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Chapter 1

Introduction

There is a vast and ever-growing expanse of nonclassical logics and with it, a need to develop a unified

theoretical framework to classify, prove metalogical results, and develop semantics for classes of logics.

For propositional logics, the field of abstract algebraic logic (AAL) provides a unified theoretical framework

rooted in universal algebra. However, for first-order logics, there is not a clear consensus on what the unifying

algebraic perspective should be (Font, 2016, p. 104). Two main challenges mentioned in the literature are (1)

a lack of general algebraic approaches to providing semantics for first-order logics and (2) a lack of a notion

of formula substitution which preserves logical consequence (Font, 2016, p. 106).

To address (1), we use Lawvere’s theory of hyperdoctrines Lawvere (2006) to develop a general approach

to providing “algebraic” semantics for nonclassical first-order logics. The key insight to this approach is to

consider terms and formulas in context, that is, with a list of variable/sort pairs that at least include those

occurring in the formula. The use of contexts is ubiquitous in classical first-order model theory where it

allows one to unambiguously interpret terms as term functions and formulas as definable sets. However,

it is scarcely formally presented there, which is unfortunate because contexts allow one to give an elegant

point-free/valuation-free definition of satisfaction.1

Since we model truth and not proof, we use poset-valued instead of more general category-valued hyper-

doctrines for our semantics called prop-categories in Pitts (2000). A prop-category is a pair (C, P ), where

C is a category with designated finite products and P : C → Pos is a contravariant functor to Pos, the

category of partially ordered sets and monotone maps. The prop-categories in Pitts (2000) are assumed to

satisfy additional adjointness conditions so that they interpret the quantifiers and connectives of intuitionis-

tic predicate logic. To model a broad variety of logics, we allow arbitrarily many quantifier and operation

symbols in a first-order language L and we replace the adjointness condition with weaker algebraic ones.

Despite this generalization, the prop-categorical semantics of a logic can still be encoded in a 2-category of

prop-categories we denote FAL (or just FA), where roughly theories are objects, structures are morphisms,

and structure-preserving maps are 2-cells.

Moreover, the morphisms in FA determine a natural action of formula substitution which also addresses

issue (2). A footnote in a standard reference on AAL (Font, 2016, p. 106) says:

In first-order languages we replace an individual (free) variable by a term; we do not replace an

1Lawvere’s point-free semantics also resolves a philosophical issue with assigning objects to variables discussed in (Button and
Walsh, 2018, p. 10).
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atomic formula, inside a more complex one, by an arbitrary formula, which is what is done in a

sentential language.

However, if one unpacks the action of morphisms on theories it essentially does that. A restricted form of this

notion of formula substitution appears in (Church, 1956, p. 191), though it seems to be missing from many

contemporary textbooks on mathematical logic. This is not surprising, since the account in Church (1956)

for classical first-order logic without function symbols is already complicated without the help of contexts.

Much like the study of algebraic semantics for first-order logic, currently, the study of prop-categorical

semantics for logics (in contrast with type theories) appears to be focused on studying particular logics and not

on establishing a general framework in the spirit of AAL. An early exception is the work of Hiroyuki Shirasu,

who in Shirasu (1995) provides complete prop-categorical semantics for substructural predicate logics, and

uses this semantics to prove their disjunctive and existence properties. In Shirasu (1998), prop-categorical and

a general metaframe semantics are developed for first-order modal logics and it is proved that they are dual to

each other. More recently, in Maruyama (2021), complete hyperdoctrine semantics for substructural predicate

logics is also given and used to present a unified account of logical translations, including Kolmogorov’s

double negation translation of classical logic into intuitionistic logic and Girard’s exponential translation of

intuitionistic logic into linear logic. In contrast to these existing works on general prop-categorical semantics

we model nonclassical quantifiers and focus on (1) establishing minimal conditions on prop-categories and

first-order logics so that structures are morphisms in a 2-category of prop-categories and (2) developing a

toolkit of general algebraic/categorical results on the resulting prop-categorical semantics.

Towards (1), we define a weak logic Lm such that whenever a logic L is stronger than Lm, each L-theory

T defines a classifying prop-category (CT , PT ) in FA, which contains a generic T -model G in (CT , PT ).

The classifying prop-categories are the fibrational, first-order analogues of the Lindenbaum-Tarski algebras

of propositional logics. Such a logic L is called adequate and L ⊇ Lm is also necessary for L to be adequate.

Moreover, Lm has a complete semantics with respect to the class of all of its classifying prop-categories

(Theorem 3), as do many natural extensions of Lm by the addition of various sequent rules (Theorem 4). We

then develop an algebraic view of the prop-categorical semantics of a logic L in analogy with the algebraic

approach to the semantics of propositional logics. In this view, a full sub-2-category FAL of FA replaces

the usual quasivariety of algebras forming the algebraic semantics of a propositional logic and we define the

kernel of a morphism (Definition 3.3.1) to give an algebraic/morphic view of logical entailment. These results

are directly applied to formulate and prove the later “fibered” universal algebraic results.

After singling out the class of first-order logics which have nice categorical semantics, in the last chapter,

we develop a “fibered universal algebra” for FA. The internal logic of a prop-category (C, P ) in FA is defined
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and shown to be an Lm-theory T , such that (CT , PT ) ≡ (C, P ) in FA. sub-prop-categories and morphic

images of prop-categories are defined and FA is shown to have arbitrary products. The logical properties

of products and sub-prop-categories are considered which mirror the logical properties of submatrices and

products of matrices respectively in the matrix semantics of AAL (Font, 2016, p. 183).

We then prove a “fibered” analogue of the homomorphism theorem from universal algebra in two parts

(Theorem 7). The first part, says that each morphism F : (C, P ) → (D, Q) in FAL factors through a

“quotient” prop-category which is also in FAL. The second part characterizes when, given morphisms

F : (C, P ) → (D, Q) and K : (C, P ) → (E , R), there exists a unique morphism H : (E , R) → (D, Q)

such that H ◦K = F . Part 2 says that under reasonable “surjectivity” assumptions on K, there is a unique

completion H if and only if kerK ≤ kerF . Our results on morphic images and the internal logic are used

to give “algebraic” proofs of these results. Moreover, the fibered homomorphism theorem determines an

orthogonal factorization system for FAL.

In the final section, we use the fibered homomorphism theorem to characterize two natural closure opera-

tors. The first operator characterizes the closure of a class of structures under the satisfaction of their common

first-order theory. Taking submodels, homomorphic images and products does not preserve the satisfaction

of first-order theories in the Tarskian semantics for classical first-order logic. However, for logics L given

prop-categorical semantics in FAL, the closure operator is characterized by HSP where H, S and P close a

collection of structures under natural notions of homomorphic image, submodel and product of structures in

the prop-categorical semantics (Theorem 8). For example, if L is classical first-order logic, then the Tarskian

Sg-structures are essentially the morphisms F : (CSg, PSg) → (Set,P), where P is the preimage functor,

and (CSg, PSg) is the classifying prop-category of the minimal Sg-theory. Then FAL((CSg, PSg), (Set,P))

provides complete semantics for L (restricted to the signature Sg). Just as the two element Boolean algebra

and the class of all Boolean algebras forms complete semantics for classical propositional logic, FAL also

provides complete semantics for L, where an Sg-structure is a morphism F : (CSg, PSg) → (C, P ), for some

(C, P ) ∈ Ob(FAL). In this extended semantics, it is natural to look at the coslice category CSg ↓FA of the

underlying 1-category of FA instead of FAL((CSg, PSg), (Set,P)). It is in this category CSg ↓FA that we

define the operations of H,S and P, and obtain the fibered HSP-result.

The second operator closes a collection X ⊆ Ob(FA) under logical consequence: that is, the closure

of X is the largest Y ⊇ X such that ⊨Y = ⊨X , i.e. they define the same logic. Since FAL is stable under

products and sub-prop-categories, Y ⊇ SP(X ), where here S is closure under sub-prop-categories and P is

closure under products of prop-categories. It turns out that we need another operation which we call U, and

Theorem 10 shows that Y = USP(X ). This result is a natural extension of a corresponding result by Blok

and Jónsson in Blok and Jónsson (2006), which shows that for a collection of algebras V , closure under the
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equational consequence is given by UλSP(V), where λ is the cardinality of the set of variables over which

equations are defined, and B ∈ Uλ(V) if every λ-generated subalgebra A ≤ B is in V . (See Theorem 9

for the directly analogous “fibered” result which considers a fixed first-order signature and uses an operator

USg.)
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Chapter 2

Syntactic Concerns

This chapter introduces the syntax of formulas-in-context and provides an example of the benefits of contexts

by giving a simple account of α-equivalence and equivalence up to change in free variables. Term substi-

tution on (equivalence classes of) formulas is then defined and used to provide a natural notion of formula

substitution that is structural for many logics. Later, in Section 3.3, the formula substitution maps are shown

to correspond to the endomorphisms on a prop-category encoding the syntax of the logic.

we will put these formula substitution maps in bijective correspondence with the collection of endo-

morphisms on a prop-category encoding the syntax of the logic. The chapter concludes with a few basic

definitions. Only sections 2.1 and 2.5 will be necessary for subsequent chapters.

For simplicity, consider classical first-order logic with its usual Tarskian semantics. There are two natural

notions of entailment of a formula ψ from a set of formulas Φ. We say Φ ⊨ ψ globally if, whenever M

satisfies Φ, M satisfies ψ. Recall M satisfies a formula ϕ if and only if M, ν satisfies ϕ for each valuation

(variable assignment) ν. We say Φ ⊨ ψ locally if, whenever M, ν satisfies Φ, M, ν satisfies ψ. By definition,

every local entailment is a global entailment and they agree on sentences (formulas without free variables).

If Φ is finite, then for some n ∈ N, and each structure M, every formula γ ∈ Φ ∪ {ψ} may be interpreted as

an n-ary relation MJγK on the underlying set M of M. Then, Φ ⊨ ψ globally if for all structures M,

1 ⊆
⋂

MJΦK =⇒ 1 ⊆
⋂

MJψK,

where and 1 =Mn. And Φ ⊨ ψ locally if for all M,

⋂
MJΦK ⊆ MJψK.

Note that term substitution does not preserve all global entailments. Consider the valid global entailment:

p(x) ⊨ ∀y p(y), (2.1)

which is clearly not locally valid. Then the following substitution instance of (2.1):

p(f(x)) ⊨ ∀y p(y), (2.2)
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is not globally valid. Naively understood, substitution also does not preserve local entailments:

∃xR(x, y) ⊨ ∃z R(z, y),

is clearly, locally valid, but after substituting x for y we get

∃xR(x, x) ⊨ ∃z R(z, x),

which is not globally or locally valid. The issue is that the variable x being substituted gets captured by the

quantifier ∃x on the left. If we want substitution to preserve local entailments, we must define substitution in

a way that avoids variable capture. We also have another reason for wanting to avoid variable capture: such a

notion of term substitution can be used to define a consequence preserving notion of formula substitution for

first-order logics.

Recall for classical propositional logic, given any valid entailment such as

A ∧B ⊨ A,

one may uniformly substitute arbitrary formulas for the atomic formulas and still be left with a valid entail-

ment. For example, if we let ζ(A) = A ∨ C and ζ(B) = (C → D) → E, we get the valid entailment

(A ∨ C) ∧ ((C → D) → E) ⊨ A ∨ C.

In abstract algebraic logic (AAL), entailment is modeled as a structural consequence relation, i.e. one which

is preserved by some action of “sustitution”. Structurality seeks to capture the idea that a valid argument

should depend only on its form and not on its content. Moreover, structurality is a key ingredient to the main

theory of AAL, and it is mentioned in Font (2016) that a lack of a suitable notion of consequence preserving

formula substitution for first-order logic is a main inhibitor to extending the theory to include first-order

logics.

However, there is such a notion of formula substitution which in a restricted form appears in Church

(1956). In first-order logic, the atomic formulas are of the form

R(M1, . . . ,Mn) and M1 =M2,

where Mi for i ∈ {1, . . . , n} are terms built from the variables and function symbols. We cannot map an
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arbitrary atomic formula to any formula as with propositional logics since

P (x) ⊨ P (f(x)),

is locally valid, but

P (x) ⊨ Q(x),

is not even globally valid. Instead of mapping atomic formulas to arbitrary formulas, we map each n-ary

relation symbol R in our signature to an arbitrary formula-in-context ϕR(x1, . . . , xn). That is, a context for

ϕR is a list of variables that at least includes those occurring free in the expression. Then one extends this

assignment to an operation on formulas ζ as follows: ζ is the identity on equalities and for an atomic relation

R(M1, . . . ,Mn),

ζ(R(M1, . . . ,Mn)) := ϕR(M1, . . . ,Mn).

Notice that there are many ways substitute back the terms M1, . . .Mn into ϕR, and the context specifies a

unique choice.

Then one would like to extend this to an operation on formulas ζ by insisting that it commutes with the

quantifiers and propositional connectives. However, variable capture is an issue. For example,

∀xQ(x) ⊨ ∀y Q(y),

is valid, but if ζ(Q) = ∀xR(x, y), then with naive term substitution, applying ζ to both the antecedent and

consequent we get

∀x ∀xR(x, x) ⊨ ∀y ∀xR(x, y),

which is clearly not valid. However with capture avoiding substitution it becomes

∀x ∀y R(y, x) ⊨ ∀y ∀xR(x, y),

which is trivially valid. We will show that many logics, and in particular those defined syntactically, are

structural with a more general notion of formula substitution where we can choose a natural number m and

map each n-ary relation to a formula-in-context with nm free variables, map function symbols to m-lists of

terms, and map equations to sets of m-equations.

Defining capture avoiding term substitution is maddening. After thinking about bound variables a bit,

it becomes clear that their only semantic role is to point to the appropriate quantifier. This observation is

7



implemented in De Bruijn indices, where

∀x (∃y R(x,w) ∧ ∀z S(x, y, z)),

can be represented as

∀ (∃R(2, 3) ∧ ∀S(2, 4, 1)).

In the representation, variables are natural numbers, a bound variable is the number of quantifiers it is in

the scope of up to its binding quantifier, and a free variable is a number which exceed this value for each

quantifier it is in the scope of.

Thus it seems that the names of the bound variables are immaterial and so before substitution we can

swap the bound variables out with “fresh” ones. However, this requires a notion of variable substitution!

Luckily, we can avoid circularity by defining substitution inductively on the complexity of formulas. How-

ever, we now have to make a choice of which fresh variables to swap in and any choice will either break the

associativity of the substitution operations or break the identity substitutions. Moreover, since semantically,

bound variables are just pointers, we would like to not distinguish between different choices. Thus we must

identify formulas up to α-equivalence, i.e. up to having the same representation in De Bruijn notation, and

make sure substitution respects α-equivalence.

For most introductory books on mathematical logic, it seems the technical details of presenting the full

construction of capture avoiding substitution outweighs the perceived benefits. This is even case with intro-

ductory texts on Lambda Calculus such as (Hindley and Seldin, 2008, p. 5), where key parts of the proof are

left to the appendix or to a cited source.

First, we show with contexts, a simple “follow your nose” presentation of capture avoiding substitution

can be given. The reasons are twofold: First, contexts eliminate the need for many tedious definitions and

lemmas which essentially recover contexts from formulas without them. Secondly, contexts help avoid case-

work1, because they stratify the terms and formulas, so that only meaningful substitutions are defined.

Contexts non-trivially add to the syntax, in the sense that to each formula there are many valid formulas-

in-context and so one may wonder if we are merely simplifying a proof at the expense of complicating the

syntax. However, in classical first-order model theory contexts are unavoidable since they allow structures

to unambiguously interpret terms as term functions and formulas as definable sets. In most textbooks on the

subject, a context for a formula ϕ is specified by ϕ(x̄), where x̄ is assumed to be a list of variables which

includes those occurring free in ϕ. In addition, contexts allow one to define satisfaction of a formula by a

structure without variable assigments (valuations) or flooding the signature with additional constants naming
1In (Hindley and Seldin, 2008, p. 7), substitution is defined for the Lambda calculus in seven cases.
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the elements of S. This provides an elegant resolution to a philosophical problem discussed in (Button

and Walsh, 2018, p. 10). Moreover, this notion of satisfaction can be defined without explicit reference to

elements of sets, allowing one abstract away from sets to define categorical (hyperdoctrine) semantics for

first-order logic.

2.1 Well-formed Expressions-in-Context

Throughout the paper, we fix a first-order language L , consisting of a collection Lq of quantifier symbols

and a collection Lω of propositional connectives each with a designated arity in ω. For each n ∈ ω, let

Ln denote the n-ary propositional connectives in Lω . We consider multi-sorted first-order logic, and so a

signature Sg is a collection of sort symbols σ, τ, γ, . . ., typed function symbols f : σ1, . . . , σn → τ , (we

write f : τ for n = 0), and typed relation symbols R ⊆ σ1, . . . , σn.2 (we write R ⊆ ∅ for n = 0)

Let V be a countably-infinite well-ordered set of “variables”. To provide prop-categorical semantics,

well-formed terms and formulas must be “in context”. A context Γ = x1 : σ1, . . . , xn : σn is a list of

variable–sort pairs, where the collection of variables {x1, . . . , xn} are pairwise distinct. We define Var(Γ) :=

{x1, . . . , xn}. We denote the concatenation of two contexts Γ and Γ′ by Γ,Γ′. Whenever we use this notation,

we presuppose Var(Γ) ∩Var(Γ′) = ∅, so Γ,Γ′ is a valid context.

