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CHAPTER I 

 

Introduction 

 

The peripartum period is characterized by changes across multiple domains, including 

physiology, cognition, and socio-emotional functioning. Physically. the size of the uterus 

increases by about 5 times its preconception size (Shagana et al., 2018). However, changes are 

not limited to uterine growth. For instance, in pregnancy blood volume begins to rise at 6-8 

weeks and, relative to non-pregnant comparisons, by 40 weeks increases by as much as 50% 

(Boeldt & Bird, 2017). Many pregnant individuals report a range of cognitive functioning 

changes, commonly referred to as “pregnancy brain” or “baby brain,” which includes a 

constellation of features including increased forgetfulness (Casey et al., 1999), difficulty 

concentrating (Brett & Baxendale, 2001), inability to maintain attention (Brett & Baxendale, 

2001), and poor effortful processing (Henry & Rendell, 2007). In terms of socio-emotional 

functioning, pregnant individuals tend to experience mood changes exhibiting a U-shaped pattern 

with negative mood (e.g., irritability and distress) increasing early in pregnancy, decreasing 

midway through pregnancy, and increasing again later in pregnancy, with positive mood 

exhibiting the inverse course (Markon et al., 2021). Importantly, non-human animal research 

suggests that changes in the maternal brain are occurring during the peripartum period, and may 

be responsible for observed behavioral differences (see Cárdenas et al., 2020, for review).  

Past non-human animal work indicates that several regions of the brain undergo changes 

during the peripartum period. Plasticity has been documented in regions such as the lateral 

ventricle, pituitary, hypothalamus, nucleus supraopticus, nucleus paraventricularis, hippocampus, 
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subventricular zone, olfactory bulb, and medial prefrontal cortex (Hillerer et al., 2014a). 

Lactating rodents exhibited reduced total brain weight and hippocampal volume compared to 

nulliparous rodents (Hillerer et al., 2014). The alterations in functional brain networks also 

correspond to maternal behaviors. For example, before giving birth, the rat has an aversive 

response to pup odor, but at birth, this response no longer persists through activation of the 

medial preoptic area and ventral bed nucleus of stria terminals (Brunton & Russell, 2008). Yet, 

we know very little about whether these same changes are found in humans. 

The first human study that investigated brain changes followed a small sample of women 

with (n=5) and without preeclampsia (n=9) (Oatridge et al., 2002). Though women underwent 

MRI scans at different stages, the primary findings indicated that total brain volume declined 

over pregnancy (single participants demonstrated 4.1% and 6.6% reductions from preconception 

to term). More recent work in 25 primiparous (i.e., pregnant for the first time) participants 

examined whether these changes are global or specific and found greater gray matter volume 

reductions in the anterior and posterior cortical midline and sections of the bilateral prefrontal 

and temporal cortex (Hoekzema et al., 2017). During the postpartum period, gray matter 

increases are posited to reverse the reductions in gray matter volume occurring in pregnancy 

(Kim et al., 2010). In a study on 19 biological mothers of full-term, healthy infants, gray matter 

volume increased from Time 1 (2-4 weeks postpartum) to Time 2 (3-4 months postpartum), 

particularly in the superior, middle and inferior prefrontal cortex, precentral and postcentral 

gyrus, superior and inferior parietal lobe, insula and thalamus (Kim et al., 2010). There is 

evidence that the reductions in volume are still present years after giving birth (Hoekzema et al., 

2017; Martínez-García et al., 2021). In terms of functional brain changes, prior research used 

electroencephalogram (EEG) and functional near-infrared spectroscopy (fNIRS) to investigate 
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whether patterns of activity differed either due to pregnancy or across pregnancy. For instance, 

pregnant women in their third trimester exhibited greater neural reactivity to emotional stimuli 

compared to non-pregnant women (Raz, 2014). Women also exhibited greater prefrontal cortex 

activation and attention bias towards threatening images in their second trimester compared to 

their first or third trimester (Roos et al., 2011). While EEG and fNIRS offer insight into brain 

activity, they lack the spatial resolution provided via MRI. Using MRI enables the examination 

of brain network organization both functionally and structurally, including changes in constituent 

measures in volume (e.g., cortical thickness and surface area), and changes in white matter tracts. 

Importantly, concerns about the potential for MRIs to be unsafe for pregnant women and fetuses 

have resulted in the relative lack of research on the maternal brain in human pregnancy 

(Cárdenas et al., 2020), such that there is only one study that has longitudinally followed mothers 

from pregnancy to the early postpartum period (Oatridge et al., 2002) and another assessing 

women before and after, but not during, pregnancy (Hoekzema et al., 2017). 

