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Chapter I

Introduction

The program of finding canonical metrics on surfaces began with Riemann, Poincaré, and Hilbert

more than a century ago. Since then, many developments have been made including expanding the

search to higher dimensional manifolds and the addition of numerous special metrics to consider.

In particular, constant scalar curvature Kähler (cscK) and extremal metrics are some of the most

prominent types of special metrics. Extremal metrics were first introduced by Calabi [Calabi, 1979]

and are metrics which are critical points of a certain functional. In essence, extremal metrics are the

umbrella that cscK and Kähler-Einstein sit under.

This thesis will focus on ruled surfaces and the existence/non-existence of constant scalar cur-

vature Kähler metrics and extremal metrics, and a large portion will be done with Asymptotically

Locally Euclidean (ALE) metrics in mind. One might be interested in ALE manifolds for a number

of reasons. First, ALE manifolds are noteworthy in the realm of physics in the study of grav-

itational instantons – 4-dimensional complete Riemannian manifolds satisfying the vacuum Ein-

stein equations. An important invariant of Asymptotically Euclidean (AE) manifolds known as the

ADM mass was developed by Arnowitt-Deser-Misner [Arnowitt et al., 1961] with physics in mind.

Both Bartnik [Bartnik, 1986] and Chruściel [Chruściel, 1985] developed the notion of mass further

and uncovered some of its geometric underpinnings including showing that mass is independent of

choice of coordinates at infinity. LeBrun [LeBrun, 1988] then sparked further intrigue when he pro-

duced scalar-flat ALE surfaces with negative mass– thus disproving the generalized positive action

conjecture of Hawking and Pope [Hawking and Pope, 1978].

The metric fall-off conditions allow ALE manifolds to be relatively tame at infinity. This makes

them an attractive class of non-compact manifolds to study. One can see this tameness used to great

effect in the work of Arezzo and Pacard [Arezzo and Pacard, 2006] where they provide a method

for constructing cscK metrics on blow-ups of compact, cscK manifolds admitting no non-zero holo-

morphic vector fields that vanish somewhere. They accomplish this by replacing a neighborhood

of the blow-up point with a scalar-flat ALE space. The ALE condition plays a critical role in this

surgery as a particular decay rate is required to control the analysis on the gluing overlap.
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ALE manifolds have continued to be a large topic of study. Shortly after LeBrun’s counterexam-

ples, Kronheimer [Kronheimer, 1989b, Kronheimer, 1989a] produced Ricci-flat ALE 4-manifolds

resulting from hyper-Kähler quotients and then showed that any simply-connected ALE hyper-

Kähler 4-manifold must be isometric to one of his hyper-Kähler quotients. S, uvaina [Şuvaina, 2012]

completes the classification of Ricci-flat ALE 4-manifolds by extending Kronheimer’s approach to

non simply-connected manifolds. S, uvaina-Rasdeaconu-Hein [Hein et al., 2020] characterize the

complex structures of ALE manifolds given the group at infinity.

I.1 Summary of Results

The first result we give deals with presenting a new construction of ALE scalar-flat metrics on the

line bundles O(−k). Tønnesen-Friedman [Tønnesen-Friedman, 1998] devised an approach to con-

struct extremal metrics on a ruled surface where the base has genus at least 2. Her work is later ex-

panded upon by Apostolov-Calderbank-Gauduchon-Tønnesen-Friedman in [Apostolov et al., 2008].

Hwang-Singer [Hwang and Singer, 2002] tackled a similar problem by developing a general method

for constructing circle-invariant Kähler metrics using what’s known as the momentum profile.

The momentum construction may be used to construct extremal metrics on the Hirzebruch sur-

faces Σk and on many well-known ALE metrics. However, we have found a way to obtain the ALE

metrics as limits of the extremal metrics on Σk. We first show our method for k = 1, and obtain the

following result:

Theorem A (Rizzo). There exists a family of extremal metrics on the 1st Hirzebruch surface, Σ1,

which converges to a scalar-flat, asymptotically Euclidean metric on O(−1). Moreover, this limit

metric is in fact the Burn’s metric.

This can be generalized with minor additional difficulties to k ≥ 2.

Theorem B (Rizzo). For each k ≥ 2, there exists a family of extremal metrics on the kth Hirzebruch

surface, Σk, which converges to a scalar-flat, asymptotically locally Euclidean metric on O(−k).

When k = 2, this limit metric is Ricci-flat and is in fact the Eguchi-Hanson metric. When k > 2,

the limit metric recovers LeBrun’s negative mass metrics on O(−k).

These results are pleasing in a number of ways. First, it aligns with one’s geometric intuition

about the situation. The limiting process amounts to letting the area of the infinity divisor of Σk
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tend to infinity. This is, in some ways, how one might envision the opposite of the compactifica-

tion procedure described in [Hein and LeBrun, 2016]. Second, it relates the existence of extremal

metrics in the compact case, a heavily studied setting, to scalar-flat ALE metrics, a somewhat more

mysterious setting. Put more concretely, we have a family of extremal metrics on Σk, a space where

the existence of cscK metrics is obstructed, and by taking a limit, we are able to obtain a scalar flat

metric on O(−k). One could hope that our approach (or one of a similar flavor) might provide a

method for finding the “right” choices for structures on ALE manifolds – the original impetus for

this work.

As we mentioned above, there are no cscK metrics in any class on Σk. Nevertheless, if one

blows up the manifolds enough, then the obstructions disappear. Furthermore, one only needs to

consider the cases of blow-ups of CP1 × CP1, rather than Σk, as many of the complex structures

become biholomorphic after blowing up. This opens up the possibility to analyze the moduli space

of Kähler metrics on these blow-ups by exhibiting classes where existence/non-existence of cscK

metrics is known.

Separate from our construction above, we also tackle a problem of non-existence of cscK metrics

on ruled surfaces. Existence of cscK metrics on certain blow-ups may be shown using parabolic

stability due to Rollin-Singer [Rollin and Singer, 2009b]. We provide a complementary viewpoint

by using destabilizing curves to show:

Theorem C (Rizzo). Let X be the 6-fold blow-up of CP1 × CP1 corresponding to the parabolic

structure consisting of 3 generic marked points with weight 1
2 , and let Ei, Fi, Gi denote the excep-

tional divisors of the blow-ups. Let:

Ω = a[H] + a[K]− e[E1]− αe[E2]− f1[F1]− f2[F2]− g1[G1]− g2[G2]

For any a > 0, there are positive constants f1, f2, g1, g2, e0 satisfying:

15

8a
<

4a− f2 − g2
2a2 − 2f21 + 2f1f2 − f22 − 2g21 + 2g1g2 − g22

such that for any α ∈
(
1, 54
]

and e < e0, the class Ω does not admit a cscK metric.

One reason why this complementary viewpoint is so nice is that it’s rare for one to have a
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clear picture of both existence and non-existence of cscK metrics on the same complex manifold.

Although we do not provide an entire picture, Theorem C is an initial step in the process.

4



Chapter II

Existence of Scalar-flat, ALE Metrics

II.1 General background

In this section, we will provide background on the concepts which are critical for our construction

of scalar-flat, ALE metrics. We will begin setting the stage by discussing extremal metrics and the

role they fill in the program of finding canonical metrics. We will then provide a brief overview of

what ALE metrics are and discuss ADM mass – an important invariant for ALE Kähler manifolds.

II.1.1 Extremal Metrics

A major program in the field of complex geometry is determining canonical metrics on a given

complex manifold; that is – finding the “best” metric in any given Kähler class Ω ∈ H2(M,R).

One candidate for such a metric would be a Kähler-Einstein metric i.e. a metric ω such that the

Ricci form Ric(ω) = λω for some λ ∈ R. However, as it turns out, obtaining a Kähler-Einstein

metric in an arbitrary Kähler class is an ill-fated pursuit.

For example, let M ⊂ CP3 be a hypersurface of degree d ≥ 5, and let π: M̃ → M be the

blow-up of M at a point p. The Kähler-Einstein condition tells us that:

−c1(KM̃ ) = c1(M̃) =
1

2π
[λω]

Therefore, the canonical bundle of M̃ , KM̃ , must be either positive, negative, or zero. However, the

adjunction formula tells us that M̃ has canonical bundle:

KM̃ = π∗KM ⊗O(E)

where E denotes the exceptional divisor of the blow-up, and as M is simply connected, we identify

a line bundle with its first Chern class. Note that we are also using the notation O(E) to denote the

line bundle associated to the divisor E. The adjunction formula tells us once more that:

KM = KCP3 |M⊗NM = O(−4)|M⊗O(d)|M= O(d− 4)|M> 0
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Since KM > 0 and [E] < 0, KM̃ can neither be positive, negative, nor zero. Hence, M̃ cannot

admit a Kähler-Einstein metric.

Therefore, it is necessary to consider a more general class of metrics. Calabi [Calabi, 1979]

introduced the notion of extremal metrics.

Definition II.1.1. LetM be a compact Kähler manifold of complex dimension n and Ω ∈ H2(M,R)

a Kähler class. An extremal metric on M in the class Ω is a critical point of the functional

Cal(ω) =
∫
M
S(ω)2ωn

for ω ∈ Ω, where S(ω) denotes the scalar curvature of the metric ω.

