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CHAPTER 1 

 
 

1 Introduction 

 
 

In statistical inference, when a single significance test is performed, we primarily concern ourselves with the type I 

error of the test. On the other hand, in the case of multiple testing, we are concerned with the accumulation of errors 

across tests. This was originally addressed with the concept of family wise error (FWER), the probability of one or 

more tests falsely rejecting (Tukey 1953; Dunn 1961). 

An alternative proposal, in considering the rate of false rejections, was formalized in (Benjamini and 

Hochberg 1995) with their definition of the false discovery rate (FDR). However, a distinction must be made 

between the formal BH definition of the FDR, and another quantity: the probability that tests are null conditioned 

on their rejection. This latter Bayesian quantity is equivalent to the rate of false discoveries conditional on one or 

more rejections being observed (formally defined as the positive false discovery rate (pFDR) in (Storey 2003), which 

also established this equivalency), which is a condition not required for the BH definition of the FDR. The FDR is 

useful when examining the properties of a study design, and when strict control is desired. However, out of the two 

quantities, the pFDR answers the natural question that arises when faced with a set of rejected tests – that is, how 

many do we expect to correspond to the null hypothesis of no effect? Control of the FDR by a multiple testing 

algorithm does not necessarily guarantee a small pFDR.  

A general class of methods have been proposed in the literature to estimate this quantity via a family of 

empirical Bayes approaches, made possible by the equivalency established by Storey (2003) between the pFDR and 

the posterior/Bayes FDR quantity (for example, those described in (Allison et al. 2002; Pounds and Morris 2003; 

Aubert et al. 2004; Liao et al. 2004; Pounds and Cheng 2004; Tang et al. 2007; Efron 2010b)).  

In Chapter 2, we provide a thorough review of the topics outlined above. In particular, we present a unified 

framework used to introduce a variety of ideas presented in the literature under a common notation, aiming to 

highlight the relationships between them. We discuss and illustrate the distinction between the classically defined 

FDR and the positive false discovery rate. Importantly, the FDR measures overall frequentist properties of a rejection 

procedure, but the pFDR measures the probability of observed rejections to be misleading, which is the scientific 

question which most interests researchers in practice. Further, we review a selection of empirical methods for pFDR 

estimation on the basis of classical z or p-values, focusing on those presented in (Storey 2002; Efron 2010b). These 

methods are illustrated with a simulation example consisting of underdispersed z-values, as well as with a real-world 

large-scale inference example studying the association between 224,866 SNPs and prostate cancer, with 

accompanying code provided online. Chapter 2 concludes with our recommendations for routine use of false 

discovery quantities. We intend for this chapter to serve as an important resource for those seeking to gain a better 

understanding of false discovery rates and their implications in traditional statistical inference. The topics covered 

represent some of the most fundamental FDR concepts, with inclusion of and reference to a wide variety of ideas, 

however, are not necessarily fully comprehensive. 
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Next, we turn our focus to an alternative paradigm, with the incorporation of an interval null hypothesis in 

lieu of a standard point null hypothesis. This interval null is defined to consist of effects which are null or practically 

null, i.e., those which are not of scientific interest or have negligible impact in real practice. One such methodology 

that utilizes this paradigm is that of Blume et al. (2018), in the definition of the “second-generation p-value” as an 

alternative metric to the classical p-value. This approach formalizes the concept of practical significance, rather than 

only statistical significance, into the inference process. Blume et al. (2018) establish several improved properties of 

the SGPV and introduces a preliminary definition of the pFDR – as well as an analogous quantity, the false 

confirmation rate (FCR) – for second-generation p-values. The assumptions required to calculate these FDR 

quantities, however, are quite restrictive and ultimately do not directly account for the interval null, despite this 

being the key underlying concept. In Chapters 3 and 4, we undertake an examination of several different topics at 

the intersection of second-generation p-values and false discovery rates. 

First, in Chapter 3, we address a specific question – how do we generally define the pFDR, i.e., the Bayes 

FDR, for second-generation p-values, accounting for interval null and alternative hypotheses, and how may we 

empirically estimate it in practice? We begin by providing a further examination of the (Blume et al. 2018) definition 

of the SGPV FDR and FCR using simple null and alternative hypothesis specifications. Next, building on this work, 

we define a general form of the Bayes FDR quantities. Our proposed solution includes specifying a weighting 

function for the parameters across the null or alternative spaces, hypothetically representing the true underlying 

distribution of effects, and marginalizing across the power curve of the SGPV to obtain the respective design 

probabilities conditional on each of the composite hypotheses. We provide several different approaches for 

specification of these weighting distributions. We find that regardless of the approach used, the SGPV Bayes FDR 

converges to zero as a function of the sample size underlying the tests. This represents an important generalization 

of the findings of (Blume et al. 2018).  However, for finite sample sizes, the specifications of the weighting functions 

can result in FDR estimates which vary widely. Further, we note that the null weights do not impact the asymptotic 

behavior of the Bayes FCR for the second-generation p-value. However, the alternative weighting specification 

might – namely, in the instance where a point mass is placed at the minimum scientifically important effect, in which 

case the FCR converges to a lower bound greater than zero (but less than 𝛼). 

We conclude with proposing an estimator of the Bayes FDR for second-generation p-values which utilizes 

empirical Bayes methods, similar to those described in Chapter 2, for part of the calculation. This results in a 

reduction in the number of specifications and assumptions required. The component that is empirically estimated, 

the mixture probability of a SGPV rejection, behaves well, particularly with large numbers of tests. However, the 

specification of the other components, such as the null design probability and null proportion, can still have a 

substantial impact on the resulting estimates. An upper bound on this estimator can be found without much trouble, 

although it may be an appreciable overestimate in some cases. Future work on empirical estimation of the design 

probabilities, and of the proportion of null tests, is desired to produce reliable Bayes FDR, i.e., pFDR, estimates for 

second-generation p-values for use in practice.  
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Next, in Chapter 4, we broaden our scope, and provide a holistic examination of second-generation p-value 

performance in large-scale inference. This chapter addresses several open questions related to the SGPV, including 

its comparison with p-value approaches that adjust for multiple comparisons, and an assessment of overall FDR 

control (referring back to the original BH definition of the false discovery rate). Several assumptions are relaxed, 

particularly those of fixed, known variance and of common variance among tests, which previously limited the 

applicability of the findings. We use extensive simulations to examine the impact of factors such as sample size, 

number of tests and variance on the overall FDR control, the pFDR, the probability of observing rejections, and 

power as defined by the rate of truly scientifically meaningful tests rejected.  

First, if scientific relevance is ignored and we focus on the rejection of exactly null effects, we find that – 

unlike with the Benjamini-Hochberg approach – the FDR is not generally controlled by the SGPV for all sample 

sizes, although the main scientific quantity of interest (the pFDR) is often comparable or reduced. However, when 

trivial effects (i.e., those where the true effect is non-zero, but not large enough to be scientifically relevant) are 

considered, neither the BH or SGPV methods control the FDR for finite samples, and only the SGPV pFDR is 

asymptotically controlled. In general, for most settings, SGPV FDR control occurs only when the pFDR itself falls 

below the desired threshold, which is guaranteed for large enough sample sizes. We conclude by examining two 

hybrid methods, one of which we propose as an intersection between the SGPV and BH, and another which is a 

simple extension of a method described previously by Goodman et al. (2019). These hybrid methods provide a better 

overall balance between FDR control and pFDR minimization. However, they are not universal improvements over 

the SGPV alone in regard to the pFDR and power. As a whole, we show that standard p-value methods are not 

sufficient when scientific relevance is considered, and methods such as the second-generation p-value, or a hybrid 

approach, should be implemented instead. Ultimately, the best choice of methods will depend on factors such as 

study priorities and expected properties of the data. 

Overall, this dissertation provides contributions to the field of false discovery rates in large-scale inference, 

with elucidation of established methodology, and with further development of theory and implementation of a newer 

metric, the second-generation p-value. Chapter 2 provides an accessible yet thorough introduction to the field of 

false discovery rates, which will prove useful for statisticians endeavoring to better understand this methodological 

area. Chapter 3 establishes a more general framework for the second-generation p-value Bayes FDR (i.e., pFDR). 

The illustration of small and large-sample properties of proposed methods provides an improved understanding of 

this metric, while a proposed empirical estimator illustrates the need for further work in this area, with the end goal 

of establishing a robust method to estimate the probability that findings are null or practically null – a key question 

in large-scale inference. The comprehensive overview of second-generation p-value behavior in large-scale 

inference, found in Chapter 4, will provide insight into which method to use in practice in various contexts, 

ultimately leading to improved, scientifically meaningful statistical inference.  
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CHAPTER 2 

 
 

2 A Statistical Primer on False Discovery Quantities 

 
 

Valerie F. Welty, Jeffrey D. Blume 

 
 

 
  

2.1 Introduction 

The problem of simultaneous multiple inferences has been studied for quite some time, with interest beginning 

around the 1950’s. There is by now a rich and vast literature on multiple testing and multiple comparisons (see for 

example, Tukey 1953, 1991; Miller 1981; Hochberg and Tamhane 1987; Benjamini and Braun 2002). The problem 

of multiple inferences was originally studied in the context of relatively few tests (e.g., on the order of 10 or 20 

tests). Now, however, it is commonplace to see multiple testing problems with thousands or even millions of 

simultaneous tests. For example, in genome-wide association studies (GWAS), genetic variants may be studied to 

assess their association with a particular outcome, such as prostate cancer. When the number of tests become large, 

the strategy of controlling the probability that at least one false positive occurs is debatable. In these contexts, it is 

often more desirable to allow a small number of false positives to occur in order to increase the probability of 

identifying true signals. This idea was formalized in a seminal 1995 paper by Benjamini and Hochberg. They 

proposed an algorithm for controlling the false discovery rate instead of the family-wise error rate (Benjamini and 

Hochberg 1995). An important aspect of Benjamini and Hochberg’s seminal paper was that they proposed a 

workable definition of the “false discovery rate”, building on the work and ideas of others at the time (Spjøtvoll 

1972; Simes 1986; Berger and Sellke 1987; Sorić 1989).  

The Benjamini-Hochberg procedure has become quite popular; as of 2005, it was 7th on the list of most-

cited papers published since 1993 with 294 citations (Ryan and Woodall 2005). At the time of this writing, the 

original paper has amassed over 78,000 citations. However, advancements and refinements in false discovery 

methodology have not received quite as much attention. The goal of this chapter is to serve as a statistical primer on 

false discovery quantities and some popular advancements, particularly in the area of estimating relevant quantities. 

We introduce fundamental and advanced FDR concepts, present a unified notational structure for easy reading, share 

simulations and a real-world example to illustrate key concepts, and present some simple recommendations for using 

false discovery quantities in practice.  

 

2.1.1 Motivating examples 

A common context is a GWAS study where single-nucleotide polymorphism (SNP) data is collected in diseased 

and non-diseased individuals. For each SNP, researchers might fit a logistic regression model of disease status on 

the number of variant alleles (this approach is referred to as the additive model) and adjust for demographic 
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covariates. The coefficient for the SNP is the coefficient of interest, and there is one for each SNP when utilizing 

the additive model. For a simple motivating simulation example, imagine that we have 1,000 SNPs with resulting 

regression coefficients 𝜃1, … , 𝜃1,000. We assume that 85% of these SNPs are truly not associated with the outcome 

(i.e., they are null) while the remaining 15% come from a common non-null distribution with a positive mean, and 

that all SNPs are independent (a tenuous assumption in genetic settings). The mixture distribution of the z-values 

and p-values, for one such realization of this simple scenario, are shown in Figure 2.1(a) along with the theoretical 

null distributions. In large-scale inference settings, the underlying structure of the data is generally not so simple,  

containing for example a complex correlation structure and a variety of non-null effect sizes. To illustrate, we used 

a real-world example to explore the association between prostate cancer and 224,866 single-nucleotide 

polymorphisms (SNPs) from chromosome six. The data was collected from 3,894 individuals by the International 

Consortium for Prostate Cancer Genetics (ICPCG) (Schaid and Chang 2005). The distribution of the z-values and 

p-values for this study are provided in Figure 2.1(b). To illustrate the importance of flexible FDR methods, we use 

a second simulation scenario that has an underdispersed null distribution, which is one type of departure from the 

theoretical null that can occur in genetics and imaging scenarios. We set the number of tests at 50,000, which is a 

more typical size of modern large-scale inference experiments. It is assumed that 90% of the tests are null and the 

alternative distribution is generated as a mixture distribution comprised of three effect sizes. The underdispersion 

can be seen in Figure 2.1(c) when contrasting to the red line, which is the theoretical null of 𝑁(0,1) (for the z-

values) or 𝑈(0,1) (for the p-values). The departure from the theoretical null can be seen most clearly in the upper 

range of the observed p-value distribution. Further details on the simulations and the prostate cancer genetic SNP 

study are provided in the Appendix (Remark 2.A). 

 

2.1.2 Setup and notation 

We are interested in testing 𝑚 null hypotheses, for some very large 𝑚, which we denote ℋ = (𝐻0
1, … , 𝐻0

𝑚). For 

each hypothesis there is an associated test statistic and p-value. Some of these null hypotheses will be correct, say 

𝑚0 ≤ 𝑚, while the rest, 𝑚1 = 𝑚 −𝑚0, are false. It is convenient to work with the proportion of truly null 

hypotheses, defined as 𝜋0 = 𝑚0 𝑚⁄ , and the proportion of non-null hypotheses, defined as 𝜋1 = 𝑚1 𝑚⁄ . Throughout 

the chapter, we will assume a point null hypothesis is being used. Note that in large-scale settings it is unlikely that 

all effects will be exactly equal to zero, and some methodologies are robust to this in the sense that they allow for a 

composite null hypothesis comprised of small non-relevant effects (Efron 2010b). See also in (Cabras 2010; Chi 

2010; Sun and McLain 2012; Blume et al. 2018).  

A helpful step in false discovery estimation is mapping the observed test statistics 𝑇1, … , 𝑇𝑚, or their p-

values, to z-values for the purpose of leveraging their normality properties. The p-values can be directly transformed 

to z-values by 𝑍𝑖 = Φ
−1(𝑝𝑖), however this definition does not guarantee that the z-values have the same sign as the 

original test statistics. For example, if the p-values were calculated as upper-tail one-sided p-values of test statistics 

such as t-statistics, the resulting 𝑍𝑖 will have the reverse sign. To utilize this p-value, we would need to define the 

special transformation 𝑍𝑖 = Φ
−1(1 − 𝑝𝑖) to maintain the original sign. A specialized transformation is also required 

if using two-sided p-values. More discussion and examples are given in the Appendix (Remark 2.B) and in (Efron  
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(a) (b) 

  
(c)  

 
 

Figure 2.1      Histograms of p-values and z-values for the examples. The p-values are one-sided upper tail p-values. 

The red line is either the theoretical null distribution of 𝑈(0,1) assuming all tests are null (for the p-values) or the 

theoretical null distribution of 𝑁(0,1) (for the z-values). (a) simple simulation; (b) real-world SNP example; (c) 

underdispersed simulation. 

 

2010b). Alternately, we can use a more straightforward transformation if working directly with the original test 

statistics: for test statistics 𝑇1, … , 𝑇𝑚 with distribution function 𝑇𝑖 ∼ 𝐹0(𝑇) under the null hypothesis, the z-value 

transformation is 𝑍𝑖 = Φ
−1(𝐹0(𝑇𝑖)). For example, suppose 𝑇𝑖 = 2 comes from a one-sided upper-tail t-test with 10 

degrees of freedom, such that 𝑝𝑖 = 0.0367. The corresponding z-score is then 𝑍𝑖 = Φ
−1(𝐹0(2)) = Φ

−1(1 − 𝑝𝑖) =

Φ−1(0.9633) = 1.7904. For the remainder of the chapter, we will assume a transformation has yielded z-values 

𝑍1, … , 𝑍𝑚 such that 𝑍𝑖|𝐻0
𝑖 ∼ 𝑁(0,1). 

Table 2.1 displays the data table, which summarizes the outcomes of a large-scale inference procedure. In 

the set of 𝑚 null hypotheses under consideration, previously defined as ℋ, the set of those that are rejected will be 

denoted by ℛ and the size of that set is 𝑅. The set of hypotheses that were not rejected is denoted by ℐ and has size 

𝑚 − 𝑅. It is also common to denote the number of rejected hypotheses that correspond to true null hypotheses by 

𝑉, and the number of rejected hypothesis that correspond to false null hypotheses is denoted by 𝑈. The quantities 

𝑚,𝑚0, and 𝑚1 are fixed, although only 𝑚 is known to the analyst. The total column is also observed with realized 

values 𝑟 and 𝑚 − 𝑟 respectively. The interior of the table, along with 𝑚0 and 𝑚1, are not observable in given set of 

data. The quantities 𝑉 (false rejections) and 𝑈 (correct rejections) are random variables; they change from table 
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Table 2.1      Data table summarizing the results of a multiple testing procedure. The rows correspond to the results 

of the analysis, i.e., reject or inconclusive (fail to reject), while the columns correspond to the truth or falsehood of 

the 𝑚 null hypotheses. Note that only the last column, containing the totals, is known after the analysis; the other 

columns contain unknown quantities (shaded in grey), unless the data are simulated. 

 

 Null (𝒯) Alt. (ℱ) Total 

Reject (ℛ) 𝑉 𝑈 𝑅 

Inconclusive (ℐ) 𝑚0 − 𝑉 𝑚1 − 𝑈 𝑚 − 𝑅 

Total 𝑚0 𝑚1 𝑚 

 

to table under the same data generating mechanism in the same way that 𝑅 does. But for any given set of data, these 

random variables have fixed but unknown values, denoted by 𝑣 and 𝑢, and these are important false discovery 

quantities.  

An important aspect of a data table like this is that it is dependent on the definition of a rejected hypothesis. 

The set and number of rejections (ℛ and 𝑅) vary depending on rejection criterion. For example, in routine cases, ℛ 

depends on the pre-specified size of the rejection region, say [1.64,∞) for a one sided 5%-sized test. Tables 2.2(a)-

(c) provide example data tables for 1,000 z-values generated from the simple simulation setting for three different 

rejection criteria (an unadjusted procedure and two multiple testing procedures, Bonferroni and Benjamini-

Hochberg). These tables are augmented with the marginal row percentages. The proportion of rejected hypotheses 

that are null,  𝑉 𝑅⁄ , is called the false discovery proportion (FDP) and is the basis for nearly all false discovery 

quantities. 

 

2.2 Error control in multiple testing 

For a single significance test, the p-value rejection threshold 𝑐 is chosen to control the Type I Error rate at some pre-

specified level 𝛼. A consequence of this strategy is that in large-scale testing, where 𝑚 significance tests are 

performed, the group-wise Type I Error rate will greatly exceed 𝛼. However, the group-wise Type I Error rate can 

be controlled with classical adjustments like Bonferroni, Šidák, or Simes (Dunn 1961; Šidák 1967; Holm 1979; 

Simes 1986; Hochberg 1988). These solutions work by allowing the individual Type I Error rates to shrink to zero 

as the number of tests grows. For nearly 70 years, this has been the standard approach. But in the 1990’s an 

alternative approach emerged, building on preceding ideas (Spjøtvoll 1972; Berger and Sellke 1987; Sorić 1989; 

Benjamini and Hochberg 1995). Instead of fixing the (pre-test) family-wise Type I Error rate at some level, we 

might instead focus on a different goal and try to bound the (post-test) probability that the observed rejection is 

mistaken. This latter approach is based on false discovery quantities. Note that all approaches attempt to control the 

total number of false rejections (the random variable 𝑉 in our data table) in some way.  
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Table 2.2      Data table summarizing the results of a multiple testing analysis for the simple simulation for various 

rejection regions or procedures. The rows correspond to the results of the analysis (reject or inconclusive), while the 

columns correspond to the truth or falsehood of the 𝑚 null hypotheses. Unknown values are shaded in grey. Also 

shown are the marginal row percentages, corresponding in one case to the realized false discovery proportion (FDP) 

value and in another to the realized false non-discovery proportion (FNP). (a) Unadjusted upper-tail z-value rejection 

region of  [1.64,∞), (b) Bonferroni procedure, and (c) Benjamini-Hochberg procedure. 

 

(a) Unadjusted 

 
Null 

(𝒯) 
Alt. 

(ℱ) 
Total 

Row Pct. Null Row Pct. Alt. 

Reject (ℛ) 50 123 173 0.289 = 𝐹𝐷𝑃 0.711 

Inconclusive (ℐ) 800 27 827 0.967 0.033 = 𝐹𝑁𝑃 

Total 850 150 1,000 0.85 = 𝜋0 0.15 = 𝜋1 

 

(b) Bonferroni 

 
Null 

(𝒯) 
Alt. 

(ℱ) 
Total 

Row Pct. Null Row Pct. Alt. 

Reject (ℛ) 1 10 11 0.091 = 𝐹𝐷𝑃 0.909 

Inconclusive (ℐ) 849 140 989 0.858 0.142 = 𝐹𝑁𝑃 

Total 850 150 1,000 0.85 = 𝜋0 0.15 = 𝜋1 

 

(c) Benjamini-Hochberg (BH) 

 
Null 

(𝒯) 
Alt. 

(ℱ) 
Total 

Row Pct. Null Row Pct. Alt. 

Reject (ℛ) 5 55 60 0.083 = 𝐹𝐷𝑃 0.917 

Inconclusive (ℐ) 845 95 940 0.899 0.101 = 𝐹𝑁𝑃 

Total 850 150 1,000 0.85 = 𝜋0 0.15 = 𝜋1 

 

 

2.2.1 Family wise error rate and adjusted p-values 

Perhaps the most well-known multiple testing error metric is the family-wise error rate (FWER), which is the 

probability of making at least one false rejection, written as 𝑃(𝑉 ≥ 1) = 1 − (1 − 𝛼)𝑚 under the usual simplifying 

assumptions. It was originally referred to as the “experiment-wise error rate” or “error rate per-experiment” (Tukey 

1953; Ryan 1959) and is also sometimes called the “group-wise error rate”. Here 𝛼 is the “per-comparison error 

rate”. If we perform 𝑚 significance tests, each having a per-comparison Type I Error rate of 5%, then the family-

wise error rate grows large quickly as the number of tests grow. For example, performing 45 tests with individual 

Type I Error of 𝛼 = 0.05 will result in an overall FWER of 0.9. Large-scale biomedical data often has tens of 

thousands or hundreds of thousands of tests. In these settings, FWER adjustments incur a very large Type II Error 

rate penalty, and this makes the FWER approach much less desirable because the power is reduced dramatically 

(Brown and Russell 1997; Perneger 1998). 
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In general, we define a “multiple testing procedure” as a mapping from a list of p-values (𝑝1, … , 𝑝𝑚), or z-

values (𝑍1, … , 𝑍𝑚), to a list of rejected and not rejected null hypotheses. This mapping can be done to meet any 

constraint, on any error metric, related to the group of experiments. The most popular multiple testing procedure for 

controlling the FWER at level 𝛼∗ is the Bonferroni procedure, which sets the p-value rejection threshold at 𝛼∗ 𝑚⁄ . 

The Bonferroni threshold for controlling the FWER at 5% in the SNP example is 0.05 224,866⁄ = 2.2 × 10−7 and 

in the simple simulation is 0.05 1,000⁄ = 5 × 10−5. Because Bonferroni uses a p-value threshold that is much more 

severe than the original unadjusted procedure, much fewer hypotheses are rejected. In the SNP example we reject 

the null hypothesis for only 16 of the tests compared to 10,637 rejected tests with the unadjusted procedure. The 

Bonferroni procedure is an approximation to the Šidák procedure, both of which are examples of “fixed bounds”, 

that is the bounds are comprised of known quantities or quantities specified a priori (e.g., 𝛼∗ and 𝑚). Other FWER-

controlling procedures are dependent upon the observed data (via 𝑝𝑖, 𝑧𝑖 , or even the original data) and are known as 

“adaptive procedures”. Holm’s procedure for controlling the FWER is an example of an adaptive procedure. 

Adaptive FWER procedures are sometimes classified according to the order in which tests are compared, e.g., 

starting with the smallest p-value and working backwards (“step-down”) or starting with the largest p-value and 

working forwards (“step-up”).  

A common misconception is that a procedure designed to control the FWER at 5% will have a FWER equal 

to 5%. Controlling the family-wise error rate means that it has an upper bound, not that it is exactly equal to the pre-

specified rate. Several factors (such as correlation among the tests and the proportion of hypotheses that are truly 

null) can result in a much lower FWER. This can be seen in our underdispersed simulation example where the 

Bonferroni procedure results in a FWER of 0.3%, substantially smaller than the apparent 5% level.  

A helpful concept is that of an adjusted p-value. It can allow for a much simpler rejection scheme when the 

adjusted p-value is well defined. For example, we reject hypothesis 𝐻𝑖 if the adjusted p-value  �̃�𝑖 is less than 0.05. 

In the case of the Bonferroni procedure, the adjusted p-value is �̃�𝑖
Bonf = min(𝑝𝑖 ⋅ 𝑚, 1). Multiple testing algorithms 

can be quite complex, and the derivation of the adjusted p-value is not often straightforward. Shaffer (1995) provides 

the following general definition: “Given any test procedure, the adjusted p-value corresponding to the test of a single 

hypothesis 𝐻𝑖 can be defined as the level of the entire test procedure at which 𝐻𝑖 would just be rejected, given the 

values of all test statistics involved.” We will use this idea for false discovery quantities as well. 

 

2.2.2 False discovery proportion 

In large-scale settings, where false positive findings are virtually guaranteed and inference is typically more 

exploratory, it makes more sense to try and control the rate of false positives. That is, rather than using a 

(controversial) statistical adjustment to try and prevent all false rejections, the investigator should simply estimate 

how many false rejections 𝑉 might have occurred in the set of 𝑚 significance tests or the proportion of false 

rejections 𝑉/𝑅. The “False Discovery Proportion” (FDP) is a good starting point for false discovery concepts and 
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 is loosely defined as the proportion of false discoveries that were observed. Formally, the FDP is 

 𝐹𝐷𝑃 ≔ 𝑄 =
𝑉

max(𝑅, 1)
= {

𝑉 𝑅⁄   when  𝑅 > 0
0         when  𝑅 = 0

. (2.1) 

This composite definition is necessary because when no rejections occur (𝑅 = 0), there can be no false rejections, 

so 𝑉 𝑅⁄   is technically undefined. The “False Non-Discovery Proportion” (FNP) is an analogous quantity for the 

rate of missed discoveries defined as (𝑚1 −𝑈) max[(𝑚 − 𝑅), 1]⁄ . Both quantities assess the degree to which an 

observed rejection or non-rejection is reliable. Ideally, both would be reported in large-scale experiments where 

estimation of these false discovery quantities is possible. 

To fix ideas, we simulated large-scale data and plotted the joint distribution of 𝑅 and 𝑉 (Figure 2.2(a)) and 

the distribution of the false discovery proportion 𝑄 (Figure 2.2(b)) for the fixed z-value rejection region of [1.64,∞). 

The simulated false discovery proportion ranged from 0.134 to 0.386 and was �̅� = 0.267 on average. The observed 

false discovery proportion is a random variable, however properties of 𝑄 such as its expected value are not. The 

average FDP is called the False Discovery Rate, and an array of methods for controlling it exist. This is described 

in detail in the next section. 

 

2.2.3 False discovery rate 

Benjamini and Hochberg (1995) showed how to control the expected value of the false discovery proportion, which 

they named the False Discovery Rate (FDR). The idea was inspired by Sorić (1989), and the proposed procedure is 

a simple modification of (Simes 1986). Benjamini and Hochberg’s proposal was considered revolutionary because 

it abandoned control of the FWER, in favor of FDR control, in order to increase power in multiple comparisons 

settings. The FDR, typically denoted by 𝒬𝑒, can be expressed as 

 FDR ≔ 𝒬𝑒 = 𝐸[𝑄] = 𝐸 [
𝑉

𝑅
 |  𝑅 > 0] ⋅ Pr(𝑅 > 0). (2.2) 

We see that 𝒬𝑒 is equal to the scaled expected proportion of false discoveries when at least one rejection is observed. 

The scaling factor is the probability of at least one rejection, which quickly approaches one in medium to large data 

sets. Benjamini and Hochberg showed that controlling the false discovery rate 𝒬𝑒 is a more powerful procedure than 

controlling the FWER. Because 𝑄 is a random variable bounded by 0 and 1, the FDR is always less than or equal to 

the FWER (𝐸[𝑄] ≤ Pr(𝑄 > 0) = Pr(𝑉 ≥ 1)). They also noted that when all hypotheses are truly null, the FWER 

and 𝐹𝐷𝑅 are equal (𝐸[𝑄] = Pr(𝑄 > 0) = Pr(𝑉 ≥ 1)). Remark 2.D describes how to compute 𝒬𝑒 for procedures 

where the distribution of 𝑅 and 𝑉|𝑅 are known; otherwise, simulation of 𝒬𝑒 is straightforward. 

Let the p-value order statistics be 𝑝(1) ≤ ⋯ ≤ 𝑝(𝑖) ≤ ⋯ ≤ 𝑝(𝑚). The Benjamini and Hochberg (BH) 

algorithm to control 𝒬𝑒 at level 𝑞 is:  

1) Define 𝑖𝑚𝑎𝑥 to be the largest index for which 𝑝(𝑖) ≤ 𝑞 ⋅ 𝑖 𝑚⁄ , and 

2) Reject all null hypothesis 𝐻0
𝑖  corresponding to 𝑝(𝑖) if 𝑖 ≤ 𝑖𝑚𝑎𝑥. 



11  

(a) (b) 

  
(c)  (d) 

  
 

Figure 2.2      Distributions of 𝑅, 𝑉, and 𝑄 for the simple simulation from 100,000 simulation replications. �̅� is the 

mean across the simulated values of 𝑄. (a) Joint distribution of 𝑅 and 𝑉 for the unadjusted z-value rejection region 

[1.64,∞), as a heat map. (b) Distribution of 𝑄 for the unadjusted rejection region. The vertical blue line is at �̅� =
0.267. (c) Joint distribution of 𝑅 and 𝑉 for the BH procedure, as a heat map. (d) Distribution of 𝑄 for the BH 

procedure. The vertical blue line is at �̅� = 0.0425. 
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Note that it is common to use 𝑞, instead of 𝛼 or 𝛼∗, to denote the level of FDR control because the quantities are 

fundamentally different. We can see from Tables 2.2(b)-(c) that in the simple simulation illustration data, the BH 

procedure rejects more hypotheses than the strict Bonferroni procedure, without an increase in the FDP. An FDR-

controlled procedure, however, controls only the average FDP and not the FDP itself. In this example, the BH 

procedure results in an FDP of 𝑄 = 0.083, despite that fact that the average 𝑄 is less than or equal to 𝑞 = 0.05. 

Using the same repeated simulation data from Figures 2.2(a)-(b), the distributions of 𝑅, 𝑉, and 𝑄 for the BH 

procedure are provided in Figures 2.2(c)-(d). Note that 𝑉 and 𝑅 are discrete variables and this is apparent in Figure 

2.2(c). Figure 2.2(d) shows how the BH procedure is controlling the false discovery proportion on average. The 

distribution is skewed towards 0, and the spike at 𝑄 = 0 is large enough to hold the average false discovery 

proportion (the FDR) below 0.05.   

The per-comparison and family-wise error rates are related to the pre-test probability that an error will be 

made, while the FDR is related to the post-test probability that the observed test result is mistaken (See (Blume 

2008, 2011) for further discussion; see also Section 2.3.2). The FDR is in fact controlled at level 𝜋0𝑞, such that 

𝒬𝑒 ≤ 𝜋0𝑞 ≤ 𝑞 (under certain conditions for dependency  (Benjamini and Yekutieli 2001)). For example, if 85% of 

the hypotheses are null, then the FDR is controlled at 0.0425 when 𝑞 = 0.05. Correlation among the tests can reduce 

the true 𝒬𝑒 further below the control level, and in the unusual case of negative dependence between tests, FDR 

control is not guaranteed with the standard BH procedure (Heesen and Janssen 2015). A modified procedure has 

been proposed which guarantees control under general dependence but can be quite conservative (Benjamini and 

Yekutieli 2001).  It can be helpful to re-write the BH procedure as an adjusted p-value procedure, namely reject 𝐻0
𝑖  

when �̃�(𝑖)
𝐵𝐻 ≤ 𝑞 where  �̃�(𝑖)

𝐵𝐻 = 𝑚𝑖𝑛
𝑘≥𝑖

(𝑝(𝑘) (𝑘 𝑚⁄ )⁄ ). The adjusted p-values for the Bonferroni and Benjamini Hochberg 

procedures are illustrated in Supplemental Figure 2.1. Additional discussion on FDR topics not covered in detail 

here can be found in the Appendix (Remarks 2.F – 2.I), such as the marginal false discovery rate 𝐸[𝑉]/𝐸[𝑅], 

conditional false discovery rate 𝐸[𝑉]/𝑟, and extensions such as k-FDR. 

 

2.3 Estimating false discovery quantities 

Care must be taken for the proper interpretation of false discovery rate quantities. A common interpretation of results 

from a false discovery rate procedure is: 

“We used the Benjamini-Hochberg procedure to control the false discovery rate in 1,000 

candidate tests. This resulted in 60 significant findings and we expect 5% of these findings to be 

false positives.” 

While this interpretation seems natural, it is not necessarily correct. The phrase “we expect 5% of these findings to 

be false positives” refers to the observed quantity 𝑣/𝑟. This quantity can be seen as a realization of the random 

variable 𝑉 𝑅⁄  given that 𝑅 > 0. However, the expected value of this conditional random variable, 𝐸[𝑉 𝑅⁄ |𝑅 > 0], 

is not the FDR because the scaling factor 𝑃(𝑅 > 0) is missing. Some have also argued that the quoted statement 

above refers to a realization 𝑣 𝑟⁄  conditional on 𝑅 = 𝑟 (Tsai et al. 2003; Pounds and Cheng 2004), but we remain 
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unconvinced. The BH procedure controls only 𝐸[𝑉 𝑅⁄ |𝑅 > 0] ⋅ 𝑃(𝑅 > 0) = 𝐸[𝑄] which is taken over all values of 

𝑅 including 𝑅 = 0; it does not control 𝐸[𝑉 𝑅⁄ |𝑅 > 0] or 𝐸[𝑉 𝑅⁄ |𝑅 = 𝑟]. An extreme example is that the FDR can 

be 5% with a 50% chance of rejecting any hypotheses so that Pr(𝑅 > 0) = 0.5  and 𝐸[𝑉/𝑅|𝑅 > 0] = 0.1. In this 

case the mistaken interpretation of the statement is very misleading (the correct rate is 10%, not 5%). Even when 

𝑃(𝑅 > 0) is near 1, one cannot interpret an observed realization as the expectation, just as we cannot interpret the 

p-value as the Type I error. 