This proof-of-concept study aimed to characterize brain changes in a single subject across 

their pregnancy and postpartum period. We examined morphometric changes using several 

volume metrics (i.e., total brain volume, total gray matter volume, total white matter volume, 

total cortical volume, subcortical gray matter volume, and total ventricular volume) as well as 

constituent measures in volume (i.e., mean cortical thickness and total surface area). Further, we 

examined subject-specific network organization by using a personalized network assignment 

scheme as there is evidence to suggest that individual brain organization is qualitatively different 

from group-average estimates (i.e., substantial heterogeneity in cognitive maps between 

individuals). Using the custom atlas, we examined structural (fractional anisotropy [FA] and 

mean diffusivity [MD]) and functional (network coherence and network modularity) connectivity 
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across seven networks (i.e., attention and visual, auditory, cingulo-opercular and dorsal attention, 

default mode and fronto-parietal, right lateral visual, somatomotor hand, and somatomotor 

mouth). In line with past literature, we expected reductions across pregnancy in volume 

estimates, mean cortical thickness, and surface area, followed by an increase in these same 

metrics across the postpartum period. Given that there is no previous research work examining 

functional and structural connectivity changes using MRI, we refrained from making a priori 

directional hypotheses for changes in metrics obtained via these modalities and view this study 

as primary descriptive. 
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CHAPTER II 

 

Method 

 

2.1 Participant Characteristics 

The participant was a right-handed, White, female, aged 32 years old and pregnant for the 

first time at the onset of the study. Subject was recruited from the Vanderbilt University 

community. Participant had no known medical history of neurological injury or impairment. 

Study procedures were approved by the Vanderbilt University Institutional Review Board and in 

consultation with the director of the human imaging core at the Vanderbilt University Institute of 

Imaging Science (VUIIS), a pediatrician and bioethicist, and a maternal-fetal medicine 

obstetrician. Participant provided informed consent prior to participation. There are no known 

risks to the mother or fetus associated with repeated fMRI scans given it contains no non-

ionizing radiation (Levine, 2013).  

2.2 MRI Data Acquisition 

The participant completed a total of 9 fMRI scans (5 during pregnancy and 4 in the 

postpartum period) at VUIIS using a Philips Ingenia Elition 3.0 T X equipped with a 32-channel 

head coil. The pregnancy scans took place at 8, 10, 31, 35, and 37 weeks gestation and the 

postpartum scans took place at 6, 8, 12, and 15 months postpartum (noted in figures as 68, 76, 

96, and 106 weeks gestation). The participant declined to scan during second trimester while 

waiting on additional expert guidance on safety of the procedure. Further, the first postpartum 

scan was delayed until 6 months postpartum due to research-related closures in response to the 

COVID-19 pandemic.  
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Participant completed an MRI safety screening form prior to each scan and was 

instructed to refrain from any caffeine intake the day of the scan (see Wu et al., 2014). Hearing 

protection was provided to the participant. Additionally, all noise levels in scans during 

pregnancy are below FDA thresholds for MRI-related noise exposure during pregnancy (Tocchio 

et al., 2015). As an added precaution, participant was fitted with a noise-attenuating foam pad 

around her abdomen during the pregnancy scans to reduce fetal noise exposure. 

T1-weighted (1.1x1.1x1.2mm3 voxel, flip angle = 9 degrees, FOV = 270x253x204mm, 

TR = 6.7ms, TE = 3.1ms) and T2-weighted (0.6x0.8x2.5mm3 voxel, flip angle = 90 degrees, 

FOV = 240x191x1125mm, TR = 6000ms, TE = 80ms) anatomical images, resting-state fMRI 

(3x3mm2 voxel, slice thickness = 3.5mm, FOV = 240x240mm, multiband factor = 0, SENSE = 

2, TR = 2000ms, TE = 35ms), and diffusion weighted images (DWI; TR = 4050ms, TE = 92ms, 

FOV = 240x240, resolution = 2x2mm2, slice thickness = 2mm, multiband factor = 3, number of 

prescribed slices = 63). For DWI, a total of 12 non-diffusion weighted (b0) volumes were 

acquired, along with 23 diffusion-weighted volumes/directions at b-value = 500, 47 at b-value = 

1500, and 70 at b-value = 2500. All modalities were obtained at each scan with the exception of 

the second pregnancy scan (i.e., 10 weeks gestation) whereby the T2-weighted anatomical image 

was not obtained due to scan time constraints. Further, the DWI parameters acquired at the first 

pregnancy scan differed from the sequence collected at subsequent timepoints due to the 

sequences still being in the testing phase at that time. Hence, the DWI data for the first 

pregnancy scan was excluded. All MR images were visually inspected for artifacts prior to 

processing. 

2.3 MRI Data Processing 
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Structural data processing. The T1-weighted and T2-weighted anatomical images 

where automatically processed with the longitudinal stream (Reuter et al., 2012) in FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu/). Specifically, an unbiased within-subject template space and 

image is created using robust, inverse consistent registration (Reuter et al., 2010). Several 

processing steps, such as skull stripping, Talairach transforms, atlas registration as well as 

spherical surface maps and parcellations are then initialized with common information from the 

within-subject template, significantly increasing reliability and statistical power in a longitudinal 

setting (Reuter et al., 2012). We visually checked the cortical reconstruction of each subject for 

inaccuracies and manually corrected major topological inaccuracies with control points and 

subsequently repeated the processing. Cortical thickness was calculated as the shortest distance 

between the GM/WM boundary and pial surface at each vertex across the cortical mantle, 

measured in millimeters (mm). In addition to vertex-based reconstruction, FreeSurfer 

automatically parcellated the cortex into 34 gyral-based regions-of-interest (ROIs) per 

hemisphere, according to the Desikan-Killiany atlas. For each of the 68 cortical parcellations, 

FreeSurfer calculates i) the average cortical thickness (in mm), ii) total cortical surface area of 

the pial (in mm2), and iii) the various volume measures (in mm3). 