We let M : τ [Γ] be the assertion that the term M is of type τ and Γ is a valid context for M . The

(well-formed) terms-in-context are defined inductively via the following two typing rules:

x : σ [Γ, x : σ,Γ′] (2.3)

M1 : σ1 [Γ] . . . Mn : σn [Γ]

f(M1, . . . ,Mn) : τ [Γ]
(2.4)

for each variable x, each sort symbol σ, and function symbol f : σ1, . . . , σn → τ in Sg. When n = 0 in

which case f is a constant c : τ , (2.4) becomes

c : τ [Γ] (2.5)

These are the only typing rules for terms, and from these rules alone, one may prove that the typing rule

M : σ [∆] N : τ [Γ, x : σ,Γ′]

N [M/x] : τ [Γ,Γ′]
(2.6)

is admissible, where N [M/x] denotes the operation of substituting each occurrence of x in N with M and

2f : σ1, . . . , σn → τ and R ⊆ σ1, . . . , σn are merely typing assignments and do not assert that f is a morphism or R is a subset
of some set.
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the variable sort pairs in ∆ are contained in the set of those in Γ,Γ′. We denote this by VS(∆) ⊆ VS(Γ,Γ′).

We define the equations-in-context by the rule:

M1 : τ [Γ] M2 : τ [Γ] .
M1 =M2 : τ [Γ]

(2.7)

Let p be the designated type for well-formed formulas-in-context, which are specified by the following

rules: For each sort τ ∈ Sg,
M1 : τ [Γ] M2 : τ [Γ]

M1 =τ M2 : p [Γ]
(2.8)

and for each R ⊆ σ1, . . . , σn ∈ Sg,

M1 : σ1 [Γ] . . . Mn : σn [Γ] .
R(M1, . . . ,Mn) : p [Γ]

(2.9)

These rules define the atomic formulas-in-context. Note that we have two notions of equality: typically the

former is interpreted as strict equality, and the latter is often a coarser notion of equivalence or coherence.

Additionally, we have the following rules:

ϕ1 : p [Γ] . . . ϕn : p [Γ]
3 ∈ Lω

3(ϕ1, . . . , ϕn) : p [Γ]
(2.10)

ϕ : p [Γ, x : σ]
Ω ∈ Lq

Ωx:σ(ϕ) : p [Γ]
(2.11)

For each n-ary connective 3 ∈ Lω and quantifier Ω ∈ Lq . Note that Rule 2.11 is the only rule which

modifies the context. The rules for terms and formulas in context define a multisorted term/formula algebra

over the variables V . The sorts of the algebra are all pairs (Γ, η), where η is a sort τ in Sg or η = p and Γ is

a context. The elements of type (Γ, τ) are the terms-in-context M : τ [Γ] and the elements of type (Γ,p) are

the formulas-in-context ϕ : p [Γ]. Then one takes the previous term and formula construction rules relative

to a context Γ, as the operations of the algebra. We call this algebra FmSg
L .

Notice that each term-in-context and formula-in-context has a unique derivation and that the type τ as-

sociated to a term-in-context M : τ [Γ] is wholly determined by M and Γ. Thus in the sequel we will often

drop the types, and denote M : τ [Γ] as M [Γ] and formulas-in-context ϕ : p [Γ] as ϕ [Γ].

2.2 Term-substitution and α-equivalence

For X ⊊ V , since V is well-ordered, we define mex(X) to be the minimal excluded variable. That is,

mex(X) := min(V \X).

10



Let Γ = x1 : σ1, . . . , xn : σn be a context, and [M1 : σ1 [Γ
′], . . . ,Mn : σn [Γ′]] = m̄ be a list of terms in the

same context Γ′. We define the operation m̄∗ : (Γ, τ) → (Γ′, τ) as follows:

m̄∗(xk : σk [x1 : σ1, . . . , xn : σn]) :=Mk : σk [Γ′], k ∈ {1, . . . , n}. (2.12)

And for f(N1, . . . , Nm) : τ [Γ], where f : τ1, . . . , τm → τ , and Ni : τi [Γ] for i ∈ {1, . . . ,m},

m̄∗(f(N1, . . . , Nm) : τ [Γ]) := f(m̄∗(N1 : τ1 [Γ]), . . . , m̄
∗(Nm : τm [Γ])) : τ [Γ′], (2.13)

where

f(·, . . . , ·) : τ [Γ′] : (Γ′, τ1)× . . .× (Γ′, τm) → (Γ′, τ),

is the operation in FmSg
L . As a special case of (2.13), if m = 0, in which case f is a constant c : τ , we have

m̄∗(c : τ [Γ]) := c : τ [Γ′]. (2.14)

Note that we specify which variable in Γ gets substituted by which term Mi : σi [Γ
′], By the ordering

of the variables in Γ and the ordering of the terms-in-context in m̄. If we did not use contexts, m̄∗ would be

written as

[M1 : σ1 [Γ
′]/x1, . . . ,Mn : σi [Γ

′]/xn]
∗.

Consider n̄ = [N1 : τ1 [Γ
′′], . . . , Nm : τm [Γ′′]], where Γ′ = y1 : τ1, . . . , ym : τm. Even though there are

many contexts besides Γ′ with the list of sorts τ1, . . . , τm, we will think of n̄ as a morphism3 n̄ : Γ′′ → Γ′.

We define the composition by

m̄ ◦ n̄ := [n̄∗(M1 : σ1 [Γ
′]), . . . , n̄∗(Mn : σn [Γ′])].

Lemma 1. Let M : σ [Γ] be a term-in-context, n̄ : Γ′ → Γ and ō : Γ′′ → Γ′. Then ō∗n̄∗(M : σ [Γ]) =

(n̄ ◦ ō)∗(M : σ [Γ]).

Proof. If M : σ [Γ] = xk : σk [Γ], then

ō∗n̄∗(xk : σi [Γ]) = ō∗(Nk : σi [Γ]) = (n̄ ◦ ō)∗(xk : σi [Γ]).

3To be precise n̄ must have a specified codomain and so we should somehow include Γ′ in the data of n̄. This will no longer be
necessary when we identify formulas and terms in context up to changes in the name of free variables.
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And if M : σ [Γ] = f(B1, . . . , Bk) : σ [Γ], then,

ō∗n̄∗(M : σ [Γ]) = f(ō∗n̄∗B1 [Γ], . . . , ō
∗n̄∗Bk [Γ]) [Γ′′]

= f((n̄ ◦ ō)∗B1 [Γ], . . . , (n̄ ◦ ō)∗B1 [Γ]) [Γ
′′] = (n̄ ◦ ō)∗(M : τ [Γ]).

Proposition 1. For all m̄ : Γ′ → Γ, n̄ : Γ′′ → Γ′ and ō : Γ′′′ → Γ′′, (m̄ ◦ n̄) ◦ ō = m̄ ◦ (n̄ ◦ ō).

Proof. Let m̄ = [M1 : σ1 [Γ
′], . . . ,Mn : σn [Γ′]]. From Lemma 1,

m̄ ◦ (n̄ ◦ ō) = [(n̄ ◦ ō)∗(M1 : σ1 [Γ
′]), . . . , (n̄ ◦ ō)∗(Mn : σn [Γ′])]

[ō∗n̄∗(M1 : σ1 [Γ
′]), . . . , ō∗n̄∗(Mn : σ [Γ′])] = (m̄ ◦ n̄) ◦ ō.

For a context Γ2 = y1 : τ1, . . . , ym : τm, we define idΓ2 by

idΓ2
:= [y1 : τ1 [Γ2], . . . , ym : τm [Γ2]].

Note that, if m̄ : Γ2 → Γ1, then m̄ ◦ idΓ2
= m̄ and if n̄ : Γ3 → Γ2, then idΓ2

◦ n̄ = n̄. It follows that the

contexts and lists of terms in a context (with specified codomains) form a category which we denote CSg.

If Γ1 = x1 : σ1, . . . , xn : σn and Var(Γ1) ∩Var(Γ2) = ∅, we define,

πΓ1,Γ2

1 := [x1 : σ1 [Γ1,Γ2], . . . , xn : σn [Γ1,Γ2]]

πΓ1,Γ2

2 := [y1 : τ1 [Γ1,Γ2], . . . , ym : τm [Γ1,Γ2]].

If m̄ : Γ3 → Γ1 and n̄ : Γ3 → Γ2, then m̄ = [M1 : σ1 [Γ3], . . . ,Mn : σn [Γ3]] and n̄ = [N1 : τ1 [Γ3], . . . , Nm :

τm [Γ3]]. We define

⟨m̄, n̄⟩ := [M1 : σ1 [Γ3], . . . ,Mn : σn [Γ3], N1 : τ1 [Γ3], . . . , Nm : τm [Γ3]].

Then

πΓ1,Γ2

1 ◦ ⟨m̄, n̄⟩ = m̄ and πΓ1,Γ2

2 ◦ ⟨m̄, n̄⟩ = n̄.

Moreover, one verifies ⟨m̄, n̄⟩ is the unique such morphism. Thus Γ1,Γ2 is a product of Γ1 and Γ2. The

category CSg also has a terminal object, which is the empty context [ ], since for each context Γ1, the empty

list of terms in context Γ1, which we denote [ [Γ1]], is a morphism from Γ1 to [ ]. It follows that CSg is a

category with finite products.
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Now given m̄ : Γ′ → Γ, we define substitution m̄∗ : (p,Γ) → (p,Γ′) on atomic formulas-in-context:

m̄∗(N1 =τ N2 : p [Γ]) := m̄∗(N1 : τ [Γ]) =τ m̄
∗(N2 : τ [Γ]) : p [Γ′] (2.15)

and for R ⊆ τ1, . . . , τm, Ni : τi [Γ] for i ∈ {1, . . . ,m}

m̄∗(R(N1, . . . , Nm) : p [Γ]) := R(m̄∗(N1 : τ1 [Γ]), . . . , m̄
∗(Nm : τm [Γ])) : p [Γ′] (2.16)

Then we extend m̄∗ : (Γ,p) → (Γ′,p) to all formulas-in-context by

m̄∗(3(ϕ1, . . . , ϕm) : p [Γ]) := 3(m̄∗(ϕ1 : p [Γ]), . . . , m̄∗(ϕm : p [Γ])) : p [Γ′] (2.17)

Now the rule for quantifiers is trickier. For z : σ where z /∈ Var(Γ′), we define:

m̄× idz:σ := [M1 : σ1 [Γ
′, z : σ], . . . ,Mn : σn [Γ′, z : σ], z : σ [Γ′, z : σ]], (2.18)

which is a product of m̄ and idz:σ . Then we define,

m̄∗(Ωxk:σ(ϕ) : p [Γ]) := Ωxj :σ(m̄× id∗xj :σ(ϕ : p [Γ, xk : σ])) : p [Γ′], (2.19)

where xj = mex(Var(Γ′)). By induction, m̄× id∗xj :σ(ϕ : p [Γ, xk : σ]) is a well-formed formula-in-context

Γ′, xj : σ, and so m̄∗(Ωxk:σ(ϕ) : p [Γ]) is a well-formed formula-in-context Γ′.

Proposition 2. Let m̄ : Γ′ → Γ and n̄ : Γ′′ → Γ′. Then, for all formulas-in-context ϕ : p [Γ],

n̄∗(m̄∗(ϕ [Γ])) = (m̄ ◦ n̄)∗(ϕ [Γ]).

Proof. The base cases are immediate from Proposition 1 and the only non-trivial inductive case is when ϕ [Γ]
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is of the form Ωx:σ(ϕ1) [Γ]. Let y = mex(Var(Γ′)) and z = mex(Var(Γ′′)). Then,

n̄∗(m̄∗(Ωx:σ(ϕ1) [Γ]))

= n̄∗(Ωy:σ(m̄× id∗y:σ(ϕ1 [Γ, x : σ])) [Γ′])

= Ωz:σ(n̄× id∗z:σ(m̄× id∗y:σ(ϕ1 [Γ, x : σ]))) [Γ′′]

= Ωz:σ((m̄× idy:σ ◦ n̄× idz:σ)
∗(ϕ1 [Γ, x : σ])) [Γ′′]

= Ωz:σ((m̄ ◦ n̄)× id∗z:σ(ϕ1 [Γ, x : σ])) [Γ′′]

= (m̄ ◦ n̄)∗(Ωx:σ(ϕ1) [Γ]).

Consider ϕ : p [Γ], where Γ = x1 : σ1, . . . , xn : σn. Then we want id∗Γ(ϕ [Γ]) = ϕ [Γ]: But due to

changes in bound variables id∗Γ(ϕ [Γ]) may not equal ϕ [Γ]. Moreover, our definition of substitution made

use of an arbitrary ordering of the variables, and we think such choices shouldn’t matter. More generally,

in mathematical practice we do not distinguish between names of bound variables, for example, between∫
f(x) dx and

∫
f(y) dy.

Thus we define an equivalence on formulas-in-context up to a suitable change in bound variables, called

α-equivalence recursively on the construction of formulas-in-context. Such an equivalence should identify

formulas in-context so that each class corresponds to a unique formula in the De Bruijn notation.

We denote α-equivalence by ∼α and say two terms-in-context are α-equivalent iff they are equal. We say

two formulas in context ϕ [Γ], ψ [Γ′], are α-equivalent iff Γ = Γ′ and

id∗Γ(ϕ [Γ]) = id∗Γ(ψ [Γ]).

Theorem 1. α-equivalence defines a congruence on FmSg
L and term substitution determines a well-defined

contravariant functor PSg : CSg → AlgLω
, where PSg(Γ) are the formulas in context Γ and PSg(m̄) = m̄∗.

Proof. Then it is straightforward to verify that ∼α is an equivalence which respects the operations on terms-

in-context, and the operations on formulas-in-context determined by the propositional connectives. Suppose

ϕ [Γ, x : σ] ∼α ψ [Γ, x : σ] and let w = mex(Var(Γ)). Then,

id∗Γ(Ωx:σ(ϕ) [Γ]) = Ωw:σ(id
∗
Γ,w:σ(ϕ [Γ, x : σ]))

= Ωw:σ((idΓ,x:σidΓ,w:σ)
∗(ϕ [Γ, x : σ])) = Ωw:σ(id

∗
Γ,w:σid

∗
Γ,x:σ(ϕ [Γ, x : σ]))

= Ωw:σ(id
∗
Γ,w:σid

∗
Γ,x:σ(ψ [Γ, x : σ])) = Ωw:σ(id

∗
Γ,w:σ(ψ [Γ, x : σ]))

= id∗ΓΩx:σ(ψ) [Γ].
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It follows that ∼α is a congruence. For each formula in context ϕ [Γ],

id∗Γid
∗
Γ(ϕ [Γ]) = id∗Γ(ϕ [Γ]),

so id∗Γ(ϕ [Γ]) ∼α ϕ [Γ]. For each morphism m̄ : Γ′ → Γ and formulas in context ϕ [Γ], ψ [Γ] such that

ϕ [Γ] ∼α ψ [Γ],

m̄∗(ϕ [Γ]) = (idΓ ◦ m̄)∗(ϕ [Γ]) = m̄∗id∗Γ(ϕ [Γ]) = m̄∗id∗Γ(ψ [Γ]) = m̄∗(ψ [Γ]).

It follows that term substitution respects α-equivalence. From these observations and Proposition 2, it follows

that PSg is a contravariant functor.

We call the structure (CSg, PSg) the formula prop-category (associated to Sg and L ), and consider it a

first-order analogue of the formula algebra4 of a propositional logic. An advantage of considering (CSg, PSg)

the “formula algebra” over FmSg
L is that it elegantly captures the structure of term-substitution. However, as

of now, we have not encoded the operations quantifying over bound variables into the categorical perspective.

For Γ and x : σ, we define the binary product Γ× x : σ by

Γ× x : σ :=


Γ, x : σ x /∈ Var(Γ),

Γ, y : σ x ∈ Var(Γ),

where y = mex(Var(Γ)). Then for Γ′ = y1 : τ1, . . . , ym : τm, we define

Γ× Γ′ :=


Γ Γ′ = [ ],

(Γ× y1 : τ1)× (y2 : τ2, . . . , ym : τm) otherwise.

Let Γ = x1 : σ1, . . . , xn : σn and Γ′ = y1 : τ1, . . . , y1 : τm be contexts and let

Γ× Γ′ = x1 : σ1, . . . , xn : σn, z1 : τ1, . . . , zm : τm.

Then we define ΩΓ,Γ′ : PSg(Γ× Γ′) → PSg(Γ) by

ΩΓ,Γ′(ϕ [Γ× Γ′]) := Ωz1:τ1 . . .Ωzm:τm(ϕ) [Γ].

4Sometimes called the term algebra, which causes confusion in the first-order setting.
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In particular, if Γ′ = [ ], then ΩΓ,Γ′ is the identity function. ΩΓ,Γ′ is well-defined, since for ϕ [Γ × Γ′] ∼α

ψ [Γ× Γ′],

id∗Γ ◦ ΩΓ,Γ′(ϕ [Γ× Γ′]) = id∗Γ(Ωz1:τ1 . . .Ωzm:τm(ϕ)[Γ])

= Ωz1:τ1 . . .Ωzm:τm(id∗Γ×Γ′(ϕ [Γ× Γ′])) [Γ]

∼α Ωz1:τ1 . . .Ωzm:τm(id∗Γ×Γ′(ψ [Γ× Γ′])) [Γ]

= id∗Γ ◦ ΩΓ,Γ′(ψ [Γ× Γ′]).

Proposition 3. For all Ω ∈ Lq and contexts Γ, Ω(·),Γ : UPSg( × Γ) ⇒ UPSg is a natural transformation,

where U : AlgLω
→ Set is the forgetful functor.

