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Chapter 1

Introduction

There are more than 7,000 public transit agencies in the U.S. (and many more private

agencies), and together, they are responsible for serving 60 billion passenger miles each

year. A well-functioning transit system fosters the growth and expansion of businesses,

distributes social and economic benefits, and links the capabilities of community mem-

bers, thereby enhancing what they can accomplish as a society [3, 4, 5]. Furthermore,

large-scale adoption of smart phones and sensing technologies have revolutionized urban

mobility in recent years. Led by companies such as Uber, Lyft and Via, new on-demand

transportation options such as ride-share, e-scooters, and bike-share have been introduced

alongside existing transportation services provided by public transit agencies. The explo-

sion in transportation options, and the complicated relationship between public and private

offerings present myriad new challenges in the design and operation of these systems. As

transit agencies try to adapt to their new environment it has become critically important

to identify new ways to address the complex, and often competing, operational objectives

that complicate the implementation of efficient services. How these entities address these

challenges will have an outsized impact on our ability to strengthen urban communities,

address the climate challenge, and foster equitable growth going forward.

Urban mobility is a broad field with many stakeholders. It encompasses public and

private transportation operators, the residents and users who rely on these services, as well

as regional and local municipalities. Given the complex, and often competing, operational

objectives of these various stakeholders, it is impossible to identify an exact definition of

what constitutes a ”well-functioning” transportation system. Therefore, in this work we

narrow the focus to the view-point of transit authorities and public transit in general. There

are multiple reasons to focus on this view. First, affordable public transit is the backbone
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of many communities. A well designed public transit system provides critical service to

communities most in need where residents are least likely to own a personal vehicle. Addi-

tionally, services such as paratransit provide mobility options for handicapped and elderly

residents that may not be able to access regular fixed-line public transit or operate their

own vehicle. Second, as the number of private transportation modalities increases, the

transportation landscape has become more fragmented [6]. As public entities, transit agen-

cies are tasked with providing service in a way that maximizes social benefits to residents

and the city as a whole. Additionally, in many urban areas transit agencies also have some

degree of authority over the various operators in the region. This allows transit agencies

to view the global transportation system holistically and presents opportunities to optimize

services at the system-level.

While there are many ways to assess the performance of transportation systems, we

largely focus on evaluating these systems in the context of optimizing three system-level

objectives - utilization (i.e. ridership), efficiency (i.e. reducing operational costs) and cov-

erage (expanding service geographically). Increasing utilization requires learning mobility

patterns over wide geographical areas and adapting systems to better meet the demand for

mobility. It also requires flexible, demand-responsive mobility options that can adapt to

demand in real-time and thus better serve potential passengers. Additionally, more effi-

cient systems alleviate the impact on the environment by reducing emissions and can free

resources by reducing costs. Lastly, it is important to discuss optimization in the context of

ridership versus coverage, the latter of which is an important consideration in the design of

equitable and fair transportation. While the problem of ridership versus coverage is open-

ended, there are ways in which these dimensions can be modelled such that transit agencies

can better optimize over the objectives that matter most to them.

Fundamentally, the design of a well-functioning transit system requires solving com-

plex combinatorial optimization problems related to planning and real-time operations.

These problems span many well studied fields, from classical line planning to offline vehi-
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cle routing problems (VRPs) and online, dynamic vehicle routing problems (DVRPs). This

work focuses on the design and implementation of real-time transportation systems. In par-

ticular, we focus on demand-responsive transportation. Demand-responsive transportation

can be thought of as any transit solution that includes a component that adapts to changes in

demand, the environment and available resources in real-time. Demand-responsive trans-

portation has great potential to improve utilization and coverage by expanding public tran-

sit service through flexible door-to-door Mobility-on-Demand (MoD), as well as improve

efficiency by making existing public transit more flexible and responsive [7, 8, 9, 10, 11].

Demand-responsive applications can be framed as resource allocation problems in which

demand (users, trip requests) must be matched to available resources (vehicles, e-scooters,

e-bikes) over time. Therefore, these systems require making decisions in real-time over

large geographical areas and computationally intractable state-action spaces. Due to the

intractability of these problems, traditional analytical methods fall short. Therefore, tran-

sit agencies have turned to computational approaches that enable large-scale, data-driven

optimization. Artificial intelligence (AI)-based methods can address this problem by learn-

ing complex abstractions of vast volumes of data to aid the decision-making process in a

computationally efficient manner at scale. In this way we aim to derive methods for which

transit agencies can utilize the vast sums of data generated from the explosion in network-

connected devices throughout urban areas to create more flexible and efficient services.

We propose a computational framework for demand-responsive transportation that tack-

les problems related to data processing and integrity, prediction, decision-making under

uncertainty, deployment and software design. We model the problem as a real-time re-

source allocation problem that can be decomposed into four concrete atomic sub-problems

- 1) Planning, 2) Prediction, 3) Deployment and 4) Software Design. To highlight our

solution and approach we tackle various challenges in the design and operation of demand-

responsive paratransit, microtransit and fixed-line transit faced by our partner agency, the

Chattanooga Area Regional Transportation Authority (CARTA). Finally, we integrated the
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components of our framework into a software ecosystem for real-time MoD applications

called SmartTransit-AI that is currently in use by CARTA.

1.1 Planning

The focal point of our pipeline for demand-responsive transportation is the algorithms

for planning. Recall that we can frame demand-responsive transportation as a large-scale

resource allocation problem where resources (vehicles, e-scooters, bike-share ect.) must

be matched to service demand (user trip requests). In this context, planning refers to the

algorithms used to assign these resources to service demand. Take for example ride-pooling

systems such as microtransit, paratransit, UberPool and Lyft Line. Ride-pooling is a form

of MoD that provides direct transportation between origin and destination for a user that

requests a trip through a smart phone application, similar to ride-hailing. However, where

ride-hailing only allows for a one-to-one mapping between resources (drivers) and demand

(passengers), ride-pooling allows for users to share trips. The key idea is that by grouping

riders with similar trips together, ride-pooling can increase efficiency compared to single-

rider services [6, 12].

Ride-pooling can be framed as a dynamic vehicle routing problem (DVRP), which ex-

tends the offline VRP to real-time settings. All DVRPs share a basic set of constraints

related to vehicle capacities and pickup and dropoffs. Depending on the domain, ser-

viceability requirements can be included as constraints as well by setting hard limits on

maximum waiting time or passenger detour time. The goal is then to design a planning al-

gorithm that will match trip requests to vehicles to optimize a system-level utility function

that is evaluated over the course of a day while meeting the constraints at each decision

point. These decisions are made sequentially, in real-time. Therefore, it is important to

design efficient decision procedures that are societal-scale and robust to changing demand

and environment conditions.

Due to the scale of these systems, current state-of-the-art sequential planners are typi-
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cally myopic in that they aim to maximize immediate reward [13, 14]. Myopic controllers

therefore only consider the impact of decisions at time t until time t+1. However, there are

numerous factors which can change in the near and long term that can lead to significant

inefficiency by not accounting for future demand and future system states. This includes

changing traffic conditions, weather, and the distribution of future requests. All of these

factors can be predicted and incorporated in non-myopic planners but are ignored in myopic

planning.

In the cases where non-myopic solutions are presented, they typically rely on value

functions learned offline through simulation which can become stale in non-stationary en-

vironments as they evolve [15, 16]. Non-myopic methods can be classified as offline, online

or hybrid. In the case of offline non-myopic planning a value function is learned directly

from data through simulation which is then accessed at inference time to evaluate actions in

the context of future demand. While these methods are highly scalable, the models rely on

learned representations of expected demand and environment dynamics which can become

stale in highly dynamic and non-stationary environments. This can cause sub-optimal plan-

ning precisely when decision-making is of most importance: for instance during spikes in

demand from large-scale sport events or when normal operations are disrupted due to ex-

treme weather.

Therefore, we aim to study what is required for adaptive planning for DVRPs. We

focus on adaptive planning for paratransit services, which are a socially important MoD

service that extends public transportation access for users with disabilities or handicaps

that can not reliabilly use fixed-line public transit. We propose a fully online approach that

is robust to changing environmental dynamics. Our approach leverages the structure of

the paratransit DVRP to design heuristics that can sample promising actions that are then

evaluated non-myopically through online search and a generative model. Our contributions

are presented in Chapter 3.
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1.2 Prediction

Generative models are just one data-driven method which can aid the decision-making

process during planning. Similarly, predictive models have great potential to improve opti-

mization procedures by learning efficient representations from vast volumes of data. There

are primarily two ways in which predictive models can aid the planning process. First,

predictive models the system dynamics in a way that can be used directly in the optimiza-

tion algorithms to model future scenarios or state. For example, an online DVRP algorithm

might require estimates of future traffic conditions or travel times which can be learned

through supervised learning. Second, these methods can be used to directly learn policy

or utility functions through offline simulation. The learned functions can evaluate current

actions or state in the context of expected future reward, and therefore are non-myopic.

These methods collectively fall under the field of reinforcement learning (RL).

Predictive models require large amounts of high quality data for training offline, which

is not always available. An interesting case study is the problem of designing predictive

models for energy and emissions for mixed-fleet transit. A mixed-fleet occurs when a

transit agency is tasked with managing a variety of classes including internal combustion

vehicles (ICEVs), electric vehicles (EVs), and hybrid vehicles (HVs). This is a common sit-

uation as many transit agencies, including CARTA, gradually introduce new fuel-efficient

EVs and HVs to their existing fleet of ICEVs. In managing mixed-fleets, agencies re-

quire accurate predictions of energy use for optimizing the assignment of vehicles to tran-

sit routes, scheduling charging, and ensuring that emission standards are met. However,

the ad-hoc nature of vehicle acquisition results in not only a mix of vehicle classes (ICEV,

HV, and EV), but also different vehicle models within each class. For example, CARTA

manages a total of six ICEV models, two HV models and two EV models. Current state-

of-the-art is to train separate predictive models for each vehicle model [7, 17]. However,

as datasets can be highly imbalanced between vehicle classes and models, predictive per-

formance can vary greatly and ultimately negatively affect downstream optimization appli-
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cations. Therefore, in Chapter 4 we present our work on utilizing multi-task and inductive

transfer learning overcome these challenges in the context of energy and emissions predic-

tion for mixed-fleets. Our work shows that we can leverage broader generalizable patterns

that govern the consumption of energy and vehicle emission to improve performance in

this setting.

1.3 Deployment

Its also important to note that current research typically frames decision-making as an

algorithmic or artificial intelligence (AI) problem, which ignores the computation frame-

works and resources on which these systems will be deployed. In this context, decentralized

operations has the potential to reduce latency by utilizing compute at the network edge, can

remain operation when access to the cloud is removed, and can improve user privacy and

security related to large-scale systems [18, 19, 20].

In this work we argue that to fully utilize recent advances in edge computing for the

transportation domain, algorithms and learning should be jointly designed and adapted for

these new environments in a way that captures the benefits of these systems. In particu-

lar, we focus on the potential of roadside-unit (RSU) networks for real-time transportation

systems. We address two key challenges in this setting. In Chapter 5 we present a de-

centralized, congestion-aware route planning algorithm for private RSU-edge networks.