Storey (2003) defined 𝐸[𝑉/𝑅|𝑅 > 0] to be the positive False Discovery Rate (pFDR) which in fact has a 

nice probabilistic interpretation. In effect, it answers the question “How reliable are the findings?” This is a different 

question from asking “How reliable is my study design?” for which we use Type I and Type II error rates to answer 

that question (Blume 2008, 2011). Notice that the FDR is a scaled version of the pFDR, and that the FDR is a lower 

bound for the pFDR. In large-scale settings, they are frequently identical because typically 𝑃(𝑅 > 0) ≈ 1. However, 

we keep focus on the pFDR because formally is the more relevant quantity. What the above means is that: (1) we 

should estimate 𝐸[𝑉/𝑅|𝑅 > 0] because that is more relevant after an experiment is conducted and we wish to assess 

the reliability of findings, and (2) for experiments with a high probability of discovery, 𝐸[𝑉/𝑅|𝑅 > 0] will be close 

to the FDR (and the conditional FDR), approaching from above. 

 

2.3.1 The positive false discovery rate 

Although formally named in (Storey 2003), the positive false discovery rate was discussed in (Benjamini and 

Hochberg 1995) but dismissed because it is strictly not controllable. By definition, pFDR = 1 when 𝜋0 = 1 (all 

hypotheses are null). Storey reasons that “when 𝑚0 = 𝑚, one would want the false discovery rate to be 1” and when 

no tests are significant, no one is interested in the false discovery rate anyway. Therefore, if we are interested in 

estimating false discovery quantities, this issue is not relevant and the pFDR is a natural statistic to focus on.  

The pFDR, indeed all false discovery quantities, correspond to a particular rejection region. If we define Γ 

to be the rejection set for the z-value space such that we reject 𝐻0
𝑖  if 𝑧𝑖 ∈ Γ, then the quantity 𝑅 is shorthand for the 

more explicit 𝑅(Γ) which is the number of rejections 𝑅 that result from rejecting 𝐻0
𝑖  when 𝑍𝑖 ∈ Γ. Similarly, for 𝑉 

and 𝑉(Γ). The more explicit definition for pFDR is 

 𝑝𝐹𝐷𝑅(Γ) ≔ 𝐸 [
𝑉(Γ)

𝑅(Γ)
 |  𝑅(Γ) > 0], (2.3) 

with 𝑝𝐹𝐷𝑅(Γ) = 0 when 𝑅 = 0. We will also use the shorthand notation 𝑝𝐹𝐷𝑅(Γ) ≔ 𝐸[𝑉 𝑅⁄ |𝑅 > 0; Γ]. The 

rejection region Γ need not be fixed ahead of time to yield proper estimates of the pFDR (Storey et al. 2004). For 

simplicity, we will consider only rejection regions of the one-sided tail-area form Γ = [𝑧,∞) for definitions and 

discussion, although all results can be easily extended to two-sided rejection regions and some illustrations will 

show the results based on two-sided rejection regions. We will also make use of the further shorthand 𝑝𝐹𝐷𝑅(𝑧) ≔

𝑝𝐹𝐷𝑅(Γ = [𝑧,∞)). The pFDR has a natural Bayesian interpretation and various techniques for estimating the pFDR 

make use of this connection. 



14  

2.3.2 Bayesian interpretation of the pFDR 

The “Bayes false discovery rate” has been introduced as a probabilistic form of the positive false discovery rate  

(Efron, Storey, et al. 2001; Efron, Tibshirani, et al. 2001; Storey 2001a, 2001b, 2002, 2003). The key insight is to 

regard the truth of each null hypothesis as a random variable, with 𝐻𝑖 ∼ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(1 − 𝜋0) where 𝐻𝑖 = 0 indicates 

that the null hypothesis is true. Here 𝜋0 is the prior probability that the null hypothesis is true, i.e., 𝜋0 = Pr (𝐻 =

0), rather than the observed proportion of hypotheses that are null. The Bayes FDR is defined as 

 𝜙(Γ) ≔ Pr(𝐻 = 0|𝑍 ∈ Γ). (2.4) 

Additionally, the distribution of the z-values is a mixture, 𝐹(𝑧) = 𝜋0 ⋅ 𝐹0(𝑧) + (1 − 𝜋0) ⋅ 𝐹1(𝑧). Here 𝐹0(𝑧) is the 

distribution of null z-values and 𝐹1(𝑧) is the distribution of non-null z-values (with corresponding probability 

density functions 𝑓0(𝑧), 𝑓1(𝑧), and 𝑓(𝑧) = 𝜋0 ⋅ 𝑓0(𝑧) + (1 − 𝜋0) ⋅ 𝑓1(𝑧)). Efron (2008) discusses this so-called 

“two-groups model” and its properties. Under the assumptions outlined above, Storey (2003) showed that for 𝑚 

identical hypothesis tests with z-values 𝑍1, … , 𝑍𝑚, significance region 𝛤, and for (𝑍𝑖 , 𝐻𝑖) independent and identically 

distributed random variables, 

 𝐸 [
𝑉

𝑅
| 𝑅 > 0; Γ] = 𝑃𝑟(𝐻 = 0|𝑍 ∈ 𝛤). (2.5) 

That is, Storey showed that 𝑝𝐹𝐷𝑅(Γ) = 𝜙(Γ).  

We can apply Bayes’ rule to re-express the Bayes FDR for a general rejection region Γ that can be any 

subset of the real line as 

 𝜙(Γ) ≔ Pr(𝐻 = 0|𝑍 ∈ Γ) =
Pr(𝐻 = 0) ⋅ Pr(𝑍 ∈ Γ|𝐻 = 0)

Pr(𝑍 ∈ Γ)
=
𝜋0 ⋅ 𝐹0(Γ)

𝐹(Γ)
, (2.6) 

where the notation of the distribution function 𝐹 and 𝐹0 of a region Γ is used to mean 𝐹(Γ) = Pr (𝑍 ∈ Γ) =

∫ 𝑓(𝑍)𝑑𝑍
 

Γ
 and 𝐹0(Γ) = Pr(𝑍 ∈ 𝛤|𝐻 = 0) = ∫ 𝑓0(𝑍)𝑑𝑍

 

Γ
, respectively. In this notation, the (proper) cumulative 

distribution function 𝐹(𝑐) is 𝐹((−∞, 𝑐]) = Pr(𝑍 ≤ 𝑐). As we will see later, the form in Equation (2.6) is helpful 

for estimating the Bayes FDR. It is called the “global FDR” because the conditioning event is 𝑍 ∈ Γ, whether the 

test statistic is in the rejection region. As a result, both 𝐹0(Γ) and 𝐹(Γ) are tail area probabilities for typical cases 

such as Γ = [𝑐,∞). Conditioning on just the observed test statistic, 𝑍 = 𝑧𝑖 , leads to a “local FDR” that we introduce 

later. The global FDR quantity is very intuitive; it is the scaled ratio of the probability of a null test statistic rejecting 

to the probability of any test statistic rejecting. We can get a simple estimate of this quantity by using the plug-in 

principle with assumptions dictating 𝐹0(Γ), an empirical estimate of 𝐹(Γ), and setting  𝜋0 = 1 to be conservative. 

Section 2.3.5 describes this and other estimation approaches. 

 

2.3.3 q-Value 

The q-value was introduced to mimic the p-value in posterior space, by taking into account “more extreme” results. 

The q-value is defined as 
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 𝑞(𝑧𝑖) ≔ min
𝑐≤𝑧𝑖

𝑝𝐹𝐷𝑅([𝑐,∞)) = min
𝑐≤𝑧𝑖

𝑃𝑟(𝐻 = 0|𝑍 ∈ [𝑐,∞)) (2.7) 

for 𝑧𝑖 ∈ (𝑧1, … , 𝑧𝑚). For our purposes, we assume nested one-sided upper tail-area rejection regions which yields 

this simpler definition; a more general definition of the q-value is given in (Storey 2003). In this context, q-values 

are pFDR estimates that are modified to ensure monotonicity in z-value space. This is illustrated in Supplemental 

Figure 2.2. In practice, using a plug-in estimator, the monotonicity is forced directly upon the estimated pFDR by 

defining the estimated q-value �̂�(𝑧𝑖) ≔ min
𝑐≤𝑧𝑖

𝑝𝐹𝐷�̂�([𝑐,∞)). Storey and Tibshirani (2003) explain that the estimated 

q-value can be used as “a measure of each feature’s significance, automatically taking into account the fact that 

thousands are simultaneously being tested”. Further, they argue that if features with estimated q-values less than a 

level 𝑞 are taken to be significant, then 𝑞 × 100% of them are expected to be false discoveries. However, this 

remains to be proven for all classes of q-value estimates. In some situations, using such a q-value procedure would 

result in a more powerful FDR-controlled procedure than if the pFDR was used. There are also a variety of situations 

where the q-value does not add anything beyond the pFDR. We find that it is better to stick with the original pFDR 

estimate which is a more “natural” quantity that is easier to use and interpret. 

 

2.3.4 Local FDR 

The global FDR conditions on the rejection of a null hypothesis. We might also consider conditioning on the 

observed significance level of the test and the resulting FDR is called a local FDR.  The global FDR assumes the 

results are only parsed as “rejected” or “not rejected”, while the local FDR assumes the actual significance level for 

each test was communicated. Both FDRs are useful in practice as results are often communicated in different ways. 

Efron, Tibshirani, et al. (2001) define the “local false discovery rate” as 

 𝜙𝑙(𝑧𝑖) ≔ Pr(𝐻 = 0|𝑍 = 𝑧𝑖) =
𝜋0 ⋅ 𝑓0(𝑧𝑖)

𝑓(𝑧𝑖)
. (2.8) 

Note that this is a ratio of densities (𝑓(𝑧) and 𝑓0(𝑧)) rather than a ratio of distribution functions. Local inference is 

possible in large-scale settings via empirical Bayes methods, but tends to be unstable in smaller samples because 

the density estimates are noisy. Technically, the local FDR is a local version of the Bayes FDR (a pFDR quantity), 

not the classic FDR 𝐸[𝑄]. In large samples however there is virtually no distinction and the literature follows this 

convention. More on the local FDR can be found in (Efron, Tibshirani, et al. 2001; Efron and Tibshirani 2002; Efron 

2010b).   

 

2.3.5 Estimation approaches 

The Bayes false discovery rate 𝜙(Γ), from Equation (2.6), can be computed without difficulty when 𝐹0(𝑧) and 𝐹1(𝑧) 

are known.  𝜋0 can be set to 1 to provide a conservative upper bound for the FDR. While 𝐹0(𝑧) often takes an 

assumed form under the null, 𝐹1(𝑧) is typically left unspecified. We can skip estimation of 𝐹1(𝑧) because we only 

need to know the mixture distribution 𝐹(𝑧), which can be estimated directly from the observed data (e.g., a 

histogram of the z-values or smooth version of the same). Typically, we might assume that 𝐹0(𝑧) = 𝑁(0,1), but 
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there are circumstances where this does not necessarily hold, e.g., with correlation among the z-values (Efron 2008). 

So, it is important to have methods that relax this assumption in our toolbox.  

A wide variety of methods have been proposed for estimating the false discovery components. Here we 

focus our attention on methods described in (Efron 2010b) that have the benefits of working in the unconstrained z-

value space, estimating the mixture distribution directly and flexibly, and are simple and straightforward to 

implement. Other approaches are worth exploring. Many rely on parametric estimation of the alternative distribution 

𝐹1 or on non-parametric estimation of the alternative or mixture distribution (Allison et al. 2002; Pounds and Morris 

2003; Aubert et al. 2004; Liao et al. 2004; Pounds and Cheng 2004; Tang et al. 2007). Some discussion of these 

approaches is in (Tang et al. 2007).  These methods can perform well under certain conditions, although some are 

less robust or more complex than the approaches described here. 

 

2.3.5.1 The ECDF estimate 

A simple non-parametric estimate of the cumulative distribution function comes from the ECDF of the observed z-

values, �̂�(𝑐) = #{𝑗: 𝑧𝑗 ≤ 𝑐} 𝑚⁄  for 𝑗 ∈ (1, … ,𝑚) (where #{𝐴} denotes the number in set 𝐴). For a general region Γ, 

we define the ECDF-type estimator �̂�(Γ) = #{𝑗: 𝑧𝑗 ∈ Γ} 𝑚⁄  for 𝑗 ∈ (1, … ,𝑚). For upper-tail rejection regions with 

𝜋0 = 1 assumed, we get an estimated global FDR of 

 �̂�([𝑧𝑖 ,∞)) =
𝜋0 ⋅ 𝐹0([𝑧𝑖 ,∞))

�̂�([𝑧𝑖 , ∞))
=
1 ⋅ [1 − Φ(𝑧𝑖)]

𝑖 𝑚⁄
, (2.9) 

where Φ(𝑧) is the standard Normal distribution and the denominator is simplified under the assumption that the 

(𝑧1, … , 𝑧𝑚) are the reverse order statistics for the z-values 𝑧1 ≥ 𝑧2 ≥ ⋯ ≥ 𝑧𝑚 such that #{𝑗: 𝑧𝑗 ≥ 𝑧𝑖} = 𝑖. Some 

estimators exceed 1 because of the plug-in estimation strategy and the conservative bounding of 𝜋0. When �̂�(𝑧𝑖) >

1 it is standard practice to truncate the estimate at 1. Technical notes are provided in the Appendix (Remark 2.O). 

This estimator is easy to use and apply. Figure 2.3(a) shows the true Bayes pFDR of the underdispersed simulation 

along with the estimate from Equation (2.9). The FDR estimate does not match the true FDR curve well (even when 

the true value for 𝜋0 of 0.9 is used for Equation (2.9)) because the assumed theoretical null does not hold. The 

estimator applied to the SNP example (Figure 2.3(b)) is a good illustration of how non-smooth the ECDF estimator 

can be, and how the q-values could be helpful in such a situation. However, the q-values are less useful in Figure 

2.3(a), where the roughly bimodal nature of the curve is due to erroneous assumptions about the null. 

An important connection to note is that the BH adjusted p-value is equal to the estimated q-value when 

using Equation (2.9). That is, �̂�(𝑧𝑖) = min
𝑧≤𝑧𝑖

�̂�(𝑧) = �̃�𝑖
𝐵𝐻 for �̂�(𝑧) estimated by Equation (2.9). This derivation is 

given in the Appendix (Remark 2.P). The quantities are illustrated in Figure 2.4 for the simple simulation, which 

also helps to illustrate the distinction between the pFDR and q-value. This connection sometimes encourages BH 

adjusted p-values to be mistaken for FDRs. However, q-values are actually thresholded FDRs, and this equality only 

holds for BH derived q-values. In this setting rejecting features with q-values less than or equal to pre-specified    
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(a) (b) 

  
(c)  (d) 

  
 

Figure 2.3      Estimated FDR quantities using the theoretical null and ECDF-based estimators (Equation (2.9) and 

corresponding local version). The two-sided pFDR is shown instead of the upper tail pFDR. When applicable, the 

original unbounded estimates are shown and the 𝐹𝐷𝑅 > 1 region is shaded in grey. For the underdispersed 

simulation, the estimates using the true 𝜋0 = 0.9 in place of 𝜋0 = 1 are also provided. The horizontal black dashed 

line is at 0.05. (a) True and estimated pFDR (and q-values) for the underdispersed simulation, (b) Estimated pFDR 

(and q-values) for the SNP example, (c) True and estimated local FDR for the underdispersed simulation, (d) 

Estimated local FDR for the SNP example. 
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Figure 2.4      Connection between the Benjamini-Hochberg procedure and the pFDR and q-value. The pFDR 

estimated as described in Section 2.3.5.1 and the Benjamini-Hochberg adjusted p-value, which is equivalent to the 

q-value calculated from the pFDR using ECDF mixture estimates, for the simple simulation. The unadjusted p-

values are also shown, along with an example 0.05 cutoff as the horizontal dashed black line. 

 

level 𝑞 would result in an FDR-controlled procedure because it is equivalent to the BH procedure. However, when 

q-values are derived by other means, FDR control does not necessarily follow (it must be evaluated on a case-by-

case basis). 

Estimation of the local FDR requires an estimate of the mixture density rather than the mixture distribution 

function, and a similar non-parametric approximation can be obtained by discretizing the z-values into bins (Efron 

2010b); the details of this estimate are provided in the Appendix (Remark 2.Q). The resulting estimates are shown 

in Figures 2.3(c)-(d). These estimates are highly locally variable, particularly in areas where there is little 

information (i.e., few z-values) such as in the left tail of the distribution in the simulation or the right tail of the 

distribution in the SNP example. However, in our simulation, we see that they still tend to follow the true local FDR 

curve. Because of the instability and resulting local bias, this estimator is not recommended for use in practice, but 

is helpful for comparison purposes. 

 

2.3.5.2 Lindsey’s method 

Smoothing the empirical mixture z-value distribution can help reduce the volatility of ECDF-based methods. Here 

we use Lindsey’s method because it is flexible and relatively straightforward. Briefly, Lindsey’s method uses the 

observed histogram of z-values to model the height of each bin, 𝑦𝑘 , as a flexible function of the bin center point 𝑥𝑘 

(for example, as a 𝐽-order polynomial or spline function) using a Poisson count model (Lindsey 1974; Efron and 

Tibshirani 1996). The estimated mixture density is calculated by �̂�(𝑧) = �̂�(𝑧) (2𝛿 ⋅ 𝑚)⁄  where 2𝛿 is the histogram 

bin width and �̂�(𝑧) is the Poisson-model predicted count at 𝑧. Further details are given in the Appendix (Remark 

2.R) and the fitted distributions corresponding to various values of 𝐽 and 𝛿 are shown in Supplemental Figure 2.6. 
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This approach typically provides a nice smooth fit to the z-value distribution, although sometimes care must be 

taken with choosing the flexibility parameter 𝐽. 

Using this approach, the estimate of the pFDR for the upper tail rejection region is 

 �̂�([𝑧𝑖 ,∞)) =
𝜋0 ⋅ 𝐹0([𝑧𝑖 ,∞))

∫ �̂�(𝑧)𝑑𝑧
∞

𝑧𝑖

=
1 ⋅ [1 − Φ(𝑧𝑖)]

∫ �̂�(𝑧)𝑑𝑧
∞

𝑧𝑖

, (2.10) 

assuming that 𝜋0 = 1 and the theoretical null holds. The corresponding local FDR estimate is �̂�𝑙(𝑧𝑖) =

𝜋0 ⋅ 𝑓0(𝑧𝑖) �̂�(𝑧𝑖)⁄ = 1 ⋅ 𝑓0(𝑧𝑖) �̂�(𝑧𝑖)⁄ . Figures 2.5(a)-(d) show these pFDR and local FDR estimates for the 

underdispersed simulation and SNP examples, overlaid with the previous ECDF-based estimates from Equation 

(2.9). Lindsey’s method yields a nice smooth pFDR estimate that is similar to the Equation (2.9) estimate but does 

not suffer from high local variability. However, smoothing does not address the irregular shape and bias of the pFDR 

curve in the simulation (Figure 2.5(a)), because this is partly due to the violation of the theoretical null assumption. 

For this, we will turn to estimating the null distribution in Section 2.3.5.4. As before, q-values are not particularly 

useful in this simulation, and in the SNP example (Figure 2.5(b)), q-values do not add anything beyond the pFDR 

estimates because the smoothed mixture results in a smooth and unimodal pFDR estimate (after bounding at 1). 

 

2.3.5.3 Estimating the null proportion 

Rather than assuming the conservative bound of 1 for 𝜋0, many methods have been proposed for estimating 𝜋0 (or 

𝑚0). While these might provide less biased FDR estimates, they increase the estimation variance. Benjamini and 

Hochberg originally formalized a graphical approach proposed in (Schweder and Spjøtvoll 1982) for estimating 𝑚0, 

resulting in more powerful procedures for FWER control (Hochberg and Benjamini 1990) and FDR control 

(Benjamini and Hochberg 2000). Since then, many other methods have been described, including in (Storey and 

Tibshirani 2003; Efron 2010b; Murray and Blume 2021). Illustration of these selected estimation approaches are 

given in the Appendix (Remark 2.T). Some other methods proposed include, but are not limited to, (Pounds and 

Morris 2003; Broberg 2004; Langaas et al. 2005; Nettleton et al. 2005; Pawitan et al. 2005; Meinshausen 2006; 

Jiang and Doerge 2008). Review of some methods can be found in (Broberg 2005; Kang 2020). Any of these �̂�0 

estimates may be substituted for 𝜋0 in Equations (2.9) or (2.10), or their local FDR counterparts. In Section 2.3.5.4, 

we describe an estimation process for the null distribution, which conveniently incorporates 𝜋0 estimation. 

 

2.3.5.4 The empirical null 

Under the null, the assumption is that observed z-values are distributed as 𝑁(0,1). However, this assumption may 

be violated. For example, correlation among tests (e.g., among SNPs or imaging voxels) under the null would not 

lead to a 𝑁(0,1) mixture (it would be under- or over-dispersed). Efron proposes a direct estimation approach, 

assuming the null distribution has the form 𝑓0(𝑧) = 𝑁(𝛿0, 𝜎0). Two methods to jointly estimate the set of parameters   
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(a) (b) 

  
(c)  (d) 

  
 

Figure 2.5      Estimated FDR quantities using the theoretical null and Lindsey’s method estimators (Equation (2.10) 

and corresponding local version). The previous ECDF-based estimates are also given for comparison. The two-sided 

pFDR is shown instead of the upper tail pFDR. When applicable, the original unbounded estimates are shown and 

the 𝐹𝐷𝑅 > 1 region is shaded in grey. For the underdispersed simulation, the estimates using the true 𝜋0 = 0.9 in 

place of 𝜋0 = 1 are also provided. The horizontal black dashed line is at 0.05. (a) True and estimated pFDR for the 

underdispersed simulation, (b) Estimated pFDR for the SNP example, (c) True and estimated local FDR for the 

underdispersed simulation, (d) Estimated local FDR for the SNP example. 
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(𝛿0, 𝜎0, 𝜋0) have been described, the central matching (CM) method and the maximum likelihood (ML) method 

(Efron 2004, 2007b, 2010a). These methods are outlined in the Appendix (Remark 2.U). Efron concludes that the 

maximum likelihood method tends to produce estimates that are less variable but more prone to bias than those from 

the central matching approach. In our underdispersed simulation, the CM estimates are �̂�0(𝑧) = 𝑁(0.04, 0.87
2) with 

�̂�0 = 0.93 and the ML estimates are �̂�0(𝑧) = 𝑁(0.03, 0.92) with �̂�0 = 0.96 . Recall that the true null is 𝑁(0, 0.9) 

and 𝜋0 = 0.9 in this simulation. The resulting estimates from the SNP example are �̂�0(𝑧) = 𝑁(−0.04, 0.982) with 

�̂�0 = 0.99  for the CM approach and �̂�0(𝑧) = 𝑁(−0.015, 0.912) with �̂�0 = 0.93 for the ML approach. A visual 

illustration of the different fits is given in the Appendix (Remark 2.V) to help fix ideas. 

Using an empirical null distribution gives the general empirical Bayes estimator for the upper tail pFDR, 

 �̂�([𝑧𝑖 ,∞)) =
�̂�0 ⋅ �̂�0([𝑧𝑖 ,∞))

∫ �̂�(𝑧)𝑑𝑧
∞

𝑧𝑖

=
�̂�0 ⋅ [1 − �̂�0(𝑧𝑖)]

∫ �̂�(𝑧)𝑑𝑧
∞

𝑧𝑖

, (2.11) 

where �̂�0(𝑧) is 𝑁(�̂�0, �̂�0) with (�̂�0, �̂�0, �̂�0) estimated from either the central matching or maximum likelihood 

method. Here the mixture density �̂�(𝑧) is estimated via Lindsey’s method, however any approach may be used in 

combination with an empirical null estimate. The corresponding local FDR estimator is �̂�𝑙(𝑧𝑖) = �̂�0 ⋅ �̂�0(𝑧𝑖) �̂�(𝑧𝑖)⁄ . 

The resulting pFDR and local FDR estimates for the underdispersed simulation and SNP examples are provided in 

Figures 2.6(a)-(d) for both empirical null approaches. While the null distribution estimates are not exact matches to 

the true null distribution in the simulation, the empirical null does capture the underdispersion and helps correct 

much of the bias in the pFDR curve induced by using the 𝑁(0,1) null. We see that in the right tail of the local FDR 

curve in Figure 2.6(c), the estimates match the true FDR closely, but are unstable in the left tail of the curve. Because 

the local FDR estimate occurs at a single point (z-value) rather than averaging over a tail area, it is much more 

sensitive to the estimators that it is comprised of, particularly when a flexible non-parametric mixture estimator such 

as Lindsey’s method is used. In the case of the SNP example, we do not know the true pFDR curve and so it is not 

known which of the empirical null or theoretical null estimates are a better estimate. However, Figure 2.6(d) 

illustrates that the local FDR estimate does not always suffer from instability issues. While the empirical null can 

be important in obtaining correct FDR estimates, we restate that the estimated null parameters can be prone to bias 

and thus care must be taken when considering this approach, particularly when the number of tests 𝑚 is smaller. 

 

2.4 Discussion 

2.4.1 FDR testing and estimation 

There are a number of benefits and drawbacks of FDR controlling procedures and of FDR estimation approaches. 

When all underlying necessary assumptions are met, we can achieve strict control of the false discovery rate, which 

may be important in some circumstances. Control of the false discovery rate allows for more potential discoveries 

than control of the family wise error rate, and control at the 5% level, for example, continues to provide a reasonable 

rate of errors in many large-scale inference contexts. A wide array of methods for FDR control have been proposed 

with well-established properties, and some of which are more robust to violations of assumptions such as 
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 (a) (b) 

  
(c)  (d) 

  
 

Figure 2.6      Estimated FDR quantities using the empirical Null distribution with Lindsey’s method mixture estimate 

(Equation (2.11) and corresponding local version). The two-sided pFDR is shown instead of the upper tail pFDR. 

Both the maximum likelihood and central matching empirical null methods are shown. When applicable, the original 

unbounded estimates are shown and the 𝐹𝐷𝑅 > 1 region is shaded in grey. The horizontal black dashed line is at 

0.05. (a) True and estimated pFDR for the underdispersed simulation, (b) Estimated pFDR for the SNP example, (c) 

True and estimated local FDR for the underdispersed simulation, (d) Estimated local FDR for the SNP example. 
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independence among the tests. However, the prevailing drawback of FDR controlling algorithms is that they only 

focus on the overall FDR, i.e., the expected value of the random variable 𝑄 which also includes no rejections as no 

false rejections. For example, if we employ a procedure which controls the FDR at 5%, such as Benjamini-Hochberg, 

and this results in 100 rejected tests, can we say that we expect 5 or less of them to be false rejections? We have 

discussed that this is not the case; this is measured by the positive false discovery rate, and FDR control provides 

no information about what the pFDR is. 

Unfortunately, it is not possible to develop a rejection procedure which controls the pFDR under all 

circumstances. However, the most important scientific question we would like the answer to is that which the pFDR 

answers. An analogy can be made for FDR control versus estimation with basic principles: a significance test results 

in a yes or no decision (reject or not reject), and has well-defined frequency properties, but we would then like to 

know the strength of evidence or the effect size. Similarly, control of the FDR with an appropriate procedure gives 

us a clear answer of reject or not reject, but we would like to know more – namely, the propensity for observed 

results to be misleading, or how many to expect to be true discoveries. Therefore, we may employ a pFDR estimation 

method to approximate this answer. The probabilistic equivalent definition of the pFDR allows for an intuitive class 

of empirical Bayes methods for estimation. These methods may be flexible and more robust to deviations from some 

common assumptions. However, one drawback is that the focus remains still on the central tendency measure of the 

expected value of the false discovery proportion, and no attention is paid to the variance or minimum or maximum 

value. On average, a procedure may have a pFDR of 5%, but the distribution of 𝑉 𝑅⁄  could still range from 0 to 1. 

This means that the proportion of false rejections in a particular observed set of rejections could still be very large, 

such as 90% or 100%, with some probability greater than 0, even if on average it is 5%. Extensions to the standard 

pFDR – which conditions on a global tail area rejection region – such as the local pFDR or FDR may be considered, 

although their estimation is more challenging, and the resulting estimates may be biased or highly variable and could 

result in misleading interpretations of findings. One important topic of note that was not covered is variance 

estimates for false discovery rate estimates, either global or local. Efron covers this in detail, describing both 

theoretical approximation and bootstrap-based variance estimators (Efron 2007a, 2010a, 2010b). Currently this issue 

is often ignored in the literature in much the same way that the variability of the p-value is ignored. 

One drawback of standard false discovery rate approaches – for both FDR controlling and pFDR estimation 

– is that they rely on z-values or p-values, which confound effect size and standard error. See (Ploner et al. 2006; 

Stephens 2017) for alternative approaches. False discovery rates based on second-generation p-values (Blume et al. 

2018, 2019) also emphasize effect size and scientific relevance. This is covered in detail in Chapters 3 and 4. 

 

2.4.2 Advanced topics 

In this chapter we introduced several approachable and effective methods for estimating false discovery rate 

quantities and provided examples of how these methods behave in some cases to illustrate concepts. An evaluation 

and direct comparison of some important pFDR/FDR estimation methods are available in (Korthauer et al. 2019). 

Further developments in the field include false discovery rate estimates based on multi-dimensional statistics, which 
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can be used to incorporate information from any type of auxiliary covariate available in the data (e.g., Chong et al. 

2015; Alishahi et al. 2016; Chen et al. 2019). Some other notable advances are adaptive procedures which use an 

auxiliary or “informative” covariate to update the rejection threshold or a component of the FDR estimate (e.g., 

Boca and Leek 2018; Lei and Fithian 2018; Zhang et al. 2019) and the development of FDR estimates for “online” 

testing where the total number of tests 𝑚 is not yet known (such as Javanmard and Montanari 2018; Ramdas et al. 

2018; Robertson and Wason 2018). 

 

2.4.3 Recommendations for routine use of FDRs 

The critical takeaways for understanding and using false discovery quantities on a routine basis are:  

• Controlling the false discovery rate is less strict than controlling the family wise error rate and perfectly 

sufficient for maintaining scientific rigor in large-scale inference settings. 

• The positive false discovery rate (pFDR) is the expected fraction of observed results that are false. This is 

typically what scientists wish to control once results are observed and is therefore the relevant quantity to 

gauge and control. 

• The q-value parallels the p-value in definition and is less intuitive for describing the reliability of observed 

results. It makes more sense to simply report the tendency for the observed results to be misleading, which 

is the pFDR. 

• The local FDR is an even more direct inferential quantity. However, it faces additional challenges in 

estimation.  

• A variety of (empirical) Bayes methods have been proposed for estimating false discovery quantities. 

Methods that estimate the entire mixture distribution (e.g., Lindsey’s method), rather than the alternative 

distribution alone, are easier to implement and more suited for broad daily use (in our opinion).  

• Estimating the null distribution (e.g., assuming 𝑁(𝛿0, 𝜎0) rather than 𝑁(0,1)) adds a layer of flexibility and 

robustness that can be critical in some contexts. Relaxing this null assumption should considered as a 

routine sensitivity analysis. 

• Assuming 𝜋0 = 1 while estimating the FDR is usually not overly conservative and can simplify the pFDR 

estimation process considerably. Estimating 𝜋0 can however lead to less conservative pFDR estimates and 

a greater number of discoveries.  
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2.5 Appendix A: Remarks and supplemental content 

2.5.1 Remarks 

2.5.1.1 Remark 2.A: Details of simulations and examples 

In the simple simulation, generate 𝑚 = 1,000 random z-values where 𝜋0 = 0.85 of them come from the null 𝑁(0,1) 

distribution and 1 − 𝜋0 = 0.15 of them come from an alternate distribution of 𝑁(2.4,1). In the underdispersed 

simulation, generate 𝑚 = 50,000 random z-values where 𝜋0 = 0.9 of them come from an underdispersed null 

distribution 𝑁(0,0.9), and 1 − 𝜋0 = 0.1 of them come from underdispersed alternate distributions 𝑁(𝜃, 0.9), evenly 

divided between effect sizes of 𝜃 = 0.3, 1 and 3.  

The real example is set in the context of a single nucleotide polymorphism (SNP) genetic study. A SNP is 

a position on human DNA which has been identified to commonly have variation in the nucleotide sequence or 

allele. These variations may be associated with disease and therefore are typically studied in connection with health 

conditions. Any allele at a SNP position that is prevalent in less than 50% of the population is referred to as a variant 

allele. For each person in the sample, we measure the number of variant alleles, with possible values 0, 1, or 2, 

because humans have 2 copies of each chromosome, and therefore the variant allele can be present at the specified 

genome position in none, one, or both of the copies of the chromosome. In the prostate cancer SNP example, data 

on 3,894 individuals (2,511 cases with prostate cancer and 1,383 controls without prostate cancer) comes from the 

International Consortium for Prostate Cancer Genetics (ICPCG) (Schaid and Chang 2005). To assess potential 

association between a SNP and prostate cancer, a logistic regression model was used with number of variant alleles 

treated as a continuous predictor variable. Further background on the data and how it was processed is detailed in 

(Blume et al. 2019). Because some of the SNPs had a constant (or nearly constant) number of variant alleles across 

all subjects, some models were not identifiable and these were screened out. Ultimately, we have 224,866 z-statistics 

corresponding to SNPs from chromosome six.  

 

2.5.1.2 Remark 2.B: Mapping of test statistics to z-values 

Much of the work in FDR estimation can be applied to the original p-values (with a number of original papers 

presented only in that context) but transformation to the z-value space can be beneficial, for working in the 

unconstrained 𝑁(0,1) distribution rather than the 𝑈𝑛𝑖𝑓(0,1) distribution. If the sign of the original test statistics is 

not relevant (as in the case of a 𝜒2 statistic), we can simply use the calculated p-values and the transformation 𝑍𝑖 =

Φ−1(𝑝𝑖) to transition to the z-value space. In this case, small p-values will be mapped to larger negative z-values 

(e.g., 𝑝𝑖 = 0.029 to 𝑧𝑖 = −1.896) and larger p-values will be mapped to z-values near 0 and (with p-values near 1 

mapped to large positive z-values).  