Proof. Let m̄ : Γ1 → Γ2 and let Γ3,Γ4 be contexts such that Γ1,Γ3 = Γ1 × Γ3 and Γ2,Γ4 = Γ2 × Γ4. Let

Γ3 = z1 : τ1, . . . , zm : τm and Γ4 = w1 : τ1, . . . wm : τm Then,

UPSg(Γ2,Γ4) UPSg(Γ2)

UPSg(Γ1,Γ3) UPSg(Γ1)

(m̄×idΓ3
)∗

ΩΓ2,Γ4

m̄∗

ΩΓ1,Γ3

commutes since

m̄∗ ◦ ΩΓ2,Γ4
(ϕ [Γ2,Γ4]) = m̄∗(Ωw1:τ1 . . .Ωwm:τm(ϕ) [Γ2])

= Ωz1:τ1 . . .Ωzm:τm((m̄× idΓ3)
∗(ϕ [Γ2,Γ4])) [Γ2]

= ΩΓ1,Γ3 ◦ (m̄× idΓ3)
∗(ϕ [Γ2,Γ4]).

2.3 Equivalence up to Change in Free-variable Name

In mathematical practice, we also do not distinguish between two expressions equal up to a change in free

variable names, for example between polynomials x2+1 and y2+1. Considering expressions also equivalent

up to changes in free variables has some structural benefits. In particular, the category CSg then has strictly

associative finite products.

We let Srt(Sg) be the collection of sorts in Sg, and for each context Γ = x1 : σ1, . . . , xn : σn, we let

Srt(Γ) = σ1, . . . , σn, be the associated list of sorts. Then we say Γ′ ∼ Γ iff Srt(Γ) = Srt(Γ′).

Let Q : η [Γ1], P : η [Γ2], be terms or formulas in context of the same type η. Then we say Q : η [Γ1] ∼
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P : η [Γ2] iff there exists a context Γ3, such that Γ3 ∼ Γ1 ∼ Γ2 and

id∗Γ3
(Q : η [Γ1]) = id∗Γ3

(P : η [Γ2]). (2.20)

Note that if Equation 2.20 holds, then for any context Γ such that Srt(Γ) = Srt(Γ3), we have

id∗Γ(Q : η [Γ1]) = (idΓ3
idΓ)

∗(Q : η [Γ1]) = id∗Γid
∗
Γ3
(Q : η [Γ])

id∗Γid
∗
Γ3
(P : η [Γ2]) = (idΓ3

idΓ)
∗(P : η [Γ2]) = id∗Γ(P : η [Γ2]).

(2.21)

Proposition 4. The relation ∼ defines a congruence on FmSg
L .

Proof. The equivalence on contexts induces an equivalence on sorts of FmSg
L , by η : [Γ1] ∼ ζ : [Γ2] iff

η = ζ and Γ1 ∼ Γ2. That ∼ is reflexive and symmetric is immediate. Transitivity follows from Equation

2.21. Consider f : σ1, . . . , σn → τ , and Mi : σi [Γi]/∼ ∈ σi : [Γ]/∼. Then

f(M1 : σ1 [Γ1]/∼, . . . ,Mn : σn [Γn]/∼) : τ [Γ]/∼

:= f(id∗Γ(M1 : σ1 [Γ1]), . . . , id
∗
Γ(Mn : σn [Γn])) : τ [Γ]/∼ .

Then f(·, . . . , ·) : τ [Γ]/∼ is well-defined, since if Γ ∼ Γ′ and for each i ∈ {1, . . . , n}, Mi : σi [Γi] ∼ M ′
i :

σi [Γ
′
i], then

id∗Γ f(id
∗
Γ′(M ′

1 : σ1 [Γ
′
1]), . . . , id

∗
Γ′(M ′

n : σn [Γ
′
1])) : τ [Γ′]

= f(id∗Γ(M
′
1 : σ1[Γ

′
1]), . . . , id

∗
Γ(M

′
n : σn [Γ

′
n])) : τ [Γ]

= f(id∗Γ(M1 : σ1[Γ1]), . . . , id
∗
Γ(Mn : σn [Γn])) : τ [Γ].

One similarly, shows that the operations defined by the formulation rules for the atomic formulas respect ∼.

That the operations defined by the propositional connectives respect ∼ is immediate and so we only consider

the operations defined by the quantifier symbols. For contexts Γ1,Γ2, and Γ1 × Γ2 ∼ Γ3,Γ4, we define

ΩΓ1,Γ2
(ϕ [Γ3,Γ4]/∼) := ΩΓ1,Γ2

(id∗Γ1×Γ2
(ϕ [Γ3,Γ4]))/∼ .
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Then if for i ∈ {1, 2, 3, 4}, Γi ∼ Γ′
i and ϕ [Γ3,Γ4] ∼ ψ [Γ′

3,Γ
′
4],

id∗Γ1
(ΩΓ′

1,Γ
′
2
◦ id∗Γ′

1×Γ′
2
(ψ [Γ′

3,Γ
′
4]))

= ΩΓ1,Γ′
2
◦ id∗Γ1×Γ′

2
◦ id∗Γ′

1×Γ′
2
(ψ [Γ′

3,Γ
′
4])

= ΩΓ1,Γ2 ◦ id
∗
Γ1×Γ2

(ψ [Γ′
3,Γ

′
4])

= ΩΓ1,Γ2
◦ id∗Γ1×Γ2

(ϕ [Γ3,Γ4])

= id∗Γ1
(ΩΓ1,Γ2

◦ id∗Γ1×Γ2
(ψ [Γ3,Γ4])),

and so

ΩΓ1,Γ2(ϕ [Γ3,Γ4]/∼) = ΩΓ′
1,Γ

′
2
(ψ [Γ′

3,Γ
′
4]/∼).

Corollary 1. We may now consider (CSg, PSg) up to ∼. As before, CSg is a category with (now strictly

associative) finite products, PSg : C → AlgLω
is a contravariant functor and each Ω(·),Γ : UPSg( × Γ) →

UPSg is a natural transformation. In addition, for contexts Γ1,Γ2,Γ3,

ΩΓ1,[] = idΓ1
and ΩΓ1,Γ2×Γ3

= ΩΓ1,Γ2
◦ ΩΓ1×Γ2,Γ3

.

2.4 Formula Substitution.

We now define a very general form of formula substitution for which it will be straightforward to see that

many first-order logics specified by derivation systems are structural with respect to the substitution action.

This is because, one only needs to verify that the substitution action preserves the derivation rules and the

substitution action commutes with the quantifier and propositional connective operations.

In what follows we consider all expressions equal up to changes in free and bound variable names. Let ζ

be a map which: (1) for some n ∈ N, sends each sort σ to a context Γσ , such that n = |Var(Γσ)| (2) sends

each function symbol f : σ1, . . . , σn → τ , to a morphism

[Mf
1 : τ1 [Γσ1

, . . . ,Γσn
], . . . ,Mf

nτ
: τnτ

[Γσ1
, . . . ,Γσn

]] =: m̄f ,

where [x1 : τ1, . . . , xnτ
: τnτ

] = ζ(τ) and (3) sends each relation symbol R ⊆ σ1, . . . , σn to a formula-in-

context

ϕR [Γσ1
, . . . ,Γσn

].
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Then we extend ζ to all expressions-in-context as follows:

ζ(x : σ [Γ]) := [x1 : σ1 [ζ(Γ)], . . . , , xnσ : σnσ [ζ(Γ)]],

where ζ(σ) = [x1 : σ1, . . . , xnσ : σnσ ]. For f : σ1, . . . σn → τ ,

ζ(f(M1, . . . ,Mn) : τ [Γ]) := m̄f ◦ ⟨ζ(M1 : σ1 [Γ]), . . . , ζ(Mn : σn [Γ])⟩.

For each equation M1 =M2 : τ [Γ],

ζ(M1 =M2 : τ [Γ]) := {M1
i =M2

i : τi [ζ(Γ)]}nτ
i=1,

where

ζ(M i : τ [Γ]) = [M i
1 : τi [ζ(Γ)], . . . ,M

i
nτ

: τnτ [ζ(Γ)]].

For each equality predicate,

ζ(M1 =τ M
2 [Γ]) :=

nτ∧
i=1

M1
i =τi M

2
i [ζ(Γ)],

and for each relational atom,

ζ(R(M1, . . . ,Mn) [Γ]) := ⟨ζ(M1 : σ1 [Γ]), . . . , ζ(Mn : σn [Γ])⟩∗(ϕR [ζ(Γ)]).

For each formula-in-context of the form 3(ϕ1, . . . , ϕn) [Γ],

ζ(3(ϕ1, . . . , ϕn) [Γ]) := 3(ζ(ϕ1 [Γ]), . . . , ζ(ϕn [Γ])) [ζ(Γ)]

For formulas of the form Ωx:σ(ϕ) [Γ], where Ω ∈ {∃,∀},

ζ(Ωx:σ(ϕ) [Γ]) := Ωζ(Γ),ζ(σ)(ζ(ϕ [Γ, x : σ])).

Later we will define morphisms between prop-categories and see that the endomorphisms on (CSg, PSg)

are in bijective correspondence with these formula substitution maps. As a consequence, (it could also be

shown directly) the formula substitution maps define an action on the formula algebra. Moreover, to see

a first-order logic such as intuitionistic predicate logic with a complete derivation system is structural with

19



M =M : σ [Γ]
M =M ′ : σ [Γ]

M ′ =M : σ [Γ]

M =M ′ : σ [Γ] M ′ =M ′′ : σ [Γ]

M =M ′′ : σ [Γ]

M =M ′ : σ [∆] N = N ′ : τ [Γ, x : σ,Γ′]
VS(∆) ⊆ VS(Γ,Γ′).

N [M/x] = N ′[M ′/x] : τ [Γ,Γ′]

Figure 2.1: Equational Logic.

respect to this notion of formula substitution, one need only verify that the substitution maps preserve the

derivation rules. Thus first-order logics can be considered in the abstract algebraic logic framework where a

logic is a closure operator on some abstract set of formulas, which is structural with respect to an action by

a monoid on the formulas. This line of work will not be pursued here, since as we’ve seen, prop-categories

elegantly capture the syntactic structure of first-order logics and locally (per fiber) restrict to the abstract

algebraic perspective.

2.5 First-order Logics

In the following chapters, we consider formulas equal up α-equivalence, i.e. up to renaming of bound vari-

ables. As described in the prior sections, this allows us to define the action of simultaneous term substitution

on (α-equivalence classes of) formulas that avoids variable capture which we denote by ϕ[M1/x1, . . . ,Mn/xn].

The well-formed sequents-in-context are of the form ϕ1, . . . , ϕn ⊢ ϕn+1 [Γ], where n ∈ ω and for each

i ≤ n + 1, ϕi : prop [Γ]. We call the sequents-in-context and equations-in-context assertions and let ASg

denote the collection of all Sg-assertions. A theory T is an ordered pair T = (Sg(T ),A(T )), where Sg(T )

is a signature and A(T ) is a collection of Sg(T )-assertions. For each signature Sg, we let ThSg denote the

complete lattice of Sg-theories ordered by T1 ≤ T2 if and only if A(T1) ⊆ A(T2).

Now that we have defined the well-formed expressions, a (first-order) logic5 we define an action by

substitution which can be used to define a (first-order) logic as structural closure operator. is a closure

operator on the lattice of all Sg-theories for each signature Sg. In the sequel, all the logics we consider are

built over the usual (typed) equational derivation system. The rules of this system are shown in Figure 2.1.

Given T, T ′ ∈ ThSg, we let TL denote the L-closure of T and T ⊢L T ′, denote the assertion that T ′ is

derivable from T , i.e. that T ′ ≤ TL.

5We keep the definition of a logic general here, though we could insist that the closure operator be structural with respect to some
collection of formula substitution maps from the prior section.
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Chapter 3

Semantics

3.1 Prop-Categorical Semantics

In this section, we define the class of prop-categories that provide semantics for first-order logics and provide

examples. Structures in prop-categories and the notion of a structure satisfying a theory are then defined and

it is shown how a class of prop-categories defines a first-order logic.

A prop-category (C, P ), is a category C with designated finite products, and a contravariant functor

P : C → Pos, where Pos is the category of all partially ordered sets and monotone maps. The objects of C

interpret the sorts, the morphisms interpret terms-in-context and the posets P (c) for each c ∈ Ob(C) interpret

the formulas-in-context. We define Ob(FA) to be the collection of all prop-categories which additionally

satisfy:

1. For each c ∈ Ob(C), P (c) is an Lω-algebra1 and for all f ∈ Mor(C), P (f) is an Lω-algebra homo-

morphism.

2. For each c ∈ Ob(C), there is a designated element Eqc ∈ P (c× c).

3. For each c ∈ Ob(C), and each Ω ∈ Lq , there is a natural transformation Ω(·),c : UP ( × c) ⇒ UP ,

where U : Pos → Set is the forgetful functor.

4. For each c ∈ Ob(C), P (c) has a designated binary operation ⊗P (c), and nullary operation ec ∈ P (c)

so that (P (c),⊗P (c), ec) is a monoid.

5. For all Ω ∈ Lq , and all b, c, d ∈ Ob(C),

Ωb,1 ◦ P (πb,1
1 ) = idP (b) and Ωb,c×d ◦ P (ab,c,d) = Ωb,c ◦ Ωb×c,d, (3.1)

where ab,c,d : b× (c× d) → (b× c)× d is the change-in-product isomorphism.

6. Eq1 = e1×1, and for all c1, c2 ∈ Ob(C), c = c1 × c2,

Eqc = P (⟨πc1,c2
1 πc,c

1 , πc1,c2
1 πc,c

2 ⟩)Eqc1 ⊗ P (⟨πc1,c2
2 πc,c

1 , πc1,c2
2 πc,c

2 ⟩)Eqc2 . (3.2)
1By Lω-algebra we mean any algebra in the signature Lω . We do not assume these algebras satisfy any particular collection of

equations, nor do we assume their operations are monotone.
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Conditions 1-3 are necessary for structures in (C, P ) to interpret equations and formulas in context. Con-

dition 4 and the requirement that the codomain of P is Pos are needed to interpret sequents2. Conditions

5 and 6 are properties satisfied by the classifying prop-categories associated to certain theories and are not

strictly necessary to define the prop-categorical semantics. However, they must be assumed to interpret struc-

tures as morphisms out of classifying prop-categories, a key ingredient in the proofs of our main results.

Remark 1. There are adjointness conditions for the quantifiers {∀,∃} (See Example 1) originally due to

Lawvere (2006) (originally 1969) which asserts that for all objects a, b ∈ Ob(C), ∀a,b,∃a,b are the left

and right adjoints of P (πa,b
1 ) respectively. One can show that Condition 5 follows from these adjointness

conditions. In Lawvere (1970), an adjoint interpretation of the equality predicate is also provided. For an

account in the context of intuitionistic logic, see (Jacobs, 1999, p. 190). We use Conditions 5 and 6 instead

of the corresponding adjointness conditions, because they are simple, comparatively weak and in a form

that will be directly used to prove essential properties of the fibered semantics3. Moreover, in the spirit

of AAL, we seek to provide general semantics for as broad of a variety of logics as possible and to use the

property of having this semantics – here, a semantics with classifying prop-categories – as a means to classify

nonclassical first-order logics. However, for many important examples Lq = {∀,∃} and the quantifiers and

equality do satisfy these adjointness conditions. Thus, one may safely replace Conditions 5 and 6 with these

adjointness conditions provided corresponding “adjoint” derivation rules are added to the minimal logic L m

in Section 3.2 to preserve the completeness results therein.

Example 1. Let L be an algebra of signature Lω which is also a complete lattice and let Lq = {∀,∃}. Then

the contravariant functor Set( , L) : Set → Pos determines a prop-category in Ob(FA). The operations on

L extend point-wise to logical operations on Set(A,L) for all sets A. For each set X , let eX = ⊤, ⊗ := ∧

and

EqX(x1, x2) =


⊤ x1 = x2,

⊥ x1 ̸= x2.

For sets X,Y , the quantifiers ∃X,Y , ∀X,Y are defined as the left and right adjoints of Set(πX,Y
1 , L) respec-

tively. That is,

∃X,Y (R)(x) =
∨
y∈Y

R(x, y), and ∀X,Y (R)(x) =
∧
y∈Y

R(x, y).

In particular, Set( , 2) is the prop-category whose semantics corresponds to the usual Tarskian semantics for

2In AAL, a (logical) matrix ⟨A,F ⟩ consists of an algebra A in the propositional language and a subset F ⊆ A of “truth values”(Font,
2016, p. 183). One can develop a “fibered” matrix semantics by dropping Condition 4 on prop-categories and defining a fibered matrix
as ⟨(C, P ),F ⟩ where (C, P ) is a prop-category and F ⊆ ⊔c∈Ob(C)P (c).

3Proving 6 from the adjointness conditions requires some work and is proved in (Jacobs, 1999, pg. 198) for a slightly different setup.
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classical first-order logic4.

Another significant example in this class is Set( , [0, 1]), where for each set A, the poset Set(A, [0, 1])

is known as the set of all fuzzy sets on A. There is a vast literature on fuzzy set theory (for an introduction

see Hájek (1998)) which generalizes set theory by considering partial or probabilistic membership to sets.

An important class of logical operations on fuzzy sets are T -norms (Klement et al., 2000, pg. 4) and

dually S-norms. A T -norm is an operation ⊙ : [0, 1]2 → [0, 1] which makes ([0, 1],⊙, 1) a partially ordered

monoid. Canonical examples of T -norms include the minimum, product and the Łukasiewicz T -norm which

is defined for x, y ∈ [0, 1] by x⊙ y := max{0, x+ y − 1}. In Mesiar and Thiele (2000), to each T -norm ⊙,

a quantifier Ω⊙, is defined on sets A,B and R : A×B → [0, 1], by

Ω⊙
A,B(R) := inf

U∈fin(B)
{
⊙
u∈U

R( , u)},

where fin(B) is the set of all finite subsets of B. In particular, note that if ⊙(a, b) = min{a, b} then

Ω⊙ = ∀. One may verify that for an arbitrary T -norm ⊙, Ω⊙ satisfies Conditions 3 and 5. Thus Set( , [0, 1])

may be extended with additional quantifiers Ω⊙ for each T -norm ⊙. Moreover, Ω⊙ may also be extended

with S-quantifiers corresponding to S-norms as defined in Mesiar and Thiele (2000). If ⊙ is the usual

product, then for R : 1 × 2 → [0, 1], R(0, 0) = R(0, 1) = 1/2, ∀1,B(R)(0) = ∃1,B(R)(0) = 1/2, whereas

Ω⊙
1,B(R)(0) = 1/4. Moreover, observe that in this example ⊙ may be used for ⊗ instead of min.