We leverage recent advances in federated learning to collaboratively learn shared predic-

tion models online and investigate our approach with a simulated case study using data in

Nashville, Tennessee. Second, in Chapter 6 we address key challenges related to anomaly

detection and security in RSU deployments. We propose a multi-tiered anomaly detection

framework for fast, real-time detection of orchestrated data-integrity attacks in which an

adversary attempts to compromise a subset of sensors with the goal of maximizing the

effect of the attack on the transportation system.
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1.4 Software

Throughout this work we present a variety of solutions to critically important technical

challenges related to demand-responsive and MoD systems. Ultimately, the goal of all re-

search is to create real-world impact. In this work, we set forth with the goal of improving

operations for transit agencies in a way that maximizes social benefits. Indeed, we iden-

tified three ways to achieve these aims - by optimizing 1) utilization, 2) efficiency and 3)

coverage. We hypothesized that demand-responsive systems could achieve these aims by

allowing public transit agencies to provide more flexible and adaptive real-time services.

To do this we created a framework, and resolved a variety of real-world challenges facing

transit agencies through 1) planning, 2) prediction and 3) deployment. To facilitate the use

of these contributions, we developed SmartTransit-AI which is a software framework for

MoD services.

This software framework addresses an important limitation in real-time transportation

research. As it currently stands, the operations software used by transit agencies is provided

by various private companies. These offerings are closed in that the agencies themselves

have limited access to the underlying algorithms and don’t have an easy way to apply

agency-specific constraints. These one-size-fit-all solutions severely limit the ability of

transit agencies to customize their services to their unique populations as well as implement

state-of-the-art algorithms from the academic and open-source communities.

SmartTransit-AI fits within the broader category of Mobility-as-a-Service (MaaS) soft-

ware - however with two important distinctions. First, SmartTransit-AI is more than a

wrapper joining existing mobility options. It allows direct access to modular optimization

components which can be extended or adapted as new algorithms are developed over time.

Second, we provide an easy to use configuration framework that gives transit agencies full

control over system constraints and objectives.

SmartTransit-AI was designed with critical input from CARTA and was used to pilot

our own set of algorithms in CARTA’s paratransit operations. The SmartTransit-AI frame-
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work for MoD and the results of the paratransit pilot in Chattanooga, Tennessee is presented

in Chapter 7.
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Chapter 2

Background

In this Chapter, we present the relevant background required to study real-time, data-

driven transportation systems. First, we discuss the data collected from our partner agencies

CARTA (Chattanooga, Tennessee) and WeGo (Nashville, Tennessee) in Section 2.1. Sec-

ond, we discuss our cloud-based data management platform for ingesting, processing and

storing the data in Section 2.2. Finally, in Section 2.3 we provide a high-level descrip-

tion and formulation of real-time decision-making in the context of demand-responsive,

data-driven transportation.

The work comprising this Chapter has been published in Proceedings of the Workshop

on AI for Urban Mobility at the 35th AAAI Conference on Artificial Intelligence (AAAI-

21), 2021 [1] and book chapter to appear in Vorobeychik, Yevgeniy., and Mukhopadhyay,

Ayan., (Eds.). (2023). Artificial Intelligence and Society. ACM Press (pre-print [21]).

• Michael Wilbur, Philip Pugliese, Aron Laszka, and Abhishek Dubey. Efficient data

management for intelligent urban mobility systems. In Proceedings of the Workshop

on AI for Urban Mobility at the 35th AAAI Conference on Artificial Intelligence

(AAAI-21), 2021

• Michael Wilbur, Amutheezan Sivagnanam, Afiya Ayman, Samitha Samaranayeke,

Abhishek Dubey, and Aron Laszka. Artificial intelligence for smart transportation.

arXiv preprint arXiv:2308.07457, 2023

2.1 Data Sources

The “data” component refers to the need for high-quality data sources that can be used

to generate datasets for training predictive models and to generate data online for real-time
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Table 2.1: Data sources.

Data Source Frequency Scope Features Schema/Format

Diesel vehicles ViriCiti and Clever Devices 1 Hz 50 vehicles
GPS, fuel-level, fuel rate,
odometer, trip ID, driver ID Viriciti SDK and Clever API

Electric vehicles ViriCiti and Clever Devices 1 Hz 3 vehicles
GPS, charging status, battery current,
voltage, state of charge, odometer Viriciti SDK and Clever API

Hybrid vehicles Viriciti and Clever Devices 1 Hz 7 vehicles
GPS, fuel-level, fuel rate, odometer,
trip ID, driver ID Viriciti SDK and Clever API

Traffic HERE and INRIX 1 Hz Chattanooga and Nashville region
TMC ID, free-flow speed,
current speed, jam factor, confidence

Traffic Message Channel
(TMC)

Road network OpenStreetMap Static Chattanooga and Nashville region Road network map, network graph
OpenStreetMap
(OSM)

Weather DarkSky 0.1 Hz Chattanooga and Nashville region
Temperature, wind speed,
precipitation, humidity, visibility Darksky API

Elevation Tennessee
GIC Static Chattanooga region Location, elevation GIS - Digital Elevation Models

Fixed-line transit
schedules CARTA, WeGO Static Chattanooga and Nashville region

Scheduled trips and trip times,
routes, stops

General Transit Feed Specification
(GTFS)

Video Feeds CARTA 30 Frames/Second
All fixed-line
vehicles Video frames Image

APC Ridership CARTA , WeGO Every Stop
All fixed-line
vehicles

Passenger boarding count
per stop Transit authority specific

applications. In the transportation domain, this data is mostly streamed from various sen-

sors and is spatio-temporal in nature. Therefore, sensor data typically includes a timestamp

indicating when the reading was taken, the value of the reading, as well as a spatial com-

ponent representing where this sensor is located. Sensors can be statically located along

roadways or can be dynamic in that they travel over time, e.g. GPS receiver within a vehi-

cle or bus. The spatio-temporal nature of these data sources presents challenges in efficient

storage, synthesis, and data retrieval [22, 23, 1]. Synthesis requires processing data in a

variety of domain-specific formats and at irregular intervals. Raw sensor streams must of-

ten be enriched by joining them with infrastructure data, such as the identifier of the road

along which a vehicle is travelling.

Data sources can be classified as static or real-time. Static data are datasets related to

the road networks, GIS layout, and schedules for the operating regions, while real-time

data consists of data streaming from sensors and collected during real-time operations. In

this sense, the static data is not fully “static.” For instance, both roadway information and

fixed-line schedules can change over time. However, the static data in this context is not

required to be updated daily in the way that real-time data is. A summary of data sources

collected is provided in Table 2.1.
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2.1.1 Static Data Sources

Static data are datasets related to the road networks, GIS layout and schedules for the

operating regions of Nashville, TN and Chattanooga, TN. We use the term static to dif-

ferentiate these sources from real-time data that is streaming from sensors and collected

during real-time operations. In this sense, the static data is not fully ”static”. For instance,

roadway information can get updates over time and fixed-line schedules can change. How-

ever, the static data in this work is not required to be updated daily in the way that real-time

data does. The key static datasets are as follows:

• OpenStreetMaps (OSM) [24]: provides road infrastructure modeled as a graph.

OSM is community-driven and open-source with updates provided by the OSM com-

munity. The open-source nature of OSM data allows us to use it for mapping and

routing. Therefore, in many ways OSM data is the backbone of our work in urban

mobility. OSM data is provided in XML format that can be downloaded at a variety

of mirrors online. We periodically download updated OSM data from the Geofabrik

mirror [25] for the Nashville, TN and Chattanooga, TN regions respectively. We uti-

lize multiple tools built on top of OSM data including Open Source Routing Machine

(OSRM) [26] which is a highly optimized open-source router that can be deployed

as a server and queried for shortest paths, travel times and distances.

• Static GTFS [27]: the General Transit Feed Specification (GTFS) is a specifica-

tion for static fixed-line transit schedules which includes buses and light rail. It in-

cludes routes, trips, stops and scheduled stop arrival times. Static GTFS also includes

geospatial shape objects representing routes so that fixed-line transit can be mapped

to the operating region. Current GTFS schedules for Chattanooga, TN can be ac-

quired from CARTA’s developer portal [28] and for the Nashville region from WeGo

[29].

• Elevation data: additionally we collected static GIS elevation data from the Ten-
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nessee Geographic Information Council [30]. From this source, we download high-

resolution digital elevation models (DEMs), derived from LIDAR elevation imaging,

with a vertical accuracy of approximately 10 cm. We can incorporate the elevation

data in the OSM network by adding the elevation from the GIS data to each node in

the OSM network.

2.1.2 Real-time Data Sources

Real-time data is either collected directly from web-based API’s or historical readings

are downloaded in batches depending on the data source. The key data sources are as

follows:

• Weather: Weather data is acquired from multiple data sources. We collect weather

data from multiple weather stations in Chattanooga, TN and Nashville, TN in real-

time at 5-minute intervals using the DarkSky API [31]. This data includes real-time

temperature, humidity, air pressure, wind speed, wind direction, and precipitation.

For large-scale historical weather data collection we use Meteostat [32]. For exam-

ple, Meteostat was used to create a unique dataset for tracking wildfires that was

made available to further research in data-driven wildfire management [33]. In select

works, we aquire historical data directly from NOAA [34].

• Real-time fixed-line: we collected real-time GTFS data which contains service

alerts, trip updates and vehicle positions for fixed-line buses [35]. Additionally,

CARTA has a partnership with Clever Devices, Inc [36] ViriCiti [37] which both

installed telemetry kits on buses in Chattanooga. The Clever Devices data provides

information similar to real-time GTFS. ViriCiti provides energy consumption and

fuel consumption for their mixed-fleet of electric, hybrid and diesel vehicles. Addi-

tionally, we have Automated Passenger Counter (APC) data for both Nashville, TN

and Chattanooga, TN which provides occupancy information including the number
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of passengers that board and leave a bus at each bus stop.

• MoD: we have paratransit and microtransit trip data for Chattanooga, TN and para-

transit data for Nashville, TN. Trip data includes pickup locations, dropoff locations

and requested pickup time trip requests.

• Traffic: we collect traffic data at 1-minute intervals using the HERE API [38], which

provides speed recordings for segments of major roads, which provides data in the

form of timestamped speed recordings from selected roads. Every road segment is

identified by a unique Traffic Message Channel identifier (TMC ID). Each TMC ID

is also associated with a list of latitude and longitude coordinates, which describe

the geometry of the road segment. Additionally, we collect historical data from IN-

RIX [39] which includes traffic data at 1-minute intervals as well. INRIX data also

includes TMC IDs as well as direct mappings to OSM segments.

2.2 Data Management

There are numerous challenges in storing and processing data for urban mobility sys-

tems. First, these sources present data in domain-specific formats and at irregular intervals

that can vary by provider and source, making it challenging to join data streams to be used

by downstream applications [40]. Second, the spatiotemporal nature of these data sources

presents challenges in efficient storage, synthesis and data retrieval [22], [23]. A third chal-

lenge is efficiently representing and presenting the data in ways that can be used by domain

experts [41]. In addition, there are the typical challenges of working with high-velocity,

high-volume streaming data.

