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CHAPTER 1

Introduction

1.1 Overview

Over the past two decades, medical imaging techniques such as computed tomography (CT), magnetic reso-

nance imaging (MRI), X-ray and diffusion MRI have been invaluable for the early detection, diagnosis, and

treatment of diseases [18]. Given the growing size of medical images, varied pathology, and fatigue of physi-

cians, researchers, and experts, computer-assisted algorithms for medical images have become increasingly

necessary [143].

Computer algorithms for the delineation of anatomical structures and other regions of interest from the

medical image are regarded as medical image segmentation algorithms[122]. The segmentation algorithm

has an essential role in the numerous biomedical imaging applications such as quantification of tissues[90],

localization of tumor [11], analysis of anatomical structure[66] and computer-aided surgery[68]. Initially,

low-level edge and line detector filters[184] and deformation model[32] from 1970 to the 1990s were used to

perform low-level pixel image level processing. At the end of the 1990s, active shape model[172], atlas[74]

and hand-crafted features[193] and statistical classifiers[161] were used to extract the boundary of the region

of interest in high-dimensional feature space. With the advent of deep learning technology, hand-crafted

features are increasingly being replaced with features representing the data learned by deep neural networks

to achieve medical image segmentation tasks with impressive performance[161].

Despite the newly improved performance, large, representative, and high-quality annotated datasets are

the prerequisite for the advanced deep learning model[147]. However, we rarely have a perfect training

dataset in the medical imaging field. We usually have a limited size of training data or low-quality annotation[146].

Even more, the region of interest (ROI) only can be derived from certain imaging modalities instead of im-

ages that we have to delineate. In this situation, knowledge transfer can be one useful way to solve the issue.

Knowledge transfer refers to the use of knowledge from other image modalities[97] or similar task[186] to

infer the bio-structure segmentation from images we have. This way can help researchers solve imperfect

training dataset problems by leveraging existing publicly annotated datasets or other imaging modalities with

annotation.

Deep learning brings us opportunities to segment bio-structures from the brain to the whole human body.

Whole-brain segmentation plays a crucial role in both scientific and clinical research, facilitating quantitative

comprehension of the human brain. This non-invasive method allows for the quantification of brain structures
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using structural MRI. Except for the quantification of brain structures, a thorough comprehension of the

human brain requires an understanding of its anatomical connectivity. White matter forms these long-range

connections, organized into distinct tracts[148]. It is valuable to segment the white matter pathway from the

brain. As for body composition, an increasing body of evidence supports an intimate brain-body connection in

aging[12], with cardiovascular disease (CVD)[95], and neuro-degenerative disease[88]. Currently, the study

begins to focus on the connection among different systems of the human body like brain-gut connection[79].

Investigating relationships between each other can bring new understanding to each one of them. Inspired by

this, we focus on investigating knowledge transferring to segment the bio-structure of the brain and body to

characterize relationships among them in this thesis.

1.2 Structural MRI and diffusion MRI for brain

Neuroimaging is a branch of medical imaging that focuses on the brain. In addition to diagnosing disease,

neuroimaging also studies brain anatomy, the function of the brain parts, and the connection between brain

parts. MRI is the popular imaging modality in the neuroimaging study of safety and high contrast among

different tissues of the brain. In this thesis, structural MRI and diffusion MRI are two image modalities to

discuss.

1.2.1 Structural MRI for brain

Structural MRI for the brain produces high contrast between gray and white matter, allowing for the quantifi-

cation of gray matter, white matter, and cerebrospinal fluid (CSF)[55]. One popular image type for structural

MRI is T1 weight MRI (T1w). T1w is one of the sequences of MRI to capture differences in the T1 relaxation

time of tissues. T1w can help physicians capture the lesion, and tumor and observe the longitude development

of the brain. The following Figure 1.1 is the brain T1w image in triplane view.

From Figure 1.1, the CSF of T1w is dark. The gray matter and white matter are gray and white respec-

tively. However, the whole white matter is homogeneous and shows little contrast within it. It is hard to

subdivide the white matter into other structures by only relying on contrast within T1w.

1.2.2 Diffusion MRI for brain

Diffusion MRI (dMRI) is a form of MRI imaging based on measuring the random motion of water within a

voxel under a diffusion gradient pulse. The contrast of dMRI is the attenuation of the signal based on how

easily the water molecules can diffuse in that region. The dMRI signal is related to the apparent diffusion

coefficient ADC and the b-value by:
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Sagittal view Coronal view Axonal view

Figure 1.1: The triplane view of a T1w brain. There are sagittal, coronal, and axonal views of brain images.

S = S0e−bADC (1.1)

where S0 is the signal in the absence of diffusion gradient pulse and ADC is the apparent diffusion coeffi-

cient. b is the b-value used to represent the amplitude of the diffusion gradient pulse. DMRI works as a

non-invasive imaging method to examine the white matter pathway in vivo. DMRI measures the random

microscopic motion (or diffusion) of water molecules in the brain tissue as the contrast parameter[78]. The

motion is anisotropic because of the arrangement of fibers within WM. Based on this property, tractography

is performed to estimate the anatomical trajectories of WM. One popular workflow is to estimate local fiber

orientation based on diffusion signal models like tensor[10] or other advanced models[2, 156] and reference

long-range pathways from local orientation[9]. The subsequent dissection[23] of streamlines across from

whole-brain fractograms, allows for the segmentation or mapping of WM pathways. Figure 1.2 presents one

of the pipelines to parcellate white matter and convert WM pathways into binary segmentation masks by

density map.

1.3 Single slice CT for thigh

CT represents a computerized X-ray imaging procedure in which an X-ray is aimed at a patient and quickly

rotated around the body, producing signals that are processed by computers to generate a cross-sectional

image of the body. However, CT is a radiation-intensive procedure[17]. The accumulated CT radiation dose

could be dangerous to the human body. The low-dose CT scan is the preferred choice when it is suitable for

patients’ conditions such as low-dose CT used to screen the lung cancer module[124]. CT is the promising

reference method for quantifying whole-body composition and skeletal muscle mass[109]. However, if we
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ROI
Diffusion MRI Whole brain tractography

White matter region Parcellation of brain tractography

Figure 1.2: This is one of the classic pipelines of getting white matter region from dMRI. Diffusion tensor is
derived from dMRI. Then the random seeds are used to track whole brain tractography. Starting from each
voxel, the next point is like a continuation of the current one. Then, parcellation of brain tractography is
performed to create different specific clusters. For each cluster, the density map is calculated for each voxel
and converted into the binary mask.

perform a study on the whole CT image, the subject will suffer from extra radiation which is not what we

expect. To address this concern, the researchers proposed to use one single slice CT to replace whole CT

volume to measure body composition and demonstrated results derived from one single are related to 3D

whole-body volume[109]. As for single slice, thigh composition is of great interest since it includes muscle,

fat, and bone tissues. They are all the import health biomarkers since they can change along with disease[36].

One typical example is shown in Figure 1.3.

(b)

Cortical bone    
Inner bone 
Intermuscular fat
Subcutaneous fat
Muscle

Figure 1.3: The left part is the low-dose CT slice for the thigh image. The middle part is the targeted label
map. The right one is the legend for each label.

From Figure 1.3, the outmost fat is the subcutaneous fat. The subcutaneous fat contains the anatomical

muscle. There are the femur and intermuscular fat within the muscle. The bone is divided into the cortical
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Tissues HU values
Air -1000
Fat [-190,-30]

Water 0
Muscle [30,80]
Bones [1000,+∞]

Table 1.1: The approximate HU values for common tissues.

bone and internal bone in our case. Segmentation is an important approach to quantify the properties includ-

ing area, mass, etc. In thigh tissue segmentation, intensity-based segmentation is widely applied since the

CT image has standard units as “Hounsfield units”. The unit of the CT image has a corresponding physical

meaning. In the Hounsfield scale, water is arbitrarily assigned a value of 0 HU[154]. Other values can be

computed according to:

HU = 1000× (µtissue −µwater)/µwater (1.2)

where µ is the CT linear attenuation coefficient. The Table 1.1 represents the approximate HU values for

common tissues

1.4 Intra-modality medical image segmentation

The intra-modality medical image segmentation means delineating the same target on the dataset of the

different patients within the same image modality such as CT, MRI, etc.

1.4.1 Atlas-based segmentation

In the earlier stage of medical image segmentation, researchers used low-level segmentation technology in-

cluding but not limited to the threshold, region, edge, and clustering-based methods to extract regions of

interest[94]. Those methods can achieve acceptable performance. However, those methods are limited to a

small dataset and cannot combine human expert annotation knowledge into the segmentation process. The

major difference between high-level and low-level segmentation methods is whether the method incorporates

prior anatomical knowledge[104]. Atlas-based segmentation is one of the most popular high-level methods

in the segmentation task. The atlas is defined as the combination of an intensity image (template) and its

segmented image (the atlas labels)[20]. Organ segmentation measurements vary significantly across popula-

tions due to diverse demographic differences. Creating an atlas for each organ within a population aids not

only in segmenting out-of-sample individuals but also in providing comparative statistical measures across

populations[92, 93, 195]. After registering the atlas template and the target image, the atlas labels are prop-

agated to the target image as the final segmentation label map[20]. At this point, the segmentation turns

into a registration problem. The registration errors decide the accuracy of the segmentation performance. To
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better deal with registration errors caused by a single atlas, multi-atlas segmentation (MAS)[166] is applied

to perform label propagation to minimize outliers by discarding low agreement among many atlases bringing

improvement in the accuracy for the well-defined shape of the objects.

1.4.2 Learning-based segmentation

Different from atlas-based segmentation, deep learning[91] is currently a popular method in medical image

segmentation. Deep learning uses computational models that are composed of multiple processing layers

to learn a representation of medical images. One of the popular models for medical image segmentation is

U-Net[132]. The network architecture is shown in Figure 1.4. The left part of the network used to extract

features is called the encoder, and the right part of the network that is restored from the features to the

original image size is defined as a decoder. The encoder and decoders form the encoder-decoder structure.

The skip connection brought by U-Net integrates the low-level features with high-level features to improve

the performance of segmentation. The U-Net and its variant[196] have been applied extensively in varied

modalities and different body parts of medical images[98, 151].

Feature map

Convolution

Up convolution

Down convolution

Copy

Encoder Decoder

Feature map from ecnoder

Figure 1.4: The U-Net architecture for 3D image. The whole U-Net architecture includes encoding and
decoding parts.

Transformers are increasingly recognized as the alternative to the established Convolutional Neural Net-

works (CNNs). Dosovitskiy et al. introduced the Vision Transformer (ViT), a sophisticated extension of

the conventional NLP transformer[39]. The transformer converts sequences of image patches into linear em-

beddings, leveraging an attention mechanism to find the connection between these embeddings, a departure

from the traditional convolutional operations inherent in CNNs. As shown in Figure 1.5, each input image is

systematically segmented into patches of dimensions 16 × 16, referred to as ’visual tokens.’ Subsequently,

these tokens undergo a projection into encoded vectors of predefined dimensions through a Multi-Layer Per-
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ceptron (MLP). To retain the spatial context amidst the attentional process, a position encoding vector is

integrated with the encoded vectors. Attention maps, derived from a multi-head attention network, culminate

in an output prediction via a dual-layer MLP classification mechanism. Intrinsically, the ViT is adept at cap-

turing intricate long-range relationships and dependencies between visual constituents, exhibiting minimal

inductive biases in the visual domain. In the medical domain, the growth of interest in adapting transformer

networks is also demonstrated[187, 192].

Multi-Head
self-attention

Norm

MLP

Norm

Transform
er Encoder

0
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2

3
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5
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6
Patch Em

bedding &
Positional Em

bedding

Figure 1.5: With the introduction of a vision transformer (Vit), volumetric images are divided into patches.
The left part is the overall ViT architecture. The right part is the encoder block includes the normalization
and multi-head self-attention mechanisms.

1.4.3 Transfer learning

The prerequisite for the impressive performance of deep learning is sufficient annotation data. Manual anno-

tation is label-intensive and needs professional knowledge. It is hard to collect high-quality data for training
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in the clinic. Transfer learning is an effective way to address the above challenges[104]. Transfer learning

means that deep learning models can be trained on a large-scale labeled database. After the convergence of

the pre-train model, the limited original annotated data is utilized to fine-tune the pre-train model to converge.

Transferring learning from natural images to medical images is also de facto for medical image analysis[147].

1.5 Inter-modality medical image segmentation

Medical imaging has many kinds of modalities. Researchers cannot only segment on one image modality to

help doctors since each modality has its own strengths and drawbacks. For instance, while it is difficult to

annotate white matter pathways from T1w, the white matter can be easily parcellated into clusters based on

dMRI. Thus, how to leverage the labels from the source domain to perform segmentation on the new domain

is a popular topic in the research area.

One way to solve this problem is by the atlas-based segmentation method mentioned in Chapter 1.4.

Transferring statistical average labels derived from the source domain to the target image by registering the

template to the target image. The deep learning method has been the de facto standard for medical image

segmentation. However, the learning method showed degraded performance when the model was applied to

a domain different from what it trained on. Synthesis of a target image based on a generative adversarial

network (GAN)[58] is one category to address this issue. GAN includes two models: generative models (G)

that capture the data distribution and discriminative model (D) that estimates the probability that a sample

came from training data rather than G. The training procedure for G is to maximize the probability of D

making a mistake. To learn the generator’s distribution, the prior input noise is defined as variable pz(z), and

mapping from noise to data space is regarded as G(z). The target function can be represented as:

min
G

max
D

V (D,G) = Ex∼pdata(x) [logD(x)]+Ez∼p(z)[log(1−D(G(z)))] (1.3)

Based on GAN, CycleGAN[43] is created to perform image-to-image translation for unpaired images

and provides a promising tool for cross-modality synthesis (MRI-CT). CycleGAN introduces cycle loss by

utilizing two generators (G(A−B),G(B−A)) to force image content consistent when translating from domain A

to domain B.

Lcyc(G(A−B),G(B−A)) = Ex∼pdata(x) ||GB−A(GA−b(x))− x||1

+Ey∼pdata(y) ||GA−B(GB−A(y))− y||1 (1.4)

where Lcyc represents the cycle loss. x is input from domain A and y is input from domain B. The segmentation
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neural network can be trained on synthesizing images to learn segmentation maps. This pipeline provides a

solid foundation for domain adaptation. Its variants have been applied to the whole medical image field.

1.6 Contributed Works

To characterize the relationship between the brain and the body, we proposed several methodologies and

tools. We constructed white matter atlases from a large cohort of subjects (contribution 1). Building on this,

we introduced a localized patch-based convolutional neural network designed specifically to predict white

matter pathways from T1 structure MRI data personally (contribution 2). Turning our attention to body

composition, we proposed label-efficient approaches to segment the muscle, bone, and fat tissues from a sin-

gle CT slice (contribution 3). To further classify muscle into distinct groups, we utilized domain adaptation

to transfer labels from publicly available MRI data to individual CT slices (contribution 4). Concluding our

previous contributions, we introduced the gumble-softmax structure into deep neural networks, empowering

them to predict brain features based on body features and reciprocally (contribution 5). The roadmap of the

dissertation is shown in Figure 1.6

Contribution 1: The white matter pathway atlas for
structure MRI

Contribution 2: Subject-specific segmentation of
white matter pathway based on deep learning

Contribution 3: Label-efficient thigh segmentation
based on transfer learning

Contribution 4: CT muscle group segmentation
with domain adaptation and self-training

Contribution 5: Characterize brain and body connection
through linear and non-linear model

Brain Body

Figure 1.6: The roadmap of the dissertation

1.6.1 Contribution 1: The white matter pathway atlas for structure MRI

The atlases in neuroscience research are valuable, serving not only as indispensable tools for individual

subject studies but also for drawing inferences and comparing diverse populations. Notwithstanding the ex-

tensive array of human brain structure atlases accessible to researchers, there remains a conspicuous scarcity

of resources specifically dedicated to the white matter or atlases derived from limited populations.

To bridge this gap, we proposed to create white matter pathway atlases by collecting data from a large-

scale, multi-site population. We selected six state-of-the-art white matter pathway segmentation methods to
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curate the atlas segmentation masks. To ensure the reliability and relevance of our atlas, we validated the

atlas by comparing atlas from different populations.

This part will be covered in Chapter 2.

1.6.2 Contribution 2: Subject-specific segmentation of white matter pathway based on deep learning

DMRI can be used to probe the connectivity and microstructure of human brain tissue in vivo. However,

many legacy or time-constrained studies only have T1w. Annotating white matter pathways from T1w is

challenging due to its limited contrast for white matter. Though the white matter atlas existed, it serves as

an averaged representation of a cohort population. Convolutional neural networks (CNN) exhibit potential

in capturing subject-specific variations compared with atlas. However, no prior work deriving white matter

pathway segmentation from T1w utilizing CNN.