Functional data processing. Resting-state fMRI data was preprocessed using 

fMRIPrep 21.0.1 (Estaban et al., 2018; Esteban et al., 2019), which is based on Nipype 1.6.1 

(Gorgolewski et al., 2011; Gorgolewski et al., 2018). For each of the BOLD runs, the following 

preprocessing was performed. First, a reference volume and its skull-stripped version were 

generated using a custom methodology of fMRIPrep. Head-motion parameters with respect to 

the BOLD reference (transformation matrices, and six corresponding rotation and translation 

parameters) are estimated before any spatiotemporal filtering using mcflirt (FSL 
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6.0.5.1:57b01774, (Jenkinson et al., 2002). BOLD runs were slice-time corrected to 0.971s (0.5 

of slice acquisition range 0s-1.94s) using 3dTshift from AFNI (Cox & Hyde, 1997). The BOLD 

time-series (including slice-timing correction when applied) were resampled onto their original, 

native space by applying the transforms to correct for head-motion. These resampled BOLD 

time-series will be referred to as preprocessed BOLD in original space, or just preprocessed 

BOLD. The BOLD reference was then co-registered to the T1w reference 

using bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl, 

2009). Co-registration was configured with six degrees of freedom. Several confounding time-

series were calculated based on the preprocessed BOLD: framewise displacement (FD), DVARS 

and three region-wise global signals. FD was computed using two formulations following Power 

(absolute sum of relative motions; Power et al., 2014) and Jenkinson (relative root mean square 

displacement between affines, Jenkinson et al. (2002)). FD and DVARS are calculated for each 

functional run, both using their implementations in Nipype (following the definitions by Power et 

al. 2014). The three global signals are extracted within the CSF, the WM, and the whole-brain 

masks. Additionally, a set of physiological regressors were extracted to allow for component-

based noise correction (CompCor, Behzadi et al., 2007). Principal components are estimated 

after high-pass filtering the preprocessed BOLD time-series (using a discrete cosine filter with 

128s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical (aCompCor). 

tCompCor components are then calculated from the top 2% variable voxels within the brain 

mask. For aCompCor, three probabilistic masks (CSF, WM, and combined CSF+WM) are 

generated in anatomical space. The implementation differs from that of Behzadi et al. in that 

instead of eroding the masks by 2 pixels on BOLD space, the aCompCor masks are subtracted a 

mask of pixels that likely contain a volume fraction of GM. This mask is obtained by dilating a 
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GM mask extracted from the FreeSurfer’s aseg segmentation, and it ensures components are not 

extracted from voxels containing a minimal fraction of GM. Finally, these masks are resampled 

into BOLD space and binarized by thresholding at 0.99 (as in the original implementation). 

Components are also calculated separately within the WM and CSF masks. For each CompCor 

decomposition, the k components with the largest singular values are retained, such that the 

retained components’ time series are sufficient to explain 50 percent of variance across the 

nuisance mask (CSF, WM, combined, or temporal). The remaining components are dropped 

from consideration. The head-motion estimates calculated in the correction step were also placed 

within the corresponding confounds file. The confound time series derived from head motion 

estimates and global signals were expanded with the inclusion of temporal derivatives and 

quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of 0.5 mm 

FD or 1.5 standardised DVARS were annotated as motion outliers. The BOLD time-series were 

resampled into standard space, generating a preprocessed BOLD run in MNI152NLin2009cAsym 

space. First, a reference volume and its skull-stripped version were generated using a custom 

methodology of fMRIPrep. The BOLD time-series were resampled onto the fsaverage surfaces 

(FreeSurfer reconstruction nomenclature). Grayordinates files (Glasser et al., 2013) containing 

91k samples were also generated using the highest-resolution fsaverage as intermediate 

standardized surface space. All resamplings can be performed with a single interpolation step by 

composing all the pertinent transformations (i.e., head-motion transform matrices, susceptibility 

distortion correction when available, and co-registrations to anatomical and output spaces). 

Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), 

configured with Lanczos interpolation to minimize the smoothing effects of other 

kernels (Lanczos, 1964). Non-gridded (surface) resamplings were performed 
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using mri_vol2surf (FreeSurfer). Preprocessed surface space data were next denoised, bandpass 

filtered (0.008-0.1 Hz), and the high motion volumes dropped from each run. Denoising 

regressed out global signal, FD, Volterra-expanded series from the 6 movement measures 

(rotation and translation in 3 directions, lagged 6 times), and censoring for timepoints that were 

over 0.2mm FD. Finally, runs collected in the same session were concatenated, resulting in 8 sets 

of data (4 peripartum and 4 postpartum) ranging in total duration from 9.4 to 36.8 minutes. The 

Gordon cortical (Gordon et al., 2016) parcellation scheme was then applied before further 

analysis resulting in denoised timeseries from 300 regions across the cortex. 

Personalized network assignment. Processed connectivity data were concatenated 

across all visits and cross-correlated to generate a single connectivity matrix. This matrix was 

then thresholded to retain the top parcel–parcel connectivity strengths for network assignment.  