For original test statistics where the sign of the test statistic can be helpful to preserve, such as with t-

statistics, more care must be taken with the transformation. As noted in the main text, using the original statistics 

𝑇1, … , 𝑇𝑚 with distribution function 𝑇𝑖 ∼ 𝐹0(𝑇) under the null hypothesis and the transformation 𝑍𝑖 = Φ
−1(𝐹0(𝑇𝑖)) 

will give us a direct z-value mapping. If using the p-values, specialized transformations are needed, aside from 

lower-tail one-sided p-values where 𝑍𝑖 = Φ
−1(𝑝𝑖) = Φ

−1(𝐹0(𝑇𝑖)) gives z-values with the correct original sign of 
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𝑇𝑖. For upper-tail one-sided p-values, we need to use 𝑍𝑖 = Φ
−1(1 − 𝑝𝑖) to obtain z-values with the same original 

sign as 𝑇𝑖. For two-sided p-values, we cannot perform a sign-preserving transformation from the p-values alone and 

would need to know at least the sign of the original test statistic. Therefore, there is no reason not to use the direct 

mapping 𝑍𝑖 = Φ
−1(𝐹0(𝑇𝑖)). The only exception would be an unusual case encountered where the p-values are 

provided along with the test statistics (or at least their signs), but the type of test statistic is not known such that 

𝐹0(𝑇) is not known. Then, the mapping 𝑍𝑖 = Φ
−1(𝑝𝑖/2) × sign(𝑇𝑖) = Φ

−1(𝑝𝑖/2) × (𝐼(𝑇𝑖 > 0) ⋅ 2 − 1) =

Φ−1(𝑝𝑖/2) × (−𝐼(𝑇𝑖 < 0) + 𝐼(𝑇𝑖 > 0)) could be used.  

 

2.5.1.3 Remark 2.C: Scientific validity of controlling FDR vs FWER 

When we perform a large number of tests, making a handful of false discoveries, while not desirable, may not be a 

big concern especially when it comes with the benefit of increased power such that we can reject a larger number of 

hypotheses. For example, if we reject 100 tests, 5 of which are false discoveries, the observed FDP is 𝑣 max(𝑟, 1)⁄ =

5 max(100,1)⁄ = 0.05. This does not seem like such as bad deal. Hypothetically, if a multiple comparisons 

procedure makes only 5 false discoveries in 100 every time the experiment is hypothetically repeated, i.e., the FDP 

is controlled at 5%, this could be a desired testing procedure. This is particularly the case in large-scale inference 

where the mass significance testing is often used as a screening procedure for findings. That is, if a set of genes is 

found to be associated with prostate cancer occurrence, these results won’t be used immediately to inform diagnostic 

medical practice. Rather, they will typically be used to inform further research. Therefore, while wasting resources 

is of concern, the impact of false discoveries in large-scale inference on human health is not generally thought to be 

an issue.  

 

2.5.1.4 Remark 2.D: Calculation of FWER and FDR 

For the random variable 

 𝐹𝐷𝑃 = 𝑄 =
𝑉

max(𝑅, 1)
 =  {

𝑉 𝑅⁄   when  𝑅 > 0
0         when  𝑅 = 0

,  

the family-wise error rate is 𝐹𝑊𝐸𝑅 = Pr(𝑉 ≥ 1) = Pr(𝑉 > 0) = Pr(𝑄 > 0), such that 

𝐹𝑊𝐸𝑅 = 𝑃𝑟(𝑄 > 0) = 1 − Pr(𝑄 = 0) 

= 1 − (Pr(𝑄 = 0|𝑅 = 0) ⋅ Pr(𝑅 = 0) + Pr(𝑄 = 0|𝑅 > 0) ⋅ Pr(𝑅 > 0)) 

= 1 − (1 ⋅ Pr(𝑅 = 0) + Pr(𝑉 𝑅⁄ = 0|𝑅 > 0) ⋅ Pr(𝑅 > 0)) 

= 1 − Pr(𝑅 = 0) − Pr(𝑉 = 0|𝑅 > 0) ⋅ Pr(𝑅 > 0) 

= 1 − Pr(𝑅 = 0) − Pr(𝑅 > 0) ⋅∑ Pr(𝑉 = 0|𝑅 = 𝑟,𝑅 > 0) ⋅ Pr(𝑅 = 𝑟|𝑅 > 0)
𝑚

𝑟=1
 

= 1 − Pr(𝑅 = 0) − Pr(𝑅 > 0) ⋅∑ Pr(𝑉 = 0|𝑅 = 𝑟) ⋅
Pr(𝑅 > 0|𝑅 = 𝑟) ⋅ Pr (𝑅 = 𝑟)

Pr(𝑅 > 0)

𝑚

𝑟=1
 

= 1 − Pr(𝑅 = 0) −∑ Pr(𝑉 = 0|𝑅 = 𝑟) ⋅ Pr(𝑅 = 𝑟)
𝑚

𝑟=1
. 
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The false discovery rate denoted by 𝒬𝑒 is  

𝐹𝐷𝑅 ≔ 𝒬𝑒 = 𝐸[𝑄] = 𝐸[𝑉 𝑅⁄ |𝑅 > 0] ⋅ Pr(𝑅 > 0) 

= Pr(𝑅 > 0) ⋅∑ 𝐸[𝑉 𝑅⁄ |𝑅 = 𝑟, 𝑅 > 0] ⋅ Pr(𝑅 = 𝑟|𝑅 > 0)
𝑚

𝑟=1
 

= Pr(𝑅 > 0) ⋅∑
𝐸[𝑉|𝑅 = 𝑟]

𝑟
⋅
Pr(𝑅 > 0|𝑅 = 𝑟) ⋅ Pr(𝑅 = 𝑟)

Pr(𝑅 > 0)

𝑚

𝑟=1
 

=∑
1

𝑟
⋅

𝑚

𝑟=1
𝐸[𝑉|𝑅 = 𝑟] ⋅ Pr(𝑅 = 𝑟).  

The number of false rejections 𝑉 is a Binomial random variable 𝑉 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑚0, 𝛼) when assuming the tests are 

independent with fixed identical type I error rate 𝛼 and the number of true rejections 𝑈 is a Binomial random variable 

𝑈 ∼ 𝐵𝑖𝑛𝑜𝑚(𝑚1, 1 − 𝛽) when assuming the tests are independent with fixed identical type II error rate 𝛽. Thus 𝑅 =

𝑉 + 𝑈 is the convolution of these two independent Binomial random variables. The conditional distribution of 𝑉|𝑅 

(i.e., 𝑉|𝑉 + 𝑈, the conditional distribution of two Binomial random variables conditioned on their sum) follows 

Fisher’s noncentral hypergeometric distribution. We can use `convpow` in the R package `distr` to easily obtain the 

pdf for 𝑅, Pr(𝑅 = 𝑟). The R package `BiasedUrn` provides the pdf Pr(𝑉 = 𝑣|𝑅 = 𝑟) using dFNCHypergeo(x=𝑣, 

n=𝑟,  m1=𝑚0, m2=𝑚1, odds=𝛾) and the expected value 𝐸[𝑉|𝑅 = 𝑟] using meanFNCHypergeo(m1=𝑚0, m2=𝑚1, 

n= 𝑟, odds= 𝛾), where 𝛾 = (𝛼 (1 − 𝛼)⁄ ) ((1 − 𝛽) 𝛽⁄ )⁄ .  

 

2.5.1.5 Remark 2.E: Data tables for rejection procedures of interest 

Supplemental Table 2.1(a) displays the known elements of the data table from our SNP example using an unadjusted 

rejection region of 𝛤 = [1.64,∞). There are 10,637 z-values that fall in the rejection region for the SNP example, 

but we are unable to fill in the first two columns of the data table, because we do not know the truth of each 

hypothesis under consideration. Supplemental Table 2.1(b) displays the known elements of the data table for the 

Bonferroni procedure, and Supplemental Table 2.1(c) displays the known elements of the data table for the 

Benjamini-Hochberg (BH) procedure. We can see that there are much fewer rejections in than in the unadjusted 

setting, but that the BH procedure has almost double the rejections than for the Bonferroni procedure.  

 

2.5.1.6 Remark 2.F: Adjusted p-values 

The adjusted p-values for the simple simulation are shown in Supplemental Figure 2.1. We can see that the BH 

procedure provides a balance between the uncontrolled unadjusted procedure and the Bonferroni procedure. 

 

2.5.1.7 Remark 2.G: The marginal false discovery rate 

When Benjamini and Hochberg proposed 𝒬𝑒 as a measure of interest to control in large-scale testing, they discussed 

other alternative quantities that could be considered. One of the main reasons that Benjamini and Hochberg settled 

on 𝒬𝑒 is that many of the other quantities cannot be controlled in the strong or weak sense. Strong control of a 

quantity means that it can be controlled at a certain level no matter how many of the hypotheses are truly null, while  



28  

Supplemental Table 2.1      Partially filled data table summarizing the results of a multiple testing analysis for the 

SNP example for various rejection regions or procedures. The rows correspond to the results of the analysis (reject 

or inconclusive), while the columns correspond to the truth or falsehood of the 𝑚 null hypotheses. Unknown values 

are shaded in grey. (a) Unadjusted upper-tail z-value rejection region of  [1.64,∞), (b) Bonferroni procedure, and 

(c) Benjamini-Hochberg procedure. 

 

(a) Unadjusted 

 

 
Null 

(𝒯) 
Alt. 

(ℱ) 
Total 

Reject (ℛ) ? ? 10,637 

Inconclusive (ℐ) ? ? 214,229 

Total ? ? 224,866 
 

 

(b) Bonferroni  

 

 
Null 

(𝒯) 
Alt. 

(ℱ) 
Total 

Reject (ℛ) ? ? 16 

Inconclusive (ℐ) ? ? 224,850 

Total ? ? 224,866 
 

 

(c) Benjamini-Hochberg (BH) 

 

 
Null 

(𝒯) 
Alt. 

(ℱ) 
Total 

Reject (ℛ) ? ? 28 

Inconclusive (ℐ) ? ? 224,838 

Total ? ? 224,866 
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Supplemental Figure 2.1       Adjusted p-values for the Benjamini-Hochberg procedure applied to the simple 

simulation. The black points are the unadjusted p-values, the red points are the Bonferroni adjusted p-values, and 

the blue points are the Benjamini-Hochberg adjusted p-values. The x-axis is the p-value index, with 1 indicating the 

smallest p-value in the data and 1,000 indicating the largest p-value in the data. The black dotted horizontal line is 

the classic 0.05 cutoff. 

 

weak control for a quantity means that it can be controlled at a certain level only if all the hypotheses are truly null. 

The two major alternatives discussed by BH are 𝐸[𝑉] 𝐸[𝑅]⁄  and the pFDR (discussed in Section 2.3).  

The quantity 𝐸[𝑉] 𝐸[𝑅]⁄  is often referred to in the literature as the marginal false discovery rate (mFDR). 

In many cases, the marginal FDR and the pFDR are approximately equal, and under a certain set of assumptions, 

they are exactly equivalent. However, there are drawbacks to the marginal FDR, particularly that it does not assess 

the joint behavior of 𝑉 and 𝑅, which is of more theoretical interest. See (Storey 2003; Tsai et al. 2003; Benjamini 

2010) for further discussion.  

 

2.5.1.8 Remark 2.H: The conditional false discovery rate 

Benjamini and Hochberg (1995) also discuss the conditional false discovery rate (cFDR), which is 𝑐𝐹𝐷𝑅 =

𝐸(𝑉 𝑅⁄ |𝑅 = 𝑟) = 𝐸(𝑉|𝑅 = 𝑟) 𝑟⁄ . This quantity is close to the quantity 𝐸(𝑉) 𝑟⁄  discussed originally in (Sorić 1989) 

which was the inspiration for the FDR, but the conditional expectation is not equal to the marginal expectation 

(𝐸(𝑉|𝑅 = 𝑟) ≠ 𝐸(𝑉)). Instead, 𝐸(𝑉) = ∑ 𝐸(𝑉|𝑅 = 𝑟) × Pr(𝑅 = 𝑟)𝑚
1 . The cFDR is a more properly defined 

inferential quantity than 𝐸(𝑉) 𝑟⁄  (sometimes called the empirical FDR), because it keeps the connection of the joint 

relationship between 𝑉 and 𝑅. Tsai et al. (2003) and Pounds and Cheng (2004) (among others) have provided nice 

mathematical forms for and estimation of the cFDR and argue that it is the preferable quantity to the pFDR. In 

general, the cFDR and pFDR have a lot of properties in common. In fact, under the two-groups mixture model setup 

discussed in Section 2.3.2, the cFDR is equal to the pFDR and the mFDR. The argument that cFDR is better than 

the other quantities for summarizing observed results of an experiment because it conditions on the actual number 

of observed rejections does not necessarily provide us with any more precise inference. Rather, we would prefer to 
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focus in on the local FDR (discussed in Section 2.3.4), which conditions on the value of the z-value or p-value, 

rather than conditioning on the less natural idea of other experiment repetitions which produce the same number of 

rejections.  

 

2.5.1.9 Remark 2.I: k-family wise error rate and k-false false discovery rate 

Alternatives to the traditional FWER and FDR which allow a larger level of false discoveries have been proposed. 

The family-wise error rate has been generalized to 𝑘𝐹𝑊𝐸𝑅 = 𝑃(𝑉 ≥ 𝑘), so that any number of false discoveries 

less than 𝑘 does not “count” as an error (Dudoit et al. 2004). The false discovery rate has been generalized to 

𝑘𝐹𝐷𝑅 = 𝐸(𝑉 ⋅ 𝟏{𝑉≥𝑘} 𝑅⁄ ⋅ 𝟏{𝑅>0} + 0 ⋅ 𝟏{𝑅=0}), where again we only start “counting” false discoveries once they 

have passed a certain threshold of 𝑘 false discoveries (Sarkar 2007).  

 

2.5.1.10 Remark 2.J: Exceedance control 

Another generalization, referred to as “exceedance control”, bounds a different aspect of the FDP distribution. 

Instead of controlling the expectation of 𝑄, the tail-area probability of 𝑄 is controlled. That is, 𝑃(𝑄 > 𝛾) is bounded 

for a pre-specified value of 𝛾 ∈ (0,1). More on this can be found in (Genovese and Wasserman 2002, 2004; Romano 

and Wolf 2007). Various methods proposed for such control have been described, see for example (Korn et al. 2004; 

van der Laan et al. 2004; Lehmann and Romano 2005; Genovese and Wasserman 2006; Döhler and Roquain 2020).  

 

2.5.1.11 Remark 2.K: Rejection procedure and p-value ordering 

In almost all accepted large-scale testing methods, the ranking of observed p-values is respected by the rejection 

rules. This means that, by convention, a hypothesis with a smaller p-value 𝑝𝐴 may not fail to reject null hypothesis 

𝐻0
𝐴 if any hypothesis with a larger p-value 𝑝𝐵 rejects null hypothesis 𝐻0

𝐵 . False discovery rates usually follow this 

convention, although not in all cases (i.e., if one is willing to use another measure of evidence such as the Likelihood 

ratio, a posterior probability, or the second-generation p-value). This condition is sometimes imposed ad-hoc (such 

as with q-values, as we see in Section 2.3.3). 

 

2.5.1.12 Remark 2.L: More illustration of q-value vs pFDR 

An illustration of how the q-value operates, forcing the estimated pFDR to be monotone decreasing in the case of 

one-sided upper tail area rejection regions (or unimodal, in the case of two-sided rejection regions) is shown in 

Supplemental Figure 2.2. From this figure, we see that the pFDR and the q-value are often very close. However, 

these two quantities can be substantially different, as is seen in later sections of the chapter (e.g., Figure 2.3(a)).  
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Supplemental Figure 2.2       Illustration of q-values, showing an estimated pFDR and the corresponding estimated 

q-values. 

 

2.5.1.13 Remark 2.M: Local FDR interpretation 

In the rate-based form of the local FDR, 𝐸[𝑉 𝑅⁄ |𝑅 > 0; Γ = {𝑧𝑖}], the interpretation may be difficult because it is 

not that common for the results to contain more than 1 or 2 z-values that are exactly equal to 𝑧𝑖 , even in large-scale 

inference. This issue may be dealt with by some expanded local region (e.g., Γ = [𝑧𝑖 − 𝛿, 𝑧𝑖 + 𝛿)) for a carefully 

specified 𝛿. Alternatively, in the probabilistic form of the local FDR, Pr(𝐻 = 1|𝑍 = 𝑧𝑖), the interpretation is more 

straightforward.  

 

2.5.1.14 Remark 2.N: Global vs local FDR illustration 

The distinction between a global tail-area false discovery rate and the local false discovery rate in terms of the 

empirical Bayes estimation is illustrated conceptually in Supplemental Figure 2.3. 

 

2.5.1.15 Remark 2.O: Further technical details on the ECDF estimator 

The simplest form of the upper-tail area pFDR estimate, as in Equation (2.9), results when 𝑧1 , … , 𝑧𝑚 are defined to 

be the reverse order statistics such that 𝑧1 ≥ 𝑧2 ≥ ⋯ ≥ 𝑧𝑚, i.e., the 𝑧𝑖  are in decreasing order. In this case, 

#{𝑗: 𝑧𝑗 ≥ 𝑧𝑖} = 𝑖. We will also make use of  #{𝑗: 𝑧𝑗 ≤ 𝑧𝑖} = 𝑚 − #{𝑗: 𝑧𝑗 > 𝑧𝑖} =  𝑚 − #{𝑗: 𝑧𝑗 ≥ 𝑧𝑖−1} = 𝑚 − (𝑖 −

1). 

Recall that the probabilistic form of the pFDR from Equation (2.6) is 𝜙(Γ) =

𝜋0 ⋅ Pr (𝑍 ∈ Γ|H = 0) Pr(𝑍 ∈ Γ)⁄ . For one-sided upper-tail area pFDRs, this can be written as 𝜙([𝑧,∞)) =

𝜋0 ⋅ Pr(𝑍 ≥ 𝑧|H = 0) Pr(𝑍 ≥ 𝑧)⁄ , with an estimator �̂�([𝑧𝑖 ,∞)) = 1 ⋅ (1 − Φ(𝑧𝑖)) 𝑃�̂�(𝑍 ≥ 𝑧𝑖)⁄  assuming 𝜋0 = 1 

and that the theoretical 𝑁(0,1) null holds.  
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(a)  (b)  

  
 

Supplemental Figure 2.3       Illustration of global pFDR vs local FDR. The red line (and shaded area) is the null 

distribution, and the blue line (and shaded area) is the mixture distribution. (a) The global pFDR as a ratio of tail 

areas, (b) the local FDR as a ratio of densities at the observed summary measure. 

 

We can use either the formal ECDF estimate �̂�(𝑐) or the generalized ECDF-type estimate �̂�(Γ) =

#{𝑗: 𝑧𝑗 ∈ Γ} 𝑚⁄  to derive the denominator 𝑃�̂�(𝑍 ≥ 𝑧𝑖). For using the formal ECDF, the pFDR denominator can be 

written as 𝑃�̂�(𝑍 ≥ 𝑧𝑖) = 1 − 𝑃�̂�(𝑍 < 𝑧𝑖) = 1 − 𝑃�̂�(𝑍 ≤ 𝑧𝑖+1), with the last equality holding because we are 

utilizing a stepwise estimate. The formal ECDF estimate is �̂�(𝑧𝑖) = #{𝑗: 𝑧𝑗 ≤ 𝑧𝑖} 𝑚⁄ = (𝑚 − (𝑖 − 1)) 𝑚⁄ = 1 −

(𝑖 − 1) 𝑚⁄ . So, we have that 𝑃�̂�(𝑍 ≥ 𝑧𝑖) = 1 − 𝑃�̂�(𝑍 ≤ 𝑧𝑖+1) = 1 − �̂�(𝑧𝑖+1) = 1 − (1 − ((𝑖 + 1) − 1) 𝑚⁄ ) =

𝑖 𝑚⁄ . 

For using the generalized ECDF-type estimator, the denominator is 𝑃�̂�(𝑍 ≥ 𝑧𝑖) = �̂�([𝑧𝑖 , ∞)) =

#{𝑗: 𝑧𝑗 ∈ [𝑧𝑖 , ∞)} 𝑚⁄ = #{𝑗: 𝑧𝑗 ≥ 𝑧𝑖} 𝑚⁄ = 𝑖 𝑚⁄ , with the last equality holding again because the 𝑧𝑖  are in decreasing 

order. Either approach gives us 𝑃�̂�(𝑍 ≥ 𝑧𝑖) = 𝑖 𝑚⁄ , such that  

 �̂�([𝑧𝑖 , ∞)) =
1 ⋅ (1 − Φ(𝑧𝑖))

𝑖 𝑚⁄
. ∎ 

Note that because we can estimate the pFDR for any value of 𝑧, not only those observed z-values in the 

data, we technically need to adjust the estimate �̂�([𝑧,∞)) to account for values of 𝑧 outside of the observed range 

of z-values. Otherwise, the denominator of the pFDR estimate in Equation (2.9) would be 0, resulting in an undefined 

pFDR estimate. We can do this by defining  

 �̂�([𝑧,∞)) = {
𝑖 𝑚⁄ ,   if 𝑧 ≤ max(𝑧1, … , 𝑧𝑚)  

1 𝑚⁄ ,   if 𝑧 > max(𝑧1, … , 𝑧𝑚)  
.  

More generally, we could also write the modification as �̂�(Γ) = max(#{𝑗: 𝑧𝑗 ∈ Γ}, 1) 𝑚⁄ .
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2.5.1.16 Remark 2.P: Derivation of Benjamini-Hochberg adjusted p-value equality to estimated FDR 

The equivalence of the Benjamini-Hochberg adjusted p-value to the pFDR, estimated as in Section 2.3.5.1, with the 

ECDF, holds for any p-value type (lower tail, upper tail, or two-sided), but we will show the derivation only for the 

upper-tail setting that we have been working with.  

For Equation (2.9) we have defined the 𝑧1, … , 𝑧𝑚 to be the reverse order statistics such that 𝑧1 ≥ ⋯ ≥ 𝑧𝑚. 

The corresponding one-sided upper tail p-values are thus in increasing order, i.e., they are the order statistics 𝑝(1) ≤

⋯ ≤ 𝑝(𝑚), using the conventional notation. To be clear, 𝑝(1) is the p-value corresponding to 𝑧1 (the smallest p-value 

and largest z-value), 𝑝(2) is the p-value corresponding to 𝑧2 (the second smallest p-value and second largest z-value), 

and so on with 𝑝(𝑖) = 1 − Φ(𝑧𝑖).  

We can write the estimated q-value as �̂�(𝑧𝑖) = min
𝑐≤𝑧𝑖

�̂�([𝑐,∞)) = min
𝑘:𝑧𝑘≤𝑧𝑖

�̂�([𝑧𝑘 , ∞)), taking estimates 

across only the observed set of z-values rather than the whole continuous z-value interval. The set {𝑘: 𝑧𝑘 ≤ 𝑧𝑖} can 

be simplified to 𝑘 ≥ 𝑖 because the 𝑧𝑖  are in decreasing order, so we end up with �̂�(𝑧𝑖) = min
𝑘≥𝑖

�̂�([𝑧𝑘 ,∞)). 

Substituting the estimator of Equation (2.9) in, �̂�(𝑧𝑖) = min
𝑘≥𝑖

(1 − Φ(𝑧𝑘)) (𝑘 𝑚⁄ )⁄ . Note that the numerator is equal 

to the p-value in this case, thus �̂�(𝑧𝑖) = min
𝑘≥𝑖

𝑝(𝑘) (𝑘 𝑚⁄ )⁄ , which equals the adjusted Benjamini-Hochberg p-value 

�̃�(𝑖)
𝐵𝐻 = min

𝑘≥𝑖
(𝑝(𝑘) (𝑘 𝑚⁄ )⁄ ) defined in Section 2.2.3. Therefore, the BH adjusted p-value is equal to the q-value, a 

modified pFDR quantity, in the following setting: we assume 𝜋0 = 1, it is assumed that the theoretical null of 𝑁(0,1) 

holds, and the ECDF is used to non-parametrically estimate the mixture distribution.  

 

2.5.1.17 Remark 2.Q: Local FDR non-parametric mixture density approximation estimate 

The local FDR requires the density rather than the distribution function, therefore the simple ECDF estimate 

described in Section 2.3.5.1 is not sufficient for a comparable simple local FDR estimate. Efron (2010b) utilizes the 

following approach: discretize the observed z-values 𝑧1, … , 𝑧𝑚 according to bins of width 2𝛿 (with 𝛿 > 0) such that 

the histogram has a corresponding number of bins 𝐾 to accommodate the range of the observed z-values. Note that 

alternately, we could fix 𝐾 and then 𝛿 will be determined by the range of the observed z-values. Define 𝑥𝑘 to be the 

midpoint of bin 𝑘 and note that the bounds of bin 𝑘  are defined by 𝒵𝑘 = [𝑥𝑘 − 𝛿, 𝑥𝑘 + 𝛿). The estimator of 𝑓(𝑧) 

based on the observed z-values is defined as 

 �̂�(𝑧) =
#{𝑗: 𝑧𝑗 ∈ [𝑥𝑘′ − 𝛿, 𝑥𝑘′ + 𝛿)}

2𝛿 ⋅ 𝑚
,with 𝑘′ = {𝑘: 𝑧 ∈ 𝒵𝑘}.  

Note that this quantity is approximately equal to (�̂�(𝑥𝑘′ + 𝛿)− �̂�(𝑥𝑘′ − 𝛿)) 2𝛿⁄  with  �̂� being the ECDF as in 

Section 2.3.5.1. The same approximation is applied to the numerator 𝑓0(𝑧), and we get a simple estimator for the  
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local FDR as  

 �̂�𝑙(𝑧𝑖) =
𝜋0 ⋅ (𝐹0(𝑥𝑘′ + 𝛿)− 𝐹0(𝑥𝑘′ − 𝛿)) (2𝛿)⁄

�̂�(𝑧)
=
1 ⋅ 𝑚(𝐹0(𝑥𝑘′ + 𝛿)− 𝐹0(𝑥𝑘′ − 𝛿))

#{𝑗: 𝑧𝑗 ∈ [𝑥𝑘′ − 𝛿, 𝑥𝑘′ + 𝛿)}
,  

with 𝑘′ = {𝑘: 𝑧𝑖 ∈ 𝒵𝑘}. The bin width 2𝛿 will contribute to the noise and instability of the estimates – large numbers 

of bins will result in less biased but more noisy non-parametric estimates of the local false discovery rates  �̂�𝑙(𝑧𝑖). 

Local FDR estimates for various values of 𝐾 are shown in Supplemental Figure 2.4(a)-(d) for the simple simulation 

example. We use the simple simulation instead of the underdispersed simulation because it provides a clearer 

illustration of how varying 𝐾 might affect the estimate. While the exact nature of the curve varies quite a bit, the 

overall shape of the curve is roughly the same for each value of 𝐾 in this case, and lines up pretty well with the true 

FDR curve. 

 

2.5.1.18 Remark 2.R: Lindsey’s method 

Discretize the observed z-values 𝑧1, … , 𝑧𝑚 according to bins of width 2𝛿 (with 𝛿 > 0) such that the histogram has 

a corresponding number of bins 𝐾 to accommodate the range of the observed z-values. Alternately, fix the number 

of bins 𝐾 such that 𝛿 will be determined by the range of the observed z-values. Define 𝑥𝑘 to be the midpoint of bin 

𝑘 and note that the bounds of bin 𝑘  are defined by 𝒵𝑘 = [𝑥𝑘 − 𝛿, 𝑥𝑘 + 𝛿). Define 𝑦𝑘  as the count in each bin (i.e., 

the histogram height), 𝑦𝑘 = #{𝑗: 𝑧𝑗 ∈ 𝒵𝑘}. Model 𝑦𝑘  as a flexible function of 𝑥𝑘 (e.g., using a 𝐽-order polynomial 

or spline function) assuming a Poisson model. For example, fit the model 

 fit = glm(yk ~ splines::ns(xk, df = 7), family = “poisson”)  

in R. See the code in the Github repository (https://github.com/weltybiostat/FDRprimer) for more detail. The 

estimated density is then given by �̂�(𝑧) = �̂�𝑘 (2𝛿 ⋅ 𝑚)⁄ , where �̂�𝑘  is the fitted value of 𝑦𝑘  from the Poisson 

regression model evaluated at 𝑥𝑘 = 𝑧. This approach is described in (Efron and Tibshirani 1996) and is based off of 

work in (Lindsey 1974). 

 

2.5.1.19 Remark 2.S: Lindsey’s method fits 

Supplemental Figure 2.5(a)-(b) shows �̂�(𝑧), the estimated mixture for the underdispersed simulation using 𝐽 = 7 

and 𝛿 = 0.048 (from discretizing the z-values into 100 bins), and the SNP example using 𝐽 = 5 and 𝛿 = 0.056 

(also from discretizing the z-values into 100 bins). The mixture estimates fit the z-value curves very well and provide 

an almost exact estimate of the true mixture for the underdispersed simulation as seen in Supplemental Figure 2.5(a). 

For the SNP example, the default value of 𝐽 = 7 resulted in an improperly estimated density function where the 

right tail did not converge to 0. While the default of 𝐽 = 7 may work in many cases, this issue or others such as 

overfitting may arise and so the parameter 𝐽 may need to be adjusted. 

https://github.com/weltybiostat/FDRprimer
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(a) (b) 

  
(c) (d) 

  
 

Supplemental Figure 2.4       True and estimated local FDR as given by the estimate which uses the theoretical null 

and the empirical density approximation of the mixture distribution for the simple simulation, for both 𝜋0 = 1 and 

the true null proportion, 𝜋0 = 0.85. Both the unbounded and bounded FDR estimates are shown. (a) 𝐾 = 50, (b) 

𝐾 = 100, (c) 𝐾 = 120, and (d) 𝐾 = 150. 
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(a) (b) 

  
 

Supplemental Figure 2.5       Lindsey’s method estimates for the mixture distribution. (a) The mixture distribution 

estimated by Lindsey’s method for the underdispersed simulation, with 𝐽 = 7 and 𝐾 = 100 (purple line). The black 

line is the true mixture. (b) The mixture distribution estimated by Lindsey’s method for the real-world SNP example, 

with 𝐽 = 5 and 𝐾 = 100 (purple line). 

 

The fitted densities for varying values of 𝐽 and 𝐾 for the simple simulation are given in Supplemental 

Figure 2.6(a)-(f). There are noticeable issues with overfitting in Supplemental Figure 2.6(e)-(f) for 𝐽 = 15, where 

too much flexibility allows this to happen. For both 𝐾 = 100 and 𝐾 = 120, the right tail of the density does not 

converge to zero for all 𝐽 ≥ 9. This improperly estimated density issue mentioned above prevents us from estimating 

the pFDR and serves as another note of caution for examining the resulting Lindsey’s method fit for the chosen 

value of 𝐽, and adjusting as necessary. 

 

2.5.1.20 Remark 2.T: Examples of 𝝅𝟎 estimation 

One method described by Efron relies on the “zero assumption”, which assumes that the middle proportion of the 

histogram of z-values contain only those from the null distribution (Efron 2010b). Of course, unless all alternative 

z-values correspond to extremely large effects, there are likely to be some alternative z-values in this central 

proportion 𝒜0. However, the assumption is reasonable in large-scale inference where 𝜋0 is usually large and 

therefore an overwhelming majority of 𝑧 in 𝒜0 will be null. Mathematically, the assumption is that 𝑓1(𝑧) = 0 for 

𝑧 ∈ 𝒜0, where 𝒜0 contains the middle 𝛼0 ∗ 100% of the observed z-values. The proportion 𝛼0 is specified ahead 

of time, while the exact bounds of 𝒜0 will depend on observed z-value distribution. Efron argues that there is no 

methodical approach to selecting 𝛼0, but that differences in the 𝜋0 estimation do not typically have a meaningful 

effect and so the choice is not critical. As we have seen prior in Figure 2.3(a) and Figure 2.5(a), the difference 

between  𝑝𝐹𝐷�̂� for 𝜋0 = 1 and 𝜋0 = 0.9 is quite large near 𝑧 = 0 but is small for extreme values of 𝑧, where the 

bias is most relevant.  
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 (a) (b) 

  
(c) (d) 

  
(e) (f) 

  

Supplemental Figure 2.6       Mixture density estimated by Lindsey’s method for varying values of 𝐽 and 𝐾 for the 

simple simulation. The black line is the true mixture, and the purple lines are the mixture density estimates. For 

values of 𝐾 = 100 we have 𝛿 = 0.044 and for values of 𝐾 = 120 we have 𝛿 = 0.0366. (a) 𝐾 = 100 and  𝐽 = 5, 

(b) 𝐾 = 120 and 𝐽 = 5, (c) 𝐾 = 100 and 𝐽 = 7, (d) 𝐾 = 120 and 𝐽 = 7, (e) 𝐾 = 100 and 𝐽 = 15, and (f) 𝐾 = 120 

and 𝐽 = 15. 
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If we use this method in the underdispersed simulation and SNP examples with 𝛼0 = 0.50, we obtain 

estimates of  �̂�0
𝐸𝑓 = 1 for both. Other methods are similar in spirit to Efron’s, but operate differently, for example 

that of (Storey and Tibshirani 2003) and the (Murray and Blume 2021) “last histogram height” algorithm. These 

two methods assess the histogram of p-values and rely on the expectation that the histogram of null p-values should 

be uniform, and that large p-values are very likely to correspond to null results. For these two methods, we obtain 

estimates of �̂�0 = 1 for both methods for the underdispersed simulation and �̂�0
𝑆𝑇 = 1 and �̂�0

𝐿𝐻𝐻 = 0.96, 

respectively, for the SNP example. The last histogram height algorithm is easily implemented in R with the package 

`FDRestimation` with the function ̀ get.pi0`, and Storey and Tibshirani’s method with the use of the function `pi0est` 

in the R package `qvalue`.  

 

2.5.1.21 Remark 2.U: Empirical null estimation methods 

The two proposed empirical null estimation methods are described in further detail in (Efron 2004, 2007b, 2010b). 