To bridge the gap, we introduced localized patch-based CNNs to predict white matter pathways directly

from T1w. We validated our methodology on an extensive cohort population, employing six state-of-the-art

techniques to derive white matter pathway data as our benchmark.

This part will be covered in Chapter 3.

1.6.3 Contribution 3: Label-efficient thigh segmentation based on transfer learning

Medical image segmentation plays a pivotal role in quantifying the volumes of muscle, bone, and fat, thereby

providing insights into body composition. Deep neural networks, which have shown promise in this domain,

typically require extensive annotated data for training from scratch. However, acquiring human annotations

for medical images, even for a single CT slice, is a process that is both time-consuming and labor-intensive.

To handle the human annotation problem, we introduced a transfer learning-based approach. Initially,

we train the model using pseudo labels and subsequently fine-tune it with a limited set of human expert

annotations to achieve accurate body composition.

This chapter will be covered in Chapter 4.

1.6.4 Contribution 4: Single slice CT muscle group segmentation with domain adaptation and self-

training

Segmenting muscles into distinct groups provides fine-grained features that can be utilized to understand

the relationship between the brain and the body. However, annotating muscles on an individual slice proves

difficult due to the similar intensity shared among different muscle groups. Further complicating this task is

the absence of a 3D context and the inherent challenges of annotation.

To address the above challenges, we utilize muscle group annotations from publicly available MRI volume
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datasets. Through domain adaptation, we effectively transfer muscle labels from MRI volumes to single CT

slices.

This part will be covered in Chapter 5.

1.6.5 Contribution 5: Characterize brain and body connection through linear and non-linear model

Characterizing brain and body connection is crucial for understanding how body composition influences brain

diseases, and vice versa. Yet, most prior research has primarily relied on conventional metrics like BMI or

hip-waist ratio, rather than detailed fat, muscle, and bone distribution.

To close the gap, our study uses 133 regions of interest and body composition as quantitative metrics.

When we design the model architecture, we integrate the Gumbel-softmax into a deep neural network to

extract relevant input features related to output features.

This part will be covered in Chapter 6.
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CHAPTER 2

The white matter pathway atlas for structural T1w MRI image

This work was previously published[64]. Permission to include the work as part of the dissertation has been

obtained, see Appendix A.

2.1 Introduction

The creation and application of medical image-based brain atlases is widespread in neuroanatomy and neu-

roscience research. Atlases have proven to be a valuable tool to enable studies on individual subjects and

facilitate inferences and comparisons of different populations, leading to insights into development, cogni-

tion, and disease[20], [89, 153, 54]Through the process of spatial normalization, images can be aligned with

atlases to facilitate comparisons of brains across subjects, time, or experimental conditions. Additionally,

atlases can be used for label propagation, where anatomical labels are propagated from the atlas to new data

to identify a priori regions of interest. With these applications in mind, several human brain atlases have been

created Figure 2.1), with variations in the number of labels, the regions of the brain that are delineated, the

methods used to generate labels, and the population or individuals used to create the atlas (for a review of the

existing atlases and their standardization, see recent work by [89].

2.2 Related works

Despite the wide variety of human brain atlases available to the research community, there is a distinct lack

of resources available to describe the white matter of the brain. For example, most atlases emphasize cortical

or sub-cortical gray matter, and do not contain a label for white matter[183, 136, 56, 130, 158, 102, 103, 135,

112, 86, 83, 6, 107, 13, 44, 75, 82, 157, 106], or only label white matter as a single homogenous structure, or

simply separate into the “cerebral white matter” of the left and right hemispheres[105, 101, 37].
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Figure 2.1: Comparison of types of human brain atlases and regions present in each. Visualizations were
made using FSLview tri-planar view for volumetric atlases and using MI-brain 3D-view for streamline at-
lases. Note that because atlases are in different spaces, visualized slices, anatomy, and orientation is not guar-
anteed to be the same across atlases. This figure is not exhaustive, and is only representative of the types of
atlases and the information they contain. In general, from top-to bottom, left-to-right, atlases focus on cortical
and sub-cortical gray matter, to regional white matter labels, to tractography-derived white matter pathways,
to streamline-based atlases. Figure inspired by work on standardizing gray matter parcellations[89].
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Some atlases do indeed include labels for white matter. However, in many cases these labels are for “re-

gions” of the white matter rather than labels for specific white matter bundles[41, 40, 42, 149, 87, 117] For

example, an atlas may contain a label for the “anterior limb of the internal capsule” or “corona radiata” which

are descriptions of regions through which several white matter bundles are known to pass. While these re-

gions are certainly scientifically useful, the white matter pathways themselves would be more informative for

network neuroscience investigations or applications where white matter structure, connectivity, and location

are paramount. Additionally, regional labels do not overlap, whereas the fiber bundles of the brain are known

to be organized as a complex mixture of structures, overlapping to various degrees. To overcome these limita-

tions, several atlases have been created using diffusion MRI fiber tractography, a technique which allows the

investigator to perform a “virtual dissection” of various white matter bundles of the brain. Examples include

population-based templates [194, 162]or atlases of association and projection pathways[182, 110, 118, 24, 22]

atlases of the superficial U-fibers connecting adjacent gyri [116, 60] and atlases created from tractography

on diffusion data averaged over large population cohorts[116, 180, 181]. In particular, several atlases have

been made with a focus on a single pathway or a set of pathways with functional relevance[46] for exam-

ple the pyramidal tract[28] the sensorimotor tracts[4] or lobular-specific connections[24, 129, 152],Existing

tractography-based atlases, however, typically suffer from one or more limitations: (1) small population

sample sizes, (2) restriction to very few white matter pathways, and (3) the use of out-dated modelling for

tractography (specifically the use of diffusion tensor imaging which is associated with a number of biases

and pitfalls). Further, it is not clear whether the same pathway defined using one atlas results in the same

structure when compared to another atlas due to differences in the procedures utilized to define and dissect

the bundle under investigation. A final type of atlas, streamline-based atlases[180, 53, 194, 131, 61], have

become popular in recent years. These are composed of millions of streamlines and can be used as a resource

to cluster sets of streamlines on new datasets, thus they nicely complement the use and application of volu-

metric atlases when diffusion MRI is available. In this work, we introduce the Pandora white matter bundle

atlas. The Pandora atlas is actually a collection of 4-dimensional population-based atlases represented in both

volumetric and surface coordinates in a standard space. Importantly, the atlases are based on a large number

of subjects, and are created from multiple state-of-the-art tractography and dissection techniques, resulting in

a sizable number of (possibly overlapping) white matter labels. In the following, we describe the creation of

these atlases, validate the use of multiple subject populations and multiple tractography methodologies.

2.3 Method

Figure 2.2 presents an overview of the pipeline and methodology used to create these atlases. Briefly, we

retrieved and organized data from 3 large repositories (Figure 2.2, Data). For each subject, we performed
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Figure 2.2: Experimental workflow and generation of atlases. Data from three repositories (HCP, BLSA, and
VU) were curated. Subject-level processing includes tractography and registration to MNI space. Volumetric
atlases for each set of bundle definitions are created by population-averaging in standard space. Point clouds
are displayed which allow qualitative visualization of probability densities of a number of fiber pathways.
Finally, surface atlases are created by assigning indices to the vertices of the MNI template white matter/gray
matter boundary.

six different automated methods of tractography and subsequent white matter dissection (Figure 2.2, Subject-

level processing: tractography), and registered all data to a standard volumetric space (Figure 2.2, Subject-

level processing: registration). Next, a probabilistic map was created separately for each white matter bundle

in standard space in order to create the volumetric atlases (Figure 2.2, Volumetric atlas creation). Finally,

a surface mesh of the boundary between white and gray matter was created, and the volumetric maps were

used to assign probabilities along this surface to create the surface-intersection atlases (Figure 2.2, Surface

Atlas creation).

2.3.1 Data

We used de-identified images from the Baltimore Longitudinal Study of Aging (BLSA), Human Connectome

Project (HCP) S1200 release, and Vanderbilt University (Figure 2.2, Data). The BLSA is a long-running

study of human aging in community-dwelling volunteers and is conducted by the Intramural Research Pro-

gram of the National Institute on Aging, NIH. Cognitively normal BLSA participants with diffusion MRI

data were included in the present study, using only one scan per participant, even if multiple follow-ups

were available. HCP data are freely available and unrestricted for non-commercial research purposes and
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HCP BLSA VU
Subjects 1060 963 303

Age 28.8±3.5 66.2±14.82 29.7±11.5
Age Range [22,35] [22.4,95.1] 18,75
Handedness N/A 86L,843R,35N/A 30L,270R,3N/A

Sex 488M,573F 431M,532F 134M,169F

Table 2.1: Meta data information.

are composed of healthy young adults. This study accessed only de-identified participant information. All

datasets from Vanderbilt University were acquired as part of a shared database for MRI data gathered from

healthy volunteers. A summary of the data is given in Table 2.1, including number of subjects, age, sex, and

handedness. All human datasets were acquired under research protocols approved by the local Institutional

Review Boards.

All datasets included a T1-weighted image, as well as a set of diffusion-weighted images (DWIs). Briefly,

the BLSA acquisition (Philips 3T Achieva) included T1-weighted images acquired using an MPRAGE se-

quence. Diffusion-weighted images were acquired using a single-shot EPI sequence, and consisted of a single

b-value(700=s/mm2), with 33 volumes. HCP acquisition (custom 3T Siemens Skyra) included T1-weighted

images acquired using a 3D MPRAGE sequence. Diffusion images were acquired using a single-shot EPI

sequence, and consisted of three b-values (b=1000, 2000, and 3000 s/mm2), with 90 directions (and 6 b=0

s/mm2) per shell. The scans collected at Vanderbilt included healthy controls from several projects. A typical

acquisition is below, although some variations exist across projects. T1-weighted images acquired using an

MPRAGE sequence. Diffusion images were acquired using a single-shot EPI sequence and consisted of a

single b-value (1000 s/mm2), with 65 volumes.

Data pre-processing included correction for susceptibility distortions, subject motion, eddy current correction[3]

and b-table correction[137].

2.3.2 Subject-level processing: tractography

Six methods for tractography and virtual bundle dissection were employed on all diffusion datasets in na-

tive space (Figure 2, Subject-level processing). These included (1) TractSeg[169] (2) Recobundles[53] (3)

Tracula[182] (4) XTract[168] (5) Automatic Fiber-tract Quantification (AFQ)[179] and (6) post-processing

of AFQ where only the stem of the bundle was retained, which we call AFQ-clipped. Algorithms were cho-

sen because they are fully automated, validated, and represent a selection of the state-of-the art methods in

the field. In all cases, algorithms were run using default parameters or parameters recommended by original

authors. Briefly, TractSeg is based on convolutional neural networks and performs bundle-specific tractogra-

phy based on a field of estimated fiber orientations[169, 170], and delineates 72 bundles. We implemented

the dockerized version at (https://github.com/MIC-DKFZ/TractSeg) which generates fiber orientations using
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constrained spherical deconvolution using MRtrix software[155] Recobundles segments streamlines based

on their shape-similarity to a dictionary of expertly delineated model bundles. Recobundles was run using

DIPY[52] software (https://dipy.org) after performing whole-brain tractography using spherical deconvo-

lution and DIPY LocalTracking algorithm. The bundle-dictionary contains 80 bundles, but only 44 were

selected to be included in the Pandora atlas after consulting with the algorithm developers based on internal

quality assurance (for example removing cranial nerves which are often not used in brain imaging). Of note,

Recobundles is a method to automatically extract and recognize bundles of streamlines using prior bundle

models, and the implementation we chose uses the DIPY bundle dictionary for extraction, although others

can be used. Tracula (https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula) uses probabilistic tractography with

anatomical priors based on an atlas and Freesurfer[47, 48, 31] (https://surfer.nmr.mgh.harvard.edu) cortical

parcellations to constrain the tractography reconstructions. Tracula used the ball-and-stick model of diffu-

sion from FSL’s[77] bedpostx algorithm to reconstruct white matter pathways, and resulted in 18 bundles

segmented per subject. Xtract (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT) is a recent automated method

for probabilistic tractography based on carefully selected inclusion, exclusion, and seed regions, selected for

42 tracts in the human brain. Xtract also utilized the ball-and-stick model (bedpostx) of diffusion for local

reconstruction. AFQ (https://github.com/yeatmanlab/AFQ) is a technique that identifies the core of the major

fiber tracts with the aim of quantifying tissue properties within and along the tract, although we only extracted

the bundle profile itself. The default in AFQ is to use tensor based deterministic tractography, followed by

fiber segmentation utilizing methodology defined by[165], and removal of outlier streamlines. In our case,

we extracted the full profile of the bundle, as well as the core of the bundle which was performed in the

AFQ software by a clipping operation. For this reason, we called these AFQ and AFQ-clipped, respectively.

Both of these methods resulted in 20 bundles. In total, we present 216 bundles in the atlas. Output from all

algorithms were in the form of streamlines, tract-density maps, or probability maps. In all cases, pathways

were binarized at the subject level, indicating the voxel-wise existence or non-existence of the bundle in that

subject, for that pathway. These binary maps were used to create the population atlases after deformation

to standard space. Exhaustive manual quality assurance (QA) was performed on tractography results. QA

included displaying overlays of binarized pathways over select slices for all subjects, inspecting and verify-

ing appropriate shape and location of all bundles on all subjects. We note that not all methods were able to

successfully reconstruct all pathways on all subjects, for this reason, some atlases contain information from

fewer than all 2443 subjects.
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2.3.3 Volumetric atlas creation

Once all data were in MNI space, population-based atlases were created by following methods previously

used to create tractography atlases[28, 19, 152]. For each pathway, the binarized maps were summed and

set to a probabilistic map between 0 and 100 population overlap (Figure 2.2, Volumetric Atlas). Thus, each

pathway was represented as a 3D volume, and concatenation of all volumes results in the 4D volumetric

atlas. Atlases were additionally separated based on the method used to create the atlas, as well as separated

by dataset (BLSA, HCP, VU) if population-specific or method-specific analysis is required.

2.3.4 Suface-intersection atlas creation

To overlay each pathway onto the MNI template surfaces, a standard FreeSurfer pipeline[47] was used to

reconstruct the white/gray matter cortical surfaces directly from the MNI ICBM template image. Each of the

probability maps overlaid over the volumetric atlas was then transferred to the reconstructed surfaces to create

the surface atlas. However, the reconstructed cortical surfaces do not necessarily guarantee unique voxel-to-

vertex matching (normally, more than one vertex belongs to a single voxel) even if they perfectly trace the

white- and gray-matter boundary. This potentially degenerates vertex-to-voxel mapping without a voxel-wise

resampling scheme. Therefore, the probability to a given vertex was obtained by tri-linear resampling of the

associated voxel for sub-voxel accuracy.

2.3.5 Data visualization and validation

Qualitative validation of the atlases included pathway visualization as an overlay of the population probability

on the MNI ICBM template image, or visualization of population-probability on the white matter/gray mat-

ter surface. These displays were used in QA during atlas creation, ensuring acceptable probability values, as

well as agreement with expected anatomy, shape, and location. To quantify similarities and differences across

pathways and methods, a pathway-correlation measure was used. The pathway-correlation was calculated be-

tween two pathways by taking the correlation coefficient of all voxels where either pathway has a probability

> 0. This correlation coefficient ranged from -1 to 1, where a value of 1 indicates a perfect correlation of

population densities. Thus, this metric measures the coherence between population maps obtained from the

bundles and was used to assess if the distribution of population probabilities in space is similar. We used this

measure to test similarities/differences between the pathways from different bundle dissection methods (to

justify the use of different tractography methods) as well as between pathways generated from the different

datasets (to justify making available atlases separated by dataset, as well as understand differences in results

based on populations). Finally, a uniform manifold approximation and projection (UMAP)[108] was used for

dimensionality reduction in order to further assess similarities and differences in pathways across methodolo-
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gies. The UMAP is a general non-linear dimension reduction that is particularly well suited for visualizing

high-dimensional datasets.

2.4 Technique validation

Figure 2.3: Visualization of data contained in example volumetric and surface atlases. Example visualization
for 10 pathways in the TractSeg nonlinear atlas are shown as both overlays and surfaces.

We begin with a qualitative validation of the data, thoroughly inspecting and visualizing all volumes and

surfaces from each atlas. An example visualization for 10 selected pathways from the TractSeg sets of atlases

is shown in Figure 2.3. All pathways overlay in the correct location, with the correct shape and trajectory, as
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expected. Population agreement is generally high in the core of the bundle (values 1) with larger variability

along the periphery of pathways. Through this qualitative validation process, differences in the methodologies

were noted including some possessing high sensitivity (larger volumes, greater agreement across subjects)

and those with higher specificity (smaller, well-defined pathways with lower population agreement).