Network assignments were made by applying the Infomap algorithm (Lancichinetti & Fortunato, 

2009), weighing map edges by correlation strength. This process was repeated using the 

following density thresholds: 0.01, 0.05, 0.1, 0.15, 0.2, 0.25. The density threshold that resulted 

in network assignments that were most comparable to those found in adults was retained (i.e., 

0.1). 

Network coherence and modularity. We computed two global network metrics, 

coherence (within-network connectivity) and modularity (ratio of with-network connectivity to 

out-of-network connectivity). These metrics were computed across binned timepoints whereby 

we pooled data from the first and third visits (early pregnancy), the fourth and fifth visit (late 

pregnancy), and the sixth-ninth visits (postpartum). Network measures and 95% confidence 

intervals were then estimated using a bootstrapping approach, where 10-20 minutes of data were 

randomly selected from the pooled data for network measurement computation. This process was 
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repeated 10,000 to generate a distribution of values to estimate the true network coherence and 

modularity for each network and binned timepoint. Because previous precision mapping has 

shown that at least 20 minutes of data are needed for reliable estimates (Laumann et al., 2015), 

we present results from the binned timepoints as opposed to individual timepoints. 

Diffusion data processing. The DWI data were processed using tools from FSL (v6.0) 

and MRtrix3 (S. M. Smith et al., 2004; Tournier et al., 2019). First, the raw diffusion data was 

first converted from DICOM to MIF format using MRtrix3’s mrconvert function. Next, the 

DWIs were denoised using dwidenoise, which has been shown to improve the subsequent 

estimation of diffusion parameters and fiber orientation distributions (Cordero-Grande et al., 

2019; Veraart et al., 2016). FSL’s TOPUP program was used to correct for distortions in the 

acquired diffusion-weighted images (which is critical for anatomically accurate tractography) 

(Andersson et al., 2003). MRtrix3’s dwifslpreproc program was used to implement both TOPUP 

and FSL’s eddy tool, which corrects for motion and eddy current artifacts including outlier 

replacement (Andersson et al., 2016; Andersson & Sotiropoulos, 2016). The T1w anatomical 

image was affine registered to the distortion-corrected b0 image using FSL’s flirt program. With 

this transformation, the FreeSurfer-derived tissue masks were sampled to a subject’s native 

DWI-space for use in anatomically-constrained tractography. 

We first performed whole-brain streamline tractography to construct the subject’s whole-

brain white matter connectome at each timepoint. We used a custom, publicly-available pipeline 

(https://github.com/conradbn/DWI_Tractography) that was written in Python and built from the 

MRtrix3 software package (Tournier et al., 2019). The preprocessed DWI data were first used to 

fit a tensor model and derive FA and MD maps. To begin the tractography process, the same 

DWI data were passed to an unsupervised method for estimating single-fiber response functions 
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for WM, GM, and CSF (Aerts et al., 2019). Multi-shell, multi-tissue constrained spherical 

deconvolution was performed to obtain WM fiber orientation distributions (FODs) as well as for 

the GM and CSF compartments in all voxels (Jeurissen et al., 2014). The FOD maps were then 

corrected for intensity inhomogeneities and bias fields (Raffelt et al., 2017). Probabilistic 

tracking was employed to construct a whole-brain tractogram via the tckgen command and the 

“iFOD2” algorithm (Tournier et al., 2010). We generated 20 million streamlines which were 

randomly seeded and terminated at the GM/WM interface as delineated by the FreeSurfer 

Longitudinal pipeline segmentation files, in a method known as anatomically-constrained 

tractography (ACT) (R. E. Smith et al., 2012). ACT helps improve the biological validity of 

streamlines by ensuring that a streamline begins and ends (i.e., “synapses”) at some GM 

structure. Finally, we used the “spherical-deconvolution informed filtering of tractograms” 

method (SIFT2), to correct for known biases in tractography by assigning a cross-sectional area 

weight to each streamline (Smith et al., 2015). SIFT2 provides a weighted streamline 

reconstruction that optimally fits the underlying CSD model at each voxel, effectively down-

weighting false-positive streamlines. One can then sum the resulting weights of streamlines 

connecting any two brain regions to provide a measure proportional to the total cross-sectional 

area of WM fibers between the regions, i.e., a physically interpretable, quantitative measure of 

structural connectivity (Smith et al., 2020). 

           To determine the subject-specific white matter networks, we first performed a series of 

transformations to bring the subject-specific network parcellation into the native DWI space of 

the first session, which served as the reference space for the network parcellation. Each 

timepoint’s DWI-space anatomical image was then registered to the first session’s anatomical 

image, and the inverse transformation was applied to the parcellation image using nearest 
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neighbor interpolation. This resulted in the subject-specific GM network masks in DWI-space. 

For each network, we used MRtrix3’s tckedit command to find the subset of streamlines that 

terminated in network mask at both ends, yielding a reconstruction of the WM fibers connecting 

the regions of each network. The tcksample command was then used to find the mean FA and 

mean MD across the volume occupied by each WM network. 