One can readily see that constant scalar curvature Kähler (cscK) metrics are extremal by first

rewriting the Calabi functional:

Cal(ω) =
∫
M
S(ω)2ωn =

∫
M
S2(ω)ωn − 2

∫
M
Ŝ2ωn + 2

∫
M
Ŝ2ωn

=

∫
M
(S2(ω)− 2S(ω)Ŝ + Ŝ2)ωn +

∫
M
Ŝ2ωn

=

∫
M
(S(ω)− Ŝ)2ωn +

∫
M
Ŝ2ωn (II.1)

where Ŝ denotes the average scalar curvature. Then since the first term in (II.1) is non-negative

and the second is constant within a Kähler class, cscK metrics minimize the Calabi function since

S(ω) = Ŝ.

However, not all extremal metrics are cscK. Our constructions in II.2 will provide examples

of this phenomenon. An important characterization of extremal metrics comes from the Euler-

Lagrange equation. For f :M → R, let grad1,0f = gjk∂kf . Then:

Theorem II.1.2 ( [Calabi, 1979]). A metric ω on M is extremal if and only if grad1,0S(ω) is a

holomorphic vector field.

Therefore, the task of determining whether a metric is extremal becomes a problem of differen-

tial equations.
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II.1.2 ALE Manifolds

The compact case is relatively well understood, so we will focus our attention on non-compact

manifolds. Namely, we will be focusing on ALE manifolds. ALE manifolds are Riemmanian

manifolds which asymptotically locally approximate the standard Euclidean metric on Rn with a

sufficiently nice decay:

Definition II.1.3. A complete Riemannian manifold (Mn, g) is asymptotically locally Euclidean

(ALE) if there exists a compact subset K ⊂ M such that M \ K has finitely many connected

components (M \K)i, i ∈ I , and for each i ∈ I there exists a finite subgroup Γi ⊆ SO(n) acting

freely on Rn \BR(0), and a diffeomorphism:

ψi: (M \K)i → (Rn \BR(0))/Γi

such that for some µ > 0,

∇k (ψ∗(g)− gEuc) = O(r−µ−k)

However, we will be focusing on ALE Kähler surfaces, so the above definition can be rephrased:

Definition II.1.4. A Kähler surface (M, g, J) is asymptotically locally Euclidean (ALE) if there

exists a compact subsetK ⊂M such thatM\K has finitely many connected components (M\K)i,

i ∈ I , and for each i ∈ I there exists a finite subgroup Γi ⊆ U(2) acting freely on C2 \BR(0), and

a diffeomorphism:

ψi: (M \K)i → (C2 \BR(0))/Γi

such that for some µ > 0,

∇k (ψi∗(g)− gEuc) = O(r−µ−k)

Remark. The best rate of decay that one can hope for in the Kähler surface setting is O(r−4). This

occurs if and only if the surface is Ricci-flat.

II.1.3 ADM Mass

The mass of an end of an ALE Riemannian manifold is an invariant coming from apparent mass in

general relativity. It has the following somewhat involved definition:
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Definition II.1.5. The mass of an end of an ALE Riemannian manifold (Mn, g) is the quantity:

m(M, g) = lim
ρ→∞

Γ
(
n
2

)
4(n− 1)π

n
2

∫
Sρ/Γj

(gij,i − gii,j)ν
jdαEuc

where the subscripts after the comma represent derivatives in the given asymptotic coordinate sys-

tem, Sρ is the Euclidean coordinate sphere of radius ρ, dαEuc is the (n − 1)-dimensional volume

form induced on the sphere by the Euclidean metric, Γj is as in II.1.3, ν is the outward-pointing

Euclidean unit normal vector, and Γ is the gamma function.

Since we are concerned with ALE Kähler surfaces, we have that n = 4 and the formula simpli-

fies:

m(M, g) = lim
ρ→∞

1

12π2

∫
Sρ/Γj

(gij,i − gii,j)ν
jdαEuc

In [Hein and LeBrun, 2016], Hein and LeBrun prove many remarkable results about ALE Kähler

manifolds and their mass. In order to do this, they impose the following fall-off conditions:

• the scalar curvature s of the C2 metric g belongs to L1; and

• in some asymptotic chart at each end ofMn, the components of the metric satisfy gjk−δjk ∈

C1,α
−τ for some τ > (n− 2)/2 and some α ∈ (0, 1)

where the weighted Hölder spaces Ck,α
−τ consist of Ck,α functions such that:

 k∑
j=0

|x|j |∇jf |

+ |x|k+α|∇kf |C0,α(B|x|/10(x))
= O(|x|−τ )

Note that in the complex surface case (n = 4), the second fall of condition must be amended to:

• in some asymptotic chart at each end of M4, the components of the metric satisfy gjk−δjk ∈

C2,α
−τ for some τ > 1 and some α ∈ (0, 1)

Throughout this thesis, we will adopt the same fall-off conditions as Hein-LeBrun. We will now

highlight two of their nicest results:

Theorem II.1.6 ( [Hein and LeBrun, 2016]). Any ALE Kähler manifold of complex dimension

m ≥ 2 has only one end.
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This allows them to identify a compactly supported representative of the first Chern class which

plays a key role in their theorem below. Furthermore, since there is only one end, the mass becomes

an invariant of the manifold itself rather than simply an invariant of an end. What’s more, they prove

that the mass takes the form:

Theorem II.1.7 ( [Hein and LeBrun, 2016]). The mass of an ALE Kähler manifold (M, g, J) of

complex dimension m ≥ 2 is given by:

m(M, g) = −⟨♣(c1(M)), [ω]m−1⟩
(2m− 1)πm−1

+
(m− 1)!

4(2m− 1)πm

∫
M
sdµ

where ♣ denotes the inverse of the inclusion of compactly support cohomologyH2
c (M) ↪→ H2

dR(M)

and ⟨·, ·⟩ is the duality pairing between H2
c (M) and H2m−2(M).

Not only is this formula noticeably more tractable but also reveals that the mass of a scalar-flat

ALE Kähler manifold is determined by its Kähler class and first Chern class:

m(M, g) = −⟨♣(c1(M)), [ω]m−1⟩
(2m− 1)πm−1

In §II.2, we will be able to see the mass of our constructed metrics as the coefficient of the log term

of our potential.

II.2 Construction of Scalar-flat, ALE Metrics

We will be constructing one-parameter families of extremal metrics on the Hirzebruch surfaces

Σk = P(O⊕O(−k)), and then, we will use these families to obtain scalar ALE metrics on the line

bundle p:O(−k) → CP1. We begin by performing the construction on Σ1 and then generalizing

the approach to k > 1.

Our approach will be to look at metrics of the form ω = i∂∂f(s) for a strictly convex function

f and find the necessary conditions for which ω completes over P(0 ⊕ O(−k)) and P(O ⊕ 0).

These completion conditions provide us with boundary information to solve the extremal metric

differential equation. This approach was originally developed by Tønnesen-Friedman [Tønnesen-

Friedman, 1998], and then later, it was generalized by Hwang-Singer [Hwang and Singer, 2002]. In

their paper, Hwang-Singer develop the momentum profile construction which is a very convenient
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way to frame Calabi’s ansatz [Calabi, 1979] that makes use of symplectic geometry to frame f in

terms of its Legendre transform. Gauduchon [Gauduchon, 2019] has provided a thorough summary

of the technique from the perspective of toric geometry with Bach-Flat Hirzebruch surfaces in mind.

The following computation takes after the presentation of the material given in [Székelyhidi, 2014].

It’s also worth noting that this construction is largely the same as that of Gauduchon except we

don’t use machinery from toric geometry (at least explicitly). We deviate by giving more concrete

coefficients for the constructed extremal metrics and by adding a new viewpoint to the construction

of ALE scalar flat metrics on O(−k).

Our computations will be done in local coordinates on the copy of C×C sitting within O(−k).

Σk \D∞

C× C O(−k)

Σk

∼=

We let our coordinate be s = log|(z, w)|2
h(k) where z is the coordinate on CP1,w is the coordinate on

the fiber of O(−k), and |·|2
h(k) is a fiberwise norm on O(−k). When k = 1, we choose the fiberwise

norm to come from identifying C2 \ 0 with O(−1) \D0 where D0 is the divisor corresponding to

the 0-section i.e. P (O ⊕ 0). In the chart U0 = (Z0 ̸= 0) of CP1, our cooordinates z and w are:

z =
Z1

Z0
, w = Z0

Furthermore, on U0, we may write:

O(−1)|U0
= {([1 : z], (w,wz)) | z ∈ C, w ∈ C} ⊂ CP1 × C2

From this perspective, it’s straightforward to see that O(−1) inherits a hermitian inner product (and

hence a norm) from the C2 component:

|(z, w)|2h = |(w,wz)|2 = |w|2 + |wz|2 = |Z0|2 + |Z1|2 (II.2)

10



For k > 1, the hermitian inner product h on O(−1) determines a hermitian inner product h(k) on

O(−k) via the tensor product map u 7→ u⊗k. Importantly, writing w = u⊗k:

|(z, w)|2
h(k) = |(z, u⊗k)|2

h(k) = |(z, u)|2kh =
(
|Z0|2 + |Z1|2

)k (II.3)

For clarity’s sake, we will be normalizing the Fubini-Study metric such that
∫
CP1 ωFS = 2π. This is

consistent with the normalization used in [Arezzo and Pacard, 2006] for the Burns-Simanca metric.

With the choice of normalization, CP1 has constant scalar curvature 2 and 1
2π [ωFS ] is a generator

of H2(CP1,Z).

