

the cognitive demands associated with the tasks to be completed. However, our work using resting state

functional connectivity suggests that this method would make a favorable alternative for interrogating brain

networks in lower functioning autistic populations.
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Goñi, J. (2021). Geodesic distance on optimally regularized functional connectomes uncovers individual
fingerprints. Brain Connectivity, 11(5):333–348.

Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy
of Sciences, 1191(1):42–61.

American-Psychiatric-Association (2013). Diagnostic and statistical manual of mental disorders (DSM-5),
volume 5. American Psychiatric Association, Arlington,VA.

Amodio, D. M. and Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition.
Nature Reviews Neuroscience, 7(4):268–277.

Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., Habel, U., Schneider, F., and
Zilles, K. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal
cortex: intersubject variability and probability maps. Anatomy and Embryology, 210(5–6):343–352.

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology,
26(1):32–46.

Ashwin, C., Chapman, E., Colle, L., and Baron-Cohen, S. (2007). Impaired recognition of negative basic
emotions in autism: A test of the amygdala theory.

Baayen, R. H., Davidson, D. J., and Bates, D. M. (2008). Mixed-effects modeling with crossed random
effects for subjects and items. Journal of Memory and Language, 59(4):390–412.

Bagby, R. M., Parker, J. D., and Taylor, G. J. (2020). Twenty-five years with the 20-item toronto alexithymia
scale. Journal of Psychosomatic Research, 131(January):109940–109940.

Baio, J., Christensen, D. L., Van Naarden Braun, K., Baio, J., Bilder, D., Charles, J., Constantino, J. N.,
Daniels, J., Durkin, M. S., Fitzgerald, R. T., Kurzius-Spencer, M., Lee, L.-c., Pettygrove, S., Robinson,
C., Schulz, E., Wells, C., Wingate, M. S., Zahorodny, W., Yeargin-Allsopp, M., Christensen, D. L., Van
Naarden Braun, K., Baio, J., Bilder, D., Charles, J., Constantino, J. N., Daniels, J., Durkin, M. S., Fitzger-
ald, R. T., Kurzius-Spencer, M., Lee, L.-c., Pettygrove, S., Robinson, C., Schulz, E., Wells, C., Wingate,
M. S., Zahorodny, W., and Yeargin-Allsopp, M. (2018). Prevalence and characteristics of autism spectrum
disorder among children aged 8 years - autism and developmental disabilities monitoring network, 11 sites,
united states, 2012. MMWR Surveillance Summaries, 65(13).

Banissy, M. J., Kanai, R., Walsh, V., and Rees, G. (2012). Inter-individual differences in empathy are reflected
in human brain structure. NeuroImage, 62(3):2034–2039.

Baron-Cohen, S. (2011). Zero Degrees of Empathy: A New Theory of Human Cruelty and Kindness. Pen-
guin/Allen Lane, London.

Baron-Cohen, S., Leslie, A. M., and Frith, U. (1985). Does the autistic child have a “theory of mind”?
21:37–46.

Baron-Cohen, S. and Wheelwright, S. (2004). The empathy quotient: An investigation of adults with asperger
syndrome or high functioning autism, and normal sex differences. Journal of Autism and Developmental
Disorders, 34(2):163–175.

Bennett, C. M. and Miller, M. B. (2010). How reliable are the results from functional magnetic resonance
imaging? Annals of the New York Academy of Sciences, 1191(1):133–155.

62



Bernhardt, B. C., Valk, S. L., Silani, G., Bird, G., Frith, U., and Singer, T. (2014). Selective disruption of
sociocognitive structural brain networks in autism and alexithymia. Cerebral Cortex, 24(12):3258–3267.

Bird, G. and Cook, R. (2013). Mixed emotions: the contribution of alexithymia to the emotional symptoms
of autism. Translational Psychiatry, 3(7):e285–e285.

Bird, G. and Viding, E. (2014). The self to other model of empathy: Providing a new framework for under-
standing empathy impairments in psychopathy, autism, and alexithymia. Neuroscience and Biobehavioral
Reviews, 47:520–532.

Blair, R. J. (1999). Psychophysiological responsiveness to the distress of others in children with autism.
Personality and Individual Differences.

Bornstein, M. H. and Arterberry, M. E. (2003). Recognition, discrimination and categorization of smiling by
5-month-old infants. Developmental Science, 6(5):585–599.

Boyd, S., Boyd, S. P., and Vandenberghe, L. (2004). Convex Optimization. Cambridge University Press.
Google-Books-ID: mYm0bLd3fcoC.

Brackett, M. A., Rivers, S. E., Shiffman, S., Lerner, N., and Salovey, P. (2006). Relating emotional abilities
to social functioning: A comparison of self-report and performance measures of emotional intelligence.
Journal of Personality and Social Psychology, 91(4):780–795.

Bradley, M. M. and Lang, P. J. (2007). page 29–46. Series in affective science. Oxford University Press, New
York, NY, US.

Buss, A. H. (1961). Investigating Aggression in the Laboratory., page 35–52. John Wiley & Sons Inc,
Hoboken.

Bürkner, P. C. (2017). brms: An r package for bayesian multilevel models using stan. Journal of Statistical
Software, 80(1).

Bürkner, P. C. (2018). Advanced bayesian multilevel modeling with the r package brms. R Journal,
10(1):395–411.
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Gilet, A.-L., Mella, N., Studer, J., Grühn, D., and Labouvie-Vief, G. (2013). Assessing dispositional empathy
in adults: A french validation of the interpersonal reactivity index (iri). Canadian Journal of Behavioural
Science / Revue canadienne des sciences du comportement, 45(1):42–48.

Gladstein, G. A. (1984). The historical roots of contemporary empathy research. Journal of the History of
the Behavioral Sciences, 20(1):38–59.

Gordon, I., Pierce, M. D., Bartlett, M. S., and Tanaka, J. W. (2014). Training facial expression production in
children on the autism spectrum. Journal of autism and developmental disorders, 44(10):2486–2498.

Gothard, K. M. (2014). The amygdalo-motor pathways and the control of facial expressions. Frontiers in
Neuroscience, 8:43.

Gronau, Q. F., Sarafoglou, A., Matzke, D., Ly, A., Boehm, U., Marsman, M., Leslie, D. S., Forster, J. J.,
Wagenmakers, E. J., and Steingroever, H. (2017). A tutorial on bridge sampling. Journal of Mathematical
Psychology, 81:80–97.

Gross, J. J. and John, O. P. (2003). Individual differences in two emotion regulation processes: implications
for affect, relationships, and well-being. Journal of personality and social psychology, 85(2):348.

Gu, X., Eilam-Stock, T., Zhou, T., Anagnostou, E., Kolevzon, A., Soorya, L., Hof, P. R., Friston, K. J.,
and Fan, J. (2015). Autonomic and brain responses associated with empathy deficits in autism spectrum
disorder. Human Brain Mapping, 36(9):3323–3338.
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