Next, to assess differences within and between tractography techniques, we show pathway-correlations

against all other pathways as a large 216x216 matrix of correlations (Figure 2.4, a) and also plotting the

UMAP projection of each pathway on a 2D plane (Figure 2.4, b). As expected, most pathways are quite

different from others (for example we do not expect the optic radiations to share any overlap whatsoever with

the uncinate fasciculus, regardless of methodology), however there are clearly clusters of pathways sharing

some similarity, due to both spatial overlap of pathways with comparable anatomies (for example inferior

longitudinal fasciculus and inferior frontal occipital fasciculus), as well as methods representing the same

pathway. We identified a core group of 20 pathways that are commonly dissected in all methods, and clusters

of these pathways are apparent in the UMAP projection (for example, the corticospinal tracts, forceps major

and minor, optic radiations, and inferior longitudinal fasciculi are quite similar across algorithms). Thus,

certain pathways are similar, but not exactly the same, across methodologies, justifying the use of all six

state-of-the art methods for bundle dissection. Finally, we quantify differences across datasets by showing

boxplots of the pathway-correlations after separating by source of data (Figure 2.4, c). While all methods

show quite high correlations, it is clear that BLSA and VU datasets and bundles are more similar to each

other than to HCP datasets. This is expected as HCP data quality, SNR, resolution, and acquisitions are quite

different from the more clinically feasible BLSA and VU sets. Thus, bundles are also different based on

dataset source. Because of this, in addition to combining results from all subjects, we also supply atlases

separated by dataset.

2.5 Discussion

Here, we have created and made available the white matter bundle atlas, that addresses a number of limita-

tions of current human brain atlases by providing a set of population-based volumetric and surface atlases in

standard space, based on a large number of subjects, including many pathways from multiple diffusion MRI

tractography bundle segmentation methods. We envision the use of these atlases for spatial normalization

and label propagation in ways similar to standard usage of volumetric brain atlases. These labels can be used

not only for statistical analysis across population and individuals, but also for priors for tractography, relating

neuroimaging findings to structural pathways or to inform future methodologies for parcellating and seg-

menting white matter based on functional, molecular, or alternative contrasts. Similarly, although much less

frequently used in the field, the surface-based atlas can also be used to relate functional MRI findings (which
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are largely applied to cortex, with some evidence for signal contrast in white matter), as priors for cortico-

cortical tractography and future bundle segmentations, as a tool for gray matter based spatial statistics, and

again for relating alternative neuroimaging findings to structure.

As a simple example workflow. An investigator may be interested in relating tumour localization on a

structural image to specific white matter pathways hypothesized to be involved in some functional network.

The investigator may choose to register their image to the MNI template, and can either warp their data to

template space or apply the inverse transform to get white matter labels into the subject native space. The

investigator could then relate tumour location to the probability of given pathways, or could simply threshold

the probabilistic maps at a given threshold (for example 0.5) and relate these to the existence/non-existence

of the bundle being displaced by the tumour. We currently recommend the use of the concatenation of all

datasets for standard investigative studies unless a population-specific template is required. While differences

between datasets are clear and expected, the increased population variability that results from including data

from all sources is likely an advantage when investigators are using their own data with possible differences

in acquisition, resolution, and subjects. However, future work will investigate creation and dissemination of

age-specific white matter analysis, as well as including an age-adjusted surface mesh instead of using the

MNI template to generate the surface. We have chosen to include a large number of algorithms for streamline

generation and bundle dissection. Our results (Figure 2.4) show that even if the same white matter structure is

segmented using different techniques, the results are not guaranteed to be the same. This is because different

algorithms or workflows may define bundles in different ways, with different approaches taken to segment

the structure of interest. Thus, an investigator could use our atlas with the set of protocols that they agree

with most, or alternatively, could relate findings to all white matter pathways across all methodologies in our

atlas. We note that we have chosen six standard algorithms to create this atlas, although others exist and new

ones are continually developed based on improvements in both our understanding of anatomical connections

and our ability to reconstruct these connections with tractography. These methods were chosen because they

are fully automated, and robust, bundle segmentation techniques that can be easily run on several thousand

diffusion datasets. Inclusion of other tractography and/or segmentation methods are likely additions in future

iterations of the atlas, and are easily integrated with existing deformation fields and data organization. The

addition of tract orientation maps[169] or orientation-density maps[125, 126]may facilitate the development

of bundle segmentation algorithms or act as priors for bundle specific tractography. Finally, future iterations

can include variations and concatenations of gray matter and/or regional atlases in the same space, continually

adding to the number of features to be investigated with a single dataset in standard space.
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Figure 2.4: Data validation. (a) Matrix of correlation coefficient of pathways plotted against all others in-
dicates similarities within and across methodologies for bundle dissection. Solid white lines are used to vi-
sually separate bundle segmentation methods. (b) UMAP dimensionality reduction projected onto un-scaled
2D plane shows that many WM pathways are similar, but not the same, across methods. Object colors repre-
sent specific atlas bundles, with shape indicating segmentation methods. (c) Correlation coefficient of atlases
separated by dataset indicates small, but significant, differences between datasets. Together, these justify the
inclusion of all tractography methods, as well as separation of atlases by datasets.
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CHAPTER 3

Subject-specific segmentation of white matter based on deep learning

This work was previously published [174]. Permission to include the work as part of the dissertation has been

obtained, see Appendix A.

3.1 Introduction

As mentioned in chapter 1, dMRI can be used to non-invasively probe the connectivity and microstructure

of human brain tissue in vivo[127]. It allows for creation of tractograms of whole brain and parcellation of

specific white matter pathway. However, legacy or time-constrained study only has T1w instead of dMRI.

It is challenging to annotate white matter pathways from T1w since it has little contrast for white matter.

Deriving label only from T1w is our discussed topic in this chapter.

3.2 Related work

Image registration is an established way of transferring different WM labels from population-based atlases

to T1w MRI and can isolate different WM regions in T1w MRI. In general, WM atlases from the dMRI

community can be divided into two categories: streamline-based atlases[28, 61, 180, 115] and volumetric

atlases[65, 110, 116]. Streamline-based WM atlases contain streamlines assigned to various WM pathways,

while volumetric WM atlases contain labels indicating the pathway assignment(s) of a given voxel. One such

widely used volumetric atlas was proposed by Mori et al. and recognizes 48 different WM labels.[110] WM

atlas are very popular in neuroimaging analysis but have key limitations. They require that different WM

regions are not overlapping and often contain a limited amount of information outside deep WM (Figure 3.1).

To navigate these limitations, Hansen et al. recently proposed the Pandora WM bundle atlases, which are

volumetric atlases that present 216 overlapping WM pathways from 2300 healthy subjects. This approach

has subsequently allowed for both the identification of overlapping pathways and improved WM labeling

outside the deep structures on T1w MRI without dMRI[65].
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(a) T1w brain MRI.                (b) Atlas overlay                      (c) Tractography overlay 

Figure 3.1: (a) WM is largely homogenous when imaged using most sources of MRI contrast, for exam-
ple, T1w (left).(b) Traditional WM atlas (center) represents each voxel with one tissue class. (c) Modern
approaches to bundle segmentation identify multiple overlapping structures (right). Diffusion tractography
offers the ability to capture a multi-label description of WM voxels.

Compared with a large cohort population atlas, deep convolutional neural networks have the potential

to capture subject-specific variations. Among convolutional neural networks, the U-Net[29] has obtained

impressive results for performing 3D medical image segmentation including brain[72] and abdomen[151].

Brebisson et al. proposed a deep neural network learning 2D and 3D patches from structural brain MRI

to predict the anatomical class of each voxel[33]. DeepNat leverages a hierarchical multi-task network to

achieve brain segmentation with 3D patches[164] SLANT[72] learns spatially localized 3D patches from

structural MRI to achieve brain structure segmentation. Additionally, current deep learning approaches[33, 7]

have demonstrated superior performance compared with atlas-based methods on healthy brain segmentation

from structural images.

3.3 Materials and Methods

The pipeline of predicting WM labels directly from T1w MRI with deep learning includes four steps: trac-

tography, registration, normalization and patch-wise networks as shown in Figure 3.2.
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Figure 3.2: The pipeline of proposed WM bundle learning is presented, which integrates data processing and
registration as well as bundle learning. We extract WM bundles from six different tractography methods.
Structural images and corresponding tractograms are reoriented to the MNI template. Patch-wise, spatial-
localized neural networks are utilized to learn WM bundle regions from a T1w MRI image. The output of
each U-net is merged as the final step before segmentation. Representative samples of WM bundles acquired
from six automatic tractography methods and the final learning result is visualized.
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Dataset Name T1w voxel size(mm) Diffusion voxel size (mm) B-value Diffusion volume
BLSA 1.0×1.0×1.0 0.81×0.81×2.2 700 1B0 + 32DWIs
HCP 0.7×0.7×0.7 1.25×1.25×1.25 1000,2000,3000 (6B0 + 90DWIs)×3
VU* 1×1×1 2.5×2.5×2.5 1000 1B0 + 64DWIs
HCP LS 0.8×0.8×0.8 1.5×1.5×1.5 1000 2500 5B0 + 76DWIs
IXI 0.93×0.93×1.2 1.75×1.75×2.35 1000 1B0 + 15DWIs
UG 1×1×1 2×2×2 2000 6B0 + 48DWIs

Table 3.1: Dataset descriptions. * represents one typical case selected from the VU dataset.

The algorithm name Number of generated bundles for each algorithm
TractSeg[169] 72
RecoBundles[53] 44
XTRACT[168] 42
Tracula[182] 18
AFQ[179] 20
AFQclipped[179] 20

Table 3.2: The tractography algorithms and corresponding generated pathways.

3.3.1 Data

We use 2,416 de-identified images from the Baltimore Longitudinal Study of Aging (BLSA)[45], 1,105

images from Human Connectome Project (HCP) S1200 release[160], and 349 images from Vanderbilt Uni-

versity (VU) to train all deep neural networks. We also select three open-source datasets to perform external

validation to test the generalizability of the proposed learning method. We study 26 images from HCP lifeS-

pan (HCPLS)[160], 394 images from IXI (IXI, http://brain-development.org/ixi-dataset), and 12 images from

the Unilateral Glaucoma dataset (UG, https://openneuro.org/datasets/ds001743/versions/1.0.1). All above

images include paired T1w MRI and dMRI. The voxel resolution of T1w MRI, voxel resolution of dMRI, the

B0-value and diffusion volumes are shown in Table 4.1.

3.3.2 Tractography

dMRI is often subject to artifacts, which can deteriorate the accuracy of extracting WM bundles. To cor-

rect these artifacts, we perform correction for susceptibility distortions, subject motion, eddy currents, and

b-tables prior to analysis[21]. We perform tractography on preprocessed dMRI. We select six popular trac-

tography algorithms to recognize pathways and annotate WM bundles. All six algorithms were run using

default parameters. The number of generated pathways of all six tractography algorithms is shown in Table

4.2.

Note that AFQclipped clips the center of each of the 20 AFQ bundles with ROI based exclusion criteria.

According to anatomic name for each bundle, we notice that there are ten common bundles across from all

six tractography algorithms. Thus, we do not regard 216 bundles from TractSeg, RecoBundles, XTRACT,

Tracula, AFQ and AFQclipped as unique bundles.
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3.3.3 Registration and intensity normalization

To ensure that all inputs have the same voxel size and dimension, we register all pathways derived from dMRI

through all six bundle segmentation algorithms and T1w MRI, to the Montreal Neurological Institute (MNI)

ICBM 152 asymmetric template[49]. First, we rigidly register the b = 0 s/mm2 volume of each dMRI to

the T1w MRI of the same subject using FSL[145]. Then, after performing N3 correction of bias field and

normalization of white matter intensity by FreeSurfer[47] on raw T1w MRI, corrected T1w MRI is registered

to the MNI template with antsRegistrationSyn in ANTs[5]. By linking these registration steps, all pathways

are rigidly registered to T1w MRI of the same subject. All pathways are affine reoriented to the MNI template

and serve as ground truth. The affine transformation is also applied to the raw T1w MRI. After registration,

we skull strip all structural images on the MNI template with the bet tool in FSL, clip, and normalize the

background and the 98th percentile of within-brain intensity to intensity units 0 and 1. The pipeline of

registration and normalization is visualized in the Figure 3.2

3.3.4 Patch-wise network

After transforming all image and ground-truth pathways to MNI template, the high-resolution image volume

could not fit into the 12G GPU (GTX 1080Ti) memory using current popular network architectures. Inspired

by SLANT[72], we designed 125 overlapped 3D U-Nets to cover the entire MNI volume and subdivide each

image into corresponding 125 patches. Each patch ψn represented by one coordinate (xn,yn,zn) and patch

size (dx,dy,dz),n ∈ 1,2, ...125

ψn = [xn : (xn +dx),yn : (yn +dy),zn : (zn +dz)] (3.1)

Where ψn represnets the nth patch,xn,yn,zn represent the corner coordinates of the nth patch. xnand zn ∈

[1,25,50,74,98] and yn ∈ [1,34,67,101,134]. The length dx, the width dy and depth dz is 96.

To merge the outputs of the U-Nets after training, the pixel-wise output represents an activation value of

the neural network rather than specific WM pathways. Thus, the average way is adopted to get the final value

instead of majority vote:

pwhole(i) =
1
nk

nk

∑
k=1

pk(i) (3.2)

Where pwhole represents all pixels within the structural image and pwhole (i) means the ith pixel. k indexes

the U-Nets that covers ith pixel. pk (i) represents the final value of ith pixel of kth U-net. Networks not

covering a particular voxel are excluded in the final merge process.
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Scans of train Scans of validation Scans of test Scans of external validation
TractSeg 2803 213 754 431
RecoBundles 2789 211 754 430
XTRACT 2786 211 751 427
Tracula 2538 189 693 428
AFQ 2730 201 726 367
AFQclipped 2730 201 726 367

Table 3.3: number of scans for the training, validation, testing cohorts and external dataset.

Corner coordinate index Corner coordinate (x,y,z)
2,2,2 25,34,25
2,4,2 25,101,25
4,2,2 101,25,25
4,4,2 101,101,25
3,3,3 50,67,50
2,2,4 25,34,74
2,4,4 25,101,74
4,2,4 101,25,74
4,4,4 101,101,74

Table 3.4: Corner coordinates of pre-trained nice models out of 125 models, indexed starting at one.

3.3.5 Implementation details

We divided the HCP, BLSA, and VU data into training, validation, and test cohorts evenly based on subjects

and used HCPLS, IXI and UG as the external dataset. We kept the splitting strategy consistent across learning

all six diffusion tractography algorithms. To remove data corrupted by registration or failed diffusion trac-

tography algorithms, exhaustive human review was performed on verifying acceptable image registration and

inspecting appropriate shape and location of all bundles[65]. The resultant number of scans for the training,

validation, testing cohorts and external dataset is shown in Table 4.3

Inspired by the AssemblyNet[30], we adopt a transfer learning technology to utlize the weights from

trained U-Net to initialize the nearest U-Nets. In the beginning, we trained nine U-Nets and their corner

coordinates are shown in Table 3.4. Then, the trained nine models in the Table 3.4 order are used to initialize

the nearest 116 models (every model is trained only once).

We used pytorch[121] to implement baseline U-Net[29] as the convolution neural network to learn patches

from anatomical images and set the batch size 1. The output channel depends on the number of WM bundles

recognized by the bundle segmentation algorithm. We set a learning rate of 0.0001 and do not perform

learning rate decay during the training process. We adopted the sum binary cross-entropy for each effective

WM bundle as a loss function and train all models using the Adam optimizer. When we inferred the WM

regions based on deep neural networks, we appended a sigmoid function to the output of each patch-wise

neural network to map the final merged output to [0,1].

3.3.6 Baseline methods

We compare the quantitative performance of transferring labels with the traditional atlas-based approach

as the baseline method. Here, we use the Pandora atlas[65], which is a 4D collection population-based
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atlases. The Pandora atlas used the same cohorts and diffusion tractography algorithms to generate each

corresponding WM bundle same as we learn in this study. All volumes of the Pandora atlas are on the same

MNI template as we use here. Each volume of the 4D atlas is in the form of a probability map indicating the

probability of a pixel being in a specific WM bundle. To make a fair comparison, we transfer the label from

the atlas to the affine reoriented MNI template as the final probability map for each target scan.

In addition to the atlas-based method, we use multi-atlas segmentation (MAS) as another baseline method.

We selected 20 subjects whose tracts all passed human review as the single atlas. There are 9 subjects

from HCP, 9 subjects from BLSA, and 2 subjects from VU among 20 subjects. To make sure the output

is in the same template as other comparison methods, all 20 atlas and target images are affine reoriented to

the MNI template as well as the corresponding white matter tracts. All 20 atlases are registered to target

images through non-rigid registration[137]. Then, the new labels are obtained through joint label fusion[166]

methods. The whole pipeline of MAS is implemented by ANTs[5] python package and performed for all 216

bundles for each target scan.