To address these challenges we presented a cloud-based data management architec-

ture for urban mobility [1]. This data management framework has been used to collect

and process data urban mobility data from our partner agencies WeGo and CARTA for

Nashville, TN and Chattanooga, TN respectively. In addition to storing, processing and
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Figure 2.1: An overview of our cloud-based data management architecture for urban mo-
bility [1].

sharing data between corroborators, the framework is the backbone for visualization tools

used by WeGo and CARTA as well as for model training and application development.

An overview of the framework is provided in Figure 2.1. The various downstream ap-

plications such as monitoring systems, visualization dashboards and energy and ridership

prediction models require data from various streams to be merged. Typical implementa-

tions of stream processing architectures require external processing frameworks such as

Apache Spark and Storm. For our implementation we decided to join the data streams

within Apache Pulsar. This process involves designing functions that read from a set of

data stream topics, merge the streams in a series of time windows, and output the joined

data on a new Pulsar topic. Running our stream processing applications within Pulsar has

two benefits. First it provides real-time access to consumers that subscribe to the output

topic of these applications. Second, we include a subscriber that continuously adds geospa-

tial indexing the the streams and writes to MongoDB. The Apache Pulsar and MongoDB

components make up the core of the data ingestion and storage components. This cloud-

centric architecture has been used for various research activities as well as dashboards,

applications and software for our partner agencies. Additionally, Chapter 5 and Chapter 6

we expand on these ideas to discuss the potential of, and challenges related to, decentralized

edge deployments.
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2.3 Demand-Responsive Transportation as a Sequential Decision-Making Problem

In this work we largely focus on real-time transportation systems, in particular demand-

responsive transportation. Demand-responsive transportation is fundamentally a resource

allocation problem in which a set of resources, such as vehicles, must be matched to meet

demand (passengers, trip requests) in a way that 1) satisfies a set of hard constraints at each

decision point and 2) optimizes various objects such as ridership, costs or emissions over

time.

Demand-responsive transportation can be modelled as a sequential decision-making

problem. Sequential decision-making is commonly formalized as a Markov Decision Pro-

cess (MDP) [42]. An MDP can be specified by a tuple {S,A, T ,R, p(so), C}:

• Set of states S and distribution over the starting state p(s0).

• Set of actions A.

• Transition function T : S × A → S takes as input the current state st ∈ S and an

action at ∈ A at timestep t and returns the next state st+1 ∈ S.

• Reward functionR : S ×A× S → R.

• The policy π : S → A controls the agent’s behaviour by selecting an action given

the current state.

• The set of hard constraints C must be satisfied at every decision point. Examples

include capacity constraints where a vehicle can not have more than a set number of

passengers on-board at any given point or time window constraints where a passen-

ger must be picked up within some time frame. C can vary depending on form of

transportation and domain setting.

The environment consists of the transition function and reward function. At each timestep

t the environment takes st, at and returns the next state from T (st+1|st, at) and a scalar
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reward from R(st, at). The objective of sequential decision-making is to select actions

given a policy π(at|st) to optimize cumulative reward over time while satisfying C at each

decision point.

2.4 Examples of Demand-Responsive Transportation Applications

Demand-responsive transportation can be thought of as any transportation mode that

adapts to new demand in real-time. While there are many interesting modalities that can be

labelled as demand-responsive, we focus on two high-impact modalities for public transit

agencies - ride-pooling and fixed-line transit. As discussed, ride-pooling is a form of MoD

that provides direct transportation between origin and destination for a user that requests a

trip through a smart phone application or by calling into a centralized dispatching service.

Ride-pooling extends the traditional ride-hailing model (Uber, Lyft) to allow users to share

trips and thus has the potential to increase efficiency by reducing vehicle miles and utiliza-

tion by reducing the number of vehicles required to service passengers [13, 43, 2]. There

are two separate ride-pooling services often offered by transit agencies - microtransit and

paratransit. Microtransit and paratransit both rely on high-capacity vehicles, however they

differ in the set of constraints C set on the system. In this context, paratransit additionally

requires hard quality-of-service (QoS) constraints for each passenger in accordance with

the Americans with Disabilities Act (ADA). We discuss the unique aspects of the paratran-

sit setting further in Chapter 3 and Chapter 7.

We also discuss demand-responsive transportation in the context of fixed-line public

transit. Traditional fixed-line public transit involves scheduling routes and vehicle sched-

ules to service the routes ahead of time. In recent years, there has been increased interest in

making these systems demand-responsive by either incorporating algorithms for automated

dispatching to address demand in real-time or to automate the vehicle-to-trip assignment

to minimize energy usage and emissions [11, 7, 17, 44]. We further discuss vehicle-to-trip

assignment problems in Chapter 4.
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Chapter 3

Non-Myopic Planning for Dynamic Vehicle Routing Problems

3.1 Overview

Urban mobility has been transformed by new demand-responsive modes of travel in-

cluding ride-hailing, ride-share, e-scooters and e-bikes. Demand-responsive, Mobility-on-

Demand (MoD) transportation consists of users requesting rides through a mobile app. In

ride-hailing systems such as Uber and Lyft, the trip is then assigned to a driver who pro-

vides direct service between the origin and destination. Ride-hailing has proved popular

with users due to its ease-of-use, however ride-hailing can increase total vehicle miles trav-

elled (VMT) compared to private vehicle ownership [6]. This has led to increased interest

in ride-share, or ride-pooling services which also provide direct transport between origin

and destination while allowing for users to share trips. The key idea is that by grouping rid-

ers with similar trips together, ride-pooling can increase efficiency compared to single-rider

services.

Public transit agencies already often run various ride-pooling services including micro-

transit and paratransit. Both of these settings utilize a fleet of high-capacity vehicles to

service trips that can be requested beforehand or on the day-of, in real-time. The offline

problem, where all requests are known ahead of time, involves solving a large-scale vehicle

routing problem (VRP). The vehicle routing problem (VRP) is a well-studied combinato-

rial optimization problem which aims to find an optimal set of routes for a fleet of vehicles

to traverse. There are many flavors of VRPs but all include a set of vehicles that start and

end at a depot. In this work, we are primarily concerned with high-capacity ride-share as

a dynamic VRP (DVRP), which extends the traditonal VRP to online settings with real-

time, stochastic trip requests. The goal here is to assign vehicles to routes in real-time as
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requests arrive to optimize a long-term utility function over the course of the day. DVRPs

are modelled as a sequential decision-making problem.

A particularly interesting application is paratransit services which offer door-to-door

service through flexible scheduled and on-demand trips in a way that extends existing tran-

sit to residents with handicap or limited access to public transit. It is considered a ”social

good” and is a required service in many urban areas in the United States. The design

of algorithms for assigning trips to routes for paratransit is important since any improve-

ments to these systems can allow better service for residents in the most need of reliable

transportation services from a city. As we will discuss in this chapter, there are numer-

ous challenges in designing algorithms in the paratransit setting. This chapter presents

a fully online approach to solve the dynamic vehicle routing problem (DVRP) with time

windows and stochastic trip requests that is robust to changing environmental dynamics

by construction. We focus on scenarios where requests are relatively sparse—our prob-

lem is motivated by applications to paratransit services. We formulate DVRP as a Markov

decision process and use Monte Carlo tree search to evaluate actions for any given state.

Accounting for stochastic requests while optimizing a non-myopic utility function is com-

putationally challenging; indeed, the action space for such a problem is intractably large

in practice. To tackle the large action space, we leverage the structure of the problem to

design heuristics that can sample promising actions for the tree search. Our experiments us-

ing real-world data from our partner agency show that the proposed approach outperforms

existing state-of-the-art approaches both in terms of performance and robustness.

The work comprising this chapter has been published in the Proceedings of the 13TH

IEEE International Conference on Cyber-Physical Systems (ICCPS) [43]:

• Michael Wilbur, Salah Kadir, Youngseo Kim, Geoffrey Pettet, Ayan Mukhopadhyay,

Philip Pugliese, Samitha Samaranayake, Aron Laszka, and Abhishek Dubey. An

online approach to solve the dynamic vehicle routing problem with stochastic trip

requests for paratransit services. In ACM/IEEE 13th International Conference on
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Cyber-Physical Systems (ICCPS). IEEE, April 2022

3.2 Introduction

The vehicle routing problem (VRP) is a well-known combinatorial optimization prob-

lem that seeks to assign a fleet of vehicles to routes to serve a set of customers/requests [45].

Many real-world use cases of transportation agencies are modeled by the dynamic version

of the problem (DVRP) with stochastic trip requests. In such settings, some customer re-

quests may be known at the time of planning while others are unknown, and some stochastic

information may be available about potential future requests [46]. Although the dynamic

and the stochastic versions have traditionally been tackled separately, Bent and Van Hen-

tenryck [46] and Hvattum et al. [47], among others, showed that dynamic planning could

use the stochastic information to improve performance. There are three broad approaches

for solving DVRPs with stochastic requests. First, as requests arrive, a group of requests

can be batched together, and routes can be optimized myopically for the particular batch

in an online manner [13]. Second, the routing problem can be solved to maximize a non-

myopic utility function by learning a policy in an offline manner that maps any given state

of the problem to an action (i.e., a route plan for the vehicles) [48]. Third, a combination

of offline computation and online heuristics can be used for non-myopic planning [46, 15].

A fundamental challenge in solving the DVRP non-myopically is computational tractabil-

ity; indeed, real-world applications of DVRP are often intractable since they entail solving

a hard combinatorial optimization problem with consideration for future requests. Prior

work based on the combination of offline learning and online heuristics has addressed this

bottleneck to some extent. Bent and Van Hentenryck [46] continuously generate and store

a pool of promising plans. Then, at the time of execution, they use a least-commitment

strategy to select a key plan from the pool. Shah et al. [16] use approximate dynamic

programming and leverage a neural network-based approximation of the value function

to handle the complexity from combinations of passenger requests. Joe and Lau [15] en-
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sure near real-time response by combining online routing-based heuristics (e.g., simulated

annealing) with offline approaches (e.g., value function approximation) [15]. Myopic ap-

proaches, on the other hand, focus on pooling requests together to optimally allocate a

specific batch of requests to routes [13]. A major challenge in such a setting is computing

solutions fast enough to assign vehicles to requests in real-time (in practice, some delay is

acceptable after a request is made). Hence, myopic approaches that operate in an online

manner must be anytime or able to compute a feasible action quickly; requests are stochas-

tic and a decision must be computed before future requests arrive. Alonso-Mora et al. [13]

scale a myopic approach to assigning routes to pooled requests for real-world use cases by

using an anytime algorithm that starts from a greedy solution and then improves it through

constrained optimization.

