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ABSTRACT

Adults with obesity may develop asthma that is
ineffectively controlled by inhaled corticos-
teroids and long-acting beta-adrenoceptor ago-
nists. Mechanistic and translational studies
suggest that metabolic dysregulation that
occurs with obesity, particularly hyperglycemia
and insulin resistance, contributes to altered
immune cell function and low-grade systemic
inflammation. Importantly, in these cases, the
same proinflammatory cytokines believed to
contribute to insulin resistance may also be
responsible for airway remodeling and hyper-
responsiveness. In the past decade, new
research has emerged assessing whether hypo-
glycemic therapies impact comorbid asthma as
reflected by the incidence of asthma, asthma-
related emergency department visits, asthma-
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related hospitalizations, and asthma-related
exacerbations. The purpose of this review article
is to discuss the mechanism of action, preclini-
cal data, and existing clinical studies regarding
the efficacy and safety of hypoglycemic thera-
pies for adults with obesity and comorbid
asthma.
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Key Summary Points

Obesity contributes to increased
prevalence of comorbid asthma in adults.

Adults with obesity and comorbid asthma
exhibit increased asthma symptoms and
exacerbation of risk and poorer response
to inhaled corticosteroids.

Observational studies of medical therapies
approved for type 2 diabetes and/or
obesity support the targeting of metabolic
pathways for possible beneficial asthma
outcomes.

Head-to-head studies and inclusion of
asthma endpoints in clinical trials of
hypoglycemic therapies are needed for
clarification of clinical benefit for adults
with obesity and comorbid asthma.

INTRODUCTION

Asthma is classically defined as variable airflow
limitation and airway hyperresponsiveness
occurring most often in the context of airway
inflammation. Clinical evidence indicates that
obesity negatively impacts asthma incidence,
severity, symptoms, and therapeutic response.
Mechanistic and translational studies suggest
that the underlying metabolic dysregulation in
patients with obesity, particularly hyper-
glycemia and insulin resistance, contributes to
altered immune cell function and low-grade
systemic inflammation. Over the past two dec-
ades, multiple pharmacologic interventions,
targeting a variety of metabolic pathways, have
been approved for the treatment of prediabetes,
type 2 diabetes mellitus (T2DM), and obesity.
Understanding the relevance of these thera-
peutic advances to asthma clinical outcomes
and respiratory function is an essential step
towards personalized medicine for high-risk
patients with multimorbidity. Unexpectedly,
recent studies also suggest that some of these

medication classes may directly benefit airway
inflammation, airflow limitation, and airway
hyperresponsiveness through mechanisms not
currently addressed by conventional asthma
therapeutics. In this review, we describe the
major pharmacologic interventions available
for the treatment of metabolic dysregulation
and the clinical implications in the context of
adult asthma.

ASTHMA IN ADULTS
WITH OBESITY: PREVALENCE
AND CHALLENGES

Obesity and asthma often coexist through
interrelated mechanical, inflammatory, nutri-
tional, and behavioral pathways. In the USA,
the National Center for Health Statistics deter-
mined that adults with obesity demonstrated
higher rates of asthma (11.1%) compared to
those classified as overweight (7.8%) or normal
weight (7.1%) [1]. From 1999 to 2016, the rate
of obesity in adults with asthma trended
upwards to 1.75-fold that of the general popu-
lation without asthma [2]. Patients with obesity
and comorbid asthma additionally suffer from
increased asthma severity and chronic morbid-
ity, thereby incurring disproportionately large
medical costs [3-6]. Long-term treatment
options for asthma, the most prominent of
which are inhaled corticosteroids (ICS) taken
with or without long-acting beta-adrenoceptor
agonists (LABA), illicit reduced responses in
patients with obesity and comorbid asthma due
to rapid medication clearance and poor
absorption [7-9]. However, weight loss in indi-
viduals with obesity can independently reduce
asthma symptoms and protect against a decline
in measures of lung function, specifically forced
expiratory volume in one second (FEV;) and
forced vital capacity (FVC) [10-12]. As a result,
recommendations for patients with obesity and
comorbid asthma typically involve changes in
diet, exercise, or even bariatric surgery to
achieve weight loss with secondary remission in
asthma symptoms [13, 14].

