
A SEMANTIC BACKPLANE FOR INCREMENTAL MODELING

By

Qishen Zhang

Dissertation

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

August 11, 2023

Nashville, Tennessee

Approved:

Janos Sztipanovits, Ph.D.

Daniel Balasubramanian, Ph.D.

Gabor Karsai, Ph.D.

Jeff Gray, Ph.D.

Ethan Jackson, Ph.D.

Copyright © 2023 Qishen Zhang
All Rights Reserved

ii

Dedicated to my parents, grandparents, and other family members, whose unwavering love, support, and
sacrifice made this achievement possible. Your belief in me never wavered, and I am forever grateful for
everything you have done for me. This work is a tribute to your love and encouragement throughout my

academic journey.

iii

ACKNOWLEDGMENTS

First of all, I would like to thank Professor Janos Sztipanovits who saw my potential and accepted me as his
Ph.D. student at Vanderbilt University. I’m truly grateful that he supports me over the years and believes in
me even though at many points of my academic journey I have suffered from anxiety and doubt about myself.
Without his support and encouragement, I will not be able to make it to the end and achieve so much.

I would also like to thank my Ph.D. Committee members, Daniel Balasubramanian, Gabor Karsai, Jeff
Gray, and Ethan Jackson for their valuable feedback on my research work and dissertation along the way. I
am also very thankful to the co-authors Daniel Balasubramanian, Anastasia Mavridou, and Tamas Kecskes
for the collaboration and each of them provides insights and a tremendous help to my work. I also want to
thank Ethan Jackson for sparing time from his tight schedule for our weekly meeting to explain the internals
to us with great patience.

Finally, I would also like to thank all my family members, especially my mom they support me with love
and encouragement, despite the difficulties of not being able to see each other in person for years and two
of my grandparents will not have the chance to witness my achievements unfortunately. During the time of
my graduate study, I also met lots of personal friends and colleagues who make my time in a foreign country
more enjoyable and share a lot of memories. I want to express my deep appreciation to Yi Li, Fangzhou Sun,
Yiyuan Zhao, Xingyu Zhou, Jian Lou, Saqib Hasan, Gergely Varga, Jingwei Fan, Brian Berstein, Lin Song,
Hannah, Melisa, Bowen Jin, Zhiyu Wan.

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

1 Introduction . 1

1.1 Motivation . 1
1.2 Background . 5

1.2.1 WebGME . 5
1.2.2 FORMULA Language . 7
1.2.3 Semantic Backplane . 11
1.2.4 Differential-Datalog and Differential-Dataflow . 12

1.3 Contribution . 13
1.4 Organization . 13

2 Challenges in Semantic Integration for Modeling . 14

2.1 General Research Challenges in Model-driven Engineering 14
2.2 Challenges in Graph-based Semantic Integration . 15

2.2.1 Integration of Models, Semantics, Storage, and Execution 15
2.2.2 Unified Graph Representation in Modeling Framework 16
2.2.3 Scalability Issues on Large Models . 17

2.3 Problems and Challenges in Incremental Modeling . 18

3 Related Work . 19

3.1 Generic Modeling Engineering Frameworks and Tools . 19
3.2 Modeling Framework with Formal Semantics . 20
3.3 Graph-based Modeling Frameworks . 21
3.4 Bootstrapping Modeling Frameworks . 22
3.5 Incremental Modeling . 23

3.5.1 OCL-based Incremental Model Query . 24
3.5.2 ATL-based Incremental Model Transformation 24
3.5.3 TGG-based Incremental Model Transformation 25
3.5.4 Graph-based Incremental Model Transformation 26
3.5.5 Other incremental approaches . 26

4 Semantic Bridge from Models to Graphs . 28

4.1 Introduction to Graph Database . 28
4.2 Semantic Bridge Overview . 29

4.2.1 Tools Comparison . 30
4.2.2 Three Levels of Integration . 31

4.3 Direct Integration of WebGME and FORMULA . 33
4.4 Graph-based Integration of WebGME, FORMULA, and Graph Database 35

4.4.1 Semantic Foundation in Graph . 35
4.4.2 Logic-based FORMULA Specification . 37
4.4.3 Graph-based Gremlin Specification . 39

v

4.5 FORMULA Model Operations Executed in Graph Database 41
4.5.1 Model and Metamodel Representation in Graph 42
4.5.2 Pre-processing of FORMULA Rule . 44
4.5.3 Label Map for FORMULA Rule . 45
4.5.4 Instance and Arguments . 45
4.5.5 Handling Binding Label with Fragments . 46
4.5.6 Constraints over Properties in Built-in Types . 47
4.5.7 Negation and Set Comprehension Operators . 47
4.5.8 Termination of Repeating Rule Execution . 48

4.6 Benchmark and Performance Comparison . 49
4.7 Contributions . 50

5 Developing Differential-FORMULA in MDE Methodology 52

5.1 Differential-Dataflow Computation Model and Tool Suites 54
5.1.1 Timely Dataflow . 54
5.1.2 Differential Dataflow . 56
5.1.3 Differential Datalog . 57

5.2 Introduction to Differential-FORMULA . 60
5.3 Identification of Semantic Mismatch . 61
5.4 Formal Specification of FORMULA Language and Differential-Datalog 63

5.4.1 Union Type Definition . 64
5.4.2 Negation . 66
5.4.3 Aggregation . 68

5.5 Static Analysis on FORMULA Programs . 69
5.5.1 Language Domain Modeling and Metamodels . 70
5.5.2 Type Inference of Non-ground Term . 74

5.5.2.1 Type Inference of Sub-terms . 74
5.5.2.2 Term Unifiability Checking . 75

5.5.3 Type Inference In the Context of FORMULA Rules 77
5.5.4 Nested Set Comprehension Validation . 80
5.5.5 Rule Stratification Validation . 82

5.6 formula2ddlog Model Transformation . 85
5.6.1 Positive Predicate Translation . 85
5.6.2 Negated Predicate Translation . 85

5.6.2.1 Negation as Set Difference . 85
5.6.2.2 Negation as Set Comprehension . 86

5.6.3 Set Comprehension Translation . 86
5.6.3.1 Independent Set Comprehension . 87
5.6.3.2 Dependent Set Comprehension . 89
5.6.3.3 Nested Set Comprehension . 90

5.6.4 formula2ddlog Transformation Example . 91
5.7 Benchmarks on Incremental Updates for Large Models 94
5.8 Contributions . 101

6 Future works and Open Challenges . 103

6.1 Future Works . 103
6.1.1 Implementation and Optimization . 103

6.2 Open Challenges . 103
6.2.1 Model Synthesis . 103
6.2.2 Formal Specification with Bootstrapping . 104

References . 105

vi

LIST OF TABLES

Table Page

4.1 Execution times for FORMULA and Gremlin specifications. MN, ME, N, E stand for
number of MetaNodes, MetaEdges, Nodes, Edges. 50

vii

LIST OF FIGURES

Figure Page

1.1 Semantic Backplane for Heterogeneous Modeling . 3
1.2 WebGME Design Studio Workflow . 6
1.3 ROSMOD Model Visualization in WebGME . 7

2.1 Graph-based Integrated Modeling Framework . 16
2.2 WebGME with FORMULA-based Semantic Backplane 17

4.1 Overview of WebGME, FORMULA, and Graph Database Integration 30
4.2 Translation of WebGME Meta Concepts into FORMULA 34
4.3 Patterns of translation into FORMULA and Gremlin of main WebGME meta-modeling

language features . 41
4.4 MetaGraph Domain and Model in FORMULA . 43
4.5 FORMULA Model Represented in Graph . 44

5.1 Differential-Datalog Internal Workflow . 58
5.2 Generated Differential-Dataflow from a DDLog Rule 59
5.3 Architecture of DDLog-based Incremental Modeling Framework. 61
5.4 Metamodel of FORMULA Language . 64
5.5 Metamodels of DDLog and FORMULA Modeled Visually in WebGME 64
5.6 δF Incremental Running Time . 93
5.7 Non-incremental Running Time: δF vs FORMULA . 93
5.8 TTC2018 Social Network Metamodel in Ecore . 98
5.9 Q1 Load Time . 99
5.10 Q1 Batch Time . 99
5.11 Q1 Updates Time . 100
5.12 Q2 Load Time . 100
5.13 Q2 Batch Time . 101
5.14 Q2 Updates Time . 101

viii

CHAPTER 1

Introduction

1.1 Motivation

Modeling frameworks are the required infrastructure for model-based design. They provide necessary tools

and services for system designers to facilitate model-based system development with domain-specific mod-

eling languages and model transformations. Modeling frameworks are responsible for offering an intuitive

engineering interface, often graphical, for model developers, as well as providing a range of services support-

ing safe model engineering practices, including composing, decomposing, visualizing, modifying, checking

well-formedness, versioning, and storing large models.

There are six dominant activities in model-based engineering:

1. Specifying modeling domains using domain-specific modeling languages: design a metamodel in either

textual or graphical syntax.

2. Building models: create models in either textual or graphical syntax.

3. Verifying with static model checking: verify the well-formedness of models during the modeling pro-

cess using constraint checking.

4. Specifying model transformations: use a specification language for specifying mappings from one

modeling domain to another.

5. Executing model transformations: implement or use an existing execution engine that ideally executes

the transformation specifications directly.

6. Storing models: store and load models to and from persistent storage.

Model-driven engineering (MDE) has been applied extensively to Cyber-physical systems (CPS) in which

functionality emerges from the interactions of computational and physical processes. The CPS design of au-

tonomous vehicles, smart energy systems, public transportation systems, and the Internet of Things are dom-

inantly model-based. OpenMETA (Sztipanovits et al., 2014) is one of the successful use cases of MDE that

focused on integrating and testing an automated, model-based design for the power train and hull of the fast

adaptable next-generation ground vehicle in DARPA Adaptive Vehicle Make (AVM) program. The toolchain

improved design productivity with correct-by-construction component- and model-based design methods,

1

incorporated manufacturing-related constraints into the design flow, and support a web-based collaboration

platform for crowd-sourced design for a meager cost.

MDE also has applications in robotic systems and embedded system such as mbeddr (Voelter et al., 2012)

in MPS (Pech, 2021) that uses extensible DSLs, flexible notations, and integrated verification tools to generate

verified C program from models to run reliably in embedded system. Furthermore, the MDE methodology

is applied to pure software engineering and language engineering such as P language (Desai et al., 2013) to

design a verifiable compiler from high-level language to low-level general-purpose programming languages.

The industrial use case such as Adaptive Vehicle Make mentioned above is a highly complicated appli-

cation of model-driven engineering and prototyping of the conceptual design flow requires several categories

of tools to be integrated before the execution and evaluation of automated workflow. The tools include 1)

authoring tools to define component models and design space models; 2) model composition tools that trans-

form models and derive inputs for domain-specific analysis tools; 3) domain-specific analysis test benches

and tools for analysis and evaluation of the candidate system using models of progressively deepening fi-

delity; and 4) analytics and visualization tools for visualization of analysis results as well as for interactively

conducting design trades.

A model integration platform is the foundation of cross-domain modeling and we developed a Model

Integration Language named CyPhyML that has several sub-languages:

1. Component models (CMs) that incorporate: 1) several domain models representing various aspects of

component properties, parameters, and behaviors; 2) a set of standard interfaces through which the

components can interact; 3) the mapping between the component interfaces and the embedded domain

models; and 4) constraints expressing cross-domain interactions

2. Design models (DMs) that describe system architectures using assemblies, components and their inter-

connections via the standard interfaces.

3. Design space models (DSMs) that define architectural and parametric variabilities of DMs as hierar-

chically layered alternatives for assemblies and components.

4. Analysis models (AMs) that specify data and control interfaces for analysis tools.

5. Testbench models (TMs) that 1) specify regions in the design space to be used for computing key

performance parameters; 2) define analysis flows for computing key performance parameters linked to

specific requirements; and 3) provide interfaces for visualization.

Well-known challenges of introducing model-based engineering to the end-to-end design of CPS product

lines in the aerospace and automotive industries are heterogeneity and scalability. Engineering processes

2

require a large number of distinct tools throughout the design flow. In addition, the list of domain-specific

modeling languages (DSMLs) used is not fixed, but rather changes and evolves according to the needs of the

application domain. This is particularly true in cross-disciplinary fields like CPS, where the application of

model-based engineering must be able to accommodate many different DSMLs. The accommodation of dif-

ferent DSMLs can be viewed as a composition problem in which multi-abstraction and multi-fidelity models

must be captured and integrated. Composition of an end-to-end integrated toolchain from a heterogeneous

collection of commercial-off-the-shelf (COTS), open-source, and proprietary tools is difficult because it is

not simply a tool interoperability problem, but a major semantic integration problem.

Previous work at Vanderbilt addressed this need in the development of the OpenMETA design automation

tool suite for DARPA’s Adaptive Vehicle Make program (Sztipanovits et al., 2014) and the overall workflow

of OpenMETA and semantic backplane is shown in Figure1.1.

Figure 1.1: Semantic Backplane for Heterogeneous Modeling

Semantic integration in OpenMETA was achieved by the introduction and continuous evolution of the

CyPhyML model integration language supporting the engineering process of ground vehicle design (Szti-

panovits et al., 2014). Since the OpenMETA design flow extended to multiple physical and cyber domains,

CyPhyML itself proved to be a complex DSML requiring the use of a meta-programmable modeling tool,

GME. To satisfy the need for evolving CyPhyML without sacrificing semantic integrity, the project incorpo-

rated the OpenMETA Semantic Backplane (Simko et al., 2012), which provided a FORMULA-based formal

specification of CyPhyML as well as the integration models across physical and cyber domains. Although this

two-pronged approach of complementing a model engineering tool (GME) with a formal framework satisfied

3

the basic needs, the challenge of synchronizing the CyPhyML and FORMULA models and meta-models

decreased the benefits of the Semantic Backplane.

Microsoft’s FORMULA language (Jackson, 2013) supports formal metamodeling and the formal spec-

ification of model transformations in the Constraint Logic Programming (CLP) framework (Jackson et al.,

2015). While the formalization of integration models and model transformations were crucial in managing

complexity in OpenMeta (Sztipanovits et al., 2014), the loose connection between the model engineering tool

suite and the FORMULA-based semantic backplane led to a divergence between the engineering models and

their formal representation, which created consistency risks (Sztipanovits et al., 2014). The root cause of this

divergence was that part of the FORMULA models (formal domain constraints and model transformations)

still had to be modeled by hand after the continuously (and rapidly) changing production code written in

JavaScript. This introduced a time delay in the formal modeling process and made its consistency with the

production system error-prone.

The lack of a deeper semantic integration between the model engineering framework (GME and cur-

rently WebGME) and the FORMULA-based semantic backplane has been one of the major motivations for

our research effort. The challenges of semantic integration include a fully automated mapping between

WebGME-based models and metamodels and their FORMULA specification such that the consistency of

structural semantics in the two representations is preserved.

Modeling tools like WebGME (Maróti et al., 2014), EMF (Steinberg et al., 2008), MPS (Bucchiarone

et al., 2021) and MetaEdit+ (Kelly et al., 1996) provide services for graphical modeling, while specifica-

tion languages like FORMULA (Jackson and Schulte, 2013), Alloy (Jackson, 2019) provide the definition

of formal semantics and the execution engine for model operations. WebGME is the next generation of

Vanderbilt’s Generic Modeling Environment(GME) (Sztipanovits and Karsai, 1997) providing many newly

designed features such as web-based deployment, version control, real-time collaborative editing, and pro-

totypical inheritance to improve scalability and extensibility for large, real-world applications. WebGME

is a response to the limitations of GME uncovered by the widespread application of our model-integrated

computing (MIC) tools. Although WebGME advanced the modeling capabilities of GME and provided a

highly customizable and meta-programmable framework, it still lacks an expressive and easy-to-use platform

for querying, testing the well-formedness, visualizing, and analyzing very large models. In WebGME, these

functions are implemented by manually designed scripts defined in JavaScript or Python language. while the

approach is scalable, for model developers and engineers its use is cumbersome and lacks expressiveness and

evolvability, which makes it hard to maintain. Elimination of this gap and moving toward a more declarative

approach that scales well to very large models was another key motivation for the deeper integration between

WebGME, and graph-based model stores that offer a partial solution for these problems.

4

The third motivation for the research has emerged from the significant mismatch between the engineering

process of modeling and the FORMULA implementation. Engineering modeling is inherently incremen-

tal – the design models are subject to continuous updates – while the FORMULA execution engine is not

incremental. The result of this mismatch is that after model updates, the entire design model had to be re-

compiled into FORMULA code which made the process slow if the model sizes were large. There were two

possible solutions for this challenge: to re-implement FORMULA core to be incremental or to delegate the

execution of FORMULA models to another formal framework. The second approach requires that precise

semantic mapping is established between FORMULA and the target language. Since the FORMULA core

engine is highly complex, this latter route seemed to be the best solution. We selected Differential Datalog

(DDLog) and Differential-Dataflow as the target, both of which are declarative, efficient, incremental, and

even potentially could scale to multi-core execution platforms.

In summary, the key motivations of the proposed research are to address the conflicting requirements of

heterogeneity and scaling in model-based design. Addressing heterogeneity demands the use of agile model

integration languages without compromising semantic precision. This need can be satisfied by the integration

of formal frameworks with model-engineering tools. However, real-life applications lead to very large model

sizes that make scalability a primary concern. The need for scalability motivates two additional steps: (1)

introducing formal frameworks that are incremental and (2) providing a bridge toward graph-based model

stores that offer languages and tools for high-performance queries, analytics, and visualization.

1.2 Background

In this section, we briefly summarize the key concepts and introduce the related tools in our research work

to get new readers familiar with the tools before diving into the integration of WebGME, FORMULA, graph

database, and Differential-dataflow computation model.

1.2.1 WebGME

WebGME - Web Graphical Modeling Environment (Maróti et al., 2014) is an open-source, web-based plat-

form for collaborative model-driven engineering, used to create and manipulate models of systems, software,

and other complex artifacts. It allows users to create custom modeling languages, define models, and execute

generated code or models in real time. Figure 1.2 depicts the common workflow of WebGME design studio

and figure 1.3 is an example of how models from ROSMOD (Kumar et al., 2016) project are visualized in

WebGME.

5

Figure 1.2: WebGME Design Studio Workflow

WebGME provides a graphical interface for creating and manipulating models using a drag-and-drop

approach, allowing users to easily create and modify complex systems, and collaborate with others on the

same project. It also includes tools for version control, automated testing, and project management. WebGME

is built on top of Node.js and MongoDB and can be customized and extended using JavaScript. It is used

in a variety of industries, including aerospace, automotive, and defense, to develop complex systems and

software.

Although the WebGME advanced the modeling capabilities of GME and provided a highly customizable

and meta-programmable framework; it still lacks an expressive and easy-to-use platform for well-formedness

checking. The end users have to manually implement a plugin in general-purpose programming languages

such as JavaScript or Python to do more complex constraint checking beyond the simple built-in conformance

checking in WebGME diagrams.

6

Figure 1.3: ROSMOD Model Visualization in WebGME

1.2.2 FORMULA Language

FORMULA (Jackson and Schulte, 2013) is a constraint logic programming language based on fixed-point

logic over algebraic data types. FORMULA can deduce a set of final facts that is the least fixed-point solution

given an initial set of facts specified in algebraic data types and a set of inference rules to execute,

In FORMULA language, the structure of models, validation rules, and transformation rules are specified

using algebraic data types (ADTs) and Constraint Logic Programs (CLPs). We briefly introduce the fea-

tures of FORMULA as a CLP-based modeling language for specifying DSMLs with the extended examples

in (Sztipanovits et al., 2014),

The Deployments domain formalizes the following cross-domain problem: There are services and ser-

vices that can be deployed to a node. Services are in conflict if deployed to the same node at the same time.

The last line of code in Deployments domain is a rule with set comprehension to find out the number of nodes

that have more than one service deployed to them.

FORMULA also has the concept of inheritance that any domain or even model can be inherited by another

domain and even multiple times under different namespaces. For example, the SessionedDeployments domain

can be constructed by gluing together three independent domains, in which two of them are from the same

SessionedDeployments domain but under different scope or namespace, so D1.Node(1) and D2.Node(1) are

7

considered to be two different nodes from different sessions because they are under different scopes but they

can still coexist and belong to the same newly defined type Deploy under SessionedDeployments in which

Deploy ::= D1.Deploy+D2.Deploy and the new Deploy type has a completely different meaning compared

with Deploy under Deployments domain.

Additional validation rules and data types are added to detect across-session conflict, which aims to find

conflict between services from two different sessions of deployments. Both type Element from Deployments

and type Deploy from SessionedDeployments are algebraic union types that represent the union of multiple

sets of terms, which is a unique feature that gives FORMULA more power of expression than other specifica-

tion languages and basically any combination of more than one term can form a unique type in FORMULA.

domain Deployments

{

S e r v i c e : : = new (name : S t r i n g) .

Node : : = new (i d : N a t u r a l) .

Element : : = S e r v i c e + Node .

C o n f l i c t : : = new (s1 : S e r v i c e , s2 : S e r v i c e) .

Deploy : : = fun (s : S e r v i c e => n : Node) .

conforms no { n | Deploy (s , n) , Deploy (s ′ , n) , C o n f l i c t (s , s ′) } .

}

domain S e s s i o n { Timestamp : : = new (t ime : S t r i n g) . }

domain S e s s i o n e d D e p l o y m e n t s e x t e n d s S e s s i o n ,

Deployments a s D1 , Deployments a s D2

{

Deploy : : = D1 . Deploy + D2 . Deploy .

Dep loymen tSess ion : : = new (t : Timestamp , dep loyment : D) .

A c r o s s S e s s i o n C o n f l i c t : : = new (s1 : D1 . S e r v i c e , s2 : D2 . S e r v i c e) .

A c r o s s S e s s i o n C o n f l i c t (s11 , s22) : − D1 . C o n f l i c t (s11 , s12) , D2 . C o n f l i c t (s21 , s22) ,

s12 . name = s21 . name .

}

Listing 1.1: FORMULA Domain Composition and Inheritance

Models are represented simply as sets of well-typed trees created from domain data types. Model modules

hold the set of trees to represent the instances that conform to the data structures and rules defined in the

domain modules. Partial models denoted by the keyword partial before the model name are partially closed

8

domains in that parts of the facts are not given and are subject to the FORMULA model synthesis to find

solutions. For example, the UnfulfilledDeployments model requires two services to be deployed to at most

10 nodes and the total number of services and nodes must be less than 20. A domain can also be viewed as

a partial model and both of them are Open Logic Programs (OLPs) that a model closes the domain or partial

model with a set of facts. There could be an infinite set of models that solves it and the execution of model

synthesis on OLPs returns the result of finding solutions in the search space with proofs.

model Undeployed of Deployments

{

sVoice i s S e r v i c e (” In − c a r v o i c e r e c o g n i t i o n ”) .

sDB i s S e r v i c e (” Dashboard UI ”) .

n0 i s Node (0) .

n1 i s Node (1) .

C o n f l i c t (sVoice , sDB) .

}

model Good of Deployments e x t e n d s Undeployed

{

Deploy (sVoice , n0) .

Deploy (sDB , n1) .

}

model Bad of Deployments e x t e n d s Undeployed

{

Deploy (sVoice , n0) .

Deploy (sDB , n0) .

}

p a r t i a l model U n f u l f i l l e d D e p l o y m e n t s o f Deployments

{

s1 i s S e r v i c e () .

s2 i s S e r v i c e () .

a t m o s t 10 Node .

conforms c o u n t ({ e | e i s Element }) < 2 0 .

9

}

Listing 1.2: FORMULA Model Composition and Inheritance

Transforms are CLPs that transform models between domains. They are useful for formalizing changes

in abstractions (such as compilers) and for projecting large integrated models into consistent submodels that

can be fed to domain-specific tools. Below is a simple example that compiles Deployment models into

Configuration models that can be directly translated into configuration files. A new domain NodeConfigs

is defined to model the configuration files, in which each node location is associated with a list of services

deployed on it. The transformation rule in the transform module Compile will gather all services deployed on

the same node to a list and return the list together with the id of the node. Model transformation is essentially

the concrete execution of model facts to derive new model facts that conform to the constraints in the target

domain.

domain NodeConf igs

{

Conf ig : : = fun (l o c : N a t u r a l −> l i s t : any S e r v i c e s + { NIL }) .

S e r v i c e s : : = new (name : S t r i n g , t a i l : any S e r v i c e s + { NIL }) .

}

t r a n s f o r m Compile (i n : : Deployments) r e t u r n s (o u t : : NodeConfigs)

{

o u t . Conf ig (n . id , l i s t) : − n i s i n . Node ,

l i s t = t o L i s t (o u t . # S e r v i c e s , NIL , { s . name | i n . Deploy (s , n) }) .

}

Listing 1.3: FORMULA Model Transformation

The FORMULA example below is for the demonstration of some of the FORMULA advanced features

that are not only unavailable in other modeling languages but also difficult to implement in a general-purpose

programming language. SortedDeployments is the new domain that inherits Deployments domain with ex-

tensions by attaching a number to each deployment to indicate the priority. The first four rules regarding

Ordering compute all orderings of the deployments by swapping two deployments in the list of 4 deploy-

ments and the ultimate goal is to find a sequence that cannot be sorted due to the existence of conflicts

between deployments.

Note that this problem has negation, recursion, and even nested set comprehension that is part of the rule

while the constraint inside the same set comprehension also has set comprehension itself. The execution of

10

rules on a concrete model is not hard but solving a partial model of this domain such as model Unsorted is

an undecidable problem.

domain Sor t ed Dep loy men t s e x t e n d s Deployment

{

P r i o r i t i z e d D e p l o y m e n t : : = new (d : Deploy , p r i o r i t y : I n t e g e r) .

I n i t i a l : : new (d1 : P r i o r i t i z e d D e p l o y m e n t , d2 : P r i o r i t i z e d D e p l o y m e n t ,

d3 : P r i o r i t i z e d D e p l o y m e n t , d4 : P r i o r i t i z e d D e p l o y m e n t) .

O r d e r i n g : : new (d1 : P r i o r i t i z e d D e p l o y m e n t , d2 : P r i o r i t i z e d D e p l o y m e n t ,

d3 : P r i o r i t i z e d D e p l o y m e n t , d4 : P r i o r i t i z e d D e p l o y m e n t) .

O r d e r i n g (a , b , c , d) : − I n i t i a l (a , b , c , d) .

O r d e r i n g (b , a , c , d) : − O r d e r i n g (a , b , c , d) , a . p r i o r i t y > b . p r i o r i t y .

O r d e r i n g (a , c , b , d) : − O r d e r i n g (a , b , c , d) , b . p r i o r i t y > c . p r i o r i t y .

O r d e r i n g (a , b , d , c) : − O r d e r i n g (a , b , c , d) , c . p r i o r i t y > d . p r i o r i t y .

U n s o r t a b l e (w, x , y , z) : − I n i t i a l (w, x , w, z) ,

no { w, x , y , z | O r d e r i n g (w, x , y , z) ,

no { n | Deploy (s , n) , Deploy (s ′ , n) , C o n f l i c t (s , s ′) } ,

x < y , y < w, w < z }

}

p a r t i a l model U n s o r t e d o f So r t e dDe p lo yme n t s

{

a t l e a s t 10 P r i o r i t i z e d D e p l o y m e n t .

U n s o r t a b l e (w, x , y , z)

}

Listing 1.4: FORMULA Example for Advanced Usage

1.2.3 Semantic Backplane

A key challenge of OpenMETA (Sztipanovits et al., 2014) was the heterogeneity of model-based design flows

for CPS. The META design flow introduces heterogeneity in multiple dimensions:

1. Heterogeneity caused by multiple physical domains (structural, mechanical, electrical, hydraulic, pneu-

11

matic, and others).

2. Abstraction heterogeneity across implementation layers (continuous/hybrid dynamics, logical time dy-

namics (automata models), discrete event dynamics).

3. Heterogeneity across behavioral abstractions developed for describing the same dynamic phenomenon

(e.g. hybrid dynamics abstracted to concurrent state machines using precise relational abstractions).

As it is shown in the figure, the range of the modeling domains across these design dimensions is not

closed: they continuously evolve driven by the needs of the products and the abstractions provided by the

design tools. The introduction of a flexible model integration language connects the product-specific design

models to the tool-specific analysis models. The role of the Semantic Backplane is to make this ”semantic

integration” sound by representing the semantics of the model integration language (CyPhyML), the seman-

tic interfaces to the tool-specific semantic interfaces, and the required model transformations in a formal

framework - FORMULA.