II.2.1 Asymptotically Euclidean Case

II.2.1.1 Construction

As mentioned above, we will be looking at metrics of the form ω = i∂∂f(s) where f is a strictly

convex function. We let our coordinate s = log|(z, w)|2h where z is the coordinate on CP1, w is the

coordinate on the fiber obtained from a holomorphic trivialization, and |·|h is the fiberwise norm on

O(−1) described above:

|(z, w)|2h = |w|2
(
|z|2 + 1

)
and hence s is of the form:

s = log|w|2 + log
(
|z|2 + 1

)
We perform our computations at a point (z0, w0) such that d log(|z|2 + 1) = 0. Then:

ω = i∂∂f(s) = i∂(f ′(s)∂s) = if ′(s)∂∂s+ if ′′(s)∂s ∧ ∂s

We may compute:

∂s =
1

w
dw + ∂ log(|z|2 + 1)

∂s =
1

w
dw + ∂ log(|z|2 + 1)

∂∂s = ∂∂ log(|z|2 + 1) = p∗ωFS

11



However, since the computations are performed at a point where d log(|z0|2+1) = 0, we have that:

∂s =
1

w
dw, ∂s =

1

w
dw

Therefore:

ω = f ′(s)p∗ωFS + if ′′(s)
dw ∧ dw
|w|2

This expression for ω also gives us that:

ω2 =
1

|w|2
f ′(s)f ′′(s)p∗ωFS ∧ (idw ∧ dw)

In order to determine whether or not ω is extremal, we will want to look at the second derivative

of the scalar curvature of ω. To simplify this, we will look at the Legendre transform of f . Let

τ = f ′(s). Then the Legendre transform F (τ) is defined by the relation:

f(s) + F (τ) = sτ

We will use the Legendre transform to write our metric in terms of the momentum profile of Hwang-

Singer [Hwang and Singer, 2002]. The momentum profile φ: I → R is defined by:

φ(τ) =
1

F ′′(τ)

Then differentiating the defining equation twice with respect to τ yields the relation:

ds

dτ
= F ′′(τ) =

1

φ

which then gives us the following two relations which will be of use later:

f ′′(s) =
dτ

ds
=

1

F ′′(τ)
= φ (II.4)

τ =
d

ds
f(s) = φ

d

dτ
f(s) (II.5)
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We may then write:

ω = τp∗ωFS + iφ(τ)
dw ∧ dw
|w|2

(II.6)

The following relations are enjoyed by the Legendre transform:

s = F ′(τ),
ds

dτ
= F ′′(τ), φ(τ) = f ′′(s) =

dτ

ds

We may then write:

ω = τp∗ωFS + φ(τ)
idw ∧ dw

|w|2

and:

ω2 =
1

|w|2
τφ(τ)p∗ωFS ∧ idw ∧ dw

Therefore, we may compute the Ricci form:

ρ = −i∂∂ log(τφ(τ)) + p∗ρCP1 = −i∂∂ log(τφ(τ)) + 2p∗ωFS

where we made use of the fact that ρCP1 = 2ωFS . Let ψ = log(τφ(τ)). Then:

dψ

ds
=
φ2 + τφφ′

τφ
=
φ

τ
+ φ′

d2ψ

ds2
=
τφφ′ − φ2

τ2
+ φ′′φ

where above we begin writing φ = φ(τ) for simplicity. Therefore:

∂∂ψ =
dψ

ds
∂∂s+

d2ψ

ds2
∂s ∧ ∂s

Hence:

ρ =

(
φ2 − τφφ′

τ2
− φ′′φ

)
idw ∧ dw

|w|2
+
(
2− φ

τ
− φ′

)
p∗ωFS
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Now, we may finally compute the scalar curvature S(τ):

S(τ) =
ρ ∧ ω
ω2

=
τ
(
φ2−τφφ′

τ2
− φ′′φ

)
+ φ

(
2− φ

τ − φ′)
φτ

=
1

τ2
(
φ− τφ′ − φ′′τ2

)
+

1

τ
(2− φ

τ
− φ′)

=
2

τ
+

1

τ2
(φ− τφ′ − φ′′τ2 − φ− φ′τ)

=
2

τ
+

1

τ
(−2φ′ − τφ′′)

=
2

τ
− (τφ)′′

τ

Lemma II.2.1. The metric ω is extremal if and only if S′′(τ) = 0

Proof. The metric ω is extremal if and only if grad1,0S(τ) is a holomorphic vector field. We have

that:

grad1,0S(τ) = gjk∂kS(τ) =
|w|2

f ′′(s)
· S

′(τ)f ′′(s)

w

∂

∂w
= wS′(τ)

∂

∂w

This is holomorphic if:

wφS′′(τ)
∂

∂w
= ∂

(
wS′(τ)

∂

∂w

)
= ∂grad1,0S(τ) = 0

which is the case if and only if S′′(τ) = 0.

In other words, to obtain an extremal metric, we need to solve the differential equation S′′(τ) =

0. However, there is no guarantee that a solution to this differential equation will complete over the

0 and ∞-divisors of Σ1. To do this, let (1,m) be the range of τ for some m > 1. Completing over

the 0 and ∞-divisors means imposing conditions on φ and φ′ at the values τ = 1,m:

Lemma II.2.2. The metric ω completes over the 0 and ∞-divisors if and only if

lim
τ→1

φ(τ) = lim
τ→m

φ(τ) = 0

lim
τ→1

φ′(τ) = 1, lim
τ→m

φ′(τ) = −1

Proof. The S1 symmetry of the z component of s tells us that we need only look in the fiber

14



direction. This corresponds to the second term of our metric:

φ
idw ∧ dw

|w|2

Let r = |w|. Then we have that s = 2 log r. To complete the metric over w = 0, φ must be of

the form:

φ(τ) = c2r
2 + c3r

3 + c4r
4 + · · · (II.7)

And using the fact that φ d
dτ = d

ds = r
2

d
dr :

φ(τ)φ′(τ) =
d

ds
φ(τ) = c2r

2 +
3c3
2
r3 + 2c4r

4 + · · · (II.8)

(II.7) and (II.8) then tell us:

φ′(τ) = 1 +O(r) (II.9)

We may similarly look at the conditions to complete across the infinity divisor. We perform a

change of coordinates letting l = 1
w , so:

f ′′(s)
idw ∧ dw

|w|2
= f ′′(s)|l|2i

(
− 1

l2
dl

)
∧
(
− 1

l
2dl

)
= f ′′(s)

idl ∧ dl
|l|2

Now, we let r = |l|. Then s = −2 log r and φ d
dτ = d

ds = − r
2

d
dr . Then proceeding as before, φ

must be of the form:

φ(τ) = c2r
2 + c3r

3 + c4r
4 + · · ·

And using the facts that φ d
dτ = d

ds = r
2

d
dr :

φ(τ)φ′(τ) =
d

ds
φ(τ) = −c2r2 −

3c3
2
r3 − 2c4r

4 − · · · ,
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telling us that:

φ′(τ) = −1 +O(r) (II.10)

The expressions for φ in both coordinate systems above, tell us that:

lim
τ→1

φ(τ) = lim
τ→m

φ(τ) = 0

Furthermore, (II.9) and (II.10) give:

lim
τ→1

φ′(τ) = 1, lim
τ→m

φ′(τ) = −1

It is important to note that the choice of m is of critical importance. As mentioned previously,

in order for φ to define a bona fide metric ω, ω must be positive definite. One can see from (II.6)

that this will be the case as long as φ is positive on the interval (1,m). Second, we will later show

that the Kähler class of the resulting metric is determined by m. Due to this dependence, we will

begin indexing φm to keep track of m.

Therefore to obtain an extremal metric, we must solve the ODE:

(
2

τ
− (τφm)′′

τ

)′′
= 0 (II.11)

φm(1) = φm(m) = 0, φ′
m(1) = 1, φ′

m(m) = −1

or equivalently:

2− (τφm)′′ = Amτ +Bmτ
2

φm(1) = φm(m) = 0, φ′
m(1) = 1, φ′

m(m) = −1

Integrating with respect to τ twice yields:

2τ − (τφm)′ =
Am

2
τ2 +

Bm

3
τ3 + Cm

16



τ2 − τφm =
Am

6
τ3 +

Bm

12
τ4 + Cmτ +Dm

φm = τ − Am

6
τ2 − Bm

12
τ3 − Cm − Dm

τ

The boundary conditions give us the system:



1
6Am + 1

12Bm + Cm +Dm = 1

m2

6 Am + m3

12 Bm + Cm + 1
mDm = m

1
3Am + 1

4Bm −Dm = 0

m
3 Am + m2

4 Bm − 1
m2Dm = 2

Solving this system yields the following values:

Am =
6(m2 − 3)

(m− 1)(m2 + 4m+ 1)
(II.12)

Bm =
24

(m− 1)(m2 + 4m+ 1)

Cm =
m(m2 − 3)

(m− 1)(m2 + 4m+ 1)

Dm =
2m2

(m− 1)(m2 + 4m+ 1)

Lemma II.2.3. The (1, 1)-form ωm corresponding to φm with coefficients given by (II.12) is a

well-defined Kähler metric for all m > 1.

Proof. As mentioned previously, in order for ωm to be a bonafide metric, φm must be positive on

(1,m). Given the boundary conditions, we know that φm is positive on (1,m) near the endpoints.

It then suffices to show that φm is concave down on (1,m). This is straightforward as:

φ′′
m = −Am

3
− B

2
τ − 2D

τ3
= − 2

τ3(m− 1)(m2 + 4m+ 1)

(
6τ4 + (m2 − 3)τ3 + 4m2

)
Since m > 1, we know that the first factor is negative on (1,m), so we need only check that

q(τ) = 6τ4 + (m2 − 3)τ3 + 4m2 > 0 on (1,m). We can see that:

q′(τ) = 24τ3 + 3(m2 − 3)τ2 = 3τ2(8τ +m2 − 3)
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Then q′ > 0 when τ > 3−m2

8 . Given that τ ≥ 1 > 1
4 ≥ 3−m2

8 , we have that q′ > 0 on (1,m). This

combined with the fact that q(1) = 5m2 + 3 > 0, tells us that q > 0 on (1,m), and hence φ′′
m < 0

on (1,m).