We focus on paratransit services [49] in this paper, which are an important real-world

example of DVRPs. Paratransit service is a socially beneficial curb-to-curb transportation

service provided by public transit agencies for passengers who are unable to use fixed-

route transit (e.g., passengers with disabilities). Our partner agency, the Chattanooga Area

Regional Transportation Authority (CARTA), operates paratransit services in a mid-sized

metropolitan area in the USA. While paratransit services resemble traditional on-demand

ride-pooling services in some ways (e.g., the arrival of real-time requests and ride-sharing),

our collaboration revealed some crucial differences between canonical examples of DVRPs

in prior literature (e.g., ride-pooling or cargo delivery) and paratransit services. First, the

frequency of requests is usually lower than services like taxis. For example, CARTA op-

erates paratransit services in a metropolitan area with about 1.8 million people and usually

serves about 200 requests per day (with 10 hours of operation each day). This constraint

makes it difficult to batch requests together for myopic algorithms. Note that while the

requests are temporally sparse, the decision for each request must be computed quickly.

Second, paratransit services operate under the Americans with Disabilities Act (ADA),

which enforces time windows as a hard constraint, unlike on-demand taxi services, thereby
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requiring strict adherence to such constraints. Our discussion with CARTA also revealed

a potential issue with offline approaches for solving DVRPs. In practice, the environment

in which CARTA operates is highly dynamic; traffic conditions in a city can change due

to construction, events, or accidents, and the number of available vehicles or drivers can

vary. In such cases, offline approximations can potentially lead to decisions that are far

from optimal.

This paper introduces a fully online approach for use-cases such as paratransit services

that is anytime, non-myopic, robust to dynamic changes in the environment, and also scal-

able to real-world applications. Designing a completely online approach to solve DVRPs

in a non-myopic setting is extremely challenging — the action space for such a problem is

intractably large for real-world applications. For example, for our partner agency in a mid-

size metropolitan city in US with five vehicles, each with a capacity of eight passengers,

the action space is of the order of 1022. Also, note that while requests are relatively sparse

in our problem setting (one request every few minutes on average), computation for each

decision needs to be fairly quick; naturally, it is infeasible to keep customers waiting for

more than some exogenously defined duration.

The summary of contributions are as follows: (1) We design a fully online and non-my-

opic solver for DVRP with stochastic requests that scales to real-world problems by lever-

aging the structure of the problem instance. Our approach, MC-VRP (Monte Carlo tree

search based solution for vehicle routing problem) is robust to environmental dynam-

ics by construction. (2) We model the DVRP as a route-based Markov decision process

(MDP) [50]. Given an arbitrary state of the MDP, we use generative models over customer

requests and travel time to simulate the environment under consideration, which in turn

enables us to use Monte Carlo tree search [51] to find promising actions for the state. Our

approach does not require offline training, the only requirement is a generative model that

can be sampled at run-time. (3) To tackle the intractably large action space, we leverage the

structure of the problem to find promising actions. Specifically, given a set of routes and
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Table 3.1: Symbols

Notation Description
V A set of vehicles each of capacity c

θt
The set of route plans for all the vehicles with θit
denoting the plan vehicle vi ∈ V

Θt The set of all possible route plans at time t

vloct
A set consisting of locations of all vehicles at time t
with vlocit denoting the location of vi ∈ V

Rt A new trip request at time t
R Ordered set of trip requests for a day
[et, pt] Service time window for request Rt

C(θmi ) Cost of vehicle m servicing at route plan
M Set of vehicles in the paratransit fleet

Si
State tuple < Ti, vloci, θi > for
timestep i

E Generative demand model

Kmax
Maximum number of feasible actions
to consider at each time epoch

a new request, we create a weighted graph based on a budget-based heuristic whose edges

represent: (a) which vehicles can serve the new request, and (b) which vehicles can swap

unpicked requests from their routes to maximize utility. Then, we sample independent sets

from the graph that correspond to feasible actions for the given state of the MDP.

To evaluate the proposed approach, we consider three baselines. First, we look at a

greedy strategy, which assigns a new request to the vehicle that provides the highest my-

opic utility. Second, we look at recent work by Joe and Lau [15], which outperformed

well-known state-of-the-art approaches such as the multiple scenario-based approach [46]

and the approximate value iteration [52]. Third, we compare our approach with a batched

myopic setting by using the work by Alonso-Mora et al. [13]. Our experimental evalua-

tions show that MC-VRP approach outperforms the baselines in terms of performance and

robustness to changing environmental conditions.
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3.3 Problem Description and Model

Table 3.1 provides a notation lookup table used throughout this work. Typically, in

paratransit services, passengers request pick-up times in advance of the trip, even when

requesting on the same day. This is in contrast of on-demand ride services that are often

requested with a short lead time. For example, customers can call in the morning to request

for a ride during early afternoon. However, in some cases customers request rides with a

short lead time. We assume that requests are i.i.d. according to a distribution D. We denote

the request at a given time t by Rt, which consists of a pick-up location, a drop-off location,

a pick-up time, and a drop-off time.

In practice, it is common for paratransit services to use a pick-up window, e.g., they

commit to picking passengers up at most 15 minutes before the requested pickup time

and drop them off at most 15 minutes after the requested drop-off time. For a request

Rt, we refer to such time points as the earliest pick-up time (denoted by et) and the latest

drop-off time (denoted by pt). Naturally, the latest drop-off time must be greater than the

sum of the earliest pick-up time and the minimum time it takes to travel to the drop-off

location from the pick-up location. We assume that requests follow such constraints. In

practice, the application used for making requests or a human operator can enforce such

constraints. Note that the time windows specified by the customers are treated as strict

guidelines making this a pickup and delivery problem with time-windows (PDPTW) [53].

In case constraints cannot be met, the system rejects requests. Given this setting, the goal

of the decision-maker is to maximize the total number of requests that can be served in a

day while ensuring that the pick-up and drop-off constraints are met.

3.3.1 Route-based Markov Decision Process

Our problem consists of a set of identical vehicles, denoted by V , each with a capacity

of c passengers. The set of all possible locations in the area is represented by the graph
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G = (L,E), where L denotes the set of vertices (or locations) in the graph, and E denotes

the set of edges weighted by travel time. A route plan for vehicle vi ∈ V at time t is

denoted by θit, which is an ordered sequence of pick-up/drop-off locations that the vehicle

needs to visit in its route. Therefore, a route plan θit can be represented as an ordered set

{l1, l2, . . .}, where each li ∈ L is a vertex of graph G. At any given time t, the set of all

feasible route plans is denoted by Θt (we define feasibility below). We assume that vehicles

start operations at a depot and return to the depot at the end of the day (depot ∈ L).

To solve the problem of identifying the best routes for all vehicles, we model the dy-

namic vehicle routing problem (DVRP) as a Markov decision process (MDP) based on

prior work done by Ulmer et al. [50]. An MDP is defined by a 4-tuple {S,A, P, γ}, where

S is a set of states that capture relevant information for decision-making, A is a set of con-

trol choices or actions, P is a state-action transition function, and γ is a reward function that

defines the utility of taking an action at a given state [54]. The route-based MDP formula-

tion is beneficial in DVRP settings where actions involve assigning the current request to a

vehicle and optimizing the entire route under consideration. Since our goal is to maximize

the number of requests that can be served in expectation (with respect to the distribution

D), optimizing the route as a whole towards this goal is a natural choice.

Decision Epoch We define decision epochs as in prior work by Joe and Lau [15]. A

decision epoch occurs at the time a request is received. Between requests, the environment

evolves in continuous time, e.g., the vehicles move continuously, and requests can arrive

at any point in time. At each decision-epoch, the decision-maker takes an action (states

and actions are defined below). The effect of the action results in a state transition, which

consists of two parts — a transition from a pre-decision state to a post-decision state, and

from the post-decision state to the next pre-decision state [50, 55].

State We denote the set of states by S. We use st to denote the pre-decision state at

time t, which includes the vehicle locations, current route plans for all vehicles, and details

about passengers aboard the vehicles. Note that while it suffices to keep track of the route
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plan for some formulations, we must track drop-off times for passengers already on board

as actions may dynamically change routes. Formally, we represent the state st by the tuple

(Rt, R, vloct, θt), where Rt is the new trip request at time epoch t, R = {R1, . . . , R|V |} is

the set of requests assigned to each of the vehicles, vloct is a vector of location of all the

vehicles at time t, and θt = {θ1t , . . . , θ
|V |
t } is the current route plan for each of the vehicles.

The post-decision state is denoted by stx, which denotes the effect of an action x on st, and

includes the updated route plan [50].

We associate some additional information with each route plan. Consider a route plan

θit for vehicle vi ∈ V . For each location lj in the route plan, we associate four pieces of

information. First, let a(θit, lj) denote the planned arrival time of the vehicle vi at location

lj . We can calculate the arrival time from a pre-computed travel time matrix (or a router).

Second, let e(θit, l
j) be the earliest time service may begin at this location. If lj is a pick-up

location, e(θit, l
j) is equal to the earliest pick-up time for the customer; otherwise, we set

it to some default value. Third, p(θit, l
j) denotes the latest time at which service is desired

at this location. If lj is a dropoff location, p(θit, l
j) is set to the latest drop-off time for

the customer associated with the location; otherwise, we set it to some default value. We

also maintain the number of passengers on-board the vehicle at each location as w(θit, l
j).

Lastly, let yj be a binary variable set to 0 if lj is a pickup location and set to 1 otherwise.

Actions We denote the set of all feasible actions at time t by Xt. An arbitrary action

in Xt involves assigning the new trip request Rt to a vehicle vi ∈ V and subsequently

updating the route plan of all the vehicles. Note that in our problem setting, Xt simply

reduces to Θt, the set of all feasible route plans at time t. Updating the route plan can entail

changing the order in which existing requests are picked up/dropped off in a vehicle’s

route plan or swapping requests that have not been picked up between vehicles. While

allowing swapping between vehicles increases the complexity of the problem significantly,

we include such actions nonetheless to maximize utility. The action space is, therefore,

the set of all feasible route plans. A feasible route must meet three requirements: first,
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Figure 3.1: An overview of MC-VRP. A decision epoch corresponds with a new trip request
Rt . We generate request-vehicle (RV) and vehicle-vehicle (VV) graphs by combining a
heuristic based PDPTW solver with metrics to quickly estimate the utility of route plans.
We then select promising actions from the graphs by sampling independent sets of high
weights to be evaluated by an online approach based on MCTS.

the pick-up location for each trip requests must appear before the corresponding drop-off

location in the route plan. Second, the pick-up time for a request must not occur before its

earliest pick-up time, and finally, the drop-off time must not occur after its latest possible

drop-off time.