1.2.4 Differential-Datalog and Differential-Dataflow

Differential Datalog (DDLog) developed by Ryzhyk and Budiu (2019) is a programming language designed

for incremental computations, where it is expected that the program input is continually changing. Program-

mers specify the input-output relationship using a syntax that resembles logic programming, and the DDlog

compiler synthesizes an efficient, incremental implementation of this relationship.

DDLog operates on typed relations using a set of logic programming-style rules that are evaluated to

incrementally perform complex computations defined in a DDlog program. The DDlog language has a strong

type system that extends the traditional Datalog language with support for Haskell-style tagged union types,

infinite precision primitive types, generic types, and built-in collection types, including maps, sets, arrays,

and even functions as first-class objects.

Under the hood, a DDLog program is compiled to Differential Dataflow (DD), which is an incremental

streaming data processing system that supports a wide range of relational operators including map, filter,

join, antijoin, recursion (nested iteration with self-loops), reduction (aggregation), union (concatenation of

collections) and distinct. Differential Dataflow uses a computation model called differential computation that

allows states (snapshots of the results of computation) to vary according to a partial ordering of different

versions and maintains an index of updates so the next state can be efficiently derived by combining partially

ordered versions in different ways. The output of the compilation is a DD graph of differential dataflows in

which each node is a DD operator connected to other operators with a highly optimized implementation for

incremental computation.

12

1.3 Contribution

The contributions are the following:

1. Integration of WebGME, FORMULA, and graph database on three different levels. 1) Direct transla-

tion from WebGME to FORMULA 2) WebGME modeled as a graph in FORMULA with automatically

derived conditions to reason over the models. 3) Integration of FORMULA and graph database with

rule execution in graph queries.

2. Formal specification of Differential-Datalog and FORMULA languages with identification of syntax

and semantics mismatch between FORMULA and DDLog. Support type inference and static analysis

of the FORMULA program by constraint checking in logic programming.

3. The implementation of Differential-FORMULA, a tool based on FORMULA language that supports

incremental evaluation, by the model transformation in bootstrapping style to automatically generate

an equivalent DDLog program that executes rule incrementally.

4. Formal specification of various engineering domains with benchmark comparison between our inte-

grated modeling framework and other high-performance state-of-art modeling frameworks.

The contribution does not address the symbolic execution option of FORMULA, which is an essential el-

ement for model synthesis with Z3. In this sense, Differential-FORMULA will be a subset of the FORMULA

leaving out the partial model construct.

1.4 Organization

Chapter 2 summarizes the research challenges in dealing with the scalability and performance issues in large

models. Chapter 3 lists all the related works about graph-based modeling frameworks and the latest research

on incremental modeling tools. Chapter 4 introduces our integrated tools of WebGME, FORMULA, and

graph database on three different levels. Chapter 5 introduces Differential-FORMULA and the details about

how we use model transformation to generate an incremental version of the FORMULA program in DDLog

that not only has better performance in model execution but also executes incrementally. Chapter 6 is about

future work and open opportunities regarding the integration of modeling frameworks and scalability issues.

13

CHAPTER 2

Challenges in Semantic Integration for Modeling

2.1 General Research Challenges in Model-driven Engineering

Model-driven engineering (MDE) is an approach to software development that emphasizes the use of models

to specify, design, and implement software systems. While MDE offers many potential benefits, such as

increased productivity, quality, and maintainability, it also presents several challenges for researchers. Here

are some of the general research challenges in model-driven engineering:

1. Scalability: As software systems become larger and more complex, models can become unwieldy and

difficult to manage. Researchers need to develop techniques to manage the complexity of models and

make them scalable.

2. Verification and Validation: Models need to be verified and validated to ensure that they accurately

represent the desired system behavior. Researchers need to develop techniques and tools to automate

these processes and to ensure the correctness of the models.

3. Tool Integration: MDE involves the use of multiple tools for modeling, analysis, and code generation.

Researchers need to develop techniques to integrate these tools seamlessly and to ensure that they work

together effectively.

4. Language Design: The design of modeling languages is critical to the success of MDE. Researchers

need to develop techniques to design languages that are expressive, easy to use, and support a wide

range of modeling tasks.

5. Human Factors: The success of MDE depends on the ability of developers to create and manipulate

models effectively. Researchers need to understand the cognitive processes involved in modeling and

develop techniques to support developers in these tasks.

6. Evolution and Maintenance: Software systems evolve over time, and models need to be updated to

reflect these changes. Researchers need to develop techniques to manage the evolution and maintenance

of models and to ensure that they remain valid and accurate.

7. Domain-specific challenges: MDE is often applied in specific domains, such as automotive or health-

care, which present their own unique challenges. Researchers need to understand these domain-specific

challenges and develop techniques to address them effectively.

14

In summary, model-driven engineering presents several research challenges that need to be addressed to

realize its potential benefits fully. These challenges range from the design of modeling languages to the inte-

gration of tools and the management of model evolution and maintenance. Addressing these challenges will

require interdisciplinary research efforts that combine expertise in computer science, software engineering,

cognitive psychology, and other fields.

2.2 Challenges in Graph-based Semantic Integration

We aim to describe the semantics of a metamodeling language with an abstract, concise and high-level lan-

guage that enables efficient reasoning over hierarchically complex data structures with high performance.

Graphs provide such an abstract language and have been studied extensively for representing metamodels

and models, but there are several problems that have to be addressed before applying graph-based reasoning

and execution to our integrated modeling framework.

2.2.1 Integration of Models, Semantics, Storage, and Execution

Most modeling tools do not have a unified framework for representation, formally defined semantics, storage,

and model execution all integrated seamlessly. The concept of this “Semantic Bridge” for integrated modeling

framework is shown in Figure 2.1. The design process with graphical syntax is usually handled by MBSE

tools such as WebGME on the left side with a specification language such as FORMULA to specify the

formal semantics of DSMLs defined previously.

On the right-hand side, another bridge or link must be established to precisely map the formally de-

fined semantics to a low-level language or representation for the purpose of fast execution and analytics.

The challenge is to create a semantically sound link between our engineering-oriented modeling framework

and graph-based modeling frameworks, such as TinkerPop (TinkerPop, 2020), not only for the mappings of

models but also for the mappings of their query languages.

Before one language is translated into another language, the language should be formally defined no

matter it is a general-purpose programming language, modeling language or a specification language like

FORMULA used to specify other languages. FORMULA is a specification language to create DSMLs and

verify the models of DSMLs, but the FORMULA language itself and its compiler are not formally defined.

A formal specification of the FORMULA language will facilitate the translation to other tools and avoid

semantic mismatches or errors.

15

Figure 2.1: Graph-based Integrated Modeling Framework

2.2.2 Unified Graph Representation in Modeling Framework

Graph representation and graph database are currently underutilized for many modeling activities: because

models and metamodels can be represented as typed graphs, they can take advantages of the efficient storage

and fast queries offered by graph databases or even graph transformation using the existing highly optimized

graph algorithms implementation. However, the graph representation does not exist in either the WebGME

or FORMULA tools as a foundation to represent their unique metamodels and models. The data analytics

tools on the right side of Figure 2.1 are only available with metamodels and models represented in graphs.

16

Figure 2.2: WebGME with FORMULA-based Semantic Backplane

2.2.3 Scalability Issues on Large Models

Scalability is the grand challenge for modeling frameworks to handle large models. WebGME and FOR-

MULA integration does not scale well because separately they have their own performance issues and bottle-

necks as shown below.

WebGME - has slow performance for model execution with manually written JavaScript plugins for

constraint checking and may freeze the browser on large models because the web browser is not suitable

for the rendering of huge amounts of hierarchical data structures and heavy computation on a single thread

in JavaScript may block other tasks running in the browser. WebGME is only designed for the graphical

representation of medium-size models and is not an ideal tool for direct model execution.

FORMULA - includes its own query execution engine, but does not scale to large models. The execution

time grows exponentially very quickly due to the inefficient way to maintain the cache and intermediate

results generated for traces and proofs. The FORMULA rules with more than two matching patterns in the

body are transformed into a set of new intermediate rules, in which each has exactly two matching patterns,

to index the intermediate results of pattern matching but the downside of this approach is that a large quantity

of auto-generated intermediate cached results is maintained in the memory temporarily for each session of

model execution. Based on the results of our experiment (Zhang et al., 2019), FORMULA struggles with

large model execution and can run out of memory on large examples.

17

2.3 Problems and Challenges in Incremental Modeling

There was a significant mismatch between our modeling process and the semantics of the existing FOR-

MULA implementation. Engineering modeling is inherently incremental – the design models are subject to

continuous updates – while the FORMULA execution engine was not incremental. The result of the mis-

match was that after each model update, the entire design model had to be reloaded into FORMULA, which

made the process quite slow if the model sizes were large. There are three main incrementality-related is-

sues that need to be addressed with our FORMULA-based integrated modeling framework to improve this

process:

1. The inherent incremental nature of the modeling process requires model queries and transformations

to be repeatedly performed on incrementally updated models. We want to perform only the required

minimum computation and incrementally respond to the input change rather than re-run the entire

execution.

2. The scalability issues regarding execution on large models in the real world hinder the adoption of

FORMULA in large modeling projects especially in industrial use cases.

3. The identification of the delta model that represents the changed part in the model and the tracking of

the propagation of changes since the very beginning of model input. We assume the model including

the intermediate results in a complex scenario is not static but dynamically changes according to the

rules or analytics strategies that have been executed over the model.

18

CHAPTER 3

Related Work

Model-driven engineering (MDE) is a software development approach that emphasizes the use of models to

describe and specify the behavior of software systems. MDE has gained popularity in recent years due to its

potential benefits, such as improved productivity, quality, and maintainability of software systems. However,

MDE also presents several challenges that need to be addressed to realize these benefits fully. To address

these challenges, researchers in the field have developed various techniques, tools, and languages for MDE.

In this section, we will review some of the related works in MDE. We will start by discussing the evolution

of MDE and its key concepts, including metamodeling, model transformation, and code generation. We will

then discuss some of the techniques and tools developed for MDE, including modeling languages, verification

and validation techniques, and tool integration frameworks.

The related works will mainly focus on the frameworks and tools that apply graph-based solutions and

various incremental approaches to address the scalability problems in MDE. We will discuss some of the

application domains of MDE and how it has been applied in practice to develop software systems in various

domains.

3.1 Generic Modeling Engineering Frameworks and Tools

UML and SysML are two commonly used modeling languages that adapt and evolve around one generic

metamodel with many common concepts. while the generic modeling frameworks can be categorized into

five different categories based on their definition of meta-metamodels.

1. ARIS - The Architecture of Integrated Information Systems (Scheer and Schneider, 1998) is an ap-

proach to enterprise modeling. The associated tool supports by default different modeling notations.

Users can adapt already existing languages and the vendor can create completely new languages.

2. Ecore (Steinberg et al., 2008) is the meta-metamodel in the Eclipse Modeling Framework (EMF).

The framework supports the development of (Eclipse) applications with a focus on Java programming

language. Many model processing tools and extensions based on Ecore such as ATL for model trans-

formation exist.

3. GME - The Generic Modeling Environment (Sztipanovits and Karsai, 1997) is primarily a tool for

domain-specific modeling in the area of electrical engineering and cyber-physical system.

19

4. GOPPRR - Graph, Object, Port, Property, Role, Relationship (Kelly et al., 1996) is the metamodeling

language in Meta Edit+. The tool supports typical DSM tasks such as (meta) modeling and code

generation.

5. MS DSL Tools - The Microsoft Domain-Specific Language Tools (Kosar et al., 2007) enable the defi-

nition of languages and generators in Visual Studio.

6. MPS (Bucchiarone et al., 2021) is a projectional language workbench, meaning no grammar and parser

are involved. Instead, an editor allows changing directly the underlying abstract syntax tree, which is

projected in a way that looks like text. MPS supports mixed notations (such as textual, symbolic,

tabular, and graphical) and a wide range of language composition features based on the BaseLanguage,

which is the MPS’s meta-metamodel. MPS users extend this BaseLanguage to define their own domain-

specific modeling languages.

The comparison of meta-metamodel expressive power can be found in (Kern et al., 2011). GOPPRR and

GME are the most powerfully expressive meta-metamodels and Visio has the least expressive power of all

metamodeling languages. However, other criteria (e.g. usage, standardization, or tool features) play a crucial

role in the selection of a certain metamodeling approach.

There are several modeling frameworks that are designed to handle scalability issues of model trans-

formation and constraint checking on large, complex CPS-related models for industrial use cases. Most

of them target frameworks based on Eclipse Modeling Framework (EMF) with customized extensions. The

most significant frameworks include NeoEMF (Daniel et al., 2016b), EMF-IncQuery, and its successor Viatra

framework (Varró and Balogh, 2007). The modeling frameworks in the EMF family are based on the tradi-

tional UML/OCL technical stack with metamodels defined in EMF’s Ecore both graphically and textually but

some of them extend the ECore and have their own query or transformation languages such as Viatra’s VQL

language and execution engine.

3.2 Modeling Framework with Formal Semantics

Frameworks with graphical modeling provide an intuitive model representation but most of them do not have

formal semantics well defined for syntax in metamodels and models.

A modeling framework with formal semantics is a framework that provides a precise and unambiguous

specification of the meaning of the models created within the framework. This allows for automated reasoning

and analysis of the models, as well as verification and validation of the models against desired properties.

Event-B (Abrial, 2010) is a formal modeling language and method that provides formal semantics based

on set theory and first-order predicate logic. It is useful for specifying and analyzing complex systems, and it

20

supports automated theorem proving.

TLA+ (Merz, 2008) is a formal specification language and toolset that provides formal semantics based

on set theory and temporal logic. It is useful for specifying and verifying complex distributed systems, and it

supports model checking and theorem proving.

Z (Spivey and Abrial, 1992) is a formal specification language and tool-set that provides formal semantics

based on set theory and predicate logic. It is useful for specifying and analyzing complex systems, and it

supports automated theorem proving.

Alloy (Jackson, 2019) is a well-known specification language that is based on first-order relational logic

extended with some form of the Kleene closure operator. Alloy has integrated SAT solvers that allow proof

generation and model synthesis. Nevertheless, Alloy does not have the expressiveness of logic programming,

and as shown in (Jackson et al., 2010) and FORMULA can outperform Alloy in model generation tasks.

The K-framework (Ros, u and S, erbănută, 2010) is a rewrite-based executable semantic framework in which

programming languages, type systems, and formal analysis tools can be defined using configurations and

rules. The K-framework specializes in defining the semantics of general-purpose programming languages

but does not support incremental updates on large models or programs.

P language (Desai et al., 2013) is not a modeling framework but an application of our FORMULA specifi-

cation language to specify a DSL and its compiler is also based on model transformation in the same manner

as our Differential-FORMULA tool that compiles FORMULA program to DDLog program. The P compiler

is one of the largest and most complex use cases of FORMULA in developing the original compiler for the

P Language, a domain-specific language for specifying, testing, and implementing asynchronous distributed

systems. That compiler translated a model in the P language to a corresponding implementation in the C

programming language. Unfortunately, the performance of the FORMULA compiler and execution engine

prevents FORMULA to be applied to larger industrial use cases. An incremental version of the transformation

engine would have improved the original compiler’s performance on code generation tasks.

3.3 Graph-based Modeling Frameworks

Gwendal Daniel and Gerson Sunye proposed and implement UMLtoGraphDB framework in (Daniel et al.,

2016b) to map UML conceptual schemas to graph databases and also translate OCL schemas to an abstrac-

tion layer on top of various graph databases for constraint checking. While UMLtoGraphDB seamlessly maps

conceptual schema to graph databases via an intermediate Graph metamodel, it still lacks a solid semantic

foundation with formal specification. A similar work of graph-based semantics for UML class and Object

diagrams was done by Anneke Kleppe and Arend Rensink in (Kleppe and Rensink, 2008) to give unambigu-

ous, formal semantics to UML using the theory of graphs and formalize UML/OCL concepts in mathematical

21

arguments.

In the EMF world, Eclipse MDT OCL (Cabot and Gogolla, 2012) provides an execution environment to

evaluate OCL invariants and queries over models. EMF-Query is a framework that provides an abstraction

layer on top of the EMF API to query a model. It includes a set of tools to ease the definition of queries and

manipulate results. These two solutions are strongly dependent on the EMF APIs, providing on the one hand

an easy integration in existing EMF applications, but on the other hand, they are unable to benefit from all

performance advantages of NoSQL and graph databases due to this API dependency.

Another EMF-based modeling framework that has decided to move to graph database as a backend in

recent years is Emoflon (Weidmann and Anjorin, 2021). Emoflon::Neo rewrites a huge part of its backend

engine for the integration with a graph database and even has a rule specification language eMSL, the eMoflon

Specification Language, a family of modeling languages with a uniform textual and visual concrete syntax

supported by an Xtext-based editor. The rule compiler will compile eMSL rules to Cypher graph queries

based on TGG-based operations.

The work of UMLtoGraphDB work later evolved to a new framework named NeoEMF (Daniel et al.,

2016a) that inherits EMF concepts but with an extension for the execution engine delegated to graph database

and graph traversal language. NeoEMF framework has two components Mogwai and Gremlin-ATL that re-

spectively translate OCL queries and ATL transformation rules to graph queries written in Gremlin Traversal

Language. They both bypass the EMF APIs limitation to achieve huge performance gains on query execution

with equivalent, optimized graph queries and less memory overhead to store intermediate results. However,

NeoEMF does not support the translation of recursive calls and transitive closure operators specified in the

latest OCL specification. ATL specification language for model transformation has only limited support for

recursive patterns, while FORMULA allows horn clauses with recursion for model transformation.

EMF-IncQuery (Varró and Balogh, 2007) is an incremental pattern matching framework to query EMF

models essentially based on graph transformation. It also bypasses the API limitations using a persistence-

independent index mechanism to improve model access performance. It is based on an adaptation of the

RETE algorithm, which was developed to efficiently apply many rules or patterns to many objects, or facts,

in a knowledge base. The downside is that caches and indexes must be built for each query, implying a

non-negligible memory overhead compared to other graph-based frameworks.

3.4 Bootstrapping Modeling Frameworks

The concept of meta-metamodel such as Ecore (Steinberg et al., 2008) for EMF is inherently bootstrapping in

that it is used to explain its own classes and entities in a self-defining way. However, Ecore does not support

modeling the operation logic or execution semantics. For constraint evaluation and transformations, we can

22

easily attach methods implemented in Java to the model and only the operation interface can be defined but

not the concrete implementation.

The main purpose of modeling frameworks and tools is to design a Domain Specific Modeling Language

(DSML) that is executable while the implementation of the execution engine itself is usually done by writing

low-level code in a general-purpose programming language such as Java and C++. Modeling frameworks

have their own specification languages or meta-languages to define DSL and as a matter of fact, the meta-

languages are also just languages and therefore can be defined using themselves. The process is called

bootstrapping and is often difficult to achieve. Although MDE methodologies are inherently self-descriptive

and higher-order, very few of the actively developed MDE tools are bootstrapped. There are only a few MDE

tools that are implemented in a bootstrapping way.

Emoflon (Leblebici et al., 2014) is one of the success stories that the developers developed Emoflon

using Emoflon itself. Only some of the core components not all parts in eMoflon are implemented as both a

unidirectional and bidirectional model transformation with eMoflon. To be more precise, A transformation

language Li is compiled to a lower-level language Li−1 with a compiler written in Li−1. This corresponds

to TGGs (Schürr and Klar, 2008) being compiled to SDMs (Zündorf et al., 1999) with SDMs in a similar

way as in our Differential-FORMULA that FORMULA program being compiled to Differential-Datalog with

Differential-Datalog.

MPS - Meta Programming System (Campagne, 2014) from JetBrains is also a bootstrapping meta-

modeling language. The bootstrap of MPS includes a definition of almost complete Java called Base Lan-

guage. It provides languages for collections, dates, closures, and regular expressions. All meta-languages of

MPS are defined in MPS, with languages for structure, editor, constraints, type system, and generator. The

new languages generated by MPS can be directly executed in Java without writing additional code.

DMLA - The Dynamic Multi-Layer Algebra (Mezei et al., 2019) is another bootstrapping metamodeling

tool. DMLA is a multi-layer metamodeling formalism with a sound mathematical background. It is designed

as a bootstrap of model entities that are both self-describing and self-validating by design. One of the unique

features of DMLA is that it has a built-in operation language, which makes the underlying ASM functionality

available for Bootstrap.

3.5 Incremental Modeling

Model query and model transformation are the two main parts of model-driven engineering. Most frame-

works have two separate languages for query and transformation while others have a unified language for

both model operations. We list several mature and well-maintained incremental modeling frameworks for

model transformation that are used in both academia and industrial use cases: ATL (Jouault et al., 2008), VI-

23

ATRA (Varró and Balogh, 2007), eMoflon (Anjorin et al., 2011), YAMTL (Boronat, 2022) and NMF (Hinkel,

2016).

3.5.1 OCL-based Incremental Model Query

There are several incremental OCL-based modeling frameworks available that can be used for developing

software systems. Some of the popular ones are:

Cabot (Cabot and Teniente, 2009) presents an advanced three-step optimization algorithm for incremen-

tal runtime validation of OCL constraints that ensures that constraints are re-evaluated only if changes may

induce their violation and only on elements that caused this violation. The approach uses promising optimiza-

tions, however, it works only on Boolean constraints, therefore the incrementality it achieves is very limited

and it is less expressive than other techniques.

EMF-IncQuery (Ujhelyi et al., 2015) is a model query and transformation tool that can be used for in-

cremental model-based software engineering. It is based on the Eclipse Modeling Framework (EMF) and

provides a set of APIs and tools for querying and manipulating models using OCL.

Kermeta (Falleri et al., 2006) is a language and toolset for incremental model-based software engineering.

It is based on the Eclipse Modeling Framework (EMF) and provides a set of APIs and tools for defining and

manipulating models using OCL.

The Algebraic Model Weaver (AMW) (Marcos et al., 2005) is an incremental model-based software

engineering tool that is based on algebraic specifications. It provides a set of APIs and tools for defining and

manipulating models using OCL.

3.5.2 ATL-based Incremental Model Transformation

Many incremental frameworks resort to lazy computation that starts to re-compute only when it is necessary

with certain conditions triggered. ATL is the most well-known model transformation language integrated

into EMF but it is not incremental. ATL (Jouault et al., 2008)’s incremental execution mode enables the

incremental forward propagation of model changes to target models.

The Atlas Transformation Language (ATL) is a model transformation language that can be used for in-

cremental model-based software engineering. It is based on the Eclipse Modeling Framework (EMF) and

provides a set of APIs and tools for transforming models. EMFTVM (EMF Transformation Virtual Machine)

is the virtual machine that executes ATL transformations.

ReactiveATL (Martı́nez et al., 2017) is a new engine for executing ATL model transformation. Reac-

tiveATL builds on the expression injection mechanism to detect which parts of an ATL transformation need to

be executed and on lazy evaluation to defer computation in response to update notification of model elements.

24

However, ReactiveATL only supports a subset of ATL language skipping rule inheritance and multiple source

elements. ATOL (Martı́nez et al., 2017) is a recent incremental compiler for ATL built upon AOF(Active Op-

eration Framework) (Martı́nez et al., 2017) to implement incremental execution. ATOL also only supports a

subset of ATL language with unique lazy rules.

YAMTL (Boronat, 2022) uses an internal domain-specific language of Xtend, like VIATRA, to define a

declarative model transformation, widely inspired by the ATL constructs. The specification consists of a set

of rules that are mainly composed of multiple input/output element declarations. Rules are declared with, at

least, one matched input element from the source model.

YAMTL uses the design of a forward model change propagation procedure for executing model transfor-

mations in an incremental mode that can handle documented model changes, called change scenarios, i.e.,

documents representing a change to a given source model. Such documents are defined with the EMF Change

Model, both conceptually and implementation-wise, guaranteeing interoperability with EMF-compliant tools.

3.5.3 TGG-based Incremental Model Transformation

Giese (Giese and Wagner, 2009) presents a triple graph grammar (TGG) based model synchronization ap-

proach, which incrementally updates reference (correspondence) nodes of TGG rules, based on notifications

triggered by modified model elements. Their approach share similarities with the RETE-based algorithm

for an expert system that maintain partially matched patterns. This approach is also similar to the original

FORMULA execution engine that generates a lot of new intermediate rules and maintains a huge quantity of

intermediate partially matched patterns, which may slow down the execution and consume more memory.

MoTE (model transformation engine) is based on TGGs that consists of a set of transformation rules

specifying the simultaneous production of two models of a source and a target language, related by a third

model composed of a set of correspondence nodes between model elements of the source and target do-

mains (traceability model). MoTE uses an Operational Rules Generator to compile TGG rules into Story

Diagrams (Zündorf et al., 1999) of the SDM (story-driven modeling) tool. Then, a TGG Engine transforms a

source model into a target model by invoking the Story Diagram Interpreter in order to execute the appropriate

story diagrams for the requested transformation (batch/synchronize or forward/mapping/backward)

eMoflon is another incremental TGG-based model transformation tool that provides a textual concrete

syntax to define TGG rules and a set of ”Prolog-like” attribute conditions to assign and constrain attributes.

eMoflon::IBeX (Anjorin et al., 2011) is a TGG incremental bidirectional model transformation, that relies

on an incremental graph pattern matcher. eMoflon generates a set of separate patterns from each TGG rule,

representing the context to be matched, elements to be deleted, and elements to be created. When performing

the transformation, a pattern invocation network is used to represent the patterns to be matched and structured

25

in a network (a graph with nodes as patterns and edges as pattern invocations). Then, an incremental pattern

matcher produces match events, signaling when new matches appear(for created elements), and when old

matches are violated(for deleted elements). All these matches are collected, and the transformation rules are

applied.

3.5.4 Graph-based Incremental Model Transformation

Incrementality is supported on two graph-based modeling frameworks Viatra (Varró and Balogh, 2007) and

IncA (Szabó et al., 2018), and both tools are based on graph transformation and sub-graph pattern matching

in logic rules. The incrementality in those tools is achieved by using the classic DRed algorithm (Gupta

et al., 1993) for view maintenance. In response to the updates on input, the DRed algorithm can over-

estimate the set of invalidated tuples and will, in the worst case, perform a large amount of work to “undo”

the effects of a deleted tuple, only to conclude that the best approach is to start from scratch, especially for

The more complicated recursive rules. The DRed algorithm does not maintain partially ordered versions for

the recursive iterations as Differential-Dataflow does to facilitate the incremental updates even on iterative

operators.

VIATRA makes use of the Xtend language (Bettini, 2016) to specify model transformations. The speci-

fication consists of model queries serving as preconditions to apply the transformation rules, which contain

different model manipulation actions. The preconditions (patterns) are expressed using the graph pattern-

based language VQL (VIATRA Query Language). VQL queries are stored in a separate file so that they can

be reused easily. A pattern consists of a named query with parameters and a body of constraints. A matching

set is the result of a graph pattern matching, which is a set of model objects fulfilling all constraints defined

in the pattern. The rules are executed in an event-driven manner, meaning that the precondition is checked on

every related element model change in an incremental way to determine the actions to be fired accordingly.

IncA (Szabó et al., 2016) is a domain-specific language for the definition of efficient incremental program

analyses that update their result as the program changes. IncA compiles analyses into graph patterns and

relies on existing incremental matching algorithms that are similar to the algorithms in VIATRA. To scale

IncA analyses to large programs, IncA uses optimizations that reduce caching and prune change propagation.

The application of IncA includes incremental control flow and points-to analysis for C, well-formedness

checks for DSLs, and 10 FindBugs checks for Java.

3.5.5 Other incremental approaches

The other approach to achieve incrementality is to maintain a cache that includes all possible patterns used

in the query and keep updating a small part of the cache by propagation. Tefkat (Lawley and Steel, 2005)

26

is a logic-based transformation language with data-driven evaluation, where models are encoded in a fact

database. In Tefkat, the evaluation of declarative rule-based transformations is driven by a search for solutions

to a Prolog-like goal (query) by relying on SLD resolution (Selective Linear Definite clause resolution).

The algorithm constructs and preserves a Prolog-like resolution tree for patterns, which is incrementally

maintained upon model changes and pattern (rule) changes as well.

The .NET modeling framework NMF has its own NMF Expressions that are presented as the implemen-

tation of an incremental computation system where the incrementalization of a model analysis function can

be regarded as a functor. A dynamic dependency graph representing each executed instruction is built at run

time. When a value in the DDG changes, dependent nodes in the expression tree are notified of the change,

which is then propagated up to the root of the expression tree until the value of a subexpression does not

change. NMF expressions are extensible with specific incrementalized algorithms, which take preference

over the generic change propagation mechanism, in order to enable user-defined optimizations.