Briefly, the central matching approach makes the “zero assumption” for 𝑧 ∈ 𝒜0 (see Remark 2.T), such that log 𝑓(𝑧) 

equals log 𝜋0𝑓0(𝑧) in the central region of the observed z-values. Assume also that log 𝑓(𝑧) has a quadratic form 

within 𝒜0 such that log 𝑓(𝑧) = 𝛽0 + 𝛽1𝑧 + 𝛽2𝑧
2 and fit with least squares to the estimate log �̂� from Lindsey’s 

method. Therefore, 𝛽0 + 𝛽1𝑧 + 𝛽2𝑧
2 = log 𝑓(𝑧) = log 𝜋0𝑓0(𝑧) and we can find a mapping between (𝛽0, 𝛽1 , 𝛽2) and 

(𝛿0, 𝜎0, 𝜋0) to obtain the estimates (�̂�0, �̂�0 , �̂�0). The maximum likelihood approach constructs the likelihood for 𝓏0, 

the collection of z-values that fall in 𝒜0, and obtains maximum likelihood estimates for the parameters (𝛿0, 𝜎0, 𝜋0). 

The likelihood is  

 𝑓𝛿0,𝜎0,𝜋0(𝓏0) = [(
𝑚

𝑁0
)𝜃𝑁0(1 − 𝜃)𝑚−𝑁0] [∏

𝜑𝛿0,𝜎0(𝑧𝑖)

𝐻0(𝛿0, 𝜎0)
𝐼0

]  

where 𝐼0 = {𝑖: 𝑧𝑖 ∈ 𝒜0}, 𝑁0 = #{𝐼0}, 𝐻0(𝛿0, 𝜎0) = ∫ 𝜑𝛿0,𝜎0(𝑧)𝑑𝑧
 

𝒜0
 with 𝜑𝛿0,𝜎0 the density for 𝑁(𝛿0, 𝜎0), and 𝜃 =

𝜋0𝐻0(𝛿0, 𝜎0) = Pr(𝑧𝑖 ∈ 𝒜0).    

 

2.5.1.22 Remark 2.V: Empirical null distribution fits 

The estimated null densities are shown in Supplemental Figure 2.7 for the underdispersed simulation and the SNP 

example. The true null distribution along with the theoretical 𝑁(0,1) null for 𝜋0 = 0.9 is shown for the 

underdispersed simulation and the theoretical null assuming 𝜋0 = 1 for the SNP example.  The overdispersion in 

the theoretical null can be seen somewhat in the tails of the distribution for the simulation, but the overestimates of 

𝜋0 from the true value of 0.9 mask this somewhat. In the case of the SNP example, the empirical null estimates are 

not much different than the theoretical null, which appears to fit the observed z-value distribution quite well. The 

unusual spikes in the histogram do not appear to cause much of an issue in the null estimation.  
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(a) (b) 

  
 

Supplemental Figure 2.7       Estimates of the empirical null in the examples. (a) Null densities estimated from the 

central matching and maximum likelihood approaches for the underdispersed simulation and (b) Null densities 

estimated from the central matching and maximum likelihood approaches in the real-world SNP data. 

 

2.5.1.23 Remark 2.W: Accompanying code 

The code used to generate the simulation data, figures, and tables is available at the following Github repository: 

https://github.com/weltybiostat/FDRprimer. 
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3.1 Introduction 

In many modern applications, the original problem of multiple comparisons (Tukey 1953), has grown vastly in scale 

to include hundreds of thousands, or even multiple millions of numbers of tests. The original solution, control of the 

family wise error rate (the probability of making one or more false rejection) (Tukey 1953; Ryan 1959) is no longer 

satisfactory in such cases, where a 5% chance of a single rejection of a null test is an exceedingly strict criteria 

(Brown and Russell 1997; Perneger 1998). Benjamini and Hochberg (1995) were the first to formalize an alternative 

proposal, the false discovery rate (FDR). However, as we have discussed extensively in Chapter 2, their formal 

definition of the FDR quantity does not answer the natural scientific question: what is the expected rate of false, i.e., 

null, discoveries when we observe a set of rejected tests? This question is answered instead by the positive false 

discovery rate, and equivalent to the Bayes FDR, which is written generally as 𝑃(null true | test rejected) (Efron, 

Storey, et al. 2001; Efron, Tibshirani, et al. 2001; Storey 2001a, 2001b, 2002, 2003). Various approaches to empirical 

estimation of this quantity continue to develop, with the vast majority for rejection procedures centered around the 

classical p-value (Storey and Tibshirani 2003; Tang et al. 2007; Efron 2010a;  Efron 2010b). 

The classical p-value remains the most common statistical measure used, despite its well-known 

shortcomings and misinterpretations (Greenland et al. 2016; Wasserstein and Lazar 2016). One of the most 

important shortcomings of the p-value is that it does not account for scientific relevance with the use of the point 

null hypothesis. A very small p-value could correspond to an effect size that is either indistinguishable from the null 

due to equipment tolerance/measurement error, or is not clinically meaningful in practice (e.g., a lengthy invasive 

procedure expected to extend a patient’s life by 15 minutes). However, an important reason that the p-value remains 

popular is that it’s seen as providing a single-number summary of the results of a scientific experiment. Indeed, it is 

often helpful to have a single number that indicates how “interesting” or relevant the results of an inferential test 

are, particularly for multiple testing scenarios, and especially large-scale inference settings, such as is in genetic, 

imaging, or microbiome studies. With one test or a small number of tests, an examination of estimated effects and 

confidence interval values together to assess real impact of significant effects may be completed. However, it is not 

feasible to do so for millions or many thousands of tests. Thus, a helpful single-number summary to filter or assess 

results, while accounting for the scientific context, remains key. The second-generation p-value (SGPV), an 

alternative to the p-value proposed by Blume et al. (2018), fits in well for this role. The SGPV is based on a pre-

specified definition of what effect sizes would be considered clinically relevant or interesting, as would be done in 
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equivalence testing or composite null hypothesis testing (Schuirmann 1987; Royall 1997; Blume 2002; Wellek 

2010).  

Application of false discovery rate concepts to the second-generation p-value may result in an improved 

inferential result, with focus on non-trivial, scientifically relevant results. This idea has been examined in a limited 

scope in prior work, such as (Blume et al. 2018, 2019). However, these make strong simplifying assumptions, and 

notably do not fully or rigorously incorporate the idea of an interval null hypothesis. In this chapter, we aim to 

provide a more comprehensive framework for, and examination of, the Bayesian FDR (i.e., pFDR), for second-

generation p-values. The broad definitions for key SGPV FDR quantities are straightforward. However, exact 

specification or calculation of these is not as simple and requires further investigation. The key quantities for 

calculation of the positive false discovery rate are the design probabilities – which outline the probabilities of 

observing a rejected test under the null and alternative design hypotheses, respectively – as well as the proportion 

of tests which are truly null. For the SGPV, which utilizes an interval or composite null hypothesis, the null design 

probability is not clearly defined. 

In this chapter, we present a variety of possible approaches to handle this specification, ranging from point 

value specifications to marginalization approaches, as well as the specification of the alternative design probabilities 

(which are ultimately needed to assess an analogous SGPV quantity, the false confirmation rate (FCR)). The 

behavior of these approaches, in terms of their impact on the false discovery rate quantities, are examined  in Section 

3.3.4. They vary in terms of complexity and ultimate usefulness. Of note, we find that the SGPV Bayes FDR will 

converge to 0, for all sensible choices of methods used for the null design probability and alternative design 

probability. The SGPV Bayes FCR will converge to 0 for most methods, except for those which place all of the 

weight exactly on the null boundary (in the latter case, the FCR will converge instead to 𝛼 2⁄ (𝛼 2⁄ + 𝑟−1)⁄ , where 

𝑟 is the prior odds). For the majority of considered null and alternative distributions, the SGPV FDR is smaller than 

that of the classical unadjusted p-value, with the exception being a setting where null effects are spread across Θ0, 

and all alternative effects are right at the null boundary – understandably, a challenging scenario. 

 In practice, to avoid specification of, and thus possible misspecification of, these design probabilities, some 

empirical Bayes estimation approaches are studied. If the empirically estimated mixture probability for second-

generation p-values is substituted in the denominator of the Bayes FDR and FCR quantities, then two things are 

accomplished: 1) only one of the design probabilities must be specified for each quantity, and 2) it is possible to 

calculate the upper bound of the quantities, rather than needing to specify the null proportion. However, we find 

that, while these are useful to a degree, more extensive empirical approaches are needed to reliably estimate the 

false discovery rate for second-generation p-values in practice. The upper bound estimator may be quite 

conservative, and the remaining necessary design probability specification can still have appreciable impacts on the 

resulting Bayes FDR quantities. 

Overall, we illustrate how second-generation p-values may be able to provide an improvement over the 

classical p-value in terms of false discovery rates for large-scale inference, by reducing the rate of both null and 

practically null effects in the set of rejected tests. However, we see that this false discovery rate may still be larger 
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than desired for small sample sizes. Further, obtaining an estimate of the false discovery rate should accompany 

usage in practice. While this chapter establishes this framework for SGPVs and studies preliminary empirical Bayes 

estimates, they will require further development before finding utility in real studies. In particular, reliable empirical 

estimation of the null proportion and the relevant design probabilities for second-generation p-values would allow 

for practical, impactful use.  

 

3.2 Second-generation p-value background 

To calculate a second-generation p-value (SGPV), an interval null hypothesis and corresponding alternative 

hypothesis for a parameter or value of interest, 𝜃, is specified as 

 𝐻0: 𝜃 ∈ Θ0 = [𝜃0
−, 𝜃0

+] (3.1) 

 𝐻1: 𝜃 ∉ Θ0.                      

We could also write the alternative hypothesis 𝐻1 as 𝐻1: 𝜃 ∈ Θ1 = (−∞,𝜃0
−) ∪ (𝜃0

+,∞). This interval is a pre-

specified range of values that are deemed to be scientifically not meaningful. For example, it might contain effect 

sizes that are indistinguishable from the point null hypothesis due to measurement error of instruments. It might also 

be comprised of effect sizes that are not clinically meaningful, such as an odds ratio between 0.95 and 1.05 for the 

probability of hospital re-admission for a new hospital protocol, or an extended life expectancy of ± 15 minutes for 

a new drug with non-minimal side effects. This null interval hypothesis is also sometimes referred to as an 

“indifference zone”. 

While not necessarily required, there are many circumstances where despite an interval null being specified, 

there is a specified point null hypothesis of interest, denoted by 𝐻00: 𝜃 = 𝜃0. In one of the above examples, the point 

null would be that the change in life expectancy is 𝜃0 = 0 minutes, while the interval null hypothesis of non-

clinically meaningful changes in life expectancy is Θ0 = [−15,15] minutes (or whatever length of time is deemed 

to be not clinically relevant, particularly when balanced with the risks or side effects of the new drug). It is also 

important to note that the interval null does not need to be symmetric; for example, we could set Θ0 = [−15,60] 

minutes, indicating that an increased life expectancy of less than 1 hour is not clinically meaningful, but any more 

than 15 minutes of decreased life expectancy is. 

The other necessary component of the second-generation p-value is an interval estimate, 𝐼, for the 

parameter of quantity of interest 𝜃. In general, the SGPV can be calculated for any type of interval, such as a 

confidence interval, likelihood support interval, bootstrap percentile interval, or Bayesian credible interval. Define 

the bounds of the interval estimate to be 𝐼 = [�̂�𝑙, �̂�𝑢]. The second-generation p-value, denoted by 𝑝𝛿 , is defined as 

 𝑝𝛿 : =
|𝐼 ∩ Θ0|

|𝐼|
× max (

|𝐼|

2|Θ0|
, 1). (3.2) 

It essentially measures the fraction of overlap between the null hypothesis and the interval estimate, with a small-

sample correction factor (the maximum term). See Blume et al. (2018, 2019) for more details. For a symmetric null 

hypothesis, 𝛿 is the half-length of the interval null (i.e., Θ0 = [𝜃0 − 𝛿, 𝜃0+ 𝛿]). However as noted above, the null  
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Table 3.1      Description of three important outcomes for second-generation p-value. 

 

Outcome: How we get it: What it indicates: 

𝑝𝛿 = 0 |𝐼 ∩ Θ0| = 0, i.e., the interval 

estimate is entirely outside of the 

interval null 

All hypotheses supported by the interval estimate 

are scientifically meaningful 

0 < 𝑝𝛿 < 1 The interval estimate 𝐼 has some 

overlap with Θ0, but is not 

contained entirely inside Θ0 

There are many scenarios covered by this 

“inconclusive” setting; generally, it means that 

the interval estimate supports both scientifically 

meaningful and trivial effects, to varying degree 

indicated by the magnitude of 𝑝𝛿  

𝑝𝛿 = 1 𝐼 ⊆ Θ0, i.e., the interval estimate 

is entirely inside of the interval 

null 

All hypotheses supported by the interval estimate 

are scientifically trivial or not meaningful 

 

hypothesis need not be symmetric, and so we will keep things general with the notation of Θ0 = [𝜃0
−, 𝜃0

+]. Unlike 

the traditional p-value, the support of 𝑝𝛿  is [0,1] (inclusive of 0 and 1). There are three important “zones” related to 

the sgpv: equal to 0, in between 0 and 1, and equal to 1. These are summarized in Table 3.1.  

It is important to note that the second-generation p-value is not invariant to the scale on which it is 

calculated, because it involves interval lengths and overlap sizes. In general, if a symmetric scale exists, this should 

be used in place of the original scale (such as in the case of an odds ratio, hazard ratio, etc.). For example, if the 

underlying parameter of interest is an odds ratio, the SGPV should be calculated on the log odds ratio scale, using 

the interval estimate 𝐼 and the interval null hypothesis Θ0 defined in terms of the log odds ratio. 

 

3.2.1 Operational characteristics 

The distribution function 𝐹𝜃(𝑝𝛿) for the second-generation p-value has not been described, however a few 

summaries of it have been derived, for interval estimates 𝐼 used in the SGPV calculation that are exactly or 

asymptotically Normal (Blume et al. 2018). We assume that an estimator for 𝜃 is obtained as �̂� ≔ �̂�𝑛 with sampling 

distribution �̂�𝑛~
𝐴
𝑁(𝜃, 𝑉𝑛), and construct a 100(1 − 𝛼)% confidence interval for 𝜃 as 𝐼 = [�̂�𝑙, �̂�𝑢] =

[�̂�𝑛 − 𝑧𝛼 2⁄ √𝑉𝑛 , �̂�𝑛 + 𝑧𝛼 2⁄ √𝑉𝑛] where 𝑧𝛼 2⁄ = Φ−1(1 − 𝛼 2⁄ ) and Φ is the standard normal cumulative distribution 

function. For this chapter, we will use the simplifying assumption that the true variance is known and used to 

calculate the confidence interval. 

In Supplement 1 (S1) of (Blume et al. 2018), the following three probabilities are provided assuming that 

a symmetric null hypothesis of Θ0 = [𝜃0 − 𝛿, 𝜃0 + 𝛿] is used. Here, we describe these probabilities of falling into 

each of the three major “zones” for the SGPV, but for a general null hypothesis Θ0 = [𝜃0
−, 𝜃0

+] instead. Given the  
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assumptions described above, we have the following operational characteristics or probability distribution 

summaries: 

 

1) The probability of observing data that are compatible with the alternative, 

    𝑃𝜃(𝑝𝛿 = 0) = 𝑃(𝑝𝛿 = 0; 𝜃, 𝑉, 𝑛, Θ0)   

 
= 𝛷 [

𝜃0
− − 𝜃

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] + 𝛷 [

𝜃 − 𝜃0
+

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ]                 (3.3) 

2) The probability of observing data that are compatible with the null, 

   𝑃𝜃(𝑝𝛿 = 1) = 𝑃(𝑝𝛿 = 1; 𝜃, 𝑉, 𝑛, Θ0)   

 

                         = {
 𝛷 [

𝜃0
+ − 𝜃

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] − 𝛷 [

𝜃0
− − 𝜃

√𝑉 𝑛⁄
+ 𝑧𝛼 2⁄ ] if  |𝐼| ≤ |Θ0|

0                                                                       if  |𝐼| > |Θ0|

           (3.4) 

3) The probability of observing data that are inconclusive,  

  𝑃𝜃(0 < 𝑝𝛿 < 1) = 𝑃(0 < 𝑝𝛿 < 1; 𝜃, 𝑉, 𝑛, Θ0)    

 

                                 =

{
 
 
 

 
 
 1 − 𝛷 [

𝜃 − 𝜃0
+

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] − 𝛷 [

𝜃0
− − 𝜃

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] if  |𝐼| ≤ |𝛩0|

             −𝛷 [
𝜃0
+ − 𝜃

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] + 𝛷 [

𝜃0
− − 𝜃

√𝑉 𝑛⁄
+ 𝑧𝛼 2⁄ ]  

1 − 𝛷 [
𝜃0
− − 𝜃 

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] − 𝛷 [

𝜃 − 𝜃0
+

√𝑉 𝑛⁄
− 𝑧𝛼 2⁄ ] if  |𝐼| > |𝛩0|

 (3.5) 

 

Note that because we are assuming a fixed variance of 𝑉, the length of the interval estimate |𝐼| is then fixed 

as well, giving the piecewise definitions above. To further simplify the demonstration of FDR calculations, we will 

set the variance as 𝑉 = |Θ0|
2 (i.e., the standard deviation equals the width of the null hypothesis). Note that these 

properties are a function of only the ratio of the standardized effect size, i.e., of 𝜃 √𝑉𝑛⁄  and the standardized null 

interval bounds 𝜃0
− √𝑉𝑛⁄  and 𝜃0

+ √𝑉𝑛⁄ . This means that if the variance is known and sample size fixed, we could re-

parameterize the entire effect space to the standardized effect space such that these properties are not directly a 

function of 𝑉𝑛 (although still indirectly dependent on 𝑉𝑛). Alternately, we could re-parameterize the effect space by 

only the standard deviation 𝑆𝐷 = √𝑉 and allow 𝑛 to vary. In this and other illustrations throughout the chapter, we 

will use a null hypothesis of Θ0 = [−0.1,0.1], with variance 𝑉 = |Θ0|
2 = 0.04. One possible interpretation for this 

setting is that it roughly represents null odds ratios between 0.9 and 1.11, with a variance of approximately 1 (on 

the odds ratio scale).  
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Figure 3.1(a)-(d) illustrates the probabilities in Equations (3.3)-(3.5), as a function of the standardized effect 

size 𝜃 √𝑉⁄  for one sample size 𝑛∗ where |𝐼| > |Θ0|, and another sample size 𝑛∗∗ where |𝐼| ≤ |Θ0|. These illustrate 

some important properties of the SGPV compared to classical p-values, established in (Blume et al. 2018). Unlike 

with the classical p-value, the SGPV power curve at 𝜃0 = 0 is not fixed at 𝛼, rather it is bounded above by 𝛼, with 

the exact value dependent on the null width |Θ0|, the variance 𝑉, and the sample size 𝑛. Further, 𝑃𝜃(𝑝𝛿 = 0) ≤ 𝛼 

for all 𝜃 ∈ Θ0, not only 𝜃 = 0. In the limit, 𝑃𝜃(𝑝𝛿 = 0) converges to 0 as 𝑛 → ∞ for 𝜃 = 0. We note that this 

convergence happens as well as for 𝜃 ∈ (𝜃0
− + 휀, 𝜃0

+ − 휀), i.e., the entirety of the null zone excluding the boundaries. 

At the null boundaries, e.g., at 𝜃0
+, we have that 𝛼 2⁄ ≤ 𝑃𝜃0+(𝑝𝛿 = 0) ≤ 𝛼 and 𝑃𝜃0+(𝑝𝛿 = 0) → 𝛼 2⁄  as 𝑛 → ∞.  

Notably, 𝑃𝜃(𝑝𝛿 = 0) ≤ 𝑃𝜃(𝑝 ≤ 𝛼) ∀𝜃, regardless of the sample size or null width. This means that while 

type I error is reduced for the SGPV, the power is as well, for finite 𝑛. Essentially, the SGPV requires the lower 

bound �̂�𝑙 > 𝜃0
+ to be deemed significant rather than only requiring that �̂�𝑙 > 0 (focusing on the positive effect space). 

Therefore, we are more likely to get inconclusive results with the SGPV than with the classical p-value (and also 

why we are much less likely to observe type I errors). However, we still see that 𝑃𝜃(𝑝𝛿 = 0) → 1 as the effect size 

magnitude increases to infinity, as well as ∀𝜃 ∈ (−∞,𝜃0
− − 휀) ∪ (𝜃0

+ + 휀,∞) as 𝑛 → ∞.  

Some examples of 𝑃𝜃(𝑝𝛿 = 1) and 𝑃𝜃(0 < 𝑝𝛿 < 1) curves were given originally in Supplement 1 (S1) of 

(Blume et al. 2018), and some additional examples illustrated in Figure 3.1(a)-(d). Here, we outline some key 

properties of each. The probability of 𝑝𝛿 = 1 is non-zero only for 𝜃 in Θ0 and in a small area around it (i.e., 

(𝜃0
− − 휀, 𝜃0

+ + 휀)), and only when 𝑉 is small enough or 𝑛 large enough such that |𝐼| ≤ |Θ0| (otherwise, 

𝑃𝜃(𝑝𝛿 = 1) = 0 ∀𝜃, as described in Equation (3.4)). As 𝑛 → ∞, 𝑃𝜃(𝑝𝛿 = 1) → 1 for Θ0 except for the boundaries, 

i.e., 𝜃 ∈ (𝜃0
− + 휀 , 𝜃0

+ − 휀). We find that at the boundaries of the null zone, 0 ≤ 𝑃𝜃(𝑝𝛿 = 1) ≤ 𝛼 2⁄  across all sample 

sizes, where 𝑃𝜃(𝑝𝛿 = 1) = 0 at the smallest 𝑛 such that |𝐼| ≤ |Θ0|, and 𝑃𝜃(𝑝𝛿 = 1) → 𝛼 2⁄  as 𝑛 → ∞.  

The probability of inconclusive results, 𝑃𝜃(0 < 𝑝𝛿 < 1), is either unimodal or bimodal as a function of 𝜃, 

depending on the sample size, and appears to be non-zero for 𝜃 within double the width of the null bound (i.e., for 

𝜃 ∈ (2𝜃0
− − 휀, 2𝜃0

+ + 휀)), although this requires further work to confirm. For very small 𝑛, this probability as a 

function of 𝜃 is unimodal with a maximum at 𝜃 = 0. At some point, as 𝑛 becomes larger, 𝑃𝜃(0 < 𝑝𝛿 < 1) becomes 

bimodal, with maxima at the boundaries of Θ0, and a local minimum within Θ0 at 𝜃 = 0. As 𝑛 → ∞, 

𝑃0(0 < 𝑝𝛿 < 1) → 0, as well as for all 𝜃 ∈ (𝜃0
− + 휀 , 𝜃0

+ − 휀). In general, 1 − 𝛼 ≤ 𝑃𝜃(0 < 𝑝𝛿 < 1) ≤ 1 − 𝛼 2⁄  

across all sample sizes, and 𝑃𝜃(0 < 𝑝𝛿 < 1) → 1 − 𝛼 as 𝑛 → ∞.  

Note that all of the statements here are dependent on the assumption that the confidence interval estimate 

truly has the stated coverage of 𝛼. More generally, these will be factors of the true coverage – for example, 

𝑃𝜃(𝑝𝛿 = 0) will be bounded above by 1 −𝜔, where 𝜔 is the coverage probability of the interval estimate 𝐼 used in 

the SGPV calculation; we will assume the apparent coverage is the truth in the entirety of the chapter. 
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(a) n = 10 (b) n = 20 

  
(c) n = 500 (d) n = 500 

  
 

Figure 3.1      Operational characteristics of the second-generation p-value. (a)-(b) Second generation p-value 

operational probabilities 𝑃𝜃(𝑝𝛿 = 0) (black), 𝑃𝜃(𝑝𝛿 = 1) (blue), and 𝑃𝜃(0 < 𝑝𝛿 < 1) (red), as well as the classical 

p-value power curve 𝑃𝜃(𝑝 ≤ 𝛼) (black dashed line). The null is Θ0 = [−0.1,0.1] with variance 𝑉 = 0.04 (such that 

𝛿 = |Θ0| 2⁄ = √𝑉 2⁄ ). The x-axis is given in standard deviation units, 𝜃 √𝑉⁄ . (a) 𝑛 = 𝑛∗, where 𝑛∗ is such that |𝐼| >
|Θ0| (thus  𝑃𝜃(𝑝𝛿 = 1) = 0), here 𝑛∗ = 10. (b) 𝑛 = 𝑛∗∗, where 𝑛∗∗ is such that |𝐼| ≤ |Θ0|, here 𝑛∗ = 20. (c)-(d) 

Large 𝑛, illustrating to some degree what happens to these probability curves as 𝑛 → ∞, here 𝑛 = 500. 

 

Design probabilities 

In addition, there are several different design probabilities – generalized error rates or power type calculations – that 

may be of interest when conditioning on the general hypotheses 𝐻0 and 𝐻1. These are all based on the three “zones” 

for the SGPV, presuming that 𝑝𝛿 = 0 is taken as a significant finding (in support of the alternative hypothesis), 

𝑝𝛿 = 1 is taken as a significant finding (in support of the null hypothesis), and 0 < 𝑝𝛿 < 1 is taken as an 

inconclusive result. Table 3.2 provides an overview of these main design probabilities when utilizing these three 

SGPV-based outcome regions. 
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Table 3.2      Summary of design probabilities for SGPV inference. 

 

 𝒑𝜹 = 𝟏 

(Call for Null) 

𝟎 < 𝒑𝜹 < 𝟏 

(Inconclusive) 

𝒑𝜹 = 𝟎 

(Call for Alternative) 

𝑯𝟎 True 
𝑃(𝑝𝛿 = 1|𝐻0) 

Power 

𝑃(0 < 𝑝𝛿 < 1|𝐻0) 
Undesirable outcome 

𝑃(𝑝𝛿 = 0|𝐻0) 
Error 

𝑯𝟏 True 
𝑃(𝑝𝛿 = 1|𝐻1) 

Error 

𝑃(0 < 𝑝𝛿 < 1|𝐻1) 
Undesirable outcome 

𝑃(𝑝𝛿 = 0|𝐻1) 
Power 

 

The probability 𝑃(𝑝𝛿 = 0|𝐻0) is general version of the typical type I error, declaring a significant finding 

in support of the alternative when the null hypothesis is actually true. The probability 𝑃(𝑝𝛿 = 0|𝐻1) is the 

comparable power probability for the second-generation p-value. The probability 𝑃(0 < 𝑝𝛿 < 1|𝐻1) is an 

undesirable result, failing to correctly declare a significant finding in support of the alternative. It could be thought 

of as a sort of type II error. However, note that because 𝑝𝛿 = 1 is not seen as an inconclusive result in this setting, 

this probability is not the complement of the power (i.e., power ≠ (1 − type II)), unlike in classical significance 

testing. As these quantities all condition on general composite hypotheses, they are not well defined as written. In 

later sections, we examine ways that these design probabilities might be defined. 

Because 𝑝𝛿 = 1 is taken as a finding in support of the null hypothesis, there is an additional set of design 

probabilities or error rates that can be defined. The probability 𝑃(𝑝𝛿 = 1|𝐻1) is the null version of a type I error, 

the probability 𝑃(𝑝𝛿 = 1|𝐻0) is the null version of a general power type probability, and 𝑃(0 < 𝑝𝛿 < 1|𝐻0) is 

another undesirable, inconclusive result (a null analogue to the type II error). All the null and alternative design 

probabilities can also be written generally as 𝑃(𝑝𝛿 ∈ Γ|𝐻𝑘), for regions Γ ∈ ({0}, (0,1), {1}). 

For classical p-values, the null design probability (type I error) is calculated at 𝜃0 = 0 and is fixed at 𝛼, 

i.e., 𝑃(𝑝 ≤ 𝛼|𝐻0) = 𝑃0(𝑝 ≤ 𝛼) = 𝛼. As described above, the point null type I error of the SGPV is less than that 

for the classical p-value, i.e., 𝑃0(𝑝𝛿 = 0) ≤ 𝑃0(𝑝 ≤ 𝛼) = 𝛼. In the setting relating to Figure 3.1(a), with only 𝑛 =

10, this point null design probability is 𝑃0(𝑝𝛿 = 0) = 0.0004, much lower than the classical p-value 0.05 type I 

error. However, because 𝐻0 is an interval rather than a point null when using the SGPV, there are several different 

ways that the quantity could be defined; these will be explored in detail later sections. Although, regardless of 

method chosen to calculate the SGPV null design probability, we will find that 𝑃(𝑝𝛿 = 0|𝐻0) ≤ 𝑃(𝑝 ≤ 𝛼|𝐻0) for 

any 𝑛 (due to 𝑃𝜃(𝑝𝛿 = 0) ≤ 𝛼 for any 𝜃 ∈ Θ0).  

For design probabilities conditioned on 𝐻1 we might also select a single point value 𝜃𝑎 ∈ Θ1, to calculate 

𝑃(𝑝𝛿 ∈ Γ|𝐻1) = 𝑃(𝑝𝛿 ∈ Γ|𝜃 = 𝜃𝑎). In classical null hypothesis significance testing, this alternative value is chosen 

somewhat arbitrarily, or the entire power curve is examined. In settings where the null hypothesis Θ0 is chosen to 

represent clinically non-meaningful values, we might select for example 𝜃𝑎 = 𝜃0
+ + 휀, just above the upper 

boundary of the null region (or use 𝜃𝑎 = 𝜃0
+ for simplicity), as the smallest effect size that would be clinically 

meaningful (in the positive effect space). For example, in the scenario relating to Figure 3.1(a), the point alternative 

design probabilities are (𝑝𝛿 = 0|𝜃 = 𝜃0
+) = 0.025 and (𝑝 ≤ 𝛼|𝜃 = 𝜃0

+) = 0.35 for second-generation and classical 
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p-values, respectively. This unadjusted classical p-value rejection region has more than 10-fold the power of the 

SGPV, for the reasons described previously, i.e., due to a much more relaxed rejection threshold. Other approaches 

to specifying these null and alternative design probabilities will be described in Section 3.3.2. 

 

3.3 False discovery rate quantity definitions 

The design probabilities described in Section 3.2 are most relevant for cases where data has yet to be observed, 

namely study design. However, after the data are observed, the study characteristics are relevant but not the key 

quantities of interest. Specifically, we might be interested in some measure of reliability of the results. For example, 

if we observe 𝑝 ≤ 0.05 (or 𝑝𝛿 = 0) and interpret this as a significant finding, what is the probability that this is in 

error (i.e., that the null hypothesis is in fact true)? These types of posterior probabilities, conditional on a statistic 

such as a p-value or second-generation p-value, are commonly referred to as Bayesian false discovery rates (Efron, 

Storey, et al. 2001; Efron, Tibshirani, et al. 2001; Storey 2001a, 2001b, 2002, 2003). While these were originally 

conceptualized in the context of classical p-values and z-values, the framework can be made general to accommodate 

any type of statistic used. 

In this framework, the truth of the null hypothesis is regarded as a random variable. Define 𝐻 as a Bernoulli 

indicator variable that the alternative hypothesis is true, such that 𝐻 = 0 means that 𝐻0 is true and 𝐻 = 1 means 

that 𝐻1 is true. The probability 𝑃(𝐻 = 0) is denoted by 𝜋0. Assume also that we are working with a general statistic 

𝑇(𝑥), and specify a “two-group model” that is the conditional distribution 𝑇(𝑥)|𝐻 ∼ (1 − 𝐻) ⋅ 𝐹0 +𝐻 ⋅ 𝐹1, where 

𝐹0 is the distribution of 𝑇(𝑥) under the null hypothesis, and 𝐹1 is the distribution of 𝑇(𝑥) under the alternative 

hypothesis. Thus, the “mixture distribution” for the statistic is 𝑇(𝑥) ∼ 𝜋0 ⋅ 𝐹0 + (1 − 𝜋0) ⋅ 𝐹1. 

As stated, we might be interested in posterior probabilities 𝑃(𝐻 = 𝑘|𝑇(𝑥) ∈ Γ) for 𝑘 ∈ {0,1}. We will also 

use the shorthand 𝑃(𝐻𝑘|𝑇(𝑥) ∈ 𝛤) interchangeably. Specifically, the Bayes false discovery rate is 

 𝐹𝐷𝑅 ≔ 𝑃(𝐻0|𝑇(𝑥) ∈ Γ) = 𝑃(𝐻 = 0|𝑇(𝑥) ∈ Γ), (3.6) 

where Γ is a region defined to be representative of a rejected null hypothesis, or some defined level of support for 

the alternative hypothesis. The key false discovery rate quantities based on classical p-values are summarized in 

Table 3.3(a). For example, for an unadjusted significance test based on classical p-values, the Bayes FDR is 

𝑃(𝐻0|𝑝 ∈ (0, 𝛼]). The corresponding summarization for second-generation p-values is given in Table 3.3(b), which 

is a simple extension of the two reliability probabilities described in (Blume et al. 2018) – which are the FDR and 

FCR. For the second-generation p-value, the Bayes FDR is best defined as 𝑃(𝐻0|𝑝𝛿 = 0). Because the SGPV can 

also indicate support for the interval null, another quantity of interest is the Bayes false confirmation rate (FCR) for 

intervals that support the null, i.e., 𝐹𝐶𝑅 = 𝑃(𝐻1|𝑝𝛿 = 1). This is essentially a null analogue to the FDR. 

We note that the reliability posterior probabilities in Table 3.3(a) are connected to the foundational false 

discovery rate work in multiple testing, as described in Chapter 2. When 𝑇(𝑥) is a classical p-value (or z-value), the 

Bayes false discovery rate, 𝑃(𝐻0|𝑝 ∈ Γ), is equal to a quantity called the “positive false discovery rate” (pFDR) 

(Storey 2003; Efron 2010b). For a multiple testing scenario where 𝑚 hypotheses are being tested, with 𝑅 the number 
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Table 3.3      Summary of false discovery quantities for classical p-values and second-generation p-values. (a) 

Probabilistic (Bayes) false discovery quantities and terminology for classical p-values. (b) Probabilistic (Bayes) 

false discovery quantities and terminology for second-generation p-values. 