State Transitions and Rewards At decision-epoch t, the decision-maker can take an

action xj ∈ Xt (say), which results in a transition from the pre-decision state st to the

post-decision state sxt . Then, the system transitions from sxt to the next pre-decision state

st+1, within which a new request might arrive. We assume that requests are drawn from

a distribution D. We refrain from defining the exact state-action transition function since

we use a simulator (or a generative model) for online planning. The reward for an action

xj ∈ Xt, denoted by γ(xj), is simply the number of additional requests served by the

action. Since only one request arrives at any decision epoch, the reward simplifies to 1 if

the request can be accommodated and 0 otherwise. Since paratransit services require strict

adherence to time windows, note that some requests can be rejected. In practice, human

operators can suggest alternative choices to customers in such situations.
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3.4 Approach

We provide an overview of MC-VRP in Figure 3.1. Our approach consists of the fol-

lowing three broad components: 1) For a given state of the MDP, we sample feasible and

promising actions by exploiting the structure of the problem. To compute feasibility, we

use a heuristic-based solution approach to the PDPTW. To compute the potential utility

of a feasible action, we introduce two heuristics, one based on passenger travel times and

another based on budget (or slack) in route plans. 2) We compute weighted graphs based

on the feasible actions and their potential utilities. Specifically, we create vehicle-vehicle

(VV) and request-vehicle (RV) graphs (we describe the graphs below). Then, we generate

promising actions by sampling independent sets from the graphs (based on the weights of

the sets). 3) The sampled actions are then used by our online non-myopic planner based

on Monte Carlo tree search. To build the search tree into the future, we sample future re-

quests from a data-driven generative model. Finally, to lower computation time, we utilize

pre-computed samples of requests and root parallelization [56] to efficiently explore the

search space and recommend an action for the given state. We describe each component of

our approach in detail below.

3.4.1 PDPTW Solver

At each decision epoch, our goal is to optimize existing vehicles’ routes to accommo-

date a new request. First, we check whether a vehicle can accommodate the request given

its current route plan. Recall that accommodating a request in our setting requires strict

adherence to time windows. We use a heuristic-based solver for the pickup and delivery

problem with time-windows (PDPTW). The solver enables us to check if the current re-

quest can be accommodated in a feasible route plan. The PDPTW is NP-hard [53, 57];

as a result, we use a heuristic subroutine to solve it. Using a heuristic approach is critical

in our setting; as we show below, the PDPTW solver needs to be invoked for the given
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state of the MDP as well as for states we sample as we look into the future. While any

heuristic designed for solving PDPTW can be incorporated in our framework, we use the

insertion heuristic [13], which seeks to insert the pickup and dropoff locations of the new

request within the existing route plan. We introduce some additional notation to describe

the PDPTW solver. Consider a vehicle vi ∈ V that has an assigned route θit at time t. For a

new request Rt, we use PDPTW.feasibleP lans(θit, Rt) to denote a module that returns

the set of all feasible route plans for the vehicle vi that include the new request. Also, let

PDPTW.bestFeasibleP lan(θit, Rt) = argmaxθUω(PDPTW.feasibleP lans(θit, Rt)), which

denotes a function that computes the utility of each feasible route plan generated by the

PDPTW solver based on a specific utility function U and a metric ω, and returns the one

with the highest utility. For example, a metric could be the total travel time of the route,

and the utility function, in the simplest case, can be the identity function.

3.4.2 Handling Exponential Action Space

A feasible action in our problem corresponds to a set of route plans for all vehicles,

given that one of them can accommodate the new request in consideration. In case no

feasible action is found, the request is rejected. Additionally, we design our action space

to let vehicles swap requests from their assigned routes that have not been picked up (we

describe how we use the PDPTW solver to this end below). As a result, the number of

possible actions for a given state is combinatorially large; on average, an arbitrary state

in our MDP has 1022 possible actions. Such an action space is infeasible to explore in

an online setting. To address this challenge, we introduce an approach that enables us to

sample promising actions from the set of feasible actions. We start by introducing two

heuristic metrics that can be used to gauge the long-term utility of a route plan quickly.

1.) Maximizing the budget to serve future requests: Our goal is to maximize the number

of requests the vehicles serve on a given day while following the specified time constraints.

Intuitively, a vehicle can accommodate future requests in an existing route plan if there
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is sufficient room (time) in the route. To capture this idea formally, we build upon prior

work by Ulmer et al. [58] to extend the idea of a budget-based heuristic to DVRPs with

capacity and time window constraints. Our budget-based heuristic captures the idea that

maximizing the time a vehicle has no passengers on board also maximizes the slack to

serve future requests. We define the budget-based utility for a route plan for vehicle vi ∈ V

at time t as

b(θit) = tmax − t−
∑

j∈{1,...,|θit|−1}

1(w(θit, l
j) > 0)

{
a(θit, l

j+1)− a(θit, lj)
}

(3.1)

where tmax denotes the maximum time up to which the vehicle is available to serve

requests (e.g., end of a day), (w(θit, lj)) denotes the number of passengers on board vehicle

vi from location lj in its route plan to the next location, 1() denotes the indicator function,

and a(θ, lk) denotes the time a vehicle operating under a route plan θ reaches location lk.

The summation in the equation 3.1 represents the total time in the route plan for which at

least one passenger is on-board.

2.) Minimizing passenger travel time: An alternative to the budget-based heuristic is to

minimize passenger travel time (PTT). Intuitively, by minimizing passenger travel time, we

maximize the available capacity in each vehicle over the time horizon. We define the utility

of the PTT-based heuristic for a route plan θit as PTT (θit) for vehicle vi ∈ V at time t as

shown in equation:

PTT (θit) =
∑

j∈{1,...,|θit|−1}

w(θit, lj) ∗ (a(θit, lj+1)− a(θit, lj)) (3.2)

In this case PTT (θit) is the summation of the number of passengers on board after

picking up the passenger at location j, represented by w(θit, lj), multiplied by the time to

reach the next location, j+1. Therefore, by minimizing PTT (θit) we maximize the number

of seats available to incorporate future requests.
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Figure 3.2: (left) RV-graph (GRV ): there is an edge between a request and a vehicle for
every feasible route plan in which a vehicle can service the new request. (right) VV-graph
(GV V ): an edge between vehicle vi and vj represents the swap with the highest utility
between the two vehicles.

Having described metrics to assess the potential utility of a specific vehicle route for

a given vehicle, we now introduce an approach to sample feasible route plans. We begin

by describing two graphs we construct based on the new request that arrives at a decision

epoch and the existing route plans of the vehicles.

RV graph: At each decision epoch, we first generate a graph that incorporates which

vehicles can service the new request. Our idea is based on prior work by Alonso-Mora

et al. [13]. We denote the RV graph by GRV = (LRV , ERV ), where LRV denotes a set

of vertices and ERV denotes a set of edges. To create the RV graph, we add a node for

each vehicle vi ∈ V . We add an additional node to denote the request Rt. Then, for

each feasible vehicle route that can accommodate the request, we add an edge between

the node denoting the request and each node representing a vehicle. We denote a specific

edge in ERV by eRV(i, j), which denotes the jth feasible route plan for vehicle vi that can

accommodate the request under consideration. The feasible route plans are generated by

the module PDPTW.feasibleP lans(θi, Rt) (for vehicle vi ∈ V and request Rt). We

associate two pieces of information with each edge. First, for an edge eRV(i, j), we use

Uω(eRV(i, j)) to denote the utility of the edge based on a utility function U and metric

ω. Also, we use θ(eRV(i, j)) to denote the updated route plan corresponding to the edge

eRV(i, j). We show an example of an RV graph in figure 3.2.

VV-graph: While an RV graph is useful to represent which vehicles can accommodate
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the new request in their existing route plans, it is possible that vehicles might want to swap

requests that have not been picked up to maximize utility. Note than in a non-myopic

setting, the route plans are optimized at each decision-epoch to maximize the expected

utility with respect to D (the request arrival distribution). However, a specific realization of

Rt presents an opportunity for vehicles to re-plan and potentially swap requests. In order

to represent such swapping actions, we create an undirected vehicle-vehicle (VV) graph at

each decision epoch. We denote a VV graph by GV V = (LV V , EV V ).

To construct the graph, we add a node for each vehicle vi ∈ V . Edges between

two vehicles denote potential swaps of requests that have not been picked up. An edge

eVV(i, j, k) ∈ EV V denotes the potential swap of request Rk from vehicle vi to vehicle

vj . Note that a swap action creates two new route plans, one for each vehicle. We use

θ(eVV(i, j, k), v
i) to denote the route plan for vehicle vi after the swap (similarly, we use

θ(eVV(i, j, k), v
j) to denote the route plan for vehicle vj). The utility of a swapping action,

denoted by Uω(eVV(i, j, k)) is denoted as the difference in utility of the updated route plans

and the original route plans, i.e., the plans without the swapping action. As before, Uω de-

notes utility computed according to a function U and metric ω. For example, using an iden-

tity utility function and a metric based on the budget heuristic introduced in equation 3.1,

Ubudget(eVV(i, j, k)) = b(θ(eVV(i, j, k), v
j)) + b(θ(eVV(i, j, k), v

i)) − b(θit) − b(θjt ). Note

that once a request is swapped, its pickup and dropoff can be inserted at multiple places

within the existing route of the vehicle that receives it. For computational tractability, we

choose the best insertion point using the module PDPTW.bestFeasibleP lan (introduced

in section 3.4.1). We show an example of an VV graph in figure 3.2.

Generating Feasible Actions: A feasible action is an updated set of route plans for all

vehicles that do not violate the time window or capacity constraints. We seek to sample a

feasible route plan from the constructed graph. Our approach is motivated by prior work

by Zalesak and Samaranayake [59]. Each edge in the RV graph represents an operation

that creates an updated route plan for a vehicle that includes the new request. Additionally,
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each edge in the VV-graph represents a swapping operation which creates a new route plan

for the two vehicles involved in the swap. Therefore, any selected edge in GRV ∪ GV V

represents a feasible action. Additionally, multiple edges can be selected to generate a

new action, if and only if the set of selected edges includes only one of the edges from

the RV graph. The rationale for such a condition is straightforward; a new request can

only be assigned to one vehicle, and consequently, only one edge from the RV graph can

be selected for a particular feasible action at each decision epoch. To generate potential

feasible actions quickly, we sample independent sets (a set of edges that have no vertices

in common) from GRV ∪GV V that includes one edge from GRV . Such an independent set

guarantees feasibility, as we show below:

Theorem 1. Consider graphs GRV and GV V generated at decision epoch t. An indepen-

dent set of edges from GRV ∪GV V that includes one and only one edge from GRV must be

a feasible action for the current state st of the MDP.

Proof. We first list the conditions for feasibility: 1) An action is feasible if it services

the current request with adherence to time constraints, and 2) time constraints for existing

requests are met (including potential swaps). An independent set with one edge from GRV

meets condition 1 by construction—all edges from GRV service the current request and

meet time constraints (recall that edges are checked for feasibility through the PDPTW

solver). As the vehicle that services the request cannot swap requests (by the property

of independence), all swaps sampled from GV V are also feasible—all edges in GV V are

checked for feasibility through the PDPTW solver. Hence the set of independent edges

must correspond to a feasible action for the given state.