3.3.7 Metrics

To evaluate the accuracy of our proposed method, we compare the segmentation results against the ground

truth provided by diffusion tractography. Additionally, we compare the accuracy of the proposed method

against the accuracy achieved by Pandora atlas and MAS. To quantify the agreement between segmentation

and truth, we use four measures: Dice coefficient (DSC), average symmetry surface distance, bundle overlap,

and bundle overreach. We use DSC as the main evaluation measurement for different bundle segmentation

algorithms by comparing binary WM bundle prediction against the ground truth voxel-by-voxel:

DSC =
2|R∩T |
|R|+ |T |

=
2|T P|

2|T P|+ |FP|+ |FN|
(3.3)

where T P is true positive, FP is false positive, FN is false negative, R represents the segmentation result

generated by the proposed method or atlas-based method and T represents the corresponding ground truth.

Average symmetry surface distance[67] is given in millimeters and based on surface vertices between the

proposed or atlas-based segmentation, R, and the ground-truth segmentation, T. For each vertex on the surface

of R, (S(R)), the Euclidean distance to closest surface vertices of truth (S(T )) can be defined in d(SR,S(T )):

d(SR,S(T )) = minSR∈S(R)||SR −S(T )||

ASSD =
1

|S(R)|+S|T |
( ∑

SR∈S(R)
d(SR,S(T ))+ ∑

ST∈S(T )
d(ST ,S(R))) (3.4)

29



where |S(R)| represents the number of vertices of the resulting surface and |S(T )|represents the number

of vertices on the ground-truth surface. SR represents a vertex from the atlas-based or proposed segmentation.

ST represents a vertex from the ground truth. Bundle overlap[138] is the proportion of voxels that contain the

ground truth region that is also overlapped by the results of the learning- or atlas-based methods.

OL =
R∩T

T
=

|T P|
|T P|+ |FN|

(3.5)

Bundle overreach[138] is the number of voxels containing results from proposed or atlas-based methods that

are outside of the ground truth volume divided by the total number of voxels within the ground truth.

OR =
R\T

T
=

|FP|
|T P|+ |FN|

(3.6)

where operator \ denotes the relative complement operation The non-parametric Wilcoxon signed-rank test[171]

for paired distributions was used to calculate test significance when comparing learning-based results with

corresponding atlas-based results.

3.4 Results

3.4.1 Fine-tune binary threshold

The outputs of the MAS, atlas-based and proposed methods have been mapped to [0,1] and represent a

probability that a given voxel is included in the WM pathway. The binary threshold to convert the probability

to a yes or no is important and influences the performance of both the atlas-based and proposed methods.

Starting from 0, we sweep thresholds until 1 with a step size of 0.01, using the validation datasets to calculate

mean DSC across all WM pathways of all scans. The optimal threshold and the curve of relationships between

mean DSC and binary threshold for the MAS, atlas- and learning-based methods are shown in Figure 3.3.

The optimal thresholds are the values where the mean DSC across all pathways from all scans are highest for

MAS, atlas- and learning-based methods.
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MAS Atlas Learning

Figure 3.3: Each curve represents the average DSC of all WM bundles of all validation dataset scans per
diffusion tractography algorithms for MAS, atlas- and learning-based methods at different threshold values.
The 95 percent confidence interval is within the printed notch due to the large sample population size. The
legend above each plot includes the optimal threshold for each tractography algorithm.

3.4.2 Qualitative results

We select one scan from the HCP test cohort to visualize the left corticospinal tract (CST) across all six bundle

segmentation algorithms to see an intra-subject variance of bundle segmentation algorithms and visualize the

difference between results derived from T1w images and ground truths from dMRI. We use the optimal

threshold values calculated in Table 5 to binarize each output, using a marching cube[142] to extract and

render the CST surface. 3D visualization is shown in Figure 3.4 .
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TractSeg RecoBundles

XTRACT Tracula

AFQ AFQclipped

Prediction TruthOverlap of prediction and label

MAS Dice:0.719 Atlas Dice:0.863 Learning Dice:0.920 MAS Dice:0.427 Atlas Dice:0.462 Learning Dice:0.726

MAS Dice:0.695 Atlas Dice:0.764 Learning Dice:0.857 MAS Dice:0.729 Atlas Dice:0.758 Learning Dice:0.822

MAS Dice:0.559 Atlas Dice:0.626 Learning Dice:0.691 MAS Dice:0.630 Atlas Dice:0.729 Learning Dice:0.821

Figure 3.4: 3D visualization of MAS, atlas- and learning-based results across six diffusion tractography
algorithms by reconstruction of the left corticospinal tract (CST) surface on an affine reoriented coronal T1w
MRI slice. The text below each image is quantitative DSC for each case.

From Figure 3.4, we find the learning-based method per bundle segmentation algorithm has a higher

overlap compared with the atlas-based method and MAS according to the areas of magenta overlap for this

subject. Although the pathway of all six tractography algorithms has varied shapes, the learning method still

can make good predictions for the largest pathway of TractSeg and the smallest pathway of AFQclipped.

3.4.3 Quantitative results

We used the optimal threshold values fine-tuned from the validation datasets to binarize the output on the

testing and external datasets. To examine their overall performance, we evaluated all 216 bundles using the

DSC and average symmetry surface distance (Figure 3.5).
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(b) Evaluation on external cohort

Figure 3.5: Quantitative results of MAS,atlas-based method, and proposed learning methods on test cohorts
from HCP, BLSA, and VU and external cohort from HCPLS, IXI and UG. The outlier percentage (top row)
of all six algorithms is shown in the bar plot. Two measures are used to assess the overlap between algo-
rithms deriving fiber mask from T1w and truth from dMRI: Dice (middle row) and surface distance (lower
row). Each column presents the result of a different bundle segmentation algorithm and shows the proposed
method, MAS, and single atlas-based method. Each boxplot includes each pathway of the bundle segmen-
tation algorithm per every scan. The 95 percent confidence interval is within the printed notch due to the
large sample size. The difference between methods was significant (p < 0.005, Wilcoxon signed-rank test,
indicated by ∗).

From Figure 3.5(a), the blue bar plot represents the percentage of pathways that successfully passed the

human reviewing process across the whole test cohort. All learning-based methods perform statistically better

than the atlas-based methods and MAS. When using ground truths derived from TractSeg, the MAS, atlas-
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and learning-based methods achieve the highest median DSC of 0.72, 0.78, and 0.87 and the smallest average

symmetry surface distance of 2.04mm, 1.62 mm, and 0.92 mm respectively. Compared with the atlas method,

the learning method shows the largest improvement in median DSC for AFQ from 0.48 to 0.62 and reduces

the median average symmetry surface distance from 4.08 mm to 2.40 mm. The same pathway for different

subjects may have varied shapes and localization. The proposed method is able to adapt to these differences

more robustly than atlas-based methods.

In Figure 3.5(b), the blue bar plot represents the percentage of pathways that successfully passed the

human reviewing process across the external dataset. All learning-based methods perform statistically bet-

ter compared to atlas-based methods except for XTRACT. However, the difference between the atlas- and

learning-based methods is less pronounced. The median DSC of the learning-based method on XTRACT

is 0.522, lower than 0.527 of the atlas-based method. Compare 3.5(a) to 3.5(b), variations in MRI contrast

across scanners decrease the performance.

We perform bundle overlap and bundle overreach on the left CST pathway of all six bundle segmentation

algorithms to analyze the relationship between the spatial overlap of the proposed method and threshold

(Figure 3.6).

TractSeg
RecoBundles
XTRACT
Tracula
AFQ
AFQclipped

method

threshold 0.25
threshold 0.5
threshold 0.75

X

TractSeg
RecoBundles
XTRACT
Tracula
AFQ
AFQclipped

method

threshold 0.25
threshold 0.5
threshold 0.75

X

TractSeg
RecoBundles
XTRACT
Tracula
AFQ
AFQclipped

method

threshold 0.25
threshold 0.5
threshold 0.75

X

MAS Atlas Learning

Figure 3.6: Plots of overlap versus overreach for the left CST across all bundle segmentation algorithms
for MAS, atlas- and learning-based methods are shown. The markers on each curve represent the overlap
and overreach values at specific threshold values. The range of overreach for MAS is [0,6]. The range of
overreach for atlas-based methods is [0,9]. The range of overreach for the learning-based method is [0,6].

From Figure 3.6, all MAS, atlas- and learning-based methods for all six diffusion tractography algorithms

identified WM bundles with a high overlap but suffer from high overreach except for Tracula and TractSeg.

As for AFQ, when the overreach is about 5 times the actual ground truth volume, the MAS method has

overlap values of 0.75 and 0.8 with the atlas-based method. The proposed method has an overlap value of 0.9

higher compared with the MAS and atlas-based methods.

We calculated the overall binary thresholds from the validation cohort. Thus, we want to investigate
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whether the optimal thresholds calculated from validation datasets can be generalized to external datasets.

We show the curve of the relationship between DSC and binary threshold on the external datasets in Figure

3.7 Comparing Figure3.7 to Figure 3.7, the biggest difference between thresholds estimated from the valida-

tion dataset and the external datasets is in XTRACT. The binary threshold for MAS is shifted from 0.18 to

0.34. The binary threshold for the atlas-based method in XTRACT is shifted from 0.30 to 0.56. The binary

threshold for the proposed method in XTRACT is shifted from 0.39 to 0.77. We can learn that the optimal

threshold shifts when fed different MRI contrasts.

MAS Atlas Learning

Figure 3.7: Each curve represents the average DSC of all WM bundles of all external dataset scans per
diffusion tractography algorithm for atlas- and learning-based methods. The 95 percent confidence interval
is within the printed line width due to the large sample size. The legend above each plot includes the optimal
threshold for each tractography algorithm.

3.5 Discussion

In this study, we aim to propose a spatial localized patch-wise framework to segment white matter structure

with six different definition schemes only from anatomical images. We envision this framework as a tool to

estimate a coarse WM region of interest rather than segmentation with more details derived from dMRI. We

provide a probability map of six different tractography algorithms for users to adjust binary threshold and

choose their preference scheme.

3.5.1 Generalize to external dataset

The deep learning model is sensitive to intensity distributions of T1w MRI which are not seen in the training

cohort. The different scale settings of the raw T1w images bring the shift of the optimal threshold which is

shown in the external dataset. Apart from varied intensity distribution, the external dataset itself also deterio-

rates the performance of deep neural network. 394 IXI images domain the whole dataset. The acquisition of

IXI requires 15 DWIs which is smaller compared to the original training cohort. Thus, the generated ground

truth by six algorithms does not have high quality (they might have less streamlines or streamlines stop in
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advance during the tracking process).

3.5.2 Limitations

Currently, the variance in performance of the learning-based method is obvious. Inherent definitions and

ways of extracting WM tracts by bundle segmentation methods bring challenges to the proposed learning

framework. One possible area for important is developing robust labels by merging common labels belonging

to the same white matter bundle across from all six tractography algorithms. By doing this way, each white

matter bundle label will include six bundle definition schemes, having common parts and specific parts for

each tractography algorithm. The robust label may make full use of complementary information among six

tractography algorithms. White matter pathways usually are in the form of streamlines, which can provide a

connection at the sub-pixel level. However, information is lost when converting streamlines into masks, even

with their own built-in function, bringing the noise to the label.

3.6 Conclusion

We propose a spatial localized patch-wise framework to delineate WM structure based on structural T1w

images. We use this framework to learn WM regions under six bundle segmentation algorithms and compare

the result of the framework to atlas-based methods and MAS. When optimal threshold is utilized to evaluate

scans that have the same acquisition as the training datasets, the learning-based methods are statistically

superior to the atlas-based methods and MAS.
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CHAPTER 4

Label-efficient thigh segmentation based on transfer learning

This work was previously published [178, 176]. Permission to include the work as part of the dissertation has

been obtained, see Appendix A

4.1 Introduction

Estimating volumes and masses of total body components is important for cancer, joint replacement, and

exercise physiology[76]. Full-body CT scans can be used to calculate whole-body composition directly.

However, it is hard to acquire typical full-body CT in the usual medical context due to the intense radiology

dose. Mourtzakis et al. proposed that body components measured on abdomen or thigh slices are highly

correlated with the mass of whole-body tissues[111]. Thus, accurate segmentation of thigh slices can quantify

tissue area properties to estimate body composition without requiring additional irradiation or examinations.

So, this paper aims to segment muscle, fat, and bones from 2D thigh and lower leg CT slices.

4.2 Related work

Several recent techniques have been proposed to address thigh and lower leg segmentation on CT images.

Senseney et al. proposed an automatic region growing method using morphology operation and threshold to

extract bone muscle and fat in CT thigh and abdomen images[141]. Tan et al. proposed to use a variational

Bayesian Gaussian mixture model to cluster fat, marrow, muscle bone, and air on 3D CT scans[150]. Felinto

et al. proposed to use the Gaussian mixture model and relative position to cluster similar tissues for inter-

muscular fat and muscle segmentation[34]. With impressive performance of the deep neural network-based

segmentation, Zhu et al. applied the H-DenseU-Net on MRI lower leg data of children with and without cere-

bral palsy[198]. Rohm et al. created a 3D heterogeneous MRI lower leg dataset and trained a convolution

network to segment muscle[128].

Deep learning methods show impressive performance in segmentation tasks. However, this performance

depends on sufficient human annotation[123, 167]. In the medical imaging field, human annotation requires

professional knowledge, which is very time-consuming and thus expensive. To avoid annotating new data,

many researchers used common data augmentation methods such as rotation, intensity shift, and scaling, to

artificially enhance the diversity and quality of the training data[144]. Image synthesis is another way for data

augmentation. Generative adversarial networks (GAN)[57] have been utilized to synthesize new labeled data

for segmentation. However, GAN is notorious for training and is hard to implement in practical tasks[113].
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The main limitation of data augmentation is data bias generated during the data augmentation process. To

preserve original data distribution, leveraging the power of unannotated data is another solution to train a

model with limited annotation data. Liu et al. proposed one framework of unsupervised segmentation for

medical images[100]. Chen et al. proposed to use self-supervised learning with image context restoration

to achieve brain tumor segmentation with a limited dataset[27]. Instead of self-supervised learning and

unsupervised learning, transfer learning is another way to train with limited label data. First, a model is

trained from scratch on a large-scale dataset with a similar task. Then the model is fine-tuned with human

annotated data. Tajbakhsh et al. showed that a fine-tuned network could outperform networks that were

trained from scratch with better robustness[147]. To better segment muscle, cortical bone, internal bone,

subcutaneous fat, and intermuscular fat with limited annotated data, we propose a novel two-stage transfer

learning-based framework. We use an approximate hand-crafted method to generate pseudo labels for 1883

thighs to train the model in the first stage and fine-tune with 125 human label thighs in the second stage to

achieve segmentation. We test the model on the thigh slice and use the lower leg slice as external data to

demonstrate the generalizability of the proposed framework. The target tissue and corresponding legend can

be found in FigIV-1. This paper is a significant extension of our accepted work[178] of SPIE 2022.

(b)

Cortical bone    
Inner bone 
Intermuscular fat
Subcutaneous fat
Muscle

(a) (b)

Figure 4.1: The first row and second row of (a) represent the middle thigh and lower leg from the same subject
respectively. The left column is the original CT image and the right column is the target tissue label. Each
tissue has a different area, and the imbalance of area makes segmentation of sparse tissue (intermuscular fat)
challenging. The area of each tissue is shown in (b).

4.3 Methods

We designed a two-stage coarse-to-fine deep learning method to achieve thigh and lower leg segmentation on

low-dose CT slices with deep learning. We first split a CT thigh slice into single left and right thigh images.

In the first stage, we train the deep neural network with approximate hand-crafted labels. In the second stage,

we fine-tune the model from the first stage with human expert labels to recover more details.
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4.3.1 Preprocessing

The preprocessing pipeline works for both thigh and lower leg images with minor differences. For each thigh

image, we first set the field of view of the CT thigh slice including the left thigh, right thigh, table, and

phantom. Next, we use the threshold of -500 Hounsfield Unit (HU) to binarize the input thigh slice. We use a

square kernel 25 × 25 to erode binary images and create three independent eroded masks. Then, we choose

the left thigh and right thigh according to area size (the area of the table mask should be smaller compared

with the thigh mask) and center position (the center of the left thigh mask and right thigh mask should be

at approximate horizontal axis). After picking the eroded mask of two thighs, we dilate the chosen mask

with the same kernel size. Based on those two masks, we find the maximal bounding box for each thigh and

crop the original CT slice from 512 × 512 to 256 × 256 without changing the pixel resolution and intensity

range of the whole CT slice. Different from preprocessing on the thigh, we use kernel size 10 ×10 to erode

and dilate the mask of the lower leg. Finally, we manually review all the thighs and lower legs and exclude

cropped images including other tissue (e.g. the table).