Hence, we have obtained a one-parameter family of Kähler metrics on Σ1.

II.2.1.2 Kähler Class of ωm

Now that we’ve constructed our family of metrics (and verified that they are in fact metrics), one

might be curious about some of their characteristics. We will see that we have a metric for each

Kähler class of Σ1.

Proposition II.2.4. The Kähler class of the constructed metrics are:

[ωm] = 2π (m [D∞]− [D0])

where [D∞] and [D0] represent the Poincaré duals of the ∞ and 0 divisors respectively.

Proof. We may identify Σ1 with the blow-up of CP2:

Through this identification, we have that H2(Σ1,R) = H2(BlPCP2,R) = ⟨[D∞] , [D0]⟩.

Therefore, [ωm] may be written:

[ωm] = am [D∞] + bm [D0]

In order to solve for am and bm, one needs the area of D∞ and the area of an arbitrary fiber. The

area of D∞ computed as follows:

Area D∞ =

∫
D∞

ωm = m

∫
CP1

ωFS = 2πm

18



Now, we compute the area of a fiber. Fix z ∈ CP1, and let F be the fiber of O(−1) over z.

We perform the substitution u = w
√

|z|2 + 1 and then express the integrand in terms of polar

coordinates:

Area F =

∫
F
ωm =

∫
C\0

f ′′(s)
idw ∧ dw

|w|2
=

∫
C\0

f ′′(2 log|u|2) idu ∧ du
|u|2

=

∫ 2π

0

∫ ∞

0

2f ′′(2 log r)

r
drdθ

= 2π
(
lim
r→∞

f ′(2 log r)− lim
s→0

f ′(2 log r)
)

= 2π

(
lim
s→∞

f ′(s)− lim
s→−∞

f ′(s)

)
= 2π(m− 1)

We will then make use of the following intersection numbers:

D∞ ·D∞ = 1, D∞ ·D0 = 0, D∞ · F = 1

D0 ·D0 = −1, D0 · F = 1, F · F = 0

By De Rham’s theorem, we then have that:

2πm = Area D∞ = (amD∞ + bmD0) ·D∞ = am

2π(m− 1) = Area F = (amD∞ + bmD0) · F = am + bm

Then solving for bm, we get that:

[ωm] = 2π (m [D∞]− [D0])

Remark. One can see that we have in fact an extremal metric for every Kähler class of Σ1. The

Kähler cone of Σ1 is:

K =
{
a [D∞]− b [D0]

∣∣∣ a > 0, b > 0, a > b
}
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which upto rescaling is:

K|R>0 =
{
2π (m [D∞]− [D0])

∣∣∣m > 1
}

which is precisely the classes of our constructed extremal metrics.

II.2.1.3 The Burns Metric

The Burns metric is a metric of great importance. It was first introduced by Dan Burns [Burns,

1986] by defining a Kähler form on C2 \ 0:

ω = i∂∂
(
|z|2 + a log|z|2

)
(II.13)

for some a > 0. Burns then completed this metric by attaching a CP1 at the origin to obtain the

Burns metric. It is clear to see that the completed metric is then a metric on the blow-up of C2 at

the origin or, in other words, on the total space of O(−1). Note that Burns in fact defined a family

of metrics parametrized by a. The coefficient a controls the area of the CP1 that was added when

completing the metric. For our purposes, we will take a = 1 in order to stay consistent with our

normalization of the area of the CP1 to be 2π.

Proposition II.2.5. The Burns metric is ALE.

Proof. In order to see that the Burns metric is ALE, one must first convert to the standard Euclidean

coordinates and look at the asymptotics as |z| gets large. Equation (II.2) gives that the metric in

terms of the standard Euclidean coordinates is:

ωBurns(Z0, Z1) = i∂∂
(
|Z0|2 + |Z1|2 + log

(
|Z0|2 + |Z1|2

))
Comparing to the Euclidean metric ωeuc = i∂∂(|Z0|2 + |Z1|2) yields:

ωBurns − ωeuc =i∂∂
(
log
(
|Z0|2 + |Z1|2

))
=i∂

(
Z0

|Z0|2 + |Z1|2
dZ0 +

Z1

|Z0|2 + |Z1|2
dZ1

)
=i

(
|Z1|2

(|Z0|2 + |Z1|2)2
dZ0 ∧ dZ0 +

|Z0|2

(|Z0|2 + |Z1|2)2
dZ1 ∧ dZ1
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+
Z0Z1

(|Z0|2 + |Z1|2)2
dZ1 ∧ dZ0 +

Z0Z1

(|Z0|2 + |Z1|2)2
dZ0 ∧ dZ1

)

Letting r2 = |Z0|2 + |Z1|2, we can see that ω∞ − ωeuc = O(r−2). Hence, the metric that we have

constructed is ALE of order 2.

One can also arrive at the Burns metric in a way similar to our construction above in that it is

the solution to the differential equation:

2− (τφ)′′ = 0 (II.14)

φ(1) = 0, φ′(1) = 1

One arrives at this ODE following the same procedure as above with two differences. The first being

that we are solving the differential equation S(τ) = 0 instead of S′′(τ) = 0. The second being that

we omit the boundary conditions on φ(m) and φ′(m). This is because we no longer are concerned

with completing over D∞, so we don’t need control over φ and φ′ as s gets large. In this case, the

range of τ is (1,∞).

Integrating (II.14) twice shows that φ is of the form:

φ = τ + C +
D

τ

Substituting in for the boundary conditions gives the following system:


1 + C +D = 0

1 = 1−D

=⇒


C = −1

D = 0

Hence, φ∞(τ) = τ − 1, and upto a constant f∞ may be written upto a constant as:

f∞(s) =

∫
τ

τ − 1
dτ = τ − 1 + log(τ − 1)

Furthermore:

log|(z, w)|2h = s =

∫
1

τ − 1
dτ = log(τ − 1) + C
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Note that the choice of constant C amounts to rescaling the hermitian metric h, so we shall take C

to be 0 for simplicity. Our potential is then:

f∞ = |(z, w)|2h + log|(z, w)|2h = |Z0|2 + |Z1|2 + log
(
|Z0|2 + |Z1|2

)
which is precisely the potential for the Burns metric mentioned in (II.13) with our normalization of

a = 1.

This construction of the Burns metric has been known for some time. However, there is a quite

appealing connection between the family that we constructed in II.2.1.1 and the Burns metric that

has gone unnoticed up until now.

Theorem II.2.6 (Rizzo). Let {ωm} denote the metrics whose momentum profile satisfies:

(
2

τ
− (τφm)′′

τ

)′′
= 0

φm(1) = φm(m) = 0, φ′
m(1) = 1, φ′

m(m) = −1

Then ωm|O(−1) → ωBurns as m goes to ∞. Here, convergence is meant in the sense that their

momentum profiles converge (i.e. φm → φBurns).

Proof. Letting m tend to infinity, we can see that coefficients of φm approach:

lim
m→∞

Am = lim
m→∞

6(m2 − 3)

(m− 1)(m2 + 4m+ 1)
= 0

lim
m→∞

Bm =
24

(m− 1)(m2 + 4m+ 1)
= 0

lim
m→∞

Cm = lim
m→∞

m(m2 − 3)

(m− 1)(m2 + 4m+ 1)
= −1

lim
m→∞

Dm = lim
m→∞

2m2

(m− 1)(m2 + 4m+ 1)
= 0

Therefore:

lim
m→∞

φm = lim
m→∞

(
τ − Am

6
τ2 − Bm

12
τ3 − Cm − Dm

τ

)
= τ − 1
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= φBurns

One way that we can intuitively make sense of this limiting procedure is by looking at how it

affects the areas of D0, D∞, and F . Recall that we computed:

Area D∞ = 2πm

Area F = 2π(m− 1)

Furthermore, we can compute:

Area D0 =

∫
D0

ωm =

∫
CP1

ωFS = 2π (II.15)

As we can see, the areas of D∞ and an arbitrary fiber F grow linearly with respect to m while

the area of D0 is unaffected. We can therefore understand this limiting process as simply letting the

divisor at infinity grow to be infinitely large. In [Hein and LeBrun, 2016], Hein and LeBrun carefully

devise a method for compactifying n-dimensional ALE manifolds that amounts to effectively adding

a CPn−1 at infinity. From this perspective, one can loosely view our limiting process as a sort of

opposite of their compactifying procedure where we are increasing the size of and then removing

the CP1 at infinity.

II.2.2 Asymptotically Locally Euclidean Case

II.2.2.1 Construction

The construction on Σk is largely the same as it is for Σ1. The main difference is that k terms begin

to appear throughout the computation, but the general architecture of the construction is the exact

same. We present the computation below, making special note where the introduction of k matters.