27

CHAPTER 4

Semantic Bridge from Models to Graphs

In this chapter, we describe the design and implementation of a semantic bridge that connects our engineering

modeling framework with a graph representation-based modeling framework incorporating a graph database,

formal semantics, and visualization tools for analysis.

4.1 Introduction to Graph Database

A graph database is a database that stores data in a graph format, where nodes represent entities and edges

represent relationships between those entities. This makes it ideal for representing and querying complex

relationships between entities, such as social networks, recommendation systems, and fraud detection.

Gremlin (Rodriguez, 2015) is an open-source graph database and traversal language that allows you to

work with data as a graph. It provides a flexible, scalable, and efficient way to store, manage, and query com-

plex relationships between entities. Gremlin supports a variety of graph database implementations, including

Apache TinkerPop (TinkerPop, 2020), Amazon Neptune, and Microsoft Azure Cosmos DB. It also provides

a powerful traversal language, which allows you to traverse and query graphs in a declarative manner. Grem-

lin’s traversal language is similar to SQL, but instead of querying tables, it queries graphs. It provides a rich

set of traversal steps, such as filtering, mapping, aggregating, and transforming data with limited recursion

such as transitive closure. You can also chain multiple traversal steps together to form a more complex query.

Overall, Gremlin is a powerful and flexible graph database solution that can handle a wide range of use

cases. Its support for different graph database implementations and its expressive traversal language make it

a popular choice for building complex graph-based applications.

We chose a graph database as the alternative engine for model execution because models and meta-models

can be expressed as graph structures. They allow retrieval of data with complex hierarchical structures in a

simple and fast manner, in comparison with relational databases. Graph databases also greatly improve

performance compared to traditional relational databases when data grows and the depth of relationships

increases.

Graph algorithms can be used for various tasks in model execution, including model traversal, constraint

satisfaction, and optimization. Here are some examples of how graph algorithms can be applied to model

execution:

1. Graph traversal: Graph algorithms can be used to traverse models and extract information from them.

For example, depth-first search (DFS) and breadth-first search (BFS) can be used to traverse the nodes

28

of a model and identify paths and relationships between them.

2. Constraint satisfaction: Graph algorithms can be used to solve constraint satisfaction problems in mod-

els. For example, the minimum spanning tree algorithm can be used to identify the shortest path

between two nodes in a model, or the Dijkstra algorithm can be used to find the optimal path between

two nodes based on weighted edges.

3. Optimization: Graph algorithms can be used to optimize models based on certain criteria. For example,

the traveling salesman problem can be solved using the branch-and-bound algorithm to identify the

optimal route for visiting a set of locations.

4. Model transformation: Graph algorithms can be used to transform models into different representa-

tions. For example, the graph matching algorithm can be used to identify and align similar substruc-

tures in two models, which can be useful for model comparison and merging.

4.2 Semantic Bridge Overview

We define the formal semantics for WebGME models and metamodels as part of our integrated modeling

framework with the semantic backplane. The models and metamodels are semantically mapped to graph

representation that we either use FORMULA itself to execute model operations or even with a useful set

of language features of FORMULA constraint checking rules translated into graph queries. In the second

approach, the whole FORMULA model execution can be delegated to running graph queries in the graph

database to significantly improve the performance. The semantic bridge in Figure 4.1 connects WebGME

and graph database with formal semantics defined in FORMULA and we take advantage of the power of

each tool to form the integration tools that greatly improve the usability, interoperability, and performance.

29

Figure 4.1: Overview of WebGME, FORMULA, and Graph Database Integration

4.2.1 Tools Comparison

The main features of both WebGME and FORMULA are listed below and we evaluate the pros and cons of

both frameworks for the purpose of integrating WebGME with FORMULA as its semantic backplane. The

semantic backplane and integration of WebGME and FORMULA lay the foundation for model operations to

facilitate the translation to graph-based tools or other low-level representations.

WebGME (Maróti et al., 2014) services include:

• Meta-programmability with the prototypical inheritance that allows smooth language integration and

evolution

• Graphical concrete syntax that is highly versatile and customizable

• Multiple well-defined APIs for model interpretation and tool integration

• Allow modeling with Git-style version control and branch support

• Collaborative and distributed modeling via web-interface

30

FORMULA (Jackson and Schulte, 2013) services include:

• Formal representation of structural semantics of modeling languages (Jackson and Schulte, 2013) as

strongly-typed, open-world logic programs (OLP) (Jackson et al., 2013) offering specifications that are

highly declarative and executable, they can express static, dynamic, and transformation semantics of

DSMLs,

• Program synthesis and automated reasoning enabled by the symbolic execution of logic programs into

quantifier-free sub-problems, which are dispatched to the state-of-the-art SMT solver Z3 (De Moura

and Bjørner, 2008),

• Modular reuse of DSMLs via the composition of OLPs in a strong category theoretic sense (Jackson

et al., 2011b).

The logic-based modeling language of FORMULA is very concise in specifying constraints and model

transformations with formal semantics, but this solution cannot effectively support the goal of large model

analytics and fast model transformation. In order to provide such capabilities without sacrificing the ex-

pressiveness of FORMULA, we investigated the features of Graph Databases with the Gremlin Traversal

Language (TinkerPop, 2020). Also, to connect all three representations in Figure 2.1, FORMULA can accu-

rately specify the precise semantics and can even provide transformation among these representations func-

tioning as a semantic link. Gremlin is a graph traversal language and virtual machine developed by Apache

TinkerPop (TinkerPop, 2020). Graph Database implementations allow querying and retrieval of data from

highly complex hierarchical structures as well as supporting highly optimized graph analytic algorithms. This

solution, therefore, combines semantically precise modeling, model transformation, and effective querying

through modern graph databases.

4.2.2 Three Levels of Integration

Our goal is to model the metamodels and models as typed graphs in both WebGME and FORMULA. Meta-

models and models are translated into a typed graph in different ways and stored as graphs in the storage

backend such as a graph database. Conceptually, metamodels and models represented in the typed graphs

can generate automatically derived conditions. For example, the graph of metamodel and models cannot be a

disconnected graph with dangling components. Additional constraints can be succinctly expressed in graph

queries or translated into graph queries from native constraints of higher abstraction.

We have three different ways in our integrated framework to map metamodels and models into graph

representations on different levels with graph-based constraint checking:

31

1. Translate WebGME meta-models and models directly into graphs stored in a graph database. Graph

database has the capability to reason over graphs for constraint checking including the auto-derived conditions

or even graph transformation using graph traversal query language like Gremlin with underlying built-in

efficient graph-related algorithms. Only graph query is allowed to be executed on the models and we lose the

expressiveness of FORMULA language since FORMULA is not involved in the mapping from WebGME to

typed graph, which is later stored in a graph database.

2. Translate WebGME meta-models and models into FORMULA models that conform to metamodels

defined in Graph domain in FORMULA (MetaNode, MetaEdge, Node, Edge, etc in the typed graph) with

the capability to reason over graph (Solve graph related problem in logic programming languages but could

be slower than graph algorithms implemented in imperative general purpose programming languages). We

use FORMULA to formally specify the semantics of WebGME metamodels and models as the semantic

backplane. Since the metamodels and models are all expressed as nodes and edges in the FORMULA graph

domain. FORMULA constraint checking and graph transformation rules can be written succinctly in the

FORMULA language. The downside of this approach is that the execution is still done in the FORMULA

engine that does not scale to large models.

3. Maintain the same semantic link from WebGME to FORMULA above and create another semantic

link to map FORMULA domain/model to the typed graph in a graph database. Translate a subset of FOR-

MULA rules for constraint checking into equivalent graph queries assuming we already have the mapping

of metamodels and models from WebGME to FORMULA and then from FORMULA domains and models

to graph database. The FORMULA to graph database semantic link has nothing to do with WebGME but

instead, a direct translation from FORMULA constraint checking rules to Gremlin graph queries in a graph

database.

We have several different integrations implemented in the existing frameworks and tools for different

purposes. Each implementation of the integration is given a unique name:

1. WebGME2DB: Integration of WebGME and MongoDB: Raw data storage and retrieval as default

storage backend but direct model analysis over the storage of loosely structured raw data is not feasible.

2. WebGME2GraphDB: Integration of WebGME and graph database, where models and metamodels

are translated directly into low-level nodes and edges in the graph database. Writing graph queries over the

model requires a deep understanding of the low-level implementation details and the queries are not intuitive.

3. WebGME2FORMULA: Integration of WebGME and FORMULA on two different levels. 1) WebGME

is directly translated into FORMULA where every component of a WebGME model such as properties,

inheritance, and relationships are precisely translated into FORMULA. 2) WebGME models and metamodels

are modeled as typed graphs specified in a FORMULA domain named MetaGraph and we use FORMULA

32

to reason over the graph or even data mining for large models. Rules are evaluated in the native FORMULA

execution engine for data analytics on models.

4. FORMULA2GraphDB: Integration of FORMULA and graph database that targets the translation from

generic FORMULA domain (metamodel) and model to graph database. Not only the concepts in FORMULA

language are mapped to the graph database but constraint checking such as conformance rules are also pro-

grammatically translated into equivalent graph queries with limited support of recursive rules.

The following subsections explain the details about the mappings of models, metamodels, and high-level

expressive constraint checking specifications to graph-based tools conceptually but also implemented in our

integrated framework.

4.3 Direct Integration of WebGME and FORMULA

The integration of WebGME and FORMULA has the following advantages:

1. Solve the problem that WebGME models and meta-models have no formally defined semantics for

their components and the relationship between components.

2. For model operations in WebGME such as constraint checking or model transformation, the user has

to implement plugins on a lower-level generic programming language such as JavaScript or Python. With

models and queries translated to FORMULA, models are executable directly with provable traces.

3. Allow more expressive constraint checking on FORMULA models and models are directly executable

given the rewriting rules for conformance checking. More powerful constraints (e.g. absence of cycle in graph

transitive closure) can be naturally and succinctly expressed in FORMULA language while in the WebGME

domain users have to write a complicated and error-prone plugin implemented in a low-level language.

Our previous work (Kecskés et al., 2017) is the initial attempt to bridge WebGME and FORMULA with

well-defined semantics for the first time. However, the execution of models on FORMULA does not scale

well over even hundreds of terms depending on the specific problem and FORMULA rules, which may have

recursion and take millions of iterations to converge and terminate the execution.

33

Figure 4.2: Translation of WebGME Meta Concepts into FORMULA

We implement a WebGME plugin, GenFORMULA makes the translation by using the Core API func-

tions of WebGME. It creates a Formula domain by traversing the meta-concepts of the project. By fol-

lowing the rules presented in Figure 4.2, every Class definition is translated into three constructors in

Formula. Attr Class is a tuple for the available attributes, Ptr Class couples the pointer definitions,

and Class(id,parent,attributes,pointers) tuple combines the other two and adds the con-

tainment representation with the parent field. The plugin also defines ClassTYPE set, that captures the

inheritance among meta-concepts of WebGME. Inheritance among models and model elements are kept in

the base pointer definition. Finally, it specifies some helper constructs GMENode, GMEContainment and

GMEInheritance to represent all nodes, their containment relation and inheritance relation. The user-

defined constraints are then added without modification. This step finalizes the FORMULA domain. Finally,

the procedure traverses the whole containment hierarchy in the WebGME project. For every node, it gathers

the necessary values with the help of the Core API, and translates them into instances in Formula.

The resulting FORMULA file is then processed with the help of the FORMULA engine to get the con-

34

straint evaluations and syntax checks. Being automated, the result is available after every change, so the

user will be notified at the place of error. However, writing more complex FORMULA conformance rules

for WebGME constraint checking still requires a low-level understanding of the translation details and loses

some of the advantages of the high-level declarative definition of constraints in FORMULA language.

4.4 Graph-based Integration of WebGME, FORMULA, and Graph Database

Before we provide the formal definitions, let us first give the intuition behind our approach. We aim at de-

scribing the semantics of a metamodeling language with an abstract, high-level language that enables easy

reasoning. Graphs provide such an abstract language and have been studied extensively for representing

metamodels and models (Kleppe and Rensink, 2008). Additionally, we aim at describing the generic con-

formance conditions at the meta-meta model level. So instead of creating sets of rules - one set per relation

instance - we generalize these rules, by describing them at the meta-meta model level.

4.4.1 Semantic Foundation in Graph

We define labeled graphs, which are directed graphs edge-labeled with names and multiplicities, to specify

(meta-)metamodels.

Definition 1 (Labeled graph). A labeled graph is a quadruple

L= ⟨V,E,λv,λe⟩, with a set of vertices V , a set of directed edges E ⊆V 2, and labeling functions 1) λv : V 7→N

and 2) λe : E 7→ I ×N × I, where N is a set of names and I is a set of intervals of the form = N2 ∪N×{∗}.

For ease of presentation, we define the notation ∀e ∈ E, ∀v ∈V :

• src(e) ∈V denotes the source vertex of e,

• dst(e) ∈V denotes the destination vertex of e,

• ms(e) ∈ I denotes the source multiplicity of e,

• md(e) ∈ I denotes the destination multiplicity of e,

• n(e), n(v) ∈ N denote the names of e and v, respectively.

We require the following unique conditions:

• ∀v1,v2 ∈V , if n(v1) = n(v2) then v1 = v2,

• ∀e1,e2 ∈ E, if src(e1) = src(e2), n(e1) = n(e2), and dst(e1) = dst(e2) then e1 = e2 with source and

destination multiplicities ms(e1)∪ms(e2) and md(e1)∪md(e2), respectively.

35

Next, we define Model graphs, which we use to specify models.

Definition 2 (Model graph). A model graph is a Labeled graph M = ⟨V,E,λv,λe⟩ such that for all edges

e ∈ E, ms(e) = md(e) = [1,1].

Typed graphs have been previously studied by the model transformation community (Ehrig et al., 2006;

Jouault and Bézivin, 2006). We propose an extension of typed graphs to check the model conformance, which

allows capturing inheritance defined between nodes of the metamodel.

Definition 3 (Typed graph). A typed graph is a quadruple T = ⟨L,M,τv,τe⟩ where L and M are labeled and

model graphs, respectively; τv : VM ∪VL 7→ 2VL , τe : EM 7→ EL

Definition 3 describes the inheritance relation 1) between vertices of the model or labeled graph and

vertices of the labeled graph and 2) edges of the model graph and edges of the labeled graph. The L graph

specifies a metamodel with node types and edge types. The M graph is an instance model referencing these

types. The type(s) of each vertex v and edge e, of M, is τv(v) and τe(e), respectively.

Definition 4 (Model conformance). For a typed graph T = ⟨L,M,τv,τe⟩, a model, represented by the model

graph M, conforms to a metamodel, represented by the labeled directed graph L if a set of conditions hold:

conforms(T) =
n∧

i=1

(i),

where (i) represents logical formulæ that are either 1) generic and automatically derived from T or 2) application-

specific and thus, user-defined.

For a typed graph T = ⟨L,M,τv,τe⟩, we derive the following conformance conditions:

(1)≜ ∀vM ∈VM, ∃vL ∈VL : vL ∈ τv(vM) .

Meaning of (1): for each vertex in the model graph there exists a vertex in the labeled graph that characterizes

its type.

(2)≜ ∀eM ∈ EM, ∃eL ∈ EL : τe(eM) = eL ∧ src(eL) ∈ τv(src(eM)) .

Meaning of (2): for each edge eM in the model graph, there exists an edge eL in the labeled graph, such that

eM is of type eL and the source vertex of eM is of type of the source vertex of eL.

(3)≜ ∀eM ∈ EM, ∃eL ∈ EL : τe(eM) = eL ∧ dst(eL) ∈ τv(dst(eM)) .

36

Meaning of (3): for each edge eM in the model graph, there exists an edge eL in the labeled graph, such that

eM is of type eL and the destination vertex of eM is of type of the destination vertex of eL.

(4)≜ ∀vA ∈VM,∀eL ∈ EL,∀VMS ⊆VM,∃vB ∈VMS,∀eM ∈ EM : src(eL) ̸∈ τv(vA) ∨ src(eM) ̸= vA ∨

dst(eM) ̸= vB ∨ τe(eM) ̸= eL ∨ |VMS| ∈ md(eL).

Meaning of (4): each vertex vA of the model graph is correctly connected to a subset of the vertices of the

model graph according to the destination multiplicities of all the edges of the labeled graph that are connected

to the vertex that corresponds to the type of vA.

(5)≜ ∀eL ∈ EL,∀vM ∈VM,∃eM ∈ EM : src(eL) ̸∈ τv(vM) ∨0∈md(eL)∨ (src(eM) = vM ∧ eL = τe(eM)) .

Meaning of (5): for each edge eL of the labeled graph there exists at least an edge eM , which is an instance of

eL in the model graph if the corresponding destination cardinality of eL does not include zero and there exists

at least a node vM such that src(eM) = vM .

(6)≜ ∀vA ∈VM,∀eL ∈ EL,∀VMS ⊆VM,∃vB ∈VMS,

∀eM ∈ EM : src(eL) ̸∈ τv(vA) ∨ src(eM) ̸= vB ∨dst(eM) ̸= vA ∨ τe(eM) ̸= eL ∨ |VMS| ∈ ms(eL).

Meaning of (6): each vertex vA of the model graph is correctly connected to a subset of the vertices of the

model graph according to the source multiplicities of all the edges of the labeled graph that are connected to

the vertex that corresponds to the type of vA.

(7)≜ ∀eL ∈ EL,∀vM ∈VM,∃eM ∈ EM : dst(eL) ̸∈ τv(vM) ∨

∧ 0 ∈ ms(eL) ∨ (dst(eM) = vM ∧ eL = τe(eM)) .

Meaning of (7): for each edge eL of the labeled graph there exists at least an edge eM , which is an instance of

eL in the model graph if the corresponding source cardinality of eL does not include zero and there exists at

least a node vM such that dst(eM) = vM .

4.4.2 Logic-based FORMULA Specification

Next, we show the equivalent specifications of a labeled model and typed graph in FORMULA. The complete

specification is wrapped in a domain block, which delimits a domain-specific abstraction.

37

The specification of a labeled graph is as follows:

MetaNode : : = new (name : S t r i n g) .

MetaEdge : : = new (name : S t r i n g , s r c : MetaNode , d s t : MetaNode ,

ms : M u l t i p l i c i t y , md : M u l t i p l i c i t y) .

M u l t i p l i c i t y : : = new (low : N a t u r a l , h igh : N a t u r a l + {” * ” }) .

FORMULA supports algebraic data types and these are used to encode user-defined relations. For ex-

ample, the first line of the labeled graph specification declares a data type constructor MetaNode() for

instantiating meta-level nodes (VL). This constructor produces MetaNode instances that have a field called

name of type String.

Similarly, the specification of a model graph is as follows:

Node : : = new (name : S t r i n g , t y p e : MetaNode) .

Edge : : = new (name : S t r i n g , t y p e : MetaEdge , s r c : Node , d s t : Node) .

For simplification, we have omitted the source and destination multiplicities of a model graph since they are

always equal to 1.

The inheritance relation between the nodes and edges of the labeled and model graphs is defined through

the typed graph. We use the following transitive closure relation to specify node inheritance:

N o d e I n h e r i t a n c e : : = new (base : MetaNode , i n s t a n c e : MetaNode + Node) .

Node Ins t anceOf : : = (MetaNode , MetaNode + Node) .

Node Ins t anceOf (b , i) : − N o d e I n h e r i t a n c e (b , i) ; N o d e I n h e r i t a n c e (b ,m) , Node Ins t anceOf (m, i) .

Edge inheritance can be directly checked through the type argument of each Edge. We additionally define

the WrongMultiplicity condition, which follows directly from the labeled graph definition.

WrongMult : − M u l t i p l i c i t y (low , h igh) , h igh != ” * ” , low > h igh .

To generate the conditions presented in Section 4.4.1 in FORMULA, for a typed graph T = ⟨L,M,τv,τe⟩,

we take the negation of the formulas. Due to space limitations, we show the equivalent specification for a

subset of conditions. The negation of (2) is translated to FORMULA as follows:

no t2 : − e i s Edge , no {m | m i s MetaEdge , m = e . type , Node Ins t anceOf (m. s r c , e . s r c) } .

The negation of (4) is translated to FORMULA as the conjunction of (not4a) and (not4b), which are

defined as follows:

n o t 4 a : − n i s Node , m i s MetaEdge ,

Node Ins t anceOf (m. s r c , n) ,

c o u n t ({ s | s i s Node , e i s Edge (,m, n , s) }) < m. md . low .

38

no t4b : − n i s Node , m i s MetaEdge ,

Node Ins t anceOf (m. s r c , n) , m. md . h igh != ” * ” ,

c o u n t ({ s | s i s Node , e i s Edge (,m, n , s) }) > m. md . h igh .

The underscores denote “dont care” variables.

4.4.3 Graph-based Gremlin Specification

Graph databases use graph structures to represent and store data. They allow retrieval of data of complex hier-

archical structures in a simple and fast manner, in comparison with relational databases. We use the Gremlin

traversal machine and language (Rodriguez, 2015) by the Apache TinkerPop Project. Gremlin provides a

general graph database interface that can be used on top of various industrial graph database implementa-

tions. Our Gremlin graphs have vertices and edge with a dedicated label property and a number of other

properties. The MetaNodes and MetaEdges of the labeled graph are specified in Gremlin as follows:

graph . addVer t ex (’ c l a s s ’ , ’ MetaNode ’ , ’ name ’ , ’ theNameOfTheMetaNode ’) ;

g raph . addVer t ex (’ c l a s s ’ , ’ MetaEdge ’ , ’ name ’ , ’ nameOfTheMetaEdge ’) ;

ME. addEdge (’ s r c ’ ,sMN, ’ min ’ : 0 [, ’max ’ : 1]) ;

ME. addEdge (’ d s t ’ ,dMN, ’ min ’ : 0 [, ’max ’ : 1]) ;

For every MetaEdge and MetaNode, a vertex is created in the graph specification. These vertices have an extra

class property for identifying their origin. To represent the src and dst properties of the MetaEdge, we

use labeled edges in the graph (ME is the MetaEdge while sMN is the source MetaNode, and dMN is the

destination MetaNode). In the edge specifications, the property max is not defined if the interval does not

have an upper bound. Model graph specifications are identical to Meta graph specifications with the only

difference being that their class properties are either set to Node or Edge. To represent the type property

and the inheritance relation among node types, we specify the additional edges:

nodeOrMetaNode . addEdge (’ t y p e ’ , metaNode) ;

edge . addEdge (’ t y p e ’ , metaEdge) ;

Similarly, we generate the conditions presented in Section 3.1 as Gremlin queries. Due to space limita-

tions, we show the equivalent specifications for conditions (2) and (4):

no t2 = g .V () . has (’ c l a s s ’ , ’ Edge ’) . n o t (

match (. a s (’ s ’) . o u t (’ t y p e ’) . o u t (’ s r c ’) . a s (’ a ’) ,

. a s (’ s ’) . o u t (’ s r c ’) . o u t (’ t y p e ’) . a s (’ b ’)

. where (’ b ’ , eq (’ a ’)))) . hasNext () ;

39

Query not2 uses the match step where multiple traversals can be checked. For every Edge vertex it checks

whether there is no match based first on type and second on src edges, and continues by checking for no

match in the opposite order, i.e., first on src and second on type. Similarly, queries not4a, not4b are

as follows:

n o t 4 a = g .V () . has (’ c l a s s ’ , ’ MetaEdge ’) . match (. a s (’m’) .

i n (’ t y p e ’) . g roupCount () . by (o u t (’ s r c ’)) .

o r d e r (l o c a l) . by (v a l u e s , i n c r) . s e l e c t (v a l u e s) .

l i m i t (l o c a l , 1) . a s (’ a c t u a l ’) , . a s (’m’) .

outE (’ s r c ’) . p r o p e r t i e s (’ min ’) . v a l u e () .

a s (’ a l l o w e d ’) . where (’ a l l o w e d ’ , g t (’ a c t u a l ’)) .

hasNext () ;

no t4b = g .V () . has (’ c l a s s ’ , ’ MetaEdge ’) . where (outE (’ s r c ’) .

has (’max ’)) . match (. a s (’m’) . i n (’ t y p e ’) .

g roupCount () . by (o u t (’ s r c ’)) . o r d e r (l o c a l) .

by (v a l u e s , d e c r) . s e l e c t (v a l u e s) . l i m i t (l o c a l , 1) .

a s (’ a c t u a l ’) , . a s (’m’) . outE (’ s r c ’) .

p r o p e r t i e s (’max ’) . v a l u e () . a s (’ a l l o w e d ’) .

where (’ a l l o w e d ’ , g t (’ a c t u a l ’)) . hasNext () ;

The detailed component-to-component translation in three ways can be found in Figure 4.3 from our

work (Mavridou et al., 2018). The integration is designed in a way that WebGME metamodels and models

are modeled in a graph with a MetaGraph domain defined in FORMULA that supports more sophisticated

queries written in FORMULA language and model execution in FORMULA engine. On the other hand, the

graph-based WebGME models can be naturally mapped to graphs with constraint checking mapped to and

even executed in a graph database but the query has to be written manually with low-level optimization and

is not as intuitive and powerful as the FORMULA conformance rules with rich semantics. Therefore, in the

next subsection, we introduce the last integration in which we directly execute FORMULA rules in the graph

database while we keep using FORMULA to specify the WebGME metamodels and models with formal

semantics in a concise and unified language such as FORMULA.

40

Figure 4.3: Patterns of translation into FORMULA and Gremlin of main WebGME meta-modeling language
features

4.5 FORMULA Model Operations Executed in Graph Database

Both of FORMULA constraint checking and graph queries are declarative languages to express computations

over structured data and we build a semantic mapping from FORMULA constraint checking rules to Gremlin

graph queries. We only map a subset of FORMULA language into graph query language because FORMULA

language is more expressive and not all semantic gaps between FORMULA and Gremlin query language can

be closed but this subset is still useful for the execution of large models. FORMULA has more rich semantics

than Graph Query Language, which cannot do more complicated recursion other than transitive closure.

We map pattern matching predicate, aggregation, and negation in the FORMULA rule to sub-graph pattern

matching in graph query language as shown in the following subsections.

41

4.5.1 Model and Metamodel Representation in Graph

Before FORMULA constraint checking rules are mapped to equivalent graph queries, we need to form a solid

connection from FORMULA domain/model to the graph database with a precise definition. Components and

their interconnected relationships in the modeling design can be viewed as nodes and edges in the graph as a

low-level representation but still preserve all information about model properties and relationships. We show

the conceptual mapping from models and metamodels separately in the graphs below.

Domain (metamodel) Representation: FORMULA domain describes the ”class of things” on the meta-

model level and contains all type definitions with conformance rules. A FORMULA domain is defined in a

graph database as a labeled graph DG = ⟨Vd ,Ed ,λvd ,λed ⟩, where Vd is a set of vertices to represent all types

in the current domain and Ed ⊆V 2
d is a set of directed edges to denote the relationship between a type and the

types of its own arguments. The labeling function λvd : Vd 7→ N maps all type vertices to N, which is a set of

label names and λed : Ed 7→ S, where N ∈ S and S is a set of sets of names.

Model Representation: A labeled graph MG = ⟨Vm,Em,λvm ,λem ,λt⟩ is created for a FORMULA model

instantiation, where Vm is a set of vertices to represent all models of different types in the current domain and

Em ⊆ V 2
m is a set of directed edges between model and its components in arguments. The labeling function

λvm : Vm 7→ P, where P is a set of sets of nested properties that contains key-value pairs, maps all model

vertices to a set of properties. λem : Em 7→ S, where N and S have same meanings as in domain representation,

such that λt : Vm 7→Vd maps each model to its own type.

Models conform to their metamodels and this relationship is also enforced in graph representation by

connecting each model node to its type node with edge label type. To highlight the above-described re-

lationships, part of the graph representation is shown in Figure 4.5 given the FORMULA specification of

MetaGraph in Figure 4.4.

42

domain MetaGraph

{

MetaNode : : = new (name : S t r i n g) .

MetaEdge : : = new (name : S t r i n g , s r c : MetaNode ,

d s t : MetaNode , ms : M u l t i p l i c i t y , md : M u l t i p l i c i t y) .

Node : : = new (name : S t r i n g , t y p e : MetaNode) .

Edge : : = new (name : S t r i n g , t y p e : MetaEdge ,

s r c : Node , d s t : Node) .