Notice that the only condition in which a chosen set of edges from GRV ∪ GV V might

result in an infeasible action is the following: consider a situation in which the vehicle (say

vi) that is assigned the request (denoted by an edge from the RV graph) also engages in

swapping and receives an additional request from a different vehicle (say vj). While both
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Algorithm 1 Generating feasible actions
Require: θt, Rt, Kmax,M,GV V , GRV

1: Θt ← {} ▷ empty set of feasible actions
2: U← {} ▷ empty set of utilities for each action
3: for eRV(i, j) ∈ ERV do
4: θ ← θt
5: θ[i] = θ(eRV(i, j))
6: Θt.append(θ)
7: Ux ← Uω(eRV(i, j))
8: U.append(Ux)
9: G′

V V = GV V [{vk ∈ LV V : k ̸= i}]
10: while |E ′

V V | > 0 do
11: eVV(m,n, k) = argmax(m,n,k)(Uω(eVV(m,n, k))
12: θ[m] = θ(eVV(m,n, k), vm)
13: θ[n] = θ(eVV(m,n, k), vn)
14: Θt.append(θ)
15: Ux = Ux + Uω(eVV(m,n, k))
16: U.append(Ux)
17: G′

V V = G′
V V [{vk ∈ LV V : k ̸= m & k ̸= n}]

18: end while
19: end for
20: // Filter: Xt is the Kmax actions with highest utility
21: Xt = Θt[argSort(U)[1 : Kmax]]
22: Return: Xt

the actions, namely the swapping action and the servicing of the new request, are checked

for feasibility in isolation, vehicle vi might violate time constraints if it seeks to service

both. In theory, it is possible to enumerate over each possible set of edges in GRV ∪ GV V

and check for feasibility; however, enumerating over all such sets is intractable in practice.

Therefore, we point out that the vehicle that services the request can engage in swapping

and still maintain feasibility; however, ensuring that such a vehicle does not participate in

swapping guarantees feasibility. As a result, we use the heuristic of sampling independent

sets (with one edge from the RV graph) that guarantee feasibility by construction.

Recall that our goal is to sample promising actions from the set of feasible actions since

evaluating all feasible actions in an online setting is not tractable. We present our approach

to selecting promising actions in algorithm 1. Our approach is based on sampling indepen-
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dent sets based on the cumulative sum of edge weights of the sets. First, we initialize an

empty set of feasible actions Θt and an empty set of utilities U. Then, we begin selecting

an independent set by selecting an edge from GRV (step 3). Next, we initialize the utility

for the route plan (that the independent set corresponds to) with the utility of the chosen

edge (step 7). Then, we drop the corresponding vehicle node from GV V and consider swaps

iteratively (step 9-10). The utility of the resulting action is calculated by adding the utility

of serving the request and the swapping action (step 15). Finally, we return a subset of

Kmax actions with the highest total utility (step 21-22) to be evaluated by the tree search,

where Kmax is an exogenous parameter.

3.4.3 MCTS Evaluation

Non-myopic approaches to DVRP rely on hybrid offline-online solutions in which an

offline component is trained on historical data and embedded in an online search [15, 60].

Offline components typically require long training periods and must be re-trained each

time the environment changes, making them unsuitable for highly dynamic environments.

This motivates us to use MCTS, an online probabilistic search algorithm, to evaluate the

long-term utility of potential actions. MCTS is an anytime algorithm, and any changing

environmental conditions that are detected can immediately be incorporated into its under-

lying generative models for making decisions [61].

MCTS represents the planning problem as a “game tree,” where states are represented

by nodes in the tree. The current state is treated as the root node, and actions represent

edges that mark transitions from one state to another. The fundamental idea behind MCTS

is that the search tree can be explored asymmetrically, biasing the search toward actions

that appear promising. To estimate the value of an action, MCTS simulates a “rollout” to

the end of the planning horizon using a default policy. In practice, the rollout policy only

needs to be computationally cheap; a common method involves selecting actions randomly

during rollout. As the tree is explored and nodes are revisited, each node’s utility is esti-
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mated. As the search progresses, the estimates converge towards the true value of the node.

This asymmetric tree exploration allows MCTS to search very large action spaces quickly.

MCTS typically requires a few domain specific components: a generative model of the

environment, the tree policy used to navigate the search tree, and the default policy used to

estimate the value of a node. We describe each component below.

Generative demand model: The generative demand model (denoted by E) provides a

method for sampling new requests as the tree is built into the future. We use a hierarchical

modeling approach to sample trip requests based on historical data. We optimize model

parameters based on maximum likelihood estimation. We model two processes as part of

the generative demand model. First, we model the distribution of the number of requests per

day as a Gaussian distribution. We learn the parameters of the distribution by maximizing

the likelihood of historical paratransit data. Second, to model individual trip requests,

we aggregate historical trip requests and weigh each trip request by the number of times

it is observed (often, some passengers in paratransit services request trips that have the

same source, destination, and time every week). To sample a sequence of trip requests

for a day, we perform the following steps: 1) we sample the number of requests (say m)

from the learned Gaussian distribution over trip requests. 2) We sample m requests from

the weighted aggregation of trip requests.This process is repeated a number of times to

generate multiple sampled chains offline. During inference at decision epoch t, we provide

a method E.sample(t, n) which samples n chains uniformly at random from E and returns

the requests in each chain that occur after the current time t.

Search policy: We use the standard Upper Confidence bound for Trees (UCT) [51] to

navigate the search tree and decide which nodes to expand. When expanding a node, we use

algorithm 1 to sample feasible actions for the given state. When working outside the MCTS

tree to estimate the value of an action during rollout, we rely on a default policy. This is a

lightweight policy which is simulated up to a time horizon and the utility of the simulation

is propagated up the tree. Our default policy is a greedy assignment—for a given state, we
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Algorithm 2 MCTS evaluation
Require: Xt, St, E, nchains

1: eventChains = E.sample(St, nchains) ▷ sample chains
2: A = MCTS(Xt, eventChains) ▷ action scores
3: Ā = {}
4: for a ∈ A do parallel
5: Ā.append(mean(a)) ▷ aggregate across chains
6: end for
7: // Return action with highest action score
8: Return: argmaxxi∈X(Ā[i])

choose the edge with the highest myopic utility from the RV-graph. To ensure tractability,

we do not incorporate swapping requests between vehicles into our rollout policy; this

saves time during MCTS evaluation as the VV graph is not generated during rollout.

Root parallelization: Given that the sampled paratransit requests can be both sparse

and highly uncertain in time and space, sampling one chain of requests might not ade-

quately represent future demand. To handle this uncertainty, we use root parallelization,

which involves sampling many chains, and instantiating a separate MCTS tree for each

with the current request as the root node. Crucially, each tree is explored in parallel. After

execution, the score for each of the actions from the common root node is averaged across

trees. Then, the action with the highest average score across the trees is returned as the

selected action.

The process for evaluating and selecting an action is provided in algorithm 2. The

algorithm takes Xt from the feasible actions component as well as the current state St,

the generative model E and the number of chains to sample nchains. First, the set of

eventChains is sampled from the generative model (line 1). Second, a tree is instantiated

and MCTS is performed in parallel on each of the trees. This processed is represented by

A = MCTS(Xt, eventChains), where A is a two dimensional tensor of size |Xt|×nchains

(line 2). In this sense, each row in A represents a feasible action and the columns represent

the chains. The mean of each row in A represents the action score and is stored in Ā (line

5). Finally, the action with the maximum action score in Ā is returned (line 8).
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3.5 Experiments and Results

In this section we describe the data, experimental setup, system parameters, baselines

and results.

3.5.1 Data Description and Pre-Processing

Paratransit Data: We acquired six months of paratransit trip requests between Jan-

uary 1, 2021 and July 1, 2021 from CARTA. Our dataset consists of a total of 25,843 trip

requests. Each request in our dataset consists of a geo-coordinate (longitude, latitude) for

the pickup location and dropoff location, and also the requested pickup time. As an exam-

ple, we show the temporal distribution of one of the days and the requested travel duration

for each request in figure 3.3. For pre-processing, each pickup and dropoff location was

assigned to the nearest node in the road network graph. We used the haversine distance to

calculate the distance between two geo-coordinates. We filtered out any requests that had

a pickup or dropoff location that was farther than 200 meters from the nearest node in the

road network; this process filtered out approximately 5% of the requests. Of the 25843

trips in the original dataset, 24543 remained after the distance filter. As paratransit services

are significantly more sparse on weekends, we included only weekday trips for our analysis

that spanned 129 days (94% of the trips in our data occur on weekdays).We randomly se-

lected 15 days from the dataset for the evaluation (test) set. The remaining 114 days were

use to compute 100 synthetic days worth of trip requests (i.e., chains) for the generative

model using the procedure outlined in section 3.4.3. Three more chains were generated as

a calibration set for parameter tuning.

Road Network and Travel Time Matrix: We use OpenStreetMap (OSM) [62] for

the road network for the area under consideration and OSMNX [63] to generate a routing

graph of the road network with travel time for edge weights. Unless otherwise noted, the

experiments used the free flow speed as edge weight. Then, we calculated the shortest paths
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Figure 3.3: The temporal distribution of requests and the requested travel duration for the
requests from one day.

between all pairs of network to generate a matrix of travel times. The travel time matrix

is generated offline and therefore, provides constant lookup time for querying travel times

between arbitrary locations in the area under consideration. Additionally, we collected

historical traffic data from INRIX [39] to estimate typical travel times during times of high

congestion. We use congestion data for evaluating the robustness of the proposed approach.

Road network and travel time matrix: We use OpenStreetMap (OSM) [62] for the

road network for the area under consideration and OSMNX [63] to generate a routing graph

of the road network with travel time for edge weights. To evaluate robustness we use INRIX

traffic data to generate new travel time matrices that represent typical congested patterns in

the city. The INRIX dataset included average roadway speeds per hour for each day in the

week and included an OSM ID which was mapped to the OSM road network.

3.5.2 System Parameters

Our experimental parameters are as follows: we vary the number of vehicles from 3

to 5 as we find that 5 vehicles can serve 100% of the trip requests in our setting using

MC-VRP. The vehicle capacity is set to 8, which is in accordance with the capacity of

typical paratransit vans. The request arrival time, defined as the time before the requested

pickup time that the request is available to the system, is set to 60 minutes. In practice,
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such requests can also be made before 60 minutes. The time window, i.e., the amount of

time before the requested pickup time that a request can be picked up is set to 15 minutes

(in accordance with settings used by CARTA). Additionally, when a customer requests a

trip we provide an estimated dropoff time which is the sum of the requested pickup time

and the minimum travel time to the dropoff location. The late time window is 15 minutes

after the estimated dropoff time which is again, in accordance with settings used by our

partner agency. Additionally, we reiterate that as the time windows are hard constraints, a

trip is only feasible if the passenger is picked up and dropped off between the early pickup

window and late dropoff window.

Since our online approach is anytime, we vary the amount of time that is allocated to the

algorithm for making a decision (referred to as runtime cutoff). Practitioners can vary this

parameter to account for the maximum time they can afford to assign a request to a vehicle.

Note that the passenger making the request need not wait for this duration to receive a

feedback; whether a request can be serviced or not can be computed in less than a second

using our approach (we only need to construct the RV graph to find at least one feasible

action). We consider two variants of our proposed MC-VRP approach. MC-VRP (budget)

uses our budget-based utility for scoring feasible actions in algorithm 1, while MC-VRP

(PTT) uses the PTT-based utility for scoring feasible actions. The MCTS evaluation as

outlined in section 3.4.3 remains the same for both variants.