Obesity and the associated metabolic dys-
regulation alter the comorbid asthma clinical
trajectory. The pathophysiological mechanism
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Fig. 1 Proposed mechanisms of action of metabolic
pathways in the lung of patients with asthma. This
figure depicts the multiple immunological and inflamma-
tory pathways related to asthma that result from metabolic
dysfunction in patients with obesity. I Accumulated
visceral adipose tissue, exacerbated or ameliorated by
certain classes of hypoglycemic therapies, can contribute
to circulating levels of proinflammatory cytokines, such as
TGF-B. 2 These proinflammatory cytokines then activate
M1 macrophages characteristic of the type 2-low asthma
endotype, which contribute further to the low-grade
inflammation. 3 Environmental exposures, including expo-
sure to the common dust mite and mold allergens, result in
proinflammatory cytokines upregulating genes in the

of asthma is largely understood as type (T)2-
high inflammation, characterized by inter-
leukin (IL)-4, IL-5, and IL-13 and airway
eosinophilia, driving airway hyperresponsive-
ness (AHR) and airway remodeling and leading
to airflow obstruction [15]. As asthma severity
increases, T2-low airway inflammation, charac-
terized by airway neutrophilia and inflamma-
some activation controlled by IL-10, alarmins
(e.g., IL-25, 1L-33), and tumor growth factor
beta (ITGF-B) becomes more prevalent [16]. Both

airway responsible for fibrosis and hyperresponsiveness.
Some classes of hypoglycemic therapies directly or indi-
rectly inhibit these pathways. This figure was created with
BioRender.com (https://biorender.com/). HFD high-fat
diet, SGLT-2; sodium glucose co-transporter 2 inhibitors,
TZD thiazolidinediones, 7GF-f tumor growth factor beta,
TGF-BR tumor growth factor beta receptor, TNF-0. tumor
necrosis factor alpha, IL-6 interleukin-6, TLR4 toll-like
receptor 4, AMP/ATP adenosine monophosphate/adeno-
sine triphosphate, AMPK AMP-activated protein kinase,
SMAD3 mothers against decapentaplegic homolog 3, NF-
KB nuclear factor-kB, PKA protein kinase A, DPP-4i
dipeptidyl peptidase-4 inhibitors, GLP-1Ra glucagon-like

peptide-1 receptor agonists

classic T2-high and T2-low inflammatory pat-
terns can be observed in obesity-associated
asthma. Furthermore, in the context of obesity,
accumulated visceral adipose tissue releases
TGF-B, which induces M1 macrophages to
secrete IL-6 and tumor necrosis factor alpha
(TNF-a) (Fig. 1) [17]. Ultimately, the resulting
low-grade inflammation causes remodeling and
hyperresponsiveness in the airways, increasing
the risk of asthma exacerbations, namely, flares
in asthma symptoms that lead to an emergency
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department (ED) visit, hospitalization, or ther-
apy intensification [18-24]. Obesity increases
the risk of impaired fasting glucose and T2DM
due to alterations in adipose tissue and f-cell
function that altogether causes an inadequate
production and response to insulin [25-27].
Increased levels of hemoglobin Alc (HbAlc), a
marker for glucose control over a 3-month
period used in the diagnosis and monitoring of
T2DM, is weakly independently associated with
asthma-related hospitalization [28]. Compared
to those with normal HbAlc, individuals with
HbA1lc in the prediabetic/diabetic range have a
higher asthma exacerbation rate [29]. Insulin
resistance, determined by the homeostatic
model assessment of insulin resistance (HOMA-
IR) or euglycemic-hyperinsulinemic clamp, is
negatively associated with lung function
[30, 31]. Furthermore, the downstream effects
of insulin resistance may intensify asthma
symptoms through hypercontractility, vagally-
induced bronchoconstriction, and fibrosis
[32-34]. Invasive interventions, such as bariatric
surgery, leads to decreased levels of visceral
adipose tissue that in turn improves lung func-
tion, reduces inflammation, lowers asthma-re-
lated exacerbation risk, and decreases the
intensity of medication needed to control
asthma symptoms [35-39]. However, Forno
et al. found that the presence of metabolic
syndrome significantly attenuates the effect of
bariatric surgery on asthma control [40]. The
relative impact of excess fat mass, as in obesity,
and metabolic dysregulation, as in insulin
resistance and overt T2DM, on airway

1 Hypoglycemic Risk

I

inflammation and clinical disease in asthma
remain an area of active research.