As before, we let our coordinate s = log|(z, w)|2
h(k) where z is the coordinate on CP1 and w is

the coordinate on the fiber of O(−k). Now, however, our fiberwise norm is given by:

|(z, w)|2
h(k) = |w|2(|z|2 + 1)k
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for some function h:CP1 → R, and hence s is of the form:

s = log|w|2 + k log(|z|2 + 1)

The computations are performed at a point (z0, w0) such that d log(|z|2 + 1) = 0. Then:

ωk = i∂∂f(s) = i∂(f ′(s)∂s) = if ′(s)∂∂s+ if ′′(s)∂s ∧ ∂s

We may compute:

∂s =
1

w
dw + k∂ log(|z|2 + 1)

∂s =
1

w
dw + k∂ log(|z|2 + 1)

∂∂s = k∂∂ log(|z|2 + 1) = kp∗ωFS

However, since the computations are performed at a point where d log(|z0|2+1) = 0, we have that:

∂s =
1

w
dw, ∂s =

1

w
dw

Therefore:

ωk = kf ′(s)p∗ωFS + if ′′(s)
dw ∧ dw
|w|2

In order to determine whether or not the metric is extremal, we want to look at the second

derivative of the scalar curvature. We may once again express ω in terms of the Legendre transform

variable τ = f ′(s) and the momentum profile φ:

ωk = kτp∗ωFS + iφ
dw ∧ dw
|w|2

(II.16)

and

ω2
k =

1

|w|2
kτφp∗ωFS ∧ (idw ∧ dw)
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The Ricci form of ω is then given by:

ρ = −i∂∂ log(kτφ) + p∗ρCP1 = −i∂∂ log(τφ) + 2p∗ωFS

Let ψ = log(τφ(τ)). Then using (II.4):

dψ

ds
=
φ2 + τφφ′

τφ
=
φ

τ
+ φ′

d2ψ

ds2
=
τφφ′ − φ2

τ2
+ φ′′φ

where above we begin writing φ = φ(τ) for simplicity. Therefore:

∂∂ψ =
dψ

ds
∂∂s+

d2ψ

ds2
∂s ∧ ∂s =

(
−φ
τ
− φ′

)
kp∗ωFS +

(
φ2 − τφφ′

τ2
− φ′′φ

)
idw ∧ dw

|w|2

Hence:

ρ =

(
2− kφ

τ
− kφ′

)
p∗ωFS +

(
φ2 − τφφ′

τ2
− φ′′φ

)
idw ∧ dw

|w|2

Now we may finally compute S(τ): Then we have that:

S(τ) =
ρ ∧ ωk

ω2
k

=
kτ
(
φ2−τφφ′

τ2
− φ′′φ

)
+ φ

(
2− kφ

τ − kφ′
)

kφτ

=
1

τ2
(
φ− τφ′ − τ2φ′′)+ 1

kτ

(
2− kφ

τ
− kφ′

)
=

2

kτ
+

1

τ2
(φ− τφ′ − τ2φ′′ − φ− τφ′)

=
2

kτ
− 1

τ
(2φ′ + τφ′′)

=
2

kτ
− (τφ)′′

τ

Both lemma II.2.1 and lemma II.2.2 immediately apply. Therefore, we must solve the ODE:

(
2

kτ
−

(τφk,m)′′

τ

)′′
= 0 (II.17)

φk,m(1) = φk,m(m) = 0, φ′
k,m(1) = 1, φ′

k,m(m) = −1
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which is equivalent to solving:

2

k
− (τφk,m)′′ = Ak,mτ +Bk,nτ

2

φk,m(1) = φk,m(m) = 0, φ′
k,m(1) = 1, φ′

k,m(m) = −1

We may integrate both sides twice with respect to τ to obtain:

τ2

k
− τφk,m =

Ak,m

6
τ3 +

Bk,m

12
τ4 + Ck,mτ +Dk,m (II.18)

Then by rearranging terms and dividing by τ , we get:

φk,m =
τ

k
−
Ak,m

6
τ2 −

Bk,m

12
τ3 − Ck,m −

Dk,m

τ

Inputting the boundary conditions gives the following system of equations:



1
6Ak,m + 1

12Bk,m + Ck,m +Dk,m = 1
k

m2

6 Ak,m + m3

12 Bk,m + Ck,m + 1
mDk,m = m

k

1
3Ak,m + 1

4Bk,m −Dk,m = 1−k
k

m
3 Ak,m + m2

4 Bk,m − 1
m2Dk,m = k+1

k

Solving the system gives that:

Ak,m =
−6
(
(k(m2 + 1)− 2(m− 1)(m+ 1)

)
k(m− 1)(m2 + 4m+ 1)

(II.19)

Bk,m =
12 (k(m+ 1)−m+ 1)

k(m− 1)(m2 + 4m+ 1)

Ck,m =
−m

(
k(m2 + 1)− 2(m− 1)(m+ 1)

)
k(m− 1)(m2 + 4m+ 1)

Dk,m =
m2 (k(m+ 1)−m+ 1)

k(m− 1)(m2 + 4m+ 1)

Lemma II.2.7. The (1, 1)-form corresponding to φk,m with coefficients given by (II.19) is a well-

defined Kähler metric for all m > 1 and all k ≥ 2.
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Proof. As before, we need φk,m to be positive on (1,m). Let

q(τ) = −
Bk,m

12
τ4 −

Ak,m

6
τ3 +

1

k
τ2 − Ck,mτ −Dk,m

Then φk,m = 1
τ q(τ). Since τ > 0 on (1,m), we need only check that q(τ) > 0 on (1,m). We have

the following inequalities for all k ≥ 2 and m > 1:

k(m2 + 1)− 2(m− 1)(m+ 1) = (k − 2)m2 + k + 2 > 0

k(m+ 1)−m+ 1 = (k − 1)m+ k + 1 > 0

k(m− 1)(m2 + 4m+ 1) > 0

By comparing the above inequalities to (II.19), one has that Ak,m, Ck,m < 0 and Bk,m, Dk,m > 0.

Hence, the coefficients of q(τ) have the following sign pattern: −+++−. Descartes’ rule of signs

implies that φk,m can have at most 2 positive roots – which we already know to be at τ = 1,m

from the ODE’s boundary conditions. This combined with the fact that φ′
k,m(1) = 1 implies that

φk,m > 0 on (1,m). Therefore, φk,m defines a bonafide metric for all m > 1.

Hence, we have obtained a one-parameter family of Kähler metrics on Σk.

II.2.2.2 Kähler Class of ωk,m

We compute the Kähler classes of these metrics.

Proposition II.2.8. The Kähler class of the constructed metrics are:

[ωk,m] = 2π (m [D∞]− [D0])

where [D∞] and [D0] represent the Poincaré duals of the ∞ and 0 divisors respectively.

Proof. Since H2(Σk,R) is generated by [D∞] and [D0], then [ωk,m] may be written:

[ωk,m] = ak,m [D∞] + bk,m [D0]

In order to solve for ak,m and bk,m, one can find them using the area of D0 and the area of an
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arbitrary fiber F . The area of D0 computed as follows:

Area D0 = k

∫
CP1

ωFS = 2πk

and that of F :

Area F =

∫
C\0

f ′′(s)
idw ∧ dw

|w|2
=

∫ 2π

0

∫ ∞

0

2f ′′(2 log r)

r
drdθ

= 2π

(
lim
s→∞

f ′(s)− lim
s→−∞

f ′(s)

)
= 2π(m− 1)

We will then make use of the following intersection numbers:

D∞ ·D∞ = k, D∞ ·D0 = 0, D∞ · F = 1

D0 ·D0 = −k, D0 · F = 1, F · F = 0

We then have that:

2πk = Area D0 = (ak,mD∞ + bk,mD0) ·D0 = −kbk,m

2π(m− 1) = Area F = (ak,mD∞ + bk,mD0) · F = ak,m + bk,m

Hence, by solving for ak,m and bk,m, we get that:

[ωk,m] = 2π (m [D∞]− [D0])

Remark. The same argument as in Remark II.2.1.2 holds here for all k. The Kähler cone of Σk is:

K =
{
a [D∞]− b [D0]

∣∣∣ ka > 0, kb > 0, a > b
}
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which up to rescaling is:

K|R>0 =
{
2π (m [D∞]− [D0])

∣∣∣m > 1
}

Hence, we have an extremal metric in every Kähler class of Σk.

II.2.2.3 Limit Metrics

Now, we will consider what happens whenm tends to infinity. More specifically, we will be shifting

our attention from complete metrics on Σk to non-complete metrics on Σk \D∞. Letting m→ ∞,

the coefficients approach:

Ak,∞ = Bk,∞ = 0

Ck,∞ =
2− k

k

Dk,∞ =
k − 1

k

In the case that k = 2, we have that C2,∞ = 0 as well. The vanishing of C2,∞ impacts the process

of solving for the potential, so we will consider the cases k = 2 and k > 2 separately.

II.2.2.4 Ricci-flat case (k = 2)

Much like the k = 1 case, we can convert back in terms of the variable s:

φ2,m =
1

2
(τ − τ−1)

f2,∞ = 2

∫
τ

τ − τ−1
dτ = 2

∫
τ2

τ2 − 1
dτ = 2τ + log(τ − 1)− log(τ + 1)

log|(z, w)|2h = s = 2

∫
1

τ − τ−1
dτ = log(τ − 1) + log(τ + 1) + C

where f2,∞ is upto a constant. Therefore, we have: τ =

√
|(z,w)|2

h(2)

C + 1 and hence:

f2,∞ =2

√
|(z, w)|2

h(2)

C
+ 1 + log

√ |(z, w)|2
h(2)

C
+ 1− 1

− log

√ |(z, w)|2
h(2)

C
+ 1 + 1

+ C
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=2

√
(|Z0|2 + |Z1|2)2

C
+ 1 + log

√(|Z0|2 + |Z1|2)2

C
+ 1− 1


− log

√(|Z0|2 + |Z1|2)2

C
+ 1 + 1

+ C

which is the potential for an Eguchi-Hanson metric. Note that when checking the ALE condition,

we have the freedom to work in a diffeomorphism at infinity of our choosing. Therefore, we change

into the coordinate r given by r2 = 2

√
(|Z0|2+|Z1|2)2

C + 1, and we have:

f2,∞ = r2 + log(r2 − 1)− log(r2 + 1) + C

Taking two derivatives we can see:

d2

dr2
f2,∞ =

d

dr

(
2r +

2r

r2 − 1
− 2r

r2 + 1

)
= 2− 2 + 2r2

(r2 − 1)2
− 2− 2r2

(r2 + 1)2

= 2− 12r4 + 4

(r2 − 1)2(r2 + 1)2

= 2 +O(r−4)

so the ALE condition is satisfied. Moreover, we can see that this metric in fact obtains the Ricci flat

decay rate of O(r−4).