M u l t i p l i c i t y : : = new (low : I n t e g e r ,

h igh : I n t e g e r + {” * ” }) .

N o d e I n h e r i t a n c e : : = new (base : MetaNode ,

i n s t a n c e : MetaNode + Node) .

Node Ins t anceOf : : = (MetaNode , MetaNode + Node) .

}

model example o f MetaGraph

{

e x a c t l y O n e i s M u l t i p l i c i t y (1 , 1) .

atMostOne i s M u l t i p l i c i t y (0 , 1) .

a t L e a s t O n e i s M u l t i p l i c i t y (1 , ” * ”) .

anyNumber i s M u l t i p l i c i t y (0 , ” * ”) .

mn1 i s MetaNode (”mn1”) .

mn2 i s MetaNode (”mn2”) .

me1 i s MetaEdge (”me1” , mn1 , mn2 , a tLeas tOne , atMostOne) .

n1 i s Node (” n1 ” , mn1) .

n2 i s Node (” n2 ” , mn2) .

e1 i s Edge (” e1 ” , me1 , n1 , n2) .

}

Figure 4.4: MetaGraph Domain and Model in FORMULA

43

Figure 4.5: FORMULA Model Represented in Graph

4.5.2 Pre-processing of FORMULA Rule

The predicates in FORMULA rules are pre-processed in order to be further translated into sub-graph patterns

or combination of several patterns. FORMULA rule is first parsed into the format of Abstract Syntax Tree

(AST) with FORMULA Core APIs and then processed to create a label map that stores symbols and their

interconnected relations to other symbols. The label map is a hash map that maps a label name to a set of

label locations, where label location is a tuple l ∈ L in a set of locations and l = ⟨type, index, instance⟩, type

is the name of the type represented by current label location, index is the index of argument and instance is

a unique Identification number to distinguish different function terms such as C(a, b), C(b, c) that

represent instances of the same type but share some same labels as their arguments. For example, label a in

rule TRUE :- C(a, b), C(d, a) is mapped to two locations ⟨C,0,0⟩ and ⟨C,1,1⟩.

Gremlin traversal language can be written in a combination of imperative and declarative styles to find

matching sub-graphs by filtering out the whole graph step by step defined in the pipeline. Declarative style

queries have the benefit to leverage different query planers and determine the best execution order based on

historic statistics of previous patterns to filter the graph more efficiently. The following subsections describe

the translation in detail with examples.

44

4.5.3 Label Map for FORMULA Rule

FORMULA rule is first parsed into the format of Abstract Syntax Tree (AST) with FORMULA Core APIs

and then processed to create a label map that stores symbols and their interconnected relations to other

symbols.

The label map is a hash map that maps a label name to a set of label locations, where label location is

a tuple l ∈ L in a set of locations and l = ⟨type, index, instance⟩, type is the name of the type represented

by current label location, index is the index of argument and instance is a unique Identification number to

distinguish different function terms such as C(a, b), C(b, c) that represent instances of the same type

but share some same labels as their arguments. For example, label a in rule TRUE :- C(a, b), C(d,

a) is mapped to two locations ⟨C,0,0⟩ and ⟨C,1,1⟩.

4.5.4 Instance and Arguments

The relationship between each model instance and its arguments are represented as a graph-matching pattern

in a declarative manner. In the graph representation of Models, each model is connected with its argument

by an edge label that is automatically generated from the prefix ”ARG ” the index of argument in the model

instance. .As("a").In("ARG X").As("b") is a declarative matching pattern to find models that two

nodes are connected by an edge with label name ”ARG X” and node b points to node a. All tuples in the label

map are translated into graph patterns in this way. An example is shown below to demonstrate the translation.

FORMULA rule:

C : : = new (x : I n t e g e r , y : I n t e g e r) .

TRUE : − C(a , b) , c1 i s C(b , c) .

Graph query in Gremlin:

g .V () . Match (

. As (” a ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” i n s t a n c e 0 o f C ”) ,

. As (” b ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 1”)

. Has (” t y p e ” , ”C”) . As (” i n s t a n c e 0 o f C ”) ,

. As (” b ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” c1 ”) ,

. As (” c ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 1”)

. Has (” t y p e ” , ”C”) . As (” c1 ”)

45

) . S e l e c t (” a ” , ” b ” , ” c ” , ” c1 ”) ;

4.5.5 Handling Binding Label with Fragments

A unique label may or may not be defined for every argument such as A ::= new(id: Integer) or

A ::= new(Integer). If the unique label is defined for the argument, the FORMULA user can write

rules that have expressions like a1.id to represent the components of a model.

To deal with labels that extend a binding label to access its components like ”c1.x.y”, they are split into

fragments as ”c1”, ”c1.x” and ”c1.x.y”, then more constraints about relations on fragmented labels are added

to existing graph pattern.

Model node is not only connected to each of its argument nodes by an edge with a label composed of

the prefix ”ARG ” and the index of the argument, but also another duplicate edge with a label that uses an

argument label such as ”id” in A ::= new(id: Integer) to name the label. The duplicate edge is

used in an additional graph pattern to represent the relations between label fragments. If a label has chained

fragments such as ”a1.a2. · · ·ai−1.ai”, we simply extend the graph traversal to chain all label fragments one

after one by name of the duplicate edge as follows:

As(a1.a2. · · ·ai−1.ai).In(label1).As(a1.a2. · · ·ai−1)

.In(label2) · · · In(labeli).As(a1)

FORMULA rule:

C : : = new (x : I n t e g e r , y : I n t e g e r) .

TRUE : − c2 i s C(a , c1 . x) , c1 i s C .

Graph query in Gremlin:

g .V () . Match (

. As (” a ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” c2 ”) ,

. As (” c1 . x ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” c2 ”) ,

. As (” c1 . x ”) . In (” x ”) . As (” c1 ”)

) . S e l e c t (” a ” , ” c1 ” , ” c1 . x ”) ;

46

4.5.6 Constraints over Properties in Built-in Types

FORMULA rules allow users to add constraints over the properties of built-in types like Integer or String

type in models. Each tuple t = ⟨op, label1, label2,cnst⟩ is translated into Gremlin Traversal to add some

constraints. The example below shows how this type of constraint is mapped to Gremlin traversal patterns.

FORMULA rule:

C : : = new (x : I n t e g e r , y : I n t e g e r) .

TRUE : − C(a , c1 . x) , c1 i s C(b , c) , c1 . x < c1 . y , b != 2 .

Graph query in Gremlin:

g .V () . Match (

. As (” a ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” i n s t a n c e 0 o f C ”) ,

. As (” c1 . x ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 1”)

. Has (” t y p e ” , ”C”) . As (” i n s t a n c e 0 o f C ”) ,

. As (” b ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” c1 ”) ,

. As (” c ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 1”)

. Has (” t y p e ” , ”C”) . As (” c1 ”) ,

. As (” c1 . x ”) . In (” x ”) . As (” c1 ”) ,

. As (” c1 . y ”) . In (” y ”) . As (” c1 ”) ,

. As (” cc . x ”) . Va lues (” v a l u e ”) . As (” cc . x v a l u e ”) ,

. As (” cc . y ”) . Va lues (” v a l u e ”) . As (” cc . y v a l u e ”) ,

. Where (” cc . x v a l u e ” , P . Lt (” cc . y v a l u e ”)) ,

. As (” b ”) . Va lues (” v a l u e ”) . I s (P . Neq (2))

) . S e l e c t (” a ” , ” b ” , ” c ” , ” c1 ” , ” c1 . x ” , ” c1 . y ”) ;

4.5.7 Negation and Set Comprehension Operators

Set comprehension with operators like count and no are commonly used in FORMULA language. Con-

straints with negation or set comprehension are not evaluated by calling graph queries, but evaluated program-

matically by counting the number of matching results in C# code. For example, count(s | s is C(m,

n)) < 3 checks if the count of models of type C is less than 3, no {d|d is D(c1, c2)} checks if the

count of models of type D is equal to 0. If all conditions are satisfied, the program will proceed with variable

substitution in the head of the rule.

47

FORMULA rule:

C : : = new (x : I n t e g e r , y : I n t e g e r) .

D : : = new (x : C , y : C) .

TRUE : − c o u n t ({ s | s i s C(m, n) }) < 3 , no {d | d i s D(c1 , c2) } .

Graph query in Gremlin:

g .V () . Match (

. As (”m”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” s ”) ,

. As (” n ”) . Has (” t y p e ” , ” I n t e g e r ”) . In (”ARG 1”)

. Has (” t y p e ” , ”C”) . As (” s ”) ,

. As (” c1 ”) . Has (” t y p e ” , ”C”) . In (”ARG 0”)

. Has (” t y p e ” , ”C”) . As (” d ”) ,

. As (” c2 ”) . Has (” t y p e ” , ”C”) . In (”ARG 1”)

. Has (” t y p e ” , ”C”) . As (” d ”) ,

) . S e l e c t (”m” , ” n ” , ” s ” , ” c1 ” , ” c2 ” , ” d ”) ;

4.5.8 Termination of Repeating Rule Execution

Recursive calls can be applied in the FORMULA rule to describe concepts such as transitive closure that

are beyond the scope of first-order logic. Instead of implementing concrete patterns matching algorithms

such as Rete Algorithm and Magic Sets in a rule-based system, we repeatedly compute matches from RHS

and synthesize new terms on LHS by executing graph queries under Gremlin APIs and counting if current

execution reaches a fixed point that no more terms can be generated in the next round of rule execution.

FORMULA rule:

C : : = new (x : I n t e g e r , y : I n t e g e r) .

C(a , c) : − C(a , b) , C(b , c) .

c1 i s C(1 , 2) .

c2 i s C(2 , 3) .

c3 i s C(3 , 4) .

Rule execution:

Round 1 : C(1 , 2) C(2 , 3) C(3 , 4)

Round 2 : C(1 , 2) C(2 , 3) C(3 , 4) + C(1 , 3) C(2 , 4)

Round 3 : C(1 , 2) C(2 , 3) C(3 , 4) C(1 , 3) C(2 , 4) + C(1 , 4)

Round 4 : C(1 , 2) C(2 , 3) C(3 , 4) C(1 , 3) C(2 , 4) C(1 , 4)

48

4.6 Benchmark and Performance Comparison

We use the same MetaGraph domain, which is also used to represent WebGME models and metamodels as

typed graphs, to benchmark the constraint-checking performance in FORMULA. The conformance rules in

this domain are the automatically derived conditions in the typed graph representing the models and meta-

models. The MetaGraph domain contains most of the features of FORMULA language such as pattern

matching, negation, set comprehension, and recursion.

Models of different sizes are generated based on the MetaGraph domain but are not shown here due to

space limitations. All experiments were run on an Intel(R) Core(TM) 3.40GHz i7-2600 CPU machine with

16GB RAM. The execution results are shown in table 4.1. Graph queries take less than 1 second for a large

graph with 4082 nodes and 12670 edges in total, while FORMULA needs more than 100 seconds to finish.

We also tried a larger graph with 121000 edges and 1100 nodes. In this case, FORMULA ran out of memory

and was not able to finish the task of conformance checking. On the contrary, graph query execution was

much faster and took less than 5 seconds. Model execution in graph database excels in concrete execution as

shown in our benchmark with a trade-off between rich semantics and performance. but we only map a subset

of the FORMULA language.

domain MetaGraph
{

/ / Type d e f i n i t i o n s a r e d e f i n e d i n F i g u r e 4b above .
W r o n g M u l t i p l i c i t y : − M u l t i p l i c i t y (low , h igh) ,
h igh != ” * ” , low > h igh .
no t1 : − n i s Node ,
no {m | m i s MetaNode , Node Ins t anceOf (m, n) } .
no t2 : − e i s Edge , no {m | m i s MetaEdge , m = e . type ,
Node Ins t anceOf (m. s r c , e . s r c) } .
no t3 : − e i s Edge , no {m | m i s MetaEdge , m = e . type ,
Node Ins t anceOf (m. d s t , e . d s t) } .
n o t 4 a : − n i s Node , m i s MetaEdge , Node Ins t anceOf (m. s r c , n) ,
c o u n t ({ s | s i s Node , e i s Edge (,m, n , s) }) < m. md . low .
no t4b : − n i s Node , m i s MetaEdge , Node Ins t anceOf (m. s r c , n) ,
m. md . h igh != ” * ” ,
c o u n t ({ s | s i s Node , e i s Edge (,m, n , s) }) > m. md . h igh .
no t5 : − m i s MetaEdge , n i s Node , Node Ins t anceOf (m. s r c , n) ,
m. md . low != 0 , no{e | e i s Edge (,m, n ,) } .
n o t 6 a : − n i s Node , m i s MetaEdge , Node Ins t anceOf (m. d s t , n) ,
c o u n t ({ s | s i s Node , e i s Edge (,m, s , n) }) < m. ms . low .
no t6b : − n i s Node , m i s MetaEdge , Node Ins t anceOf (m. d s t , n) ,
m. ms . h igh != ” * ” ,
c o u n t ({ s | s i s Node , e i s Edge (,m, s , n) }) > m. ms . h igh .
no t7 : − m i s MetaEdge , n i s Node , Node Ins t anceOf (m. d s t , n) ,
m. ms . low != 0 , no{e | e i s Edge (,m, , n) } .

}
Listing 4.1: MetaGraph Domain Specified in FORMULA

49

Table 4.1: Execution times for FORMULA and Gremlin specifications. MN, ME, N, E stand for number of
MetaNodes, MetaEdges, Nodes, Edges.

MN ME N E Formula Gremlin

1 49 39 347 805 6.34s <1s

2 49 39 596 1596 12.58s <1s

3 49 39 1094 3178 24.47s <1s

4 49 39 2090 6342 56.95s <1s

5 49 39 4082 12670 112.94s <1s

6 49 39 1100 121000 - 4.28s

4.7 Contributions

In this chapter, we discussed the pioneering works of integrating modeling frameworks, the formal specifi-

cation language FORMULA, and graph databases. They are on different levels of integration for different

purposes to address the performance issue, the scalability issue, and the lack of a formal semantic foundation.

1. We translate WebGME meta-models and models into both relational database and graph database with

automatically derived conditions in the form of graph query for efficient constraint checking over large

models. The trade-off in this method is that the reasoning over models can only be done at a low level

with only a vague connection to the semantics of models and meta-models.

2. We use FORMULA to formally specify the semantics of WebGME metamodels and models as the

semantic backplane. FORMULA is flexible and powerful enough that we can either directly translate

every component and relationship into FORMULA terms or use FORMULA to model both meta-

models and models as nodes and edges in a FORMULA-defined typed graph domain. With the power

of FORMULA, a lot of complex constraint checking such as reachability-related queries can be ex-

pressed concisely in the FORMULA language. The trade-off in this integration is that FORMULA

lacks efficient performance in model execution compared with a graph-based solution but preserves

the rich semantics of formally defined models and metamodels.

3. We keep the same semantic link between WebGME and FORMULA no matter whether it is a direct

one-to-one rigorous translation for every WebGME component or have all models expressed in a graph

domain but build a separate semantic bridge between WebGME and Formula. The purpose of the

semantic bridge is to keep the rich semantics of FORMULA to facilitate the modeling of complex

systems or queries that cannot be expressed concisely and accurately in SQL and other imperative

languages like JavaScript or Python, which are low-level programming languages manually written

50

plugins for constraint checking. The translation only targets a subset of FORMULA language to graph

database and graph query language due to the semantic mismatch between the two languages but is

still powerful enough to solve a lot of complex constraints checking with fast execution.

51

CHAPTER 5

Developing Differential-FORMULA in MDE Methodology

WebGME and FORMULA both store structured model data in memory, text files, or databases. FORMULA

currently lacks a built-in version control mechanism, and tracking changes to models is performed by taking

a snapshot of each model (i.e., storing the entire content of the model). This approach has a lot of redundancy

in the storage. Incremental updates are not feasible to be implemented if only snapshots of the whole model

are stored.

With the goal of achieving high performance and incremental updates in mind, we naturally came across

the Rust language (Klabnik and Nichols, 2019) and the family of differential computation. Timely-dataflow (Mur-

ray et al., 2013), differential-dataflow (Abadi et al., 2015), and Differential-Datalog (Ryzhyk and Budiu,

2019) are all related to each other in the context of data processing and analysis, particularly in the domain

of stream processing and real-time data analytics.

Timely-dataflow is a computational model that provides a framework for building scalable and efficient

distributed data processing systems. It allows for the creation of dataflow graphs, which are composed of op-

erators that process data in parallel across multiple nodes in a distributed system. The Timely dataflow model

enables the processing of both batch and streaming data and can be used for a wide range of applications such

as network analytics, machine learning, and graph processing.

Differential-dataflow is an extension of Timely dataflow that allows for the efficient processing of incre-

mental updates to data in real time. It enables the incremental computation of changes to a dataset, which

can be more efficient than recomputing the entire dataset from scratch. This makes differential dataflow ideal

for scenarios where data is constantly changing, such as in real-time analytics or online machine learning.

Differential dataflow is particularly useful for processing large-scale datasets, as it can efficiently handle data

with billions of records.

Differential-Datalog is a declarative programming language that extends Datalog, a logic-based query

language used for deductive databases. Differential Datalog extends the traditional Datalog model by adding

support for incremental updates, which makes it well-suited for real-time analytics and stream processing.

Differential Datalog allows for the efficient computation of changes to a dataset by incrementally updating

the logical rules that define the dataset, rather than recomputing the entire dataset from scratch.

In summary, Timely-dataflow provides a framework for building distributed data processing systems,

while differential dataflow and differential Datalog extend Timely dataflow to enable the efficient processing

of incremental updates to data in real-time. All three are important tools in the domain of real-time data

52

analytics and are used for a wide range of applications such as network analytics, machine learning, and

graph processing.

We want to integrate the new Differential-Dataflow computation model into the FORMULA execution

engine in order to enable incremental updates and handle large models. The integration with the Differential-

Dataflow computation model has the following advantages:

1. FORMULA terms are translated into DDLog data structures and later passed into the Differential-

Dataflow dataflow graph implemented in the Rust language. The advantage here is that the Rust lan-

guage compiles to code that is as fast as a native C++ implementation in general but with more memory

safety guarantees.

2. Use Differential-Dataflow Arrangement to index models and maintain states in memory. The advantage

here is better performance.

3. Efficiently update the output of each DD operator based on multiple partially ordered versions incre-

mentally and compact all the versions before a certain timestamp while the users decide that they do

not need to track the changes before this timestamp anymore.

Rather than re-implement FORMULA using a new computation model, which is a non-trivial task, we

decided to semantically map FORMULA to a Datalog dialect named Differential-Datalog. The advantage of

this approach is that Differential-Datalog already has an existing compiler that compiles a DDLog program

to a runtime in Rust that implements highly optimized dataflow pipelines based on Differential-Dataflow to

incrementally derive new facts or even remove existing facts accordingly when the input changes. We pro-

posed and are in the process of implementing a model-driven engineering framework for designing DSMLs,

namely Differential-FORMULA, by adopting the same model-driven engineering methodology to develop

our integrated modeling tools.

We are developing an addition that we call Differential-FORMULA (δF) that allows model queries and

transformations to be performed incrementally. To avoid re-implementing the FORMULA execution engine

from scratch, we leverage Differential-Datalog (DDLog), which is a general-purpose logic-programming lan-

guage. The idea is to translate FORMULA specifications into DDLog specifications and use the incremental

DDLog execution engine to perform model transformations and query evaluations. The semantics of DDLog

are similar to FORMULA, but there are some semantic mismatches between the two languages that we iden-

tified and must be considered when translating a FORMULA specification into a DDLog specification.

Our ultimate goal is to use FORMULA to formally specify both the FORMULA language itself and the

DDLog language, namely the metamodels of the two languages. Model transformation can then be applied

53

to transform models of FORMULA programs into models of DDLog programs. Naturally, the models of the

language domains must conform to the predefined language metamodels.

As shown in Figure 5.3, we formally specify the metamodels of the two languages so a transformation

can be specified in the same way. Instead of manually writing an equivalent DDLog program to execute

FORMULA models, we first model the language features based on their grammar and semantics in both

FORMULA and DDLog languages as shown in the lower part of Figure 5.3. In the next step, the metamodels,

models, and transformation from a user-defined domain are all treated as models of the FORMULA language

domain and after performing the transformation, we derive an equivalent DDLog program. This DDLog

program can execute models from the previous user-defined domain and incrementally update the results

when the input model changes.

5.1 Differential-Dataflow Computation Model and Tool Suites

The efficient incremental model execution engine in Differential-FORMULA is achieved by applying the

new Differential-Dataflow computation model. However, the implementation is built by translating to the in-

cremental logic programming language Differential-Datalog (an incremental version of the Datalog dialect)

that has already implemented the compilation to Differential-Dataflow pipelines. Differential-Dataflow pro-

vides the basic building blocks for Differential-Datalog that the Differential-FORMULA will be translated to

by executing a formally defined model transformation. Differential-Dataflow builds upon Timely-Dataflow,

which is a computation model for low-latency, parallel and iterative computation with a logical timestamp.

In general, high-level programming models are built upon or mapped to low-level primitives in each layer

as shown in the following subsections, and on the highest level we have Differential-FORMULA that allows

users to create models with constraints and also has the capability to execute models incrementally for the

modeling purpose.

5.1.1 Timely Dataflow

Model execution with incremental updates in a distributed system is a hot research topic for model-driven

engineering and could be a suitable target to tease out the potential of Timely-dataflow framework to max-

imize the performance gain. Timely-dataflow is a new data stream computation model for executing data

parallel, cyclic dataflow programs. This model enriches dataflow computation with timestamps that represent

logical points in the computation and provide the basis for an efficient, lightweight coordination mechanism.

Timely-dataflow supports asynchronous and fine-grained synchronous execution with a logical timestamp

and distributed progress tracking protocol. It offers the high throughput of batch processors, the low latency

of stream processors, and the ability to perform iterative computations.

54

Its key contribution is a new coordination the mechanism that allows low-latency asynchronous message

processing while efficiently tracking global progress and synchronizing only where necessary to enforce

consistency. The implementation of Naiad (Murray et al., 2013) demonstrates that a timely-dataflow system

can achieve performance that matches and in many cases exceeds many specialized systems.

e x t e r n c r a t e t i m e l y ;

use t i m e l y : : d a t a f l o w : : I n p u t H a n d l e ;

use t i m e l y : : d a t a f l o w : : o p e r a t o r s : : { I n p u t , Exchange , I n s p e c t , Probe } ;

f n main () {

/ / i n i t i a l i z e s and r u n s a t i m e l y d a t a f l o w .

t i m e l y : : e x e c u t e f r o m a r g s (s t d : : env : : a r g s () , | worker | {

l e t i n d e x = worker . i n d e x () ;

l e t mut i n p u t = I n p u t H a n d l e : : new () ;

/ / c r e a t e a new i n p u t , exchange da ta , and i n s p e c t i t s o u t p u t

l e t p robe = worker . d a t a f l o w (| scope |

scope . i n p u t f r o m (&mut i n p u t)

. exchange (| x | *x)

. i n s p e c t (move | x | p r i n t l n ! (” worker {} :\ t h e l l o {}” , index , x))

. p robe ()

) ;

/ / i n t r o d u c e d a t a and watch !

f o r round i n 0 . . 1 0 {

i f worker . i n d e x () == 0 {

i n p u t . send (round) ;

}

i n p u t . a d v a n c e t o (round + 1) ;

worker . s t e p w h i l e (| | probe . l e s s t h a n (i n p u t . t ime ())) ;

}

}) . unwrap () ;

55

}

Listing 5.1: Timely-dataflow Example

The example above in Figure 5.1 from the Timely-dataflow official tutorial is a relatively intuitive and

concise example to demonstrate how timely-dataflow works to coordinate and track programs. The dataflow

described in Rust language can take different configurations and have multiple workers coordinated to fin-

ish one task. In the example, only the first worker receives the input or keeps the data to itself. If there

are only two workers, one worker processes the even number and the other one processes the odd number.

The data is passed to its peer workers based on the index of the worker. The most important part is in

worker.step while() that the worker passively receives the notification with both data and a digital

timestamp. The probe variable, and the use of a probe to determine how long we should step the worker

before introducing more data. The data are only processed when new data with a bigger timestamp enters the

scope and without the coordination, the output of the dataflow will be in random order that the occurrence

of a bigger integer could happen before a small integer. Thus, the Timely-dataflow can be applied to coordi-

nate the computation of a more complex problem such as finding the shortest path in a graph with multiple

workers in threads or even across machines.

5.1.2 Differential Dataflow

Timely-Dataflow alone is still far away from having primitive building blocks that are robust and expres-

sive enough to implement an incremental framework. Therefore, we introduce another framework named

Differential-Dataflow, which is built upon Timely-dataflow and has its only way to maintain the snapshots of

the computation state for incremental updates. The novelty of differential computation is twofold: first, the

state of the computation varies according to a partially ordered set of versions rather than a totally ordered

sequence of versions as is standard for incremental computation; and second, the set of updates required to

re-construct the state at any given version is retained in an indexed data-structure, whereas incremental sys-

tems typically consolidate each update in sequence into the “current” version of the state and then discard the

update.

Differential-Dataflow is an ideal computation model to re-implement the core engine of FORMULA be-

cause Differential-Dataflow natively supports the iterative operator and aggregation operators besides the

relational operators. The execution of FORMULA logic programming rules can be expressed by the con-

struction of a dataflow graph with those primitive operators.

56

5.1.3 Differential Datalog

The main use case for Datalog is to take a database of facts and iteratively infer additional interesting facts

via given rules from the current knowledge base. Datalog and related programming languages are commonly

called logic programming. Differential-Datalog is a general-purpose logic programming language extending

the traditional Datalog language and is built upon Differential-dataflow. The output of the DDLog compiler

is a dataflow graph, which may contain cycles (introduced by recursion). The nodes of the graph represent

relations; the relations are computed by dataflow relational operators. Edges connect each operator to its in-

put and output relations. Differential-dataflow natively implements the following operators: map, filter,

distinct, join, antijoin, groupby, union, aggregation, and flatmap with a highly opti-

mized implementation in Rust.

t y p e d e f NID = S t r I d { n i d : s t r i n g } | NumId { nn id : u32} | C o n s t a n t 1 | C o n s t a n t 2

i n p u t r e l a t i o n Node (i d : NID)

i n p u t r e l a t i o n Edge (s r c : Node , d s t : Node)

o u t p u t r e l a t i o n Pa th (s r c : Node , d s t : Node)

o u t p u t r e l a t i o n NoCycle (node : Node)

t y p e d e f NodeLis tNxt = Nxt { l i s t : Ref<NodeLis t>} | NULL

o u t p u t r e l a t i o n NodeLis t (i t em : Node , n e x t : NodeLis tNxt)

NodeLis t (node , n x t) : − Node [node] , v a r t a i l = NodeLis t {node , NULL} ,

v a r n x t = Nxt{ r e f n e w (t a i l) } .

Pa th (a , c) : − Pa th (a , b) , Pa th (b , c) .

HasCycle (H a s C y c l e C o n s t a n t) : − Pa th (u1 , u2) , u1 == u2 , v a r g = u1 . g roup by (()) ,

v a r c o u n t = g . g r o u p c o u n t () , c o u n t == 0 .

Ou tdeg ree (Node{ s r c } , sum) : − Edge (Node{ s r c } , Node{ d s t }) ,

v a r sum = d s t . g roup by (s r c) . g r o u p c o u n t () .

Listing 5.2: Introduction to Differential-Datalog with Examples

In Listing 5.2 we give a short example to introduce the major language features of DDLog and the mean-

ing of its syntax. The keyword typedef denotes the type definition of tagged union type that contains at

least one constructor. For example, The type NID can be either a string ID or a numeric ID. Contant1,

57

Constant2 and NULL are implicit constructors that take zero argument. Differential-Datalog also supports

advanced types such as generic types List<T>, Set<T> and Ref<T> in the same flavor as Rust language

itself even though the Differential-Datalog has a different imperative programming language for writing ex-

ternal function. For example, Nxt {list:Ref<NodeList>} is a constructor that takes the reference of

NodeList as the only one argument without keeping another copy of the same data.

Relations denoted by keywords input and output is the entry and exit points in the dataflow gener-

ated by the DDLog program that output relation Path(src:Node, dst:Node) means a data

container named Path that has a set of tuples. The input relations only receive changes from data input while

the output relations incrementally reflect the changes propagating in the dataflow graph from the inputs all

the way to the final outputs.