The complex interactions of obesity, meta-
bolic dysregulation, and asthma preclude the
establishment of a definitive therapeutic para-
digm at this time. Therapies which can address
insulin resistance and promote weight loss,
while having limited risk for hypoglycemia,
may hold the most promise (Fig. 2). There is a
growing awareness of the clinical challenges of
multimorbidity and polypharmacy facing
patients with obesity and comorbid asthma,
justifying a renewed approach to personalized
medicine in this asthma subpopulation. In the
following sections, we review the main thera-
peutic classes used for the treatment of predia-
betes and T2DM in the context of asthma
management (Table 1).

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

BIGUANIDES

Most  patients  initiating  hypoglycemic
monotherapy are prescribed metformin [41].
Metformin is also approved as an adjunct to diet
and exercise for the management of T2DM and
routinely used off-label to address insulin resis-
tance in women with polycystic ovarian syn-
drome and in prediabetes. Metformin reduces
gluconeogenesis by inhibiting the mitochon-
dria respiratory chain in hepatocytes, raising
the ratio of adenosine monophosphate (AMP)

| Hypoglycemic Risk
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Fig. 2 Impact of therapeutic classes for the treatment of
type 2 diabetes mellitus on metabolic parameters relevant
in asthma. This figure demonstrates the different effects of
classes  of  hypoglycemic

multiple therapies  on

Effect on Weight Promotes Weight I.oss

hypoglycemia, insulin resistance, and weight. Gray shading
denotes how insulin is the only hypoglycemic therapy that
fails to improve insulin sensitivity. See Fig. 1 caption for
abbreviations
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to adenosine triphosphate (ATP) ratio and acti-
vating AMP-activated protein kinase (AMPK)
[42]. In patients with metabolic dysregulation,
reduced AMPK activity led to increased inflam-
matory gene expression [43]. Notably, AMPK
also plays a crucial role in preserving respiratory
function, as studies in animal models suggest
AMPK suppresses TGF-B-induced proliferation
of airway smooth muscle cells and AHR caused
by hypoxia-inducible factor/vascular endothe-
lial growth factor (HIF/VEGF) interaction
[44, 45]. By indirectly upregulating AMPK
expression, metformin demonstrates highly
efficacious and tolerable anti-inflammatory
properties systemically and in lung tissue in
murine models [46-49].

Metformin use in patients with obesity and
comorbid asthma is linked to the improvement
of both chronic conditions. In a study involving
temporarily induced insulin resistance through
treatment of non-esterified fatty acid (NEFA),
metformin improved extrahepatic glucose uti-
lization in patients with T2DM potentially by
promoting microvascular perfusion [50, S51].
However, two randomized clinical trials showed
that other hypoglycemic therapies alone or in
combination with metformin led to superior
glycemic control compared to metformin by
itself [52, 53]. While multiple studies show
metformin yields insignificantly or modest
weight loss, the U.S. Food and Drug Adminis-
tration (FDA) does not recognize metformin as a
weight loss agent [54]. Importantly, many large
retrospective  observational cohort studies
examining metformin usage in adults with
asthma provided evidence of superior asthma-
related outcomes. Both Li et al. and Wu et al.
used a claims-based cohort and arrived at the
similar conclusion that adults with asthma and
comorbid diabetes who took metformin
demonstrated decreased rates of asthma exac-
erbations, asthma-related ED visits, and asthma-
related hospitalizations [55-57]. Wu et al. later
identified adults with asthma-chronic obstruc-
tive pulmonary disease (COPD) overlap within
the COPDGene database and found metformin
initiation improved quality of life as assessed by
the St. George’s Respiratory Questionnaire [S8].
Prospective controlled studies in asthma, with

and without comorbid obesity, are needed to
establish the utility of metformin.

INSULIN

By improving glucose control, insulin substan-
tially reduces the risk of diabetes-related end-
points, diabetes-related death, and all-cause
mortality, compared to conventional dietary
interventions in patients with T2DM [59].
Administering insulin can lower blood glucose
level in a dose-dependent manner albeit with
notable adverse effects [60]. Two basal insulin
analogs, glargine and detemir, cause modest
weight gain of 2 kg per 1% reduction in HbAlc,
with weight gain worsened by twice-daily dos-
ing as compared to once-daily dosing [61].
While hypoglycemia is more commonly repor-
ted by patients with type 1 diabetes mellitus,
46.5% of insulin users with T2DM reported
hypoglycemic events at an average 2.5 severe
hypoglycemic events/patient-year [62]. In a
prospective cohort study of patients with T2DM
without comorbid asthma or COPD, insulin
initiation exacerbated the methacholine-in-
duced decline in FEV; in the first 60 days and
serum total immunoglobulin E at 1year [63].
Multiple retrospective observational cohort
studies have identified associations between
insulin usage and asthma onset in patients with
diabetes. In one study, patients with T2DM who
had > 3 prescriptions of insulin per year were
more than twice as likely to be subsequently
diagnosed with asthma [64]. Similarly, Reynar
et al. found that among adults diagnosed with
T2DM, insulin usage, but not duration of ther-
apy, glycemic control, or T2DM complications,
increased the risk of incident asthma [65]. The
addition of insulin to the treatment regime for
T2DM in the context of asthma is unlikely to
change from current T2DM guidelines where it
is added as a last-line chronic agent.