II.2.2.5 Non Ricci-flat case (k > 2)

In the k > 2 case, the relevant equations are:

φk,m =
τ

k
− 2− k

k
− k − 1

kτ

fk,∞ =

∫
τ

τ
k − 2−k

k − k−1
k τ−1

dτ =

∫
kτ2

τ2 − (2− k)τ − (k − 1)
dτ

log|(z, w)|2
h(k) = s =

∫
kτ

τ2 − (2− k)τ − (k − 1)
dτ

On can use partial fractions to see:

kτ

τ2 − (2− k)τ − (k − 1)
=

1

τ − 1
+

k − 1

τ + k − 1
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kτ2

τ2 − (2− k)τ − (k − 1)
=

τ

τ − 1
+

(k − 1)τ

τ + k − 1

Therefore:

fk,∞ =

∫
τ

τ − 1
+

(k − 1)τ

τ + k − 1
dτ = kτ + log(τ − 1)− (k − 1)2 log(τ + k − 1) + C

Similarly:

log|(z, w)|2
h(k) = s =

∫
1

τ − 1
+

k − 1

τ + k − 1
dτ

= log(τ − 1) + (k − 1) log(τ + k − 1) + C

= log τ + log
(
1− τ−1

)
+ (k − 1) log τ + (k − 1) log

(
1− (1− k)τ−1

)
+ C

= log τk + log
(
1− τ−1

)
+ (k − 1) log

(
1− (1− k)τ−1

)
+ C

As before, we choose to work in a different coordinate at infinity r given by r2k = |(z, w)|2
h(k) (i.e.

r2 = |Z0|2 + |Z1|2). Then for large enough τ :

log r2k = log τk +O(τ−1)

r2k ∼ τk

Or, in other words, r2 ∼ τ . Therefore, we may look into the asymptotics of fk,∞:

fk,∞ = kτ + log(τ − 1)− (k − 1)2 log(τ + k − 1) + C

∼ kr2 + log r2 − (k − 1)2 log(r2) + C

= kr2 + k(2− k) log r2 + C

Note that since our metrics are constrained to the same toric symmetries as the metrics in [Calder-

bank and Singer, 2004], they are in fact the same metrics. This is because the toric symmetries

define the differential equation that we solve, and therefore by uniqueness of solutions, our met-

rics and Calderbank-Singer’s are one and the same. Calderbank-Singer identify their metrics with

LeBrun’s metrics in [LeBrun, 1988], so our method recovers the LeBrun metrics.

31



Corollary II.2.9. The mass of our constructed metrics is positive when k = 1, zero when k = 2,

and negative when k > 2.

Proof. In LeBrun’s computation [LeBrun, 1988], he shows that the sign of the log term aligns with

the sign of the mass. Therefore, the mass is positive when k = 1, zero when k = 2, and negative

when k > 2 which agrees with LeBrun’s result.
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Chapter III

Regions of cscK metrics on the Kähler Cone

In this chapter, we will look at existence and non-existence of cscK metrics on rational surfaces.

While this approach could be applied to various ruled surfaces, we will demonstrate the approach

on a particular 6-fold blow-up of CP1 × CP1. This example is fascinating for a number of reasons.

Namely, existence and non-existence are often treated separately in the literature – that is, it’s rare

for existence and non-existence of cscK metrics to both be described on a given manifold. Normally,

one or the other is the focus. Although we will not provide a complete classification of the Kähler

cone, we will begin painting a clearer picture of existence and non-existence.

We will describe the specifics of the blow-up in the next section, however, it’s worth noting

some particularly useful qualities of our choice of blow-up before we begin. First and foremost, it is

a straightforward and topologically quite simple manifold to work with. Second, this blow-up falls

in an interesting location in the theory of canonical metrics as it is has non-definite first Chern class,

and hence, falls outside the purview of the Kähler-Einstein program. Finally, we note that blow-up

has positive scalar curvature. The positive scalar curvature setting is often more rigid than the zero

and negative scalar curvature cases which makes the results more surprising.

III.0.1 Parabolic Stability

In order to get a more complete picture of existence of cscK metrics on blow-ups of ruled surfaces,

we will briefly discuss results about parabolic stability due to [Rollin and Singer, 2005]. It involves

putting a parabolic structure on a ruled surface and determining the slope of holomorphic sections:

Definition III.0.1. Let π :M → Σ be a geometrically ruled surface. Then a parabolic structure on

M consists of the following:

• A set of points P1, P2, . . . , Pn ∈ Σ;

• A point Qj ∈ π−1(Pj) for each j;

• A weight αj ∈ (0, 1) ∩Q for each j.
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The slope of a holomorphic section S: Σ →M is then defined to be:

µ(S) = S2 +
∑
Qj /∈S

αj −
∑
Qj∈S

αj

where S2 represents the self-intersection number of S.

The parabolic structure is (parabolically) stable if µ(S) > 0 for all holomorphic sections S.

Rollin-Singer explore other related notions of semi-/polystability [Rollin and Singer, 2009b], but

we will only need stable for our purposes.

A parabolic structure determines a sequence of blow-ups on the ruled surface M . Let Pj ∈ Σ

be one of the selected points in (III.0.1) and let αj =
p
q . We obtain the Hirzebruch-Jung continued

fraction decomposition:

p

q
=

1

e1 −
1

e2 − · · ·
1

el

as well as one for 1− αj

1− αj =
q − p

q
=

1

e′1 −
1

e′2 − · · ·
1

e′m

These decompositions are unique if one assumes ej , e′j ≥ 2 for all j.

The iterated blow-up is then constructed by first blowing up at the point Qj . This can be repre-

sented as follows:

Proceeding by further blowing-up the intersection point, one obtains the following:
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Iterating this process, by choosing one of the intersection points and blowing-up, one arrives at:

Rollin-Singer show in [Rollin and Singer, 2005] that there is a unique choice of blow-up points to

obtain the above diagram. Note that the curve labeled F̃ is the proper transform of the original fiber.

If the parabolic structure has multiple points, this process is then repeated for any remaining

parabolic points. Rollin-Singer then show [Rollin and Singer, 2009b, Theorem D] that such an

iterated blow-up of a parabolically stable ruled surface admits a cscK metric.

III.0.2 Example of Parabolically Stable Ruled Surfaces

We will now provide one of the simplest examples of a parabolically stable ruled surface. We

will now describe a parabolic structure on the ruled surface π:CP1 × CP1 → CP1. Take distinct

P1, P2, P3 ∈ CP1 and Qj ∈ π−1(Pj) with weights αj = 1
2 . Let X be the iterated blow-up of

CP1 × CP1 obtained from the procedure described above.

Rollin-Singer provide an argument that this is a stable parabolic structure in [Rollin and Singer,

2009a] which we will reproduce here.

Proposition III.0.2. The parabolic structure on π:CP1 × CP1 → CP1 described in the prior

paragraph is parabolically stable for generic Q1, Q2, Q3.

Proof. The formula for the slope of this parabolic structure is:

µ(S) = S2 +
∑
Qj /∈S

1

2
−
∑
Qj∈S

1

2

Since any holomorphic section S ⊆ CP1 × CP1 is the graph of a meromorphic function f , one

has that the self-intersection of S is S2 = 2deg(f). Therefore, the only way that µ(S) ≤ 0 is if

deg(f) = 0 and at least two Qj lie on S. In other words, this parabolic structure will be stable so

long as no two Qj fall on the same constant section which is true generically.

Rollin-Singer show that parabolic stability guarantees the existence of cscK metrics by using

the parabolic structure to construct a cscK orbifold. They then construct a CP1-bundle over the

orbifold and quotient the fiber bundle by the orbifold fundamental group. Locally, this quotient
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introduces two singularities at the 0 and ∞ sections of the fibers of the marked points Pi. These

singularities can be resolved which results in the Hirzebruch-Jung string corresponding the weight

1/2 as described above. The resolution of the singularities along the 3 distinguished fibers admits a

cscK metric provided that the areas of the exceptional divisors of each resolution are small and the

proper transform of the singular fibers is large (relative to the exceptional divisors).

Figure III.1: The left diagram depicts a singular and smooth fiber in the quotient of the CP1-bundle
prior to the resolution. Note that the fiber F ′ has half of the area of a generic fiber due to the
quotienting procedure. The diagram on the right depicts the resolution where E and E′ denote the
exceptional divisors introduced by the resolution and F̃ ′ is the proper transform of F ′.