The following is a toy example which suggests integral operators are a fruitful place to look for nonclas-

sical quantifiers and metrics for different notions of equality:

Example 2. Let K be the collection of compact subsets of Rn for some n < ω, each equipped with the

Euclidean metric along with 1 = {∗}, where 1, has the discrete metric. Let C be the category whose objects

are finite products of sets in K equipped with the associated product metric and continuous functions between

them. For A ∈ Ob(C), let P (A) be the collection of continuous real-valued functions from A to R, which

we denote C(A,R), and for f : A → B, let P (f) : C(B,R) → C(A,R) be precomposition by f . Then,

post-composition by any continuous map h : Rn → R can interpret each n-ary connective 3 ∈ Ln.

For A ∈ Ob(C), we let eA be the constant zero function and EqA : A × A → R be defined by

EqA(a1, a2) := −|a1−a2|, where | · | is the Manhattan norm. For f, g ∈ C(A,R), we define f ⊗g := f +g.

Then (A,⊗P (A), eA) is a monoid. Moreover, Condition 6 is satisfied.

For all objects A,B we have a map
∫
A,B

: P (A × B) → P (A), which sends each continuous function

p : A × B → R to
∫
B
p(x, y) dy. One may verify that

∫
(·),C is natural for each object C and since 1 was

4Except in the semantics we define, we will allow sorts to be interpreted as the emptyset.
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given the discrete metric,
∫
A,1

◦P (πA,1
1 ) = idP (A). from Fubini’s Theorem,

∫
(·),(·) also satisfies the second

part of Condition 5. Thus (C, P ) ∈ Ob(FA). Note, in general,
∫
A,B

is not left or right adjoint to P (πA,B
1 ).

To see this, consider A = B = [0, 1], r(x, y) : A × B → R, r(x, y) = y. Then
∫
A,B

(r) = 1/2 whereas

∃A,B(r) = 1 and ∀A,B(r) = 0.

Let Sg be a signature and (C, P ) ∈ Ob(FA). An Sg-structure S in (C, P ) is an assignment of an

object JσK to each sort symbol σ, a morphism JfK : Jσ1K × · · · × JσnK → JτK to each function symbol

f : σ1, . . . , σn → τ and an element JRK ∈ P (Jσ1K × · · · × JσnK) to each relation symbol R ⊆ σ1, . . . , σn in

Sg. (To disambiguate between structures, we sometimes write SJ·K instead of J·K.) For a context Γ = x1 :

σ1, . . . , xn : σn, we define JΓK := Jσ1K × · · · × JσnK, in particular if n = 0, JΓK := 1. Each term-in-context

M : τ [Γ] may be given a unique interpretation JM : τ [Γ]K defined recursively as follows:

Jxi : σi [x1 : σ1, . . . , xn : σn]K := πi : Jσ1K × · · · × JσnK → JσiK

Jc : τ [Γ]K := JcK◦!JΓK

Jf(M1, . . . ,Mn) : τ [Γ]K := JfK ◦ ⟨JM1[Γ]K, . . . , JMn[Γ]K⟩,

where πi is the i-th projection map and !JΓK denotes the unique morphism from JΓK to 1. Note we often

abbreviate JM : τ [Γ]K as JM [Γ]K as the type τ can be inferred from the term M and context Γ.

S interprets formulas-in-context recursively as follows:

JR(M1, . . . ,Mn) [Γ]K :=P (⟨JM1[Γ]K, . . . , JMn[Γ]K⟩)(JRK),

JM1 =τ M2 [Γ]K :=P (⟨JM1[Γ]K, JM2[Γ]K⟩)(JEqJτKK),

J3(ϕ1, . . . , ϕn) [Γ]K :=3P (JΓK)(Jϕ1 [Γ]K, . . . , Jϕn [Γ]K),

JΩx:σ(ϕ) [Γ]K :=ΩJΓK,JσK ◦ P (aSΓ,x:σ)(Jϕ [Γ, x : σ]K),

where aSΓ,x:σ : JΓK × Jx : σK → JΓ, x : σK is the change-in-product isomorphism5.

Then, S satisfies an equation-in-context M1 =M2 : τ [Γ], if

JM1 : τ [Γ]K = JM2 : τ [Γ]K

and S satisfies a sequent-in-context ϕ1, . . . , ϕn ⊢ ϕn+1 [Γ], if for n ≥ 0,

Jϕ1[Γ]K ⊗ . . .⊗ Jϕn[Γ]K ≤ Jϕn+1[Γ]K.
5This handles the case where Γ = ∅ and JΓ, x : σK = Jx : σK ̸= JΓK × Jx : σK = 1× Jx : σK.
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In particular, for n = 0, if eJΓK ≤ Jϕn+1[Γ]K. We define the theory of S, denoted Th(S), to be the Sg-theory

where A(Th(S)) is the collection of all assertions satisfied by S. We say S satisfies T or S is a T -model if

T ≤ Th(S).

Example 3. In Mostowski (1957), Mostowski introduced a general class of quantifiers and studied classical

first-order logic extended with these quantifiers. Instead of Set( , 2), we consider the isomorphic powerset

functor P : Set → Pos, which sends a setA to its powerset P(A) and a function f : A→ B to its preimage

operator. A Mostowski quantifier6 Ω, is specified for each setA, by a subset Ω(A) ⊆ P(A). Then forA,B

sets, and R ⊆ A×B, we define

ΩA,B(R) := {a ∈ A : {b ∈ B : (a, b) ∈ R} ∈ Ω(B)}.

Note that quantifiers ∀ and ∃ belong to the class, defined for a setA, by ∀(A) := {A} and ∃(A) := P(A)\{∅}

respectively. A nonstandard Mostowski quantifier of early interest Kaufmann (1985) is the “there exists

uncountably many” quantifier Q1, where for each set A, Q1(A) is the collection of all uncountable subsets

of A.

One may verify that (Set,P) augmented with a Mostowski quantifier Ω satisfies Condition (3) and

so structures in (Set,P) can interpret the language of classical logic augmented with Ω. However, in

general, many such natural quantifiers, fail to satisfy Condition (5). The first part of Equation 3.1 requires

that Q1(1) = {1}, and the second part of Equation 3.1 requires for all sets A,B and R ⊆ A×B, that

R ∈ Q(A×B) ⇐⇒ {a ∈ A : R(a, y) ∈ Q(B)} ∈ Q(A). (3.3)

One sees that this condition also fails for Q1, by considering A = B = R and R = R× {0}.

One can do away with Condition (5) by expanding the syntax to allow quantifiers to bind arbitrary contexts

as follows
ϕ : prop [Γ,Γ′] .
ΩΓ′(ϕ) : prop [Γ]

Then a structure S interprets ΩΓ′(ϕ) [Γ] as

JΩΓ′(ϕ) [Γ]K := ΩJΓK,JΓ′K ◦ P (aSΓ,Γ′)(Jϕ [Γ,Γ′]K).

This extension of the syntax is conservative for existential and universal quantifiers, but not for the counting

6In Mostowski’s original formulation is more restrictive and requires quantifiers to be cardinality invariant. Our presentation here is
essentially that of Westerståhl (2019).
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quantifiers. For example, if Ωn is interpreted as “there exists exactly n.” Then for each ϕ : prop [x : σ, y : τ ],

Ω2
x:σ,y:τ ϕ(x, y) [ ] ≡ Ω1

y:τΩ
2
x:σ ϕ(x, y) ∨ Ω2

y:τΩ
1
x:σ ϕ(x, y) [ ].

To recover the results in this paper, one must add the following isomorphism invariant condition on the

quantifiers: For each isomorphism f : c→ d,

Ω(·),c · P ( × f) = Ω(·),d,

which is a condition Mostowski originally imposed so that his quantifiers are bijective invariant.

We also note that similar considerations hold for the equality predicate and Condition 6.

A subcollection X ⊆ Ob(FA), defines a logic ⊨X , where given Sg-theories T and T ′, T ⊨X T ′ if every

T -model S ∈ (C, P ) ∈ X is also a T ′-model. Given a logic L, we let Ob(FAL) be the collection of all

prop-categories in Ob(FA) such that L is sound with respect to ⊨Ob(FAL), that is, whenever T ⊢L T ′, then

T ⊨Ob(FAL) T
′.

3.2 Classifying Prop-Categories and General Completeness Theorems

In the subsequent sections, we suppose L has designated operation symbols e ∈ L0 and ⊗ ∈ L2. Given

a sufficiently rich theory T , we will construct the classifying prop-category (CT , PT ) ∈ Ob(FA), which is

the first-order analogue of the Lindenbaum-Tarski (LT) algebras of propositional logic. As with LT-algebras,

each classifying prop-category (CT , PT ) contains a generic T -model G ∈ (CT , PT ), i.e. Th(G) = T , which

interprets each term and formula in context as its associated equivalence class obtained by “quotienting out”

by the theory T .

We call a logic L over L adequate if for each L-theory T , (CT , PT ) can be constructed and (CT , PT ) ∈

Ob(FA). Define Lm to be the first-order logic whose rules are listed in Figure 3.1.7

Theorem 2. If L ⊇ Lm, then L is adequate.

To construct CT , from an L-theory T , we consider contexts, formulas and terms in context equal up to

renaming of their free variables. Morphisms are sequences of equivalence classes of terms in a common

context:

γ : Γ′ → Γ = [N1 : σ1 [Γ
′]/∼, . . . , Nn : σn [Γ′]/∼],

7In AAL, propositional logics which satisfy 3-Cong for each connective are called selfextensional, which is the weakest class of
logics in the Fregean hierarchy. Wójcicki (1982) (Font, 2016, pg. 419) Kleene’s strong 3-valued logic K3 (Kleene, 1952, p. 332) is a
simple example of a non selfextensional propositional logic. However, A first-order version of K3 can still be modeled as the fragment
of an adequate logic by restricting to sequents with empty antecedent.
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Ax
ϕ ⊢ ϕ [Γ]

ϕ ⊢ ψ [Γ] ψ ⊢ θ [Γ]
Cut

ϕ ⊢ θ [Γ]

Φ ⊢ ψ [Γ]
Cwk

Φ ⊢ ψ [Γ, x : σ]

M =M ′ : σ [∆] Φ ⊢ ψ [Γ, x : σ,Γ′]
Sub

Φ[M/x] ⊢ ψ[M ′/x] [Γ,Γ′]

ϕ ⊣⊢ ψ [Γ, x : σ]
Ω-Con

Ωx:σ(ϕ) ⊢ Ωx:σ(ψ) [Γ]

ϕ1 ⊣⊢ ϕ′1 [Γ] . . . ϕn ⊣⊢ ϕ′n [Γ]
3-Cong

3(ϕ1, . . . , ϕn) ⊢ 3(ϕ′1, . . . , ϕ
′
n) [Γ]

Φ, α, β,Ψ ⊢ θ [Γ]
⊗-Ref

Φ, α⊗ β,Ψ ⊢ θ [Γ]
Φ, e,Ψ ⊢ ϕ [Γ]

e-Ref
Φ,Ψ ⊢ ϕ [Γ]

Figure 3.1: Rules for Lm. (Where VS(∆) ⊆ VS(Γ,Γ′) and ∀Ω ∈ Lq , ∀n ∈ ω and ∀3 ∈ Ln).

where, Γ = x1 : σ1, . . . , xn : σn and

N : τ [Γ] ∼M : τ [Γ] ⇐⇒ N =M : τ [Γ] ∈ T.

Composition of morphisms is by component-wise substitution and one may show using the rules of equational

logic that CT is a category with strictly associative finite products (Pitts, 2000, p. 30).

For each context Γ, we say ϕ [Γ] ∼ ψ [Γ] if and only if ϕ ⊢ ψ [Γ], ψ ⊢ ϕ [Γ] ∈ T . From Ax and Cut, ∼

defines and equivalence relation on formulas-in-context Γ and we let PT (Γ) be the partial order of all such

classes where ϕ [Γ]/∼ ≤ ψ [Γ]/∼ if and only if ϕ ⊢ ψ [Γ] ∈ T . For each morphism γ : Γ′ → Γ, we define

PT (γ) : PT (Γ) → PT (Γ
′) by simultaneous substitution:

PT ([N1 : σ1 [Γ
′]/∼, . . . , Nn : σn [Γ

′]/∼])(ϕ [Γ]/∼) := ϕ[N1/x1, . . . , Nn/xn] [Γ
′]/∼ .

For each n ∈ ω and 3 ∈ Ln, we define:

3Γ(ϕ1[Γ]/∼, . . . , ϕn[Γ]/∼) := 3(ϕ1, . . . , ϕn)[Γ]/∼ .

For each context Γ, define eΓ := e [Γ]/ ∼. For each quantifier symbol Ω ∈ Lq , and ϕ [Γ,Γ′], where

Γ′ = y1 : τ1, . . . , ym : τm, we interpret ΩΓ,Γ′ as

ΩΓ,Γ′(ϕ [Γ,Γ′]/∼) := Ωy1:τ1 . . .Ωym:τm(ϕ) [Γ]/∼ .
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For each Γ = x1 : σ1, . . . , xn : σn, let Γ′ = x′1 : σ1, . . . , x
′
n, σn. We define

EqΓ := x1 =σ1 x
′
1 ⊗ . . .⊗ xn =σn x

′
n [Γ,Γ′]/∼ .

In particular, when Γ = [ ], Eq[ ] = e[ ]/ ∼= e[ ]×[ ]. Using the rules in Figure 3.1 one shows that these

operations are well-defined and (CT , PT ) ∈ Ob(FA).

The generic T -model G ∈ (CT , PT ), is defined on sorts by GJσK := x : σ, on function symbols

f : σ1, . . . , σn → τ , by GJfK := [f(x̄) : τ [Γ]/∼] and on relation symbols R ⊆ σ1, . . . , σn by GJRK :=

R(x̄) [Γ]/∼. By induction one shows that GJM : τ [Γ]K = [M : τ [Γ]/∼] and GJϕ [Γ]K = ϕ [Γ]/∼. From

⊗-Ref and e-Ref it follows that Th(G) = T .

Theorem 3. The logic ⊨K provides a complete semantics for ⊢Lm , where K is any subclass of Ob(FA)

containing {(CT , PT ) : T is an Lm-theory}.

Proof. To show that ⊢Lm ⊆ ⊨Ob(FA), one verifies that each S ∈ (C, P ) ∈ Ob(FA) satisfies every interpre-

tation of the rules defining Lm. Now suppose T ⊨K T ′. Then the generic TLm -model satisfies T ′, and so

T ⊢Lm T ′.

Corollary 2. If L is adequate, then ⊢L ⊇ ⊢Lm .

Since otherwise, the generic model of some L-theory will fail to satisfy an instance of a rule of Lm. As

a consequence, we let (CSg, PSg) := (CSgLm , PSgLm ). In (CSg, PSg), morphisms γ : Γ → Γ′ are just lists

of terms and the elements of PSg(Γ) are just formulas, both up to α-equivalence and change in the name of

free variables, which are equivalences considered in mathematical practice. Thus, (CSg, PSg) is a suitable

“fibered” analogue of the formula algebra from AAL.

Suppose L is adequate and let K = {(CT , PT ) : T is an L-theory}. Then using generic models, one

proves ⊨K ⊆ ⊢L. All the remains to prove completeness is to show soundness, i.e. ⊢L ⊆ ⊨K. If L is defined

by a sequent calculus, we only need to show each structure in a classifying prop-category satisfies the defining

rules of L. We have the following general result:

Theorem 4. Suppose Lq = {∀,∃} and L is an extension of Lm possibly by =-Adj, ∃-Adj, ∀-Adj shown

in Figure 3.2 and any number of structural and propositional connective rules8. Then ⊢L = ⊨K, where

K = {(CT , PT ) : T is an L-theory}.

Proof. Showing that ⊨K satisfies the structural and propositional connective rules of L is straightforward.

8Propositional connective rules, are sequent rules whose meta-formulas do not include equality or any quantifiers such as modus
ponens. Structural rules additionally do not include propositional connectives such as Cut.
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Suppose L satisfies ∃-Adj and let

ϕ1, . . . , ϕn, ψ ⊢ θ [Γ, x : σ],

be an interpretation of the top line of ∃-Adj. Let S ∈ (CT , PT ) ∈ K and for each i ∈ {1, . . . , n}, let

SJϕi [Γ]K = ϕSi [ΓS ]/∼, SJθ [Γ]K = θS [ΓS ]∼ and SJψ [Γ, x : σ]K = ψS [ΓS ,Γσ]/∼, where SJσK = Γσ =

x1 : σ1, . . . , xn : σn. Then,

n⊗
i=1

SJϕi[Γ, x : σ]K ⊗ SJψ[Γ, x : σ]K ≤ SJθ[Γ, x : σ]K

⇐⇒
n⊗

i=1

GJϕSi [ΓS ,Γσ]K ⊗GJψS [ΓS ,Γσ]K ≤ GJθS [ΓS ,Γσ]K

⇐⇒ T ⊢L ϕ
S
1 , . . . , ϕ

S
n , ψ

S ⊢ θS [ΓS ,Γσ]

⇐⇒ T ⊢L ϕ
S
1 , . . . , ϕ

S
n ,∃x1:σ1

. . . ∃xn:σn
(ψS) ⊢ θS [ΓS ]

⇐⇒
n⊗

i=1

SJϕi[Γ]K ⊗ SJ∃x:σ(ψ)[Γ]K ⊢ SJθ[Γ]K.