4.3.2 Create a pseudo label for thigh

Each CT slice has specific intensity units for each tissue. We use a CT window of [-190, -30] HU for fat,

[30,80] HU for muscle, and [1000,inf] HU for bones[43]. We proposed the following pipeline with seven

steps to extract five target tissues coarsely by using CT intensity and morphology. (1) create a cortical bone

binary mask image with a threshold of 1000. (2) inverse the cortical bone mask from step (1) and find the

surrounding internal bone. (3) use a threshold of 0 HU to binarize the thigh image and create a muscle mask.

(4) fill the holes and remove bones from steps (1) and (2). (5) subtract the muscle mask from step (4) to

create an intermuscular fat mask based on the assumption that intermuscular fat is within the muscle. (6)

binarize the input image with a threshold of -500 HU. (7) subtract the result of step (4) from step (6) to create

a subcutaneous fat mask. Five coarse approximate segmentation masks are shown in Figure 4.2. They are

fused into one mask before being fed into the deep neural network.

4.3.3 Two stage training

U-Net++[154] is an encoder-decoder network where the encoder and decoder are connected through a series

of nested, dense skip connections. The nested skip connections can help bridge the semantic gap between the

feature maps of the encoder and decoder, which is helpful in segmenting fine-grain details of target tissues

like intermuscular fat in our case. Thus, we use U-Net++ as our backbone to infer segmentation results.

Transfer learning refers to reusing a model developed for a task as the starting point for a model on a different

or same task, which alleviates the challenge of limited training data. Thus, we design a two-stage transfer
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learning strategy. In the first stage, we use approximate pseudo labels to train U-Net++ from scratch and

choose the best model according to performance on the validation dataset. Then, the best model is loaded as

initialization. Human expert-labeled data are used to fine-tune the model until converges. The whole pipeline

is shown in Figure 4.2.

Train U-Net++ model using pseudo labels in first stage

Intensity
Classifier

Create Pseudo label 

Fine tune U-Net++  in second stage

Load as initial weight

Limited human expert label data Limited human expert label 

Automatic creating
pseudo label

Sufficient data morphology
operation

operation

morphology

Figure 4.2: The proposed hierarchical coarse-to-fine thigh segmentation includes three parts: 1) The threshold
and morphology are used to generate coarsely segmented pseudo labels. 2) Feeding pseudo labels into the
deep learning model and training the model from scratch. 3) Using the optimized model from the previous
stage as initialization, and fine-tuning the model with limited expert labels. The model from the first- and
second-stage is optimized separately.

4.3.4 Data distribution

We use 3022 de-identified CT thigh slices from the Baltimore Longitudinal Study of Aging (BLSA)[45] and

121 de-identified thigh slices from the Genetic and Epigenetic Signatures of Translational Aging Laboratory

Testing (GESTALT) study as well as 9141 de-identified lower leg slices from the BLSA. All data are under

Internal Review Board approval. The image size is 512 × 512. In the preprocessing and quality assurance

stages, 5 thigh images are discarded since they include other structures (e.g. the table). Note that for some

thigh slices, only the left thigh is manually labeled instead of both thighs. As for labels of lower leg images,
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Study Name Cohort Slices All thighs or lower legs Labelled thighs or lower legs
BLSA First stage thigh training 944 942 L and 941 R 0
BLSA & GESTALT Second stage thigh training 117 117 L and 8 R 125
BLSA & GESTALT Second stage thigh validation 26 26 L and 5 R 31
BLSA & GESTALT Second stage thigh testing 65 65 L and 8 R 73
BLSA External lower leg testing 9141 9141 L and 9141 R 39
BLSA External thigh testing 1991 1987 L and 1991 R 0

Table 4.1: The number of slices, thighs, lower legs, labeled thighs and lower legs for the cohort.

we manually refine the result from the proposed method as ground truth. We divide labelled thigh slices

into training, validation, and testing cohorts for stage 2 in ratio of 60 percent,10 percent, and 30 percent,

respectively. No subject had images in both the training and validation or testing cohorts.

4.3.5 Implementation details

Our experiments are implemented in Python 3.7 with PyTorch 1.7. We apply a window of [-150, 100] HU

to normalize each input image. In the first stage, the initial learning rate for U-Net and U-Net++ is 0.002

and 0.0002, respectively. In the fine-tuning stage, the initial learning rate for both U-Net and U-Net ++ is

0.0001. We conducted the experiment to train only with human expert labels by using U-Net and U-Net++.

The learning rate for U-Net is 0.01, and the learning rate for U-Net++ is 0.001. The learning rate decayed

to 0 linearly until the end of the training epoch in both stages. Resize and crop are used as online data

augmentation. The max-training-epoch is set to 200 with a batch size of 8. The optimizer used in training is

stochastic gradient descent (SGD).

4.3.6 Baseline methods and metrics

The U-Net[123][29] is considered an alternate architecture because of its impressive performance on medical

image segmentation. To validate the effectiveness of the transfer learning strategy, both U-Net and U-Net++

training with human labels only are also regarded as baseline methods. To evaluate the accuracy of our

proposed method, we compare the segmentation results against the ground truth provided by expert labels.

To quantify the agreement between segmentation and truth, we use the Dice Similarity Coefficient (DSC) as

the main evaluation measurement for inference results by comparing each binary tissue against the ground

truth voxel-by-voxel:

DSC =
2|R∩T |
|R|+ |T |

(4.1)

where R represents the segmentation result generated by the deep learning model and T represents the corre-

sponding ground truth.
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4.4 Experimental Results

Figure 4.3 compares the DSC of the muscle, cortical bone, inner bone, subcutaneous fat, and intermuscular

fat between U-Net++ and U-Net using only human labels, in stage 1 and stage 2. The boxplot presented is

evaluated across 73 single thighs. Table 4.2 shows the mean DSC of each tissue of all six methods. Overall,

the average DSC across all five tissues of U-Net++ in the second stage is significantly better than all the other

five methods. Except for subcutaneous fat, the proposed method has the highest mean DSC of the rest tissues.

The proposed method makes the largest improvement from 0.681 to 0.782 on mean DSC for sparse and small

intermuscular fat compared with U-Net trained only with human labels. 4.4 compares the qualitative result

produced by all six methods. Compared with U-Net in stage 2, the proposed method can yield superior

performance and segments more details of intermuscular fat.
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Figure 4.3: The fig shows the DSC comparison of thigh image using U-Net trained only with human labels,
U-Net++ trained only with human labels, U-Net in stage 1, U-Net++ in stage 1, U-Net in stage 2 and U-Net++
in stage 2 in boxplots of five target tissues.
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Method Muscle Cortical bone Internal bone Subcutaneous fat Intermuscular fat Average
U-Net only with human labels 0.967* 0.958 0.852* 0.977* 0.681* 0.887*
U-Net++ only with human label 0.966* 0.947* 0.919* 0.967* 0.695* 0.899*
U-Net in the first stage 0.960* 0.915* 0.868* 0.955* 0.609* 0.841*
U-Net++ in the first stage 0.957* 0.898* 0.865* 0.949* 0.481* 0.830*
U-Net in the second stage 0.971 0.946* 0.932* 0.900 0.762* 0.916*
U-Net++ in the second stage 0.973 0.960 0.951 0.969 0.782 0.927

Table 4.2: The mean DSC for each tissue of each method for thigh CT image. The highest result is
bolded. The * means the method is significantly different from U-Net++ in the second stage (p-value <
0.05, Wilcoxon signed-rank test).

Dice:0.785 Dice:0.789 Dice:0.375 Dice:0.336 Dice:0.747 Dice:0.857

Dice:0.773 Dice:0.786 Dice:0.446 Dice:0.412 Dice:0.793 Dice:0.842

(a) (b) (c) (d) (e) (f) (g) (h)

Ground-
truth

U-Net++ in 
second stage

U-Net in 
second stage

U-Net in 
first stage

U-Net++ in 
first stage

U-Net++ with  
human labels

U-Net  with  
human labelsImage

Dice:0.753 Dice: 0.814 Dice:0.298 Dice:0.599 Dice:0.840 Dice:0.903

Figure 4.4: The plot shows the qualitative representation of the thigh slice segmentation. (a) represents three
randomly selected source CT images after applying window [-150,100]. (b) represents the segmentation
from U-Net only trained with human labels. (c) represents the segmentation from U-Net++ only trained
with human labels. (d) and (e) represent the segmentation by using network U-Net and U-Net++ in stage 1
respectively. (f) and (g) is the segmentation by network U-Net and U-Net++ in stage 2, respectively. (h) is
the ground truth. The yellow arrow points to the large difference between those methods and ground truth.
The DSC values only show intermuscular fat segmentation performance for reference..

To test the generalizability of the proposed methods, we apply the model to preprocessed lower-leg im-

ages. The experimental setting is the same as in thigh’s experiment. Figure 4.5 compares the performance

of all six methods on lower leg images. Table 4.3 shows the mean DSC of each tissue of all six methods

on lower leg images. The average DSC of all tissues of the proposed method decreased from 0.927 to 0.855

when compared with the thigh experiment, but still the significantly best among all the other five methods.

However, the U-Net trained only with human labels has the highest mean DSC 0.923 in cortical bones and

the U-Net++ trained only with human labels has the highest mean DSC 0.893 in internal bones. Figure ??
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demonstrated the confidence level of the bone results with qualitative representations.
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Figure 4.5: The fig shows the DSC comparison of lower leg image using U-Net trained only with human
labels, U-Net++ trained only with human labels, U-Net in stage 1, U-Net++ in stage 1, U-Net in stage 2 and
U-Net++ in stage 2 in boxplots of five target tissues.
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Figure 4.6: The plot shows the qualitative representation of the lower leg slice segmentation. (a) represent the
source CT image after applying window [-150,100]. (b) represents the segmentation from U-Net only trained
with human labels. (c) represents the segmentation from U-Net++ only trained with human labels. (d) and
(e) represent the segmentation by using network U-Net and U-Net++ in stage 1 respectively. (f) and (g) is the
segmentation by network U-Net and U-Net++ in stage 2 respectively. (h) is the ground truth. The text below
each image is internal bone DSC.
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Method Muscle Cortical bone Internal bone Subcutaneous fat Intermuscular fat Average
U-Net only with human labels 0.944* 0.922* 0.786* 0.876* 0.494* 0.805*
U-Net++ only with human label 0.941* 0.900* 0.901* 0.857* 0.469* 0.814*
U-Net in the first stage 0.945* 0.843* 0.708* 0.850* 0.443* 0.758*
U-Net++ in the first stage 0.939* 0.838* 0.791* 0.852* 0.393* 0.761*
U-Net in the second stage 0.946* 0.901 0.787* 0.891* 0.590 0.823
U-Net++ in the second stage 0.945 0.893 0.836 0.870 0.573 0.823

Table 4.3: The mean DSC for each tissue of each method for lower leg CT image. The highest result is
bolded. The * means the method is significantly different from U-Net++ in the second stage (p-value < 0.05,
Wilcoxon signed-rank test).

After training on pseudo labels, we want to investigate the relationship between the number of human

expert data and the performance of the model in the second (fine-tuned) stage. We fed 1, 5, 10, 20, 30, 60,

90, and all expert human label thighs to fine-tune the model from the first stage respectively. The fine-tuning

process is repeated 10 times. Each time the data is randomly picked from the training cohort (125 thighs) and

inference from the test cohort (73 thighs). The distribution of mean dice of each retrain is shown in Figure

4.7. When only feeding one thigh to model, the variance of mean DSC is largest compared with others. Also,

the variance becomes smaller when increasing feeding data. When feeding 30 thighs, the mean DSC of 10

re-training is 0.924 almost equivalent to the mean DSC 0.931 of for feeding all training data.
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Figure 4.7: Shows the relationship between mean DSC and added data for each fine-tuning. The violin plot
includes 10 data points. Each data represents mean DSC across all tissues of the test cohort in one fine-tuning
process.

We apply the proposed models on additional CT scans of thighs and lower legs, which do not have human-

generated label maps for comparison. We overlay the segmentation results on CT images with colormap and

undergo human review. each segmentation result to find outliers. 10 out of 3982 thigh images and 136 out of

18282 lower leg images fail human review and are regarded as outliers. Figure 4.8 shows four outliers from

thigh and lower leg images respectively.
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Figure 4.8: The outliers from thigh and lower leg. The first row and third row are segmentation results on the
thigh and lower leg. The second and fourth rows are the CT images after applying the window. Each column
represents an outlier from the thigh and lower leg respectively.

4.5 Conclusion and Discussion

Herein, we proposed a transfer learning-based method to achieve accurate and robust thigh tissue segmenta-

tion, focusing on muscle, cortical bone, internal bone, subcutaneous fat, and intermuscular fat. The proposed

framework can achieve accurate segmentation on thigh CT slices with limited human labels. Compared

with methods only trained with human expert labels, the superior performance of the proposed framework

demonstrates the effectiveness of two-stage training. We applied the model only trained on thigh slices to

the lower leg image. The results show that our model still recognizes muscle and fat with high agreement,

which demonstrates the proposed framework has the generalizability to the similar anatomical structure of

CT image. Then, we analyze the relationship between the size of the fine-tuning dataset and performance.

The result shows that the proposed framework can use a smaller size of training cohort to keep performance

as all training data, which indicates the proposed framework has the potential to fully exploit the data and
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increase data efficiency.

One major limitation of the proposed method is that the performance of bone structure is inferior to mod-

els only trained with human labels. As shown in FigIV-7, the proposed method might regard subcutaneous

fat around cortical bone as internal bone, which leads to inferior performance. The reason could be that the

boundary of the pseudo label between cortical bone and internal bone is not clearly defined, which made the

model misclassify subcutaneous fat around cortical bones. Thus, how to improve the quality of pseudo-labels

is one of the important future directions. In summary, the proposed pipeline has the potential to be applied in

other medical scenes with low human effort, which makes better use of human expert labels.
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CHAPTER 5

Single Slice Thigh CT Muscle Group Segmentation with Domain Adaptation and Self-Training

This work was previously published [175]. Permission to include the work as part of the dissertation has been

obtained, see Appendix A.

5.1 Introduction

Thigh muscle group segmentation is essential for assessing muscle anatomy, computing the muscle size/vol-

ume, and estimating muscle strength[70]. Quantitative thigh muscle assessment from segmentation can be

a potential indicator of metabolic syndrome[99]. The loss of the thigh muscle and associated functional

capabilities are closely related to aging[50]. Accurate measurement of thigh muscle cross-sectional area,

volumes, and mass can help researchers understand and study the effect of aging on the composition of the

human body. Thus, extracting subject-specific muscle groups is an essential step.

MR imaging is the most common imaging technique in previous muscle analyses given its high contrast

for soft tissue[185]. Many human efforts have been put into MR imaging for muscle analysis. Barnouin et

al. optimize reproducible manual muscle segmentation[8]. Schlaeger et al. construct a reference database

(MyoSegmentTum) including the satorious, hamstring, quadriceps femoris, and gracilis muscle groups for

3D MR volume[139]. Compared with MR imaging, however, the short acquisition time of CT is better suited

for routine clinical use[185]. In a longitudinal body composition study, single slice CT for each subject also

reduces unnecessary radiation [190, 178, 189, 191, 188]. Accurate segmentation of muscle groups on a single

slice can aid in understanding thigh components and the effects of aging on muscle[119].

Direct human manual annotation on single-slice CT is labor-intensive and challenging due to similar in-

tensity among different muscle groups in CT. Leveraging publicly available annotation from existing MR

resources (source domain) like MyoSegmentTum for CT (target domain) is a promising direction to over-

come the problem of muscle group segmentation. Methods handling domain shift or heterogeneity among

modalities are called domain adaptation (DA)[59]. DA aims to minimize differences among domains. DA

has two challenging tasks that need to be addressed in our case: 1) homogeneous intensity of different mus-

cle groups of CT images as mentioned before, and 2) inter-modality heterogeneity including contrast and

anatomic appearance, The above two challenges can be found in Fig.1. With the above challenges for thigh

muscle segmentation problems, we propose a new DA pipeline to achieve CT thigh muscle segmentation.

We build a segmenter trained with synthetic CT images in CycleGAN[199]. We infer segmentation maps

on real CT images by the segmenter and divide the segmentation maps into two cohorts based on entropy.
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Figure 5.1: A selective sample that highlights the inter-modality heterogeneity between MRI and CT and
low-intensity difference among different muscle groups in CT. (a) The MR image is normalized by min-max.
The original CT scale is clipped to [-200,500] and then normalized to [0,1]. (b) is the intensity distribution
for four muscle groups. The overlap intensity among four muscle groups is observed from the second row.

The entropy can work as an indicator for prediction map quality[163]. Based on the anatomic context, the

whole muscle and bone masks of CT images are utilized to correct the wrong prediction brought by domain

shift. Self-training is applied on two cohorts to make the segmenter adapt to high entropy cohorts to enhance

robustness and preserve the segmentation performance on low entropy cohorts.

5.2 Material and method

To solve challenges 1) and 2), we proposed a pipeline that includes three key parts as described in (Fig 5.2):

(1) preprocessing on 2D single thigh slice and 3D public MRI volume, and (2) training segmentation module

by feeding synthesized CT images, and (3) fine-tuning segmentation module by applying self-training on the

CT training datasets.