Figure 5.1: Differential-Datalog Internal Workflow

58

Figure 5.2: Generated Differential-Dataflow from a DDLog Rule

The dataflow graph and pipelines are described by the rules defined in DDLog program that each rule is

translated into operators in Differential-Dataflow. For example, the pattern-matching predicates in the rule

are mapped to the join operator that takes two incoming streams of data and incrementally updates the

results. DDLog also has the special group by operator that groups the incoming data stream based on the

key. For example, the last rule in Listing 5.2 groups all the edges Edge(src, dst)in the graph by the key

src in order to compute the outdegree of each node. DDLog program may have recursion in its rules that

repeatedly feed the updates from the output back to the input until the fixed point is reached that the dataflow

sub-graph with self-cycle cannot derive new facts anymore.

In a nutshell, Differential-Datalog is a declarative language to define the versatile data structures to be

passed around in the dataflow and describe how timestamped streams of data should be computed on a higher

level abstraction. Differential-Datalog also has a compiler that compiles the description of dataflow into a

real runtime implemented in Rust to do the incremental computation. The users either add changes to the

input in the command line or call the runtime APIs in Rust.

Before we dive into the implementation of an incremental version of FORMULA language for metamod-

eling, we also did some research on each tool and the potential of tool integration as summarized below

59

1. Introduce several frameworks based on differential computation models and analyze the relationship

between Timely-dataflow, Differential-dataflow, and Differential-datalog.

2. We investigate the possibility of integrating the differential computation model into our integrated

modeling framework mainly FORMULA to achieve better performance and incremental computation.

3. Dissect and compare the computation model of FORMULA and Differential-Dataflow to have a one-to-

one mapping from FORMULA semantic to the dataflow operators. The data structures of FORMULA

terms and data types in Differential-dataflow and DDLog are also compared for the implementation of

a translator from concrete FORMULA terms to the tagged union in DDLog.

In this chapter, we describe in detail the novel idea of generating an Incremental version of logic style

modeling language FORMULA by modeling the language domains, identifying the semantic mismatches,

and doing a model transformation for code generation. We use a general logic programming language named

Differential-Datalog to do the model transformation incrementally because DDLog is also an incremental

version of Datalog with extensions and more features. The whole process of model transformation and

extraction from models to generate executable code can be viewed as incrementally generating an equivalent

DDLog program using the exact same incremental DDLog language by reasoning and rule execution.

5.2 Introduction to Differential-FORMULA

Differential-FORMULA is initially planned to be a re-implementation of FORMULA in differential-dataflow

or at least follows the same computation model of Differential-Datalog but later is transitioned to using the

same model-driven engineering methodology to develop a tool that is exactly created for the model-driven

engineering. The actual implementation is a translation from FORMULA to DDLog with precise semantic

matching and model transformation.

To address this issue, we have developed an incremental version of FORMULA that can perform efficient

model queries and transformations in the face of continual model updates. In a nutshell, we use the same

Model-driven engineering methodology by applying a model transformation to another modeling framework

FORMULA and generating a faster incremental version of the model execution engine. The end result and

the performance of model execution turn out to be successful and is one of the leading high-performance in-

cremental modeling frameworks based on the result of TTC18 (Boronat, 2018) model transformation bench-

mark.

60

Design Models

Language Metamodel Transformation Specification Lang Metamodel

𝑀𝑀δ𝐹
𝐷𝐷𝑙𝑜𝑔 𝑇δ𝐹 →𝐷𝐷𝑙𝑜𝑔

𝐷𝐷𝑙𝑜𝑔
𝑀𝑀𝐷𝐷𝑙𝑜𝑔

𝐷𝐷𝑙𝑜𝑔

Metamodel of FORMULA specified in DDlog

Language Model

𝑀δ𝐹
𝐷𝐷𝑙𝑜𝑔

𝑀𝐷𝑜𝑚𝑎𝑖𝑛
δ𝐹

Metamodels

Transformation

𝑀𝑀𝐷𝑜𝑚𝑎𝑖𝑛
δ𝐹

𝑇𝐷𝑜𝑚𝑎𝑖𝑛1→𝐷𝑜𝑚𝑎𝑖𝑛2
δ𝐹

Language Transformation

𝑀δ𝐹
𝐷𝐷𝑙𝑜𝑔

→𝑀𝐷𝐷𝑙𝑜𝑔
𝐷𝐷𝑙𝑜𝑔

Design Models

𝑀𝐷𝑜𝑚𝑎𝑖𝑛
𝐷𝐷𝑙𝑜𝑔

Metamodels

Transformation

𝑀𝑀𝐷𝑜𝑚𝑎𝑖𝑛
𝐷𝐷𝑙𝑜𝑔

𝑇𝐷𝑜𝑚𝑎𝑖𝑛1→𝐷𝑜𝑚𝑎𝑖𝑛2
𝐷𝐷𝑙𝑜𝑔

Metamodel of DDlog specified in DDlogformula2ddlog Transformation specified in DDlog

Design (partial) model in FORMULA Design model in DDlog

Model synthesis on partial model Incremental Updates With Delta Model

Parse design models in FORMULA syntax

into models of FORMULA Lang Metamodels

Extract models of DDlog Lang

Metamodels to generate code in DDlog

Infrastructure tools:
DDlog,

Differential-Dataflow,
Rust,
Z3

Language Model

𝑀𝐷𝐷𝑙𝑜𝑔
𝐷𝐷𝑙𝑜𝑔

Figure 5.3: Architecture of DDLog-based Incremental Modeling Framework.

5.3 Identification of Semantic Mismatch

The FORMULA language is used for domain-specific modeling, and its syntax provides high-level abstrac-

tions for this purpose. DDLog, on the other hand, can be viewed as a more general-purpose logic program-

ming language that extends the traditional Datalog language with additional features. Below is a partial list

of the most important semantic differences between FORMULA and DDLog, along with an explanation of

selected core language features with examples.

1. DDLog has a larger set of primitive types than FORMULA; this includes both finite-precision and

infinite-precision numeric types, reference types, internment types (automatically de-duplicated data

with pre-computed hash and atomic reference counting), tuple types, generic types, and collection

types (e.g. vector, map, group, set). The set of base types in FORMULA includes integers, floating-

point numbers, strings, and finite enumerations. FORMULA terms represent the elements in a domain

and are built using either base-type constants or user-defined function symbols applied, possibly recur-

sively, to a set of arguments, which are themselves terms. FORMULA has a behavioral type system,

meaning that FORMULA only cares about the set of values that a type represents, not how that set is

written. In other words, the same type can often be expressed multiple ways. This type system has

been described in previous works (Jackson et al., 2011a).

2. DDLog uses a Haskell-style tagged union type or sum type which creates a new type holding a value

that can take on several different, but fixed, values. A tag is added to the value to explicitly indicate

which type is in use, and the same value used in different tagged unions is viewed as a different type.

61

In contrast, FORMULA’s union type represents the mathematical union of the contained types, and

the same value used in different unions is viewed as the same type. The type systems of FORMULA

and DDLog are modeled in DDLog as part of them are shown in the following metamodels in both

textual and graphical syntax. The graphical syntax used in WebGME (Maróti et al., 2014) is similar to

UML syntax in which the red arrows denote the inheritance relationship and the black arrows denote

the containment relationship with cardinality constraints in the annotations.

3. A DDLog relation is a structure to organize strongly typed data, similar to the concept of tables in

databases. Input relations denoted by the keyword input receive streams of changes (insertion or

deletions) and the corresponding changes after the execution of rules is reflected in the output rela-

tions denoted by the keyword output. The output relation cannot take updates from external input

streams. The definition of a relation in DDLog is [input|output]relation Relname[T]

where Relname is the name of the relation and T is the type of the data stored in the relation.

In FORMULA, each type has a relation implicitly associated with itself, and relational constraints are

written as Pred(⃗t). DDLog requires the relation name to be written explicitly in relational constraints,

such as Relname[pattern] unless both the relation and the type have the same name.

4. DDLog negation is exclusively for set difference (antijoin), whereas the meaning of negation in FOR-

MULA depends on the context in which it is used (either set difference or set comprehension).

5. Set comprehension and aggregation are unique features of FORMULA. They are used to reduce a set

of provable terms derived from a rule’s execution to a single value using aggregation functions such as

count, sum, max, and min. Below is an example showing the power of this feature:

S = {H1,H2, ...,Hn |C1,C2, ...,Cn} (5.1)

aggregation = SetcompreOp(S,de f ault) (5.2)

aggregation ∈ expr(Cn) (5.3)

The set S contains terms derived from the head Hn in the rule H1,H2, ...,Hn : - C1,C2, ...,Cn where Cn is

the constraint that needs to be satisfied for head terms in the head to be derived. After the other parts of

the rule have been executed, the semantics of the set comprehension group all the facts derived from the

rule into one set. In the metamodel of the FORMULA language domain, we model set comprehension

as a rule with an additional aggregation function and default value.

62

On the other hand, aggregation in DDLog is essentially the groupby operator over the variables in

the constraints in the body of a rule; however, there is support for customization on the aggregation

functions in DDLog but in the translation, from FORMULA to DDLog we only have to use a small

fixed subset of the aggregation semantics in DDLog.

6. FORMULA allows nested set comprehensions; that is, an outer set comprehension can contain another

inner set comprehension as part of the expression in its constraint of the outer set comprehension as

shown in aggregation ∈ expr(Cn) in the definition of set comprehension. An example of nested set

comprehension is given in Listing 5.20.

7. FORMULA allows instances (singletons) of a constant type written as a Boolean variable to be used

directly as a constraint in a rule. This is typically applied to show the result of a conformance rule,

where the singleton of constant type is derived as a fact only if the constraints in the body are all

satisfied. For example, in the rule hasCycle - no Path(u,u), the variable in the head hasCycle (without

syntactic sugar as hasCycle()) is a singleton composite term in disguise that has no arguments to its

constructor and can only be derived if the absence of cycles is proved in the graph.

After the identification of semantic mismatches, we create metamodels for both FORMULA and DDLog

language domains, and FORMULA programs are parsed into models of the FORMULA language domain

that have to conform to the metamodel we defined. In Figure 5.5, the metamodel of type definition syntax of

both FORMULA and DDLog are modeled in WebGME’s graphical syntax to illustrate the subtle semantic

difference between the seemingly similar syntax to define a type with their type systems. The complete

metamodels of languages can be found from the link in (Zhang et al., 2021).

With the help of formally defined metamodels of the FORMULA language, we also write conformance

rules based on the metamodels for static analysis of the FORMULA program to check the validation of nested

set comprehension and rules stratification. This method is more elegant and rigorous than a manually written

FORMULA compiler and execution engine in csharp or C++ to validate those properties. A well-formed

FORMULA program or a valid model of the FORMULA language domain is then passed to the next step for

model transformation.

5.4 Formal Specification of FORMULA Language and Differential-Datalog

The model transformation from models of the FORMULA Language Domain to the DDLog Language Do-

main cannot be achieved without the formal definition of the syntax and semantics of both languages. We

elaborate on the difference of language semantics on similar syntax in both languages and even evaluate the

validity of programs with formal reasoning of language models.

63

Figure 5.4: Metamodel of FORMULA Language

Figure 5.5: Metamodels of DDLog and FORMULA Modeled Visually in WebGME

5.4.1 Union Type Definition

The union type in FORMULA U ::= T1+T2+ ...+Tn has different semantics compared with the tagged union

in DDLog as typedef U = Cons1{t1 : T1} | Cons2{t2 : T2} | ... | Consn{tn : Tn} in which each subtype in

the union type has a separate constructor to wrap a record of a subtype. However, FORMULA terms of a

union type keep the original form and are added to the set of terms represented by the union type.

For type definitions such as A ::= B+C, D ::= E +F and G ::= A+D, base type B, C, E, F are construc-

tors and type A and D are not constructors. If we don’t use Any type, the definition of G in DDLog will be

awkwardly cumbersome and overly complicated to be expressed as G :: A{inner : A}|G :: D{inner : D} and

the collection of type G has to be downgraded twice if we want to do a join with a collection of type B, which

is a subtype of the union type G.

The solution is to use the concise built-in Any type in DDLog rather than the traditional tagged union

in DDLog to represent FORMULA union types because the Any type includes any combination of multi-

ple constructors such as A+B+C +D+E +F in our previous example of nested union type definition.

Therefore, the current implementation of differential-FORMULA adopts Any type because dealing with the

translation of FORMULA nested union type into DDLog is nontrivial if we choose to translate nested union

type in FORMULA into nested tagged union types in DDLog. This solution elegantly solves the type seman-

64

tic mismatch between the two languages is to convert all explicit union types in FORMULA into Any type

in DDLog.

However, the disadvantage of this approach is that there are some additional overheads in the type con-

version of each term that belongs to a union type. All join operations involving union types are executed on

an over-estimated set of terms because Any type includes all existing terms in the set, which means the final

computation dataflows have to process more unnecessary data.

In DDLog, Any type is mapped to a whole collection or data stream that includes all term facts. The

collection of other types is always the subset of this collection. Other subtype data collections can be ob-

tained by passing the Any type data stream through some filtering operators in DDLog. There will be type

conversion overheads that slow down the overall performance of rule execution.

The term collection of a union type or even nested union type is always the union of term collections of its

subtypes with the basic constructor. There are no other nested union types in any of the subtypes of a union

type because the nested union types are all flattened to the ground level with only constructor-based types or

built-in basic types. In the previous example, G ::= B+C+E +F is the end result after type reduction rather

than G ::= A+D in which both A and D are union types themselves that can be further reduced to more basic

types because A ::= B+C and D ::= E +F .

The following three parts are the intermediate rules, types, and relations that are automatically generated

in the translation of Union Type from FORMULA to DDLog

• If the type of an argument is a union type in FORMULA, we replace it with Any type in DDLog, which

is an overestimated set of terms. If U1 is a union type and a constructor U2 ::= new(inner : U1) uses U1

as the type of one of its arguments, the type representation in DDLog is U2 ::= new(inner : Any)

• A separate DDLog relation specifically for this union type U to hold all terms from several different

normalized sub-types that represent subsets of the terms represented by this union type U .

• Generate new rules to derive the terms for the union type relation from the other relations of the nor-

malized subtypes of the current union type. U [x] : −Ui[x].

For example, in FORMULA both union type C ::= A+B and D ::= A+ String contain the term A(0)

because each FORMULA type represents a set of dynamically typed items but in DDLog the record A(0)

is wrapped by two constructors as CA{A(0)} and DA{A(0)} respectively. Additionally, the FORMULA

constant is natively translated to DDLog zero-argument constructor with the same semantics.

An implicit union type is implicated by terms of various types in Hn in the head of the set compre-

hension such as in Listing 5.3 where there are not only terms of type Node in the set but also atom term

65

of type String and terms of type Edge that could be added into the set. A hidden implicit union type

SetcompreHeadUnion ::= String+ Edge+Node is created behind the scene to represent the type of all

possible terms that could exist in the set of terms derived from set comprehension.

SomeAggregat ion (amt) : − amt =

c o u n t ({ ” h e l l o ” , s r c , Edge (d s t , s r c) , Edge (s r c , d s t) |

e i s Edge (s r c , d s t)

}) .

/ / An un ion t y p e g e n e r a t e d i m p l i c i t l y i n s e t comprehens ion

SetcompreHeadUnion : : = S t r i n g + Node + Edge .

Listing 5.3: Implicit Union Type in Set Comprehension

The type inference for the implicit union types in the set comprehension is handled by two rules in the

model transformation from FORMULA to DDLog. In Listing 5.4, the first rule infers the type for each

term in the head of the set comprehension and the second rule aggregates the types into a single union type.

Therefore, the aggregation later will be applied to the values of this union type rather than values of various

types.

TypeInHead (type , i n n e r r u l e) : −

C o n s t r a i n t [Se tcompreExpr (i n n e r r u l e) , r u l e] ,

Head [subterm , i n n e r r u l e] ,

Pred [term , i n n e r r u l e] ,

SubtermType [subterm , term , t y p e] .

Type [u n i o n t y p e] : − TypeInHead (type , i n n e r r u l e) ,

v a r t y p e g r o u p = (t y p e) . g roup by (()) ,

v a r u n i o n t y p e = t o u n i o n t y p e (t y p e g r o u p) .

Listing 5.4: Union Type Generation

5.4.2 Negation

In general, negation in a logic programming language is denoted by an additional negation prefix before a

predicate constraint in the rule. It means the absence of the terms of certain patterns can prove the existence

of some facts in the head of the rule. Below is the definition of negation in FORMULA, where each tn in the

predicate is a term (an atom, a variable, or a constructor combining terms recursively)

66

Head : - P1(⃗t1),P2(⃗t2), ...,Pm(t⃗m),no Pn(⃗tn)

The meaning of negation in FORMULA differs depending on its context: it either means (1) the absence

of facts of a certain pattern defined in the predicate constraint P(⃗t), or (2) the set difference between two

collections of records of different patterns. However, the semantics of negation in DDLog is strictly set

difference and the negation translates to the antijoin operator in differential-dataflow.

HasNoCycle : − no Pa th (u , u) .

NoCycle (u) : − u i s Node (u) , no Pa th (u , u) .

Listing 5.5: Rules with negated predicates

For example, the rule HasNoCycle : - no Path(u,u) derives the term HasNoCycle if there is no path of the

self cycle with the pattern expressed as Path(u,u) found in the graph. FORMULA will aggregate all existing

self-cycle paths set = {p | p is Path(u,u)} into a set and apply set comprehension to check the size of the set.

The negated predicate is evaluated to be true only when the size of the set is zero.

However, the following rule with negation under a different context NoCycle(u) : - u is Node(),no Path(u,u)

has a completely different semantics because the variable u outside the negated predicate constraints also ex-

ist in the negated predicate itself. The semantics in this example are altered to mean, “find all nodes in the

graph that do not exist in the path of a cycle.” In this case, both FORMULA and DDLog treat the negation

as the difference between two sets over one variable u: the set of all nodes as u is Node() and the set of all

nodes that occur in the path of a cycle as Path(u,u).

The context of negative predicate constraints decides if the negation should be interpreted as set difference

or set comprehension. In our formula2ddlog transformation, the following rules are executed to derive

new facts about each negated predicate under different contexts. One of the transformation rules even uses

negated predicates operating on the models of all negated predicates in the FORMULA program that do not

have the set difference semantics.

N e g P r e d A s S e t d i f f (pred , r u l e) : − NegPred (pred , r u l e) ,

PosVar (v a r i a b l e , r u l e) ,

NegVar (v a r i a b l e , r u l e) ,

VarOfTerm (v a r i a b l e , p r ed) .

NegPredAsSetcompre (pred , r u l e) : − NegPred (pred , r u l e) ,

67

n o t N e g P r e d A s S e t d i f f (pred , r u l e) .

Listing 5.6: Reasoning over negated predicates

NegPred, NegPredAsSetdiff, NegPredAsSetcompre are relations with two columns to repre-

sent different relations between negated predicate constraints and the rule that is associated with it. The first

rule in Listing 5.6 adds new facts into the relation NegPredAsSetdiff for each negated predicate if a vari-

able in the negated predicate also exists in one of the positive predicate constraints in the same rule, otherwise,

the new facts are added into the relation NegPredAsSetcompre by the second rule in Listing 5.6. The

negated predicate is then translated to an equivalent expression in DDLog based on the new information de-

rived from the rules. The final form of equivalent DDLog expression is either the same negated pattern expres-

sion not Rel[pattern] for set difference semantics, or Rel[pattern],var count = (v⃗n).group by(v⃗p),count = 0

for set comprehension semantics.

5.4.3 Aggregation

The aggregation or set comprehension in FORMULA is converted into three parts in order to be mapped into

an equivalent DDLog program.

1. A implicit union type is inferred by combining every type in the head of a set comprehension, even

though the type of each term in the head may not be explicitly specified in the rule.

2. A new rule is added into DDLog to derive new facts wrapped in the form of the new union type because

DDLog only accepts strongly typed data in every relation while FORMULA accepts dynamically typed

data (this is inferred and checked by the FORMULA compiler at load time).

U ::=UT1 +UT2 + ...+UTn (5.4)

UT1(h1),UT2(h2), ...,UTn(hn) : - C1,C2, ...,Cn (5.5)

3. The set of items of union type is further aggregated into a single numeric value stored in a new relation

Aggregation and a new relational constraint is appended to the rule that uses the result of the set

comprehension as shown in (7).

Aggregation(result) : - result = Op({u | U(u)}). (5.6)

H1,H2, ...,Hn : - C1,C2, ...,Cn,Aggregation(result). (5.7)

4. The new set comprehension result = Op({u | U(u)}) on a set of items of only one type (union type)

68

is consistent with the semantics of the groupby operator in DDLog and is translated into the form

group = (u).group by((⃗v)). v⃗ could be empty if the set comprehension is a closure that does not share

variables with the outer scope, similar to how the meaning of negation is determined (see Section 5.4.2).

The nested set comprehension or aggregation is handled with exactly the same rules used for single set

comprehension with no additional rules because the declarative transformation rules recursively translate

each set comprehension and replace it with the corresponding DDLog expressions. This example shows one

advantage our approach to translation using a formal specification has over the alternative of manually writing

imperative code with recursion to translate from one language to another.

5.5 Static Analysis on FORMULA Programs

FORMULA is considered the guard for the specification and execution of DSMLs but the FORMULA lan-

guage itself including the implementation of its own compiler and the translator to other languages like

DDLog is not guarded by any guard. Therefore, we have to formally specify the FORMULA language it-

self, detect the semantic errors at an early stage and write transformation rules to eventually transform a

FORMULA program into a DDLog program. For future work, we are planning to implement this as a FOR-

MULA transformation, with both FORMULA and DDLog language domains specified in the FORMULA

language. This approach will give confidence to the translation between the two languages through the use

of a formal specification.

Static analysis is necessary in our use case to check the validity of the FORMULA program semantically

after the program is parsed by our new FORMULA language parser implemented in Rust language. A trace

of error is provided as the result of execution of conformance rules in the same way as in the old version

of P language compiler (Desai et al., 2013) to prove the correctness of FORMULA program formally with

traceable proofs. The static analysis of the FORMULA program is a crucial step to gain knowledge of

the structure of the program and for the type inference in the FORMULA program and transformation in

FORMULA because type conversion may exist under certain circumstances in the model transformation

from FORMULA to DDLog.

Below is a FORMULA program example to demonstrate the core concepts such as algebraic data type,

union type, and other language features of FORMULA language. We use this toy example to explain the se-

mantic difference, modeling of language domain, model transformation, and code generation in the following

sections.

domain Graph {

Node : : = new (name : I n t e g e r) .

69

Edge : : = new (s r c : Node , d s t : Node) .

T r i a n g l e : : = new (one : Node , two : Node , t h r e e : Node) .

I t em : : = Node + Edge .

Union : : = T r i a n g l e + Node .

/ / Nes tedUnion i s a un ion of two un ion t y p e s b u t i t can be decomposed

/ / i n t o t h e un ion of t h r e e base t y p e s :

Nes tedUnion = T r i a n g l e + Node + Edge .

Nes tedUnion : : = Union + I tem .

/ / Both a r e s i m i l a r w i th c o n s t r u c t o r Edge b u t i t s a rgumen t s a r e more i n c l u s i v e .

BigEdge : : = new (s r c : NestedUnion , d s t : Nes tedUnion) .

GigaEdge : : = new (s r c : NestedUnion , d s t : Node) .

}

Listing 5.7: Example of Nested Set Comprehension

This FORMULA graph domain not only models the conventional graph with nodes and edges but also

models a hierarchical graph in which we expand the definition of the node to be a union type as either an

integer number, an edge, or even a triangle as part of the graph. The new Node type with the expanded node

definition is named NestedUnion and is the type of some arguments in constructors such as BigEdge

and GigaEdge.

5.5.1 Language Domain Modeling and Metamodels

Both static analysis of the FORMULA program and model transformation to generate an equivalent DDLog

program relies on a complete definition of the metamodels of FORMULA and DDLog language. Both

languages belong to the category of logic programming language.

The FORMULA language is modeled in DDLog and the core language is simple with main concepts

such as Term, TypeSpec, Constraint, Expr, Rule, Model and Domain. Some of the building

blocks such as Term may contain other terms of the type Term but self-reference is not allowed to avoid

endless recursion. The other main feature of FORMULA is that it allows nested set comprehension in which

the constraints in the set comprehension may have another inner set comprehension. Below is part of the

meta-models of FORMULA language that is used to specify other DSLs.

/ / There a r e some r e s t r i c t i o n s on t h e f i e l d name f o r each v a r i a n t t h a t t h e y

/ / have t o be un iq ue

70

t y p e d e f Term =

AtomStr { i 0 : s t r i n g } | AtomInt { i 1 : s i gned <64> } |

AtomPosInt { i 2 : s i gned <64> } | AtomNegInt { i 3 : s i gned <64> } |

AtomFloat { i 4 : f l o a t } | AtomBool { i 5 : boo l } |

V a r i a b l e { r o o t : s t r i n g , f r a g m e n t s : Vec<s t r i n g > } |

/ / C o n s t a n t can be viewed as a Composi te te rm w i t h o u t a rgumen t s

Composi te { name : s t r i n g , a rgumen t s : L i s t<Ref<Term>> }

t y p e d e f F i e l d = F i e l d { f i e l d n a m e : s t r i n g , t y p e s p e c : TypeSpec }

t y p e d e f TypeSpec = I n t e g e r | Boolean | FloatNum | S t r i n g |

Composi teType { name : s t r i n g , a rgumen t s : Vec<F i e l d> } |

UnionType { name : s t r i n g , s u b t y p e s : Vec<TypeSpec> } |

EnumType {name : s t r i n g , i t e m s : Vec<Term>} |

/ / Cons t an tType i s a Composi teType w i t h o u t a rgumen t s

Cons t an tType { c o n s t a n t : s t r i n g }

/ / The head t e r m s and c o n d i t i o n s a r e t h e same as head and body i n a r u l e so t h e s e t

/ / comprehens ion can be viewed as a r u l e and s e t comprehens ion i s a p p l i e d t o t h e s e t

/ / o f d e r i v e d t e r m s

t y p e d e f Se tcompre = Setcompre { r u l e : Ref<Rule > , sop : SetOp , d e f a u l t : Term }

t y p e d e f Expr = BaseExpr { t e rm : Term } |

SetcompreExpr { sc : Ref<Setcompre> } |

UnaryExpr { exp r : Ref<Expr > , uop : UnaryOp } |

A r i t h E x p r { l e f t : Ref<Expr > , r i g h t : Ref<Expr > , aop : Ar i thOp }

/ / C o n s t r a i n t s a r e e i t h e r p r e d i c a t e s o r e x p r e s s i o n s t h a t may c o n t a i n

/ / s e t comprehens ion ‘ ExprCons ‘ c o u l d be

/ / 1) a b i n a r y c o n s t r a i n t ove r two e x p r e s s i o n s .

/ / 2) An a s s i g n m e n t t h a t h o l d s t h e r e s u l t o f t h e e v a l u a t i o n o f r i g h t −hand s i d e e x p r e s s i o n .

/ / 3) Type c o n s t r a i n t i n t h e form of ‘ v a r : Type ‘

t y p e d e f C o n s t r a i n t = PredCons { n e g a t e d : bool , t e rm : Term , a l i a s : Opt ion<s t r i n g > } |

BinaryCons { l e f t : Expr , r i g h t : Expr , bop : BinOp } |

AssignCons { v a r i a b l e : Term , exp r : Expr } |

TypeCons { v a r i a b l e : Term , v a r t y p e : TypeSpec }

71

t y p e d e f AnyTypeConversionEnum = ToAny | FromAny | NoConvers ion

/ / A r u l e i s composed of a l i n k e d l i s t o f head t e r m s and a l i n k e d l i s t o f c o n s t r a i n t s

/ / Rule has a t l e a s t one c o n s t r a i n t and a t l e a s t one head te rm .