This manifold can be achieved through the iterated blow-up procedure outlined above. It will be

easier for our computation later to use a basis for homology that results from the iterated blow-up,

so we introduce it here. We let Ei, Fi, and Gi denote the ith exceptional divisor of the iterated

blow-ups at Q1, Q2, and Q3 respectively. We may represent this pictorially as follows

Figure III.2: Iterated blow-up of CP1 × CP1. The numbers denote the self-intersection number of
the corresponding curve.
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Note that in this basis, the exceptional divisors from the desingularizations correspond to the

curves labeled with subscript 1 and the proper transforms of fibers (for example H̃ in the above

picture) whereas the proper transform of the fibers in the desingularization corresponds to the curves

labeled with subscript 2.

III.1 Stability

A fundamental concept in this thesis is the algebro-geometric notion of stability. There are nu-

merous versions of stability each with their own particular flavor. Mumford [Mumford, 1977] in-

troduced stability in the context of geometric invariant theory in order to characterize problematic

points when taking quotients of schemes by a group action. However, in our case, we care more

about the link between stability and existence of canonical metrics. A famous conjecture is the field

of complex geometry is the following:

Conjecture (Yau-Tian-Donaldson). Let (M,L) be a polarized manifold and suppose that M has

discrete holomorphic automorphism group. Then M admits a cscK metric in c1(L) if and only if

(M,L) is K-stable.

We will not delve into the specifics of K-stability as it will not feature in this thesis. However,

it is useful to understand some of the results that live around it. The ⇐= direction of this conjecture

(and its other formulations) is often viewed as the “harder” direction. This is due to the fact that

it relies on using an algebraic condition to produce a solution to a difficult PDE whereas the other

direction uses the PDE solution to prove the algebraic condition. While the ⇐= direction is still

being tackled, Stoppa [Stoppa, 2009] proved the =⇒ direction:

Theorem III.1.1 (Stoppa). If c1(L) contains a cscK metric and Aut(X,L) is discrete, then (X,L)

is K-stable.

We will instead focus on the notion of slope stability due to Ross-Thomas [Ross and Thomas,

2006] and parabolic stability due to Rollin-Singer [Rollin and Singer, 2009b].

III.1.1 Slope Stability

Let X be a smooth polarized complex manifold of dimension n with ample line bundle L. The pair

(X,L) is referred to as a polarized manifold and L is the polarization. Let the Hilbert polynomial
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of (X,L) be:

H(k) = a0k
n + a1k

n−1 +O(kn−2)

Then one may define the slope of a polarized manifold:

Definition III.1.2. The slope of the polarized manifold (X,L) is:

µ(X,L) =
a1
a0

The asymptotic Riemann-Roch theorem gives that:

H(k) = χ(L⊗k) =

∫
X c1(L)

n

n!
kn −

∫
X c1(L)

n−1 · c1(KX)

2(n− 1)!
kn−1 +O(kn−2)

Hence, one has the following expressions:

a0 =
1

n!

∫
X
c1(L)

n, a1 = − 1

2(n− 1)!

∫
X
c1(L)

n−1 · c1(KX)

which implies that:

µ(X,L) = −
n
∫
X c1(L)

n−1 · c1(KX)∫
X c1(L)n

The final piece needed to understand the obstruction given by slope stability is the slope of a sub-

manifold Z ⊂ X . Let π: X̂ → X be the blow-up of X along Z with exceptional divisor E and let

JZ denote the ideal sheaf of Z. One then has the following definition

Definition III.1.3. The Seshadri constant of Z is

ϵ(Z,X,L) = sup{c : π∗L⊗O(−cE) is ample on X̂}

= max{c : π∗L⊗O(−cE) is nef on X̂}

For x ∈ (0, ϵ(Z,X,L)),
(
X̂, π∗L⊗O(−xE)

)
is a polarized manifold, so one can once again
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look at its Hilbert polynomial except now we allow x to vary:

χ((π∗L⊗O(−xE))⊗k) = a0(x)k
n + a1(x)k

n−1 +O(kn−2), k ≫ 0, xk ∈ N

where by the asymptotic Riemann-Roch theorem again:

a0(x) =
1

n!

∫
X̂
c1(π

∗L⊗O(−xE))n, a1(x) = − 1

2(n− 1)!

∫
X̂
c1(π

∗L⊗O(−xE))n−1 · c1(KX̂)

Definition III.1.4. Let JZ denote the ideal sheaf of the submanifold Z. The slope of Z with respect

to c is

µc(JZ , L) =

∫ c
0 a1(x) +

a′0(x)
2 dx∫ c

0 a0(x)dx

Observe how this definition is very similar to definition III.1.2. Here, however, the values a0

and a1 are replaced with the averages a0(x) and a1(x) over the interval (0, c). What’s more, the

numerator has an a′0(x)
2 term in the integrand. Ross-Thomas refer to this as a correction term of sorts

which is to account for the difference between the Hilbert polynomial of a 2-component normal

crossing variety and the sum of its components’ Hilbert polynomials. One can now define slope

stability:

Definition III.1.5. (X,L) is slope stable with respect to Z if µc(JZ , L) < µ(X,L) for every

c ∈ (0, ϵ(Z,X,L)), and for c = ϵ(Z,X,L) if ϵ(Z,X,L) is rational and the global sections L⊗k ⊗

J ϵ(Z,X,L)k
Z saturate J ϵ(Z,X,L)k

Z for k ≫ 0. (X,L) is slope stable if it is slope stable with respect to

all subschemes Z.

In the above definition, saying that the global sections L⊗k ⊗ J ϵ(Z,X,L)k
Z saturate J ϵ(Z,X,L)k

Z

means that the global sections generate the line bundle π∗L⊗O(−ϵ(Z,X,L)kE). Ross and Thomas

prove the following theorem relating slope stability and K-stability:

Theorem III.1.6 ( [Ross and Thomas, 2006]). Suppose (X,L) is K-stable. Then it is slope stable

with respect to any smooth subscheme Z.

Said another way, if (X,L) has a destabilizing subscheme (that is a subscheme which (X,L)

is is not slope stable with respect to), then (X,L) is not K-stable, and hence, the class c1(L) does
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not contain a cscK metric. Therefore, slope stability gives an obstruction to the existence of cscK

metrics in the compact setting.

It is often easier, however, to instead work with the related notion of quotient slope.

Definition III.1.7. Let ãi(x) be defined by:

χ(π∗L⊗k/(π∗L⊗O(−xE))⊗k) = ã0(x)k
n + ã1k

n−1 +O(kn−2)

The quotient slope of Z with respect to c is:

µc(OZ , L) =

∫ c
0 ã1(x) +

ã′0(x)
2 dx∫ c

0 ã0(x)dx
=

∫ c
0 a1(x) +

a′0(x)
2 dx− ca1∫ c

0 a0(x)dx− ca0

which is finite for 0 < c ≤ ϵ(Z,X,L)

Note that for 0 < B < D:

A

B
<
C

D
⇐⇒ C

D
<
C −A

D −B
⇐⇒ A

B
<
C −A

D −B

Hence, the above formulas for slope, slope of Z, and quotient slope of Z enjoy the following

implications:

µc(JZ , L) < µ(X,L) ⇐⇒ µ(X,L) < µc(OZ , L) ⇐⇒ µc(JZ , L) < µc(OZ , L)

Importantly, the stability inequality gets reversed when looking at quotient slope.

The above formulas for slope and quotient slope with respect to Z are fairly involved. Thank-

fully, there is a more tractable formula for quotient slope of a divisor Z:

Theorem III.1.8 ( [Ross and Thomas, 2006]). Suppose that Z is a divisor in (X,L). Then:

µc(OZ , L) =
n
(
Ln−1 · Z −

∑n−1
j=1

(
n−1
j

) (−c)j

j+1 L
n−1−j · Zj · (KX ⊗O(Z))

)
2
∑n

j=1

(
n
j

) (−c)j

j+1 L
n−j · Zj

In the complex surface case, this simplifies down to:

Corollary III.1.9 ( [Ross and Thomas, 2006]). Let Z be a smooth curve in a smooth polarised
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surface (X,L). Then:

µ(X,L) = −KX · L
L2

µc(OZ , L) =
3
(
2L · Z − c(KX · Z + Z2)

)
2c(3L · Z − cZ2)

and if Z is a smooth rational curve:

µc(OZ , L) =
3(L · Z + c)

c(3L · Z − cZ2)

These formulas are notably easier to work with, and therefore, will be the main computational

tool we use for slope stability. Importantly, a smooth rational curve Z destabilizes the polarization

(X,L) if for some c ∈ (0, ϵ(Z,X,L)]:

3(L · Z + c)

c(3L · Z − cZ2)
< −KX · L

L2

III.2 The Destabilizing Curve

We will now examine nonexistence on the same iterated blow-up using slope stability. We will be

looking at classes in H2(X) of the form:

Ω = a[H] + a[K]− e[E1]− αe[E2]− f1[F1]− f2[F2]− g1[G1]− g2[G2] (III.1)

Lemma III.2.1. For any a > 0, there are positive constants f1, f2, g1, g2, e0 such that for any

α ∈ (1, 2) and e < e0, the class Ω is Kähler.

Proof. For the sake of clarity, we will walk through the iterated blow-up procedure and our notation.

First, consider a single blow-up at a point π : X̂ → X0 with exceptional divisor E. Given a

Kähler class Ω0 ∈ H2(X0,R), we know that π∗(Ω0) − x[E] > 0 for any x small enough. Letting

X0 = CP⊮ × CP1, we will iterate this procedure twice at both Q2 and Q3 (a total of 4 blow-ups).