5.2.1 Data and preprocessing

We use two datasets in our study. One is the Baltimore Longitudinal Study of Aging (BLSA)[45], and the

other one is MyoSegmenTUM[139]. The BLSA is a longitudinal dataset and collects 2D mid-thigh CT slices

for each subject during the visit. BLSA study protocols are approved by the National Institutes of Health

Intramural Institutional Review Board and all participants provided written informed consent. MyoSeg-
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Figure 5.2: Overview of proposed pipeline. In part (a), we adopt a CycleGAN design including two gener-
ators and two discriminators for MR and CT respectively. The segmentation module is trained by feeding
synthetic CT images and corresponding MR ground truth. In part (b), the segmentation module from (a) is
used to infer pseudo labels divided into hard and easy cohorts based on entropy maps. Then, the easy co-
hort pseudo-labels are refined based on anatomy processing (muscle and bone bask). In part (c), easy cohort
pseudo-labels of CT images are used to fine-tune the segmentation module, and adversarial learning between
easy and hard cohorts forces the segmentation module to adapt to hard cohort simultaneously to increase
segmentation module robustness.

menTUM is a 3D MRI thigh dataset providing annotations for four muscle groups including the sartorius,

hamstring, quadriceps femoris, and gracilis muscle groups.

We used 1123 de-identified 2D low-dose single CT thigh slices of 763 participants from the BLSA. All

data are de-identified under Institute Review Board approval. The slice has a size of 512×512 pixels. We split

one single CT slice into left thigh and right thigh images with size 256 ×256 pixels by following the pipeline

in [177]. During the preprocessing steps, 11 images were discarded due to low quality or abnormal anatomic

appearance. The CT images are the target domain in our case.

MyoSegmentTUM consists of water-fat MR images of 20 sessions of 15 healthy volunteers. The water

protocol MR is selected as the source image. We select 1980 mid-thigh slices from MR volumes to reduce

the anatomical gap between MR and CT slices at the mid-thigh position. The MR slices are divided into left

and right thigh images based on image morphology operation. Each image has 300 × 300 pixels.

The original label of the MR slices is placed at each group with a margin of 2 mm to the outer boundary,

as shown in Fig 5.3(c). The incomplete ground truth makes the whole domain adaptation pipeline more

challenging. To address this concern, we extract whole cross-sectional muscle and bone contour by using

level set[96]. We use a binary 3× 3 kernel to dilate the quadriceps femoris and hamstring muscle with six

and two iterations, respectively. The complete muscle mask is obtained after performing the level set and

dilation operation, as shown in Fig 5.3(d).

We feed random pairs of CT and MR images to the proposed method. All 1980 MR images are fed into

the training cohort. For CT, we divide all CT images into training, validation, and test cohorts based on
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Figure 5.3: The preprocessing steps for dilating the ground truth of the MRI dataset. The blue contours in
(a),(b) represent the muscle and bone boundaries extracted by level sets, and (c) represent the original ground
truth. The quadriceps femoris muscle group is dilated in 6 iterations and the hamstring muscle group is
dilated in 2 iterations. (d) represents the final truth after preprocessing.

Participants Images including left and right thigh Image resolution Pixel dimension (mm × mm)

CT training cohort 669 2044 256 × 256 0.97 × 0.97
CT validation cohort 19 38 256 × 256 0.97 × 0.97
CT test cohort 75 152 256 × 256 0.97 × 0.97
MR training cohort 15 1980 300 × 300 1 × 1

Table 5.1: Data distribution and image information for the whole pipeline.

participants. The training cohort includes 2044 CT thigh images from 669 participants. The validation cohort

consists of 38 CT thigh images from 19 participants. The test cohort consists of 152 CT thigh images from

75 participants. Each CT image in the validation and test cohort has ground truth manually annotated from

scratch to work for evaluation. The data distribution can be found in Table 5.1.

5.2.2 Train segmentation module from scratch

Inspired by SynSeg-net[71], we design a U-Net[133] segmentation module (Seg). We train the Seg with

CycleGAN[199] in an end-to-end fashion as shown in Fig 2(a). CycleGAN aims to solve the image-to-

image translation problem, in an unsupervised manner without requiring paired images. CycleGAN uses

the idea of cycle consistency that we translate one image from one domain to the other and back again we

should arrive at where we started [199]. Thus, we have two generators and discriminators in our framework.
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Generator GX→Y represents the mapping function X:→Y. Two generators GMR→CT and GCT→MR are utilized

to synthesis fake CT (GMR→CT (xMR))and fake MR (GCT→MR(xCT )) images respectively. The discriminator

DCT and DMR determine whether the input image (CT or MR) is synthetic or real. The adversarial loss is

applied to generators and discriminators and is defined as:

LCT
GAN(G

MR→CT ,DCT ,XMR,YCT ) = Ey∼YCT [logDCT (y)]+Ex∼XMR [1− logDCT (GMR→CT (x))]

LMR
GAN(G

CT→MR,DMR,XCT ,YMR) = Ey∼YMR [logDMR(y)]+Ex∼XCT [1− logDMR(GCT→MR(x))] (5.1)

The above adversarial loss cannot guarantee that individual images are anatomically aligned to the desired

output since there are no constraints for the mapping function. Cycle loss[199] is introduced to reduce pos-

sible space for the mapping function by minimizing the difference between images and cycle-reconstructed

images. The loss function is:

LCT
cyc = ||GMR→CT (GCT→MR(xCT ))− xCT ||1 (5.2)

LMR
cyc = ||GCT→MR(GMR→CT (xMR))− xMR||1 (5.3)

To regularize the generator, we applied identity loss[199] to regularize generators. The identity loss is ex-

pressed as:

LIdentity = E[||GMR→CT (xMR)− xMR||1]+E[||GCT→MR(xCT )− xCT ||1] (5.4)

We further added an edge loss to preserve boundary information. Modified Sobel operator[81] is utilized to

extract edge magnitude. The edge loss is calculated based on the difference in edge magnitude of two images.

The edge loss is expressed as Eq.5.5

v =


0 1 0

0 0 0

0 1 0

h =


0 0 0

−1 0 1

0 0 0


sobel(x,y) = ∥

√
∥v∗ x∥2 +∥h∗ x∥2 −

√
∥v∗ y∥2 +∥h∗ y∥2∥1

Ledge = sobel(GMR→CT (xMR),xMR)+ sobel(GCT→MR(xCT ),xCT ) (5.5)

where v and h are vertical and horizontal kernels, * represents the convolution between kernel and image. As

for segmentation, weighted cross entropy loss is applied to supervise segmentation module Lseg
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After defining all loss functions, we combine them together by assigning different weights λ1,λ2,λ3,λ4,λ5

for the loss function L. The LGAN
CT is similar to LGAN

MR and we set the same weight λ1 for them. LCT
cyc is sym-

metrical to LMR
cyc , and the same weight λ2 is assigned for those two losses. The final loss function is defined

as

L = λ1(LCT
GAN +LMR

GAN)+λ2(LCT
cyc +LMR

cyc )+λ3LIdentity +λ4Ledge +λ5Lseg (5.6)

5.2.3 Fine tune segmentation module in self training

Even though we train the segmenter from scratch by feeding synthesized CT images, the segmentation mod-

ule is not robust to all CT cases as shown in Fig 5.2(b)(the segmentation map of hard split has incorrect

prediction). The segmentation performance is still limited since synthetic data cannot transfer all information

from real CT images. Inspired by[120], we adopted a self-training framework to handle this challenge. We

infer all pseudo labels and probability maps for real CT images in the training cohort. The entropy calculated

based on probability for each class works as a measurement to evaluate the confidence of the segmentation

map in unsupervised domain adaptation[163]. All segmentation maps are ranked by average entropy map ICT

from low to high. The larger the entropy, the more potential error the segmentation map includes. All seg-

mentation maps are divided into easy and hard splits based on ranking order. The first λ of training samples

are easy split and the rest are hard split.

pCT = so f tmax(Seg(xCT ))

ICT =−
class

∑
i=1

(pCT
i log2(pCT

i )) (5.7)

Where pCT is the probability map for each muscle class and ICT is the entropy map calculated based on pCT .

Anatomical context such as spatial distribution is an important prior for medical image segmentation. To

reduce incorrect prediction induced by noise and appearance shift in synthetic images, we leverage muscle

and bone masks from[177] to mask out erroneous predictions for easy split as shown in Fig 5.2(b).

As shown in Figure 5.2(c), we construct the discriminator Dsplit from scratch. Different from [120], the

segmentation module is further trained by aligning the entropy map of easy splits to ones of hard splits. At

the same time, the segmentation module is fine-tuned by feeding rectified pseudo labels of the easy split after

anatomical processing and supervised by weighted cross entropy lossLeasy
seg . The loss function L f inetune can be

expressed as:

Lsplit
GAN = Ex∼Xeasy

CT
[logDsplit(x)]+Ey∼Y hard

CT
[1− logDsplit(y)]

L f inetune = λ6Lsplit
GAN +Leasy

seg (5.8)
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Method Gracilis muscle Hamstring muscle Quadriceps femoris Sartorius muscle Average of four muscles
AccSeg-Net 0.753(0.128) 0.882(0.075) 0.91(0.028) 0.708(0.176) 0.813(0.08)
DISE 0.786(0.159) 0.895(0.078) 0.928(0.023) 0.76(0.201) 0.843(0.09)
SynSeg-net 0.838(0.110) 0.869(0.072) 0.936(0.028) 0.802(0.164) 0.861(0.063)
Proposed 0.876(0.085) 0.898(0.055) 0.941(0.024) 0.837(0.099) 0.888(0.041)

Table 5.2: The mean DSC and standard deviation for each muscle group and average performance

where Xeasy
CT is the easy split of the CT training cohort and Xhard

CT is the hard split.Leasy
seg is a weighted cross-

entropy loss for the segmentation module only trained on easy cohort.

5.3 Experimental Results

We compare the proposed pipeline with three state-of-the-art domain adaptation methods including SynSeg-

net[71], AccSeg-Net[197] and DISE[25]. Then we perform an ablation study to demonstrate the effectiveness

of the fine-tuning stage and sensitivity analysis for the proposed method.

5.3.1 Implementation details and evaluation metrics

We used Python 3.7.8 and Pytorch 1.10 to implement the whole framework. The baseline and proposed

methods are run on Nvidia RTX 5000 16GB GPU. For training from scratch, we set λ1=1.0, λ2=30.0, λ3=0.5,

λ4=1.0, λ5=1.0. In the segmentation module, the weights for background, gracilis muscle, hamstring muscle,

quadriceps femoris, and sartorius muscle are set as [1,10,1,1,10] in the weighted cross-entropy loss, respec-

tively. For the training data divided into easy and hard cohorts, we set the first λ = 2
3 as the easy cohort

and the rest as the hard cohort. For the fine-tuning stage, we set λ6=0.001. The initial learning rate for the

training model from scratch is 0.0002. We set the maximal training epochs as 100. Before the first 50 epochs,

the learning rate is constant at 0.0002, and then it decreases to 0 linearly. We clip the original CT intensity

to [-200,500]. For the MR images, we perform min-max normalization. All CT images and MR images are

normalized to [-1,1].

Dice similarity coefficient (DSC)[38] is used to evaluate the overlap between segmentation and ground

truth. Briefly, we consider S as the segmentation, G as the ground truth, and || as the L1 norm operation.

DSC(S,G) =
2|S∩G|
|S|+ |G|

(5.9)

5.3.2 Qualitative and quantitative results

A detailed comparison of quantitative performance is shown in Table ?? and Fig 5.5. All methods are trained

with the same training dataset and inference is performed on the same testing dataset. From Table ??, the

proposed method achieves the highest mean DSC of 0.888 with the lowest standard deviation of 0.041. The
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Figure 5.4: Representation results of the proposed methods and baseline methods. Each row represents one
subject. The proposed method reduces prediction errors on bones and around muscle group boundaries. The
yellow arrows point to differences between the proposed method and AccSeg-Net, DISE, and SynSeg-net.
The Input column images are rescaled for visualization purposes.

proposed method significantly differed from all baseline methods with p < 0.05 under Wilcoxon signed-

rank test. The proposed method achieves the best DSC for each muscle group and the lowest standard

deviation except for the quadriceps femoris. Compared with AccSeg-Net, the proposed method makes the

largest improvement in sartorius muscle increasing mean DSC from 0.708 to 0.837, and decreasing standard

deviation from 0.176 to 0.099. In Fig.5.5, compared with the second best-performing method SynSeg-net, our

method further reduces outliers and has a tighter and better DSC distribution. In Fig.5.4, while the baseline

methods makes incorrect predictions on bone, our method is more robust and has fewer incorrect predictions

as shown in Fig.5.4.

5.3.3 Ablation Study

To investigate the effectiveness of the anatomical processing step and adversarial learning in fine tune stage,

we designed 1)“From scratch”, 2)“From scratch + Fine tune”, 3)“From scratch + muscle mask” and 4)“From

scratch + muscle mask + Fine tune” pipelines by modifying the procedures of the proposed pipeline. “From

scratch” represents the result directly from method section B. “From scratch + Fine tune” means splitting

pseudo-labels from scratch into easy and hard cohorts and performing adversarial learning between two

cohorts. “From scratch + muscle mask” represents that the muscle masked derived from [177] is used to

mask out noise for the final prediction map. “From scratch + muscle mask + Fine tune” represents the

proposed pipeline. The graphic description for each pipeline is shown in Fig 5.6.
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Figure 5.5: Quantitative results of DSC of baseline methods and the proposed method. * indicates (p < 0.05)
significant difference between by Wilcoxon signed-rank test and ** indicates (p < 0.02 corrected by Bonfer-
roni method[69]). The yellow arrows indicate outliers that are located at a far distance from the distribution,
spanning from the 25th percentile to the 75th percentile, among the four methods. When calculating the
standard deviation, these outliers are included in the calculation and can potentially influence the resulting
standard deviation. Therefore, the box represents the data distribution from 25th percentile to 75th percentile
rather than the standard deviation of the entire test dataset.

.

As shown in Fig 5.7, compared with “From scratch”, the proposed pipeline significantly increases mean

DSC from 0.870 to 0.888 and demonstrates that the anatomical processing step plus fine-tuning stage can

improve segmentation performance. Compared with “From scratch + Fine tune”, the proposed pipeline

significantly increased mean DSC from 0.878 to 0.888, which shows that the muscle mask can help the

segmentation module discriminate noise outside the muscle mask. Compared with “From scratch + muscle

mask”, the pipeline shows that adversarial learning can make the segmentation module adapt to the hard split

improving DSC from 0.878 to 0.888 on the test dataset instead of only relying on the muscle mask.

5.3.4 Sensitivity analysis

As shown in Fig. 5.1, the thigh muscle is homogeneous, and hard to discriminate the muscle group based on

intensity alone. Furthermore, it is difficult to delineate the boundary of muscle groups by visual assessment on

CT images. To check whether prediction maps cover central areas of muscle groups, we perform a sensitivity

analysis to the proposed method. For each muscle group, we apply a binary 3×3 kernel to erase every muscle
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Figure 5.6: Graphic visualization for the four pipelines designed for the ablation study. (1) represents seg-
mentation maps influenced by the segmentation module trained from scratch. (2) The pseudo-labels of the
training data are inferenced by the segmentation module from scratch and then divided into two cohorts for
fine-tuning. (3) The prediction map inferenced by the segmentation module from scratch is masked by a mus-
cle mask. (4) Proposed pipeline. The pseudo-labels of the training data are inferenced by the segmentation
module from scratch and then masked by a muscle mask for fine-tuning.
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Figure 5.7: The quantitative results for four pipelines used in the ablation study. * indicates (p < 0.05) sig-
nificant difference between by Wilcoxon signed-rank test and ** indicates (p < 0.02 corrected by Bonferroni
method.

group iteratively until the predicted muscle group is empty. The area ratio is defined as the rate between
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Figure 5.8: The sensitivity plot of proposed pipeline result. The x-axis represents the ratio between the eroded
area and the muscle ground truth. The positive prediction value is calculated based on Eq. 5.10

eroded muscle mask and manual ground truth. The positive predictive value (PPV) is defined as

PPV =
|S∩G|
|S|

(5.10)

where S represents the segmentation and G represents the ground truth. || represents the L1 norm operator.

From Fig 5.8, the quadriceps femoris has the highest initial PPV of 0.94 and the sartorius has lowest PPV

of 0.78. The PPV of all four groups muscle are more than 0.85 when the area ratio is 0.8. The quadriceps

femoris, hamstring, gracilis, and sartorius muscle have a final PPV of 1.0, 0.97, 0.96, and 0.95 respectively.