After the study’s completion, we discovered an issue with the b-value = 2500 scan 

(acquired in a separate sequence from the b-value = 500/1500) such that the sequence had been 

automatically split into two “packages” in four of eight sessions (i.e., scan length doubled and 

only half of slices acquired at each volume). This was due to an interaction with the prescribed 

scan parameters and slightly different head orientation/slice positioning from scan to scan. 

Though the data, resulting FA/MD maps, and tractography looked qualitatively normal, out of an 

abundance of caution we chose to analyze FA and MD using only the b-value = 500/1500 

preprocessed data. These data, while not optimal for high-angular resolution tractography, are 

sufficient for reliable estimation of FA and MD (Chung et al., 2013; Soares et al., 2013). Further, 

the last postpartum timepoint (106 weeks gestation) had high absolute motion (0.85) (i.e., head 

moved from the most from beginning to end), but not relative motion (0.42) (volume-to-volume). 

Given that head motion is associated with changes in FA and MD values (Yendiki et al., 2014), 

we excluded the last postpartum timepoint from the diffusion analyses. 

2.4 Data Analytical Plan 

First, to examine morphometric changes, piecewise regression plots (i.e., segment one 

consists of the first scan in pregnancy [8 weeks] until the last pregnancy scan [37 weeks] and 

segment two from the last pregnancy scan until the final postpartum scan [106 weeks]) were 

generated for all volume estimates, as well as constituent measures in volume including mean 
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cortical thickness and surface area. Percent change was computed using the first and last scan 

from both segments described above. Second, to examine functional connectivity changes, 

stacked line plots were generated to depict changes from early to late pregnancy and from late 

pregnancy to postpartum across all networks for mean network coherence and mean network 

modularity, and percent changes were computed across the three binned timepoints for both 

metrics. Third, to examine structural connectivity changes, an identical approach to examine 

morphometric changes were used to examine FA and MD values for all networks and percent 

change was computed across pregnancy and from pregnancy to postpartum.  
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CHAPTER III 

 

Results 

 

3.1 Morphometric Results 

Analysis of morphometric changes revealed that from 8 weeks gestation through term, 

total brain volume decreased by 3.4%, total gray matter volume decreased by 4.3%, total cortical 

volume decreased by 5.0%, total subcortical volume decreased by 2.5%, and total white matter 

volume decreased by 2.3%. In the postpartum period, total brain volume increased by 3.6%, total 

gray matter volume increased by 4.6%, total cortical volume increased by 5.7%, total subcortical 

volume increased by 3.1%, and total white matter volumes increased by 2.1%. In contrast, total 

ventricular volume increased by 7.5% from 8 weeks gestation through term and decreased by 

9.2% in the postpartum period (See Figure 1). 

Total surface area and mean cortical thickness also decreased from 8 weeks gestation 

through term by 2.1% and 2.5% respectively, followed by an increase of 2.7% and 2.2%, 

respectively, in the postpartum period (See Figure 1).  

See Table 1 for piecewise regression results for changes in volume estimates, as well as 

changes in mean cortical thickness and surface area as a function of gestational age during 

pregnancy and in the postpartum period. 

3.2 Functional Connectivity Results 

For analysis of functional connectivity, network coherence and network modularity were 

computed across binned timepoints whereby we pooled data from the first and third visits (early 

pregnancy), the fourth and fifth visit (late pregnancy), and the sixth-ninth visits (postpartum) 
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because past precision mapping work has shown that at least 20 minutes of data are needed for 

computing reliable estimates (Laumann et al., 2015). Results revealed that there was a 8.7-25.3% 

increase in network coherence across networks during pregnancy. Exceptions include the 

somatomotor mouth network, which exhibited a 3.6% decrease. For the postpartum period, there 

was an increase in network coherence followed by a further 10.2-48.6% increase across networks 

in the postpartum period, with the exception of attention and visual, default mode and fronto-

parietal, and auditory networks, which decreased by 1.7%, 5.5%, 1.7% respectively (See Figure 

2). Mean network modularity primarily decreased by 1.3-33.9% across networks during 

pregnancy and mostly plateaued in the postpartum period (See Figure 3). 

Further, we examined the overlap of bootstrapped 95% confidence intervals across 

binned timepoints to investigate whether differences were best explained by chance. Non-

overlapping 95% CI are interpreted to be meaningful changes in connectivity over time whereas 

overlapping CI are interpreted as potentially chance differences. Using this framework, we found 

meaningful changes in mean network coherence for all networks except the somatomotor mouth 

network. Changes in mean network modularity were meaningful for auditory and somatomotor 

mouth networks. See Figures 4-5 for confidence interval plots and Table 2 for the confidence 

interval values. 

3.3 Structural Connectivity Results 
 

Analysis of structural connectivity revealed that across pregnancy, FA values increased 

for auditory, cingulo-opercular and dorsal attention, right visual lateral, somatomotor hand, and 

somatomotor mouth network tracts; and decreased for default mode and fronto-parietal, and 

attention and visual network tracts. In the postpartum period, FA values increased for cingulo-

opercular and dorsal attention, default mode and fronto-parietal, attention and visual, and 



 

 17 

somatomotor hand network tracts; decreased for the auditory network tract; and remained 

relatively stable for right lateral visual and somatomotor mouth network tracts (See Figure 6). 