THIAZOLIDINEDIONES

Widely prescribed in the early 1990s, thiazo-
lidinediones (TZD) have largely declined in
popularity over the past two decades over
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concerns of side effects, including weight gain,
skeletal fractures, and edema [66-68]. Rosigli-
tazone and pioglitazone may also increase the
risk for heart failure and bladder cancer,
respectively [69, 70]. TZD help control levels of
excessive serum-free fatty acids by ligating to
the gamma isoform of the peroxisome prolifer-
ator-activated receptor (PPARy) and promoting
the ability of adipose tissue to store fat [71, 72].
By addressing the underlying adipose tissue
dysfunction that occurs during obesity, TZD
showed potential for having anti-inflammatory
properties with low hypoglycemic risk. In cul-
tured human airway smooth muscle cells,
troglitazone dose-dependently reduced the
release of IL-6 via a pathway distinct from
AMPK and PPARy [73]. However, a systematic
review found that usage of TZD across many
clinical trials did not significantly affect IL-6
levels [74].

The authors of a few studies have argued in
favor of TZD for protection against asthma in
patients with obesity and comorbid T2DM. Two
large retrospective observational cohort studies
utilizing data from the U.S. Veteran Affairs
Medical Centers found that TZD lowered the
risk of incident asthma, asthma exacerbation,
and oral steroid prescriptions [75, 76]. These
effects were strengthened by adherence to TZD
and concurrent usage of angiotensin-converting
enzyme inhibitors. However, a pilot random-
ized controlled trial (RCT) of pioglitazone in
patients with poorly controlled asthma with
comorbid obesity was prematurely discontinued
due to new safety concerns around the risk for
bladder cancer [77]. Additionally, the signifi-
cant weight gain observed in the treatment
group had the potential for harm without
improving asthma control or lung function. In
a second RCT of pioglitazone in severe asthma,
patients in the pioglitazone arm showed both
no improvement in the primary clinical end-
point of the asthma quality of life questionnaire
score and a high rate of adverse effects [78].
Systemic TDZ are unlikely to advance as a
therapeutic intervention for asthma due to
these safety concerns and the lack of clinical
benefit. The impact of local delivery of TZD to
the airway and in adults with asthma without
comorbid obesity remain unexplored.

SULFONYLUREAS

After metformin initiation, sulfonylureas are
commonly used as second-line therapy to lower
levels of HbAlc and blood glucose during the
fasting and post-prandial periods [79]. Sulfony-
lureas raise plasma insulin concentration by
binding to receptors on the cell membranes of
B-pancreatic cells. This interaction blocks the
inflow of potassium into the cytosol and sub-
sequent depolarization, triggering the diffusion
of calcium that contracts actomyosin responsi-
ble for the exocytosis of insulin [80]. However,
adding on and switching to sulfonylureas may
increase the risk of myocardial infarction, mor-
tality, and severe hypoglycemia compared to
other hypoglycemic agents [81, 82]. One retro-
spective observational cohort study found sul-
fonylureas provided modest protection in
adults with T2DM against incident asthma,
statistically equivalent to that of metformin
initiation [65]. Cardiovascular and hypo-
glycemic risk limit the use of sulfonylureas in
T2DM, independent of asthma comorbidity,
and a strong rationale for clinical benefit would
need to be observed to warrant their further
study in the asthma context.