 

(a) Classical p-value: 

 Status: 

Result: 𝐻0 True 𝐻0 False 

Reject Null 
𝑃(𝐻0|𝑝 ≤ 0.05) 

“false discovery rate” (FDR) 

𝑃(𝐻1|𝑝 ≤ 0.05) 
“true discovery rate” (TDR) 

Fail to Reject Null 

(Inconclusive) 
𝑃(𝐻0|𝑝 > 0.05) 

𝑃(𝐻1|𝑝 > 0.05) 
“false non-discovery rate” (FNR) 

 
(b) Second-generation p-value: 

 Status: 

Result: 𝐻0 True 𝐻0 False 

Reject Null 
𝑃(𝐻0|𝑝𝛿 = 0) 

“false discovery rate” (FDR) 

𝑃(𝐻1|𝑝𝛿 = 0) 
“true discovery rate” (TDR) 

Inconclusive 𝑃(𝐻0|𝑝𝛿 ∈ (0,1))
∗
 𝑃(𝐻1|𝑝𝛿 ∈ (0,1))

∗
 

Support Null 
𝑃(𝐻0|𝑝𝛿 = 1) 

“true confirmation rate” (TCR) 

𝑃(𝐻1|𝑝𝛿 = 1) 
“false confirmation rate” (FCR) 

* Included for completeness, but not how we might prefer to define non-discovery or non-confirmation rates.  

 

of hypotheses that were rejected by a significance testing procedure, and 𝑉 the number of these rejections 

corresponding to null hypotheses, the pFDR is defined as 𝑝𝐹𝐷𝑅 ≔ 𝐸[𝑉 𝑅⁄ |𝑅 > 0]. That is, the expected proportion 

of rejections that are made in error, for assessing at least one rejection. The pFDR is one component of the original 

Benjamini-Hochberg definition of the false discovery rate, which is 𝐹𝐷𝑅 ≔ 𝐸[𝑉 max(𝑅, 1)⁄ ] = 𝐸[𝑉 𝑅⁄ |𝑅 > 0] ⋅

Pr(𝑅 > 0) = 𝑝𝐹𝐷𝑅 ⋅ Pr(𝑅 > 0) (Benjamini and Hochberg 1995). In the present chapter, we focus only on the 

Bayes/positive false discovery rate and ignore the BH definition of FDR. Therefore, as is common in the literature 

in the field, we will often use the acronym “FDR” alone to refer to the probabilistic FDR quantity 𝑃(𝐻0|𝑇(𝑥) ∈ Γ). 

In classical p-value testing, we may also define the Bayes false non-discovery rate (FNR) as 

𝑃(𝐻1|𝑝 ∈ (𝛼, 1)) for an unadjusted significance test (Genovese and Wasserman 2002). The term “false non-

discovery rate” for classical p-values is a bit of a misnomer because it relies on a common misinterpretation of  𝑝 >

0.05 as a result supporting the null hypothesis. This quantity is sometimes referred to in the diagnostic testing 

literature as the “false omission rate”, which is somewhat of an improvement. We argue, however, that 𝑝 > 0.05 is 

not technically a “false” conclusion for truly non-null hypotheses; rather, it is an inconclusive result  – i.e., an 

“undesirable outcome”. A more fitting term might be “missed discovery rate”, because it assesses at what rate is the 

alternative hypothesis true for inconclusive (fail to reject) results. Regardless, we use the standard terminology for 

the chapter to avoid any confusion. 
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Defining an analogous FNR quantity for second-generation p-values is not straightforward. The most 

general quantities using the entire inconclusive range for second-generation p-values would be 𝑃(𝐻1|𝑝𝛿 ∈ (0,1)) 

or 𝑃(𝐻0|𝑝𝛿 ∈ (0,1)). These are included in Table 3.3(b) for completeness. However, these are too general to be 

useful because 𝑝𝛿 ∈ (0,1) covers such a wide range of inconclusive results. We could perhaps define a second-

generation p-value false non-discovery rate as 𝑃(𝐻1|𝑝𝛿 ∈ (0,0.5)) and a false non-confirmation rate as 

𝑃(𝐻1|𝑝𝛿 ∈ (0.5,1)). However, the full probability distribution function for 𝑝𝛿  has not been described (only the 

summary probabilities of Equations (3.3)-(3.5)), and therefore design probabilities related to SGPV regions such as 

Γ = (0,0.5) or Γ = (0.5,1) are presently unable to be calculated. We leave these topics for further study in future 

work. 

Using Bayes’ rule and the two-group specification, any of these posterior probabilities of interest can be 

re-expressed in two forms: 

 𝑃(𝐻𝑘|𝑇(𝑥) ∈ Γ) =
𝑃(𝐻𝑘) ⋅ 𝑃(𝑇(𝑥) ∈ Γ|𝐻𝑘)

𝑃(𝑇(𝑥) ∈ Γ)
                                                 (3.7) 

                                 =
𝜋𝑘 ⋅ 𝑃(𝑇(𝑥) ∈ Γ|𝐻𝑘)

𝜋0 ⋅ 𝑃(𝑇(𝑥) ∈ Γ|𝐻0) + (1 − 𝜋0) ⋅ 𝑃(𝑇(𝑥) ∈ Γ|𝐻1)
, (3.8) 

for 𝑘 ∈ {0,1}. Thus, to calculate or estimate any of these, we need to know the prior probability of the null 𝜋0, and 

the relevant design probabilities of 𝑃(𝑇(𝑥) ∈ Γ|𝐻0) and 𝑃(𝑇(𝑥) ∈ Γ|𝐻1). Therefore, if these design probabilities 

and the prior probability are all known, or perhaps estimated from the observed data, it is straightforward to calculate 

any false discovery quantity desired.  

 

3.3.1 Example: simple null and simple alternative hypotheses 

The FDR and FCR rates for the second-generation p-value, when the simple approaches described in Section 3.2.1 

are used (assuming 𝜃 = 0 for the null hypothesis and some point alternative 𝜃 = 𝜃𝑎) and setting the prior probability 

𝜋0 at 0.5, is the approach proposed and examined originally in (Blume et al. 2018). We illustrate their approach in 

Figure 3.2 as a function of 𝜃𝑎 in standard deviation units, i.e., 𝜃𝑎 √𝑉⁄ , along with the analogous calculations for the 

FDR and FNR calculated based on the classical p-value. Note that the curves are drawn for the entire range of 𝜃𝑎, 

including values inside the interval null hypothesis. This implies calculations 𝑃(𝑇(𝑥) ∈ Γ|𝐻1) = 𝑃(𝑇(𝑥) ∈ Γ|𝜃 =

𝜃𝑎) for 𝜃𝑎 not in the alternative region, which do not make sense in the context of our interval null hypothesis 

framework. Really, we may be interested in the curves only for 𝜃𝑎 ∈ Θ1 = (−∞,𝜃0
−) ∪ (𝜃0

+,∞). 

Blume et al. (2018) provide discussion of some notable properties of each, for finite sample sizes and 

asymptotically as a function of 𝜃𝑎 and 𝑛, which can be observed as well in the Figure 3.2 illustration. For finite 

sample sizes, this simple SGPV FDR is less than the analogous classical p-value FDR, for all possible 𝜃𝑎. The 

behavior of the FDR is driven by the size of the alternative design probability relative to the null design probability; 

for all 𝜃𝑎, this ratio for the SGPV is larger than that of the classical p-value. The p-value FDR converges to and is  
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Figure 3.2      Comparison of FDR and FCR for SGPV to FDR and FNR for the classical p-value. The FDR 

calculation uses a point null at 0 and point alternative at 𝜃𝑎, which is varied over the x-axis. Here, the null is Θ0 =

[−0.1,0.1] with variance 𝑉 = 0.04 (such that 𝛿 = |Θ0| 2⁄ = √𝑉 2⁄ ), 𝜋0 = 0.5, and the sample size is 𝑛 = 20. The 

x-axis is given in standard deviation units, 𝜃𝑎 √𝑉⁄ . 

 

bounded below by 𝛼 (𝛼 + 𝑟)⁄ , where 𝑟 = (1 − 𝜋0) 𝜋0⁄  (Wacholder et al. 2004). This is the p-value power 

𝑃𝜃𝑎(𝑝 ≤ 𝛼) → 1 but the type I error is fixed at 𝛼, thus the p-value FDR approaches this lower limit.  

On the other hand, the convergence of the simple second-generation p-value point null design probability 

𝑃0(𝑝𝛿 = 0) → 0 results in the (Blume et al. 2018) version of the SGPV FDR converging to 0 as 𝑛 → ∞. Thus, they 

make the argument that multiple comparisons adjustments are not needed for second-generation p-values due to this 

“natural” control. However, for finite (small) sample sizes, note that the FDR may not be controlled, and possibly 

greater than the FDR for procedures which use a multiple comparisons adjusted p-value (such as by a Bonferroni or 

Benjamini-Hochberg correction). This general idea is examined in further detail in Chapter 4. See also (Blume et al. 

2018), Supplement 1, for a discussion of power comparisons for Bonferroni adjusted approaches. Regardless of 

what metric (p-value or SGPV) is used, the false discovery rates are bounded above by 𝜋0, and the FNR and FCR 

are bounded above by 1 − 𝜋0. 

To get  a single number estimate of these rates, we might set the alternative design probabilities at the 

bound of the null interval, as described in Section 3.2.1. These calculations are marked on Figure 3.2 with a round 

point. The FDR estimated at the upper bound of the null interval, 𝜃𝑎 = 𝜃0
+ (which should indicate the smallest 

clinically meaningful effect size) is 𝑃(𝐻0|𝑝𝛿 = 0) = 0.001 for the SGPV compared to 𝑃(𝐻0|𝑝 ≤ 0.05) = 0.076 

for the p-value. These calculations for varying sample size 𝑛 are given in Figure 3.3(a) for 𝜋0 = 0.5. 
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(a) 𝜋0 = 0.5 (b) 𝜋0 = 0.9 (c) 𝜋0 = 0.99 

   

 
 

Figure 3.3      Simple FDR as a function of sample size for varying values of the proportion of tests which are null. 

Comparison of FDR for SGPV (solid red line) to FDR for the classical p-value (dotted red line) for varying n (for 

varying 𝜋0). Note the differences in the y-axis ranges for (a)-(c); the axes for smaller 𝜋0 are reduced, to be able to 

fully examine the differences in the classical p-value and SGPV FDRs. 

 

Another important note to emphasize is that the limiting behavior for the p-value FDR is dependent upon 

the null prior probability 𝜋0. That is, no matter how much data we observe, it is impossible to fully overcome the 

prior probability. These limiting behaviors are illustrated in Figure 3.3(b)-(c), in contrast with the convergence of 

the SGPV FDR to zero. If 𝜋0 = 0.5, the p-value FDR converges to a reasonable value of 0.048. However, if we 

assume that the majority of the tests correspond to truly null hypotheses, such as 𝜋0 = 0.9, then the p-value FDR 

can be no smaller than 0.31. In a possibly extreme example where 𝜋0 = 0.99, the FDR converges to 0.83. Although, 

this large value of 𝜋0 may actually not be uncommon in large-scale inference contexts.  

 

3.3.2 Composite hypotheses approaches 

Making the assumptions of point null and alternative values provides simple calculations for the false discovery rate 

quantities. However, one of the key aspects of the second-generation p-value is incorporating an interval null 

hypothesis. Naturally, we would want to account for this in our computations; we might want to marginalize across 

the set of interval null (or even alternative) regions. However, this needs to be done in the design probability space, 

rather than the false discovery rate space. The easiest numerical approaches which account for the interval 

hypotheses would be to take a minimum or maximum, or the simple average across the null zone. More advanced 

techniques using weighted marginalization may however provide more robust measures. 

In general, we might marginalize over 𝑃𝜃(𝑝𝛿 = 0) with a prior distribution or weighting function that 

corresponds to the respective hypothesis of interest. For null design probabilities, this would be calculated as 

𝑃(𝑝𝛿 ∈ Γ|𝐻0) = ∫ 𝑃𝜃(𝑝𝛿 ∈ Γ) ⋅ 𝑔0(𝜃)𝑑𝜃
 

Θ0
 for a weighting function 𝑔0(𝜃) that has a support restricted to Θ0. For 

alternative design probabilities, this would be calculated as 𝑃(𝑝𝛿 ∈ Γ|𝐻1) = ∫ 𝑃𝜃(𝑝𝛿 ∈ Γ) ⋅ 𝑔1(𝜃)𝑑𝜃
 

Θ1
 for a 

weighting function 𝑔1(𝜃) that has a support restricted to Θ1 (or a subset of it). When these marginalization  
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approaches are used for both design probabilities, the general false discovery quantity calculations then look like  

 𝑃(𝐻𝑘|𝑇(𝑥) ∈ Γ)                                                                                                                         

               =
𝜋𝑘 ⋅ ∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔𝑘(𝜃)𝑑𝜃

 

Θ𝑘

𝜋0 ⋅ ∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔0(𝜃)𝑑𝜃
 

Θ0
+ 𝜋1 ⋅ ∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔1(𝜃)𝑑𝜃

 

Θ1

, (3.9) 

for 𝑘 ∈ {0,1} (depending on whether we are interested in the false discovery, non-discovery, or confirmation rate). 

For simplicity, for the alternative design probabilities we will focus on the positive effect space (𝜃0
+,∞). That is, 

we calculate 𝑃(𝑝𝛿 ∈ Γ|𝐻1) = ∫ 𝑃𝜃(𝑝𝛿 ∈ Γ) ⋅ 𝑔1(𝜃)𝑑𝜃
∞

𝜃0
+  and 𝑔1(𝜃) has support (𝜃0

+,∞) ⊂ Θ1. However, note that 

for a symmetric null hypothesis and symmetric 𝑃𝜃(𝑇(𝑥) ∈ Γ), this approach is equivalent to using a symmetric prior 

𝑔1(𝜃) that covers the entire range of Θ1 (i.e., puts equal weight on effects of equal magnitude in the negative and 

positive alternative effect size space). 

One straightforward approach to getting a marginalized null probability would be to use an unweighted 

average across the null zone, i.e., 𝑔0(𝜃) ∼ 𝑈𝑛𝑖𝑓(𝜃0
−, 𝜃0

+). This prior function is straightforward and does not require 

the specification of any hyperparameters. Alternative types of prior functions that could be considered are a 

unimodal distribution (with either small or large variance), or perhaps a U-shaped prior function. This latter option 

would give a result similar to the frequentist approach to composite null design probabilities, which is to take the 

maximum value of the type I error over Θ0. That is, for second-generation p-values, calculate 𝑃(𝑝𝛿 ∈ Γ|𝐻0) =

𝑃𝜃𝑚(𝑝𝛿 ∈ Γ) where 𝜃𝑚 ≔ argmax𝜃∈𝛩0 𝑃𝜃(𝑝𝛿 = 0). For second-generation p-values, the maximum value of 

𝑃𝜃(𝑝𝛿 = 0) occurs at the boundaries of Θ0. If we use this method in combination with the alternative design 

probability 𝑃𝜃0+(𝑝𝛿 ∈ Γ) calculated at the smallest scientifically interesting effect (as in Section 3.3.1), the false 

discovery rate simplifies to 𝜋0 and the FCR simplifies to 1 − 𝜋0 for any sample size 𝑛. It doesn’t make much sense 

to use this estimator in practice; instead, we will focus on options which use the point null or the marginalization 

approaches. 

Choosing a marginalization function for the alternative design probabilities is not so straightforward, 

particularly because the space is unconstrained and non-continuous. As mentioned above, we will focus on the 

positive alternative effect space to address the latter issue. In this setting we might want to choose a prior function 

that is unimodal near the edge of this range (as discussed above, because 𝜃0
+ would represent the smallest clinically 

meaningful effect size), and that converges to zero at an appropriate rate relative to the convergence of  

𝑃𝜃(𝑇(𝑥) ∈ Γ). What is “appropriate” is not clearly defined, but one key aspect is that if 𝑔1 converges too slowly, 

the resulting design probability 𝑃(𝑝𝛿 = 0|𝐻1) would be approximately equal to 1 regardless of sample size (because 

too much weight is put on values of 𝜃 where the power curve has already converged to 1). On the other hand, if 

𝑔1(𝜃) converges very quickly, then the majority of the weight is put on 𝜃 ∈ (𝜃0
+, 𝜃0

+ + 𝑐) for some small 𝑐 (this 

may however be the desired result in some cases). In the present chapter, we consider a linearly shifted Exponential 

distribution 𝑔1(𝜃)~𝐸𝑥𝑝(𝜆, 𝑎), where 𝜆 is the standard rate parameter of the exponential distribution and 𝑎 is the 

shift parameter. Other priors for 𝑔1(𝜃) might be useful; for example, if there is another, larger effect size 𝜃𝑎 > 𝜃0
+ 

of interest (i.e., 𝜃0
+ is the smallest detectable effect, and 𝜃𝑎 is the effect size that scientists are hoping to observe), 

then we might use a truncated Normal distribution with mean 𝜇 = 𝜃𝑎 and support 𝜃 ∈ (𝜃0
+,∞). 
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Before exploring example FDR calculations, we provide some alternate notation. When using the two-

group model setup described in Section 3.3, the false discovery quantities can be written as  

 𝑃(𝐻𝑘|𝑇(𝑥) ∈ Γ) = {
(1 + 𝑟𝜓Γ,T

 )
−1
         if 𝑘 = 0

(1 + (𝑟𝜓Γ,T
 )

−1
)
−1
 if 𝑘 = 1

           (3.10) 

         = (1 + (𝑟𝜓Γ,T
 )

1−2𝑘
)
−1

,  (3.11) 

for 𝑘 ∈ {0,1}, where 𝑟 = 𝜋1 𝜋0⁄  is the prior odds for the alternative versus the null, and  

 𝜓Γ,T
 =

𝑃(𝑇(𝑥) ∈ Γ|𝐻1)

𝑃(𝑇(𝑥) ∈ Γ|𝐻0)
 (3.12) 

is the likelihood ratio (LR) for the alternative versus null hypotheses. When using the marginalization methods as 

in Equation (3.9), this looks more like a Bayes factor (Jeffreys 1935; Kass and Raftery 1995); however, we will 

make sure to use 𝑔0(𝜃) and 𝑔1(𝜃) that do not overlap, and thus is still a proper likelihood ratio (Royall 1997; Blume 

2002). Note that quantities such as the FDR and FNR use different regions Γ, therefore the likelihood ratio 𝜓Γ,T
  in 

calculating the FDR is different than the likelihood ratio used in calculating the FNR. 

 

3.3.3 Common scenarios 

Example 1 

In Section 3.3.1, we calculated the false discovery quantities based on the point null assumption 𝑃(𝑇(𝑥) ∈ Γ|𝐻0) ≔

𝑃0(𝑇(𝑥) ∈ Γ) and the point alternative assumption 𝑃(𝑇(𝑥) ∈ Γ|𝐻1) ≔ 𝑃𝜃0+(𝑇(𝑥) ∈ Γ); we refer back to this 

approach as Example 1. Recall that this is a specification of the (Blume et al. 2018) approach, setting 𝜃𝑎 = 𝜃0
+. 

 

Example 2 

Using the simple unweighted average of 𝑃𝜃(𝑇(𝑥) ∈ Γ) across the interval null region, which is equivalent to using 

the prior function 𝑔0(𝜃) ∼ 𝑈𝑛𝑖𝑓(𝜃0
−, 𝜃0

+), with the point alternative assumption gives the likelihood ratio 

 𝜓Γ,T
 =

𝑃𝜃0+(𝑇(𝑥) ∈ Γ)

∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔0(𝜃)𝑑𝜃
 

Θ0

 (3.13) 

for 𝑔0(𝜃) = 1 (𝜃0
+ − 𝜃0

−)⁄ . This approach provides a balance between using the minimum type I error (at the point 

null) and the maximum type I error. 

 

Example 3 

It might be the case that we have specified an interval null hypothesis, but that the point null 𝜃0 is the least interesting 

effect (“most null”), while values of 𝜃 near the boundaries of Θ0 are questionably of interest. To account for this in 

the calculation of the design probabilities for 𝐻0, we might use a weighted average rather than the unweighted, 
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uniform distribution approach employed above. A Normal distribution centered at point null 𝜃0 and truncated to 

cover only Θ0 can give several flexible forms for 𝑔0(𝜃); this distribution is denoted either by 𝑡𝑁𝑜𝑟𝑚(𝜇, 𝜎, a, b), 

with 𝑎 and 𝑏 the truncation bounds, or by 𝑡𝑁𝑜𝑟𝑚(𝜇, 𝜎, Ω), where Ω is the truncation range of the distribution (such 

that Ω = (a, b)). In this example, will use 𝑔0(𝜃) ∼ 𝑡𝑁𝑜𝑟𝑚(𝜇 = 0, 𝜎 = |Θ0| 5⁄  , 𝑎 = 𝜃0
−, 𝑏 = 𝜃0

+), which truncates 

the Normal distribution at ±5 standard deviations from 0 and results in a bell-shape type curve for 𝑔0.  

Using this approach with the point alternative assumption, the likelihood ratio quantities 𝜓Γ,T
  have the 

same form as in Equation (3.13), but with prior distribution  

 𝑔0(𝜃) = {
𝜑 (

𝜃 − 0

|Θ0| 5⁄
) ⋅ [∫ 𝜑 (

𝜃 − 0

|Θ0| 5⁄
)𝑑𝜃

 

Θ0

]

−1

for 𝜃 ∈ Θ0

0                                                                for 𝜃 ∉ Θ0

 (3.14) 

where 𝜑 is the standard normal density 𝑁(0,1). This approach places most of the weight on values close to 0, but 

still accounts for all 𝜃 in the null region. We could consider alternate variance parameters for this truncated Normal 

distribution, such as 𝜎 = |Θ0| to get a relatively flat prior or 𝜎 = |Θ0| 20⁄  to get a strong prior with the vast majority 

of the weight right around 0.  

 

Example 4 

In this example, we will utilize the shifted exponential marginalization approach for calculating the alternative 

design probability 𝑃(𝑇(𝑥) ∈ Γ|𝐻1). Combined with the point null assumption, the likelihood ratio looks like 

 𝜓Γ,T
 =

∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔1(𝜃)𝑑𝜃
∞

𝜃0
+

𝑃𝜃0(𝑇(𝑥) ∈ Γ)
 (3.15) 

for 𝑔1(𝜃)~𝐸𝑥𝑝(𝜆, 𝑎 = 𝜃0
+). In our examples, we set 𝜆 to have a default value of 𝜆 = (𝜃0

+ + 1) (𝑉𝑛)
0.1898⁄ . This 

function was chosen because it provided sensible values for power calculations for both the classical p-value and 

SGPV for various Θ0 and sample sizes. Note that we have not derived a closed-form solution for the marginalized 

quantities; rather, we rely on numerical calculations using the `integrate` function in R.  

 

Example 5 

Combining the uniform marginalization approach for the null design probability with the shifted exponential 

alternative marginalization, the likelihood ratio has the form 

 𝜓Γ,T
 =

∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔1(𝜃)𝑑𝜃
∞

𝜃0
+

∫ 𝑃𝜃(𝑇(𝑥) ∈ Γ) ⋅ 𝑔0(𝜃)𝑑𝜃
 

Θ0

 (3.16) 

for 𝑔1(𝜃)~𝐸𝑥𝑝(𝜆, 𝑎 = 𝜃0
+) and 𝑔0(𝜃) ∼ 𝑈𝑛𝑖𝑓(𝜃0

−, 𝜃0
+).  
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Example 6 

Lastly, we will use the truncated Normal for the null, with the shifted exponential for the alternative. This likelihood 

ratio has the same form as in Equation (3.16), but with 𝑔0 as in Equation (3.14).  

 

3.3.4 Numerical illustrations and asymptotic behavior 

The classical p-value based false discovery rate (𝑃(𝐻0|𝑇(𝑥) ∈ Γ) for 𝑇(𝑥) = 𝑝 and Γ = (0,0.05]), and the second-

generation p-value based false discovery rate (𝑃(𝐻0|𝑇(𝑥) ∈ Γ) for 𝑇(𝑥) = 𝑝𝛿  and Γ = {0}) are provided in Table 

3.4(a) for each of the example approaches described above, with varying sample sizes. The p-value FDRs are only 

calculated for methods which use the point value for the null design probability (Examples 1 and 4). Note that for 

the p-value FDR using the averaged alternative design probability, we use the same shifted exponential distribution 

as for the SGPV (that is, shifted to 𝑎 = 𝜃0
+) for purposes of comparison. The p-value false non-discovery rate 

(𝑃(𝐻1|𝑇(𝑥) ∈ Γ) for 𝑇(𝑥) = 𝑝 and Γ = (0.05,1)) for the examples where a point null is used are given in Table 

3.4(b). The second-generation p-value false confirmation rate (𝑃(𝐻1|𝑇(𝑥) ∈ Γ) for 𝑇(𝑥) = 𝑝𝛿  and Γ = {1}) 

calculations are in Table 3.4(c). 

For approaches which use the same method for calculating the null design probabilities for 𝑝𝛿 = 0, the 

SGPV FDR using the exponential marginalization method will be smaller for finite values of 𝑛 than the point 

alternative approach. For finite 𝑛, using the truncated normal marginalized null provides a balance between the 

minimum null (at the point 0) and the uniform marginalization approach. For almost all the considered approaches, 

the p-value FDR is larger than the SGPV FDR across all sample sizes. The exception is when the uniform null is 

used in combination with the point alternative at 𝜃0
+ (Example 2) for small sample sizes (e.g., 10 – 100). However, 

in this setting, the SGPV FDR becomes smaller for 𝑛 > 228 as the ratio of the alternative to null design probability 

becomes larger for the second-generation p-value. 

We see that the choices of null and alternative method only impact the second-generation p-value FDR 

calculations for finite 𝑛; the limiting behavior is the same for all considered approaches, although the convergence 

rate differs. As 𝑛 → ∞, the SGPV FDRs converge to 0, as opposed to the p-value FDR which converges to 

𝛼 (𝛼 + 𝑟)⁄  (as noted in Section 3.3.1 (Wacholder et al. 2004)). As long as the null design probability converges to 

zero, and the alternative design probability converges to a non-zero constant, the SGPV FDR converges to zero. As 

described in Section 3.2.1, 𝑃𝜃(𝑝𝛿 = 0) → 0 as 𝑛 → ∞ for 𝜃 ∈ (𝜃0
− + 휀, 𝜃0

+ − 휀), such that any approach – aside 

from the maximization method where the null design probability is calculated at the null boundary, or perhaps a 

weighting method which places some point mass at the null boundaries – will result in 𝑃(𝑝𝛿 = 0|𝐻0) → 0. More 

details are provided in Remark 3.A in the Appendix. 

In the illustrative examples in Table 3.4(a), we see that SGPV FDR has converged for the point null method 

by 𝑛 = 100 or 𝑛 = 20 (for the point alternative and shifted exponential alternatives, respectively). However, the 

null marginalization methods do not converge even by 𝑛 = 500,000 for several of the example approaches. 

Therefore, while the asymptotic behavior is the same, even large-sample behavior can differ between approaches, 
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Table 3.4      False discovery, non-discovery, and confirmation rate quantity results for classical p-value significance 

testing and second-generation p-value based cutoffs. Assumes 𝜋0 = 0.5, i.e., 𝑟 = 1 with a null region Θ0 =
[−0.1,0.1] and variance 𝑉 = |Θ0|

2 = 0.04. 

 

(a) p-Value 𝐹𝐷𝑅 = 𝑃(𝐻0|𝑝 ≤ 0.05) and SGPV 𝐹𝐷𝑅 = 𝑃(𝐻0|𝑝𝛿 = 0) 
 

 Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 

 p-value SGPV SGPV SGPV p-value SGPV SGPV SGPV 

n = 10 0.1242 0.0157 0.1929 0.0831 0.053 0.0006 0.0086 0.0033 

n = 20 0.0759 0.0011 0.1445 0.0424 0.0495 0 0.0057 0.0015 

n = 100 0.0477 0 0.0703 0.0107 0.0476 0 0.0023 0.0003 

n = 500,000 0.0476 0 0.0034 0.0003 0.0476 0 0.0001 0 

∞  0.0476 

( 
𝛼

𝛼+𝑟
 )  0 0 0 

0.0476 

( 
𝛼

𝛼+𝑟
 )  0 0 0 

 

(b) p-Value 𝐹𝑁𝑅 = 𝑃(𝐻1|𝑝 > 0.05)         (c) SGPV 𝐹𝐶𝑅 = 𝑃(𝐻1|𝑝𝛿 = 1) 

 
 Ex. 1 Ex. 4  Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 

n = 10 0.4053 0.2454  * * * * * * 

n = 20 0.2917 0.2149  0.0803 0.1366 0.1033 0.0052 0.0094 0.0069 

n = 100 0.0012 0.1514  0.0244 0.0396 0.0290 0.0009 0.0015 0.0011 

n = 500,000 0 0.0279  0.0244 0.0248 0.0244 0 0 0 

∞  

0 0  

0.0244 

( 
𝛼 2⁄

𝛼 2⁄ +
1
𝑟

 )  

0.0244 

( 
𝛼 2⁄

𝛼 2⁄ +
1
𝑟

 )  

0.0244 

( 
𝛼 2⁄

𝛼 2⁄ +
1
𝑟

 )  0 0 0 

 

which further emphasizes the need for care to be taken with selecting the weighting method. More rigorous 

derivation of convergence rates for various approaches for calculating the FDRs are left as an area for future work. 

The choice of method for the alternative design probability can affect the SGPV FCR convergence. In our 

examples, the marginalization approach with the shifted exponential (Examples 4-6) converges to 0, while the 

approach of setting the alternative design probability at the edge of the null region (Examples 1-3) will have  𝐹𝐶𝑅 →

(𝛼 2⁄ ) (𝛼 2⁄ + 𝑟−1)⁄  in the limit. Briefly, this is because 𝑃𝜃(𝑝𝛿 = 1) → 0 for 𝜃 ∈ (−∞,𝜃0
− − 휀) ∪ (𝜃0

+ + 휀,∞), 

such that choices for the alternative design probability which do not place point mass at the null boundaries will 

converge to zero. For details on this and the asymptotic results for Examples 1-6, refer to Remark 3.B.  

The calculations in Table 3.4 provide the true FDR for when each specified null and alternative 

marginalization functions match the true distribution of underlying effects. If we wish to take a  full conservative 

approach for calculating the FDR, we might consider the specifications as outlined in Example 2, with the uniform 

null function and the calculation of the alternative design probability at the boundary of the null region. Other choices 

could result in either less conservative, or underestimated FDRs, depending on whether these choices correctly 

specify the distribution of effects. As much as possible, we would prefer to avoid specification of these probabilities, 

and thus the issue of misspecification. Empirical methods may offer a solution, and we take a step in this direction 

in Section 3.4.  
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3.4 Large-scale inference: empirical estimation 

To calculate the false discovery rate for some inferential statistic, such as the classical p-value or second-generation 

p-value, we have seen that the two main design probabilities, 𝑃(𝑇(𝑥) ∈ Γ|𝐻0) and 𝑃(𝑇(𝑥) ∈ Γ|𝐻1), must be 

specified in some manner. This may be done either via a selection of a single point, utilizing a maximization 

approach, or specifying a marginalization function across null and/or alternative effects.  If these specifications are 

not correct, the resulting FDRs may be over- or under-estimated. This presents a challenge, because the specification 

is generally arbitrary. For inference based on classical p-values, empirical Bayes estimation methods have been used 

to avoid or minimize the requirement of such specifications, by leveraging the information available from a large 

number of simultaneous tests (such as Efron 2004; Tang et al. 2007; Efron 2010b, to name just few). Additional 

discussion of and reference to such methods can also be found in Chapter 2. Such methods have not been examined 

for inference based on second-generation p-values. In this section, we examine a first step towards achieving such 

an FDR quantity estimator in large-scale inference.   

 

3.4.1 Empirical Bayes mixture estimates 

In the setting of FDR estimation for classical p-values or z-values, a simple approach for empirical estimation of 

false discovery rate quantities replaces the two-group form of the mixture distribution with a direct non-parametric 

estimate of it, using the empirical cumulative distribution function (ECDF) of the p-values. It is defined for 𝑚 

statistical tests with p-values 𝑝1 , … , 𝑝𝑚 as �̂�(𝑐) = #{𝑗: 𝑝𝑗 ≤ 𝑐} 𝑚⁄ , i.e., the observed proportion of p-values less 

than or equal to 𝑐. We can generalize this to estimate the probability that 𝑝 falls in any general region Γ as 

�̂�(𝑝 ∈ Γ) = #{𝑗: 𝑝𝑗 ∈ Γ} 𝑚⁄ . The second-generation p-value analogue would be to estimate �̂�(𝑝𝛿 ∈ Γ) =

#{𝑗: 𝑝𝛿
𝑗 ∈ Γ} 𝑚⁄  for 𝑚 statistical tests with second-generation p-values 𝑝𝛿

1 , … , 𝑝𝛿
𝑚. In our contexts, we are interested 

in  

 �̂�(𝑝𝛿 = 0) = #{𝑗: 𝑝𝛿
𝑗 = 0} 𝑚⁄  (3.17) 

 

and 

 �̂�(𝑝𝛿 = 1) = #{𝑗: 𝑝𝛿
𝑗 = 1} 𝑚⁄ . (3.18) 

These empirical mixture distribution or probability estimates can then be substituted for 𝑃(𝑝𝛿 = 0) or 𝑃(𝑝𝛿 = 1) 

in the denominator of false discovery quantities as described in Equation (3.7). Using this empirical mixture estimate 

�̂�(𝑝𝛿 = 0) eliminates the need for specification of the alternative design probability for the SGPV FDR, but not for 

the SGPV FCR.  