Further, analysis of mean diffusivity revealed homogenous results such that MD values 

increased during pregnancy and decreased in the postpartum period for all network tracts (See 

Figure 7). 

See Tables 3 and 4, respectively, for piecewise regression results for changes in FA and 

MD as a function of gestational age during pregnancy and in the postpartum period. 
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CHAPTER IV 

 

Discussion 

 

In a proof-of-concept study of multimodal brain changes in a single individual who 

completed repeated MRI scans during pregnancy and in the postpartum period, we characterized 

morphometric changes, as well as changes in functional and structural connectivity using a 

custom subject-specific atlas. In line with the limited past non-human and human research on 

structural changes in the peripartum period (Cárdenas et al., 2020), we found decreases in total 

brain, total gray (including subordinate measures such as, total cortical and subcortical volume, 

total surface area, and mean cortical thickness), and total white matter volume estimates across 

pregnancy, followed by increases in the postpartum period. Further, consistent with research 

from Oatridge et al. (2002) we found an inverse trend for ventricular volume: increases across 

pregnancy and decreases in the postpartum period. Given the evidence that cerebrospinal fluid 

increases during pregnancy, it is possible that it may push against the brain, thereby contributing 

to the decreases in brain volume estimates and increase in ventricular volume during pregnancy 

(Andersson-Hall et al., 2021). Notably, unlike studies suggesting that volume reductions persist 

in the postpartum period (Hoekzema et al., 2017; Martínez-García et al., 2021), this study’s 

results were similar to ones that found an increase in volume estimates in the postpartum period 

(Kim et al., 2010). 

Analysis of functional connectivity revealed heterogeneity in changes in mean network 

coherence and network modularity. There were mainly increases in network coherence 

suggesting in increase in intranetwork connectivity across pregnancy as well as in the postpartum 
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period. Further, mean network modularity primarily decreased across pregnancy and mostly 

plateaued in the postpartum period. However, the large confidence intervals limit our confidence 

in whether this pattern is replicable. These findings extend past EEG and fNIRS studies that 

examined changes in brain activity during pregnancy (Raz, 2014; Roos et al., 2011) and suggest 

that the brain may be undergoing more global reorganization of networks in the peripartum 

period. 

Further, analysis of structural connectivity revealed that FA values increased across 

pregnancy and subsequently plateaued in the postpartum period, potentially indicating changes in 

factors that are thought to contribute to changes in FA such as, fiber density, axonal diameter, 

and myelination in white matter tracts during pregnancy. In contrast, there was a decrease in MD 

values across pregnancy followed by a plateau in the postpartum period. This suggests that 

average molecular motion, independent of tissue directionality decreased across pregnancy for 

all network tracts. 

The findings from this study underscores the need for further investigation into 

neurobiological mechanisms of change in the peripartum period. Pregnancy is a period marked 

by dramatic hormone changes. For example, progesterone and estrogen levels rise during 

pregnancy to support fetal development and drop after birth (Magon & Kumar, 2012). Similarly, 

cortisol level increases during pregnancy to ensure development of vital organs and the central 

nervous system (Murphy & Clifton, 2003), and typically declines quickly to baseline level 

postbirth (Thompson & Trevathan, 2008). In other contexts, changes in hormone levels are 

linked to structural and functional changes in the human brain. For instance, changes in sex 

steroid hormones during puberty is associated with alterations in gray and white matter volume 

(Peper et al., 2011). Further, during menopause, estrogen levels decline rapidly, accompanied by 
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reductions in gray matter volume (Kim et al., 2018). Causal evidence of the link between 

hormones and brain volume are supported in work from patients with Cushing’s syndrome, a 

disorder characterized by hypercortisolism. Specifically, a study examining 38 patients with 

Cushing’s syndrome found that loss of measured brain volume that was very significantly 

reversed at 40 months after achieving eucortisolism (i.e., cortisol level within the normal range) 

(Bourdeau et al., 2002). Another biological system that undergoes changes during pregnancy is 

the immune system, as it becomes suppressed to reduce attacks on the fetus, a foreign body 

(Munoz-Suano et al., 2011). For instance, levels of proinflammatory cytokines, mediators of 

immune responses that promote inflammation, increase during pregnancy (Bränn et al., 2017). 

Increased inflammation was found to be associated with increased amygdala activity to socially 

threatening images in a sample of non-pregnant adults (Inagaki et al., 2012). Thus, to better 

understand if these brain changes in the peripartum period may be consequences of other 

biological changes, it is necessary for future work to investigate changes in hormone and 

inflammation levels across pregnancy and in the postpartum period, and examine associations 

with changes in brain metrics. 

Along with examining predictors of change, it is critical to also examine potential 

functional consequences of these brain changes. Gray matter volume reductions have been 

associated with declines in cognitive performance in studies of adult aging (Ramanoël et al., 

2018). Thus, it is possible that the decline in brain volume estimates may be driving the cognitive 

changes during pregnancy and in the postpartum period including memory disturbances, trouble 

concentrating, and absentmindedness (Henry & Rendell, 2007). The brain changes in the 

peripartum period may also confer increased risk for mood disorders as changes in sex steroid 

hormones post-delivery is associated with symptoms of depression (Trifu et al., 2019). 
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Examining trajectories of hormone changes and their associations with brain changes in the 

peripartum period would help shed light on potential timing and targets of interventions aimed at 

promoting maternal mental health. 