DIPEPTIDYL PEPTIDASE-4
INHIBITORS

Dipeptidyl peptidase-4 inhibitors (DPP-4i) may
be considered over sulfonylureas as second-line
therapy after metformin because of their
reduced hypoglycemic risk and neutral effect on
weight [83, 84]. Glucagon-like peptide-1 (GLP-
1) stimulates insulin secretion from pancreatic
B-cells in hyperglycemic conditions but is
cleaved by dipeptidyl peptidase-4 (DPP-4), an
adipokine released in excessive amounts by
adipose tissue in patients with obesity [85, 86].
By preventing inactivation of GLP-1, DPP-4i has
been found to significantly improve p-cell
function and glycemic control, albeit its effects
are attenuated in patients with high levels of
insulin resistance [87, 88]. Studies employing
in vitro models of human bronchial epithelial
cells have indicated that DPP-4i blocks path-
ways contributing to oxidative stress and
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fibrosis [89, 90]. Saxagliptin has been shown to
mitigate oxidative stress in ovalbumin (OVA)-
sensitized mice by modulation of toll-like
receptor 4 (TLR4) and nuclear factor-kB (NF-kB)
signaling [91]. However, a retrospective obser-
vational matched cohort study showed that
adults with asthma who utilized DPP-4i showed
no improvement in asthma control, treatment
stability, and asthma exacerbation compared to
their counterparts on other hypoglycemic
medications [92]. A recent network meta-anal-
ysis further established that DPP-4i did not
reduce the risk of incident asthma relative to
placebo [93]. Clinical data are currently lacking
to support their preferential use in the context
of comorbid asthma.

SODIUM GLUCOSE CO-
TRANSPORTER 2 CHANNEL
INHIBITORS

In the past decade, the U.S. FDA approved a new
class of drugs for improving glucose control in
adults with T2DM: sodium-glucose co-trans-
porter 2 channel (SGLT-2) inhibitors (SGLT-2i)
[94]. In the kidneys, SGLT-2 are responsible for
reabsorption of 90-97% of filtered glucose [95].
By blocking SGLT-2, SGLT-2i induce glucosuria,
thereby reducing signs of chronic hyper-
glycemia, as indicated by HbAlc levels and
insulin sensitivity. The authors of an in vitro
transcriptomics experiment assessing the pro-
gression of diabetic kidney disease in human
proximal tubular cells concluded that the one of
the SGLT-2i currently available, canagliflozin,
reverses inflammation by decreasing the levels
of TNF receptor 1, IL-6, matrix metallopro-
teinase 7, and fibronectin 1 compared to the
sulfonylurea glimepiride [96]. The mechanism
underlying the anti-inflammatory properties of
SGLT-2i could be a downstream effect of its
ability to lower uric acid and insulin production
[97]. A network analysis pooling nine clinical
trials of SGLT-2i evaluating cardiorenal out-
comes in patients with T2DM, heart failure,
and/or chronic kidney disease reported that
SGLT-2i reduced the occurrence of asthma seri-
ous adverse events compared to placebo [98].
Wang et al. used a similar approach to identify

19 clinical trials and found that SGLT-2i
decreased the risk of asthma, based on asthma-
related adverse events reported in the studies,
compared to GLP-1 receptor agonists (GLP-1Ra)
and DPP-4i [93]. However, the validity of both
meta-analyses is limited by the very low fre-
quency of asthma outcomes in both the treat-
ment and placebo groups. Adequately powered
studies of SGLT-2i use in asthma populations
with sufficient (e.g., at higher risk of) asthma-
related events and with prespecified asthma
outcomes are needed.

GLUCAGON LIKE PEPTIDE-1
RECEPTOR AGONISTS

Since 2005, GLP-1Ra have emerged as a highly
effective drug class for glycemic control that
also reduce the risk of cardiovascular events and
promote weight loss [99]. GLP-1Ra improve
pancreatic B-cell function by promoting cell
proliferation, stimulating insulin secretion, and
inhibiting glucagon release [100]. Additionally,
GLP-1Ra limit weight gain by suppressing food
intake through the induction of satiety and
delayed gastric emptying. The authors of a
randomized clinical trial that enrolled adults
with obesity concluded that 68 weeks of once-
weekly semaglutide 2.4 mg resulted in a mean
change in body of — 14.9% compared to — 2.4%
in adults on placebo [101]. GLP-1Ra potentially
mediates multiple inflammatory pathways
involved in the pathophysiology of comorbid
asthma in patients with obesity [102]. Preclini-
cal experiments have shown that GLP-1Ra
decreased expression of proinflammatory
cytokines, such as TNF-o, through protein
kinase A-dependent inactivation of NF-xB
(Fig. 1) [103-105]. Through inhibiting the
release of IL-33, GLP-1Ra administered in mur-
ine models attenuated airway eosinophilia and
neutrophilia, the release of T2 cytokines from
type 2 innate lymphoid cells (ILC2), mucus
production, and AHR following exposure to
fungal allergens and viral antigens [106-108].
Interestingly, GLP-1Ra given to OVA-sensitized
mice also depressed the activity of oligomer-
ization domain-like receptor protein (NLRP)3,
which induces airway inflammation and AHR in
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obesity by upregulating levels of IL-17 secretion
by ILC3 via secretion of IL-1p [109-111].