3.5.3 Baselines

We evaluate the performance of MC-VRP against the following baselines. For all base-

lines, we use the same number of vehicles (we present results by varying the number of

vehicles) and vehicle capacity as MC-VRP. We compare our approach to two myopic on-

line approaches (greedy and MA-RTV) and one non-myopic hybrid approach (DRLSA).

• Greedy assignment (greedy-PTT, greedy-budget): Greedy assignment consists of first

generating feasible actions according to algorithm 1 MA- We refer to greedy assignment
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with the PTT utility as greedy-PTT and greedy assignment with the budget utility as

greedy-budget.

• Deep reinforcement learning-based vehicle routing [15] (DRLSA): Joe and Lau com-

bine deep reinforcement learning, which approximates a state-value function for routing,

with a simulated-annealing based routing heuristic to solve the dynamic vehicle routing

problem [64]. The state representation of DRLSA is based on the total cost of the planned

routes of the vehicles. While the original approach is designed for cargo-delivery prob-

lems, we add pickup and dropoff constraints given our problem setting. Also, the prob-

lem formulation by Joe and Lau [15] seeks to minimize the sum of the travel and waiting

times of all vehicles. It serves all requests and incurs a penalty cost for time-window vi-

olations. To apply DRLSA to our problem formulation, where time-windows constraints

are strict, we take the route plans output by DRLSA and iteratively remove requests that

violate time windows until a maximal feasible set of requests is left. Further, for a fair

comparison, we run the DRLSA algorithm itself with shorter time windows but remove

requests that violate the original time windows, which we found significantly improves

the service rate of DRLSA in our setting. Finally, we point out that since there was no

open-source implementation available for this approach, we implemented DRLSA for

this paper.

• Myopic and Anytime trip-vehicle assignment-based on RTV graphs [13] (MA-RTV):

We also compare our approach with an anytime algorithm that batches requests together

and then maximizes the myopic utility for the specific batch of requests. For each batch,

the algorithm creates an RTV graph by checking shareability between requests as well

as requests and vehicles. Since the best passengers-vehicle pair is found in each batch,

the approach works well in practice despite being myopic (our experiments confirm this).

We refer to this baseline as MA-RTV. To adapt MA-RTV for our problem setting, we set

the parameters as follows. First, as MA-RTV is not able to handle requests in advance,
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Table 3.2: Parameter settings

Parameter Values
Number of vehicles (M ) 3, 4, 5
Vehicle capacity 8
Request arrival time 60m
Time window 15m
Runtime cutoff Inf, 30s
Kmax 10
MCTS depth 20
MCTS iterations 1000
nchains 25

we set the request arrival time to the early time window. Second, we set the latest dropoff

time to 30 minutes (15 minutes for early time window and 15 minutes for late time win-

dow) plus the shortest path between the pickup and dropoff locations. Therefore, the

time window requirements are equivalent to our problem setup. Lastly, MA-RTV is a

batching approach which waits for a set period of time before grouping requests together

for assignment. In the paratransit setting, requests rarely arrive very close together and

are expected to be handled one at a time, typically over the phone. Therefore we set the

batch interval to 20 seconds, which closely mimics the observed paratransit data.

3.5.4 Parameter Tuning

We used 3 days of paratransit data for hyperparameter tuning. MC-VRP has two param-

eters for tuning—the depth of the search tree and the number of feasible actions. MCTS

tree depth, which is the number of future requests to consider from the generative model,

was varied between {10, 20, 30}. The number of feasible actions to explore, denoted by

Kmax, effectively sets the maximum branching factor for MCTS. We varied this parame-

ter between {10, 15, 20, 25, 30}. We performed a grid search using the calibration set and

found the best parameters in terms of service rate (MCTS depth of 20 and Kmax = 10).

The final parameters for MC-VRP are provided in Table 3.2.
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The calibration set was also used to select the parameters for DRLSA. The neural net-

work of the DRLSA baseline approach consists of 1 hidden layer with 64 neurons. The

activation function of the hidden layer is rectified linear (ReLu) and linear for the output

layer. We trained the network with a batch size of 32, the discount factor for future reward

is 0.99, and the learning rate is 0.01. We found the best result with Kmax = 500 for Sim-

ulated Annealing. Similar to MC-VRP, we used grid search to find the best parameters for

DRSLA.

3.5.5 Reproducibility

Our source code, implementation of the baseline approaches, and samples of our datasets

are available online (https://github.com/smarttransit-ai/iccps-2022-paratransit-public). We

implemented MC-VRP in the Julia programming language using the pomdps.jl frame-

work [65]. Results presented in this paper were obtained using the Chameleon testbed

supported by the National Science Foundation [66].

3.5.6 Results

Service Rates: Our primary objective is to maximize the number of requests serviced

each day. The service rate per day for the 15 days in the evaluation (test) set is provided in

figure 3.4 with fleet sizes of 3, 4, and 5 vehicles. We first present results in a setting where

MC-VRP (budget) and MC-VRP (PTT) are allowed to run for 1000 iterations without early

termination. First, we note that 5 vehicles is enough to service all of the requests on most

days as MC-VRP (budget), MC-VRP (PTT), and MA-RTV all have a median service rate

of 100%. We observe that MC-VRP (budget) outperforms all baselines for fleet sizes of 3

and 4 with with a median service rate of 87.0% and 97.6% respectively. MC-VRP (PTT)

had a service rate of 84.7% and MA-RTV had a service rate of 81.7% for 3 vehicles. MA-

RTV outperformed MC-VRP (PTT) in the case of 4 vehicles with a median service rate of

96.2% compared to 95.8%.
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Figure 3.4: Service rate, defined as percentage of trips served, per day on 15 day test set for
3, 4 and 5 vehicles. 5 vehicles was enough to service all request on most days for MC-VRP
(budget), MC-VRP (PTT) and MA-RTV. MC-VRP (budget) had the highest median service
rate for 3 and 4 vehicles. The budget-based heuristic improves service rate for MC-VRP by
2.2% and 2.1% and greedy assignment by 3.4% and 4.9% for 3 and 4 vehicles respectively.

We also observe that the budget-based heuristic works better than the travel time-based

heuristic for both Monte Carlo tree search as well as greedy assignment. Indeed, MC-VRP

(budget) results in a higher service rate than MC-VRP (PTT) and greedy-budget outper-

forms greedy-PTT for all fleet sizes. This indicates that the budget utility, which aims to

maximize time for which a vehicle has no passengers on-board, can be used to quickly

compute promising actions to explore. It is important to note that while we focus on para-

transit services, the budget-based heuristic can be applied for other DVRPs with capacity

and time window constraints. We also observe that DRLSA had the lowest service rate

across all fleet sizes. An influencing factor, as discussed in section 3.5.3, is that time win-

dows are soft constraints in DRSLA which is not particularly suited to paratransit settings.

Computation Time: The computation time per request for MC-VRP and the baselines

is shown in figure 3.5. MC-VRP (budget) takes slightly longer than MC-VRP (PTT) to

compute a decision, with a median computation time of 38 seconds, 49 seconds, and 40

seconds as compared to 36 seconds, 44 seconds, and 37 seconds for 3, 4, and 5 vehicles
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Figure 3.5: Computation time per request in seconds for each day in the test set for 3, 4 and
5 vehicles. Median computation time per request for MC-VRP (budget) is 38 seconds, 49
seconds and 40 seconds for 3, 4 and 5 vehicles respectively. DRLSA, MA-RTV and greedy
all had median computation times less than 3 seconds per request.

respectively. DRLSA, MA-RTV, and greedy all had median computation times less than

3 seconds. In this context, the fact that MC-VRP is both non-myopic and fully online is

reflected in the higher runtimes; while the observed runtimes are acceptable in our setting,

i.e., paratransit services, the application of online and non-myopic methods remains an

open question in general VRP settings. Note that if the MCTS evaluation of our approach

is not used (i.e., the early stopping time approaches 0), our approach simplifies to the

greedy baseline, which takes less than a second on average. This observation means that

the majority of computation time in our approach is spent on MCTS.

As discussed, the MCTS evaluation can be run in the background between calls. There-

fore, a potentially limiting factor for our approach is the rate at which requests arrive; even

when running in background between requests, MC-VRP must be stopped on the arrival

of a new request. Since MC-VRP is an anytime algorithm, it is possible to set a maximum

computation time per request. In such a setting, the algorithm is stopped early (in our case,

before the default number of iterations is reached), but outputs a feasible solution. In our

dataset, 99% of requests arrive more than 30 seconds after the previous request and the

median time between requests was approximately 5 minutes. Therefore, we evaluate the

performance of MC-VRP with a 30 second cut-off time in figure 3.6. We observe only
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Figure 3.6: Runtime analysis: Percent change in service rate for MC-VRP (budget) with
a cutoff of 30 seconds per request compared to no cutoff. For three vehicles there was a
median of 1.2 percent decrease in service rate on test set while the computation cutoff had
negligible affect for four and five vehicles.

a negligible decrease in service rates; the median service rate decreases by 1.2% for 3

vehicles and 0% for 4 and 5 vehicles.

Robustness: To evaluate the robustness of the proposed approach with respect to

changing environmental conditions, we change the travel time distribution in the city. For

experiments, we assume the existence of a service that uses short term observations about

an environmental variable (e.g., travel times) and provides an updated model. In practice,

transit agencies can use services like Google maps for this purpose. In this case, when a

user requests a ride, we can use the updated travel time matrix to give an accurate estimate

of the dropoff time. We assume that all approaches have access to the updated travel time

matrix at inference time, i.e. when a user requests a ride. However, approaches that rely on

models trained offline do not have the ability to update their model.

We generate a modified travel time matrix that resembles a congested road network.

The distribution of the free-flow travel time matrix and the congested travel time matrix

is shown in Figure 3.7. The original travel time matrix was calculated by finding shortest

paths between all nodes in an OSM graph where the edge weights were travel time between

the nodes using free flow speed. Each edge in the OSM graph had a unique OSM ID which

mapped to roadway speeds in the INRIX dataset. The INRIX dataset included average
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Figure 3.7: (a) Free-flow speed vs (b) Irregular travel times in seconds. Irregular travel
times represent a congested roadway network. Each cell shows the travel time from a
location x to another location y. There are total 10788x10788 combinations in the travel
time matrix.

roadway speeds per hour for each day in the week. For each OSM ID we took the speed

at the 5th percentile and updated the edge weights accordingly. On average, the congested

travel time matrix had speeds that were 30% slower than the free-flow speed.