This study has five limitations. First, assessment of brain changes began in early 

pregnancy and the study did not capture the full period from conception to birth. Second, data 

was collected at inconsistent intervals across pregnancy and postpartum, with a large period 

postpartum missing due to the COVID-19 pandemic shutdowns and thus lack of data may have 

influenced the ability to detect the shape of change. Third, while brain size is being examined 

using volume estimates, it is unclear what might be driving the changes in measurement (i.e., 

whether the brain is undergoing cortical loss or cortical rearrangement/compression during 

pregnancy, either of which could result in the appearance of volume decreases). Fourth, we are 

not able to provide information about the potential causes and effects of observed brain changes 

as sleep, mood, cognition, hormonal, and inflammatory changes were not examined. Lastly, this 

work evaluated brain changes in a single individual and thus these changes may not be found in 

other individuals. 

To conclude, the present study characterized brain plasticity in a single individual and 

provides support for the existence of morphometric, and functional and structural connectivity 

changes in the peripartum period. The findings motivate efforts to further expand this important 

area of research by examining changes in a larger sample and investigating predictors and 

potential functional consequences of these changes. 
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Table 1 

 
Regression Results for Changes in Volume and Constituent Measures in Volume as a Function of Gestational Age 
 
Structural Metric β SE t 95% CI p R2 
Total Brain Volume:        

Pregnancy -0.98 0.10 -9.76 -1.31, -0.66 .002 0.96 
Postpartum 0.89 0.26 3.45 0.07, 1.72 .041 0.73 

Total Gray Matter Volume:       
Pregnancy -1.00 0.06 -17.48 -1.18, -0.81 <.001 0.99 
Postpartum 0.88 0.28 3.16 -0.01, 1.76 .051 0.69 

Total Cortical Volume:       
Pregnancy -0.99 0.07 -14.18 -1.22, -0.77 <.001 0.98 
Postpartum 0.90 0.26 3.51 0.08, 1.71 .039 0.74 

Total Subcortical Volume:       
Pregnancy -0.96 0.17 -5.64 -1.50, -0.42 .011 0.89 
Postpartum 0.89 0.26 3.42 0.06, 1.72 .042 0.73 

Total White Matter Volume:       
Pregnancy -0.91 0.24 -3.76 -1.68, -0.14 .033 0.77 
Postpartum 0.89 0.27 3.29 0.03, 1.74 .046 0.71 

Total Ventricular Volume:       
Pregnancy 0.97 0.13 7.50 0.56, 1.39 .005 0.93 
Postpartum -0.48 0.51 -0.95 -2.09, 1.13 .411 -0.02 

Mean Cortical Thickness:       
Pregnancy -0.94 0.20 -4.77 -1.57, -0.31 .017 0.84 
Postpartum 0.74 0.39 1.89 -0.50, 1.98 0.16 0.39 

Total Surface Area:       
Pregnancy -0.96 0.15 -6.36 -1.45, -0.48 .008 0.91 
Postpartum 0.88 0.27 3.21 0.01, 1.75 .049 0.70 
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Table 2 
 

 

Mean Network Coherence and Modularity for Binned Timepoints 
 

 

Network Timepoint 
Mean Network 

Coherence [95% CI] 

Changes Found in 
Network 

Coherence 

Mean Network 
Modularity [95% 

CI] 

Changes Found in 
Network 

Modularity 

Attention and Visual 
Early Pregnancy 0.056 [0.053, 0.059] 

LP > EP 
1.290 [1.228, 1.343] 

 Late Pregnancy 0.068 [0.065, 0.072] 1.218 [1.165, 1.268] 
Postpartum 0.067 [0.063, 0.072] 1.182 [1.114, 1.251] 

Auditory 
Early Pregnancy 0.073 [0.067, 0.079] 

LP > EP 
1.751 [1.597, 1.883] 

LP > EP Late Pregnancy 0.110 [0.103, 0.119] 2.071 [1.926, 2.200] 
Postpartum 0.108 [0.097, 0.120] 2.212 [1.995, 2.426] 

Cingulo-Opercular and 
Dorsal Attention 

Early Pregnancy 0.087 [0.084, 0.092] LP > EP;  
PP > LP 

2.125 [2.006, 2.217] 
 Late Pregnancy 0.095 [0.091, 0.100] 2.079 [1.976, 2.164] 

Postpartum 0.105 [0.097, 0.113] 2.232 [2.082, 2.371] 

Default mode and Fronto-
Parietal 

Early Pregnancy 0.058 [0.056, 0.061] 
LP > EP 

1.355 [1.316, 1.386] 
 Late Pregnancy 0.067 [0.065, 0.070] 1.337 [1.300, 1.369] 

Postpartum 0.063 [0.060, 0.067] 1.325 [1.273, 1.374] 

Right Lateral Visual 
Early Pregnancy 0.060 [0.054, 0.066] LP > EP;  