We illustrate numerical results for this empirical mixture distribution estimate with a simple simulation 

scenario. Estimated effects �̂�𝑛
1, … , �̂�𝑛

𝑚 were directly generated from a simple 2-group model with a single common 

null mean at 0 and single common alternative mean at the boundary of the null hypothesis zone. The number of truly 

null effects (𝑚0 = 𝜋0 ⋅ 𝑚) and number of truly alternative effects (𝑚1 = (1 − 𝜋0) ⋅ 𝑚) were kept as fixed quantities, 
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rather than random variables. The null region is Θ0 = [−0.1,0.1], and the variance is 𝑉 = |Θ0|
2 = 0.04. The 

alternative mean 𝜇1 was set at 𝜇1 = 𝜃0
+ = 0.1, and we examined two values for 𝜋0, 0.5 and 0.9. Note that while 

have focused on 𝜋0 = 0.5 up until this point, it is common in large-scale inference settings to expect a majority of 

the hypotheses tested to be null (e.g., 𝜋0 ≥ 0.9 is sometimes cited as a general rule of thumb (Efron 2010b). Thus, 

𝜋0 = 0.9 represents a setting that is more likely to be encountered in practice. For this setup, the underlying mixture 

probabilities are written generally as 

 𝑃(𝑇(𝑥) ∈ Γ) = 𝜋0 ⋅ 𝑃0(𝑇(𝑥) ∈ Γ) + (1 − 𝜋0) ⋅ 𝑃𝜇1(𝑇(𝑥) ∈ Γ). (3.19) 

Note that these quantities are also reliant on the null zone, variance, and sample size such that we should more 

explicitly write the mixture probability as 𝑃(𝑇(𝑥) ∈ Γ; 𝑉, 𝑛, Θ0); however, we will stick with the shorthand notation 

for convenience.  

Examples of the empirical mixture estimates �̂�(𝑝 ∈ Γ) and �̂�(𝑝𝛿 ∈ Γ) for various sample sizes 𝑛 (10, 20, 

100, and 50,000) and number of tests 𝑚 (100, 1,000, and 10,000) are given in Table 3.5(a) for 𝜋0 = 0.5 and Table 

3.5(b) for 𝜋0 = 0.9. Note that these examples are simply for illustration, as a single simulated data set does not 

represent the overall behavior of the estimator. Assessments such as the bias and variance of these estimators is left 

for future work. The true mixture probabilities, calculated by Equation (3.19), are also given for each sample size 

and asymptotically. 

Firstly, we notice that the mixture probabilities for all quantities vary widely with sample size 𝑛, except 

perhaps for second-generation p-value discoveries, which generally have a low probability of occurring. In the 

provided example simulated data sets, the empirical mixture probability estimates are generally close to the true 

mixture probabilities. This was true for both 𝜋0 = 0.5 and 𝜋0 = 0.9. For smaller number of tests, such as 𝑚 = 100, 

we did observe some estimates that were off by a quite a bit. The magnitude of error appears to be worse for second-

generation p-values than for classical p-values for both values of  𝜋0. This is likely because it is more difficult to 

get a second-generation p-value rejection than a classical p-value rejection, so this relatively rare event is more 

difficult to estimate well. The error was much smaller for larger values of 𝑚, but still noticeable. However, we 

cannot say conclusively from this single example estimate. 

Note that for 𝑛 = 10, the sample size is too small relative to the indifference zone and variance to be able 

to observe a confirmation with the second-generation p-value (0 rejections observed, by definition). In our settings, 

we require a sample size of at least 𝑛 ≥ 15.4 for 𝑃𝜃(𝑝𝛿 = 1) > 0 to be possible. Additionally, in some settings, we 

did not observe any 𝑇(𝑥) ∈ Γ in our simulated example data. For example, in two instances we did not observe any 

𝑝𝛿 = 0, therefore the empirical mixture estimate equals zero (for 𝑛 = 10, 𝑚 = 100, as well as for 𝑛 = 50,000, 

𝑚 = 1,000 in Table 3.5(b)). When this happens, the empirical FDR estimate is undefined; this is sensible, because 

we would have no interest in estimating the probability that the null is true for rejected hypotheses, when there aren’t 

any observed. This was much more likely to occur for small 𝑚, but not impossible for larger 𝑚. Generally, the 

smaller 𝑚1 is (the number of truly non-null hypotheses), the more likely this is to occur. Overall, it appears that the 

sample size 𝑛 does not have much of an impact on how close the empirical mixture estimates are to the truth. 
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Table 3.5      True mixture probabilities and empirical estimates for various values of null proportion, n, and m. The 

true mixture probabilities are True(n) = 𝑃(𝑇(𝑥) ∈ Γ; 𝑛), and the empirical estimates are Esti(n,m) = �̂�(𝑇(𝑥) ∈
Γ; 𝑛,𝑚). The asymptotic true mixture probabilities are also provided. 

 

(a) 𝜋0 = 0.5 

 

  
p-value 

discovery 

SGPV 

discovery 

p-value non-

discovery 

SGPV 

confirmation 

  𝑃(𝑝 ≤ 0.05) 𝑃(𝑝𝛿 = 0) 𝑃(𝑝 > 0.05) 𝑃(𝑝𝛿 = 1) 
n = 10 𝐓𝐫𝐮𝐞(𝐧)  0.2013 0.0127 0.7987 0 

  m = 100  Esti(n,m) 0.2500 0.0300 0.7500 0.0000 

  m = 1,000  0.2120 0.0120 0.7880 0.0000 

  m = 10,000  0.2039 0.0122 0.7961 0.0000 

n = 20 𝐓𝐫𝐮𝐞(𝐧)  0.3294 0.0125 0.6706 0.1183 

  m = 100  Esti(n,m) 0.3200 0.0300 0.6800 0.1100 

  m = 1,000  0.2960 0.0060 0.7040 0.1150 

  m = 10,000  0.3354 0.0119 0.6646 0.1210 

n = 100 𝐓𝐫𝐮𝐞(𝐧)  0.5244 0.0125 0.4756 0.5113 

  m = 100  Esti(n,m) 0.5200 0.0200 0.4800 0.4900 

  m = 1,000  0.5230 0.0100 0.4770 0.5140 

  m = 10,000  0.5237 0.0127 0.4763 0.5115 

n = 50,000 𝐓𝐫𝐮𝐞(𝐧)  0.525 0.0125 0.475 0.5125 

  m = 100  Esti(n,m) 0.5400 0.0100 0.4600 0.5100 

  m = 1,000  0.5210 0.0130 0.4790 0.5110 

  m = 10,000  0.5254 0.0129 0.4746 0.5132 

∞  𝐓𝐫𝐮𝐞(∞)  0.525 

1 − (1 − 𝛼) ⋅ 𝜋0 

0.0125 

(1 − 𝜋0) ⋅ 𝛼 2⁄  

0.475 

(1 − 𝛼) ⋅ 𝜋0 

0.5125 

𝜋0 + (1 − 𝜋0) ⋅ 𝛼 2⁄  

 

(b) 𝜋0 = 0.9 

 

  
p-value 

discovery 

SGPV 

discovery 

p-value non-

discovery 

SGPV 

confirmation 

  𝑃(𝑝 ≤ 0.05) 𝑃(𝑝𝛿 = 0) 𝑃(𝑝 > 0.05) 𝑃(𝑝𝛿 = 1) 
n = 10 𝐓𝐫𝐮𝐞(𝐧)  0.0803 0.0029 0.9197 0 

  m = 100  Esti(n,m) 0.0900 0.0000 0.9100 0.0000 

  m = 1,000  0.0870 0.0020 0.9130 0.0000 

  m = 10,000  0.0767 0.0034 0.9233 0.0000 

n = 20 𝐓𝐫𝐮𝐞(𝐧)  0.1059 0.0025 0.8941 0.1977 

  m = 100  Esti(n,m) 0.1200 0.0100 0.8800 0.2300 

  m = 1,000  0.0980 0.0020 0.9020 0.2090 

  m = 10,000  0.1073 0.0025 0.8927 0.1977 

n = 100 𝐓𝐫𝐮𝐞(𝐧)  0.1449 0.0025 0.8551 0.9004 

  m = 100  Esti(n,m) 0.1400 0.0100 0.8600 0.8900 

  m = 1,000  0.1570 0.0040 0.8430 0.8940 

  m = 10,000  0.1484 0.0029 0.8516 0.8997 

n = 50,000 𝐓𝐫𝐮𝐞(𝐧)  0.145 0.0025 0.855 0.9025 

  m = 100  Esti(n,m) 0.1300 0.0100 0.8700 0.9000 

  m = 1,000  0.1450 0.0000 0.8550 0.9030 

  m = 10,000  0.1457 0.0020 0.8543 0.9037 

∞  𝐓𝐫𝐮𝐞(∞)  0.145 

1 − (1 − 𝛼) ⋅ 𝜋0 

0.0025 

(1 − 𝜋0) ⋅ 𝛼 2⁄  

0.855 

(1 − 𝛼) ⋅ 𝜋0 

0.9025 

𝜋0 + (1 − 𝜋0) ⋅ 𝛼 2⁄  
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3.4.2 False discovery rate estimates 

Using Equation (3.7), the general form of an empirical Bayes second-generation p-value FDR estimate, utilizing the 

empirical mixture probability estimates of Section 3.4.1, is 

 �̂�(𝐻0|𝑝𝛿 = 0) =
𝜋0 ⋅ 𝑃(𝑝𝛿 = 0|𝐻0)

#{𝑗: 𝑝𝛿
𝑗 = 0} 𝑚⁄

 (3.20) 

and the second-generation p-value FCR estimate is 

 �̂�(𝐻1|𝑝𝛿 = 1) =
𝜋1 ⋅ 𝑃(𝑝𝛿 = 1|𝐻1)

#{𝑗: 𝑝𝛿
𝑗 = 1} 𝑚⁄

. (3.21) 

The classical p-value FDR and FNR forms parallel this. Note that we have not yet dealt with the unknown null and 

alternative proportions, 𝜋0 and 𝜋1. One benefit of the empirical mixture approach is that we are able to set the 

unknown 𝜋0 to 1 in the FDR calculation and 𝜋1 to 1 in the FCR (or FNR) calculation, resulting in upper bound 

estimates for each: 

 �̂�(𝐻0|𝑝𝛿 = 0) ≤
1 ⋅ 𝑃(𝑝𝛿 = 0|𝐻0)

#{𝑗: 𝑝𝛿
𝑗 = 0} 𝑚⁄

 (3.22) 

 �̂�(𝐻1|𝑝𝛿 = 1) ≤
1 ⋅ 𝑃(𝑝𝛿 = 1|𝐻1)

#{𝑗: 𝑝𝛿
𝑗 = 1} 𝑚⁄

. (3.23) 

This is not possible when the mixture is calculated directly from mixture of the two design probabilities, otherwise 

the false discovery quantities will always simplify to 1. We use the same simulation setup from Section 3.4.1 to 

illustrate example calculations for these empirically estimated false discovery quantities.  

The results for the example simulated data sets with 𝜋0 = 0.5 and 𝜋0 = 0.9 are given in Table 3.6(a) and 

Table 3.6(b). While the denominators of the FDR quantities (the mixture distribution) are estimated empirically, the 

numerator design probabilities must still be specified. Each of the design probability calculation methods from 

Section 3.3.2 are considered, for the numerators of the FDR and FCR (or FNR). As before, we do not include any 

marginalization approaches for the null design probabilities for the classical p-value FDR. We include both the false 

discovery rate quantity estimates from using either i) the true 𝜋0 and 𝜋1 values (as in Equations 3.20 and 3.21), and 

ii) the upper bound estimates (Equations 3.22 and 3.23). The former are the “oracle” estimator (i.e., if the true 𝜋0 

and 𝜋1 were known) and are denoted by “𝐹𝐷𝑅𝑖
𝑒𝑠𝑡(𝑛): Or”. The latter upper bound estimates are denoted by 

“𝐹𝐷𝑅𝑖
𝑒𝑠𝑡(𝑛): Ub”. Recall that our true null mean is at 0, and the true alternative common mean is 𝜇1 = 𝜃0

+. Thus, 

the FDR quantities based on the point null represent those using the correctly specified numerator null design 

probabilities, and the FCR or FNR quantities based on the point alternative represent the correctly specified 

numerator alternative design probabilities.  

It is clear that, if we know what the true 𝜋0 and data-generating mechanism are (i.e., using design 

probabilities which reflect the underlying truth), then the false discovery rate quantity estimates using the empirical 

mixture distribution are quite close to the true FDR or FNR/FCR values. Note that there are some larger deviations 

for smaller 𝑚, due to less accurate estimation of the mixture distribution. However, the more important observations 
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Table 3.6      True false discovery quantities and estimated false discovery quantities with the empirical mixture 

probability estimate for the simple simulation for various values of null proportion, n, and m. The oracle estimator 

(FDRi
est: Or) uses the true 𝜋0 and 𝜋1 values; the upper bound (FDRi

est: Ub) sets 𝜋0 at 1 for the FDR, and 𝜋1 at 1 for 

the FNR and FCR. The results for various approaches to specifying the null and alternative design probabilities, as 

described in Section 3.3, are given for p-values and second-generation p-value rejection regions. 

 

(a) 𝜋0 = 0.5 

 

 p-value 

FDR 

SGPV 

FDR   

p-value 

FNR  

SGPV 

FCR  

 

 Point 

Null 

Point 

Null 

Unif. 

Null 

T. Norm 

Null 
Point 

Alt. 

Shifted 

Exp. 

Point 

Alt. 

Shifted 

Exp. 

n = 10 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.1242 0.0157 - - 0.4053 - * - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.1 0.0066 0.0996 0.0377 0.4316 0.0712 * * 

0.2 0.0133 0.1991 0.0755 0.8632 0.1425   

  m = 1,000 
 

0.1179 0.0166 0.2489 0.0944 0.4108 0.0678 * * 

0.2358 0.0332 0.4978 0.1887 0.8216 0.1356   

  m = 10,000 
 

0.1226 0.0163 0.2448 0.0928 0.4066 0.0671 * * 

0.2452 0.0327 0.4897 0.1856 0.8132 0.1342   

n = 20 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.0759 0.0011 - - 0.2917 - 0.0803 - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.0781 0.0005 0.0704 0.0185 0.2877 0.0297 0.0864 0.0052 

0.1563 0.0009 0.1408 0.0369 0.5753 0.0595 0.1727 0.0103 

  m = 1,000 
 

0.0845 0.0023 0.352 0.0923 0.2779 0.0287 0.0826 0.0049 
0.1689 0.0045 0.7041 0.1846 0.5557 0.0574 0.1652 0.0099 

  m = 10,000 
 

0.0745 0.0011 0.1775 0.0465 0.2943 0.0304 0.0785 0.0047 
0.1491 0.0023 0.355 0.0931 0.5887 0.0608 0.157 0.0094 

n = 100 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.0477 0 - - 0.0012 - 0.0244 - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.0481 0 0.0472 0.0067 0.0012 0 0.0255 0.0009 

0.0962  0.0945 0.0135 0.0025 0.0001 0.051 0.0018 

  m = 1,000 
 

0.0478 0 0.0945 0.0135 0.0012 0 0.0243 0.0009 
0.0956  0.1889 0.0269 0.0025 0.0001 0.0486 0.0017 

  m = 10,000 
 

0.0477 0 0.0744 0.0106 0.0012 0 0.0244 0.0009 
0.0955  0.1488 0.0212 0.0025 0.0001 0.0489 0.0017 

n = 50,000 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.0476 0 - - 0 - 0.0244 - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.0463 0 0.0042 0.0004 0 0 0.0245 0 

0.0926  0.0084 0.0008   0.049  

  m = 1,000 
 

0.048 0 0.0032 0.0003 0 0 0.0245 0 
0.096  0.0065 0.0006   0.0489  

  m = 10,000 
 

0.0476 0 0.0033 0.0003 0 0 0.0244 0 
0.0952  0.0065 0.0006   0.0487  

∞  𝐅𝐃𝐑𝐭𝐫𝐮𝐞(∞) 0.0476 0 - - 0 - 0.0244 - 
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(b) 𝜋0 = 0.9 

 

 p-value 

FDR 

SGPV 

FDR   
p-value 

FNR  

SGPV 

FCR  

 

 Point 

Null 

Point 

Null 

Unif. 

Null 

T. Norm 

Null 

Point 

Alt. 

Shifted 

Exp. 

Point 

Alt. 

Shifted 

Exp. 

n = 10 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.5607 0.1254 - - 0.0704 - * - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.5 n/a n/a n/a 0.0711  0.0117  * * 

0.5556    0.7114 0.1174   

  m = 1,000 
 

0.5172 0.1793 1 1 0.0709 0.0117 * * 

0.5747 0.1992   0.7091 0.117   

  m = 10,000 
 

0.5867 0.1055 1 0.5994 0.0701 0.0116 * * 

0.6519 0.1172  0.666 0.7012 0.1157   

n = 20 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.425 0.0097 - - 0.0438 - 0.0096 - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.375 0.0024 0.3802 0.0997 0.0445 0.0046 0.0083 0.0005 

0.4167 0.0027 0.4224 0.1107 0.4446 0.0459 0.0826 0.0049 

  m = 1,000 
 

0.4592 0.0122 1 0.4983 0.0434 0.0045 0.0091 0.0005 

0.5102 0.0136  0.5537 0.4337 0.0448 0.0909 0.0054 

  m = 10,000 
 

0.4194 0.0098 1 0.3987 0.0438 0.0045 0.0096 0.0006 
0.466 0.0109  0.4429 0.4382 0.0453 0.0961 0.0058 

n = 100 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.3106 0 - - 0.0001 - 0.0028 - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.3214 0 0.17 0.0242 0.0001 0 0.0028 0.0001 

0.3571  0.1889 0.0269 0.0014  0.0281 0.001 

  m = 1,000 
 

0.2866 0 0.4251 0.0606 0.0001 0 0.0028 0.0001 
0.3185  0.4723 0.0673 0.0014  0.028 0.001 

  m = 10,000 
 

0.3032 0 0.5863 0.0835 0.0001 0 0.0028 0.0001 
0.3369  0.6514 0.0928 0.0014  0.0278 0.001 

n = 50,000 𝐅𝐃𝐑𝐭𝐫𝐮𝐞  0.3103 0 - - 0 - 0.0028 - 

  m = 100  FDRi
est: Or 

FDRi
est: Ub 

0.3462  0 0.0076 0.0007 0 0 0.0028 0 

0.3846  0.0084 0.0008   0.0278  

  m = 1,000 
 

0.3103 n/a n/a n/a 0 0 0.0028 0 
0.3448      0.0277  

  m = 10,000 
 

0.3089 0 0.038 0.0035 0 0 0.0028 0 
0.3432  0.0422 0.0039   0.0277  

∞  𝐅𝐃𝐑𝐭𝐫𝐮𝐞(∞) 0.3103 0 - - 0 - 0.0028 - 

 

from Table 3.6(a) and Table 3.6(b) relate to the scenarios where the numerator design probabilities are not correctly 

specified. As noted in Section 3.3.4, the asymptotic behavior of the different second-generation p-value FDR 

estimators are the same for each of the approaches. However, we can see that for finite sample sizes, using 

approaches that do not align with the true data generating mechanism can also result in big differences between the 

estimates and the true rates, even if the true 𝜋0 is known. Overall, in this example where the null is truly a point at 

0, using a marginalization approach for the design probability will result in quite an overestimate of the FDR for the 

second-generation p-value. In an extreme example, for 𝑛 = 20 and 𝑚 = 100 with 𝜋0 = 0.9, the true SGPV FDR is 

0.0024, but is estimated to be 0.38 with the uniform null approach. The truncated normal prior is more closely 

aligned to the truth than the uniform prior, and thus the resulting FDR estimates are closer, although they too can 

overestimate the FDR to a large degree. We also observe quite a few settings, for 𝜋0 = 0.9, where the FDR estimate 

is equal to 1 with the null marginalization approaches.  

On the reverse side, if the alternatives are truly all at a single point, 𝜃0
+, then using our shifted exponential 

approach for the alternative design probabilities can result in a severe underestimate of the FCR or FNR. For classical 

p-values, the false non-discovery rate estimates are the same in the limit, however for the second-generation p-value 
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false confirmation rate, the shifted exponential approach gives the wrong result, even in the limit. However, we note 

that this type of data generating setting (with all effects only at 𝜃0
+) is not as likely to be observed in practice. It 

seems more likely that the effects may be clustered near 𝜃0
+, with a few larger effects; in this case, the shifted 

exponential could then produce the correct behavior, in the limit. 

If the true 𝜋0 is unknown, as is the case in practice, then the upper bound estimate can be used. The utility 

of this estimate varies, however. When 𝜋0 = 0.5, the FDR and FNR/FCR upper bound estimates are both 1 0.5⁄ =

2x that of the estimates calculated with the true 𝜋0 and 𝜋1. When 𝜋0 = 0.9, the FDR estimates are only 1 0.9⁄ ≈

1.1x that of the oracle estimates, however the FNR and FCR upper bound estimates are 1 0.1⁄ = 10x that of the 

oracle estimates. Overall, may conclude that if 𝜋0 ≈ 0.9, which is commonly the case in large-scale inference 

settings, the upper bound estimate for the FDR may be minimally conservative; however, the same cannot be said 

for the false confirmation rate. For classical p-values, there are methods which estimate 𝜋0 empirically from the 𝑚 

observed p-values or z-values, with varying degrees of success (see for example, Storey and Tibshirani 2003; Efron 

2010b; Murray and Blume 2021). One open question remains of how such methods might perform when the null is 

defined as an interval range of trivial effects. Alternately, perhaps a method to estimate 𝜋0 = #{𝜃 ∈ Θ0} based on 

the observed second-generation p-values could be developed. The often-unsatisfactory upper bound estimate 

behavior in our examples highlights the need for some sort of improved approach for handing 𝜋0 in the false 

discovery rate quantity estimation; thus, is an important area that requires further development.  

Further, the selection of the null design probability (for the FDR) or the alternative design probability (for 

the FCR or FNR) remains crucial. While methods to estimate these exist for standard p-values, much of the existing 

methodology relies on the established distributional properties of p-values. These have not been established for 

second-generation p-values. Therefore, we ultimately will desire some empirical approach for estimating  

𝑃(𝑝𝛿 = 0|𝐻0) and 𝑃(𝑝𝛿 = 0|𝐻1) (as well as for 𝑝𝛿 = 1) for second-generation p-values. This will be an important 

area for future work, in order to facilitate the use of FDR estimation for second-generation p-values in practice. 

 

3.5 Closing remarks 

The second-generation p-value is a metric which can incorporate scientific relevance into large-scale inference. It 

has some improved characteristics over the classical p-value, including improved type I error and false discovery 

rate properties corresponding to point null effects (Blume et al. 2018, Blume et al. 2019). An additional quantity, 

the false confirmation rate (FCR), is defined for the SGPV as the rate at which 𝑝𝛿 = 1 – indicating support for the 

null hypothesis – occurs for alternative effects (Blume et al. 2018). To calculate such quantities as the FDR and FCR 

for second-generation p-values, the null and alternative design probabilities, 𝑃(𝑝𝛿 = 0|𝐻0) and 𝑃(𝑝𝛿 = 0|𝐻1) (and 

equivalently for 𝑝𝛿 = 1), must be known, specified, or estimated. Further, the null proportion 𝜋0 must either be 

known or estimated, else we can only define upper bounds on the FDR and FCR.  

In this chapter, we provide a detailed outline of the framework for false discovery quantities for the second-

generation p-value, define general forms for the design probability components, and propose methods for specifying 

these which incorporate the composite nature of both the null and alternative hypotheses. In this process, some 
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further finite sample and asymptotic properties of SGPV frequency probabilities for certain values of the parameter 

space, which have not been previously described in the literature, are outlined here. Finally, we describe an approach 

for empirical estimation of FDR quantities for the second-generation p-value, illustrate their calculation in a 

simulation example, and discuss their utility in practice. 

In large-scale inference based on classical p-values, the design probability 𝑃(𝑝 ≤ 𝛼|𝐻0) is usually well-

defined for a point null, and we often do not need 𝑃(𝑝 ≤ 𝛼|𝐻1) at all (when an empirical Bayes estimate of the 

mixture distribution is used). Additionally, methods for estimating 𝜋0 based on the z-values have been established 

when 𝜋0 corresponds only to the point null effects. In our application of second-generation p-values to false 

discovery rates, we encounter a variety of challenges which must be addressed.  

Blume et al. (2018) originally calculate the SGPV null design probability assuming the point null, despite 

the interval null being a key assumption used with second-generation p-value framework. Further, they calculate the 

full FDR curve, varying the point alternative effect size. However, in practice, a single FDR estimate is desired. In 

the present chapter, we have proposed a more general definition for the FDR and FCR, which requires a specification 

of distribution or weighting functions to marginalize across the interval null space and/or alternative spaces, 

respectively. 

We find that for most sensible choices of the null weighting function (i.e., those which do not place all or 

the majority of the weight on the boundaries of the null region), the null design probability for the SGPV will 

converge to 0. However, for finite sample sizes, the design probability – and resulting FDR or FCR  – may vary 

quite a bit depending on the weights. In our examples, placing uniform weight across the null zone results in an 

FDR considerably larger than the point null or the truncated Normal weighting distribution approach, with the latter 

providing a balance between the point null and uniform approaches. The null design probability must still be 

specified for the estimation approach utilizing empirical Bayes estimation, which replaces the mixture probability 

in the denominator of the FDR quantities with a simple estimate based on the observed SGPVs. Thus, 

misspecification of this null design quantity can greatly impact the resulting FDR estimate for finite 𝑛. 

One benefit of the empirical Bayes mixture estimate for SGPV, however, is that it does allow for a reduction 

in assumptions made. For example, for the FDR, the alternative design probability does not need to be specified. 

Further, when the mixture distribution is directly estimated, it is feasible to obtain an upper bound on the FDR 

estimate without specifying 𝜋0. The upper bound estimate overestimates the true FDR estimate (i.e., if 𝜋0 was 

known) by a factor of 1 𝜋0⁄ . Thus, if the true null proportion is large, such as 0.9 or more, the upper bound estimate 

is an overestimate by a factor of approximately 1.1 or less, which is reasonable. However, if the null proportion is 

much smaller, such as one half, the upper bound estimate is double the true FDR estimate. 

For the false confirmation rate, we are still faced with specifying the alternative design probability 

𝑃(𝑝𝛿 = 1|𝐻1), however we then do not need to specify the null design probability when the empirical mixture 

estimator is used for the denominator. Misspecification of this design probability can also have a large impact on 

the FCR estimates. The shifted exponential weighting function approach we examined resulted in much smaller 

FCR than the conservative approach of setting the alternative at the boundary of the null zone (representing the 
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smallest scientifically relevant effect size, and results in the minimum value for the alternative design probability). 

Further, this latter approach results in a FCR which does not converge to 0, rather to a lower bound of 𝛼 (𝛼 + 2𝑟−1)⁄  

where 𝑟 = 𝜋1 𝜋0⁄ . This is in contrast to the shifted exponential approach FCR converging to 0 as the sample size 

goes to infinity. As with the FDR, using the empirical mixture estimator, we can define the upper bound on the FCR 

estimate, which overestimates the true FCR estimate by a factor of 1 (1 − 𝜋0)⁄ . This means that, in common 

scenarios with large 𝜋0 such as 0.9, the FCR upper bound greatly overestimates the true estimate, by a factor of 10. 

Thus, an estimator for 𝜋0 would greatly improve use of FDR estimates in practice, rather than relying on 

the upper bounds which can be considerable overestimates. Existing methods developed for point null hypotheses 

may not work well in our interval null hypothesis setting, however this is left an open question for future research. 

Additionally, methods for estimating the design probabilities for second-generation p-values would also be desired 

to obtain robust estimates of false discovery rate quantities, rather than needing to specify the choice of weighting 

function(s). Due to the sensitivity which we have demonstrated of the FDR and FCR estimates to the specification 

of these quantities, we advise that further examination and development of robust estimation methods be studied 

before applying these in practical use. However, we expect that the work described in this chapter will aid in 

directing such future research and ultimately in usage of the second-generation p-value false discovery rate for large-

scale inference.  

 

3.6 Appendix A: Remarks and supplemental content 

3.6.1 Remarks 

3.6.1.1 Remark 3.A 

The second-generation p-value Bayes false discovery rate can be written in several forms, including: 

 

𝑆𝐺𝑃𝑉 𝐹𝐷𝑅 =
𝜋0 × Pr(𝑝𝛿 = 0|𝐻0) 

𝜋0 × Pr(𝑝𝛿 = 0|𝐻0) + 𝜋1 × Pr(𝑝𝛿 = 0|𝐻1)
 

=
Pr(𝑝𝛿 = 0|𝐻0) 

Pr(𝑝𝛿 = 0|𝐻0) +
𝜋1
𝜋0
× Pr(𝑝𝛿 = 0|𝐻1)

 

= (1 +
𝜋1
𝜋0
×
Pr(𝑝𝛿 = 0|𝐻1)

Pr(𝑝𝛿 = 0|𝐻0)
)

−1

. 

 

When 𝜋0 = 1, we directly get 𝑆𝐺𝑃𝑉 𝐹𝐷𝑅 = 1 for every sample size. When 𝜋0 = 0, we directly get 𝑆𝐺𝑃𝑉 𝐹𝐷𝑅 =

0 for every sample size. For 0 < 𝜋0 < 1, the 𝑆𝐺𝑃𝑉 𝐹𝐷𝑅 → 0 when Pr(𝑝𝛿 = 0|𝐻0) → 0 and as long as 

Pr(𝑝𝛿 = 0|𝐻1) converges to some non-zero constant. For the SGPV, 𝑃𝜃(𝑝𝛿 = 0) > 0 ∀𝜃 ∈ Θ1 as well as at 𝜃 = 𝜃0
− 

and 𝜃 = 𝜃0
+ for all sample sizes, therefore, Pr(𝑝𝛿 = 0|𝐻1) > 0 regardless of the approach used to calculate this 

alternative design probability. It was established prior in (Blume et al. 2018) that using the point null approach 

results in Pr(𝑝𝛿 = 0|𝐻0) → 0 because 𝑃0(𝑝𝛿 = 0) → 0 as 𝑛 → ∞. If, instead, the frequentist maximum approach is 

used for the null design probability, then Pr(𝑝𝛿 = 0|𝐻0) → 𝛼 2⁄ , because as we discussed in Section 3.2.1, 

𝑃𝜃0+(𝑝𝛿 = 0) → 𝛼 2⁄  and this will be the maximum across Θ0. Therefore, in this case, the SGPV FDR would not 
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converge to 0. However, we considered utilizing marginalization approaches to account for the interval null 

hypothesis instead. For 𝜃 ∈ (𝜃0
−, 𝜃0

+), i.e., the entirety of the null zone excluding the boundaries, 𝑃𝜃(𝑝𝛿 = 0) → 0 

as 𝑛 → ∞ (as discussed in Section 3.2.1). Therefore, our marginalization approaches, which take a weighted average 

of 𝑃𝜃(𝑝𝛿 = 0) across Θ0, will result in Pr(𝑝𝛿 = 0|𝐻0) → 0 and therefore 𝑆𝐺𝑃𝑉 𝐹𝐷𝑅 → 0. We expect that for all 

choices of weighting functions which are continuous, or which do not have any point mass at the null boundaries, 

this will be the case. On the other hand, potential choices which do place all (as with the frequentist maximum 

approach) or some point mass at either or both of 𝜃0
− or 𝜃0

+, can result in Pr(𝑝𝛿 = 0|𝐻0) → 𝑐 with 𝑐 > 0 such that 

the SGPV FDR does not converge to 0.  

 

3.6.1.2 Remark 3.B 

As in Remark 3.A for the FDR, the second-generation p-value Bayes false confirmation rate (FCR) can be written 

in several forms: 

 

𝑆𝐺𝑃𝑉 𝐹𝐶𝑅 =
𝜋1 × Pr(𝑝𝛿 = 1|𝐻1) 

𝜋1 × Pr(𝑝𝛿 = 1|𝐻1) + 𝜋0 × Pr(𝑝𝛿 = 1|𝐻0)
 

=
Pr(𝑝𝛿 = 1|𝐻1) 

Pr(𝑝𝛿 = 1|𝐻1) +
𝜋0
𝜋1
× Pr(𝑝𝛿 = 1|𝐻0)

 

= (1 +
𝜋0
𝜋1
×
Pr(𝑝𝛿 = 1|𝐻0)

Pr(𝑝𝛿 = 1|𝐻1)
)

−1

. 

 

When 𝜋0 = 0, i.e., 𝜋1 = 1, we directly get 𝑆𝐺𝑃𝑉 𝐹𝐶𝑅 = 1 for every sample size. When 𝜋0 = 1, i.e., 𝜋1 = 0, we 

directly get 𝑆𝐺𝑃𝑉 𝐹𝐶𝑅 = 0 for every sample size. For 0 < 𝜋0 < 1, the 𝑆𝐺𝑃𝑉 𝐹𝐶𝑅 → 0 if Pr(𝑝𝛿 = 1|𝐻1) → 0 and 

Pr(𝑝𝛿 = 1|𝐻0) converges to some non-zero constant. As described in Section 3.2.1, 𝑃𝜃(𝑝𝛿 = 1) → 1 for 𝜃 ∈

(𝜃0
− + 휀 , 𝜃0

+ − 휀), 𝑃𝜃(𝑝𝛿 = 1) → 𝛼 2⁄  for 𝜃 ∈ {𝜃0
−, 𝜃0

+} (the null boundary points), and 𝑃𝜃(𝑝𝛿 = 1) → 0 for 𝜃 ∈

(−∞,𝜃0
− − 휀) ∪ (𝜃0

+ + 휀,∞). Therefore, for methods of specifying the alternative design probability which do not 

place point mass on the null boundary points (such as with the shifted Exponential distribution in Examples 4-6), 

Pr(𝑝𝛿 = 1|𝐻1) → 0 such that 𝑆𝐺𝑃𝑉 𝐹𝐶𝑅 → 0. On the other extreme, for the approach which places all the point 

mass right at the null boundary (i.e., Examples 1-3), then Pr(𝑝𝛿 = 1|𝐻1) → 𝛼 2⁄  and with the approaches we used 

for the null design probability (i.e., which do not place any point mass on the null boundaries), Pr(𝑝𝛿 = 1|𝐻0) → 1, 

such that 𝑆𝐺𝑃𝑉 𝐹𝐶𝑅 → (𝛼 2⁄ ) (𝛼 2⁄ + 𝑟−1)⁄  with 𝑟 = 𝜋1 𝜋0⁄ . 
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4.1 Introduction 

The field of multiple testing has evolved over time, originating with a small multiplicity of tests, where control of 

the probability that one or more false rejection is made (the family wise error rate) is a sensible approach (Tukey 

1953; Ryan 1959). However, an alternative approach emerged, particularly as the number of tests typically 

considered slowly grew, originating from ideas discussed in (Spjøtvoll 1972; Berger and Sellke 1987; Sorić 1989) 

– i.e., considering the number or rate of false rejections. This concept was first formalized in (Benjamini and 

Hochberg 1995) and a simple method for an FDR controlling proposed as a modification of (Simes 1986).  