/ / The te rm i n t h e head c o u l d be a ground te rm and on ly c o u n t once i n t h e s e t

t y p e d e f Rule = Rule { i d : s t r i n g , head : NonNul lL i s t<Term> ,

body : NonNul lL i s t<C o n s t r a i n t > }

t y p e d e f Domain = Domin { t y p e d e f s : L i s t<TypeSpec > , r u l e s : L i s t<Rule> }

t y p e d e f Model = Model { t e r m s : L i s t<Term>}

Listing 5.8: Metamodels of FORMULA Language Domain

DDLog language is modeled in DDLog itself and we put a prefix in front of the name of some language

concepts such as DDTerm in order to distinguish from similar language concepts in FORMULA. DDLog as

an incremental logic programming language is very similar to FORMULA with many similar concepts such

as term, constructor, and rule but fundamentally different in its semantics. DDLog has its unique concepts

of Relation that represent a collection of records of certain types while FORMULA does not have the

same restriction and any set of limited or unlimited terms can form a unique type in FORMULA. The DDLog

language has more flexibility for customization in that it supports adding external functions and embedding

imperative code programs to DDLog programs but the execution of such programs could be nondeterministic

and harder to analyze depending on the external functions.

t y p e d e f DDField = DDField { f i e l d n a m e : s t r i n g , t y p e s p e c : Ref<DDTypeSpec> }

t y p e d e f DDTypeCons = DDTypeCons { cons name : s t r i n g , f i e l d s : L i s t<DDField> }

t y p e d e f DDTypeSpec = B i g I n t | Bool | S t r | B i t v e c t o r | I n t | Double | F l o a t | Any |

/ / (T1 , T2 , . . . , Tn) and t h e t u p l e c a n n o t be empty

DDTupleTypeSpec { name : s t r i n g , t u p l e : NonNul lL i s t<Ref<DDTypeSpec>> } |

/ / T = T1 { . . } | T2 { . . } | . . . | Tn { . . } as t a g g e d un ion and c a n n o t be empty

/ / Tagged un ion i n DDLog i s a sum t y p e of more t h a n one c o n s t r u c t o r s

/ / FORMULA c o m p o s i t e t y p e can be r e p r e s e n t e d as a sum t y p e of e x a c t l y

/ / one c o n s t r u c t o r a s t y p e d e f T = T { . . }

DDUnionTypeSpec { name : s t r i n g , t y p e s : NonNul lL i s t<DDTypeCons> }

t y p e d e f DDTerm = DDBigInt { i 0 : b i g i n t } | DDBool { i 1 : boo l } | DDStr { i 2 : s t r i n g } |

DDBi tvec to r { i 3 : b i t <64> } | DDInt { i 4 : s i gned <64> } |

DDDouble { i 5 : do ub l e } | DDFloat { i 6 : f l o a t } |

/ / A v a r i a b l e te rm i n dd log r e p r e s e n t e d by a s t r i n g

72

DDVar { name : s t r i n g } |

/ / v a r xxx = . . , add keyword i n t h e f r o n t t o d e n o t e i t i s on ly f o r d e c l a r a t i o n

DDVarDecl { name : s t r i n g } |

/ / I t has t y p e name and a l i s t o f DDLog e x p r e s s i o n s

DDCons { cons name : s t r i n g , a rgumen t s : L i s t<DDExpr> }

/ / DDRela t ion r e p r e s e n t s a c o l l e c t i o n o f r e c o r d s o f c e r t a i n t y p e

t y p e d e f DDRelat ion = DDRelat ion { i s i n p u t : bool , name : s t r i n g , t y p e s p e c : DDTypeSpec }

/ / There a r e more e x p r e s s i o n i n DDLog r e f e r e n e and we on ly p i c k a few we need

t y p e d e f DDExpr = DDTermExpr { t e rm : Ref<DDTerm> } |

/ / A t u p l e o f DDExpr as (e1 , e2 , . . . , en)

DDTupleExpr { e x p r s : Vec<Ref<DDExpr>> } |

/ / F u n c t i o n c a l l a s ‘ func (a rgumen t s) ‘

DDFunc t ionCal lExpr { func name : s t r i n g , a rgumen t s : Vec<Ref<DDExpr>> } |

/ / F u n c t i o n c a l l on an o b j e c t a s ‘ a . c a l l (a rgumen t s) ‘

DDDotFunc t ionCal lExpr { o b j : Ref<DDExpr> , func name : s t r i n g ,

a rgumen t s : Vec<Ref<DDExpr>> } |

/ / Access s t r u c t f i e l d by i d e n t i f i e r l i k e ‘ l i s t . node ‘

DDTermFieldExpr { exp r : Ref<DDExpr> , f i e l d : s t r i n g } |

/ / Unary o p e r a t o r ove r e x p r e s s i o n

DDUnaryExpr { exp r : Ref<DDExpr> , uop : UnaryOp } |

/ / A r i t h m e t i c o p e r a t o r ove r two e x p r e s s i o n s

DDArithExpr { l e f t : Ref<DDExpr> , r i g h t : Ref<DDExpr> , aop : Ar i thOp } |

/ / B i na ry o p e r a t o r ove r two e x p r e s s i o n s

DDBinExpr { l e f t : Ref<DDExpr> , r i g h t : Ref<DDExpr> , bop : BinOp }

/ / The c o m p l e t e form of DDLog p r e d i c a t e i s ‘ u i n RelName [Term] ‘ t o

/ / r e p r e s e n t p r e d i c a t e c o n s t r a i n t

t y p e d e f DDAtom = DDAtom { var name : Opt ion<s t r i n g > , r e l : Ref<DDRelat ion > ,

exp r : DDExpr }

t y p e d e f DDRhs = DDRhsAtom { n e g a t e d : bool , atom : DDAtom } |

DDRhsCondit ion { exp r : DDExpr } |

DDRhsAssignment { t o : DDExpr , from : DDExpr } |

/ / i f t h e d e f a u l t s e t comprehens ion o p e r a t o r s a r e n o t f l e x i b l e enough

73

/ / ‘DDGroup ‘ c o u l d be viewed as a s p e c i a l c a s e o f ‘ DDRhsAssignment ‘

DDGroup { var name : s t r i n g , group : DDExpr , by : DDExpr }

t y p e d e f DDRule = DDRule { head : Vec<DDAtom> , body : Vec<DDRhs> }

Listing 5.9: Metamodels of Differential-Datalog Language Domain

5.5.2 Type Inference of Non-ground Term

The non-ground term is a term that has variables in it and it represents a set of ground terms. The inferred

type information in each variable can be used to gain a more comprehensive understanding of the meaning of

a FORMULA program for semantic error detection and assist the transformation from FORMULA to DDLog

in later steps to derive a DDLog program.

5.5.2.1 Type Inference of Sub-terms

Every non-ground term has a certain structure that is defined by its type and this type definition contains the

type information of the arguments of a type. The type of a variable in a non-ground term can be traced down

by locating the position of the variable in that term and recursively finding the types of its arguments in a

type until reaching the same position. For example, be1 is BigEdge(Edge(n1,Node(0)),n3). is the definition

of a non-ground term, and the type of variables n1 and n3 are not specified but given the type definition of

BigEdge ::= new(src : NestedUnion,dst : NestedUnion). The type of variables in the term can be inferred

directly from their positions that the type of n3 is NestedUnion and the type of n1 is Node.

Edge : : = new (s r c : Node , d s t : Node) .

e1 i s Edge (Edge (n1 , Node (0))) .

BigEdge : : = new (s r c : NestedUnion , d s t : Nes tedUnion) .

be1 i s BigEdge (Edge (n1 , Node (0)) , n3) .

be2 i s BigEdge (Edge (n , Node (0)) , n) .

Listing 5.10: Subterm Type Inference Example

In some special cases when a non-ground term has more than one variable with the same name. For

example, be2 is BigEdge(Edge(n,Node(0)),n). is a variant of non-ground term be1 with two n in two places

and each one has a different type that the first n is of type Node and the second n is of type NestedUnion.

The type of variable n here is the overlap of two sets of terms represented by both type Node and type

NestedUnion. Since Node is a subset of NestedUnion, the type of n is still Node. In general, the type

of a variable n with multiple occurrences is T = T1 ∩T2 ∩ ...∩Tn−1 ∩Tn, and if T = ∅ it means that there is

type conflict in the type definition or in other words that the non-ground term is invalid.

74

o u t p u t r e l a t i o n SubtermTypeSpec [(Term , Term , TypeSpec)]

/ / A te rm i s a sub − te rm of i t s e l f and t h e SubtermTypeSpec r e l a t i o n i s a t u p l e

/ / o f (argument , term , t y p e o f t h e argument)

SubtermTypeSpec [(c , c , t)] : − c i n Term [Composi te{ cons name , a r g l i s t }] ,

t i n TypeSpec [Composi teType{ cons name , }] .

/ / R e c u r s i v e l y i n f e r t h e t y p e o f t h e d i r e c t c h i l d r e n o f a te rm u n t i l

/ / a sub − te rm of b a s i c t y p e such as i n t e g e r i s r e a c h e d .

SubtermTypeSpec [(arg , a n c e s t o r , a r g t y p e s p e c)] : −

SubtermTypeSpec [(term , a n c e s t o r , Composi teType{ , a r g t y p e s })] ,

ArgOfTerm [(index , arg , t e rm)] ,

v a r a r g t y p e s p e c = a r g t y p e s . n t h (i n d e x) . o p t i o n u n w r a p o r d e f a u l t () . t y p e s p e c .

Listing 5.11: Type Inference Rules in DDLog

5.5.2.2 Term Unifiability Checking

One of the applications of type inference is to compare the types of two terms for term unifiability checking.

Term unifiability checking is crucial for the reasoning of semantically correct FORMULA program and also

the execution of the FORMULA program because the order of the execution of FORMULA rules has to be

determined based on the dependency relationships between rules.

The rules have to be stratified into strata in a way that the execution of rules from a higher stratum cannot

produce new terms that can be the input of rules of a lower stratum.

R1 : Edge (Node (1) , n) : − Node (n) .

R2 : Edge (n , n) : − Edge (Node (2) , n)

Listing 5.12: Unifiability Checking in FORMULA Rules

Rule R2 is a recursive rule that keeps generating new derived terms until a fixed point is reached and no

more new terms can be added to the term set. In some cases, rule R2 may not terminate depending on the

input and the rule itself. Given the example above with only two FORMULA rules, both rules may derive

new terms of type Edge, and rule R2 takes the term of type Edge as input too. In other logic programming

languages like Datalog or Prolog, both rule R1 and rule R2 have to be put in the same stratum because the

input of rule R2 depends on the output of rule R1 and rule R2 itself.

However, every non-ground term in the FORMULA rule represents a unique set of terms that can be

determined by type inference and affect the stratification of FORMULA rules. In FORMULA the output of

one rule may not be the input of another rule even though terms in both rules have the same data constructor

75

such as Edge in our example. Edge(Node(1),n) and Edge(Node(2),n) represent two different sets of terms

and they are disjoint so any term derived from Edge(Node(1),n) in rule R1 will not contribute the input of

rule R2. Therefore, rule R1 and rule R2 are independent of each other so they can be put in two separate strata

and executed independently.

/ / V a r i a b l e s a r e n o t ground t e r m s .

NonGroundTerm [te rm] : − te rm i n Term [V a r i a b l e { }] .

/ / A c o m p o s i t e te rm i s a non − ground te rm i f any of i t s s u b t e r m s a r e non − ground t e r m s .

NonGroundTerm [te rm] : − te rm i n Term [Composi te {}] ,

ArgOfTerm [(index , arg , t e rm)] , NonGroundTerm [a r g] .

/ / Use t h e s e t d i f f e r e n c e t o f i n d ground t e r m s .

GroundTerm [te rm] : − Term [te rm] , n o t NonGroundTerm [te rm] .

/ / Subse t , o v e r l a p , and d i s j o i n t ?

/ / 1 . Two d i f f e r e n t ground t e r m s a r e o b v i o u s l y i n t h e D i s j o i n t S e t R e l r e l a t i o n .

D i s j o i n t S e t R e l [(term1 , te rm2)] : − GroundTerm [term1] , GroundTerm [te rm2] , te rm1 != term2 .

/ / 2 . Term A and Term B a r e i n t h e D i s j o i n t S e t R e l r e l a t i o n i f t h e y b e lo ng t o t h e same

/ / c o m p o s i t e t y p e b u t a t l e a s t one o f

/ / T h e i r a rgumen t s a t t h e same p o s i t i o n a r e i n t h e D i s j o i n t S e t R e l r e l a t i o n t o o .

D i s j o i n t S e t R e l [(term1 , te rm2)] : − te rm1 i n NonGroundTerm [Composi te{name , a r g s 1 }] ,

t e rm2 i n NonGroundTerm [Composi te{name , a r g s 2 }] ,

t e rm1 != term2 ,

ArgOfTerm [(index , arg1 , te rm1)] , ArgOfTerm [(index , arg2 , te rm2)] ,

D i s j o i n t S e t R e l [(arg1 , a rg2)] .

/ / Only a p p l y t o two c o m p o s i t e t e r m s of t h e same t y p e .

N o n D i s j o i n t S e t R e l [(term1 , te rm2)] : − te rm1 i n NonGroundTerm [Composi te{name , a r g s 1 }] ,

t e rm2 i n NonGroundTerm [Composi te{name , a r g s 2 }] ,

n o t D i s j o i n t S e t R e l [(term1 , te rm2)] .

Listing 5.13: Rules for Type Unifiability Checking

The first two rules above recursively check if variables exist in a term to derive all non-ground terms in

relation NonGroundTerm. The third rule uses negation in the rule to derive all ground terms in the relation

76

GroundTerm by filtering out all terms that are not non-ground terms. The next step is to check if two non-

ground terms can be unified or not since each non-ground term represents a unique type or a set of ground

terms. Here we use the same tactic to find unifiable pairs of terms by finding the non-unifiable pairs of terms

first. The relation DisjointSetRel holds all pairs of terms that cannot be unified because two ground

terms are obviously not the same term or two non-ground terms have different ground terms inside themselves

at the same position. Once DisjointSetRel is derived, the relation NonDisjointSetRel can be

easily derived by negation in the exact same way NonGroundTerm is derived. Both DisjointSetRel

and NonDisjointSetRel is important to the reasoning over FORMULA programs because FORMULA

has its own unique type semantics and the order of rule execution or rule stratification changes based on the

type semantics of terms.

5.5.3 Type Inference In the Context of FORMULA Rules

The FORMULA rule above does not have to distinguish the type of variable b in the predicate GigaEdge(b,c),

which is a union type, and the variable b in the predicate GigaEdge(b,c), which is a Node type according to

the type definition of GigaEdge. FORMULA internally joins two sets of terms without checking the specific

type of variables that are going to be joined. Every variable in FORMULA simply represents a set of terms

and FORMULA does not require that the variables in the join operation have to be the same type as DDLog

does otherwise the join operation will return an unexpected empty set of terms.

BigEdge : : = new (s r c : NestedUnion , d s t : Nes tedUnion) .

GigaEdge : : = new (s r c : NestedUnion , d s t : Node) .

Nes ted Union : : = T r i a n g l e + Node + Edge .

GigaEdge (b , a) : − GigaEdge (a , b) , GigaEdge (b , c) , GigaEdge (c , a) .

Listing 5.14: FORMULA Rule

On the other hand, DDLog also has a similar concept of FORMULA union type named Any type in

DDLog, which is a wrapper that converts all terms of different constructors into the same Any type. This is

the solution to resolve the semantic mismatch when it comes to joining operation over variables of union type.

The final DDLog rule we should have after the translation is below and it has used to any() and f rom any()

to specify if the terms in one variable have to be converted into terms of Any type or the other way around.

GigaEdge (to any (b) , from any (a) . unwrap ()) : − GigaEdge (a , b) ,

GigaEdge (to any (b) , c) , GigaEdge (to any (c) , from any (a) . unwrap ()) .

Listing 5.15: DDLog Rule Translated from FORMULA Rule

77

The first predicate GigaEdge(a,b) is matched first in the rule execution with variable a matched to a

collection of terms of type Any and with variable b matched to a collection of terms of type Node. The

second predicate GigaEdge(b,c) has to use the to any() function to convert every term of Node type from

variable b into a term of Any type because in DDLog only two terms of the same type can be compared

otherwise they are treated as two different terms even though one term has the exact same meaning as the

other one.

The type of the variable is determined by the position of its first occurrence because DDLog rule execution

strictly starts from left to right to build a dataflow graph. For example, the variable a is set to Any type in the

first occurrence in GigaEdge(a,b) so the type of variable a is firstly fixed to Any type but in later predicate,

it has to be converted back into Node type in predicate GigaEdge(c,a) with additional function f rom any()

wrapping around variable a. The same conversion applies to the variables in the predicates in the head of the

rule in order to derive the terms with the correct type.

In order to translate the FORMULA rule into an equivalent DDLog rule, we create a new relation named

ConsVarConversion to track the position of every variable in a predicate of a rule and an enumeration type

to decide if keyword to any() or f rom any() has to be added for the type conversion in DDLog’s dataflow

construction.

Since DDLog always starts from the left side, every variable in the leftmost predicate does not need to

be converted and type Conversion is an enumeration type that decides how the term should be converted

such as FromAny, ToAny or NoConversion. The following rule finds out the first predicate represented

as ConstraintInRule[(0,PredCons f alse, pos term, ,rule)] in all existing rules and derives some new facts

saying no conversion is needed for the first occurrence of a variable in the first predicate.

ConsVarConvers ion [(0 , i n d i c e s , v a r i a b l e , pos t e rm , r u l e , NoConvers ion)] : −

DescendentVarOfTerm [(i n d i c e s , v a r i a b l e , p o s t e r m)] ,

C o n s t r a i n t I n R u l e [(0 , PredCons { f a l s e , pos t e rm , } , r u l e)] .

Listing 5.16: No Conversion for the Leftmost Predicate Expressed in DDLog Rule

Since the first occurrence of a variable in the rule (anchor variable) may not occur in the first predicate

in a rule, we have to find which predicate in the rule has the first occurrence of a certain variable, and

that variable never occur in any of the previous predicates on the left side in a FORMULA rule head :

- pred1, pred2, predm(v)..., predn(v) in which the first variable v occurs in predm(v). The following DDLog

rule accumulates all variables that occur before the current predicate in predicates pred1, pred2, ..., predm−1

and negation is applied to find all matches in which no variable v in the accumulated variable set. The newly

derived facts in relation ConsVarConversion have the last argument set to NoConversion because the

78

first variable that occurs in a rule is an anchor variable that determines the type of that variable in the rule and

other variables are converted based on the type of the anchor variable.

ConsVarConvers ion [(index2 , i n d i c e s 2 , v a r i a b l e 2 , pos t e rm2 , r u l e 2 ,

NoConvers ion)] : −

/ / L oc a t e a v a r i a b l e i n a FORMULA r u l e

C o n s t r a i n t I n R u l e [(index , PredCons { f a l s e , pos t e rm , } , r u l e)] ,

DescendentVarOfTerm [(i n d i c e s , v a r i a b l e , p o s t e r m)] ,

/ / F ind a l l p r e d i c a t e s and v a r i a b l e s b e f o r e a c e r t a i n p r e d i c a t e

C o n s t r a i n t I n R u l e [(p r e i n d e x , PredCons { f a l s e , p r e p o s t e r m , } , r u l e)] ,

p r e i n d e x < index ,

DescendentVarOfTerm [(p r e i n d i c e s , p r e v a r i a b l e , p r e p o s t e r m)] ,

/ / F ind a l l v a r i a b l e s i n t h e p r e v i o u s p r e d i c a t e s b e f o r e t h e c u r r e n t p r e d i c a t e

v a r p r e v a r g r o u p = (p r e v a r i a b l e) . g roup by ((index , i n d i c e s , pos t e rm ,

v a r i a b l e , r u l e)) ,

(v a r index2 , v a r i n d i c e s 2 , v a r pos t e rm2 , v a r v a r i a b l e 2 , v a r r u l e 2) =

p r e v a r g r o u p . g r o u p k e y () ,

v a r v a r i a b l e s e t = p r e v a r g r o u p . t o h a s h s e t () ,

n o t h a s h s e t c o n t a i n s (v a r i a b l e s e t , v a r i a b l e 2) .

Listing 5.17: DDLog Rule for Finding Anchor Variables

The places to add to any() conversion are where a variable v of a union type appears in predn(v) but

appears not to be a union type in predm(v). predm(v) must be prior to predn(v) and this is one of the situations

in that we need to add to any() keyword to denote the conversion when translating from FORMULA rules

to DDLog rules. The following DDLog rule has two parts the first part enumerates all variables of union type

and the second part enumerates all possible predicates that contain the same variable but do not have to be

converted or in other words the anchor variable.

ConsVarConvers ion [(index , i n d i c e s , v a r i a b l e , pos t e rm , r u l e , ToAny)] : −

/ / F ind t h e v a r i a b l e t h a t i s o f un ion t y p e .

C o n s t r a i n t I n R u l e [(index , PredCons { f a l s e , pos t e rm , } , r u l e)] ,

DescendentVarOfTerm [(i n d i c e s , v a r i a b l e , p o s t e r m)] ,

DescendentTermTypeSpec [(i n d i c e s , v a r i a b l e , pos t e rm , UnionType {})] ,

/ / F ind a n o t h e r p r e d i c a t e te rm p r i o r t o t h e c u r r e n t p r e d i c a t e

79

/ / t h a t has t h e same v a r i a b l e i n i t b u t n o t un ion t y p e .

DescendentTermTypeSpec [(p r e i n d i c e s , v a r i a b l e , p r e p o s t e r m , n o n u n i o n t y p e)] ,

n o t i s u n i o n t y p e (n o n u n i o n t y p e) ,

ConsVarConvers ion [(p r e i n d e x , p r e i n d i c e s , v a r i a b l e , p r e p o s t e r m , r u l e ,

NoConvers ion)] ,

p r e i n d e x < i n d e x .

Listing 5.18: DDLog Rule for Locating ToAny Conversion Places

The first occurrence of variable v is of union type in predm(v) but the next one is not a union type in

predn(v) and we need to convert from union type to regular type with the keyword f rom any().

ConsVarConvers ion [(index , i n d i c e s , v a r i a b l e , pos t e rm , r u l e , FromAny)] : −

/ / The f i r s t o c c u r r e n c e o f v a r i a b l e t h a t i s born t o be un ion t y p e .

ConsVarConvers ion [(p r e i n d e x , p r e i n d i c e s , v a r i a b l e , p r e p o s t e r m , r u l e ,

NoConvers ion)] ,

DescendentTermTypeSpec [(p r e i n d i c e s , v a r i a b l e , p r e p o s t e r m , UnionType {})] ,

/ / I n t h e c u r r e n t p r e d i c a t e , t h e v a r i a b l e i s n o t un ion t y p e .

C o n s t r a i n t I n R u l e [(index , PredCons { f a l s e , pos t e rm , } , r u l e)] ,

p r e i n d e x < index ,

DescendentVarOfTerm [(i n d i c e s , v a r i a b l e , p o s t e r m)] ,

DescendentTermTypeSpec [(i n d i c e s , v a r i a b l e , pos t e rm , n o n u n i o n t y p e)] ,

n o t i s u n i o n t y p e (n o n u n i o n t y p e) .

Listing 5.19: DDLog Rule for Locating ToAny Conversion Places

5.5.4 Nested Set Comprehension Validation

This subsection describes additional validation rules, implemented as static checks in our translator, that

ensure the FORMULA programs being translated can be executed by the DDLog engine. The FORMULA

compiler contains similar semantic checks that catch these inconsistencies.

Additionally, we are working towards a complete model of the FORMULA language domain with well-

defined metamodels and models in the FORMULA language itself to ensure the semantic correctness of

FORMULA programs with proofs. The DDLog language metamodels will be defined, as well, to create a

formally specified transformation between FORMULA and DDLog.

An example of a nested set comprehension is Listing 5.20 where one of the constraints inside a set

comprehension contains another set comprehension to check the number of existing nodes.

T o t a l D e g r e e (amt) : − amt = c o u n t ({ s r c | e i s Edge (s r c , d s t) ,

80

node amt = c o u n t ({ n | n i s Node (x) }) ,

node amt > 1

}) .

Listing 5.20: Example of Nested Set Comprehension

The basic definition of set comprehension and its semantics are described in 5.3 but the semantics of set

comprehension is slightly altered when variables outside the set comprehension exist in the constraints of

set comprehension. The first rule in Listing 5.21 depicts an example, where each possible concrete value in

variable src creates a separate set comprehension with the variable src substituted in the constraints of the set

comprehension with the concrete value as in the second rule in Listing 5.21.

(1) OutdegreeByNode (s r c , amt) : − s r c i s Node () ,

amt = c o u n t ({ d s t | e i s Edge (s r c , d s t) }) .

(2) OutdegreeByNode (Node (1) , amt) : − s r c i s Node (1) ,

amt = c o u n t ({ d s t | e i s Edge (Node (1) , d s t) }) .

Listing 5.21: Example of Nested Set Comprehension

Each constraint Cn could have a nested set comprehension expression inside itself to express more

complex constraints. The example in Listing 5.20 has a set comprehension inside another set comprehen-

sion, which means the outer set comprehension to compute the total degrees of the graph has nodes in the

set {src | e is Edge(src,dst)} only if the number of nodes computed in the inner set comprehension as

node amt = count({n | n is Node(x)}) is larger than one. Semantic problems arise if one more set com-

prehension containing variables from the outer rule such as the variable src is added to the constraints of

the inner set comprehension. A valid FORMULA program only allows two adjacent layers of nested set

comprehensions to share variables.

The detection of such conflicting variables in nested set comprehensions in a FORMULA program is

succinctly expressed in the following rules in our DDLog translator. These rules check the validity of nested

aggregations with more than two layers and pinpoint the exact cause of the conflict with error messages

expressed as newly derived facts; the error message displayed appears as, Error(r1,r2,"Variable

conflict in nested set comprehension").

/ / De r iv e c o n s t r a i n t s from a r u l e

C o n s t r a i n t [c o n s t r a i n t] : − Rule [r u l e] ,

c o n s t r a i n t = FlatMap (r u l e . c o n s t r a i n t s) .

81

/ / De r iv e t h e i n n e r r u l e from a c o n s t r a i n t t h a t r e d u c e s

/ / a s e t i n t o a s i n g l e v a l u e .

/ / The s e t s = {head | body} i s a r u l e i n d i s g u i s e

Rule [i n n e r r u l e] : − C o n s t r a i n t [Se tcompreExpr (i n n e r r u l e) , r u l e] .

Ru leCon ta inmen t [r1 , r2] : − Rule [r1] , Rule [r2] ,

C o n s t r a i n t [Se tcompreExpr (r1) , r2] .

Ru leCon ta inmen t [r1 , r3] : − Ru leCon ta inmen t [r1 , r2] ,

Ru leCon ta inmen t [r2 , r3] .

E r r o r (r1 , r2 , ” C o n f l i c t i n n e s t e d s e t comprehens ion ”) : −

RuleCon ta inmen t [r1 , r2] ,

n o t C o n s t r a i n t [Se tcompreExpr (r1) , r2] ,

Var InRule [v a r i a b l e , r1] ,

Var InRule [v a r i a b l e , r2] .

Listing 5.22: Nested Set Comprehension Validation Rules

5.5.5 Rule Stratification Validation

Rules in the FORMULA program are stratified into two dependency graphs to decide the order of rules

for execution. Recursion on positive predicates is allowed with valid semantics while recursion involving

negation does not have valid semantics such as HasCycle(u) : - u is Node(),no HasCycle(u) because the

absence of a predicate cannot be used to derive new facts of the same type recursively.

Rule R1 depends on rule R2 positively if a term in the body of rule R1 is unifiable with a term in the

head of rule R2 because the new facts derived from rule R2 trigger the execution of rule R1. A rule could

positively depend on itself with recursion that the newly derived facts will be taken as the input of the same

rule. FORMULA has its special term semantics to decide if two non-ground terms in the rules are dependent

on each other or not by checking if two non-ground terms are unifiable.

(R1) Edge (Node (1) , n) : − Edge (n , n + 1) .

(R2) Edge (m, m) : − Edge (Node (2) , m) .

Listing 5.23: FORMULA Rules on Different Stratum

The two rules in 5.23 are usually dependent on each other in other logic programming languages because the

input term and output term are of the same type Edge. However, in FORMULA each non-ground term has

82

its own unique type of semantic that can be represented as a unique set of terms. In the example above, the

output of rule R1 is Edge(Node(1),n) and the input of rule R2 is Edge(Node(2),m), therefore the output of

rule R1 does not contribute to the input of rule R2 because Edge(Node(1),n) and Edge(Node(2),m) are not

unifiable. The same goes for the other way around that Edge(n,n+ 1) and Edge(m, m) are not unifiable so

the output of rule R2 does not contribute to the input of rule R1. The conclusion is that rules R1 and rules R2

are independent of each other and puts into different strata after rule stratification.

PosDependency [(r u l e 1 , r u l e 2)] : −

/ / te rm1 from t h e body of one r u l e depends on term2 from

/ / t h e head of a n o t h e r r u l e .