PP > LP 
1.311 [1.182, 1.439] 

 Late Pregnancy 0.075 [0.069, 0.081] 1.243 [1.148, 1.339] 
Postpartum 0.096 [0.087, 0.106]  1.254 [1.143, 1.368] 

Somatomotor Hand 
Early Pregnancy 0.082 [0.078, 0.087] LP > EP;  

PP > LP 

1.712 [1.589, 1.821] 
 Late Pregnancy 0.092 [0.086, 0.098] 1.607 [1.495, 1.720] 

Postpartum 0.122 [0.111, 0.134] 1.533 [1.417, 1.653] 

Somatomotor Mouth 
Early Pregnancy 0.073 [0.067, 0.079] 

PP > LP- 
1.497 [1.351, 1.641] LP < EP; 

PP > LP Late Pregnancy 0.070 [0.064, 0.077] 0.989 [0.901, 1.082] 
Postpartum 0.104 [0.095, 0.114] 1.330 [1.212, 1.454] 

Note. EP = Early Pregnancy (8 and 10 weeks gestation). LP = Late Pregnancy (35 and 37 weeks gestation). PP = Postpartum (68, 76, 96, and 106 
weeks gestation).  
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Table 3 

 
Regression Results for Changes in Functional Anisotropy as a Function of Gestational Age 
 
Network Tract β SE t 95% CI p R2 
Attention and Visual:        

Pregnancy -0.86 0.35 -2.44 -2.39, 0.66 .135 0.62 
Postpartum 0.92 0.28 3.24 -0.30, 2.13 .084 0.76 

Auditory:       
Pregnancy -0.14 0.70 -0.21 -3.15, 2.87 .856 -0.47 
Postpartum -0.70 0.50 -1.40 -2.86, 1.45 .295 0.24 

Cingulo-Opercular and Dorsal Attention:       
Pregnancy 0.13 0.70 0.19 -2.88, 3.15 .867 -0.47 
Postpartum 0.85 0.37 2.27 -0.76, 2.46 .151 0.58 

Default mode and Fronto-Parietal:       
Pregnancy -0.94 0.24 -3.90 -1.98, 0.10 .060 0.83 
Postpartum 0.75 0.47 1.58 -1.28, 2.77 .254 0.33 

Right Lateral Visual:       
Pregnancy 0.72 0.49 1.47 -1.39, 2.83 .279 0.28 
Postpartum 0.35 0.66 0.53 -2.50, 3.20 .649 -0.32 

Somatomotor Hand:       
Pregnancy 0.91 0.30 3.08 -0.36, 2.18 .091 0.74 
Postpartum 0.98 0.13 7.87 0.45, 1.52 .016 0.95 

Somatomotor Mouth:       
Pregnancy 0.97 0.18 5.44 0.20, 1.73 .032 0.91 
Postpartum 0.68 0.52 1.32 -1.54, 2.90 .317 0.20 
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Table 4 

 
Regression Results for Changes in Mean Diffusivity as a Function of Gestational Age 
 
Network Tract β SE t 95% CI p R2 
Attention and Visual:        

Pregnancy 0.94 0.25 3.78 -0.13, 2.00 .064 0.82 
Postpartum -0.97 0.17 -5.63 -1.71, -0.23 .030 0.91 

Auditory:       
Pregnancy 0.94 0.24 3.84 -0.11, 1.99 .062 0.82 
Postpartum -0.90 0.31 -2.94 -2.22, 0.42 .099 0.72 

Cingulo-Opercular and Dorsal Attention:       
Pregnancy 0.99 0.09 11.61 0.62, 1.36 .007 0.98 
Postpartum -0.92 0.27 -3.43 -2.09, 0.24 .076 0.78 

Default mode and Fronto-Parietal:       
Pregnancy 0.98 0.13 7.37 0.41, 1.56 .018 0.95 
Postpartum -0.93 0.25 -3.67 -2.03, 0.16 .067 0.81 

Right Lateral Visual:       
Pregnancy 0.96 0.20 4.91 0.12, 1.80 .039 0.89 
Postpartum -0.97 0.18 -5.48 -1.73, -0.21 .032 0.91 

Somatomotor Hand:       
Pregnancy 0.96 0.20 4.72 0.08, 1.83 .042 0.88 
Postpartum -0.91 0.29 -3.12 -2.17, 0.35 .089 0.74 

Somatomotor Mouth:       
Pregnancy 0.97 0.17 5.70 0.23, 1.70 .029 0.91 
Postpartum -0.93 0.26 -3.52 -2.06, 0.21 .072 0.79 
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Figure 1. Morphometric Changes Across Gestational Age 
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Figure 2. Changes in Mean Network Coherence Across Binned Timepoints 
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Figure 3. Changes in Mean Network Modularity Across Binned Timepoints 
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Figure 4. 95% Confidence Intervals for Mean Network Coherence for Binned Timepoints 
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Figure 5. 95% Confidence Intervals for Mean Network Modularity for Binned Timepoints
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Figure 6. Changes in Fractional Anisotropy as a Function of Gestational Age



 

 43 

 
 
 
 
 
 
 
 
 
 
 

Figure 7. Changes in Mean Diffusivity as a Function of Gestational Age 