Since this time, the possible number of simultaneous tests has exploded, with even several hundreds of 

thousands or millions of tests being considered at a time. Fields such as genomics, neuroimaging, and microbiome 

studies are common biological applications where large-scale inference is relevant. In such instances, we typically 

have identical statistical tests being performed for a large number of similar units, such as genes or SNPs (genomics), 

voxels from fMRI images (neuroimaging), or microbial taxa (microbiome). For example, the well-known (Golub et 

al. 1999) microarray paper studied the association between gene expression and leukemia for 7,129 genes. The NIH 

Human Microbiome Project has been used to study different scientific questions, such as variation by sex of 748 

bacterial taxa in the gut (Human Microbiome Project 2012; Zhou et al. 2018). In Chapter 2, we examined a study of 

the association between the number of variant alleles for 224,866 SNPs and the occurrence of prostate cancer 

(original data from (Schaid and Chang 2005)). Therefore, the idea of controlling or minimizing the rate of false 

discoveries is as important as ever. However, it is also important to consider other factors, such as the power to 

reject true alternatives, so as to not miss potential discoveries in scientific studies, given that such large-scale 

inference procedures often form the foundation upon which future work is built.  

Much of standard inferential procedures, particularly for large-scale inference, are developed with focus 

on the classical p-value. The second-generation p-value (SGPV) was introduced by Blume et al. (2018) as an 

alternative metric, incorporating an interval null hypothesis rather than a point null hypothesis. It is a measure of the 

overlap between the null hypothesis and the interval range of estimated effects (e.g., from a confidence interval), is 

scaled to the [0,1] range and includes a small sample correction factor. For further details on the SGPV, see (Blume 

et al. 2018, 2019), as well as Section 3.2. The key aspect of the SGPV which we will focus on for this chapter is that 

the second-generation p-value, denoted by 𝑝𝛿 , equals 0 when the interval of estimated effects (e.g., an estimated 

95% confidence interval) lies completely outside of the interval null hypothesis zone, i.e., there is no overlap 
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between them. This serves as a natural choice for defining a procedure for rejecting null hypotheses based on the 

SGPV.  

Blume et al. (2018) establishes the general operational probabilities for the SGPV (denoted by 𝑝𝛿), 

including this probability Pr(𝑝𝛿 = 0|𝜃), showing that it converges to zero when 𝜃 = 0, and propose a simple 

definition of the Bayes/positive false discovery rate (Efron, Storey, et al. 2001; Efron, Tibshirani, et al. 2001; Storey 

2001a, 2001b, 2002, 2003) applied to the second-generation p-value, Pr(𝐻0|𝑝𝛿 = 0), under a strong set of 

assumptions. Building on this work, in Chapter 3, we defined a general form for the SGPV positive false discovery 

rate and find that for most sensible approaches of calculating this quantity, it converges to 0 with sample size and is 

smaller than the analogous unadjusted p-value pFDR (see Section 3.3.4 for more on these theoretical results). 

In the present chapter, we provide a more comprehensive examination of using SGPVs in large-scale 

inference. The advancements include examining a broader set of quantities such as overall FDR control and power, 

relaxing some assumptions made prior, and including comparison with common multiple comparisons corrective p-

value procedures. 

First, while the pFDR (i.e., Bayes FDR) is arguably the most important quantity for large-scale inference, 

it is still useful to examine the complete picture of the operating characteristics of a procedure. Control of the overall 

false discovery rate, defined as 𝑝𝐹𝐷𝑅 × Pr(𝑅 > 0) (Benjamini and Hochberg 1995), via a reduced Pr(𝑅 > 0), 

may still be useful in some scenarios. We begin with a derivation of the probability of making at least one rejection 

for the second-generation p-value and examine its behavior as a function of sample size and number of tests. In 

addition to reducing the rate of false rejections, we are interested in rejecting as many of the non-null tests as 

possible, i.e., to increase or maximize the power of a testing procedure (Hochberg and Tamhane 1987). Thus, we 

also include an examination of power to understand this aspect of the SGPV in comparison to other common 

procedures in practice. 

Secondly, the currently established results for false discovery quantities for second-generation p-values 

rely on a strong set of assumptions, such as fixed and known variance, as well as a common variance among all 𝑚 

tests. We use extensive simulations to examine a broad set of false discovery rate and power quantities for the SGPV 

and other methods, particularly under a wider range of settings for the variance such that we might study the 

robustness of these estimates. It is unlikely in practice that all tests will have the same variance. Our simulations 

include both settings where there is a common variance, and settings where there are more than one variance value 

among tests (i.e., one small and one large variance). We examined both the setting where the variance distribution 

is independent of effect size, and one where it is dependent on effect size. Additionally, the assumption of fixed, 

known variance is seldom true in practice, rather, an estimator is used. In our simulations, we replaced the true 

variance of the sample mean by the sample variance estimator. Thus, we examine behavior of the second-generation 

p-value in scenarios which should more closely represent their use in real-world practical settings. 

Additionally, the unadjusted p-value is unlikely to be the p-value choice in practice for settings where a 

measurement such as the false discovery rate would be used. Prior work in (Blume et al. 2018) and in Chapter 3 has 

focused on comparison between the SGPV and unadjusted p-value (or some loose connections between SGPV and 
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the Bonferroni correction). When we are interested in examining, or possibly controlling, the false discovery rate or 

pFDR of an inferential procedure in large-scale inference, it is much more likely that a procedure such as Benjamini-

Hochberg (BH) designed to control the FDR would be the “gold standard” procedure (Benjamini and Hochberg 

1995). As such, it is important to understand how the second-generation p-value compares to this approach. In this 

chapter, a comparison is made with the Bonferroni (Dunn 1961) and Benjamini-Hochberg procedures, as well as 

with some hybrid methods which combine multiple comparisons adjusted p-values and the effect size in some 

manner (such as (Goodman et al. 2019)).  

Overall, with these extensions, we aim to develop a further understanding of the use second-generation p-

values in practice, particularly as they compare to other prevalent choices. We conclude with a discussion of 

recommendations for practical implementation, and some future areas of development which may further improve 

the usage of second-generation p-values in large-scale inference.  

 

4.2 The FDR and other relevant metrics for the SGPV 

In a large-scale inference scenario, we commonly use the random variable 𝑅 to denote the total number of tests 

which are rejected by a particularly define rejection procedure, such as the standard 𝑝 ≤ 𝛼 or a multiple comparisons 

adjusted procedure. The random variable 𝑉 denotes the number of rejected tests corresponding to null effects. 

Benjamini and Hochberg (1995) originally defined the false discovery rate as 𝐹𝐷𝑅 = 𝐸[𝑄], where 𝑄 is a random 

variable equal to either 𝑄 = 𝑉 𝑅⁄  when 𝑅 > 0 or 𝑄 = 0 when 𝑅 = 0.  However, when we think of the phrase “the 

rate of false discoveries of a multiple comparisons inference”, a different definition might come to mind – namely, 

the expected value of the first component of 𝑄, the false discovery proportion 𝑉 𝑅⁄  specifically when 𝑅 > 0. This 

quantity was formally defined in (Storey 2002, 2003) as the positive false discovery rate, i.e., 𝑝𝐹𝐷𝑅 =

E[𝑉 𝑅⁄ |𝑅 > 0]. The overall FDR and the pFDR can be confused in practice. Of course, there is a relationship 

between them: 𝐹𝐷𝑅 = E[𝑉 𝑅⁄ |𝑅 > 0] × Pr(𝑅 > 0) + 0 × Pr(𝑅 = 0) = 𝑝𝐹𝐷𝑅 × Pr(𝑅 > 0). Another way to 

think of the FDR is that it is a weighted average of the rate of false discoveries in observed (1 or more) discoveries, 

and of the 0 discoveries. Under a certain model of assumptions, it has been established that the pFDR rate quantity 

also has the probabilistic interpretation of 𝑝𝐹𝐷𝑅 = E[𝑉 𝑅⁄ |𝑅 > 0] = Pr(𝐻0|𝑅𝑒𝑗𝑒𝑐𝑡) (Storey 2001a, 2001b, 2002, 

2003). This quantity answers the question that is more natural to ask of a set of observed rejected hypotheses: how 

likely is it that these are false rejections, or what proportion of them do we expect to be false rejections?  

The pFDR for second-generation p-value rejections (those with 𝑝𝛿 = 0) has been studied in some detail in 

(Blume et al. 2018, 2019), and in Chapter 3. Asymptotically, the SGPV pFDR converges to zero as a result of 

convergence of the null design probability Pr(𝑝𝛿 = 0|𝐻0). However, for finite n, the pFDR can be large, although 

it is at least smaller than the pFDR for the classical, unadjusted p-value. On the other hand, the overall FDR of the 

SGPV procedure, or the quantity Pr(𝑅 > 0), has not been examined as of yet.  

Throughout the chapter, we will examine these quantities in various settings relating to a simple two or 

three group underlying model for the effect sizes and variance. Often in large-scale inference, a two-group model is 

described for the p-value or z-value distributions. In the case of the second-generation p-value, we need to know 
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both the effect size estimate �̂� and its variance 𝑉𝑛 (or an estimate). Further, we will later extend the two-group model 

into a three-group model to differentiate between zero, trivial, and non-trivial effect sizes (Section 4.4). However, 

for the time being we will remain in a scenario where there are only two true effect sizes observed in the 𝑚 

hypotheses: 𝜃0 = 0 or 𝜃1, where 𝜃1 is some meaningful effect size outside of Θ0. The vector of true effect sizes 

(effect size for each test 𝑖) is defined as 𝜃 = (𝜃1,… , 𝜃𝑚) where 𝜃𝑖 ∈ {𝜃0, 𝜃1}. There are 𝑚0 = #{𝜃𝑖 = 𝜃0} =

∑ 𝐼[𝜃𝑖 = 𝜃0]
𝑚
𝑖=1  number of null tests (a proportion 𝜋0 = 𝑚0 𝑚⁄  of the tests) and 𝑚1 = #{𝜃𝑖 = 𝜃1} =

∑ 𝐼[𝜃𝑖 = 𝜃1]
𝑚
𝑖=1  number of alternative tests (a proportion 𝜋1 = 𝑚1 𝑚⁄  of the tests). These are treated as fixed 

quantities at the data-generating level, although we note that these are frequently modeled as random variables. In 

the present chapter, we will focus on �̂� as an estimate of a sample mean from a Normal distribution, such that 𝑋𝑖 =

𝑋𝑖,1, … , 𝑋𝑖,𝑛 with 𝑋𝑖,𝑗 ∼
𝑖𝑖𝑑
𝑁(𝜃𝑖, 𝜎

2) where �̂�𝑖 = �̅�𝑖 ∼ 𝑁(𝜃𝑖, 𝑉𝑛) and 𝑉𝑛 = 𝜎
2 𝑛⁄  (or potentially an estimator �̂�𝑛). This 

assumes a common variance 𝜎2 between all tests, however we will relax this in later sections. 

 

4.2.1 Direct calculations for fixed variance 

In this section, we define the probability 𝑃𝑟(𝑅 > 0) for second-generation p-value rejections of 𝑝𝛿 = 0, review the 

pFDR definition, and ultimately calculate the overall FDR. Recall that 𝑅 is the number of rejected tests, i.e., 𝑅 =

#{𝑝𝛿 = 0} = ∑ 𝐼[𝑝𝛿,𝑖 = 0]
𝑚
𝑖=1  for the SGPV. Thus, Pr(𝑅 > 0) = 1 − Pr(𝑅 = 0) = 1 − ∏ (1 − 𝑃𝑟𝜃𝑖(𝑝𝛿 =

𝑚
𝑖=1

0; 𝜎2)),  assuming independence between tests, which simplifies to  

 Pr(𝑅 > 0) = 1 −∏ (1 − 𝑃𝑟𝜃𝑘(𝑝𝛿 = 0; 𝜎
2))

𝑚𝑘 

𝑘
 for 𝑘 ∈ {0,1}, (4.1) 

for fixed 𝑚0 and 𝑚1. The probability 𝑃𝑟𝜃(𝑝𝛿 = 0; 𝜎2 , 𝑛, 𝛿) has been defined in (Blume et al. 2018, 2019). The FDR 

is then 𝐹𝐷𝑅 = 𝑝𝐹𝐷𝑅 × Pr(𝑅 > 0), where  

 𝑝𝐹𝐷𝑅 = Pr(𝐻0|𝑝𝛿 = 0)                                                                             

 =
𝜋0 × 𝑃𝑟𝜃0(𝑝𝛿 = 0; 𝜎

2)

𝜋0 × 𝑃𝑟𝜃0(𝑝𝛿 = 0; 𝜎
2) + 𝜋1 × 𝑃𝑟𝜃1(𝑝𝛿 = 0; 𝜎2)

, (4.2) 

for this two-mean data model. Further details on the pFDR can be found in Chapter 3.  

These three major false discovery rate quantities (the pFDR, 𝑃𝑟(𝑅 > 0), and FDR) are illustrated in Figure 

4.1(a) as a function of sample size 𝑛, for a setting where 90% of the tests are null. In the first figure, there are only 

𝑚 = 10 tests, in the second, there are 𝑚 = 100 tests, and in the last figure, there are 𝑚 = 1,000 tests. These test 

sizes are smaller than typically seen with most modern multiple comparisons or large-scale inference settings; 

however, these were chosen to illustrate cases where 𝑃𝑟(𝑅 > 0) is non-zero. This positive rejection probability is 

affected by factors such as 𝜋0, the alternative effect size (here, set to 𝜃1 = 1.5𝛿) and the variance (set at 𝜎2 =

1.5 × (2𝛿)2), and, to a lesser degree, the null width 2𝛿 (in this example, 𝛿 = 0.1). Under these settings, and for 

rejections based on 𝑝𝛿 = 0, we observe 𝑃𝑟(𝑅 > 0) < 1 only for small values of 𝑚. We can see that even by 𝑚 =

1,000 tests, 𝑃𝑟(𝑅 > 0) = 1 for all sample sizes. Note that after a certain sample size, the probability 𝑃𝑟(𝑅 > 0) is 



72  

(a)   

   
(b)    

   
 

 
 

Figure 4.1      Relevant false discovery rate quantities for the second-generation p-value rejection rule. In this setting, 

𝜎2 = 1.5 × (2𝛿)2, 𝜋0 = 0.9, the alternative effects have mean 𝜃1 = 1.5𝛿, and 𝛿 = 0.1. (a) As a function of 𝑛, for 

varying values of 𝑚. (b) As a function of 𝑚, for varying values of 𝑛. 

 

non-decreasing, because the confidence interval width shrinks and therefore 𝑝𝛿 = 0 is more likely for non-null tests. 

However, notice that this quantity is not fully monotonic across all 𝑛. For extremely small 𝑛, the estimator �̂� is very 

volatile, increasing the probability that an unusually large �̂� will be observed, such that even the wide CI does not 

overlap with Θ0 at all (i.e., 𝑝𝛿 = 0). Around the inflection point, the  �̂� starts to become less variable, but the CI 

width does not decrease much. as such, a non-overlapping CI with Θ0 is much less probable. In general, however, 

𝑃𝑟(𝑅 > 0) → 1 as 𝑛 → ∞ and as 𝑚 → ∞ for the second-generation p-value, aside from special cases such as when 

alternative effects are arbitrarily close to the boundary of the null region. 

We can also observe in Figure 4.1(a) previously established behavior of the pFDR for the second-

generation p-value (the blue line), namely that 𝑝𝐹𝐷𝑅 → 0 as 𝑛 → ∞. Note that under the current set of assumptions, 

the pFDR for the SGPV is not affected by the number of tests, 𝑚. However, the FDR which scales the pFDR by 

𝑃𝑟(𝑅 > 0), can become much smaller for small 𝑛 and small 𝑚 due to 𝑃𝑟(𝑅 > 0) being much less than 1. That is, 

the FDR is much lower than the pFDR for these small 𝑛 and 𝑚, although it is not necessarily strictly controlled at 

the 0.05 level. The interrelationships between these quantities are illustrated further in Section 4.2.2. 

Figure 4.1(b) shows a different perspective, varying the number of tests 𝑚 on the x-axis for a selection of 

sample sizes. The constant nature of the pFDR as a function of 𝑚 is more easily seen as a horizontal line in each 
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figure. Because the sample size is fixed for each figure, so too is 𝑃𝑟𝜃𝑖(𝑝𝛿 = 0; 𝜎
2), given that 𝜎2 is presently 

assumed to be a known constant among all tests. As such, the probability 𝑃𝑟(𝑅 > 0) is monotonically increasing as 

a function of 𝑚. As noted above, 𝑃𝑟(𝑅 > 0) → 1 and consequently 𝐹𝐷𝑅 → 𝑝𝐹𝐷𝑅 as 𝑚 → ∞. Overall, we see that 

the SGPV FDR is not generally controlled, and when it is controlled, we typically see that 𝐹𝐷𝑅 ≈ 𝑝𝐹𝐷𝑅 ≤ 0.05 

for the more common sample sizes or number of tests. The pFDR converges relatively quickly, although this will 

depend on factors such as the variance, whether the known variance or an estimate is used for SGPV calculations, 

and the alternative effect size.  

 

4.2.2 Discussion: FDR control and pFDR minimization 

The distinction between the FDR and pFDR is important. In this section, we provide further illustrations of their 

interrelationships, as well as discussion of the roles of each in large scale inference settings. Recall that the FDR is 

the expected value of the random variable 𝑄, which is defined as either the observed proportion of false rejections 

(𝑉 𝑅⁄ ) when rejections are observed (𝑅 > 0), or as zero when no rejections are observed (𝑅 = 0). This is in some 

ways a sensible definition. If no rejections were made at all, then we know with certainty that no false rejections 

were made, and as such it might be a natural choice to set the quantity at zero. On the other hand, this also means 

that a procedure that is FDR controlling (i.e., 𝐹𝐷𝑅 ≤ 0.05), will tell us nothing about how many incorrect rejections 

to expect in a set of observed rejected tests. For illustration, consider the four scenarios in Table 4.1 below: 

 

Table 4.1      Example scenarios for controlled FDR. 

 

 FDR 

(𝐸[𝑄]) 
pFDR 

(𝐸[𝑉 𝑅⁄ |𝑅 > 0]) 
Pr(𝑅 > 0) 

Scenario 1 0.05 0.05 1 

Scenario 2 0.05 0.1 0.5 

Scenario 3 0.05 0.5 0.1 

Scenario 4 0.05 0.99 0.051 

 

In each of these scenarios, the FDR is equal to 0.05. However, the manner in which it is controlled is very 

different. In Scenario 1, the FDR is controlled naturally, via control of the pFDR. On the other hand, in Scenario 2, 

10% of observed rejections are incorrect on average, yet rejections are only made half of the time, thus the expected 

value of 𝑄 is brought back to 0.05. Scenario 3 is a more extreme example of this behavior, with 50% of observed 

rejections expected to be false, but observing any rejections only 10% of the time. Control of the FDR regardless of 

its component values may be intuitive when viewed from a frequentist lens. However, viewing it from a more 

practical lens, applying this procedure to real-life data will give us only one single data point of 𝑉 and 𝑅. In the case 

of Scenario 3, we would either 1) reject nothing (90% of the time), or 2) we obtain a set of rejected tests which are 

expected to be 50% wrong.  

It is important to re-emphasize that if we observe a set of rejected tests based on a multiple testing procedure 

which has been shown to control the FDR, we have no idea whether we are in Scenario 1, 2, 3, or 4 (or anything in 
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between). For this reason, we will generally prefer a procedure for which 𝑝𝐹𝐷𝑅 ≤ 0.05. Strict pFDR control is not 

possible in general (Benjamini and Hochberg 1995; Storey 2002, 2003), however we might aim to at least minimize 

the pFDR, if not control it. Note that it has been previously argued in the literature that in practice, large-scale 

inference experiments typically have Pr(𝑅 > 0) ≈ 1, such that this distinction is not crucial (Storey 2003; Efron 

2010b). However, this may not always be the case, particularly if the variability of the measurements is very large, 

or the sample size is very small. We see some examples of this in Sections 4.3 and 4.4, where Pr(𝑅 > 0) is examined 

for some common multiple testing procedures.  

Procedures which control the FDR “artificially” via reduction in Pr(𝑅 > 0) may be less desirable in 

common contexts where multiple testing procedures are used. For example, large-scale inference settings are 

frequently viewed as exploratory (Storey 2002; Goeman and Solari 2011). In such cases, extremely low power, and 

in particular the likelihood of observing 𝑅 = 0, is of particular concern. This is due to rejections being more so seen 

as “signals of interest”, to inspire further inferential or laboratory studies, rather than final establishments of 

associations. If no rejections are observed, the next scientific step is left unclear. In such contexts, we might prefer 

a procedure which minimizes the pFDR, with higher power, rather than a procedure which strictly controls the FDR 

but is also likely to provide no rejected tests. Essentially, we might prefer to cast a wider net at a “first-stage” 

inference procedure, then refine results with further study in the future. 

FDR control may still be the top priority if the inference is in a context where consequences of false 

rejections are higher. Certainly, a study which results in no rejections could be viewed as a waste of money. 

However, if outcomes of a large-scale inference study will have larger, direct impacts, such as directly affecting 

patient safety or immediately changing clinical practice, then in such a case, we might prefer to still employ a 

procedure that artificially controls the FDR, with a reduced probability of calling any signals as significant. 

However, it is still of great importance to get an estimate of the pFDR, to know, if significant associations are 

observed, how many of these resulting signals we can expect to be erroneous, and guide decisions about future 

implementation. 

 

4.3 Simulations for sample variance 

In Section 4.2.1, we examined the probability Pr(R>0) and the overall FDR control (or lack thereof) related to the 

second-generation p-value for a single, known value of variance. Next, we will examine simulation estimates for 

false discovery quantities in a wider array of settings, and with the sample variance estimator in place of the true 

variance. Note that by comparing these relaxed scenarios to the prior ones, we may study the robustness of the FDR 

quantities to violations in these original assumptions.  

Further, we will compare the performance of the SGPV against several well-known multiple testing control 

methods, namely Bonferroni (albeit for the purpose of controlling the FWER, not FDR) (Dunn 1961) and the 

Benjamini-Hochberg method (Benjamini and Hochberg 1995). The Benjamini-Hochberg procedure is an adaptive 

procedure, meaning that the rejection rule is a function of observed data, unlike Bonferroni where the procedure 

rejects any p-value below a pre-determined cutoff of 𝛼 𝑚⁄ . 
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Direct calculation of the pFDR, Pr(R>0) and FDR for the SGPV is possible when the variance is fixed. It 

is more complex to derive these quantities in scenarios when the variance is non-common, and an estimator is used 

in place of the known variance. Here, we use simulation methods to obtain estimates of the quantities of interest.  

The simulated data are generated under the same type of data-generating framework as described in Section 4.2, but 

with a non-common variance such that 𝑋𝑖 = 𝑋𝑖,1, … ,𝑋𝑖,𝑛 with 𝑋𝑖,𝑗 ∼
𝑖𝑖𝑑
𝑁(𝜃𝑖 , 𝜎𝑖

2) where �̂�𝑖 = �̅�𝑖 = ∑ 𝑋𝑖,𝑗
𝑛
𝑗=1 𝑛⁄ ∼

𝑁(𝜃𝑖 , 𝑉𝑛,𝑖) and 𝑉𝑛,𝑖 = 𝜎𝑖
2 𝑛⁄ . To calculate the p-values and confidence intervals for the second-generation p-value, 

we will use the estimated sample variance for the sample mean estimate �̂�𝑖 (and as a result, use a t-statistic in place 

of a z-statistic, and a 𝑡 critical value in place of a 𝑧 critical value).  

For the simulations, we examined settings with: 

i)    common variance of 𝜎2 among all tests,  

ii)  two variance values, 𝜎𝑠
2 and 𝜎𝑙

2, with equal probability of being observed for both null and 

alternative tests (i.e., Pr(𝜎2 = 𝜎𝑠
2|𝜃 = 𝜃𝑘) = Pr(𝜎

2 = 𝜎𝑙
2|𝜃 = 𝜃𝑘) = 0.5 for 𝑘 ∈ {0,1}), and  

iii)  as in (ii), but with all null effects having the small variance  𝜎𝑠
2, and all alternative effects having 

the large variance 𝜎𝑙
2 (i.e., Pr(𝜎2 = 𝜎𝑠

2|𝜃 = 𝜃0) = 1 and Pr(𝜎2 = 𝜎𝑙
2|𝜃 = 𝜃1) = 1).  

We also examined various values of number of tests 𝑚, proportion of null tests 𝜋0, and size of alternative effect 𝜃1.  

The pFDR, probability of observing positive effects Pr(R>0), the resulting FDR, and the estimate of observed power 

(i.e., the rejection rate of alternative tests with mean 𝜃1, 𝐸[#{rejected with 𝜃 = 𝜃1} 𝑚1⁄ ]) are given in Figures 4.2 

– 4.4 for a selection of settings. These settings were selected to illustrate several different behaviors of the SGPV in 

comparison to the Benjamini-Hochberg procedure.  

Figure 4.2(a)-(d) is a setting where the pFDR of the SGPV and BH procedures is similar for finite sample 

sizes. Figure 4.3(a)-(d) is a setting where the SGPV pFDR is quite a bit larger than the pFDR for the BH procedure 

for small sample sizes. Lastly, Figure 4.4(a)-(d) is a setting where the pFDR of the SGPV is quite smaller than the 

BH procedure pFDR, particularly in small sample sizes. In each of these figures, there are 𝑚 = 10,000 tests, where 

𝜋0 = 0.9 of these are null, and the alternative effect magnitude is 1.5 times the minimum effect size of scientific 

relevance (i.e., 𝜃1 = 1.5𝛿). The only difference among each setting is the variance magnitudes and/or distributions 

among tests. Some other behaviors for each of the quantities are more consistent across various settings. The key 

false discovery rate and power quantities for a wider variety of settings (including other variance settings, number 

of tests, and alternative effect sizes 𝜃1) are also given in Supplemental Figure 4.2(a)-(d). 

Examining Figures 4.2 – 4.4 and Supplemental Figure 4.2(a)-(d), we see the following overall trends. The 

Benjamini-Hochberg procedure does successfully control the FDR around 0.05 across all considered settings. 

However, for small sample sizes, the pFDR can be much larger than 5% (with FDR control due to small Pr(𝑅 > 0), 

even as small as 0.1). In many cases, the BH 𝑝𝐹𝐷𝑅 has reduced to 5% by a sample size of 𝑛 = 20, and in nearly all 

of the examined settings by 𝑛 = 100. For small 𝑛, the pFDR for the SGPV can be quite large, ranging between 20% 

and 80% in our examined settings for 𝑛 ∈ (5,10,20). For 𝑚 = 10,000 (the case in Figures 4.2 – 4.4) and  
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(a) pFDR (b) Pr(R>0) 

  
(c) FDR  

= pFDR × Pr(R>0) (d) power 

  

 
 

Figure 4.2      Simulation estimates of false discovery rate quantities for a setting with only null and non-trivial 

alternative effects, and with tests having a common variance. Specifically, the setting is 𝑚 = 10,000, 𝜋0 =
0.9, 𝜋1 = 0.1, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and there is a common variance of 𝜎2 = 1.5 × (2𝛿)2 for all tests. 
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(a) pFDR (b) Pr(R>0) 

  
(c) FDR 

= pFDR × Pr(R>0) (d) power 

  

 
 

Figure 4.3      Simulation estimates of false discovery rate quantities for a setting with only null and non-trivial 

alternative effects, and with two possible variance values distributed randomly among tests. Specifically, the setting 

is 𝑚 = 10,000, 𝜋0 = 0.9, 𝜋1 = 0.1, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and 𝜎2 ∈ {1 × (2𝛿)2, 5 × (2𝛿)2}, with random 

distribution among tests (null and alternative tests have 0.5 probability of having each variance value). 
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(a) pFDR (b) Pr(R>0) 

  
(c) FDR 

= pFDR × Pr(R>0) (d) power 

  

 
 

Figure 4.4      Simulation estimates of false discovery rate quantities for a setting with only null and non-trivial 

alternative effects, and with null tests having smaller variance and alternative tests having larger variance. 

Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.9, 𝜋1 = 0.1, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and 𝜎2 ∈ {1 × (2𝛿)2, 5 ×
(2𝛿)2}, with all null tests having variance of 1 × (2𝛿)2 and all non-trivial alternative tests having variance of 

5 × (2𝛿)2. 

 

𝑚 = 1,000 (seen in Supplemental Figure 4.2(a)-(d)), the SGPV Pr(𝑅 > 0) ≈ 1 for all sample sizes, effect sizes, 

and variance magnitudes. For a very small number of tests (𝑚 = 100), the quantity Pr(𝑅 > 0) for SGPV rejections 

is commonly less than 1 for these small sample sizes, however, it is not small enough to control the FDR, only to 

reduce it somewhat (i.e., Pr(𝑅 > 0) > 0.05 𝑝𝐹𝐷𝑅⁄ ). 

When extremely small sample sizes are observed (e.g., 𝑛 = 5), the pFDR for the SGPV procedure is mostly 

comparable to that of BH procedure. For other small sample sizes (e.g., 𝑛 = 10 or 𝑛 = 20), the difference between 

the SGPV pFDR and BH pFDR varies, dependent on the distribution and magnitude of the variances, and the 

magnitude of the alternative effect size. In cases where all or some of the tests have very large variance (such as 

𝜎2 = 10 × (2𝛿)2, with either common variance or randomly distributed variance), the BH pFDR is much smaller 

than that of the SGPV pFDR for small 𝑛. In other settings, where the variance of the alternative effects is larger and 

the variance for null effects is small, the SGPV pFDR is significantly lower than that of BH, including for 𝑛 = 5. 
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Of course, for medium-to-large sample sizes, the SGPV pFDR converges to 0, and the BH pFDR converges to 

𝜋0 × 0.05.  

Interestingly, the SGPV procedure has slightly larger power than BH for small 𝑛, although both have very 

poor power (≤ 0.2 in many cases). This is primarily due to the increased rate of observing 𝑅 > 0 for SGPV 

compared to BH, and in many cases a tradeoff with FDR control. The SGPV procedure loses power in the medium 

range of sample sizes, but eventually the power converges to 1 (somewhere in the range of 𝑛 = 100 and 𝑛 = 1,000 

for most settings, depending on variance and effect size), along with the power of the BH procedure. In settings 

where the effect size is very large, e.g., 𝜃1 = 3𝛿, the SGPV nearly always has comparable or better power than the 

BH procedure, converging to 1 at a faster rate.  

 

4.4 Rejections of trivial effects for an interval null hypothesis 

A key benefit of the second-generation p-value is that it accounts for trivial effects, defined by the pre-specified 

interval null hypothesis or “indifference zone”, which consists of the range of effects deemed to be scientifically 

uninteresting or not impactful. Therefore, with the SGPV, we hope to focus on effects that would be scientifically 

meaningful. This is in contrast to the classical p-value, which only examines effects in relation to their corresponding 

standard error. With small enough variance, or a large enough sample size, trivial effects can frequently be rejected 

by standard or even adjusted p-value procedures such as Bonferroni. If these trivial effects truly represent effects 

which are uninteresting, then a procedure which controls the rate of discovering effects with mean exactly equal to 

zero (the point null) but has a large rate of trivial effect discoveries, will not be useful.  

Here, we extend the prior data model to include effects which are non-zero but fall within the pre-defined 

interval null hypothesis Θ0. Mathematically, one approach to incorporating such effects is to keep with the two-

group model as described in Section 4.2 and expand the null component of the overall mixture into another mixture 

of zero and non-zero trivial effects. The alternative component of the mixture will include only the non-trivial effects 

outside of Θ0. A second approach is to define a three-group model, which consists of 1) zero null effects, 2) non-

zero trivial null effects, and 3) non-trivial alternate effects. This approach is useful to distinguish between the zero 

and non-zero trivial effects, particularly to illustrate drivers of overall behavior. Note that these two approaches are 

not necessarily distinct from a data-generating perspective, rather the important differences are from a notational 

and mathematical framework perspective. We will implement the latter approach with a three-mean model where 

some of the tests are null with true mean 𝜃0 = 0, some of the tests are non-zero but trivial with true mean 𝜃𝑡𝑣 ∈

Θ𝑡𝑣 = [𝜃0
−, 0) ∪ (0, 𝜃0

+], and the rest are alternative with a non-trivial true mean of 𝜃1 ∈ Θ1 = (−∞, θ0
−) ∪ (𝜃0

+,∞). 

The vector of true means is 𝜃 = (𝜃1, … , 𝜃𝑚) with 𝜃𝑖 ∈ {𝜃0, 𝜃𝑡𝑣, 𝜃1}. The quantities 𝑚0 and 𝑚1 are defined as before, 

and 𝑚𝑡𝑣 = #{𝜃𝑖 = 𝜃𝑡𝑣} = ∑ 𝐼[𝜃𝑖 = 𝜃𝑡𝑣]
𝑚
𝑖=1  is the number of trivial tests (a proportion 𝜋𝑡𝑣 = 𝑚𝑡𝑣 𝑚⁄  of the tests). 

With an expanded model, we need to consider additional sets of the false discovery rate quantities. For the 

pre-specified interval null hypothesis region, the positive false discovery rate is 𝑝𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} = Pr(𝜃 ∈ Θ0|𝑝𝛿 = 0), 

and the corresponding FDR is 𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} = 𝑝𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} × Pr(𝑅 > 0). This combined, or interval null, pFDR can  
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be decomposed into the two components related to zero and non-zero trivial effects. That is,  

 𝑝𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} = 𝑝𝐹𝐷𝑅{𝑝𝑡} + 𝑝𝐹𝐷𝑅{𝑡𝑣}, (4.3)  

where 𝑝𝐹𝐷𝑅{𝑝𝑡} = Pr(𝜃 = 0|𝑝𝛿 = 0) is the classical, “point null” pFDR and 𝑝𝐹𝐷𝑅{𝑡𝑣} = Pr(𝜃 ∈ Θ𝑡𝑣|𝑝𝛿 = 0) is 

the pFDR corresponding to rejections of effects with trivial but non-zero mean (in our examples, 𝜃 = 𝜃𝑡𝑣). The 

corresponding FDRs are 𝐹𝐷𝑅{𝑝𝑡} = 𝑝𝐹𝐷𝑅{𝑝𝑡} × Pr (𝑅 > 0), and 𝐹𝐷𝑅{𝑡𝑣} = 𝑝𝐹𝐷𝑅{𝑡𝑣} × Pr (𝑅 > 0), respectively. 