Hence, for a Kähler class a[H] + a[K] ∈ H2(X0,R), the class Ω1 = a[H] + a[K] − f1[F1] −

f2[F2] − g1[G1] − g2[G2] > 0 for small enough fi, gi. Although it isn’t necessary for our current

argument, it’s worth noting for the next theorem that we may stipulate the fi’s and gi’s satisfy the
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the following inequality:

15

8a
<

4a− f2 − g2
2a2 − 2f21 + 2f1f2 − f22 − 2g21 + 2g1g2 − g22

The procedure above is a quick and painless method for showing positivity, however, it comes

with the price that the coefficients indexed with 2 depend on those indexed with 1. In our later

argument, this dependence won’t be a problem for the coefficients of [Fi] and [Gi]. It will, however,

be problematic for the coefficients of [Ei].

We instead use the Nakai-Moishezon criterion to handle the coefficients of [Ei]. Let X1 denote

the 4-fold blow-up of X0 described in the first paragraph. Let π:X → X1 be the iterated blow-up

of X1 at Q1, and let Ω be as in (III.1). Recall the for surfaces, the Nakai-Moishezon criterion says

that Ω > 0 if and only if Ω2 > 0 and Ω · C > 0 for every curve C ⊆ X . We will see that the

Nakai-Moishezon criterion is satisfied for small enough e.

We begin by obtaining the inequality Ω · C > 0 on some notable curves:

Curve Inequality

E1 2e > αe

E2 αe > e

H̃ = H − E1 − 2E2 a > αe

K̃ = K − E1 − E2 a > e

So for Ω to be positive, one needs 1 < α < 2. We must also consider a general curve C. Assume

that C is a curve on X other than E1, E2, H̃ , and K̃. If C does not intersect E1 or E2, then

C = π∗(C ′) for some holomorphic curve C ′ ⊆ X1 in which case:

Ω · C = Ω · π∗(C ′) = Ω1 · C ′ > 0

since Ω1 > 0 on X1.

Now, assume that C intersects E1 or E2, and let C ′ = π(C) ⊆ X1. Then [C] = π∗[C ′] −
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x1[E1]− x2[E2]. Since C ̸= E1, E2, H̃, K̃ by assumption, we have the inequalities:

C · E1 = 0− x1E
2
1 − x2E1 · E2 = 2x1 − x2 ≥ 0

C · E2 = 0− x1E1 · E2 − x2E
2
2 = −x1 + x2 ≥ 0

Therefore, we have that 2x1 ≥ x2 ≥ x1 ≥ 0. Since C intersects at least one of E1 and E2, at least

one of C · E1 and C · E2 is, in fact, greater than or equal to 1.

We may also compute:

C · H̃ = (C ′ − x1E1 − x2E2) · (H − E1 − 2E2) (III.2)

= C ′ ·H + 0 + x1E
2
1 + 2x1E1 · E2 + x2E1 · E2 + 2x2E

2
2 (III.3)

= C ′ ·H − 2x1 + 2x1 + x2 − 2x2 = C ′ ·H − x2 ≥ 0 (III.4)

so C ′ ·H ≥ x2. Similarly:

C · K̃ = (C ′ − x1E1 − x2E2) · (K − E1 − E2)

= C ′ ·K + 0 + x1E
2
1 + x1E1 · E2 − 0 + x2E1 · E2 + x2E

2
2

= C ′ ·K − 2x1 + x1 + x2 − x2 = C ′ ·K − x1 ≥ 0

so C ′ ·K ≥ x1. Then:

Ω · C = (π∗(Ω1)− eE1 − αeE2) · (C ′ − x1E1 − x2E2)

= Ω1 · C ′ − 0 + ex1E
2
1 + ex2E1 · E2 + αex1E1 · E2 + αex2E

2
2

= Ω1 · C ′ − 2ex1 + ex2 + αex1 − αex2

= Ω1 · C ′ − e (x1(2− α) + x2(α− 1))

Since α ranges from 1 to 2, the quantity x1(2 − α) + x2(α − 1) ranges from x1 to x2. Hence, we

have that Ω · C > Ω1 · C ′ − ex2. We will now compute Ω1 · C ′. Recall that Ω1 = a[H] + a[K]−∑
i
fi[Fi]−

∑
i
gi[Gi]. By shrinking if necessary, we may assume that f1, g1 < a

20 and f2, g2 < a
10 .
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Let C ′ = m[H] + n[K]−
∑
i
si[Fi]−

∑
i
ti[Gi]. Then:

Ω1 · C ′ =

(
a[H] + a[K]−

∑
i

fi[Fi]−
∑
i

gi[Gi]

)
·

(
m[H] + n[K]−

∑
i

si[Fi]−
∑
i

ti[Gi]

)

= an+ am+ (f1[F1] + f2[F2]) · (s1[F1] + s2[F2]) + (g1[G1] + g2[G2]) · (t1[G1] + t2[G2])

Since f1 < f2 <
a
10 , we have that:

(f1[F1] + f2[F2]) · (s1[F1] + s2[F2]) = −s1(2f1 − f2)− s2(f2 − f1) > −(s1 + s2)
a

10

Similarly, we have that (g1[G1] + g2[G2]) · (t1[G1] + t2[G2]) > −(t1 + t2)
a
10 . Note that since C ′

is a holomorphic curve, we must have that s1 ≤ m, s2 ≤ n, t1 ≤ m, and t2 ≤ n. Therefore:

Ω · C > Ω1 · C ′ − ex2 > a(n+m)− (s1 + s2 + t1 + t2)
a

10
− ex2

≥ a(n+m)− (n+m)
a

5
− ex2

Finally, (III.2) tells us that n = C ′ ·H ≥ x2, so:

Ω · C > a(n+m)− (n+m)
a

5
− ex2 > a(n+m)− (n+m)

a

5
− (n+m)e

which is greater than 0 provided that e < 4a
5 .

Note that the above lemma tells us information about the Seshadri constant ϵ(E1, X, L); namely

that ϵ(E1, X, L) ≥ min{4a
5 ,

a
α}.

Now that we know have a grasp on which classes are Kähler, we may begin finding classes

where cscK metrics are obstructed. To accomplish this, we will show that the curve E1 is desta-

bilizes (M,L) where L is a line bundle such that c1(L) = Ω as defined above (III.1) with ratio-

nal coefficients. Note that from a technical standpoint, in order for Ω to represent c1(L), it must

be an integral cohomology class which it is not. However, we selected our coefficients such that

Ω ∈ H2(X,Q). Then kΩ ∈ H2(X,Z) for some k, and therefore we may find a line bundle L such

that c1(L) = kΩ. Then, kΩ admits cscK metrics if and only if Ω does, so we can assume that our

class Ω has integer coefficients.
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Now we will prove our destabilizing results:

Theorem III.2.2 (Rizzo). For any a > 0, there are positive constants f1, f2, g1, g2, e0 satisfying:

15

8a
<

4a− f2 − g2
2a2 − 2f21 + 2f1f2 − f22 − 2g21 + 2g1g2 − g22

such that for any α ∈
(
1, 54
]

and e < e0, the class Ω (III.1) does not admit a cscK metric.

Proof. Let Ω be as in the previous lemma. Recall that E1 destabilizes if in terms of the quotient

slope:

µc(OE1 , L) < µ(X,L)

for some c ∈ (0, ϵ(E1, X, L)] where µc(OE1 , L) represents the quotient slope of E1 with respect to

c and µ(X,L) is the slope of (X,L). We will take c = 4a
5 . Since 1 < α ≤ 5

4 , we have that 4a
5 ≤ a

α .

Therefore, we are guaranteed that c ∈ (0, ϵ(E1, X, L)].

Using the fact that −c1(KX) = c1(X) = 2H +2K − (E1+F1+G1)− 2(E2+F2+G3) and

corollary 5.3 in [Ross and Thomas, 2006], we may compute:

µ(X,L) = −KX · L
L2

=
4a− αe− f2 − g2

2a2 − 2f21 + 2f1f2 − f22 − 2g21 + 2g1g2 − g22 − e2(α2 − 2α+ 2)

and:

µ 4a
5
(OE1 , L) =

3(L · E1 + c)

c(3L · E1 − cE2
1)

=
3((2− α)e+ 4a

5 )
4a
5 (3(2− α)e+ 8a

5 )

Therefore, E1 is a destabilizing curve if

3((2− α)e+ 4a
5 )

4a
5 (3(2− α)e+ 8a

5 )
<

4a− αe− f2 − g2
2a2 − 2f21 + 2f1f2 − f22 − 2g21 + 2g1g2 − g22 − e2(α2 − 2α+ 2)

Taking the limit as e→ 0:

15

8a
<

4a− f2 − g2
2a2 − 2f21 + 2f1f2 − f22 − 2g21 + 2g1g2 − g22
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which is satisfied due to our choices of fi’s and gi’s. Continuity tells us that our destabilizing

inequality holds for e small enough.
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ALE Kähler Manifolds. International Mathematics Research Notices, 2021(14):10957–10980.

[Hwang and Singer, 2002] Hwang, A. D. and Singer, M. A. (2002). A momentum construction for
circle-invariant kähler metrics. Trans. Amer. Math. Soc., 354(6):2285–2325.

[Kronheimer, 1989a] Kronheimer, P. B. (1989a). A Torelli-type theorem for gravitational instan-
tons. Journal of Differential Geometry, 29(3):685 – 697.

[Kronheimer, 1989b] Kronheimer, P. B. (1989b). The construction of ALE spaces as hyper-Kähler
quotients. Journal of Differential Geometry, 29(3):665 – 683.

[LeBrun, 1988] LeBrun, C. (1988). Counter-examples to the generalized positive action conjecture.
Communications in Mathematical Physics, 118(4):591 – 596.

[Mumford, 1977] Mumford, D. (1977). Stability of projective varieties. L’Enseignement
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