It follows that ⊨K satisfies ∃-Adj. The proof that ⊨K satisfies ∀-Adj is similar.

Now suppose L satisfies =-Adj and let S be a structure in (CT , PT ). Consider an interpretation of =-Adj:

ϕ1, . . . , ϕn ⊢ ψ[x/x′] [Γ, x : σ]
.

ϕ1, . . . , ϕn, x =σ x
′ ⊢ ψ [Γ, x : σ, x′ : σ]

Let SJϕi[Γ, x : σ]K = ϕSi [ΓS ,Γσ]/ ∼, where ΓS ∈ SJΓK, Γσ ∈ SJσK and SJψ[Γ, x : σ, x′, σ′]K =

ψS [ΓS ,Γσ,Γ
′
σ]/∼, where Γ′

σ ∈ SJσK. From Sub and Cwk, one may derive the rule

Φ ⊢ ψ [Γ, x : σ, y : τ,Γ′]

Φ ⊢ ψ [Γ, y : τ, x : σ,Γ′]
(3.4)

Let Γσ = x1 : σ1, . . . , xn : σn and Γ′
σ = x′1 : σ1, . . . , x

′
n : σn. Let x̄ = x1, . . . , xn and x̄′ = x′1, . . . , x

′
n be

29



ϕ1, . . . , ϕn ⊢ ψ[x/x′] [Γ, x : σ]
=-Adj

ϕ1, . . . , ϕn, x =σ x
′ ⊢ ψ [Γ, x : σ, x′ : σ]

Φ ⊢ ψ [Γ, x : σ]
∀-Adj

Φ,⊢ ∀x,σ(ψ) [Γ]
Φ, ψ ⊢ θ [Γ, x : σ]

∃-Adj
Φ,∃x:σ(ψ) ⊢ θ [Γ]

Figure 3.2: Adjoint rules for ∀, ∃ and =.

the lists of variables in Γσ and Γ′
σ respectively. Then SJψ[x/x′][Γ, x : σ]K = ψS [x̄/x̄′][ΓS ,Γσ]/∼ and

SJϕ1[Γ, x : σ]K ⊗ . . .⊗ SJϕn[Γ, x : σ]K ≤ SJψ[x/x′][Γ, x : σ]K

⇐⇒ GJϕS1 [ΓS ,Γσ]K ⊗ . . .⊗GJϕSn [ΓS ,Γσ]K ≤ GJψS [x̄/x̄′][ΓS ,Γσ]K

⇐⇒ T ⊢L ϕ
S
1 , . . . , ϕ

S
n ⊢ ψS [x̄/x̄′] [ΓS ,Γσ]

⇐⇒ T ⊢L ϕ
S
1 , . . . , ϕ

S
n , x1 =σ1 x

′
1, . . . , xn =σn x

′
n ⊢ ψS [ΓS ,Γσ,Γ

′
σ] ( =-Adj and 3.4)

⇐⇒ T ⊢L ϕ
S
1 , . . . , ϕ

S
n ,

n⊗
i=1

xi =σi
x′i ⊢ ψS [ΓS ,Γσ,Γ

′
σ] (⊗-Ref or e-Ref)

⇐⇒ SJϕ1[Γ, x : σ, x′ : σ]K ⊗ . . .⊗ SJϕn[Γ, x : σ, x′ : σ]K ⊗ SJx =σ x
′[Γ, x : σ, x′ : σ]K

≤ SJψ[Γ, x : σ, x′ : σ]K.

Therefore, S satisfies all interpretations of =-Adj.

3.3 The 2-Categorical View of the Prop-Categorical Semantics

We may extend Ob(FA) to a 2-category by defining morphisms F : (C, P ) → (D, Q) by the following data:

(1) a product preserving functor F o : C → D and (2) a natural transformation F p : P ⇒ Q ◦ F o,

C Pos

D

P

F o Q

Fp

such that the following hold:

1. For each c ∈ Ob(C), F p
c : P (c) → Q ◦ F o(c) is an Lω-algebra homomorphism.

2. For all Ω ∈ Lq and all b, c ∈ Ob(C),

F p
b ◦ Ωb,c = ΩF ob,F oc ◦Q(a−1

F,b,c) ◦ F
p
b×c.
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3. For all c ∈ Ob(C),

F p
c×c(Eqc) = Q(aF,c,c)(EqF oc),

where aF,b,c : F
o(b× c) → F ob× F oc is the change-in-product isomorphism. Given K : (D, Q) → (E , R),

we defineK◦F by (K◦F )o := Ko◦F o and (K◦F )p := Kp
F o ·F p. For parallel morphisms F,H : (C, P ) →

(D, Q), we define a 2-cell η : F ⇒ H to be a natural transformation η : F o ⇒ Ho such that F p = Qη ·Hp.

C Pos P

D QF o QHo

P

Ho

F o

η Fp
Hp

Q

Hp

Fp

Qη

Compositions of 2-cells is just as it is in Cat. If η is a natural isomorphism, we call η a 2-isomorphism. For

a logic L, we now let FAL be the corresponding full sub-2-category of FA.

Theorem 5. Let (C, P ), (D, Q) ∈ Ob(FA) and F : (C, P ) → (D, Q) be a morphism. Then for each theory

T , each T -model S in (C, P ) gives rise to a T -model F (S) in (D, Q).

Proof. First we define the structure F (S). For each sort symbol σ, F (S)JσK := F o(SJσK), for each function

symbol f : σ1, . . . , σn → τ , F (S)JfK := F o(SJfK) ◦ a−1
Γ , and for each relation symbol R ⊆ σ1, . . . , σn,

F (S)JRK := Q(a−1
Γ ) ◦F p

SJΓK(SJRK), where aΓ : F o(SJΓK) → F (S)JΓK is the change-of-product morphism

and Γ = x1 : σ1, . . . , xn : σn. A product preserving functor preserves the satisfaction of equations-in-context

since by induction on the complexity of an arbitrary term-in-context M : τ [Γ],

F (S)JM : τ [Γ]K = F o(SJM : τ [Γ]K) ◦ a−1
Γ .

If, for each formula-in-context ϕ [Γ],

F (S)Jϕ[Γ]K = Q(a−1
Γ )(F p

SJΓK(SJϕ[Γ]K)), (3.5)

then if S satisfies a sequent-in-context ϕ1, . . . , ϕn ⊢ ψ [Γ], since F p
SJΓK andQ(a−1) are monotone L -algebra
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homomorphisms,

n⊗
i=1

SJϕi[Γ]K ≤ SJψ[Γ]K

=⇒
n⊗

i=1

Q(a−1
Γ ) ◦ F p

SJΓK(SJϕi[Γ]K) ≤ Q(a−1
Γ ) ◦ F p

SJΓK(SJψ[Γ]K)

=⇒
n⊗

i=1

F (S)Jϕi[Γ]K ≤ F (S)Jψ[Γ]K,

where if n = 0, then
⊗n

i=1 = eSJΓK. And so F (S) satisfies ϕ1, . . . , ϕn ⊢ ψ [Γ]. It follows that F (S) is a

T -model and so we only need to prove that Equation 3.5 holds.

Consider a formula-in-context ϕ [Γ]. Suppose ϕ [Γ] is atomic. Case 1: ϕ [Γ] is of the formR(M1, . . . ,Mn)[Γ],

whereR ⊆ τ1, . . . , τn, and eachMi : τi [Γ] is well-formed. If γ is the list γ = [M1[Γ], . . . ,Mn[Γ]], we define

SJγK := ⟨SJM1[Γ]K, . . . , SJMn[Γ]K⟩.

Note that

F (S)JγK = aΓ′ ◦ F o(SJγK) ◦ a−1
Γ

Then,

F (S)JR(M1, . . . ,Mn)[Γ]K

= Q(F (S)JγK)(F (S)JRK)

= Q(F (S)JγK) ◦Q(a−1
Γ′ )(F

p
SJΓ′K(SJRK))

= Q(a−1
Γ ) ◦Q(F o(SJγK)) ◦ F p

SJΓ′K(SJRK)

= Q(a−1
Γ ) ◦ F p

SJΓK ◦ P (SJγK)(SJRK)

= Q(a−1
Γ ) ◦ F p

SJΓK(SJR(M1, . . . ,Mn)[Γ]K).

Otherwise, ϕ [Γ] is of the form M1 =τ M2 [Γ]. Let Γ′ = [x1 : τ, x2 : τ ] and γ : Γ → Γ′ be the context
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morphism represented by [M1[Γ],M2[Γ]]. Then,

F (S)JM1 =τ M2[Γ]K

= Q(F (S)JγK)(EqF (S)JτK)

= Q(a−1
Γ ) ◦Q(F o(SJγK)) ◦Q(aΓ′) ◦ EqF (S)JτK

= Q(a−1
Γ ) ◦Q(F o(SJγK)) ◦ F p

SJτK×SJτK(EqSJτK)

= Q(a−1
Γ ) ◦ F p

SJΓK ◦ P (SJγK)(EqSJτK)

= Q(a−1
Γ ) ◦ F p

SJΓK(SJM1 =τ M2[Γ]K).

Now suppose ϕ [Γ] is of the form 3(ϕ1, . . . , ϕn)[Γ], where 3 is some n-ary operation in Lω and for each

i ∈ {1, . . . , n}, F (S)Jϕi[Γ]K = Q(a−1
Γ ) ◦ F p

SJΓK(SJϕi[Γ]K). Then,

F (S)J3(ϕ1, . . . , ϕn)[Γ]K

= 3Q(F (S)JΓK)(F (S)Jϕ1[Γ]K, . . . , F (S)Jϕn[Γ]K)

= 3Q(F (S)JΓK)(Q(a−1
Γ ) ◦ F p

SJΓK(SJϕ1[Γ]K), . . . , Q(a−1
Γ ) ◦ F p

SJΓK(SJϕn[Γ]K))

= Q(a−1
Γ ) ◦ F p

SJΓK(3
P (SJΓK)(SJϕ1[Γ]K, . . . , SJϕn[Γ]K))

= Q(a−1
Γ ) ◦ F p

SJΓK(SJ3(ϕ1, . . . , ϕn)[Γ]K).

Suppose ϕ [Γ] is of the form Ωx:σ(ψ) [Γ] for Ω ∈ Lq . Let I = SJΓK and X = SJσK. For c = c1 × · · · × cn,

we let ac : F o(c) → F oc1 × · · · × F ocn, and ac1,c2 : F
o(c1 × c2) → F oc1 × F oc2 be the change in product

isomorphisms. Then

F (S)JΩx:σ(ψ)[Γ]K

= ΩF (S)JΓK,F (S)JσK ◦Q(a
F (S)
Γ,x:σ)(F (S)Jψ[Γ, x : σ]K)

= Q(a−1
I ) ◦ ΩF o(I),X ◦Q(aI × idF (X)) ◦Q(a

F (S)
Γ,x:σ)(F (S)Jψ[Γ, x : σ]K)

= Q(a−1
I ) ◦ ΩF o(I),X ◦Q(aI × idF (X)) ◦Q(a

F (S)
Γ,x:σ) ◦Q(a−1

SJΓ,x:σK) ◦ F
p
SJΓ,x:σK(SJψ[Γ, x : σ]K)

= Q(a−1
I ) ◦ ΩF o(I),X ◦Q(a−1

I,X) ◦Q(F o(aSΓ,x:σ)) ◦ F
p
SJΓ,x:σK(SJψ[Γ, x : σ]K)

= Q(a−1
I ) ◦ ΩF o(I),X ◦Q(a−1

I,X) ◦ F p
I×X ◦ P (aSΓ,x:σ)(SJψ[Γ, x : σ]K)

= Q(a−1
I ) ◦ F p

I ◦ ΩI,X ◦ P (aSΓ,x:σ)(SJψ[Γ, x : σ]K)

= Q(a−1
SJΓK) ◦ F

p
SJΓK(SJΩx:σ(ψ)[Γ]K.
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The next result says we can identify T -models S ∈ (C, P ) with morphisms S : (CT , PT ) → (C, P ) which

we use to develop an “algebraic” view of entailment.

Theorem 6. Let L be adequate and T an L-theory. For each (C, P ) ∈ Ob(FA) and T -model S in (C, P )

there is a morphism S : (CT , PT ) → (C, P ) in FA, unique up to a 2-isomorphism such that S(G) = S, where

G is the generic T -model in (CT , PT ).

Proof. We define S
o

on objects by S
o
(Γ) := SJΓK, and on morphisms by

S
o
([M1[Γ]/∼, . . . ,Mn[Γ]/∼]) := ⟨SJM1[Γ]K, . . . , SJMn[Γ]K⟩.

Since S is a T -model, S
o

is well defined on morphisms and it is straightforward to show that S
o
: CT → C

is a product preserving functor such that S(G) = S, where G is the generic T -algebra in CT . We extend S
o

by defining S
p

Γ(ϕ[Γ]/ ∼) := SJϕ[Γ]K, and S
p

Γ is well-defined and monotone because S is a T -model. By

definition, S(G) agrees with S on relation symbols. It is also straightforward to verify that S
p
: PT → P ◦So

is a natural transformation, and that for each context Γ, S
P

Γ is an L -homomorphism.

We now verify Condition 2. For m > 0, let Γ = x1 : σ1, . . . , xn : σn, Γ′ = xn+1 : σn+1, . . . , xn+m :

σn+m, and for each i ∈ {1, . . . , n+m}, let πi : SJΓ,Γ′K → SJσiK be the ith projection map. Let SJΓK = I ,

SJΓ′K = I ′ and for i ∈ {1, . . . , n +m}, let SJσiK = Xi. Let a : SJΓ,Γ′K → SJΓK × SJΓ′K be the change-

of-product isomorphism. Then for each Ω ∈ Lq , if m > 0,

S
p

Γ ◦ ΩΓ,Γ′(ϕ[Γ,Γ′]/∼)

= S
p

Γ(Ωxn+1:σn+1
· · ·Ωxn+m:σn+m

(ϕ)[Γ]/∼)

= ΩI,Xn+1
◦ . . . ◦ ΩI×Xn+1...×Xn+m−1,Xn+m

(SJϕ[Γ,Γ′]K)

= ΩSJΓK,SJΓ′K ◦ a−1∗(SJϕ[Γ,Γ′]K) (by 5)

= ΩS
o
(Γ),S

o
(Γ′) ◦ a

−1∗ ◦ Sp

Γ×Γ′(ϕ[Γ,Γ′]/∼).

Otherwise, Γ′ = [ ] and

S
p

Γ ◦ ΩΓ,[ ](ϕ [Γ]/∼) = S
p

Γ(ϕ [Γ]/∼) = SJϕ [Γ]K

= ΩSJΓK,SJ K ◦ P (π
SJΓK,SJ K
1 )(SJϕ[Γ]K) (by 5)

= ΩS
o
Γ,S

o
[ ] ◦ P (a

−1

S,Γ,[ ]
) ◦ Sp

Γ×[ ](ϕ [Γ]/∼).
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Let Γ = x1 : σ1, . . . , xn : σn, Γ′ = xn+1 : σ1, . . . , x2n : σn. If n > 0,

S
p

Γ×Γ′(EqΓ)

=

n⊗
i=1

SJxi =σi xn+i[Γ,Γ
′]K

=

n⊗
i=1

P (⟨πSJΓ,Γ′K
i , π

SJΓ,Γ′K
i+n ⟩)EqSJσiK

=

n⊗
i=1

P (⟨πSJΓK
i π

SJΓK,SJΓ′K
1 , π

SJΓ′K
i π

SJΓK,SJΓ′K
2 ⟩ ◦ a)EqSJσiK

= P (a) ◦
n⊗

i=1

P (⟨πSJΓK
i π

SJΓK,SJΓ′K
1 , π

SJΓ′K
i π

SJΓK,SJΓ′K
2 ⟩)EqSJσiK

= P (a) ◦ EqSo
(Γ). (by 6)

And if n = 0,

S
p

[ ](Eq[ ]) = S
p

[ ](e[ ]/∼) = SJe[ ]K = e1 ( by 6)

= P (aS,[ ],[ ])(e1×1) = P (aS,[ ],[ ])(EqSo
[ ]).

Now all that remains to show is that if F : (CT , PT ) → (C, P ) is another morphism such that F (G) =

S(G) = S then they are 2-isomorphic.

Let aF,Γ : F
o(Γ) → F (G)

o
(Γ) = S

o
(Γ) be the change-of-product isomorphism. Then aF : F o ⇒ S

o
is

a natural isomorphism, and PaF ·Sp
= PaF ·F (G)

p
= F p, from Equation 3.5. Thus aF is a 2-isomorphism

from F to S.

Definition 3.3.1. Let F : (C, P ) → (D, Q) be a morphism in FA. We define the kernel of F , denoted kerF

to consist of the following data:

1. A relation on Ob(C), such that c1 ∼ c2 iff F oc1 = F oc2.

2. A relation on Mor(C) such that f1 ∼ f2 iff F of1 = F of2.

3. A relation on ⊔c∈Ob(C)P (c) such that r1 ≺ r2 iff F p
c1(r1) ≤ F p

c2(r2), where ri ∈ P (ci).

If K : (C, P ) → (E , R) is another morphism, we say kerK ≤ kerF , if and only if the relations of kerK are

contained in the corresponding relations of kerF .
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Let S be an Sg-structure in (C, P ) ∈ Ob(FA) and let a ∈ ASg. If a = ϕ1, . . . , ϕn ⊢ ϕ [Γ], define

SJaK := (

n⊗
i=1

SJϕi[Γ]K, SJϕ[Γ]K),

and if a is and equation M1 =M2 : τ [Γ], define

SJaK := (SJM1 : τ [Γ]K, SJM2 : τ [Γ]K).