C o n s t r a i n t I n R u l e [(index , PredCons { f a l s e , term1 , } , r u l e 1)] ,

HeadInRule [(term2 , r u l e 2)] ,

r u l e 1 != r u l e 2 ,

N o n D i s j o i n t S e t R e l [(term1 , te rm2)] .

/ / A s i n g l e r u l e wi th r e c u r s i o n i n i t .

PosDependency [(r u l e , r u l e)] : −

C o n s t r a i n t I n R u l e [(index , PredCons { f a l s e , term1 , } , r u l e)] ,

HeadInRule [(term2 , r u l e)] ,

N o n D i s j o i n t S e t R e l [(term1 , te rm2)] .

PosDependency [(r1 , r3)] : − PosDependency [(r1 , r2)] , PosDependency [(r2 , r3)] .

Listing 5.24: Stratification Validation Rules for Positive Dependency

The relation PosDependency tracks the dependency relationship between rules and forms a depen-

dency graph for rule stratification. The first rule in 5.24 enumerates all pairs of two rules and checks if

non-ground term t1 as a predicate in the body of the rule R1 is unifiable with non-ground term t2 as a predi-

cate in the head of rule R2. If a match is found, a new fact is added into relation PosDependency, which

means rule R1 depends on rule R2. The second rule in 5.24 is similar to the first rule but only applies to

one single rule that has recursion or self-dependency in itself because recursion is allowed in the positive

dependency graph for rule stratification. The last rule in 5.24 computes the transitive closure in a positive

dependency graph for rules that are not directly dependent on each other.

A negative dependency occurs when a non-ground term t1 in a negated predicate in rule R1 is unifiable

with another non-ground term t2 in the head of rule R2. Recursion is not allowed because the pattern of a

negated predicate in the body of rule R1 requires that all derived facts of a certain type are saturated before

83

the evaluation of the absence of such pattern in another rule. Rules in later stratum are forbidden to derive

new facts that fit into the same pattern of a negated predicate in the rule from a previous stratum.

NegDependency [(r u l e 1 , r u l e 2)] : −

/ / te rm1 from t h e body of one r u l e depends on term2 from t h e head of a n o t h e r r u l e .

C o n s t r a i n t I n R u l e [(index , PredCons { t r u e , term1 , } , r u l e 1)] ,

/ / t e rm2 s h o u l d n o t o c c u r i n t h e body of r u l e 1 o r r u l e s t h a t

/ / d i r e c t l y o r i n d i r e c t l y depend on t h e d e r i v e d f a c t s o f r u l e 1 .

HeadInRule [(term2 , r u l e 2)] ,

r u l e 1 != r u l e 2 ,

N o n D i s j o i n t S e t R e l [(term1 , te rm2)] .

NegDependency [(r u l e , r u l e)] : −

/ / te rm1 from t h e body of one r u l e depends on term2 from t h e head of a n o t h e r r u l e .

C o n s t r a i n t I n R u l e [(index , PredCons { t r u e , term1 , } , r u l e)] ,

/ / t e rm2 s h o u l d n o t o c c u r i n t h e body of r u l e 1 o r r u l e s t h a t

/ / d i r e c t l y o r i n d i r e c t l y depend on t h e d e r i v e d f a c t s o f r u l e 1 .

HeadInRule [(term2 , r u l e)] ,

N o n D i s j o i n t S e t R e l [(term1 , te rm2)] .

/ / Rule ‘ r2 ‘ has n e g a t i o n t h a t depends on some d e r i v e d f a c t s i n r u l e ‘ r3 ‘ .

NegDependency [(r1 , r3)] : − PosDependency [(r1 , r2)] , NegDependency [(r2 , r3)] .

NegDependency [(r1 , r3)] : − NegDependency [(r1 , r2)] , NegDependency [(r2 , r3)] .

/ / No c y c l e i s a l l o w e d i n t h e n e g a t i v e dependency graph .

ErrorNegDep [r u l e] : − NegDependency [(r u l e 1 , r u l e 2)] , r u l e 1 == r u l e 2 , v a r r u l e = r u l e 1 .

Listing 5.25: Stratification Validation Rules with Negative Dependency

Two dependency graphs (both positive and negative) are succinctly expressed in the rules above to detect

semantic conflicts in the recursion with negated predicates involved. Dependency cycles are allowed in the

positive dependency graph because a recursive rule or mutually recursive rules may exist and do not violate

the valid semantics of a FORMULA program. However, the negative dependency graph must be cycle-free

otherwise a set of FORMULA rules cannot be stratified due to the semantic conflicts. The valid positive and

negative dependency graph is followed by a topological sort that splits rules into multiple stratums and the

execution of rules in each stratum is independent of other stratums but still follows the topological order.

84

5.6 formula2ddlog Model Transformation

Roughly 50 transformation rules are written in formula2ddlog (Zhang et al., 2021) transformation to trans-

form models of FORMULA language domain into models of DDLog language domain, which are later con-

verted into an equivalent textual DDLog program that can take constantly changing structured data as input

and output the incremental updates at every point in the dataflow graph. We describe some selected key fea-

tures of the FORMULA language and how they are formally translated into DDLog via model transformation

and validation.

5.6.1 Positive Predicate Translation

Positive predicates in FORMULA are translated directly into their counterparts in DDLog except for the

keywords f rom any() and to any() type are added to variables for conversion based on the type inference

and the position of each variable.

5.6.2 Negated Predicate Translation

The negated predicate has different meanings in a different context. The negation in FORMULA can be either

interpreted as set difference or set comprehension depending on if the variables in the negated expression

occur in other parts of the same rule. Several DDLog rules are written to infer the relationship between

negated predicates and other expressions from the outer scope in the same rule.

/ / Check i f any of t h e v a r i a b l e s i n t h e n e g a t e d te rm

/ / o c c u r s i n t h e p o s i t i v e p r e d i c a t e te rm i n t h e same r u l e

N e g P r e d A s S e t d i f f [(neg pred , r)] : − NegPredInRule [(neg pred , r)] ,

PosVar InRule [(v a r i a b l e , r)] ,

NegVarInRule [(v a r i a b l e , r)] ,

VarOfTerm [(v a r i a b l e , n e g p r e d)] .

/ / Use s e t d i f f e r e n c e t o f i n d n e g a t e d e x p r e s s i o n s t h a t have s e t comprehens ion s e m a n t i c s

NegPredAsSetcompre [(neg pred , r)] : − NegPredInRule [(neg pred , r)] ,

n o t N e g P r e d A s S e t d i f f [(neg pred , r)] .

Listing 5.26: Rules for Reasoning over Negation

5.6.2.1 Negation as Set Difference

F1(⃗t1),F2(⃗t2), ...,Fn(⃗tn),no Fneg(⃗tneg) is a rule body with one negated predicate in it and t⃗s =

vars(⃗t1),vars(⃗t2), ...,vars(⃗tn)− vars(⃗tneg) is the shared variables between positive predicates and negated

85

predicate. The negation in Formula and DDLog under this context means a set difference between two

matched sets. The set difference is a left join (return rows in the left table if no matches are found in the right

table). The first set contains the matches from the result of joins of all positive predicate constraints Fn(⃗tn)

and the second set contains the matches from negative predicate Fneg(⃗tneg).

For example, u is Node(),not Path(u,u) means finding the set difference between nodes and self-cycle

paths, which is the set of nodes that exist in relation Node[u] but not as both arguments in the set of records

of self-cycle Path(u,u).

5.6.2.2 Negation as Set Comprehension

In Formula and DDLog, when the variables of predicate F (⃗t) are not matched with any variables in the current

scope, no F (⃗t) means the absence of records of a certain pattern in the term database and can be reduced to

set comprehension as count(x | x is F(t1, t2, .., tn)) = 0 and the semantic translation of set comprehension will

be explained in the next subsection.

For example, noCycle :- no Path(u, u) with only one negated predicate in Formula can be

translated into noCycle :- Path(u, u), var count = u.group by(()).group count(),

count == 0. in DDLog. The rule means we group the matches from Path(u, u) by an empty key,

which means we put all matches into one group and check if the size of the group is zero. The set difference

between them is the set of nodes that exist in Node[u] but not as both arguments of any record in the set of

Path(u, u).

5.6.3 Set Comprehension Translation

Set comprehension is a unique feature in FORMULA as a logic programming language that does reasoning

over any subset of terms matched in the constraints and even supports nested comprehension in which the

constraints in set comprehension also contain set comprehension inside. Therefore, we have to distinguish

between the inner scope and outer scope in the context of set comprehension that the inner scope is a separate

environment that contains all the variables, constraints, and rules inside the set comprehension expression,

while the outer scope is everything else outside the inner scope and has to wait for the completion of ag-

gregation from set comprehension as part of its constraints before starting to evaluate the rest of constraints

that do not have set comprehension in it. A formal representation of set comprehension is the following:

head : - CO1,CO2,CO3, ...,val = Op(H1,H2, ...,Hn | CI1,CI2, ...,CIn), ..., f (val), in which CO is a constraint

in the outer scope while CI is a constraint in the inner scope.

If CI and CO do not share any variables at all, the evaluation of constraints CI in the set comprehen-

sion can be executed independently. In the opposite situation where the inner scope and outer scope share

86

some variables, the constraints in the outer scope have to be involved in the evaluation of set comprehension

from the inner scope, thus the semantics of set comprehension could be drastically different based on the

relationship between inner scope and outer scope.

5.6.3.1 Independent Set Comprehension

In the situation where the constraints in set comprehension do not have shared variables with any con-

straint from the outer scope, we call it independent set comprehension. head : - Cn+1,Cn+2,Cn+3, ...,val =

Op(H1,H2, ...,Hn | C1,C2, ...,Cn), ..., f (val) where Cn is a constraint in the body and term pattern Hn repre-

sents usually a non-ground term in the head that will be instantiated and put into the set of newly derived

terms. Note that Hn could also be a ground term too. v1,v2, ...,vn is a list of variables in the constraints of set

comprehension.

The semantic of independent set comprehension is very simple we first find all matches for the constraints

in the body of set comprehension, derive new terms in the head part of the set comprehension and the final

step is to put all newly derived terms into a single set of terms that do not have duplicates before aggregation.

head : - C1,C2, ...,Cn,var g = (v1,v2, ...,vn).group by(()),var r = g.my aggregation f unc() is the pseudo-

DDLog imperative code to group all matches in the form of [v1,v2, ...,vn] into one big group or set.

If we do aggregation directly on matches, my aggregation f unc() needs to handle a lot of things. First,

it has to derive new terms and remove duplicates. Second, it has to reduce a set of newly derived terms in the

head into a single value based on the semantics of the aggregation operator Op.

In order to avoid generating a heavily customized aggregation function with manual optimization, we

decompose set comprehension into multiple parts step by step to achieve the same semantics.

• In FORMULA we conceptually create a union type to include all types in the head of set comprehension

as U ::= T1 +T2 + ...+Tn +CONST1,CONST2, ...CONSTn in which Ti is a non-ground type term and

constant Ci is a ground term but we will not use FORMULA for the reasoning or rule execution.

• Create a new constructor in DDLog that wraps a tagged union type in DDLog as T ::= (inner : U) and

U ::= H1 | H2 | ... | Hn | CONST1 | CONST2 | ... | CONSTn. in FORMULA representation.

• T (U :: H1(..)),T (U :: H2(..)), ...,T (U :: Hn(..)),T (U ::CONST1()), ...,T (U ::CONSTn()) : - C1,C2, ...,Cn.

is the pseudo-FORMULA code for the additionally generated rule that derives new terms from set com-

prehension into a new collection of data. The tagged union type can also be simplified as Any type in

DDLog later.

• The next step is to generate a new rule in DDLog to derive new terms as the result of rule ex-

ecution: SCHeadUnion[T1{H1{v⃗1}}],SCHeadUnion[Tn{Hn{v⃗n}}] : - SCPred1(v⃗1),SCPredn(v⃗n)., in

87

which SCHeadUnion is the name of a new collection in DDLog to hold all terms derived from rule

execution and hn may contain the variables in predicate SCPredn(v⃗n) as one of the constraints in the

set comprehension.

• The new set comprehension is r = Op(u | T (u)) to reduce the set into a single value r and then trans-

lated into DDLog expression as var g = u.group by(()) and return a set of terms in a single group

g.

The following rule in DDLog is part of the model transformation that reads FORMULA language models

and outputs the DDLog language models that can be assembled into a real DDLog rule. The first rule creates

a new DDLog rule to collect all terms derived in the head of set comprehension with a new tagged union type

to represent the FORMULA union type, which is a union of all types of head terms. The second part of the

transformation rule is to replace the set comprehension expression in the original rule with a new expression

for the aggregated result.

DDRule [DDRule {

[s c r e s u l t h e a d a t o m] ,

[d d h e a d u n i o n a t o m r h s , g r o u p a s s i g n m e n t , r e s u l t a s s i g n m e n t] }] ,

DDRhsInRule [(d d h e a d u n i o n a t o m r h s w i t h d e f , r u l e)] : −

I n d e p e n d e n t S e t c o m p r e [(se tcompre , r u l e)] ,

C o n s t r a i n t I n R u l e [(, Ass ignCons{ d e f t e r m , Se tcompreExpr { s e t c o m p r e r e f }} , r u l e)] ,

s e t c o m p r e == d e r e f (s e t c o m p r e r e f) ,

v a r d d d e f t e r m = t o d d t e r m (d e f t e r m) ,

v a r r u l e i d = r u l e . id ,

v a r s c i d = s e t c o m p r e . r u l e . id ,

v a r u n i o n t y p e n a m e = ” SCHeadUnion ” ++ ”R” ++ r u l e i d ++ ”SC” ++ s c i d ,

v a r s c r e s u l t n a m e = ” SCResul t ” ++ ”R” ++ r u l e i d ++ ”SC” ++ s c i d ,

d d s c h e a d u n i o n r e l a t i o n i n DDRelat ion [DDRelat ion { , un ion type name , }] ,

d d s c r e s u l t r e l a t i o n i n DDRelat ion [DDRelat ion { , s c r e s u l t n a m e , }] ,

/ / Add a new Rhs SCHeadUnion [t] t o t h e new r u l e

v a r d d h e a d u n i o n a t o m r h s = d d t e r m t o d d r h s (

None ,

r e f n e w (d d s c h e a d u n i o n r e l a t i o n) ,

DDVar{” t ” } ,

f a l s e) ,

v a r d d h e a d u n i o n a t o m r h s w i t h d e f = d d t e r m t o d d r h s (

88

one ,

r e f n e w (d d s c r e s u l t r e l a t i o n) ,

DDCons{

s c r e s u l t n a m e ++ ” u s i z e ” ,

f r o m s i n g l e t o n t o l i s t (DDTermExpr{ r e f n e w (DDVar{ t o s t r i n g (d d d e f t e r m) })})

} ,

f a l s e) ,

v a r t r e f = r e f n e w (DDVar { ” t ” }) ,

v a r t e x p r r e f = r e f n e w (DDTermExpr { t r e f }) ,

v a r t v e c = [t e x p r r e f] ,

v a r g r o u p a s s i g n m e n t = DDGroup { ” g ” , DDTupleExpr{ t v e c } , DDTupleExpr{ vec empty () } } ,

v a r r e s u l t r e f = r e f n e w (DDVarDecl { ” r e s u l t ” }) ,

v a r r e s u l t e x p r = DDTermExpr { r e s u l t r e f } ,

v a r g r e f = r e f n e w (DDVar { ” g ” }) ,

v a r g e x p r r e f = r e f n e w (DDTermExpr { g r e f }) ,

v a r a g g r e g a t i o n e x p r = DDDotFunc t ionCal lExpr { g e x p r r e f , ” g r o u p c o u n t ” , vec empty () } ,

v a r r e s u l t a s s i g n m e n t = DDRhsAssignment { r e s u l t e x p r , a g g r e g a t i o n e x p r } ,

v a r s c r e s u l t h e a d t e r m = DDCons {

s c r e s u l t n a m e ++ ” u s i z e ” ,

f r o m s i n g l e t o n t o l i s t (DDTermExpr{ r e f n e w (DDVar{ ” r e s u l t ” })})

} ,

v a r s c r e s u l t h e a d a t o m = DDAtom {

None ,

r e f n e w (d d s c r e s u l t r e l a t i o n) ,

DDTermExpr { r e f n e w (s c r e s u l t h e a d t e r m) }

} .

Listing 5.27: Rules for Reasoning over Independent Set Comprehension

5.6.3.2 Dependent Set Comprehension

Group matches by variables in the outer scope before the aggregation of each group indexed by outer scope

variables. The constraints in the outer scope share variables with conditions in the set comprehension of

the inner scope. head : - CO1,CO2, ...,COn,val = Op(H1,H2, ...,Hn | C1,C2, ...,Cn), ..., f (val) where v⃗s =

vars(C⃗)∩ vars(C⃗O) is the set of shared variables from the inner and outer scope and the set must not be

89

empty. v⃗c = vars(C⃗)− vars(C⃗O) and v⃗co = vars(C⃗O)− vars(C⃗) are both set difference of two variable sets.

We combine constraints from both inner and outer scope into head : - C1,C2, ...,Cn,CO1,CO2, ...,COn,

and after the rule execution we get a collection of matches in which each shared variable in v⃗s is bonded to

some concrete value. We group the matches by shared variables v⃗s so for each key we put the matches with

the same key (shared variables) into the same group.

• Create the union type for the head of the set comprehension in the same way as independent set com-

prehension above U ::= T1 +T2 + ...+Tn +CONST1,CONST2, ...CONSTn.

• Create a new constructor to hold the new union type or a new relation in DDLog together with outer

scope variables as PreAggrContainer ::= (vco1 : T1,vco2 : T2, ...,vcon : Tn, inner : U) and

PreAggrContainer(vco, ..,U :: H1(..)),

PreAggrContainer(vco, ..,U :: H2(..)), ...,PreAggrContainer(vco, ..,U :: Hn(..)),

PreAggrContainer(vco, ..,U :: CONST1()), ...,PreAggrContainer(vco, ..,U :: CONSTn())

:- CO1,CO2, ...,COn,C1,C2, ...,Cn.

• Group by all outer scope variables v⃗co in another rule

PostAggrContainer(vco1,vco2, ...,vcon,val) : - PreAggrContainer(vco1,vco2, ...,vcon,u),

u.group by((vco1,vco2, ...,vcon)),var val = g.some aggr f unc().

For example, Outdegree(src,sum) : - src is Node(),sum = count(e | e is Edge(src,dst)). is translated

into PreAggrContainer(src,U :: E(e)) : - src is Node(),e is Edge(src,dst). and

PostAggrContainer(src,aggr value) : - PreAggrContainer(src,u),var g = u.group by((src)),

var aggr value = g.some aggr f unc().

5.6.3.3 Nested Set Comprehension

A nested set comprehension is a unique feature in FORMULA language that constraint in both a rule and a

set comprehension can have another set comprehension for the purpose of aggregation over a set of selected

terms. The following example is a nested set comprehension in which we calculate the outdegree of a node

only if it has a self-cycle.

S e l f C y c l e N o d e O u t d e g r e e (x , n) : − x i s Node , n = c o u n t ({ y | Edge (x , y) ,

c o u n t ({ x | Edge (x , x) }) > 0

90

})

Listing 5.28: Nested Set Comprehension Examples

The nested set comprehension does not have to be handled separately because the transformation rules for

both independent and dependent FORMULA set comprehension in the previous two subsections recursively

flatten the nested set comprehension into multiple rules that do not have set comprehension inside.

5.6.4 formula2ddlog Transformation Example

We use a small example below to demonstrate how a FORMULA program is transformed into an equivalent

DDLog program with model transformation. The generated DDLog program can be used to run model exe-

cution incrementally and even the model transformation itself is incremental meaning it has the capability to

update the generated DDLog program incrementally, even though the size of models of language domains are

actually small compared with large models in CPS domain and the whole execution of model transformation

only takes a fraction of millisecond.

domain Graph {

Node : : = new (name : I n t e g e r) .

Edge : : = new (s r c : Node , d s t : Node) .

T r i a n g l e : : = new (one : Node , two : Node , t h r e e : Node) .

I t em : : = Node + Edge .

Union : : = T r i a n g l e + Node .

Nes tedUnion : : = Union + I tem .

Nes ted Union : : = T r i a n g l e + Node + Edge .

BigEdge : : = new (s r c : NestedUnion , d s t : Nes tedUnion) .

Edge (a , c) : − Edge (a , b) , BigEdge (b , c) .

}

Listing 5.29: Graph Domain in FORMULA

t y p e d e f Edge = Edge{ s r c : Node , d s t : Node}

t y p e d e f Node = Node{name : u s i z e }

t y p e d e f T r i a n g l e = T r i a n g l e { two : Node , one : Node , t h r e e : Node}

t y p e d e f BigEdge = BigEdge{ s r c : Any , d s t : Any}

t y p e d e f BoolConstantR0N0 = BoolConstantR0N0 {}

91

i n p u t r e l a t i o n BigEdge Inpu t [BigEdge]

i n p u t r e l a t i o n Edge Inpu t [Edge]

i n p u t r e l a t i o n NodeInput [Node]

i n p u t r e l a t i o n T r i a n g l e I n p u t [T r i a n g l e]

o u t p u t r e l a t i o n BigEdge [BigEdge]

o u t p u t r e l a t i o n Edge [Edge]

o u t p u t r e l a t i o n I tem [Any]

o u t p u t r e l a t i o n Nes tedUnion [Any]

o u t p u t r e l a t i o n Node [Node]

o u t p u t r e l a t i o n T r i a n g l e [T r i a n g l e]

o u t p u t r e l a t i o n Union [Any]

Node [p] : − NodeInput [p] .

BigEdge [p] : − BigEdge Inpu t [p] .

BigEdge2 [p] : − BigEdge2Inpu t [p] .

I t em [t o a n y (p)] : − Edge [p] .

I t em [t o a n y (p)] : − Node [p] .

Nes tedUnion [t o a n y (p)] : − Edge [p] .

Nes tedUnion [t o a n y (p)] : − Node [p] .

Nes tedUnion [t o a n y (p)] : − T r i a n g l e [p] .

T r i a n g l e [p] : − T r i a n g l e I n p u t [p] .

Union [t o a n y (p)] : − Node [p] .

Union [t o a n y (p)] : − T r i a n g l e [p] .

Edge [Edge{a , f rom any (c) . u n w r a p o r d e f a u l t () }] : − Edge [Edge{a , b }] ,

BigEdge [BigEdge{ t o a n y (b) , c }] .

Listing 5.30: Generated Graph Domain translated in DDLog

We have done benchmarks over the graph domain that has some of the FORMULA advanced features such

as recursion, negation, and set comprehension to test out the performance on a relatively computationally hard

problem. The result shows that Differential-FORMULA uses much less time than the original FORMULA

and theoretically it takes exponential time to run the specific problem we pick to compute the transitive

closure in a graph for the benchmark.

92

0 500 1,000 1,500 2,000

100

101

102

103

Model Size

R
un

ni
ng

Ti
m

e
[m

ill
is

ec
on

ds
]

Non-incremental constraint eval
Incremental deletion and eval
Incremental insertion and eval

Figure 5.6: δF Incremental Running Time

0 500 1,000 1,500 2,000

101

102

103

104

Model Size

R
un

ni
ng

Ti
m

e
[m

ill
is

ec
on

ds
]

Differential-formula
FORMULA

Figure 5.7: Non-incremental Running Time: δF vs FORMULA

93

5.7 Benchmarks on Incremental Updates for Large Models

Our Differential-FORMULA tool has to be tested out on its performance in handling large models and com-

pare the results with other state-of-art modeling frameworks, especially the ones that support incremental

updates. Model Transformation Tool Contest Benchmark is a good candidate for benchmark evaluation ex-

cept for the Social Network domain from the TTC2018 does not include some major features in FORMULA

language such as negation to check the absence of cycle in friendship graph or the nested set comprehension

because the domain is fairly simple to model. On the other hand, FORMULA language may not natively

support the features such as sorting or finding the top 3 scores in the social network benchmark but there

are workarounds to express it in Differential-FORMULA by embedding some native differential-dataflow

operators.

The competition can be found here: https://github.com/TransformationToolContest/ttc2018liveContest

and this is so far the model transformation contest that includes the most modeling frameworks and partic-

ipants. We may consider adding a Model Transformation contest from a different year into our benchmark

but much fewer tools are available for comparison unless we want to implement the solutions for other tools.

However, benchmark evaluation only using the Model Transformation Contest social network benchmark

gives us an estimate of the performance of a medium-size use case but not enough to evaluate the worst-case

scenario, so we need to extend the graph domain benchmark in (Zhang et al., 2021) on constraint checking

to separately test out negation, recursion, and set comprehension in order to find the bottlenecks, which leave

clues to optimize the implementation.

The Metamodel of the social network domain is described in Ecore in Figure 5.8. The social network

consists of users, posts, and comments. Users may have friends and the posts or comments have a score

based on the interactions between users. The social network benchmark has two queries to be evaluated and

both of them are computationally hard that can be reduced to problems similar to finding strongly connected

components incrementally when the input changes.

In the Listing 5.31, we show the essential rules from a DDLog program that is fine-tuned from the output

of Differential-FORMULA to demonstrate the usage of logic programming rules to succinctly express the

complex queries in a social network domain. Please note that part of the query in the social network domain

is beyond what the FORMULA language can express. For example, the top three score needs an external

function in DDLog to handle

/ / Q1 : The t o p 3 p o s t s w i th t h e h i g h e s t s c o r e based t h e number o f comments

/ / and l i k e s and must be s o r t e d by t imes t amp .

CommentAncestor (commentid , p a r e n t i d) : − Comments (commentid , , , , p a r e n t i d) .

94

https://github.com/TransformationToolContest/ttc2018liveContest

CommentAncestor (commentid , g r a n d p a r e n t i d) : − CommentAncestor (commentid , p a r e n t i d) ,

CommentAncestor (p a r e n t i d , g r a n d p a r e n t i d) .

/ / F ind t h e r o o t p o s t i d f o r each comment s i n c e t h e d i r e c t p a r e n t o f a comment

/ / c o u l d be a comment .

CommentFromPost (commentid , a n c e s t o r i d) : − CommentAncestor (commentid , a n c e s t o r i d) ,

P o s t s (a n c e s t o r i d , , ,) .

/ / Each comment g i v e s i t s p o s t 10 p o i n t s .

PostCommentScore (pid , s c o r e) : − CommentFromPost (c id , p i d) ,

v a r s c o r e = (c i d) . g roup by ((p i d)) . g r o u p c o u n t d i s t i n c t () * 1 0 .

/ / Each l i k e on t h e comment adds one p o i n t .

CommentLikeScore (c id , s c o r e) : − L i k e s (use r , c i d) ,

v a r s c o r e = (u s e r) . g roup by (c i d) . g r o u p c o u n t d i s t i n c t () .

/ / How many l i k e s a p o s t r e c e i v e s on a l l o f i t s comments i n c l u d i n g t h e comments on comments .

P o s t L i k e S c o r e (pid , s c o r e) : − CommentFromPost (c id , p i d) ,

CommentLikeScore (c id , v a l) , v a r s c o r e = (v a l) . g roup by ((p i d)) . sum of (| v a l | v a l) .

/ / Combine two s c o r e s t o g e t h e r based on t h e p o s t i d .

P o s t T o t a l S c o r e (pid , s c o r e) : − PostCommentScore (pid , s1) , P o s t L i k e S c o r e (pid , s2) ,

v a r s c o r e = s1 + s2 .

/ / For s i t u a t i o n when a p o s t has no l i k e s , t h e n j u s t r e t u r n t h e comment s c o r e .

P o s t T o t a l S c o r e (pid , s c o r e) : − PostCommentScore (pid , s c o r e) , n o t P o s t L i k e S c o r e (pid ,) .

/ / S o r t by s c o r e and t h e n by t imes t amp i n t h e o r d e r o f i t s a rgumen t s .

P o s t T o t a l S c o r e T i m e s t a m p (s c o r e , t imes tamp , p o s t) : − P o s t T o t a l S c o r e (pos t , s c o r e) ,

P o s t s (pos t , t imes tamp , ,) .

/ / F ind t h e t o p 3 p o s t s w i th h i g h e s t s c o r e s f i r s t by s c o r e and t h e n by t imes t amp .

/ / The most r e c e n t t imes t amp t a k e s p r e c e d e n c e i f t h e s c o r e s a r e t h e same .