 

4.4.1 Results 

The full set of false discovery rate quantities and power to reject non-trivial alternate effects are provided for one 

example setting in Figure 4.5.  As in the prior examples, there are 𝑚 = 10,000 tests, an alternative effect size of 1.5 

times that of the minimum scientifically relevant value (i.e., 𝜃1 = 1.5𝛿), and 10% of the tests having this alternative, 

non-trivial mean.  However, rather than all other tests having mean exactly equal to zero, 20% of the tests have a 

trivial non-zero effect size 0.5 times that of the minimum scientifically relevant value. That is, 𝜋0 = 0.7 of the tests 

have 𝜃0 = 0 and 𝜋𝑡𝑣 = 0.2 of the tests have 𝜃𝑡𝑣 = 0.5𝛿, for a combined interval null proportion of 90%. All tests 

have a common variance of 𝑉 = 1.5 × (2𝛿)2 in this chosen setting. Here, we can see that the trivial and combined 

pFDR and FDR quantities for all classical p-value methods do not decrease to a lower bound, as with the SGPV, 

where both 𝑝𝐹𝐷𝑅{𝑡𝑣} → 0 and 𝑝𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} → 0 as 𝑛 → ∞. These simulation results support the theoretical results 

of Chapter 3 (i.e., from Section 3.3.4), that the interval null pFDR/Bayes FDR will converge to 0 for sensible null 

effect distributions. Procedures such as BH may have 𝐹𝐷𝑅{𝑡𝑣} ≤ 0.05 and/or 𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} ≤ 0.05 in small samples 

due simply to the low probability of observing rejections. However, 𝑃𝑟(𝑅 > 0) → 1 as 𝑛 → ∞, and thus ultimately 

the BH has undesirable behavior in both the pFDR and FDR. These results hold true in general across all examined 

settings, as seen in Supplemental Figure 4.6. 

 

4.4.2 Illustration: which type of tests rejected by SGPV vs. p-value approaches 

To illustrate some examples of SGPV behavior as compared to classical p-value approaches, the estimated 95% 

confidence intervals from a single simulated data set, having 𝑚 = 100 tests with 𝑛 = 20 observations for each test, 

are plotted in Figure 4.6(a). These intervals are in no particular order, other than being grouped by their true mean 

– intervals 1:70 have true mean 𝜃0 = 0, intervals 71:90 have true mean 𝜃𝑡𝑣 = 0.5𝛿, and intervals 91:100 have true 

mean 𝜃1 = 1.5𝛿. Each interval has either a smaller true underlying variance (equal to the squared null width) or a 

larger true variance value (5 times the squared null width), with equal probability. The grey shaded horizontal 

rectangle represents the interval null/indifference zone.  

Intervals which are colored in red are those where 𝑝𝛿 = 0, i.e., intervals which are rejected based on SGPV 

criteria. Intervals in blue are those with 𝑝𝛿 ≠ 0 (where light blue corresponds to 0 < 𝑝𝛿 < 1, and dark blue 

corresponds to 𝑝𝛿 = 1). Above each interval, where observed, are symbols which signify a rejection by a classical 

p-value approach: the circular dots correspond to unadjusted p-value rejections, the triangles correspond to 

Bonferroni procedure rejections, and the diamonds correspond to BH procedure rejections. It is important to note  
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Figure 4.5      Simulation estimates of false discovery rate quantities for a setting with null, trivial, and non-trivial 

alternative effects, and with tests having a common variance. Specifically, the setting is 𝑚 = 10,000, 𝜋0 =
0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and there is a common variance of 𝜎2 = 1.5 × (2𝛿)2 
for all tests. 
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(a) n = 20 

 
(b) n = 100 

 
 

Figure 4.6      Illustration of rejected intervals for each testing method in two example settings. The colored vertical 

interval line segments denote each of the m = 100 confidence intervals (CIs). The CIs are grouped by their true 

effect size 𝜃 (the intervals are in no particular order otherwise; recall that there are only 3 unique effect sizes). The 

vertical black lines denote the boundary between each effect size 𝜃. That is, the first 𝑚0 = 70 intervals have true 

𝜃 = 0 (zero null effects), the next 𝑚𝑡𝑣 = 20 intervals have true 𝜃 = 0.5𝛿 (trivial non-zero effects), and the final 

𝑚1 = 10 intervals have true 𝜃 = 1.5𝛿 (alternative, non-trivial effects). Each test has either a small or large true 

underlying variance, with random distribution among all effect sizes. The shaded blue/grey rectangle represents the 

interval null hypothesis Θ ∈ [−0.1,0.1]. The color of the CIs represents the SGPV result. CIs colored in light blue 

represent 𝑝𝛿 ∈ (0,1), colored in dark blue/purple represent 𝑝𝛿 = 1, and colored in red represent 𝑝𝛿 = 0 (i.e., SGPV 

rejections). Intervals rejected by the unadjusted p-value threshold have a black circle above them, intervals rejected 

by the Bonferroni procedure have a black triangle above them, and intervals rejected by the Benjamini-Hochberg 

procedure have a black diamond above them. (a) 𝑛 = 20, (b) 𝑛 = 100. 
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that this setting and the simulated data were not selected randomly. Rather, they were intentionally chosen to 

illustrate behavior that is sometimes observed where the second-generation p-value excels above the other methods. 

We see that, as expected, unadjusted p-values reject many more tests than other methods, which 

corresponds in this case to improved power to reject true alternatives (power = 0.7), but also a decent number of 

rejections of null and trivial intervals (point FDP = 0.057, combined FDP = 0.078). Here, the rejections by 

Bonferroni and BH are identical, although this is not generally the case. However, some key differences are seen 

between the BH and SGPV methods. While both methods have an observed (point) false discovery proportion of 

𝐹𝐷𝑃 = 0, the BH (and Bonferroni) method reject a single trivial interval (combined FDP = 0.011). We can see that 

this interval had an estimated effect size �̂� outside of the indifference zone and a small variance, leading to an 

adjusted p-value small enough to meet both rejection thresholds. Further, in this instance, the SGPV has improved 

power: it rejects an additional second, wider interval, that was not picked up by the other adjusted methods due to 

having a larger observed variance (SGPV power = 0.2 vs BH power = 0.1). 

Figure 4.6(b) shows a single set of simulated intervals with all the same settings as in Figure 4.6(a), except 

with an increased sample size of 𝑛 = 100. In this case, we can see that the BH procedure has a higher rate of 

rejections overall – true effect rejections are increased (better power), however the zero and trivial effects are also 

rejected at an increased rate (0.071 and 0.35, respectively). The SGPV correctly excludes all zero and trivial effects 

from rejections, although it does have lower power: only 5 of the 10 true alternative tests are rejected, as opposed 

to 8 of the 10 with BH. From results in prior sections, we know that eventually the power of the SGPV procedure 

does also converge to 1 (usually anywhere from n = 100 to n = 500 in our examined settings of variance and effect 

size). However, Figure 4.6(b) also serves to illustrate how the increase occurs at a slower rate than the other 

considered procedures. 

 

4.4.3 Hybrid procedures 

In this section, we briefly examine two procedures that utilize both traditional p-values and the effect size directly 

in some manner.  First, we examine a procedure which only counts as rejected tests those that are rejected both by 

the Benjamini-Hochberg procedure and by the SGPV (𝑝𝛿 = 0). That is, we take the intersection of BH and SGPV 

rejections (thus, will refer to this test by the shorthand “BH-SGPV”). The hope with defining this procedure is that 

we might take advantage of the best behavior from each method (e.g., FDR control of BH, improved pFDR of the 

SGPV for certain settings, and of BH for others, and the low rates of inclusion of trivial effect sizes in rejections). 

Additionally, we examine a variation of a hybrid procedure described in (Goodman et al. 2019), the 

“minimum effect size plus p-value” (MESP) approach. The original procedure rejects tests only when the unadjusted 

p-value rejects (𝑝 ≤ 𝛼) and the point effect estimate �̂� falls outside of Θ0. We will instead focus on a modification 

which uses the BH adjusted p-value instead of the standard unadjusted p-value threshold. We denote this procedure 

by “BH-MESP”. Note that this procedure is very similar to the BH-SGPV procedure, but with a less stringent 
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requirement related to effect size: only the point estimate needs to be outside of Θ0 (for BH-MESP), rather than the 

entire confidence interval (as with BH-SGPV). 

Figure 4.7 shows the same results as in Figure 4.5 (where the true underlying variance is common among 

all tests), but with these two hybrid approaches added. We can see that both procedures have 𝑝𝐹𝐷𝑅{𝑡𝑣} → 0 and 

𝑝𝐹𝐷𝑅{𝑐𝑜𝑚𝑏} → 0 as 𝑛 → ∞, although there is an interesting case of one sample size (i.e., 𝑛 = 50) for which the 

BH-MESP has an increased trivial and combined pFDR than for other sample sizes. Notably, both hybrid approaches 

do also achieve control of the point pFDR for small sample sizes. The trivial and combined pFDR are also controlled, 

or nearly controlled, across sample sizes (other than the case of 𝑛 = 50 for BH-MESP referenced above). In this 

setting, the power of BH-MESP is nearly equivalent to the power of the BH procedure alone. Note that the power 

is calculated only for the non-trivial alternative effects (not including trivial effect sizes). The BH-SGPV procedure 

however does lose power as compared to SGPV alone for small sample sizes (although it is comparable to BH and 

BH-MESP, with all having power equal to zero for 𝑛 = 5 and 𝑛 = 10).  

Figure 4.8 provides the results for the example setting where the variance values are 𝜎2 ∈

{1 × (2𝛿)2, 5 × (2𝛿)2}, where all null tests have the smaller variance, all alternative tests have the larger variance, 

and trivial effects have one of the variance values each with probability 0.5. This is the setting described in Figure 

4.3, where the SGPV excels (in terms of the point pFDR being lower). However, we can see that this improved 

𝑝𝐹𝐷𝑅{𝑝𝑡} for small sample sizes does not hold for the two hybrid procedures, and instead have point pFDR 

comparable to the BH procedure alone. For the trivial and combined pFDRs, the behavior of BH-SGPV and BH-

MESP are similar to BH for small sample sizes, intermediate between SGPV and BH approaches for moderate 

sample sizes, and similar to SGPV for larger sample sizes. The behavior of the power of the two hybrid procedures 

follows the same patterns as described for the prior example setting. 

Overall, we see that the hybrid approaches are an improvement only in particular cases of sample size or 

variance magnitudes and distributions. For very small sample sizes (e.g., 𝑛 = 2 to 𝑛 = 20), they can maintain FDR 

control over both exactly zero and trivial effect sizes. However, as with BH, this FDR control comes from the 

Pr(R>0) being less than 1, not from a reduction in the pFDR. In some circumstances, the SGPV approach has a 

significantly lower pFDR than that of the hybrid methods for small and moderate sample sizes; in many other 

circumstances, the hybrid methods have comparable pFDRs, and in some cases the pFDR of the SGPV is 

significantly worse (Supplemental Figure 4.9).  

 

4.5 Discussion 

The positive false discovery rate for rejections based on the second-generation p-value has been examined 

previously in a limited scope of settings, such as in (Blume et al. 2018) and in Chapter 3. In this chapter, we have 

performed a more holistic examination of the second-generation p-value behavior in large-scale inference, including 

comparisons with other prevalent methods and the study of additional quantities such as the overall false discovery 

rate (pFDR scaled by 𝑃𝑟(𝑅 > 0)) and the power to reject scientifically meaningful effects. Additionally, our use of 
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Figure 4.7      Simulation estimates of false discovery rate quantities, including results from the hybrid procedures, 

for a setting with null, trivial, and non-trivial alternative effects, and with tests having a common variance. 

Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and 

there is a common variance of 𝜎2 = 1.5 × (2𝛿)2 for all tests. 
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR 

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Figure 4.8      Simulation estimates of false discovery rate quantities, including results from the hybrid procedures, 

for a setting with null, trivial, and non-trivial alternative effects, and with null tests having smaller variance and 

alternative tests having larger variance. Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 =
0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and 𝜎2 ∈ {1 × (2𝛿)2, 5 × (2𝛿)2}, with all null tests having variance of 

1 × (2𝛿)2, all non-trivial alternative tests having variance of 5 × (2𝛿)2, and random distribution of the variance 

values among the trivial tests. 
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the estimated sample variance in place of the known variance, and examination a wider range of scenarios for the 

variance of tests, further elucidates practical use of the SGPV. 

First, we have derived the probability 𝑃𝑟(𝑅 > 0) for the second-generation p-value. For the number of 

tests 𝑚 which are now more common, i.e., in the hundreds of thousands or even millions, this probability for the 

SGPV is 1, and therefore the FDR is not controlled unless the pFDR itself is controlled. We find that 𝑃𝑟(𝑅 > 0) <

1 for SGPV only when the number of tests is small – relative to modern large-scale inference standards – in 

combination with a small sample size. However, regardless of the number of tests, we find that this probability does 

converge to 1 with increasing sample size. In general, what this indicates is that for most commonly encountered 

settings of large-scale inference, the SGPV does not generally control the FDR across all sample sizes. Rather, it is 

naturally controlled when the pFDR itself is below the threshold, such as 0.05, for large enough sample size.  

Next, we studied a range of simulation scenarios to examine the pFDR, the probability 𝑃𝑟(𝑅 > 0), the 

resulting overall FDR, and the power of the SGPV procedure in comparison with standard approaches such as the 

unadjusted p-value, Bonferroni, and Benjamini-Hochberg procedures, with the assumption of known variance 

relaxed (i.e., the sample variance estimator used). To build concepts, we began by ignoring the issue of trivial effects. 

Our results from these settings demonstrated several things. One finding that may be of interest to frequent users of 

the BH procedure is that – although the FDR for point null effects is indeed controlled at 𝜋0𝑞 across all sample sizes 

– for small 𝑛, the control comes from a lower probability of rejections. That is, the pFDR may be quite large, i.e., 

𝜋0𝑞 ≤ 𝐵𝐻 𝑝𝐹𝐷𝑅 ≤ 𝜋0, where we observed some pFDR values close to the 𝜋0 upper boundary, in settings with 

very small sample size. For example, with 𝜋0 = 0.9, we may see many more than 𝜋0𝑞 = 4.5% of the tests rejected 

by BH to be in fact null findings; even as many as 90% of them in some cases such as with 𝑛 = 5 or 𝑛 = 10. Thus, 

in practice, particularly with small sample size, rejections from the BH procedure must be interpreted with extra 

care. If the set of rejections is erroneously interpreted as having an expected rate of false rejections of 5%, when in 

reality it could be ten times that or more, this may be very misleading and contribute to future wasted scientific 

endeavor. 

In this scenario of no trivial effects, for smaller sample sizes, the pFDR of the SGPV is variable in 

comparison to that of popular multiple testing procedures such as Bonferroni and Benjamini-Hochberg. In particular, 

compared to BH the SGPV pFDR is  sometimes lower, sometimes higher, and sometimes comparable. We find that 

this varies based on factors such as the true alternative effect size, the magnitudes and distributions of the underlying 

variance for each test, and the magnitude of sample size. In the limit, however, we observed the same behavior 

established under the more rigid assumptions of known and common variance, namely that both SGPV and BH 

result in a controlled pFDR, with the BH converging to the lower bound of 𝜋0𝑞 (as 𝑝𝐹𝐷𝑅 → 𝐹𝐷𝑅) and with the 

SGPV pFDR converging to zero (aligning with results established in (Blume et al. 2018)).  

Understanding the behavior of the second-generation p-value and other common procedures under the 

consideration of the point null hypothesis is helpful for establishing concepts. However, the main advantage of the 

SGPV emerges when we are concerned with trivial effects, as the traditional p-value methods do not account for the 

magnitude of effects; an effect size such as 0.001 is considered an alternative effect under the standard point null  
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paradigm, even though it may be practically indistinguishable from 0. Therefore, our next step was to examine 

settings with trivial effects, and to extend the definition of the false discovery rate quantities to account for the 

interval null hypothesis (similarly to Chapter 3).  

In these circumstances, classical p-value methods, regardless of whether they are adjusted for multiple 

comparisons, increasingly reject these practically null effects when the sample size is large enough. We observed in 

our simulations, as expected, that procedures based on the classical p-value lack FDR control for combined zero and 

trivial effects for virtually all sample sizes, underlying variance, or true alternative effect size. Even in the limit, 

classical p-value methods, regardless of whether they are adjusted for multiple comparisons, increasingly reject 

these practically null effects. 

Instead, methods which account for absolute effect size (rather than standardized effect size, as with the p-

value) are needed for appropriate behavior of the false discovery rates. The SGPV is one such procedure. The 

interval null pFDR for the second-generation p-value, which measures the rate of rejections of both exactly null and 

practically null (trivial) effects, however, does converge to 0. These results support the theoretical result derived in 

Chapter 3 (i.e., in Section 3.3.4). 

Additionally, we considered two others – referred to as hybrid procedures – which incorporate both the BH 

procedure and an effect size criterion such as the SGPV or the estimated effect. The BH-SGPV hybrid approach 

takes the intersection of those two tests, while the BH-MESP hybrid approach is a modification of (Goodman et al. 

2019) which requires that the BH test reject and that the estimated effect lies outside of the interval null. These 

approaches can provide some improvements, although they are not necessarily a universal solution. The hybrid 

methods were found to not fully control the interval null FDR for finite sample sizes, however they do result in a 

considerable reduction. For many settings with very small sample size, the interval null FDR for the hybrid methods 

ranged from approximately 0-0.12, compared to 0-0.85 for the SGPV alone. However, as with the BH procedure, 

much of this FDR control or attenuation was observed to result from a reduction in the probability of making any 

rejections, rather than a reduction in the pFDR itself. This means that the same tradeoff as discussed with the BH 

procedure, between FDR control and minimization of the rate of false rejections in observed rejections (pFDR), 

must be considered. In many settings, the interval null positive false discovery rates of the hybrid methods are 

comparable to that of the SGPV or BH procedures by themselves; in others, the pFDRs are found to be worse than 

the SGPV method (for some finite sample sizes, and for some settings of variance distribution among tests). 

Although, the SGPV and the hybrid methods are all seen to have an interval null pFDR (and thus FDR) which 

converge to zero in our simulation results.  

So far, we have focused our discussion on false discovery quantities. Ideally, a procedure would control 

the FDR and/or minimize the pFDR, while also maximizing power. It has been previously established in (Blume et 

al. 2018) that the SGPV has reduced power compared to the classical p-value, which is intuitively clear, as the SGPV 

requires that the confidence interval excludes the entire null region, not only zero. Further, in their Supplement 1, 

Blume et al. (2018) provide one example for fixed sample size where the SGPV power is observed to be greater 

than that of the Bonferroni procedure for large number of tests. In the present chapter, we examine the power of the 
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SGPV, Bonferroni, BH, and hybrid procedures across a wider range of settings. We find that for moderate sample 

sizes, the BH has greater power than the SGPV procedure and converges to 1 at a faster rate, although as 𝑛 becomes 

larger (e.g., between n = 500 and n = 1,000), the SGPV and BH procedures both converge to 1 (although often the 

BH procedure converges much earlier, e.g., between n = 100 and n = 500). The comparison with Bonferroni is 

similar, although the discrepancy between the SGPV and Bonferroni power was often smaller. For most sample 

sizes, the BH adjusted MESP hybrid procedure was found to have similar power to the BH procedure alone, and the 

BH-SGPV hybrid procedure was found to have similar power to the SGPV procedure alone. At times, the power of 

the hybrid procedures was lower, but not by much. Interestingly, for small sample sizes, the SGPV procedure power 

was found to be the greatest of all considered – this is likely because, unlike with BH or the hybrid procedures where 

frequently the number of rejections was 0 (i.e., Pr(𝑅 > 0) < 1) to achieve FDR control, the SGPV procedure nearly 

always rejected at least one test. This further exhibits the tradeoff between quantities, e.g., between strict FDR 

control and power. 

Overall, which procedure is best depends on 1) the main priorities of the study (control of the FDR, 

minimized pFDR, statistical power, etc.), 2) the importance of excluding trivial effects, and 3) factors such as sample 

size, number of tests, and the true magnitudes and distributions of effect sizes and variances. If strict FDR control 

of discovery of effects which are exactly zero is the main priority, then an approach such as BH may still be 

preferred. On the other hand, if FDR control is the key goal but trivial effects are of concern (to reduce their inclusion 

in the set of rejections), our methods demonstrate that a hybrid method such as BH-SGPV or BH-MESP would 

achieve these goals the best in most scenarios, although with a possible reduction in power. If, however, pFDR 

minimization for combined zero and trivial effects is the most important priority, then the best choice – from either 

the SGPV alone or a hybrid method – depends on the sample size and expected distributions and magnitudes of 

variances. Of course, in practice, these last quantities are not known, and therefore there is not always a clear choice.  

In this chapter, we have examined only a subset of  many potential multiple testing approaches; however, 

it is not likely that any another particular method will be universally best in all scenarios, either. As with many 

statistical approaches, tradeoffs are likely necessary. It is clear, however, that when trivial effects are taken into 

consideration, traditional methods are unsatisfactory, and some form of method which accounts for effect size is 

needed. Regardless, after an approach is chosen based on the priorities and circumstances of the study, a reliable 

method to estimate the pFDR remains the important next step. 

One promising area for future work lies in a more localized or ranking based assessment using second-

generation concepts. The general idea is that, following a large-scale testing procedure, the next step in the scientific 

process might be to follow-up on the significant findings in more depth, such as with laboratory studies. However, 

if a large number of tests initially met the significance criteria, it is not feasible to follow up on all of them, and thus 

we need a method to prioritize them in some way. Essentially, we wish to define a ranking for associations, by which 

to sort and determine the top set of “interesting” findings. In the specific setting of genetics, candidate genetic 

variants may often initially be ranked by their raw p-value; further specialized prioritization methods have also been 

developed to incorporate information from other sources or modalities (Cantor et al. 2010, Doncheva et al. 2012, 
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Tam et al. 2019). In more general settings, focusing only on the statistical information at hand, we would benefit 

from 1) prioritizing tests which have lower false discovery rates, and 2) prioritizing tests which are likely to have 

truly meaningful effects. Utilizing the second-generation p-value framework in place of classical p-values may be 

helpful in this way. One potential approach would be to use the SGPV and the respective delta-gap, which is an 

accompanying measure to the SGPV, defined in (Blume et al. 2018), which measures the scaled distance between 

the null and interval estimate boundaries. This metric provides a unique measure for each 𝑝𝛿 = 0, and if used as a 

ranking of tests, would focus attention on the those supporting larger effect sizes. One possible modification to the 

delta-gap, i.e., additionally standardizing by the estimated standard error, could also be considered. Alternately, a 

more local FDR quantity or estimate for the second-generation p-value might be defined, as discussed in (Blume et 

al. 2019), with the smallest estimated local FDRs guiding which tests to focus follow-up efforts on. There is some 

similarity in these approaches compared to those proposed for genetic applications which incorporate both p-values 

and effect size, such as in (Tusher et al. 2001, Xiao et al. 2014). Overall, combining the ideas of effect size and 

localized FDRs, possibly via second-generation p-values, with the incorporation of an interval null hypothesis, could 

result in a clear path forward for future studies, and one which accounts for scientific relevance. 
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4.6 Appendix A: Remarks and supplemental content 

 

 

 

 

 

(a) pFDR (b) Pr(R>0) 

  
(c) FDR 

= pFDR × Pr(R>0) (d) power 

  

 
 

Supplemental Figure 4.1      Simulation estimates of false discovery rate quantities for a setting with only null and 

non-trivial alternative effects, and with tests having a large common variance. Specifically, the setting is 𝑚 =
10,000, 𝜋0 = 0.9, 𝜋1 = 0.1, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and there is a common variance of 𝜎2 = 5 × (2𝛿)2 for all 

tests.  
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Supplemental Figure 4.2    Simulation estimates of false discovery rate quantities across all examined combinations 

of alternative effect size, numbers of tests and variance settings, with only null and non-trivial alternative effects. 

Here, we are examining the setting of 𝜋0 = 0.9 and 𝛿 = 0.1. All considered settings of number of tests 𝑚 (first-

level grouping along the horizontal axis), alternative effect size (second-level sub-grouping along the horizontal 

axis), and variance (along the vertical axis) are provided. The variance labels shown are in terms of scale of the 

variance compared to the baseline of 𝜎2 = (2𝛿)2. That is, the values shown are 𝜔, where 𝜎2 = 𝜔 × (2𝛿)2. In these 

variance labels, “(R)” denotes the scenarios where each test has an equal probability of observing each of the two 

variance values, and “(NsAl)” denotes the scenario where all null tests have the smaller variance value and all 

alternative tests have the larger variance value. (a) pFDR, (b) Pr(R>0), (c) FDR, (d) Power. 

 

(a) pFDR (b) Pr(R>0) 
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(c) FDR 

= pFDR × Pr(R>0) 

(d) power 
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Supplemental Figure 4.3       Simulation estimates of false discovery rate quantities for a setting with null, trivial, 

and non-trivial alternative effects, and with two possible variance values distributed randomly among tests. 

Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and 

𝜎2 ∈ {1 × (2𝛿)2, 5 × (2𝛿)2}, with random distribution among tests (tests have 0.5 probability of having each 

variance value). 



95  

(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Supplemental Figure 4.4       Simulation estimates of false discovery rate quantities for a setting with null, trivial, 

and non-trivial alternative effects, and with null tests having smaller variance and alternative tests having larger 

variance. Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 =
0.1 and 𝜎2 ∈ {1 × (2𝛿)2, 5 × (2𝛿)2}, with all null tests having variance of 1 × (2𝛿)2, all non-trivial alternative 

tests having variance of 5 × (2𝛿)2, and random distribution of the variance values among the trivial tests. 
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Supplemental Figure 4.5       Simulation estimates of false discovery rate quantities for a setting with null, trivial, 

and non-trivial alternative effects, and with tests having a large common variance. Specifically, the setting is 𝑚 =
10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and there is a common variance of 

𝜎2 = 5 × (2𝛿)2 for all tests. 
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Supplemental Figure 4.6       Simulation estimates of false discovery rate quantities across all examined combinations 

of alternative effect size, numbers of tests and variance settings, with null, trivial, and non-trivial alternative effects. 

Here, we are examining the setting of 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, and 𝛿 = 0.1. All considered settings of number 

of tests 𝑚 (first-level grouping along the horizontal axis), alternative effect size (second-level sub-grouping along 

the horizontal axis), and variance (along the vertical axis) are provided. The variance labels shown are in terms of 

scale of the variance compared to the baseline of 𝜎2 = (2𝛿)2. That is, the values shown are 𝜔, where 𝜎2 =
𝜔 × (2𝛿)2. In these variance labels, “(R)” denotes the scenarios where each test has an equal probability of 

observing each of the two variance values, and “(NsAl)” denotes the scenario where all zero null tests have smaller 

variance, all alternative tests have larger variance, and trivial effects have one of the two variance values with 

probability 0.5 for each. (a) point pFDR, (b) trivial pFDR, (c) combined pFDR, (d) point FDR, (e) trivial FDR, (f) 

combined FDR, (g) Pr(R>0), (h) power. 

 

(a) point pFDR (b) trivial pFDR 
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(c) combined pFDR (d) point FDR  

= point pFDR × Pr(R>0) 
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(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 
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(g) Pr(R>0) (h) power 
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Supplemental Figure 4.7       Simulation estimates of false discovery rate quantities, including results from the hybrid 

procedures, for a setting with null, trivial, and non-trivial alternative effects, and with two possible variance values 

distributed randomly among tests. Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 =
0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 = 0.1 and 𝜎2 ∈ {1 × (2𝛿)2, 5 × (2𝛿)2}, with random distribution among tests (null, trivial 

and alternative tests each have 0.5 probability of having each variance value). 
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(a) point pFDR (b) trivial pFDR (c) combined pFDR 

   
(d) point FDR  

= point pFDR × Pr(R>0) 

(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 

   
 (g) Pr(R>0) (h) power  

 

  

 

 
 

Supplemental Figure 4.8       Simulation estimates of false discovery rate quantities, including results from the hybrid 

procedures, for a setting with null, trivial, and non-trivial alternative effects, and with tests having a large common 

variance. Specifically, the setting is 𝑚 = 10,000, 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 𝜃𝑡𝑣 = 0.5𝛿, 𝜃1 = 1.5𝛿, with 𝛿 =
0.1 and there is a common variance of 𝜎2 = 5 × (2𝛿)2 for all tests. 
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Supplemental Figure 4.9       Simulation estimates of false discovery rate quantities, including results from the hybrid 

procedures, across all examined combinations of alternative effect size, numbers of tests and variance settings, with 

null, trivial, and non-trivial alternative effects. Here, we are examining the setting of 𝜋0 = 0.7, 𝜋𝑡𝑣 = 0.2, 𝜋1 = 0.1, 

and 𝛿 = 0.1. All considered settings of number of tests 𝑚 (first-level grouping along the horizontal axis), alternative 

effect size (second-level sub-grouping along the horizontal axis), and variance (along the vertical axis) are provided. 

The variance labels shown are in terms of scale of the variance compared to the baseline of 𝜎2 = (2𝛿)2. That is, the 

values shown are 𝜔, where 𝜎2 = 𝜔 × (2𝛿)2. In these variance labels, “(R)” denotes the scenarios where each test 

has an equal probability of observing each of the two variance values, and “(NsAl)” denotes the scenario where all 

zero null tests have smaller variance, all alternative tests have larger variance, and trivial effects have one of the two 

variance values with probability 0.5 for each. (a) point pFDR, (b) trivial pFDR, (c) combined pFDR, (d) point FDR, 

(e) trivial FDR, (f) combined FDR, (g) Pr(R>0), (h) power. 

 

(a) point pFDR (b) trivial pFDR 
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(c) combined pFDR (d) point FDR  

= point pFDR × Pr(R>0) 
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(e) trivial FDR 

= trivial pFDR × Pr(R>0) 

(f) combined FDR 

= combined pFDR × Pr(R>0) 
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(g) Pr(R>0) (h) power 
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CHAPTER 5 

 
 

5 Conclusion 

 
 

Statistical inference on a large scale is common in modern times with high throughput methodologies seen in the 

fields of genetics, imaging, and microbiome studies. While these studies require further consideration of controlling 

and measuring errors, they also allow for leveraging this multiplicity of information via empirical Bayes estimation. 

Incorporating an interval null hypothesis – which formally accounts for scientific significance in addition to 

statistical significance – into the false discovery rate framework requires additional considerations. Overall, this 

dissertation addresses these topics in various ways. 

We first elucidated the foundations of false discovery rates and related quantities. Establishing this unified 

framework allows for a clearer exposition of the relationship between the various important quantities. Of particular 

note is the distinction between the FDR as originally defined by Benjamini and Hochberg (1995), and the pFDR, 

referenced by Benjamin and Hochberg but formally established in (Storey 2003). While they are clearly defined in 

the foundational FDR literature, in practice, however, these two quantities are often conflated or the distinction 

between them understated. Strict FDR control may be desired in some scenarios, but the pFDR, which measures the 

propensity for observed results to be misleading,  is the main scientific quantity of interest. Several common 

approaches for empirical estimation in the setting of classical p-values are examined, illustrating their utility in large-

scale inference.  

Next, we explicate the calculation and estimation of the positive false discovery and confirmation rate for 

the second-generation p-value, a metric which incorporates an interval null range denoting null and practically null 

effects, first proposed in (Blume et al. 2018). We expand on the prior work of (Blume et al. 2018, 2019) in this area, 

by developing a more general definition of SGPV false discovery quantities which fully addresses the interval null 

hypothesis. Proposed approaches include marginalization across the null and alternative parameter spaces, with a 

variety of approaches for defining weighting distributions, for each respective design probability (the probability of 

observing particular results under each hypothesis). For the most part, we find that the choice of weighting function 

does not influence large-sample properties, but small-sample estimates may be greatly impacted by these choices. 

This highlights the need for empirical methods. One empirical approach is proposed, with the estimation of the 

mixture probability in the denominator of the FDR quantities. However, this does not offer a complete solution, 

because the respective numerator design probability (null for the FDR, and alternative for the FCR) must still be 

specified. The specification of the null proportion may be avoided with an upper bound estimate on the FDR 

quantities; however, it may be an appreciable overestimate of the true quantity in some cases, as we demonstrate 

with numerical arguments and simulation examples. Therefore, estimation of this quantity, along with the design 

probabilities, remains an important area for future work prior to practical implementation in real-world studies. 
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Finally, we take a more comprehensive look at the behavior of the second-generation p-value in large-scale 

inference, expanding our view to include overall FDR control and the power to reject meaningful effects. Extensive 

simulations were used to estimate these quantities for the SGPV, in addition to commonplace multiple comparisons 

adjusted p-value procedures, under a relaxed set of assumptions. This represents an important first step in 

understanding how the second-generation p-value operates under real-world large-scale inference conditions. When 

focusing only on exactly null effects, the SGPV and Benjamini and Hochberg procedures are observed to have 

different strengths, dependent on the underlying setting. Of particular note is that for very small sample sizes, the 

Benjamini Hochberg procedure provides overall FDR control, but the rate of null rejections (when one more 

rejections is made, i.e., the pFDR) is frequently very large.  

When the importance of rejecting practically null, i.e., trivial effects, is considered, classical p-value 

methods falsely reject at an increased rate for large sample sizes. We find that the SGPV in general does not control 

the overall FDR, primarily only falling below 𝛼 when the pFDR itself is less than 𝛼. While this “natural” control of 

the false discovery rate represents intuitive statistical behavior, strict FDR control may still at times be desired in 

practice. In such a case, we examine some hybrid methods (one newly proposed, and one adapted from (Goodman 

et al. 2019)) and find that these can be useful for small sample sizes for controlling the FDR. However, there may 

be a tradeoff with lower power or a higher propensity for misleading results in some settings. Overall, we have 

demonstrated some benefits and drawbacks of using the second-generation p-value in large-scale inference. We 

provide some recommendations for use in practice, although the best choice often depends on unknown factors such 

as the underlying variance among tests. We conclude with discussion of some other uses of the second-generation 

p-value in large-scale inference, such as with ranking tests. 
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