5.4 Discussion

In this work, we study thigh CT and achieve single-slice muscle group segmentation by proposing a two

stages pipeline to leverage manual label from MR 3D volume. In the first stage, we selected single thigh

CT slices from 3D volumes and split slices into left and right thigh images. The real MR and CT images

were fed into a CycleGAN framework to generate synthetic CT images. The generated synthesized images

were input into the segmentation module. We use the original annotation from the MR volumes to supervise

the segmentation module. In the second stage, the pseudo-labels of CT images in the training cohort are

inferenced by the segmentation module (Seg). Based on the assumption that uncertainty is related to wrong
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predictions, we divided the training cohort into easy and hard splits based on inference entropy. We observe

that the bone in MR is dark. However, bone in CT is bright. The significant contrast between MR and CT

causes domain shift during CycleGAN incurring wrong predictions on the bone area. To address the domain

shift problem, the muscle mask from [177] is used to correct the noise map. Finally, adversarial learning is

utilized to align the prediction map between easy and hard split to make the segmentation module robust to

real CT images. To our best knowledge, this is the first pipeline to perform domain adaptation on thigh CT

images. We collect all modules into one container to let the public and more researchers take advantage of our

contribution. The segmentation module can be directly used for single-slice CT muscle group segmentation.

Although the proposed pipeline can handle current challenges in domain adaption, limitations still exist

in the process of the proposed pipeline. One limitation is the dependence on pseudo labels when training

from scratch. need researchers to empirically tune the hyperparameters need to tuned empirically to make

the generative model synthesis anatomy consistent images since we need to balance the generator and dis-

criminator simultaneously. Another limitation is that even though the entropy map is closely related to noise,

prediction errors cannot be found only based on entropy maps. It means that the segmentation module might

learn incorrect patterns in the fine-tuning stage and needs further study, which is beyond the scope of this

manuscript.

5.5 Conclusion

In summary, we present a novel pipeline to leverage muscle group annotations from MR 3D volumes in

segmenting single thigh CT slices. In this study, we (1) proposed a pipeline to solve the domain adaptation

problem for CT thigh images, (2) applied the proposed pipeline to CT thigh images and demonstrated the

effectiveness and robustness of the pipeline, and (3) packed all modules into a container for researchers to

extract muscle groups conveniently and directly without manual annotation. As our current pipeline includes

multi-stages, the way to improve the whole pipeline is to bundle it into one end-to-end framework.
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CHAPTER 6

Characterize brain and body connection through linear and nonlinear model

6.1 Introduction

An increasing body of evidence supports an intimate brain-body connection in aging[12], with cardiovascular

disease (CVD)[95], cognitive decline[88], and dementia[88]. Recently, Bobb et.al[15] performed a longitu-

dinal and cross-sectional study and found that higher BMI was associated with lower gray matter volume in

several ROIs and with declines in volume in temporal and occipital gray matter over time. Beck et.al [12]

conducted a study using a mixed cross-sectional and longitudinal design to examine the relationship between

cross-sectional body magnetic resonance imaging (MRI) measurements of adipose tissue distribution and

longitudinal changes in brain structure by estimating the brain age gap. Deng et al.[35] included traditional

body metrics such as BMI of 322,336 participants to investigate the longitudinal association between life

course adiposity and risk of all-cause incident dementia and to explore the underlying mechanisms driven by

metabolites.

Nevertheless, the majority of these studies have primarily focused on establishing a connection between

baseline brain measurements and subsequent outcomes. In accordance with [51], these studies can be cat-

egorized as within-sample correlations since they establish a relationship between two variables measured

concurrently or analyze the correlation between a variable in a group at an initial time-point and another

variable in the same group at a future time-point. However, the ultimate goal is to perform individualized

predictions of output measurements/features given input features. Consequently, it is essential to develop a

reliable relationship that can effectively predict outcomes for new samples, subjects, or cases based on rela-

tionships developed by previous individuals. Vakli and colleagues [159] used a computer model, CNN, to

estimate BMI by analyzing brain MRI scans along with age and sex data. But, BMI doesn’t give a complete

picture of one’s body composition, like fat and muscle percentages. Thus, we take the form of a tabular to

record brain and body fine-grained features as measurements.

Tabular data refers to structured data organized in a table format consisting of rows and columns. In

our case, each row corresponds to a particular subject’s visit and represents the features associated with that

subject. Conversely, each column represents a specific feature across all the datasets. According to [16], tab-

ular data is inherently distinct from homogeneous data types, such as images, speech, and audio. It exhibits

unique characteristics, including the presence of dense numerical features and sparse categorical features.

Dense numerical features encompass continuous or discrete numerical values, whereas sparse categorical
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features represent discrete values from a limited set of categories. This combination of diverse data types

contributes to the heterogeneous nature of tabular data. Furthermore, the correlation among the features in

tabular data is generally weaker compared to the correlations introduced by spatial or semantic relationships

in image or speech data, which poses a challenge to deep neural networks. One helpful way to mitigate

this challenge is to make full use of regularization. Different from homogenous data forms, feature impor-

tances of tabular data are different. Based on this observation, [80, 142] proposed the regularization to select

sensitive intermediate features and remain inactive to insensitive intermediate features to explore the poten-

tial of a deep neural network. Abid et al.[1] proposed to apply Gumbel-softmax in concrete autoencoder,

an end-to-end differentiable method for global feature selection, which efficiently identifies a subset of the

most informative features and simultaneously learns a neural network to reconstruct the input data from the

selected features. Inspired by [1], we extend Gumbel-softmax to characterize brain and body connection

instead of self-supervised learning. To be specific, we use muscle, fat, and bone areas derived from single

thigh slices as body metrics/features instead of BMI metrics. We use volumes of 133 brain regions as brain

metrics/features. To characterize the brain and body connection, we develop a generalizable model that can

explain the relationship between brain and body to predict brain measurements given by the body and vice

versa.

6.2 Materials and Method

6.2.1 Brain and body feature extraction

We use the BLSA dataset[45] to characterize connections between the brain and body. BLSA collects a

structure MRI of the brain and a mid-thigh single CT slice per each subject during their visit. We apply

SLANT[72] on brain images to achieve whole-brain segmentation with 133 labels. SLANT divides the

standard brain structure MRI image into 27 patches and trains corresponding 27 UNet models to perform

segmentation on each patch. Finally, the prediction result is achieved through a majority vote of 27 models.

As for the mid-thigh slice, we use the proposed segmentation method[178] to perform body composition by

segmenting muscle, cortical bone, internal bone, subcutaneous fat, and intermuscular fat on a single slice.

The volume of the brain region and the average area of the left and right thigh region are quantified from a

segmentation map (shown in Figure 6.1) as brain and body features respectively.

6.2.2 Selection layer

Feature selection is an important concept in machine learning or deep learning. Briefly, we select a subset

of useful features to build a good predictor for a specified response variable[63]. It can help to avoid model

overfitting on noise and increase the interpretation of the model. To achieve feature selection, inspired by
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Figure 6.1: For each visit, we compute a segmentation map of brain image and mid-thigh image of the same
subject in BLSA during one visit. In the brain segmentation map (a), we use the BrainColor protocol to
visualize each label. For the thigh segmentation map (b), we follow the protocol from Chapter 4.

[26], Gumbel-softmax is adopted to construct a select layer by choosing features associated with the response

variable. The Gumbel-softmax uses a continuous relaxation distribution to approximate a categorical random

variable represented as a one-hot vector in Rd with category probability p1, p2, ...pd . The Gumbel-softmax

distribution is in the form of Eq 6.2.

g j =−log(−log(u j)),u j ∈Uni f orm(0,1) (6.1)

m j =
exp((log(p j)+g j)/τ)

∑
d
k=1 exp((log(pk)+gk)/τ)

(6.2)

where m j refers to the jth element in a concrete random variable τ refers to temperature, which controls

the sharpness of the distribution. In the limit τ → 0, the concrete random variable smoothly approaches

the discrete distribution, outputting a one-hot vector with probability p j
∑p p j

. When τ → ∞, the distribution

becomes more uniform. To allow the Gumbel-softmax to explore different possibilities and avoid getting

stuck in local optima, g j as random noise sampled from Gumbel distribution is introduced to Gumbel Softmax

distribution to explore different possibilities. Through re-parameterization, [85], Gumbel softmax distribution

becomes more similar to the Gumbel distribution.

The concrete random variable is deployed from Eq.6.2 and used to choose features. To select k features

from original d input features, k dimensional concrete random variables mi, i ∈ 1...k are generated and mi ∈

Rd . The selector layer outputs x ·mi for ith selected feature, which is a linear combination of the input features

weighted by mi during training. However, as τ tends to 0, each random variable in the selector layer outputs
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only one of the input features. During the validation and inference stage, ”argmax” operator is used to choose

a subset of features.

We follow Abid et al. [1] to set up an annealing schedule. The temperature is set for all of the concrete

variables, initially beginning with a high-temperature T0 and gradually decaying the temperature until a final

temperature TB according to a first-order exponential decay: T (b) = T0(TB/T0)
b/B where T (b) is the temper-

ature at bth epoch and B is the total number of epochs. Decreasing temperature smoothly is helpful for the

Gumbel softmax distribution to better describe the real categorical distribution and avoid local minima during

training.
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Figure 6.2: This figure shows the concrete random variables at the beginning and end of the training. Each
row represents one random variable. To better visualize random variables, k is set as 20, and d is set as 40.
(a) represents the concrete variable at the beginning of training. (b) represents the concrete variable at the end
of training. From a to b, the Concrete random variable becomes sparse and similar to a one-hot vector

6.2.3 Model Architecture

Kadra et al.[80] demonstrated that well-regularized simple deep multilayer perceptron (MLP) outperforms

specialized neural architectures and traditional machine learning methods. The plain deep neural network is

designed to characterize the relationship between body features and brain features in a non-linear way. The

designed model architecture includes 6 fully connected layer blocks. Each block contains one fully connected

layer, followed by LeakyRelu to add the non-linear transformation to features. To subset associated original

input features with predicted variables, the select layer is inserted after input features as shown in Figure 6.2.
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Figure 6.3: The model used to characterize brain and body relationship (a) shows the legend of each block
used in this figure. (b) shows the plain deep neural network including 6 blocks. Each block includes a
fully connected layer with 256, 128, 64, 32, 16, 8 input features respectively. (c) shows the proposed model
architecture. Except for the same blocks, the select layer is inserted between input features and the first block
to select associated features. d represents the number of input features per each observation and k represents
the number of selected features decided by the user.

6.3 Experiment and result

The experiment is performed on 15,000 samples within synthetic and 2167 pairs within real BLSA datasets

including brain and thigh features. The experiment of the synthetic dataset is to validate the efficacy of

Gumbel softmax to check whether Gumbel softmax can select the associated features. The experiment of

the real dataset is to predict body areas such as muscle, internal bone, cortical bone, subcutaneous fat, and

intermuscular fat by using brain region volumes and predicting hippocampus volume with body region areas.

6.3.1 Implementation details

The model architecture is implemented in Keras [62]. We use mean square error as the loss function for all

experiments. The deep neural network is optimized by the Adam[84] optimizer with a learning rate of 0.001.

5000 is set for whole training epochs and each batch has 16 samples. The synthetic dataset and real dataset
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are divided into training, validation, and test cohorts. The tested epoch is selected based on the performance

of the validation cohort. To reduce the effect of feature scaling, each feature and predicted response within

the training cohort is normalized by using Eq. 6.3.

FFFnorm =
FFF − f̄

σ
(6.3)

where f̄ is the average value of FFF and σ is the standard deviation of FFF . By performing normalization, the

feature is normalized to a distribution with a mean of 0 and a standard deviation of 1. The mean f̄ and standard

deviation σ are applied to validation and test cohort to normalize the corresponding feature to alleviate data

distribution shift between training and other cohorts.

6.3.2 Characterize linear relationship

Regarding linear characterization, the linear regression model from the statsmodel package [140] is adopted

to characterize linear relationships. The control variables are demographic information, such as sex, age,

and mild cognitive impairment (MCI) status. Additionally, when estimating the volume of the hippocampus,

whole brain volume is included as a control variable. The input features are potentially high-dimensional,

with up to 133 dimensions. To address this, Principal Component Analysis (PCA) is applied to perform

feature reduction by extracting the component with the largest variance. PCA is performed on the training

dataset, and the resulting transformation matrix is applied to the validation and test cohorts to ensure con-

sistent features are obtained. The linear regression formula for predicting body features from brain features

takes the form:

out put f eature = Intercept +β0age+β1sex+β2MCI +β3input f eature+ ε (6.4)

6.3.3 Metrics

Explained variance score (EVS) is used to explain the dispersion of errors of prediction for a given dataset

prediction, which is suitable for regression tasks. EVS has the upper bound of 1. When EVS equals 1, it

means perfect prediction. If EVS is smaller than 0, it means the prediction is worse than using the average

of ground truth as the prediction. ŷyy represents the prediction, and yyy represents the ground-truth. The formula

for explaining variance is written as:

EV S(yyy, ŷyy) = 1− Var(yyy− ŷyy)
Var(yyy)

Var(yyy) = ∑
i
(yi − ȳ)2 (6.5)
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where ȳ is the average of yyy and yi is the ith element of yyy.

6.3.4 Validation of the Gumbel softmax

The purpose of this section is to investigate the ability of Gumbel softmax to separate meaningful signals from

noise, as well as the potential to enhance the regularization of neural networks and improve the understanding

of the input-output relationship. To test the hypothesis, we followed the approach proposed in [26] and created

synthetic data with an explicit non-linear mapping from input to output. Specifically, we randomly generated

133 input features from a standard Gaussian distribution and selected 5 out of the 133 features that are related

to 5 output responses. We then used the following formula to express the non-linear relationship between the

input and output.

y1 = sin(x1)+3exp(x4)+η

y2 = 4cos(x1)+3|x2|+η

y3 = exp(x1)+5sin(x2)+6|x3|+η

y4 = exp(x1)+10sin(x4)+6exp(x5)+η

y5 = 4|x5|+4exp(x3)+η (6.6)

where η ∼ N (0,1) is regarded as noise added into the non-linear relationship.

To train our model, we generated 15,000 samples for the training cohort, 1,000 samples for the validation

cohort, and 9,000 samples for the test cohort. The Eq 6.3 is used to normalize features and responses. We

varied the percentage of training data used to train the model and analyzed its performance. Figure 6.4

displays the results. As depicted in Figure 6.4 (a), our proposed model consistently outperformed the plain

MLP model in terms of EVS, except when using only 1 percent of the training data. Gumbel Softmax

is employed to select 10 relevant features and selected features are always the real signals after removing

duplicates, except when using only 1 percent of the training data. In conclusion, the Gumbel Softmax method

improved our model’s prediction ability, by accurately selecting real signals, as evidenced by the results in

Figure 6.4(b).
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Figure 6.4: The resulting plot for the toy example and success rate of selecting features in each run with
different percentages of toy data. (a) shows the mean explain variance score across 5 output variables. Com-
pared with the MLP model, the only difference is that Gumbel has a selected layer to subset real signals. (b)
shows the success rate of real signals chosen by Gumbel Softmax.

6.3.5 Choice of number of selecting features

The number of subset features is an important hyperparameter that might influence the performance of neural

networks. To choose suitable k, we performed the experiment with k values starting from 10 to 130 with step

10 to predict body region features(muscle area, cortical bone area, internal bone area, subcutaneous fat area,

and intermuscular fat area) from brain volumes. The result can be found in Fig. 6.5. It can be observed that

even though we plan to subset 130 brain features, only 12, 8, 15, 20, and 30 unique features are selected for

predicting muscle, cortical bone, internal bone, subcutaneous fat, and intermuscular fat respectively. Most of

the selected features are repeated. In such a scenario, the input features are over-trained and cannot reflect

the effect of real signals. Based on this observation, we choose the upper bound of k as 10 when we use brain

features to predict body features.
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Figure 6.5: The bar plot of expected selecting features and exact features Gumbel-softmax select. The five
bar plots represent using brain features to predict body features including muscle, cortical bone, internal
bone, subcutaneous fat, and intermuscular respectively. When we increase the number of selected features,
the exact number of selected features is less than expected since there are duplicate selected features
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6.3.6 Real dataset

The BLSA dataset (Philips 3T Achieva) includes T1-weighted images acquired using an MPRAGE sequence

(TE = 3.1 ms, TR = 6.8 ms, slice thickness = 1.2 mm, number of Slices = 170, flip angle = 8 deg, FOV

= 256×240mm, acquisition matrix = 256×240, reconstruction matrix = 256×256, reconstructed voxel size =

1×1mm). The thigh single slice has resolution 512 × 512 and pixel size = 1x1mm. We follow the pipeline

in Chapter 4 to divide the thigh slice into left and right images. Then the segmentation model is deployed to

perform body composition. The demographic information for the BLSA dataset can be found in Figure 6.6.
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Figure 6.6: The histogram for demographic information of BLSA dataset. (a) shows the age distribution of
BLSA subjects. The BLSA dataset is used to investigate the aging effect. Most people are elder. (b) shows
the sex distribution of BLSA subjects. (c) shows the distribution of visit numbers per subject. The maximal
number of visits of one subject is 10.