For each Sg-theory T , we define SJT K := {SJaK : a ∈ A(T )} and for F : (CT , PT ) → (C, P ) where T is an

Lm-theory, let Th(F ) be the Sg(T )-theory such that

A(Th(F )) := {a ∈ ASg : GJaK ∈ kerF}.

It is straightforward to verify that Th(F ) = Th(F (G)). Thus, for each structure S ∈ (C, P ), Th(S) =

Th(S(G)) = Th(S). Moreover, whenever F is 2-isomorphic to a parallel 2-cell K, then Th(F ) = Th(K).

Let T , and T ′ be Sg-theories and (C, P ) ∈ Ob(FA). From our prior observations the following are

equivalent:

1. T ⊨(C,P ) T
′.

2. ∀F : (CSg, PSg) → (C, P ) such that T ≤ Th(F ), then T ′ ≤ Th(F ).

3. ∀F : (CSg, PSg) → (C, P ) such that GJT K ⊆ kerF , then GJT ′K ⊆ kerF .

Thus in the sequel, we take Sg-structures in (C, P ) to be morphisms F : (CSg, PSg) → (C, P ). In the

remainder of the section, we show how the prop-categorical semantics provide a natural notion of structural

action on theories. This material is not necessary for the development of subsequent sections.

LetH : (CSg, PSg) → (CSg′ , PSg′) be a morphism and let T1, T2 be Sg-theories. We can define an action

of H on Sg equations and sequents in context which can be extended to T1 by taking the union: that is H ·T1

is the Sg′ theory whose assertions are
⋃

a∈A(T1)
H · a. For equations-in-context M1 =M2 : τ [Γ],

H · (M1 =M2 : τ [Γ]) := {M1
i =M2

i : τi [ΓH ]}ni=1,

where Ho(M i : τ [Γ]) = [M i
1 : τ1 [ΓH ], . . . ,M i

n : τn [ΓH ]] for i ∈ {1, 2}. And for sequents-in-context

ϕ1, . . . , ϕn ⊢ ϕn+1 [Γ],

H · (ϕ1, . . . , ϕn ⊢ ϕn+1 [Γ]) = ϕH1 , . . . , ϕ
H
n ⊢ ϕHn+1 [ΓH ],
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where Hp
Γ(ϕi [Γ]) = ϕHi [ΓH ], for all i ∈ {1, . . . , n + 1}. Since products in (CSg, PSg) are unique up to

permutation of the list of their variable sort pairs, if K : (CSg′ , PSg′) → (CSg′′ , PSg′′), then (K ◦ F ) · T1 =

K · (F · T1) and clearly, id(CSg,PSg) · T1 = T1. Moreover, suppose V ⊆ Ob(FAL ) and that T1 ⊨V T2. Let

(C, P ) ∈ V and F : (CSg′ , PSg′) → (C, P ) such that GJH · T1K ⊆ kerF . Then GJT1K ⊆ kerF ◦ H and

since T1 ⊨V T2, GJT2K ⊆ kerF ◦H . It follows that GJH ·T2K ⊆ kerF and so H ·T1 ⊨V H ·T2. Therefore,

all logics defined semantically by subcollections of Ob(FAL ) are structural with respect the actions by

morphisms.

This allows one to define a (first-order) logic as a closure operator ⊢Sg
L on ThSg, for each signature Sg

that is structural with respect to the action of some subcollection of morphisms G of FAL between formula

prop-categories. Particularly interesting candidates are when G includes all morphisms between formula

prop-categories and when G consists of all morphisms H : (CSg, PSg) → (CSg′ , PSg′) which map single sort

contexts to single sort contexts.
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Chapter 4

Fibered Universal Algebra

4.1 Basic Constructions in FA

Let (C, P ) ∈ Ob(FA) and consider the signature Sg whose sorts are Ob(C), whose function symbols are

f : c1, . . . , cn → c, for each f : c1×· · ·×cn → c ∈ Mor(C) and whose relation symbols areR ⊆ c1, . . . , cn

for each R ∈ P (c1 × · · · × cn). Note that f : c1 × · · · × cn → c ∈ Ob(C) is included both as an n-ary

operation symbol f : c1, . . . , cn → c and as a unary operation symbol f : c1 × · · · × cn → c in Sg and

similarly for relation symbols. There is a canonical Sg-structure S in (C, P ) called the internal structure of

(C, P ), where JcK = c, JfK = f and JRK = R for each sort, function symbol and relation symbol respectively.

We define Th(C, P ) := Th(S).

Proposition 5. Let (C, P ) ∈ Ob(FA) and let S be the internal structure of (C, P ), and T the theory of S.

Then S : (CT , PT ) → (C, P ) determines a 2-equivalence.

Proof. Define ι : (C, P ) → (CT , PT ) by ιo(c) := x : c for c ∈ Ob(C), ιo(f : c1 → c2) := f(x) : c2 [x :

c1]/ ∼ for f ∈ Mor(C) and ιp(R) := R(x) [x : c]/ ∼ for each c ∈ Ob(C) and each R ∈ P (c). It is

straightforward to verify that ιo is a finite product preserving functor. Let f : c1 → c2 ∈ Mor(C). Then for

R ∈ P (c2),

ιpc1 ◦ P (f)(R) = P (f)(R)(x)[x : c1]/∼

= R(f(x))[x : c1]/∼

= PT (f(x) : c2[x : c1]/∼)(R(x)[x : c2]/∼)

= PT (ι
o(f)) ◦ ιpc2(R).

Thus ιp is a natural transformation. It is also straightforward to verify, for each c ∈ Ob(C) that ιpc is an

monotone L -algebra homomorphism. Let Ω ∈ Lq , c1, c2 ∈ Ob(C) and R ∈ P (c1 × c2). Then

Ωιoc1,ιoc2 ◦ PT (a
−1) ◦ ιpc1×c2(R)

= Ωx2:c2(R(⟨π1, π2⟩(x1, x2)))[x1 : c1]/∼

= Ωc1,c2(R)(x)[x : c1]/∼

= ιpc1 ◦ Ωc1,c2(R).
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Let c ∈ Ob(C). Then

PT (a
−1) ◦ ιpc×c(Eqc)

= Eqc(⟨π1, π2⟩(x1, x2))[x1 : c, x2 : c]/∼

= Eqc(x1, x2)[x1 : c, x2 : c]/∼

= x1 =c x2 [x1 : c, x2 : c]/∼

= Eqx:c.

It follows that ι is a morphism.

Now S
o ◦ ιo = idC , and for each c ∈ Ob(C) and R ∈ P (c),

(S
p

ιo · ιp)c(R) = S
p

ιoc ◦ ιpc(R) = S
p

ιoc(R(x)[x : c]/∼) = R.

It follows that S ◦ ι = id(C,P ).

In the other direction,

ιo ◦ So
([x1 : c1, . . . , xn : cn]) = [x : c1 × · · · × cn],

ιo ◦ So
([M1 : c1[Γ]/∼, . . . ,Mm : cm[Γ]/∼])

= ⟨SJM1 : c1[Γ]K, . . . SJMm : cm[Γ]K⟩(x) : c1 × · · · × cm [x : SJΓK]/∼

and

(ιp
S

o · S
p
)Γ(ϕ[Γ]/∼) = SJϕ[Γ]K(x)[x : SJΓK]/∼ .

For each context Γ = x1 : c1, . . . , xn : cn, define η : ιo · So ⇒ idCT
by

ηΓ = [π1(x) : c1[x : SJΓK]/∼, . . . , πn(x) : cn[x : SJΓK]/∼].

One may verify that η is a natural isomorphism and that PT η · idp(CT ,PT ) = ιp
S

o ·S
p
. It follows that η : ι◦S ⇒

id(CT ,PT ) is a 2-isomorphism and so (CT , PT ) and (C, P ) are equivalent.

Thus (CT , PT ) ≡ (C, P ) and so (CT , PT ) is a syntactic representation of (C, P ) similar to the repre-

sentation of an algebra as the free algebra over its elements quotiented out by is equational theory. More-

over, it can be shown that if (C, P ), (D, Q) ∈ Ob(FA) are equivalent in FA, then ⊨(C,P ) = ⊨(D,Q) and so
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⊨(C,P ) = ⊨(CT ,PT ).

Let (C, P ), (D, Q) ∈ Ob(FA). We say (D, Q) is a sub-prop-category of (C, P ), if there exists a

morphism ι : (D, Q) → (C, P ), such that ιo is faithful and for each c ∈ Ob(C), ιpc is an order embedding.

We call the morphism ι a subprop-morphism.

Proposition 6. If (D, Q) is a sub-prop-category of (C, P ), then ⊨(C,P ) ⊆⊨(D,Q).

Proof. Suppose T ⊨(C,P ) T ′ and consider F : (CSg, PSg) → (D, Q), such that GJT K ⊆ kerF . Then

GJT K ⊆ ker(ι ◦ F ), and since T ⊨(C,P ) T
′, GJT ′K ⊆ ker(ι ◦ F ). Since ι is a subprop-morphism, GJT ′K ⊆

ker(F ) and so T ⊨(D,Q) T
′.

Let F : (C, P ) → (D, Q) be a morphism in FA. In general, (F (C), F (P )), is not a sub-prop-category

of (D, Q) where F (C) is the image of C under F o, and for all g : d1 → d2 ∈ Mor(F (C)), F (P )(g) :=

Q(g)|Fp
c2

P (c2) : F
p
c2P (c2) → F p

c1P (c1), where F oci = di for i ∈ {1, 2}. When (F (C), F (P )) does define a

sub-prop-category of (D, Q) we call it the image of F .

Lemma 2. Let F : (C, P ) → (D, Q) be a morphism in FA such that F o is injective on objects. Then

(F (C), F (P )) is a sub-prop-category of (D, Q) and there exists a unique morphismH : (C, P ) → (F (C), F (P ))

such that ι◦H = F , where, ι : (F (C), F (P )) ↪→ (D, Q) is the inclusion morphism. We callH , the corestric-

tion of F to (F (C), F (P )). Furthermore, H is strictly finite product preserving, full, surjective on objects,

and for each c ∈ Ob(C), Hp
c is surjective.

Proof. Since F o is injective on objects, F (C) is a sub-category of D. Let d1, d2 ∈ Ob(F (C)) and F o(ci) =

di. Then the designated product diagram of d1 and d2 in F (C) which we denote (d1×̂d2, π̂1, π̂2) (to distin-

guish it from the designated diagram of d1×d2 in D) is (F o(c1×c2), F o(π1), F
o(π2)) where (c1×c2, π1, π2)

is the designated product diagram of c1 × c2 in C. Given g1 : d → d1 and g2 : d → d2 we let < g1, g2 >

:= F o(⟨f1, f2⟩), which is the unique morphism such that π̂i◦ <g1, g2>= gi for i ∈ {1, 2}. We also define

the designated terminal object in F (C) to be 1F (C) := F o(1C). Define F (P )(d1) := F p(P (c1)) ≤ Q(d1)

and for g ∈ F (C)(d1, d2), if F o(f) = g, define F (P )(g) := Q(g)|F (P )(d2) = Q(F of)|Fp
c2

P (c2). Since

F p : P ⇒ Q ◦ F o, we have F (P )(g)(F (P )(d2)) ⊆ F (P )(d1). For Ω ∈ Lq we denote the interpretation of

Ω in (F (C), F (P )) by ΩF (P ), which we define for r ∈ F (P )(d1×̂d2) as

Ω
F (P )
F oc1,F oc2

(r) := ΩF oc1,F oc2 ◦Q(a−1
F,c1,c2

)(r).

Let r′ ∈ P (c1 × c2) such that F p
c1×c2(r

′) = r. Then,

Ω
F (P )
d1,d2

(r) = Ωd1,d2
◦Q(a−1) ◦ FP

c1×c2(r) = F p
c1(Ωc1,c2(r

′)) ∈ F (P )(d1).
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Equality EqF (P ) is defined by

Eq
F (P )
F oc := Q(aF,c,c)(EqF oc) = F p

c×c(Eqc) ∈ F (P )(F oc ×̂F oc).

First we show that (F (C), F (P )) ∈ FA. Conditions 1 and 2 are immediate. Condition 3 follows from the

fact that for each F oc ∈ Ob(F (C)),

Ω
F (P )
(·),d = Ω(·),F oc ·Q(a−1

F,(·),c)|F (P )((·)×̂F oc).

Condition 4 is satisfied as we take ⊗F (P )(d1) := ⊗Q(d1)|F (P )(d1) and eF (P )
d1

:= F p
c1(ec1) = ed1

.

Next we consider Condition 5. Let d = F oc ∈ F (C) and Ω ∈ Lq . Then

Ω
F (P )
d,F o(1) ◦ F (P )(π̂

d,F o(1)
1 ) = Ωd,F o(1) ◦Q(a−1

F,c,1) ◦Q(π̂
d,F o(1)
1 )|F (P )(d)

Ωd,F o(1) ◦Q(π
d,F o(1)
1 )|F (P )(d) = idF (P )(d).

Let d1, d2, d3 ∈ F (C), and F o(ci) = di. Let r ∈ F (P )((d1×̂d2)×̂d3) and r′ ∈ P ((c1 × c2)× c3) such that

F p
(c1×c2)×c3

(r′) = r. Then

= Ω
F (P )

d1,d2×̂d3
◦Q(âd1,d2,d3)(r)

= Ωd1,d2×̂d3
◦Q(a−1

F,c1,c2×c3
) ◦Q(F o(ac1,c2,c3)) ◦ F

p
(c1×c2)×c3

(r′)

= ΩF oc1,F o(c2×c3) ◦Q(a−1
F,c1,c2×c3

) ◦ F p
c1×(c2×c3)

◦ P (ac1,c2,c3)(r′)

= F p ◦ Ωc1,c2×c3 ◦ P (ac1,c2,c3)(r′)

= F p
c1 ◦ Ωc1,c2 ◦ Ωc1×c2,c3(r

′)

= ΩF oc1,F oc2 ◦Q(a−1
F,c1,c2

) ◦ F p
c1×c2 ◦ Ωc1×c2,c3(r

′)

= ΩF oc1,F oc2 ◦Q(a−1
F,c1,c2

) ◦ ΩF o(c1×c2),F oc3 ◦Q(a−1
F,c1×c2,c3

) ◦ F p
(c1×c2)×c3

(r′)

= Ω
F (P )
d1,d2

◦ ΩF (P )

(d1×̂d2),d3
(r).

Thus Condition 5 is satisfied.

We now consider Condition 6.

Eq
F (p)
F o(1) = F p

1×1(Eq1) = F p
1×1(e1×1) = eF o1×̂F o1.
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Let d1, d2 ∈ Ob(F (C)) and F oci = di. Let c = c1 × c2 and d = d1×̂d2. Then,

Eq
F (P )
d = F p

c×c(Eqc)

= F p
c×c(

2⊗
i=1

P (⟨πc
iπ

c,c
1 , πc

iπ
c,c
2 ⟩)Eqci)

=

2⊗
i=1

F p
c×c ◦ P (⟨πc

iπ
c,c
1 , πc

iπ
c,c
2 ⟩)Eqci

=

2⊗
i=1

Q(F o⟨πc
iπ

c,c
1 , πc

iπ
c,c
2 ⟩) ◦ F p

ci×ciEqci

=

2⊗
i=1

F (P )(<π̂d
i π̂

d,d
1 , π̂d

i π̂
d,d
2 >)Eq

F (P )
di

.

It follows that (F (C), F (P )) ∈ FA.

Let ιo : F (C) ↪→ D be the inclusion functor and for each d ∈ Ob(F (C)), let ιpd : F (P )(d) ↪→ Q(d) be

the inclusion homomorphism. It is immediate that ιp : F (P ) ⇒ Q ◦ ιo is natural. Let Ω ∈ Lq , d1, d2 ∈

Ob(F (C)) and F o(ci) = di. For r ∈ F (P )(d1×̂d2),

ιpd1
◦ ΩF (P )

d1,d2
(r) = Ωd1,d2 ◦Q(a−1

F,c1,c2
)(r)

= Ωιod1
,ιod2

◦Q(a−1
F,c1,c2

) ◦ ιp
d1×̂d2

(r).

And,

ιp
d×̂d

(EqF (P )) = Q(aF,c,c) ◦ Eqιod.

It follows that ι = (ιo, ιp) ∈ FA((F (C), F (P )), (D, Q)).

Define H = (Ho, Hp) by Ho : C → F (C), where Ho(c) := F o(c), Ho(f) := F o(f) and Hp
c is the

corestriction of F p
c to F (P )(F oc). The naturality of Hp : P ⇒ F (P ) ◦ Ho follows from the naturality of

F p : P ⇒ Q ◦ F o. By definition Ho strictly preserves finite products and ι ◦H = F . Since ιo is injective

on objects and faithful, and ιpd is injective, for each d ∈ Ob(F (C)), H is uniquely defined so that H ◦ ι = F .

Let c1, c2 ∈ Ob(C) and r ∈ P (c1 × c2). That H commutes with the quantifiers and equality follows from

the fact that F does. Thus, H ∈ FA((C, P ), (F (C), F (P ))).

Proposition 7. FA has all products.

Proof. The terminal object 1FA is (∗, 1∗) where ∗ is the terminal category and 1∗ is its unique endofunctor. It

is straightforward to verify that (∗, 1∗) ∈ FA and that for each prop-category (C, P ) ∈ FA, there is a unique

morphism !(C,P ) : (C, P ) → (∗, 1∗), where !(C,P ) = (!C , !P ).
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Let {(Ci, Pi)}i∈I ⊆ Ob(FA) be non-empty. Let
∏

I Ci denote the product of the categories {Ci}i∈I ,

that is, the category whose objects a specify for each i ∈ I , an object ai ∈ Ob(Ci), and whose morphisms

f : a → b specify for each i ∈ I a morphism fi ∈ Ci(ai, bi). Composition g ◦ f of morphisms f : a → b

and g : b → c is defined for each i ∈ I as (g ◦ f)i := gi ◦ fi : ai → ci. Since each Ci has finite products, we

define 1 so that 1i = 1Ci and for a, b ∈ Ob(
∏

Ci), we define a× b so that (a× b)i := ai× bi. For k ∈ {1, 2},

we define the projection maps πa,b
k by πa,b

k,i = πai,bi
k . One verifies that this determines a product diagram for

a× b, where for every pair of maps f : c→ a and g : c→ b, ⟨f, g⟩i := ⟨fi, gi⟩.