In multiple studies, GLP-1Ra use was associ-
ated with improvements in asthma outcomes in
adults with T2DM and comorbid asthma. The
first preliminary uncontrolled study of nine
patients treated with a GLP-1Ra found that
1year of a GLP-1Ra improved asthma symp-
toms and reduced asthma exacerbation rate in
those with weight loss in excess of the popula-
tion median [112]. In a new user, active com-
parator study design using data available in the
electronic health record, adults with T2DM and
comorbid asthma who initiated a GLP-1Ra for
treatment intensification for T2DM experienced
the lowest risk of asthma exacerbation in the
following 6 months compared to those initiat-
ing sulfonylureas, SGLT-2i, or DPP-4 inhibitors
[113]. A claims-based analysis comparing users
of GLP-1Ra and DPP-4i in patients with T2DM
and comorbid chronic lower respiratory disease
(CLRD)—a term encompassing asthma and
COPD—similarly found that GLP-1Ra led to
reduced incidence of CLRD-related hospitaliza-
tions and exacerbations [114]. Although tan-
gential to asthma, a randomized clinical trial
which recruited patients with T2DM revealed
that liraglutide reduced serum levels of surfac-
tant protein D which independently predicted
improvements in FVC [115]. Additionally in a
prospective cohort of 32 adults with T2DM but
without co-existing obstructive lung disease,
the addition of a GLP-1Ra to metformin as
treatment improved lung function (FEV; and
FVC) over metformin alone or metformin +
insulin [116]. GLP-1Ra are an active area of
research in clinical and translational asthma
studies, and a prospective clinical trial of the
GLP-1Ra semaglutide in adults with asthma and
comorbid obesity is forthcoming [117].

FUTURE DIRECTIONS

The majority of studies examining asthma-re-
lated outcomes in adults with obesity and/or
comorbid diabetes taking hypoglycemic agents
are large retrospective observational cohort
studies. To strengthen the observed associations
and move findings into practice requires

additional investigation. First, prospective
studies in adults with asthma and comorbid
obesity stratified by the extent of metabolic
dysfunction or weight loss can help determine
whether hypoglycemic agents exhibit indepen-
dent, beneficial effects in the airway, as sug-
gested by preclinical studies. Second, head-to-
head studies comparing hypoglycemic agents in
adults with obesity and comorbid asthma
should consider endpoints beyond asthma-re-
lated exacerbations, such as levels of circulating
and airway inflammation markers that could
help inform response to therapy or identify
asthma endotypes to target.

The area of study reviewed in this paper
continues to evolve as new hypoglycemic
agents as well as non-pharmacologic interven-
tions advance. Two recent phase 3 multicenter
randomized trials in adults with obesity showed
that tirzepatide, a novel dual gastric inhibitory
peptide\GLP-1R agonist, caused substantial
weight loss in patients who failed to lose weight
via dietary changes and noninferior and supe-
rior glycemic control compared to semaglutide
in those with comorbid T2DM [118, 119]. Lim-
ited data are currently available on the impact
of tirzepatide on comorbidities seen in patients
with obesity, such as asthma. Hypoglycemic
therapies should also be compared to non-
pharmacologic interventions, such as bariatric
surgery, to develop rational approaches to the
use of these interventions in patients with
obesity and comorbid asthma and to identify
who may benefit most from each approach. In
doing so, clinicians and researchers may more
tfully expand the growing armamentarium of
personalized medicine for patients with obesity
and comorbid asthma.

CONCLUSION

The current therapeutic paradigm for adults
with obesity and comorbid asthma requires a
balancing act between improving clinically
meaningful asthma-related outcomes, avoiding
weight gain, minimizing hypoglycemia, and
preventing unintended severe adverse events.
An expanding volume of observational evi-
dence suggests that certain classes of
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hypoglycemic agents could be used to address
both chronic conditions by targeting the
underlying metabolic dysregulation. However,
until randomized clinical trials of these phar-
macologic tools for obesity and metabolic dys-
function evaluate asthma outcomes as a
primary endpoint, the costly management of
comorbid asthma in adults with obesity will still
heavily rely on the paradigm of inhaled ICS
with or without LABA.
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