6.3.7 Predict body composition area using brain region volumes

The body composition refers to muscle, cortical bone, internal bone, subcutaneous fat, and intermuscular fat.

In this section, brain region volumes are used to predict those areas by using the BLSA dataset. The whole

BLSA dataset is divided into training, validation, and test cohorts randomly based on subjects. The training

cohort has 1295 sessions from 553 subjects. The validation cohort includes 412 sessions from 184 subjects

and the test cohort includes 460 sessions from 186 subjects. The input features and predicted variables are

normalized using Eq 6.3. To have the same experimental setting as linear regression, we concatenate age,

sex, and MCI to the feature map after the select layer. We feed 132 brain region features to the select layer

and the following architecture. We iterate the number of select features from 1 to 10 with step 1 and choose

the best performance of the validation dataset as the optimal model. The prediction results are evaluated by

EVS. The Atlman-Blank plot is shown in Fig 6.7 to visualize the relationship between prediction and target

ground truth in linear and non-linear. The explained variance score is shown in table 6.1
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Figure 6.7: The bland-Altman plot of linear regression and proposed nonlinear methods. Each plot has the
difference between prediction and truth as the y-axis and ground truth as the x-axis. The gray color represents
the linear regression and the red color represents the proposed methods. We can observe the proposed meth-
ods have a smaller limit of agreement in muscle area prediction compared with linear regression as pointed
out by the yellow arrow. We also find that there are two obvious clusters controlled by sex in cortical bone
and subcutaneous fat prediction.

Region
Linear regression

(Linear relationship)

Proposed model

(Non-linear relationship)

Muscle area 0.598* 0.639

Cortical bone area 0.527* 0.542

Internal bone area 0.213 0.215

Subcutaneous fat area 0.282 0.226

Intermuscular fat area 0.069 0.050

Table 6.1: The explain variance score for linear and non-linear model. * represents p-value < 0.05 and
indicates transformed brain features are related to the target variable significantly. The bold explain variance
score means better prediction ability.

From Table 6.1, we observe that from linear regression transformed brain features are significantly asso-
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Region Female Linear Regression
(Linear relationship)

Female Proposed Model
(Non-linear relationship)

Male Linear Regression
(Linear relationship)

Male Proposed Model
(Non-linear relationship)

Muscle area 0.413 0.395 0.395* 0.373
Cortical bone area -0.031 -0.092 0.044* -0.122
Internal bone area 0.009 0.074 0.121* 0.188
Subcutaneous fat area 0.009 0.020 -0.031 0.083
Intermuscular fat area -0.082 -0.051 0.003 0.007

Table 6.2: The EVS for linear and non-linear model based on male and female. * represents p-value <
0.05 and indicates transformed brain features are related to the target variable significantly. The bold explain
variance score means better prediction ability.

ciated with muscle and cortical bone area. The proposed model has a better EVS of 0.639, 0.542, and 0.215

than the linear model in muscle, cortical bone, and internal bone area. From Fig 6.7, the linear and non-linear

plot of cortical bone and subcutaneous fat has two obvious clusters, which are separated by sex.

To remove the sex effect, we divided the whole BLSA database based on sex and followed previous data

split rules. The linear regression formula is shown as:

out put f eature = intercept +β0age+β1MCI +β2input f eature+ ε (6.7)

Table 6.2 displays the EVS for males and females in both linear and non-linear relationships for four

different body composition areas. With the exception of muscle, the EVS for all other body compositions is

either close to zero or negative, regardless of whether a linear or non-linear model is used. For the muscle

area, the linear model has a slightly better explained variance score of 0.413 and 0.395 compared with the

non-linear model.

6.3.8 Predict hippocampus volume using body composition area

As mentioned in [134, 173, 114], body composition is an important indicator of cognitive function. The hip-

pocampus is highly associated with cognitive function[14]. We hypothesize that body metrics are associated

with hippocampus structure. Thus, the body features are used to predict hippocampus volume to test this hy-

pothesis. Similar to section 6.3.5, the whole brain volume (aggregating all region volumes of SLANT), age,

sex, and MCI are concatenated to the feature map after the select layer in the non-linear model. We iterate the

number of select features from 1 to 5 with step 1 and choose an optimal model based on performance on the

validation cohort. As for the linear model, PCA is applied to perform feature reduction on body composition

features and takes the form of Eq. 6.8

out put f eature = intercept +β0age+β1sex+β2MCI +β3Wholebrain+β4input f eature+ ε (6.8)
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Two experiments are conducted to examine the impact of whole brain volume on the relationship between

transformed body features and left and right hippocampus volume. The first experiment does not include

whole brain volume, while the second experiment does. The resulting EVS is presented in Table 6.3 and

bland-Altman plot is shown in Figure 6.8
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Figure 6.8: The bland-Altman plot of linear regression and proposed nonlinear methods. Each plot has the
difference between prediction and truth as the y-axis and ground truth as the x-axis. The gray color represents
the linear regression and the red color represents the proposed methods. As pointed out by the arrow, we can
observe the proposed methods have a smaller limit of agreement in left hippocampus prediction compared
with linear regression when we include whole brain volume into the estimation process.

From table 6.3, it is apparent that without whole brain volume, transformed body features are significantly

associated with both left and right hippocampus volume in the linear model. After introducing whole brain

volume, both the linear and non-linear models produce better EVS. The non-linear model outperforms the

linear model in terms of EVS, except for right hippocampus volume.
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Linear regression

with whole brain volume

Proposed model

with whole brain volume

Linear regression

without whole brain volume

Proposed model

without whole brain volume

Left hippocampus volume 0.415 0.443 0.215* 0.221

Right hippocampus volume 0.372 0.446 0.227* 0.194

Table 6.3: The explain variance score for linear and non-linear model for left and right hippocampus volume
prediction based on body composition areas. * represents p-value < 0.05 and indicates transformed body
features are related to the target variable significantly. The bold explain variance score means better prediction
ability.

6.4 Discussion and conclusion

In this study, we have proposed to apply Gumbel-softmax to regularize MLP to analyze the relationship be-

tween brain volumes and body regions. The Gumbel-softmax is capable of subsetting input features and

regularizing the deep neural network to reflect the relationship between selected features and their associated

output variables. Our results, presented in Fig 6.4, demonstrate that the Gumbel-softmax model can accu-

rately recognize the real signals associated with synthetic output variables. Additionally, our proposed model

has been shown to have better EVS when compared to the plain MLP neural network. Furthermore, when we

increased the amount of data fed into the networks, both networks exhibited an increase in EVS.

In our real data experiment, we use brain volume features along with demographic information such

as age, sex, and MCI diagnosis to predict body regions for both male and female subjects. Our results, as

presented in Table 6.1, demonstrate that the transformed brain features better predict muscle and cortical bone

area and that these transformed features are significantly related to muscle and cortical bone metrics in linear

regression analysis. When we used the proposed model to investigate the relationship between input brain

features and body composition metrics, the introduction of a large-scale model and non-linear transformation

led to better EVS compared to the linear model. The proposed model has higher EVS in muscle prediction.

We find that selecting features of Gumbel-Softmax are left gyrus rectus volume, left inferior lateral ventricle

volume, and right ventral diencephalon volume for muscle prediction. Based on [73], ventral diencephalon

volume is associated with obesity and BMI, which supports the effectiveness of selecting real signals of

Gumbel-softmax indirectly.

As shown in Figure 6.7, the difference between the predicted values and the actual values gradually

shifted from positive to negative as the actual values increased. This indicates that the predictions were cen-

tered around the mean values with limited variance and that the output variable could not be fully predicted.

Additionally, we observe two distinct clusters on the Bland-Altman plot for predicting cortical bone and sub-

cutaneous fat, which is attributed to sex. To investigate this further, we separated the entire dataset into two

cohorts based on gender and repeated the same experiment setting for male and female body composition

metric prediction. Combining Table 6.2 with Table 6.1, we find that the EVS drops significantly for all body
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composition metrics prediction except for muscle. This indicates that sex explains a significant portion of the

EVS when fitting the whole dataset and predicting body composition metrics except for muscle.

In another real data experiment, we attempt to predict hippocampus volume using body metrics. We

investigated the effect of whole brain volume in the linear regression model during the experiment. The results

presented in our analysis show that transformed body metrics were significantly associated with hippocampus

volume when whole brain volume was not included. However, when we include whole brain volume, the body

metrics are not significantly associated with hippocampus volume. We believe that the reason for this finding

is that transformed body composition metrics contain similar information to whole brain volume. Therefore,

body composition metrics become insignificant when including whole brain volume in the model. Moreover,

our analysis reveals that the proposed model had better EVS compared to the linear regression model, except

for predicting left hippocampus volume without whole brain volume.

In this study, we proposed to apply Gumbel-softmax to plain MLP to characterize the relationship between

brain features and body features in a non-linear approach. We demonstrate the effectiveness of Gumbel-

softmax using a synthetic dataset. We next use brain region volumes to predict body regions and find the

muscle that is most predictable with the highest EVS compared with cortical bone, internal bone, subcuta-

neous fat, and intermuscular fat. Combined with another experiment using body regions to predict hippocam-

pus volume, we noticed that the non-linear model has better EVS compared with linear regression when the

output variable is predictable.

In the literature, there exists a significant amount of heterogeneity regarding characterizing the relation-

ship between the brain and body. Most of them focused on correlation within samples instead of predicting

new individuals. Different from previous literature, this study aims to predict body features using brain fea-

tures and vice versa directly and can potentially help resolve some of the discrepancies regarding which brain

signals are associated with body variables. With the proposed approach’s ability to link input features with

output variables directly in a non-linear way, it could potentially enable researchers to better understand the

connection between the brain and body.
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CHAPTER 7

Conclusion and Future Works

7.1 Impact of the Dissertation

In this dissertation, we leverage statistical, machine learning, and deep learning approaches within health-

care, focusing primarily on advanced medical image analysis. Our exploration encompasses foundational

techniques including data assurance, segmentation, and synthesis. Specifically, we address the challenges

associated with structure MRI and single CT thigh slices from the BLSA dataset.

BLSA commenced in 1958 and has consistently enrolled volunteers across a broad age range, conducting

follow-ups every 1 to 4 years. At each visit, certified technicians collect clinical and functional data, including

brain structure MRI, diffusion MRI, and single thigh CT slices, to study the aging process. This dissertation

primarily utilizes the BLSA dataset for investigations.

The brain atlas is an essential way to understand the structure of the white matter pathway. However, we

found that many current atlases overlook or oversimplify white matter structures. While some atlases label

white matter using diffusion MRI, they often have limitations in coverage, methodology, and sample size. We

resent a new population-based collection of white matter atlases represented in both volumetric and surface

coordinates in a T1w standard space. Technique validation shows that certain pathways are not exactly the

same even with the same name. It also demonstrated that certain pathways are different across different data

sources. The details can be found in Chapter 2.

Even though the white matter atlas can propagate white matter labels to T1w without dMRI, the average

representation of atlas impedes the subject-specific segmentation of the white matter pathway. We proposed

spatial localized deep neural networks to derive personalized white matter pathways from T1w. We validated

that deep neural networks have better generalizability and specificity for personalized T1w. The details can

be found in Chapter 3.

After investigating brain white matter tractography, we focus on the body composition of mid-thigh CT

slices. Body composition refers to quantifying the distribution of muscle, fat, and bone. Tissue segmentation

is the foundation for body composition. While the deep neural network has impressive performance in medi-

cal image segmentation, it requires tons of annotated data. Annotating biomedical images is not only tedious

and time-consuming but also demands costly, specialty-oriented knowledge and skills, which are not easily

accessible. To handle this challenge, we proposed a two-stage transfer learning strategy. We derive pseudo

labels from CT slices based on anatomic appearance and warm-up segmentation model from scratch. Then,
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expert labels are fed to optimize the segmentation model. Our proposed methods are evaluated on the thigh

and lower leg slices. We validated that transfer learning based on pseudo labels can achieve data-efficient seg-

mentation compared with only relying on limited human expert labels. The details can be found in Chapter

4.

Except for body composition, muscle group segmentation is also important for sarcopenia diagnosis and

muscle strength estimate. However, we still face annotation problems. We proposed the domain adaptation

and self-training method to transfer labels from public MRI volume to single CT slices. The experiment

and ablation study demonstrate the effectiveness and robustness of the proposed methods. We validated that

self-training can improve robustness when handling the domain gap between MR and CT. The details can be

found in Chapter 5.

Previous contributions focused on the investigation of the brain and body separately. We have taken

strides towards understanding anatomical priors of white matter pathways derived from structure T1w and

quantitative body composition within a single CT slice through data-efficient learning. Our final contribu-

tion pulled together these innovations to characterize the relationship between MRI-derived structural brain

measures and quantified body composition. We proposed to use Gumbel-softmax to extract a subset of input

features as real signals to predict outputs through the deep neural network. We validated the effectiveness of

Gumbel-softmax by synthetic dataset and found that a deep neural network has better explainability compared

with a linear model. The details can be found in Chapter 6.

7.2 Future works

In this section, we propose to explore future directions based on the current contributed works.

7.2.1 Slice to volume generation through conditional score-based diffusion model

Generative modeling has undergone a remarkable evolution in recent years, with the advent of diverse frame-

works specifically designed to estimate intricate and high-dimensional data distributions. Notably, the score-

based diffusion model has risen to prominence, distinguished by its innovative approach to data distribution

modeling. Unlike traditional generative models, which typically parameterize the data distribution or its

transformation directly, score-based diffusion models emphasize the estimation of the gradient of the log-

likelihood of data. This score elucidates strategies to adjust a random sample to enhance its probability

within the model’s perceived data distribution.

Leveraging these scores, the model employs a methodical diffusion process to incrementally transform

samples from a Gaussian distribution into those that represent the target data distribution closely. By avoiding

an explicit definition of the likelihood function directly, the model sidesteps pitfalls such as mode collapse, a
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challenge frequently encountered in other generative frameworks. Instead, it harnesses noise-corrupted data

iterations during training, capitalizing on the interplay between noise intensity and the gradient of the log

data density.

Within the context of the BLSA dataset, body composition analysis is often conducted using a single slice

of the abdomen or mid-thigh, obtained during imaging acquisition phases. However, the positional variance

inherent in using a single slice can introduce noise, potentially affecting subsequent analyses. To address

this challenge, we can transform the existing 3D volumes of the thigh or abdomen into sequential slices

along pointed directions akin to video frames. During training, we innovatively employ random masking of

preceding frames either to anticipate current frames or to utilize future frames for current frame prediction,

thereby emulating volume generation in an auto-regressive manner.

7.2.2 Leveraging large language model for text generation for characterization brain and body

Large Language Models (LLMs) are important foundation models in natural language processing. Trained

on vast amounts of textual data, these models demonstrate an impressive ability to understand, generate, and

interact using human language. Their architecture and scale enable them to capture contextual meanings from

diverse linguistic sources.

LLMs can be applied in multi-modality domains such as the medical imaging domain. For instance, the

model is expected to predict brain volume, brain ages, or other brain-related metrics given single thigh slices.

This designed paradigm offers unparalleled advantages. The inherent explainability ensures that generated

records are both detailed and contextually relevant, translating intricate visual data into interpretable content.

Their precision ensures no nuanced feature is overlooked, while their versatility enables concurrent process-

ing of diverse data forms, such as textual medical histories, for a holistic analysis. LLMs guarantee consistent

and rapid record generation. Their adaptability also allows for outputs tailored to varied audiences, and the

inherent feedback loop ensures ongoing refinement and accuracy improvement in response to expert input.
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[29] Özgün Çiçek, Ahmed Abdulkadir, Soeren S Lienkamp, Thomas Brox, and Olaf Ronneberger. 3d u-
net: learning dense volumetric segmentation from sparse annotation. In International conference on
medical image computing and computer-assisted intervention, pages 424–432. Springer, 2016.
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Vinh-Thong Ta, Vincent Lepetit, and José V Manjon. AssemblyNet: A novel deep decision-making
process for whole brain MRI segmentation. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 466–474, 2019.

[31] A M Dale, B Fischl, and M I Sereno. Cortical surface-based analysis. I Segmentation and surface
reconstruction. Neuroimage, 9, 1999.

[32] Christos Davatzikos and N Bryan. Using a deformable surface model to obtain a shape representation
of the cortex. IEEE transactions on medical imaging, 15(6):785–795, 1996.
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Dawant, Márta Fidrich, Jacob D. Furst, Daisuke Furukawa, Lars Grenacher, Joachim Hornegger, Dag-
mar Kainmüller, Richard I. Kitney, Hidefumi Kobatake, Hans Lamecker, Thomas Lange, Jeongjin Lee,
Brian Lennon, Rui Li, Senhu Li, Hans Peter Meinzer, Gábor Németh, Daniela S. Raicu, Anne Mareike
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A.2 Copyright from Wiley
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Figure A.2: Copyright from Wiley
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