Now we define
∏

I Pi :
∏

I Ci → Pos, on objects a ∈ Ob(
∏

I Ci) by (
∏

I Pi)(a) :=
∏

I Pi(ai) and on

morphisms f ∈
∏

I Ci(a, b) by (
∏

I Pi)(f) :=
∏

I Pi(fi). Then for f : a → b and g : b → c, (
∏

I Pi)(g ◦

f) =
∏

I Pi(gi ◦ fi) :=
∏

I Pi(fi)Pi(gi) :=
∏

I Pi(fi)
∏

I Pi(gi) = (
∏

I Pi)(f) ◦ (
∏

I Pi)(g). One also

verifies that
∏

I Pi(ida) = id∏
I Pi(a), so that

∏
I Pi is a contravariant functor and thus (

∏
I Ci,

∏
I Pi) is a

prop-category.

For each a ∈ Ob(
∏

I Ci), we define Eqa and ea so that Eqa,i := Eqai
and ea,i := eai

. Let b ∈

Ob(
∏

I Ci) and c = a× b. Then Eq1 = e1×1 since for each i ∈ I ,

Eq1,i = Eq1Ci
= e1Ci

×1Ci
= e1×1,i.

Also,

Eqc = (
∏
I

Pi)⟨πa,b
1 πc,c

1 , πa,b
1 πc,c

1 ⟩Eqa ⊗ (
∏
I

Pi)⟨πa,b
2 πc,c

1 , πa,b
2 πc,c

1 ⟩Eqb,

since for each j ∈ I ,

((
∏
I

Pi)⟨πa,b
1 πc,c

1 , πa,b
1 πc,c

1 ⟩Eqa ⊗ (
∏
I

Pi)⟨πa,b
2 πc,c

1 , πa,b
2 πc,c

1 ⟩Eqb)j

= Pj⟨π
aj ,bj
1 π

cj ,cj
1 , π

aj ,bj
1 π

cj ,cj
1 ⟩Eqaj

⊗ Pj⟨π
aj ,bj
2 π

cj ,cj
1 , π

aj ,bj
2 π

cj ,cj
1 ⟩Eqbj

= Eqc,j

For Ω ∈ Lq , Ωa,b :
∏

I Pi(a× b) →
∏

I Pi(a) is defined so that Ωa,b,i := Ωai,bi . As with the conditions

for equality, the remaining conditions for the quantifiers follow from the fact that they hold coordinate-wise.

Therefore, (
∏

I Ci,
∏

I Pi) ∈ Ob(FA).

For j ∈ I , the projection morphism πj : (
∏

I Ci,
∏

I Pi) → (Cj , Pj) consists of the projection func-

tor πo
j :

∏
I Ci → Cj and the natural transformation πp

j :
∏

I Pi ⇒ Pj ◦ πo
j defined for each object a ∈

Ob(
∏

I Ci), by πp
j,a :

∏
I Pi(a) → Pj(aj), i.e. πp

j,a is the (monotone) projection homomorphism. For all
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f : a→ b ∈ Mor(
∏

I Ci),

b
∏

I Pi(bi) Pj(bj)

a
∏

I Pi(ai) Pj(aj)

fop
∏

I Pi(fi)

πp
j,b

Pj(fj)

πp
j,a

commutes and so πp
j :

∏
i Pi → Pj ◦ πo

j is a natural transformation. For all a ∈ Ob(
∏

I Ci),

πp
j,a×a(Eqa) = Eqa,j = Eqaj = Eqπo

j (a)
.

For Ω ∈ Lq , a, b ∈ Ob(
∏

I Ci) and A ∈ (
∏

I Pi)(a× b),

πp
j,a ◦ Ωa,b(A) = Ωaj ,bj (Aj) = Ωπj(a),πj(b) ◦ π

p
j,a×b(A).

It follows that πj : (
∏

I Ci,
∏

I PCi
) → (Cj , PCj

) is a prop-category morphism.

Let (D, Q) ∈ FA and for each j ∈ I , let Fj : (D, Q) → (Cj , Pj) be a morphism in FA. Define

⟨Fi⟩I : (D, Q) → (
∏

I Ci,
∏

I Pi), so that ⟨Fi⟩oI := ⟨F o
i ⟩I and define ⟨Fi⟩pI : Q ⇒

∏
I Pi ◦ ⟨Fi⟩oI for d ∈

Ob(D), by ⟨Fi⟩pI,d := ⟨F p
i,d⟩I . Then for all g : d1 → d2 ∈ Mor(D),

d2 Q(d2)
∏

I(Pi ◦ F o
i (d2))

d1 PD(d1)
∏

I(Pi ◦ F o
i (d1))

gop Q(g)

⟨F p
i,d2

⟩I

∏
I(Pi ◦ F o

i (g))

⟨F p
i,d1

⟩I

commutes since

∏
I

(Pi ◦ F o
i (g)) ◦ ⟨F

p
i,d2

⟩I = ⟨Pi ◦ F o
i (g) ◦ F

p
i,d2

⟩I

= ⟨F p
i,d1

◦Q(g)⟩I

= ⟨F p
i,d1

⟩I ◦Q(g).

It follows that ⟨Fi⟩pI : Q⇒
∏

I Pi ◦ ⟨Fi⟩oI is a natural transformation.

Let d ∈ Ob(D) and a ∈ Mor(
∏

I Ci) such that for each j ∈ I , aj : F o
j (d × d) → F o

j d × F o
j d is the
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change-of-product isomorphism. Then for each j ∈ I ,

⟨F p
i,d×d⟩I(Eqd)j = F p

j,d×dEqd = Pj(aj)EqF o
j d,

and so

⟨Fi⟩pI,d×dEqd =
∏
I

Pi(a)Eq⟨Fi⟩oId

Let d1, d2 ∈ Ob(D) and a ∈ Mor(
∏

I Ci) such that for each j ∈ I , aj : F o
j (d1 × d2) → F o

j d1 × F o
j d2 is

the change-of-product isomorphism. Then, for Ω ∈ Lq ,

⟨Fi⟩pI,d1
◦ Ωd1,d2

= ⟨F p
i,d1

◦ Ωd1,d2
⟩I

= ⟨ΩF o
i d1,F o

i d2 ◦ P (a−1
i ) ◦ F p

i,d1×d2
⟩I

= Ω⟨Fi⟩oId1,⟨Fi⟩oId2
◦
∏
I

Pi(a
−1) ◦ ⟨Fi⟩pI,d1×d2

.

Therefore, ⟨Fi⟩I is a morphism. Also, for each j ∈ I and d ∈ Ob(D),

(πp
j,⟨Fi⟩oI

· ⟨Fi⟩pI)d = πp
j,⟨Fi⟩oId

◦ ⟨F p
i,d⟩I = F p

j,d,

and

πo
j ◦ ⟨Fi⟩oI = F o

j .

Thus for each j ∈ I , πj ◦ ⟨Fi⟩I = Fj . If ϕ : (D, Q) → (
∏

I CI ,
∏

I Pi) is another morphism such that for

each j ∈ I , πj ◦ ϕ = Fj , then ϕo = F o
i and for each d ∈ Ob(D),

(πp
j,ϕo · ϕp)d = πp

j,⟨F o
i ⟩Id ◦ ϕ

p
d = F p

j,d.

It follows that ϕpd = ⟨Fi⟩pI,d, and so ϕ = ⟨Fi⟩I .

Proposition 8. Let L be a first-order language and {(Ci, Pi)}i∈I ⊆ Ob(FA). Then

⊨(
∏

I Ci,
∏

I Pi) ⊇⊨{(Ci,Pi)}i∈I
.

Proof. If I = ∅, then (
∏

I Ci,
∏

I Pi) = 1FA = (∗, 1∗) which satisfies every sequent-in-context and

equation-in-context. Thus, ⊨1FA
= ⊨∅. Otherwise, suppose T ⊨{(Ci,Pi)}i∈I

T ′ and let S ∈ (
∏

I Ci,
∏

I Pi)

be a T -model. Then for each i ∈ I , πi(S) is a T -model in (Ci, Pi). By assumption πi(S) satisfies T ′ for all
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i ∈ I and it follows that S satisfies T ′.

As a consequence, for each logic L, FAL has all products.

4.2 Fibered Homomorphism Theorem

In this section we present a fibered homomorphism theorem which closely mirrors the corresponding re-

sult from universal algebra. These results give an orthogonal factorization system for FAL. For a general

reference on factorization systems see Riehl (2008).

Fix a logic L and let E be the class of morphisms ϵ in FAL such that ϵo is bijective on objects, full and

for each c ∈ Ob(C), ϵpc is surjective. Let M be the collection of subprop-morphisms in FAL.

Theorem 7 (Fibered Homomorphism Theorem). Let F : (C, P ) → (D, Q) be a morphism in FAL.

1. F factors as ψ ◦ ϵ, for some ϵ ∈ E and ψ ∈ M .

2. If K : (C, P ) → (E , R) ∈ Mor(FAL) where K is a full, surjective on objects and for each e ∈ Ob(e),

Kp
e is surjective, then there exists a unique morphism H : (E , R) → (D, Q) such that HK = F if and

only if kerK ≤ kerF .

Proof of Part 1 of Theorem 7. Let T be the theory of (C, P ) and S the internal structure of (C, P ). Let T ′

be the theory of F (S) (which is an Lm-theory) and G the generic T ′-model in (CT ′ , PT ′). Let ι : (C, P ) →

(CT , PT ) be the morphism which with S witnesses the equivalence of (C, P ) and (CT , PT ). We have the

following diagram:

(C, P ) (D, Q)

(CT , PT ) (CT ′ , PT ′)

ι

F

G F (S)

It is straightforward to verify that the above diagram commutes. Since G ◦ ι is injective on objects, from

Proposition 2, the following diagram commutes

(C, P ) (D, Q)

(CT ′ , PT ′)

(G ◦ ι(C), G ◦ ι(P ))

H

F

G ◦ ι F (S)

λ F (S) ◦ λ

where λ is the inclusion morphism and H the corestriction. Let ϵ = H , ψ = F (S) ◦ λ and (G ◦ ι(C), G ◦

ι(P )) = (E , R). By construction, ϵ and ψ meet the conditions of the theorem. Since ι is a subprop-morphism,

from Proposition 6, (E , R) ∈ FAL.
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Proof of part 2 of Theorem 7. ( ⇐= ) Let e1 ∈ Ob(E). Since Ko is surjective on objects, there exists

c1 ∈ Ob(C), such that Ko(c1) = e1. Define Hoe1 := F oc1. Let e2 ∈ Ob(E), and h1 : e1 → e2. Then there

exists c2 ∈ Ob(C) such that Koc2 = e2 and since Ko is full, there exists f1 : c1 → c2 such that Kof1 = h1.

Define Hoh1 := F of1. Since kerK ≤ kerF , Ho is well defined. If h2 : e2 → e3, let f2 : c2 → c3 such that

Kof2 = h2. Then

Ho(h2h1) = Ho(Kof2K
of1) = Ho(Ko(f2f1)) = F o(f2f1) = Hoh2H

oh1.

Also, Ho(ide1) = Ho(Koidc1) = F oidc1 = idF oc1 = idHoe1 and so Ho is a functor.

Let 1E be the terminal element in E . Then there exists c ∈ Ob(C) such that Koc = 1E . Since Ko pre-

serves finite products Ko1C is a terminal element in E and so Ko1C ∼= 1E . Since Ho is a functor, it preserves

isomorphisms and so Ho1E ∼= HoKo1C = F o1C , and so Ho1E is terminal in D since F o preserves finite

products. Let e1, e2 ∈ Ob(E) and c1, c2, c ∈ Ob(C), such thatKoci = ei andKoc = e1×e2. For i ∈ {1, 2},

let fi : c → ci such that Kofi = πe1,e2
i and let α = ⟨Koπc1,c2

1 ,Koπc1,c2
2 ⟩. Since Ko preserves finite prod-

ucts, α is an isomorphism. For i ∈ {1, 2}, Koπc1,c2
i Ko⟨f1, f2⟩ = Kofi = πe1,e2

i and so Ko⟨f1, f2⟩ = α−1.

Then Ho(α−1) = F o⟨f1, f2⟩ is an isomorphism and for i ∈ {1, 2}, F oπc1,c2
i ◦ F o⟨f1, f2⟩ = F ofi. Thus

since F o preserves finite products, F o⟨f1, f2⟩ is a change-of-product isomorphism from (F oc, F of1, F
of2)

to (F o(c1×c2), F oπc1,c2
1 , F oπc1,c2

2 ). It follows that (Ho(e1×e2), Hoπe1,e2
1 , Hoπe1,e2

2 ) = (F oc, F of1, F
of2)

is a product diagram for Hoe1, H
oe2 and so Ho preserves finite products.

Let e ∈ Ob(E), and r ∈ R(e). Then there exists c1 ∈ Ob(C) and r1 ∈ P (c1) such that Kp
c1(r1) = r.

Define Hp
e (r) := F p

c1(r1). If r2 ∈ P (c2), such that Kp
c2(r2) = r, then (r1, r2), (r2, r1) ∈ kerK ⊆ kerF

and so F p
c1(r1) = F p

c2(r2). It follows that Hp
e is well-defined and by definition, Hp

e ◦ Kp
c1 = F p

c1 . Let

r1, r2 ∈ R(e) such that r1 ≤ r2. Then there exists c ∈ Ob(C) and r′1, r
′
2 ∈ P (c) such that Kp

c (r
′
i) = ri for

i ∈ {1, 2}. Then (r′1, r
′
2) ∈ kerK ⊆ kerF , and so Hp

e (r1) = F p
c (r

′
1) ≤ F p

c (r
′
2) = Hp

e (r2). Thus Hp
e is

monotone.

Let h : e1 → e2 and f : c1 → c2 such that Kof = h. Then

Q(Hoh) ◦Hp
e2 ◦K

p
c2 = Q(F of) ◦ F p

c2 = F p
c1 ◦ P (f)

= Hp
e1 ◦K

p
c1 ◦ P (f) = Hp

e1 ◦R(h) ◦K
p
c2 ,

and since Kp
c2 is surjective, Q(Hoh)◦Hp

e2 = Hp
e1 ◦R(h). Thus, Hp : R⇒ QHo is a natural transformation.

Let e ∈ Ob(E). Then there exists c, c′ ∈ Ob(C), such that Koc′ = e × e and Koc = e. Then for
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i ∈ {1, 2}, there exists fi : c′ → c such that Kofi = πe,e
i . Then for i ∈ {1, 2},

Koπc,c
i Ko⟨f1, f2⟩ = Kofi = πe,e

i .

It follow that Ko⟨f1, f2⟩ = α−1, where α = ⟨Koπc,c
1 ,Koπc,c

2 ⟩. Define:

a := ⟨F oπc,c
1 , F oπc,c

2 ⟩ b := ⟨Hoπe,e
1 , Hoπe,e

2 ⟩.

Then

aF o⟨f1, f2⟩ = ⟨F of1, F
of2⟩ = ⟨Hoπe,e

1 , Hoπe,e
2 ⟩ = b,

and so F o⟨f1, f2⟩ = a−1b. Also note that

F p
c×c(Eqc) = Q(a)(EqF oc) and Kp

c×c(Eqc) = R(α)(EqKoc).

Then

Q(b)(EqHoe) = Q(b)(EqF oc) = Q(b)(Q(a−1)F p
c×cEqc)

= Q(a−1b)F p
c×c(Eqc) = Q(F o⟨f1, f2⟩)F p

c×c(Eqc)

= F p
c′P (⟨f1, f2⟩)(Eqc) = Hp

e×eK
p
c′P (⟨f1, f2⟩)(Eqc)

= Hp
e×eR(K

o⟨f1, f2⟩)Kp
c×c(Eqc) = Hp

e×e(R(α
−1)Kp

c×c(Eqc))

= Hp
e×e(EqKoc) = Hp

e×e(Eqe).

Let e1, e2 ∈ Ob(E), and c1, c2, c ∈ Ob(C) such that Koci = ei and Koc = e1 × e2. Let fi : c→ ci such

that Kofi = πe1,e2
i and define

a := ⟨F oπc1,c2
1 , F oπc1,c2

2 ⟩ b := ⟨Hoπe1,e2
1 , Hoπe1,e2

2 ⟩.
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Also, let α := ⟨Koπc1,c2
1 ,Koπc1,c2

2 ⟩. Then for Ω ∈ Lq

= ΩHoe1,Hoe2 ◦Q(b−1) ◦Hp
e1×e2 ◦R(α

−1) ◦Kp
c1×c2

= ΩF oc1,F oc2 ◦Q(a−1) ◦Q(b−1a) ◦Hp
e1×e2 ◦R(α

−1) ◦Kp
c1×c2

= ΩF oc1,F oc2 ◦Q(a−1) ◦Q(Hoα) ◦Hp
e1×e2 ◦R(α

−1) ◦Kp
c1×c2

= ΩF oc1,F oc2 ◦Q(a−1) ◦Hp
Ko(c1×c2)

◦R(α) ◦R(α−1) ◦Kp
c1×c2

= ΩF oc1,F oc2 ◦Q(a−1) ◦Hp
Ko(c1×c2)

◦Kp
c1×c2

= ΩF oc1,F oc2 ◦Q(a−1) ◦ F p
c1×c2

= F p
c1 ◦ Ωc1,c2

= Hp
e1 ◦K

p
c1 ◦ Ωc1,c2

= Hp
e1 ◦ ΩKoc1,Koc2 ◦R(α−1) ◦Kp

c1×c2

= Hp
e1 ◦ Ωe1,e2 ◦R(α−1) ◦Kp

c1×c2 .