Top3Pos tScore (f i r s t . p o s t I d , second . p o s t I d , t h i r d . p o s t I d) : −

p t i n P o s t T o t a l S c o r e T i m e s t a m p (s c o r e , t imes tamp , p o s t) ,

v a r group = (p t) . g roup by (()) ,

95

(v a r f i r s t , v a r second , v a r t h i r d) = group . t o p t h r e e ()

.

Listing 5.31: Fine-tuned DDLog Program for Q1

Most controversial posts - We consider a post controversial if it starts a debate through its comments.

For this, we assign a score of 10 for each comment that belongs to a post. Hereby, we consider a comment

belonging to a post, if it comments on either the post itself or another comment that already belongs to the

post. In addition, we also value if users liked comments, so we additionally assign a score of 1 for each user

that has liked a comment. The score of a post then is the sum of 10 plus the number of users that liked a

comment and overall comments that belong to the given post. The goal of the query is to find the three posts

with the highest score. Ties are broken by timestamps, i.e. more recent posts should take precedence over an

older post.

Listing 5.32 shows the rules to concisely handle the complex query Q2 in the social network benchmark.

Please note that we also replace the part that computes strongly connected components with manually op-

timized differential-dataflow implementation named graph:SCC with external functions to execute the rules

more efficiently and specifically for computing the strongly connected components incrementally.

UserLikesNode (u , c i d) : − L i k e s (u , c i d) .

/ / Add s e l f − loop t o e v e r y node i n t h e g raph .

UserLikesEdge (n , n) : − n i n UserLikesNode (u , comment) .

UserL ikesEdge (n1 , n2) : − n1 i n UserLikesNode (u1 , comment) ,

n2 i n UserLikesNode (u2 , comment) , F r i e n d (u1 , u2) .

f u n c t i o n c o n v e r t l i k e 1 (u l e : UserL ikesEdge) : UserLikesNode { u l e . s r c }

f u n c t i o n c o n v e r t l i k e 2 (u l e : UserL ikesEdge) : UserLikesNode { u l e . d s t }

/ / The r e s u l t i s a t u p l e o f node Id and t h e l o w e s t node Id i n t h e group as an a nc h o r .

o u t p u t r e l a t i o n SCCLabel [(UserLikesNode , UserLikesNode)]

a p p l y graph : : SCC(UserLikesEdge , c o n v e r t l i k e 1 , c o n v e r t l i k e 2) −> (SCCLabel)

/ / Each component i s r e p r e s e n t e d by an a nc ho r f o l l o w e d by t h e s i z e o f component .

SCC(anchor , s i z e) : − SCCLabel [(l i k e s , l i k e s l o w e s t)] ,

v a r group = (l i k e s) . g roup by (l i k e s l o w e s t) ,

96

v a r an c ho r = group . g r o u p k e y () ,

v a r s i z e = group . g r o u p c o u n t d i s t i n c t () .

SCCScore (sum , comment key) : − SCC(anchor , s i z e) ,

v a r comment = an c ho r . comment ,

v a r u s e r = an c ho r . u se r ,

v a r group = (use r , s i z e) . g roup by (comment) ,

v a r comment key = group . g r o u p k e y () ,

v a r sum = group . sum of (| t u p l e | t u p l e . 1 * t u p l e . 1) .

/ / For comments t h a t do n o t have l i k e s , we g i v e i t a s c o r e o f 0 .

SCCScore (0 , c i d) : − Comments (c id , , , ,) , n o t L i k e s (, c i d) .

SCCScoreTimestamp (s c o r e , t imes tamp , comment) : − SCCScore (s c o r e , comment) ,

Comments (comment , t imes tamp , , ,) .

Top3CommentScore (f i r s t . comment , second . comment , t h i r d . comment) : −

s t i n SCCScoreTimestamp (s c o r e , t imes tamp , comment) ,

v a r group = (s t) . g roup by (()) ,

(v a r f i r s t , v a r second , v a r t h i r d) = group . t o p t h r e e () .

Listing 5.32: Fine-tuned DDLog Program for Q2

Most influential comment - In this query, we aim to find comments that are commented on by groups of

users. We identify groups through friendship relations. Hereby, users that liked a specific comment form a

graph where two users are connected if they are friends (but still, only users who have liked the comment are

considered). The goal of the second query is to find strongly connected components in that graph. We assign

a score to each comment which is the sum of the squared component sizes. Similar to the previous query, we

aim to find the three comments with the highest score. Ties are broken by timestamps.

97

Figure 5.8: TTC2018 Social Network Metamodel in Ecore

We provide several models and change sequences of different sizes. In each change sequence, new posts

are added, new comments to existing posts are added, new users are added, and users become friends or users

like comments. The changes are always incremental, i.e. friendship relations do not break. Posts, comments,

or likes are also not withdrawn.

The benchmark consists of the following phases:

1. Initialization: In this phase, solutions may load metamodels and another infrastructure independent of

the used models as required. Because time measurements are very hard to measure for this phase, time

measurement is optional.

2. Loading: The initial model instances are loaded.

3. Initial: A initial view is created after the first round of execution of models.

4. Updates: A sequence of change sequences is applied to the model. Each change sequence consists of

several atomic change operations. After each change sequence, the view must be consistent with the

changed source models, either by entirely creating the view from scratch or by propagating changes to

the view result

For this benchmark, we have two solutions for differential-FORMULA that one is a DDLog program

generated after model transformation and fine-tuned to take advantage of the native differential-dataflow

implementation of strongly connected components dataflow, while the other one is the direct implementation

in Differential-dataflow by the creator of Differential-dataflow. As we can see from the benchmarks, the

native implementation of Differential-dataflow dominates in every aspect while our Differential-FORMULA

solution is not but still the top three. One of the major reasons is that the data structure passing through

98

the dataflow in DDLog has more overheads and rules execution in a logic programming language is not as

efficient as a manually written low-level implementation in Rust with Differential-Dataflow library.

●
●

●
●

●

●

1

10

100

1000

10000

1 2 4 8 16 32
ChangeSet

T
im

e
(m

s)

● differential
differential−datalog

EMFSolutionAOF
EMFSolutionATL−Incremental

EMFSolutionViatra
EMFSolutionYAMTL

HawkSQLiteIncUpdateQuery
jastadd−relast−reusable−flush

Q1, Function: Load

Figure 5.9: Q1 Load Time

●

●

●

●

●

●

10

100

1000

1 2 4 8 16 32
ChangeSet

T
im

e
(m

s)

differential
differential−datalog

EMFSolutionAOF
EMFSolutionATL−Incremental

EMFSolutionViatra
EMFSolutionYAMTL

HawkSQLiteIncUpdateQuery
jastadd−relast−reusable−flush

NMF−Incremental

Q1, Function: Initial

Figure 5.10: Q1 Batch Time

99

●
●

●

●
● ●

10

100

1000

1 2 4 8 16 32
ChangeSet

T
im

e
(m

s)

differential
differential−datalog

EMFSolutionAOF
EMFSolutionATL−Incremental

EMFSolutionViatra
EMFSolutionYAMTL

HawkSQLiteIncUpdateQuery
jastadd−relast−reusable−flush

NMF−Incremental

Q1, Function: Update

Figure 5.11: Q1 Updates Time

●
●

●

●

●

●

1

10

100

1000

10000

1 2 4 8 16 32
ChangeSet

T
im

e
(m

s)

● differential
differential−datalog

EMFSolutionAOF
EMFSolutionATL−Incremental

EMFSolutionViatra
EMFSolutionYAMTL

HawkSQLiteIncUpdateQuery
jastadd−relast−reusable−flush

Q2, Function: Load

Figure 5.12: Q2 Load Time

100

●
●

●

●

●

●

10

100

1000

1 2 4 8 16 32
ChangeSet

T
im

e
(m

s)

differential
differential−datalog

EMFSolutionAOF
EMFSolutionATL−Incremental

EMFSolutionViatra
EMFSolutionYAMTL

HawkSQLiteIncUpdateQuery
jastadd−relast−reusable−flush

NMF−Incremental

Q2, Function: Initial

Figure 5.13: Q2 Batch Time

● ●
●

●
●

●

10

100

1000

1 2 4 8 16 32
ChangeSet

T
im

e
(m

s)

differential
differential−datalog

EMFSolutionAOF
EMFSolutionATL−Incremental

EMFSolutionViatra
EMFSolutionYAMTL

HawkSQLiteIncUpdateQuery
jastadd−relast−reusable−flush

NMF−Incremental

Q2, Function: Update

Figure 5.14: Q2 Updates Time

5.8 Contributions

This chapter has the most significant work and contributions so far to solve the performance and scalability

issues regarding large models and computationally intensive model execution. Unlike the graph-based solu-

tion that only works for a subset of the FORMULA language, it still preserves the whole set of rich semantics

and the unique language features of the original FORMULA language.

The innovation in this work is that we adopt the exact same Model-driven engineering methodology we

101

promote over the years to develop not only faster but also an incremental Model-driven engineering tool. The

results from several benchmarks have proved that it has one of the leading performances compared with other

state-of-art modeling frameworks on executing very large models and can now solve the problems that the

original FORMULA will fail to even load the intermediate results into the memory without overflow.

So far as we know, our tool is the first modeling framework that is not manually implemented by soft-

ware engineers or researchers using general-purpose programming language but completely specified and

transformed into another program using the specification language itself in a bootstrapping way.

Our main contributions related to the concrete implementation of formula2ddlog transformation are the

following:

1. We have the complete language definition of both DDLog and FORMULA specified in DDLog lan-

guage as language models. Even though both languages belong to the logic programming language

family, the semantics of some same concepts such as negation could be drastically different and the

meaning changes under different contexts. The semantic difference has been identified either directly

from the specification or from the result of rule execution.

2. One of the major breakthrough in overcoming semantic differences is that static analysis of the FOR-

MULA program has been enabled for the first time to reason over the models of the FORMULA pro-

gram. Type inference is crucial to the later type conversion in the DDLog rule to emulate the execution

of the FORMULA language.

3. Model transformation from models of FORMULA to models of DDLog using a hand-crafted translator

that is implemented as hundreds of rules in DDLog to elegantly handle some complex language features

such as nested set comprehension and dependent/independent set comprehension,

102

CHAPTER 6

Future works and Open Challenges

6.1 Future Works

The future works include the complete implementation of Differential-FORMULA and applying our inte-

grated tool to some large industrial use cases with benchmark comparison with other leading modeling frame-

works. Investigation of the potential optimization is encouraged to maximize the performance in Differential-

Dataflow.

6.1.1 Implementation and Optimization

The full implementation is not finished yet especially for the model and domain inheritance and more opti-

mization is needed. The current version of Differential-FORMULA only supports constraint checking but the

full model transformation that generates new facts and converts them back into FORMULA terms. The orig-

inal FORMULA also supports the inheritance of domains(metamodels) and models in order to concisely ex-

tend the reusable modules but this feature is not supported in the current version of Differential-FORMULA.

6.2 Open Challenges

There are mainly two open opportunities to extend the Differential-FORMULA and our integrated modeling

framework.

6.2.1 Model Synthesis

Model finding or model synthesis in model-driven engineering finds feasible solutions to complete partial

models that satisfy all the constraints and it notoriously does not scale well for even small models depending

on the problems. Overall it is an undecidable problem and needs heuristics to guide the unrolling of rules

wisely to speed up the search space exploration.

There are many tools that support model-finding features such as Alloy (Jackson, 2019) and Viatra

Solver (Varró and Balogh, 2007) but the semantics they can express is more limited than FORMULA lan-

guage. For example, the Viatra solver supports recursion but is limited to only transitive closure in the graph.

The model synthesis in FORMULA is not complete and this task is nontrivial. FORMULA has richer se-

mantics than other modeling tools and the mapping from partial models and symbolic states with its unique

semantics to Z3 is complicated. e.g. Recursion, nested aggregation, and embedding of union types.

Some SMT solvers support incrementality, but a deeper integration with differential-FORMULA is needed

103

for the iterative mapping and execution from FORMULA to extend the capability of incremental execution

in existing SMT solvers for open-world logic programs.

6.2.2 Formal Specification with Bootstrapping

FORMULA can be considered as the guard for the specification and execution of DSMLs but the FORMULA

language itself (the implementation of its own compiler and the translator to other languages like DDlog) is

not guarded by any guard.

The current rewriting rules that transform a FORMULA program into a DDlog program are specified

in DDlog. For future work, we are planning to implement this as a FORMULA transformation, with both

FORMULA and DDlog specified as domains in the FORMULA language itself. This approach will give

confidence in the translation between the two languages through the use of a formal specification.

104

References

Abadi, M., McSherry, F., and Plotkin, G. D. (2015). Foundations of differential dataflow. Technical report.

Abrial, J.-R. (2010). Modeling in Event-B: system and software engineering. Cambridge University Press.

Anjorin, A., Lauder, M., Patzina, S., and Schürr, A. (2011). Emoflon: leveraging emf and professional case
tools. In GI-Jahrestagung, page 281.

Bettini, L. (2016). Implementing domain-specific languages with Xtext and Xtend. Packt Publishing Ltd.

Boronat, A. (2018). Yamtl solution to the ttc 2018 social media case.

Boronat, A. (2022). Incremental execution of relational transformation specifications in yamtl: a case with
laboratory workflows.

Bucchiarone, A., Cicchetti, A., Ciccozzi, F., and Pierantonio, A. (2021). Domain-specific languages in
practice: With jetbrains mps.

Cabot, J. and Gogolla, M. (2012). Object constraint language (ocl): a definitive guide. In International
school on formal methods for the design of computer, communication and software systems, pages 58–90.
Springer.

Cabot, J. and Teniente, E. (2009). Incremental integrity checking of uml/ocl conceptual schemas. Journal of
Systems and Software, 82(9):1459–1478.

Campagne, F. (2014). The MPS language workbench: volume I, volume 1. Fabien Campagne.

Daniel, G., Sunyé, G., and Cabot, J. (2016a). Mogwaı̈: a framework to handle complex queries on large
models. In 2016 IEEE Tenth International Conference on Research Challenges in Information Science
(RCIS), pages 1–12. IEEE.

Daniel, G., Sunyé, G., and Cabot, J. (2016b). Umltographdb: Mapping conceptual schemas to graph
databases. In International Conference on Conceptual Modeling, pages 430–444. Springer.

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer.

Desai, A., Gupta, V., Jackson, E. K., Qadeer, S., Rajamani, S. K., and Zufferey, D. (2013). P: safe asyn-
chronous event-driven programming. In Boehm, H. and Flanagan, C., editors, ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’13, Seattle, WA, USA, June 16-19, 2013,
pages 321–332. ACM.

Ehrig, H., Ehrig, K., Prange, U., and Taentzer, G. (2006). Fundamentals of algebraic graph transformation.
EATCS Series.

Falleri, J.-R., Huchard, M., and Nebut, C. (2006). Towards a traceability framework for model transforma-
tions in kermeta. In ECMDA-TW’06: ECMDA Traceability Workshop, pages 31–40. Sintef ICT, Norway.

Giese, H. and Wagner, R. (2009). From model transformation to incremental bidirectional model synchro-
nization. Software & Systems Modeling, 8(1):21–43.

Gupta, A., Mumick, I. S., and Subrahmanian, V. S. (1993). Maintaining views incrementally. ACM SIGMOD
Record, 22(2):157–166.

Hinkel, G. (2016). NMF: A Modeling Framework for the. NET Platform. KIT.

Jackson, D. (2019). Alloy: a language and tool for exploring software designs. Communications of the ACM,
62(9):66–76.

105

Jackson, E. K. (2013). Engineering domain-specific languages with formula 2.0. In Boleng, J. and Taft, S. T.,
editors, Proceedings of the 2013 ACM SIGAda annual conference on High integrity language technology,
HILT 2013, Pittsburgh, Pennsylvania, USA, November 10-14, 2013, pages 3–4. ACM.

Jackson, E. K., Bjørner, N., and Schulte, W. (2011a). Canonical regular types. In Gallagher, J. P. and Gelfond,
M., editors, Technical Communications of the 27th International Conference on Logic Programming, ICLP
2011, July 6-10, 2011, Lexington, Kentucky, USA, volume 11 of LIPIcs, pages 73–83. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik.

Jackson, E. K., Bjorner, N., and Schulte, W. (2013). Open-world logic programs: A new foundation for
formal specifications. Technical report, Microsoft technical report MSR-TR-2013-55. See http://research.
microsoft

Jackson, E. K., Kang, E., Dahlweid, M., Seifert, D., and Santen, T. (2010). Components, platforms and pos-
sibilities: towards generic automation for mda. In Proceedings of the tenth ACM international conference
on Embedded software, pages 39–48.

Jackson, E. K., Levendovszky, T., and Balasubramanian, D. (2011b). Reasoning about metamodeling with
formal specifications and automatic proofs. In International Conference on Model Driven Engineering
Languages and Systems, pages 653–667. Springer.

Jackson, E. K., Levendovszky, T., and Balasubramanian, D. (2015). Automatically reasoning about meta-
modeling. Softw. Syst. Model., 14(1):271–285.

Jackson, E. K. and Schulte, W. (2013). FORMULA 2.0: A language for formal specifications. Technical
report.

Jouault, F., Allilaire, F., Bézivin, J., and Kurtev, I. (2008). Atl: A model transformation tool. Science of
computer programming, 72(1-2):31–39.

Jouault, F. and Bézivin, J. (2006). Km3: a dsl for metamodel specification. In International Conference on
Formal Methods for Open Object-Based Distributed Systems, pages 171–185. Springer.

Kecskés, T., Zhang, Q., and Sztipanovits, J. (2017). Bridging engineering and formal modeling: Webgme
and formula integration. In MODELS (Satellite Events), pages 280–285.

Kelly, S., Lyytinen, K., and Rossi, M. (1996). Metaedit+ a fully configurable multi-user and multi-tool case
and came environment. In International Conference on Advanced Information Systems Engineering, pages
1–21. Springer.

Kern, H., Hummel, A., and Kühne, S. (2011). Towards a comparative analysis of meta-metamodels.
In Proceedings of the compilation of the co-located workshops on DSM’11, TMC’11, AGERE! 2011,
AOOPES’11, NEAT’11, & VMIL’11, pages 7–12.

Klabnik, S. and Nichols, C. (2019). The Rust Programming Language (Covers Rust 2018). No Starch Press.

Kleppe, A. and Rensink, A. (2008). On a graph-based semantics for uml class and object diagrams. Electronic
Communications of the EASST, 10:1–16.

Kosar, T., Mernik, M., and Lopez, P. E. M. (2007). Experiences on dsl tools for visual studio. In 2007 29th
International Conference on Information Technology Interfaces, pages 753–758. IEEE.

Kumar, P. S., Emfinger, W., Karsai, G., Watkins, D., Gasser, B., and Anilkumar, A. (2016). Rosmod: a tool-
suite for modeling, generating, deploying, and managing distributed real-time component-based software
using ros. Electronics, 5(3):53.

Lawley, M. and Steel, J. (2005). Practical declarative model transformation with tefkat. In International
Conference on Model Driven Engineering Languages and Systems, pages 139–150. Springer.

106

Leblebici, E., Anjorin, A., and Schürr, A. (2014). Developing emoflon with emoflon. In Theory and Practice
of Model Transformations: 7th International Conference, ICMT 2014, Held as Part of STAF 2014, York,
UK, July 21-22, 2014. Proceedings 7, pages 138–145. Springer.

Marcos, D. D. F., Jean, B., Frédéric, J., Erwan, B., and Guillaume, G. (2005). Amw: A generic model weaver.
Proc. of the 1eres Journées sur l’Ingénierie Dirigée par les Modeles, 200.

Maróti, M., Kecskés, T., Kereskényi, R., Broll, B., Völgyesi, P., Jurácz, L., Levendovszky, T., and Lédeczi,
Á. (2014). Next generation (meta)modeling: Web- and cloud-based collaborative tool infrastructure. In
Proceedings of the 8th Workshop on Multi-Paradigm Modeling, volume 1237 of CEUR Workshop Pro-
ceedings, pages 41–60. CEUR-WS.org.

Martı́nez, S., Tisi, M., and Douence, R. (2017). Reactive model transformation with atl. Science of Computer
Programming, 136:1–16.

Mavridou, A., Kecskes, T., Zhang, Q., and Sztipanovits, J. (2018). A common integrated framework for
heterogeneous modeling services. In MODELS Workshops, pages 416–422.

Merz, S. (2008). The specification language tla+. Logics of specification languages, pages 401–451.

Mezei, G., Theisz, Z., Urbán, D., Bácsi, S., Somogyi, F. A., and Palatinszky, D. (2019). A bootstrap for
self-describing, self-validating multi-layer metamodeling. In Proceedings of the Automation and Applied
Computer Science Workshop, pages 28–38.

Murray, D. G., McSherry, F., Isaacs, R., Isard, M., Barham, P., and Abadi, M. (2013). Naiad: a timely
dataflow system. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
pages 439–455.

Pech, V. (2021). Jetbrains mps: Why modern language workbenches matter. In Domain-Specific Languages
in Practice: with JetBrains MPS, pages 1–22. Springer.

Rodriguez, M. A. (2015). The gremlin graph traversal machine and language (invited talk). In Proceedings
of the 15th Symposium on Database Programming Languages, pages 1–10. ACM.

Ros, u, G. and S, erbănută, T. F. (2010). An overview of the k semantic framework. The Journal of Logic and
Algebraic Programming, 79(6):397–434.

Ryzhyk, L. and Budiu, M. (2019). Differential datalog. Datalog, 2:4–5.

Scheer, A.-W. and Schneider, K. (1998). Aris—architecture of integrated information systems. In Handbook
on architectures of information systems, pages 605–623. Springer.

Schürr, A. and Klar, F. (2008). 15 years of triple graph grammars. In Icgt, pages 411–425. Springer.

Simko, G., Levendovszky, T., Neema, S., Jackson, E. K., bapty, T., Joe, P., and Sztipanovits, J. (2012).
Foundation for model integration: Semantic backplane. In Proceedings of the ASME 2012 IDETC/CIE
2012, pages 1–8. ASME.

Spivey, J. M. and Abrial, J. (1992). The Z notation, volume 29. Prentice Hall Hemel Hempstead.

Steinberg, D., Budinsky, F., Merks, E., and Paternostro, M. (2008). EMF: eclipse modeling framework.
Pearson Education.

Szabó, T., Bergmann, G., Erdweg, S., and Voelter, M. (2018). Incrementalizing lattice-based program analy-
ses in datalog. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29.

Szabó, T., Erdweg, S., and Voelter, M. (2016). Inca: A dsl for the definition of incremental program analy-
ses. In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
pages 320–331.

107

Sztipanovits, J., Bapty, T., Neema, S., Howard, L., and Jackson, E. K. (2014). Openmeta: A model- and
component-based design tool chain for cyber-physical systems. In Bensalem, S., Lakhnech, Y., and Legay,
A., editors, From Programs to Systems. The Systems perspective in Computing - ETAPS Workshop, volume
8415 of Lecture Notes in Computer Science, pages 235–248. Springer.

Sztipanovits, J. and Karsai, G. (1997). Model-integrated computing. Computer, 30(4):110–111.

TinkerPop, A. (2020). The gremlin graph traversal machine and language.

Ujhelyi, Z., Bergmann, G., Hegedüs, Á., Horváth, Á., Izsó, B., Ráth, I., Szatmári, Z., and Varró, D. (2015).
Emf-incquery: An integrated development environment for live model queries. Science of Computer Pro-
gramming, 98:80–99.

Varró, D. and Balogh, A. (2007). The model transformation language of the viatra2 framework. Science of
Computer Programming, 68(3):214–234.

Voelter, M., Ratiu, D., Schaetz, B., and Kolb, B. (2012). mbeddr: an extensible c-based programming
language and ide for embedded systems. In Proceedings of the 3rd annual conference on Systems, pro-
gramming, and applications: software for humanity, pages 121–140.

Weidmann, N. and Anjorin, A. (2021). emoflon:: Neo-consistency and model management with graph
databases. In STAF Workshops, pages 54–64.

Zhang, Q., Balasubramanian, D., Kecskes, T., and Sztipanovits, J. (2021). Differential-formula: towards a
semantic backplane for incremental modeling. In Proceedings of the 18th ACM SIGPLAN International
Workshop on Domain-Specific Modeling, pages 51–60.

Zhang, Q., Kecskes, T., Mathe, J., and Sztipanovits, J. (2019). Towards bridging the gap between model-and
data-driven tool suites for cyber-physical systems. In 2019 IEEE/ACM 5th International Workshop on
Software Engineering for Smart Cyber-Physical Systems (SEsCPS), pages 7–13. IEEE.

Zündorf, A., Schürr, A., and Winter, A. J. (1999). Story driven modeling. Univ.-Gesamthochsch. Paderborn,
Fachbereich Mathematik-Informatik.

108

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	1.1 Motivation
	1.2 Background
	1.2.1 WebGME
	1.2.2 FORMULA Language
	1.2.3 Semantic Backplane
	1.2.4 Differential-Datalog and Differential-Dataflow

	1.3 Contribution
	1.4 Organization

	2 Challenges in Semantic Integration for Modeling
	2.1 General Research Challenges in Model-driven Engineering
	2.2 Challenges in Graph-based Semantic Integration
	2.2.1 Integration of Models, Semantics, Storage, and Execution
	2.2.2 Unified Graph Representation in Modeling Framework
	2.2.3 Scalability Issues on Large Models

	2.3 Problems and Challenges in Incremental Modeling

	3 Related Work
	3.1 Generic Modeling Engineering Frameworks and Tools
	3.2 Modeling Framework with Formal Semantics
	3.3 Graph-based Modeling Frameworks
	3.4 Bootstrapping Modeling Frameworks
	3.5 Incremental Modeling
	3.5.1 OCL-based Incremental Model Query
	3.5.2 ATL-based Incremental Model Transformation
	3.5.3 TGG-based Incremental Model Transformation
	3.5.4 Graph-based Incremental Model Transformation
	3.5.5 Other incremental approaches

	4 Semantic Bridge from Models to Graphs
	4.1 Introduction to Graph Database
	4.2 Semantic Bridge Overview
	4.2.1 Tools Comparison
	4.2.2 Three Levels of Integration

	4.3 Direct Integration of WebGME and FORMULA
	4.4 Graph-based Integration of WebGME, FORMULA, and Graph Database
	4.4.1 Semantic Foundation in Graph
	4.4.2 Logic-based FORMULA Specification
	4.4.3 Graph-based Gremlin Specification

	4.5 FORMULA Model Operations Executed in Graph Database
	4.5.1 Model and Metamodel Representation in Graph
	4.5.2 Pre-processing of FORMULA Rule
	4.5.3 Label Map for FORMULA Rule
	4.5.4 Instance and Arguments
	4.5.5 Handling Binding Label with Fragments
	4.5.6 Constraints over Properties in Built-in Types
	4.5.7 Negation and Set Comprehension Operators
	4.5.8 Termination of Repeating Rule Execution

	4.6 Benchmark and Performance Comparison
	4.7 Contributions

	5 Developing Differential-FORMULA in MDE Methodology
	5.1 Differential-Dataflow Computation Model and Tool Suites
	5.1.1 Timely Dataflow
	5.1.2 Differential Dataflow
	5.1.3 Differential Datalog

	5.2 Introduction to Differential-FORMULA
	5.3 Identification of Semantic Mismatch
	5.4 Formal Specification of FORMULA Language and Differential-Datalog
	5.4.1 Union Type Definition
	5.4.2 Negation
	5.4.3 Aggregation

	5.5 Static Analysis on FORMULA Programs
	5.5.1 Language Domain Modeling and Metamodels
	5.5.2 Type Inference of Non-ground Term
	5.5.2.1 Type Inference of Sub-terms
	5.5.2.2 Term Unifiability Checking

	5.5.3 Type Inference In the Context of FORMULA Rules
	5.5.4 Nested Set Comprehension Validation
	5.5.5 Rule Stratification Validation

	5.6 formula2ddlog Model Transformation
	5.6.1 Positive Predicate Translation
	5.6.2 Negated Predicate Translation
	5.6.2.1 Negation as Set Difference
	5.6.2.2 Negation as Set Comprehension

	5.6.3 Set Comprehension Translation
	5.6.3.1 Independent Set Comprehension
	5.6.3.2 Dependent Set Comprehension
	5.6.3.3 Nested Set Comprehension

	5.6.4 formula2ddlog Transformation Example

	5.7 Benchmarks on Incremental Updates for Large Models
	5.8 Contributions

	6 Future works and Open Challenges
	6.1 Future Works
	6.1.1 Implementation and Optimization

	6.2 Open Challenges
	6.2.1 Model Synthesis
	6.2.2 Formal Specification with Bootstrapping

	 References