Since R(α−1) ◦Kp
c1×c2 is surjective it follows that

ΩHoe1,Hoe2 ◦Q(b−1) ◦Hp
e1×e2 = Hp

e1 ◦ Ωe1,e2 .

Thus H is a morphism in FA and H ◦K = F .

( =⇒ ). Since K is full, surjective on objects and for each e ∈ Ob(E), Kp
e is surjective, there is only one

possible definition for H . One may verify that if kerK ≰ kerF , then either Ho is ill-defined or for some

e ∈ Ob(E), Hp
e is ill-defined or not monotone.

Remark 2. Like part 1 of Theorem 7, the internal logic can also be used to prove part 2. In what follows

we sketch the proof of the ( ⇐= ) direction. Let S be the internal structure in (E , R) and T its theory. We

construct a T -model A ∈ (D, Q), so that

(C, P ) (D, Q)

(E , R) (CT , PT )
K

F

A ◦ ι
ι

A

commutes.

For each e ∈ Ob(E), let ce ∈ Ob(C) such that Koce = e. For each h ∈ Mor(E), let fh ∈ Mor(C),

such that Kofh = h and for each e ∈ Ob(E) and r ∈ R(e), let qr ∈ P (c) for some c ∈ Ob(C) such that
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Kp
c (qr) = r. For each each sort e, AJeK := F oce, for each unary function symbol h : e1 × · · · × en → e,

AJhK := F ofh and each unary relation symbol r ∈ R(e1 × · · · × en), AJrK := F p
cēqr. For each n-ary

function symbol h : e1, . . . , en → e, we define AJhK := fh ◦ a−1
ē where aē : F o(cē) → AJe1K× · · · ×AJenK

is the change-in-product isomorphism. Similarly, for each n-ary relation symbol r ⊆ e1, . . . , en, we define

AJrK := Q(aē)
−1 ◦ F p

cē(qr).

By induction, one may prove that for each term M : e [Γ], where Γ = x1 : e1, . . . , xn : en, that AJM :

e [Γ]K = F ofSJM :e [Γ]K ◦a−1
ē , and for each formula-in-context ϕ [Γ], that AJϕ[Γ]K = Q(a−1

ē ) ◦F p
cē(qSJϕ[Γ]K).

It follows that A satisfies each equation-in-context in T , and if ϕ1, . . . , ϕn ⊢ ϕn+1 [Γ] is in T , then

SJϕ1 ⊗ . . .⊗ ϕn [Γ]K ≤ SJϕn+1[Γ]K

=⇒ Kp
c (qSJϕ1⊗...⊗ϕn[Γ]K) ≤ Kp

c (qSJϕn+1[Γ]K)

=⇒ F p
c (qSJϕ1⊗...⊗ϕn[Γ]K) ≤ F p

c (qSJϕn+1[Γ]K)

=⇒ F p
c (qSJϕ1[Γ]K)⊗ . . .⊗ F p

c (qSJϕn[Γ]K) ≤ F p
c (qSJϕn+1[Γ]K)

=⇒ AJϕ1[Γ]K ⊗ . . .⊗AJϕn[Γ]K ≤ AJϕn+1[Γ]K.

It follows that A is a T -model. By construction, we have K ◦A ◦ ι = F .

Proposition 9. The classes E and M form a factorization system in FAL.

Proof. Note that both M and E contain all the isomorphisms in FAL and are closed under composition.

From Part 1 of Theorem 7, each F ∈ Mor(FAL) can be factored as m ◦ e with m ∈ M and e ∈ E . Now

consider the following commuting solid diagram of morphisms in FAL:

· ·

· ·

· ·

e

u

e′

m

∃!w

m′

v

We want to to show there is a unique morphism w making the small squares commute. Note that Th(e) ⊆

Th(vme) = Th(m′e′u) = Th(e′u), and since e is bijective on objects, ker(e) ≤ ker(e′u). From part 2 of

Theorem 7, there exists a unique morphism w such that we = e′u. Moreover it is straightforward to verify

that the morphisms in E are epimorphisms in FAL and so e is an epimorphism. From this fact and the fact

that the large rectangle and small top square commute, the small bottom square must commute as well.

50



4.3 Algebraic Characterizations of Logical Closure Operators

Let Sg be a single-sorted algebraic signature, AlgSg the category of set-valued Sg-algebras and EqSg the

class of Sg-equations. Then there is an adjunction

P(EqSg) P(AlgSg)
op

Alg(·)

Eq(·)

⊣ (4.1)

Where P is the operation of taking the powerset and both P(EqSg) and P(AlgSg) are ordered by inclusion.

Alg(·) takes a class of algebras to the collection of all Sg-equations they satisfy andEq(·) takes a collection of

Sg-equations to the class of all Sg-algebras that satisfy them. This adjunction determines a closure operator

Eq ◦ Alg on P(EqSg), and a closure operator Alg ◦Eq on P(AlgSg). From Birkhoff’s Completeness

Theorem for equational logic, Eq ◦Alg(Θ) is the closure of Θ under the derivation rules of equational logic.

Birkhoff’s HSP Theorem asserts Alg ◦Eq(·) is HSP(·) where H, S, P are the operations which close a class of

algebras under the operations of taking homomorphic images, subalgebras and products respectively Birkhoff

(1935).

In the categorical semantics for equational logic, AlgSg is equivalent to FP(CSg,Set) where FP is

the 2-category of categories with finite products and product preserving functors. Birkhoff’s HSP Theorem

interpreted in the categorical semantics says Y ⊆ Ob(FP(CSg,Set)) is an equational class iff HSP(Y) = Y ,

where

1. P(Y) is the smallest class containing Y stable under products.

2. S(Y) is the smallest class containing Y such that whenever F ∈ Y and η : K ⇒ F is a monomorphism,

then K ∈ S(Y).

3. H(Y) is the smallest class containing Y such that whenever F ∈ Y , and η : F ⇒ K is a regular

epimorphism, then K ∈ H(Y).

For an analogous characterization for a multi-sorted algebraic signature see Adámek et al. (2011). Since we

are considering first-order logics, we are interested in a similar result where P(EqSg) is replaced by the

complete lattice of all Sg-theories ThSg and algebras by first-order structures. If Sg is single-sorted and L

is a language for classical first-order logic, then the Tarskian Sg-structures of classical first-order logic can be

identified with morphisms F : (CSg, PSg) → (Set,P), where P is the preimage functor. It is well-known

that closing a class of Tarskian structures under their common theory, is equivalent to closing the class under

ultraproducts, isomorphic copies and ultraroots (Hodges, 1993, p. 454). In what follows, we develop an

analogous result for an arbitrary first-order logic L and its general prop-categorical semantics.
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Let ModLSg be the collection of all Sg-structures in FAL. Then we are interested in characterizing

Mod(·) ◦Th, where

ThSg P(ModLSg)
op.

Mod(·)

Th(·)

⊣

We take ModLSg to be the collection of all morphisms F : (CSg, PSg) → (C, P ) such that (C, P ) ∈ Ob(FAL).

Then for each Y ⊆ ModLSg, Th(Y) is the Sg-theory whose assertions are {a ∈ ASg : ∀F ∈ Y, GJaK ∈

kerF} and for each T ∈ ThSg, ModT = {F ∈ ModLSg : GJT K ⊆ kerF}. If FAL forms a complete

semantics for L, Th(ModT ) is the Sg-theory whose assertions are {a ∈ ASg : T ⊢L a}. For Y ⊆ ModLSg,

we wish to characterize Mod(·) ◦Th(Y). Let {Fi : (CSg, PSg) → (Ci, Pi)}i∈I ⊆ Mod(·) ◦Th(Y). Then

each (Ci, Pi) ∈ Ob(FAL), and from Proposition 8, (
∏

Ci,
∏
Pi) ∈ Ob(FAL), and so ⟨Fi⟩i∈I ∈ ModLSg.

Moreover, ⟨Fi⟩i∈I satisfies each assertion satisfied by all Fi and so ⟨Fi⟩i∈I ∈ Mod(·) ◦Th(Y). We define the

(external) product of {Fi}i∈I to be ⟨Fi⟩i∈I and let P(Y) denote the closure of Y under external products.

And so, Mod(·) ◦Th(Y) is stable under taking external products.

LetF : (CSg, PSg) → (C, P ) ∈ Mod(·) ◦Th(Y). For each (D, Q) ∈ Ob(FAL) andH ∈ FAL((C, P ), (D, Q)),

H ◦ F ∈ Mod(·) ◦Th(Y). We say H ◦ F is an (external) homomorphic image of F and let H(Y) denote

the closure of Y under external homomorphic images. If H : (CSg, PSg) → (E , R) and ι : (E , R) → (C, P )

are morphisms in FAL such that F = ι ◦H and ι is a subprop-morphism, then we call H an (external) sub-

model of F and let S(Y) denote the closure of Y under taking external submodels. SinceGJTh(Y)K ⊆ kerF ,

ι ◦H = F and ι is a subprop-morphism, GJTh(Y)K ⊆ kerH and so H ∈ Mod(·) ◦Th(Y).

Remark 3. If we consider T -algebras as product preserving functors {Fi : CT → C}i∈I , where C has arbi-

trary products then,

CT C

∏
i∈I C

F×

⟨Fi⟩i∈I
×

a

commutes up to a change-in-product natural isomorphism a, where × is the right adjoint to the diagonal

functor Diag : C →
∏

i∈I C and F× is the usual “internal” product of the algebras {Fi}i∈I . Since × is

faithful, ⟨Fi⟩i∈I and F× satisfy the same equations. Then the external product ⟨Fi⟩i∈I satisfies the same

equational theory as the internal product F×. For first-order models, the internal product need not correspond

to the external. The issue is that for c ∈ Ob(
∏

i∈I C), in general,
∏

i∈I P (ci) ̸∼= P (×(c)).

Theorem 8. Let L be a logic and Sg a small signature (not a proper class). For each Y ⊆ ModLSg,
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Mod(·) ◦Th(Y) = HSP(Y).

Proof. If Y is the class of all Sg-L structures of a given theory T , then we showed Y is closed under taking

(external) products, submodels and homomorphic images and so HSP(Y) ⊆ Mod(·) ◦Th(Y).

In the other direction, let T = Th(Y), F : (CSg, PSg) → (C, P ) be a T -model, where (C, P ) ∈ Ob(FAL)

and let {Ti}i∈I be the collection of all Sg-L theories such that there exists Fi : (CSg, PSg) → (Ci, Pi) ∈

Y such that Th(Fi) = Ti. Then T = ∩i∈ITi, and define ϵT := G : (CSg, PSg) → (CT , PT ), where

G ∈ (CT , PT ) is the generic T -model. Then ker ϵT ≤ ker⟨Fi⟩I , and so from Theorem 7, there exists

ι : (CT , PT ) → (
∏

I Ci,
∏

I Pi) such that

(CSg, PSg) (
∏

I Ci,
∏

I Pi)

(CT , PT )

ϵT

⟨Fi⟩I

ι

commutes. Moreover, since Th(⟨Fi⟩I) = T , ι is a subprop-morphism. From Proposition 6, (CT , PT ) ∈

Ob(FAL) and so ϵT ∈ SP(Y) = Y . Since F is a T -model, ker ϵT ≤ kerF . From Theorem 7, there exists a

morphism H : (CT , PT ) → (C, P ), such that

(CSg, PSg) (C, P )

(CT , PT )

ϵT

F

H

commutes and so F ∈ HSP(Y). Therefore, HSP(Y) ⊇ Mod(·) ◦Th(Y).

Let Log be the partial order of all logics. We now consider the following adjunction:

Log P(Ob(FA))op

Ob(FA(·))

⊨(·)

⊣ (4.2)

In order to give a characterization of the closure operator Ob(FA⊨(·)), we first restrict the logics in Log to

some fixed signature Sg. Let LogSg be the collection of all logics restricted to Sg-assertions and we denote

the corresponding restrictions of Ob(FA(·)) and ⊨(·), Ob(FASg
(·) ) and ⊨Sg

(·) respectively.

LogSg P(Ob(FA))op

Ob(FASg
(·) )

⊨Sg
(·)

⊣ (4.3)
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In the context of (the untyped) equational logic Adjunction 4.3 corresponds to the following: Let Lω be

an algebraic signature and V a set of variables of cardinality λ. Let EqV be the collection of Lω-equations

over V which we identify with Fm2
V , the square of the formula-algebra. A collection of Lω-algebras A

determines a structural closure operator ⊨A, defined by Θ ⊨A ϵ = δ if and only if for all homomorphisms

h : FmV → A, where A ∈ A, if Θ ⊆ kerh, then ϵ = δ ∈ kerh. Observe that ⊨SP(A) = ⊨A, but SP(A)

may not be the largest collection of algebras defining the same consequence. In Blok and Jónsson (2006) it

is shown that the largest such class of Lω-algebras is UλSP(A), where B ∈ Uλ(A) if every λ-generated

subalgebra of B is in A.

Taking the operation Uλ as inspiration, where λ up to renaming specifies the propositional signature,

given a signature Sg, and X a collection of prop-categories, we define USg(X ) so that (D, Q) ∈ USg(X ),

if each classifying sub-prop-category (CT , PT ) of (D, Q) is in X , where Sg(T ) = Sg. For X ⊆ Ob(FA),

we take P(X ) to be the closure of X under taking products and S(X ) to be the closure of X under taking

sub-prop-categories.

Theorem 9. For X ⊆ Ob(FA), and Sg a small signature (Not a proper class), Ob(FASg
(·) )◦ ⊨Sg

(·) (X ) =

USgSP(X ).

Proof. From Proposition 6 and Proposition 8, Ob(FASg
(·) )◦ ⊨Sg

(·) (X ) is stable under S and P. Let (D, Q) ∈

USg(Ob(FASg
(·) )◦ ⊨Sg

(·) (X )) and suppose T ⊨X a. Let F : (CSg, PSg) → (D, Q) be a T -model in (D, Q)

and T ′ = Th(F ). From Theorem 7 there exists ι : (CT ′ , PT ′) → (D, Q) which makes the diagram

(CSg, PSg) (D, Q)

(CT ′ , PT ′)

ϵT ′

F

ι

commute. Moreover, since Th(F ) = Th(ϵT ′), ι is a subprop-morphism. Then (CT ′ , PT ′) ∈ Ob(FASg
(·) )◦ ⊨Sg

(·)

(X ), because (D, Q) ∈ USg(Ob(FASg
(·) )◦ ⊨Sg

(·) (X )). Since T ⊨X a and GJT K ⊆ ker ϵT ′ , GJaK ∈

ker ϵT ′ . Thus GJaK ∈ kerF and so T ⊨(D,Q) a. It follows that (D, Q) ∈ Ob(FASg
(·) )◦ ⊨Sg

(·) (X ) and so

Ob(FASg
(·) )◦ ⊨Sg

(·) (X ) is stable under USg. Therefore, Ob(FASg
(·) )◦ ⊨Sg

(·) (X ) ⊇ USgSP(X ).

Now let (D, Q) ∈ Ob(FASg
(·) )◦ ⊨Sg

(·) (X ) and consider a subprop-morphism ι : (CT , PT ) → (D, Q) such

that Sg(T ) = Sg. If a ∈ ASg \ A(T ), then the generic T -model G in (CT , PT ) does not satisfy a and so

T ⊭(CT ,PT ) a. Since ⊨(CT ,PT ) ⊇ ⊨(D,Q) ⊇ ⊨X for each a /∈ T , there exists a T -model Fa : (CSg, PSg) →

(Ca, Pa) such that (Ca, Pa) ∈ X and GJaK /∈ kerFa. Then ker(ϵT ) ≤ ker(⟨Fa⟩a/∈T ) and so there exists a
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morphism λ : (CT , PT ) →
∏

a/∈T (Ca, Pa) such that

(CSg, PSg)
∏

a/∈T (Ca, Pa)

(CT , PT )

ϵT

⟨Fa⟩a/∈T

λ

commutes. Moreover, Th(ϵT ) = Th(⟨Fa⟩a/∈T ) and so λ is a subprop-morphism. Thus (CT , PT ) ∈ SP(X )

and so (D, Q) ∈ USgSP(X ).

Adjunction 4.3 is relevant when one wants to consider a logic over a fixed signature. However, in categor-

ical logic, where internal logic is used, it makes sense to have a logic be independent of a particular signature.

Thus we also provide a characterization of the closure Ob(FA⊨(·)) in Adjunction 4.3. For X ⊆ Ob(FA), we

define U(X ) by (D, Q) ∈ U(X ), if each classifying sub-prop-category (CT , PT ) of (D, Q) is in X . That is,

(D, Q) ∈ U(X ) if and only if for each signature Sg, (D, Q) ∈ USg(X ). For the following result, we must

assume all prop-categories and signatures are small.

Theorem 10. Ob(FA⊨(·)) = USP(·).

Proof. Clearly Ob(FA⊨X ) is stable under S and P. Suppose (D, Q) ∈ U(Ob(FA⊨X )), and let T be the

theory of (D, Q). Then (CT , PT ) ∈ FA⊨X and since ⊨(D,W ) = ⊨(CT ,PT ), (D, Q) ∈ Ob(FA⊨X ).

Now suppose (D, Q) ∈ Ob(FA⊨X ). Then ⊨(D,Q) ⊇ ⊨X . Following the proof of Theorem 9, one shows

for each signature Sg, (D, Q) ∈ USgSP(X ) and so (D, Q) ∈ USP(X ).
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