We evaluated DRLSA, MA-RTV, greedy-budget and MC-VRP (budget) on the 15 day

evaluation set using the congested travel time network and compared the resulting service

rates to those generated without congestion. We observe that MC-VRP (budget) incurs

less of a decrease in service rate compared to DRLSA, MA-RTV and greedy-budget across

all sizes of vehicle fleets as shown in figure 3.8. As expected, DRLSA had the greatest

decreases in service rate due to its reliance on a value function that was trained offline using

the free-flow travel time matrix. While hybrid approaches such as DRLSA have access to

the real-time travel conditions, it is difficult to re-train offline components, resulting in a

higher degradation in performance. Both MA-RTV and greedy-budget outperform DRLSA

when evaluated for robustness. This result is expected since MA-RTV and greedy-budget

are both online approaches, it is able to adapt to the updated matrix. We also observe that

MC-VRP (budget) performs better MA-RTV and greedy-budget, showing that our non-

myopic online solution improved upon the myopic online approaches as well.
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Figure 3.8: Robustness to roadway congestion: Percent change in service rate for DRLSA,
MA-RTV, greedy-budget and MC-VRP (budget) on test set using congested travel time
matrix compared to free-flow speed matrix. MC-VRP (budget) had less of a decrease in
service rate for 3, 4 and 5 vehicle fleets compared to the baselines.

3.6 Related Work

Vehicle Routing Problems (VRPs) can be broadly classified as either static or dy-

namic [67]. In static VRPs, all inputs are received before optimizing routes, whereas

in dynamic VRPs inputs are updated concurrently with the determination of the route.

The focus of this paper is on dynamic VRPs (DVRP), which can be either dynamic-

deterministic, in which no stochastic information about future inputs is known, or dynamic-

stochastic, in which some probabilistic information is known about the inputs that dynam-

ically evolve [68]. These stochastic inputs can include models over travel times, demands,

and customer information [69]. DVRPs can be solved to maximize myopic rewards [13] or

a non-myopic utility function [15, 16]. Exact methods for solving DVRPs seek to find an

optimal solution, but are often constrained to small problem instances due to computational

complexity, e.g., such approaches include column-generation [70] and the set-partitioning

method [71]. Metaheuristic approaches have also been applied to DVRPs, including par-

ticle swarm optimization [72], genetic algorithms [73], and tabu search [74, 75]. Decision

theoretic approaches have also been applied to DVRPs. DVRP is a sequential decision-

making problem, and can be modeled as a Markov Decision Process (MDP). One approach
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is to use a conventional MDP structure, where actions consist of determining the next cus-

tomer to serve at each decision epoch. Another approach, proposed by Ulmer et al. [50], is

based on using a route-based MDP where the state-action space includes not only assigning

an incoming request to a vehicle, but also optimizing the vehicles’ routes.

There are three ways to solve the DVRP MDPs: offline, online, and hybrid solution

methods. Offline methods pre-compute a policy that is queried while executing a plan [16,

52, 48]. Offline policies can be slow to learn, but can make decisions very quickly at

execution time, and are therefore useful when there are strict time constraints on decision-

making. Online solution methods perform computations during plan execution. These

are generally sampling approaches, and only focus on the states of the system relevant to

the current decision being made. Online methods include rollout algorithms [76, 77] and

multiple scenario approach (MSA) [46]. Online approaches have typically been applied

to problem settings without strict time constraints on decision-making (the time it takes to

compute a decision), and in dynamic environments where policies generated offline can

become stale. Hybrid solution methods attempt to combine offline and online approaches

to leverage the strengths of both. For example, Ulmer et al. [60] propose an approach

that embeds a value function learned using ADP into an online rollout algorithm. Joe and

Lau [15] propose a similar approach, which combines Deep Reinforcement Learning to

approximate a value function offline with an online simulated annealing approach.

3.7 Conclusion

We design a non-myopic online approach for DVRP for paratransit services that is

robust to environmental changes by construction and scalable to real-world applications.

To tackle the intractable action space, we leverage the structure of the problem to design

heuristics that can sample promising actions for evaluation through MCTS. Our experi-

mental results demonstrate superior performance and increases robustness against state-of-

the-art baselines.
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There are many interesting ways in which this work can be extended. One way would be

to extend this approach to work in microtransit or other settings. The primary limitation is

scalability. In this work we leveraged the structure of the paratransit setting to adapt online

search to work in this setting. For other demand-responsive settings we could look to apply

online planning in the same way - by adapting the feasible action generation process to

the domain in a way that is scalable and robust. Alternatively, we could look adapt our

framework to operate in decentralized or hierarchical settings in a way that would improve

scalability compared to the centralized decision-making engine presented in this work.
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Chapter 4

Energy Prediction Using Multi-Task and Inductive Transfer Learning

4.1 Overview

As we have discussed, real-time decision-making for optimizing transportation systems

requires reasoning over complex state-action spaces covering large geographic regions. In

Chapter 3, we showed how clever heuristics can be used to prune the search space for

adaptive, non-myopic search algorithms for MoD. Our approach was data-driven in that it

utilized historical request patterns to build a generative model to evaluate current actions

in the context of expected future demand. Similarly, predictive models have great potential

to improve offline and online optimization procedures by learning efficient representations

from vast volumes of data where traditional analytical methods fall short. These models

utilize supervised learning to learn abstract representations of the model environment and

are often referred to in the AI literature as discriminative or descriptive models. There

are primarily two use cases for predictive models in the context of real-time transportation

applications. First, predictive models can learn efficient representations of state in a way

that can be used directly in the optimization algorithms to model future scenarios. For

example, an online DVRP algorithm might require estimates of future traffic conditions

or travel times which can be learned through supervised learning. Second, these methods

can be used to directly learn policy or utility functions through offline simulation that can

be queried efficiently at run-time. The learned functions can evaluate current actions in

the context of the context of expected future reward, and therefore are non-myopic. These

methods collectively fall under the field of reinforcement learning (RL).

In this chapter we address key challenges in utilizing predictive models for offline and

online optimization. The key challenge we aim to address is how to overcome issues of
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data sparsity and quality. We focus on the problem of designing predictive models for

energy and emissions in the context of fixed-line public transit. Currently, public transit

agencies are focused on making their fixed-line bus systems more energy efficient by in-

troducing electric (EV) and hybrid (HV) vehicles to their fleets. However, because of the

high upfront cost of these vehicles, most agencies are tasked with managing a mixed-fleet

of internal combustion vehicles (ICEVs), EVs, and HVs. In managing mixed-fleets, agen-

cies require accurate predictions of energy use for optimizing the assignment of vehicles

to transit routes, scheduling charging, and ensuring that emission standards are met. The

current state-of-the-art is to develop separate neural network models to predict energy con-

sumption for each vehicle class. Although different vehicle classes’ energy consumption

depends on a varied set of covariates, we hypothesize that there are broader generalizable

patterns that govern energy consumption and emissions. In this paper, we seek to extract

these patterns to aid learning to address two problems faced by transit agencies. First, in

the case of a transit agency which operates many ICEVs, HVs, and EVs, we use multi-task

learning (MTL) to improve accuracy of forecasting energy consumption. Second, in the

case where there is a significant variation in vehicles in each category, we use inductive

transfer learning (ITL) to improve predictive accuracy for vehicle class models with insuf-

ficient data. As this work is to be deployed by our partner agency, we also provide an online

pipeline for joining the various sensor streams for fixed-line transit energy prediction. We

find that our approach outperforms vehicle-specific baselines in both the MTL and ITL

settings.

The work comprising this chapter has been published in the Proceedings of the 2021

Joint European Conference on Machine Learning and Knowledge Discovery in Databases

(ECML) [44]:

• Michael Wilbur, Ayan Mukhopadhyay, Sayyed Vazirizade, Philip Pugliese, Aron

Laszka, and Abhishek Dubey. Energy and emission prediction for mixed-vehicle

transit fleets using multi-task and inductive transfer learning. In Joint European
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Conference on Machine Learning and Knowledge Discovery in Databases, 2021

4.2 Introduction

Context: Public transit agencies are focused on finding ways to make their fixed-line

bus systems more energy efficient by introducing electric vehicles (EVs) and hybrid ve-

hicles (HVs), which have reduced impacts on the environment in comparison to tradi-

tional vehicles with internal combustion engines (ICEVs). However, EVs and HVs are

expensive and in practice, transit agencies have to manage a mixed-vehicle fleet, requir-

ing complex scheduling and assignment procedures to maximize the overall energy effi-

ciency [78, 79, 11] while satisfying the expectations of transit demand. This is turn re-

quires the ability to estimate energy and emissions of vehicles on assigned routes and trips.

Energy prediction models can be categorized based on their modeling scale. Microscopic

models aim to estimate vehicle energy consumption at a high frequency [80]; however, this

comes at the cost of reduced accuracy. For most system level optimization, macroscopic

models that aim to predict energy consumption at an aggregated spatial or temporal span

are sufficient [7, 80].

State of the Art: There has been significant research on macroscopic models for EVs

over recent years. For example, De Cauwer et al. used a cascade of ANN and linear re-

gression models for energy consumption prediction for EVs using vehicle speed, voltage,

current, SoC, road network characteristics, altitude, and weather [81]. Their model, how-

ever, did not use traffic data and the approach had a mean absolute error (MAE) of 12-14%

of average trip consumption. Vepsäläinen et al. used a linear model using temperature,

driver behavior, and roadway characteristics and found that EV energy consumption was

15% lower on suburban routes compared to city routes. A recent study by Pamula et al.

used a DNN with stacked autoencoders and an multi-layer perceptron to predict energy

consumption between stops. Their model used travel time, elevation change, and modeled

weather as categorical variables [82]. However, most of the prior work relied on learning
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separate models for each vehicle class [7, 82, 83].

Challenges: There are several unresolved challenges for public transit operations teams.

First, modern public bus fleets include not only a mix of vehicle classes (ICEV, HV, and

EV), but also different vehicle models within each class. For example, out partner agency,

Chattanooga Area Regional Transportation Authority (CARTA), manages a total of six

ICEV models, two HV models, and two EV models. Training separate models for each

type of vehicle ignores generalizable information that is not explicitly modeled in the fea-

ture space. For example, Ayman et al. modeled EVs and ICEVs without sharing model pa-

rameters between classes [7]. Second, the number of vehicles in each class varies greatly,

which leads to an uneven distribution of data available for training the energy or emission

prediction models. Third, and similar to the second problem in principle, when a new ve-

hicle class is added to an existing fleet, the agency must deploy some vehicles, obtain data,

and then learn a new predictive model from scratch.

Our Contributions: We address these challenges as multi-task learning (MTL) and

inductive transfer learning (ITL) problems. Although different vehicle classes’ energy con-

sumption depends on a varied set of covariates through different non-linear functions, we

hypothesize that there are broader generalizable patterns that govern the consumption of

energy and vehicle emission. That is, if an agency has access to many vehicles, and con-

sequently data, from each vehicle class (ICEVs, HVs, and EVs), we formulate emission

(and energy) forecasting as an MTL problem. We show that this approach improves the

predictive accuracy for all vehicle classes compared to a baseline where separate networks

are trained to predict emissions (and energy) for each class. In a situation with imbalanced

data or when an agency introduces a new model or class, we show that it is possible to learn

a model for classes with sufficient data, and transfer the learned abstraction to improve the

predictive accuracy for the class with insufficient data. The benefit of ITL is the ability to

deploy the model earlier than the time required to collect enough samples to train a sepa-

rate model for the new class. Finally, we highlight that real-world transit problems require
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collecting, cleaning, and joining data from various sources, formats, and precision. We pro-

vide a general online pipeline for joining the various sensor streams (vehicle telemetry and

trajectory data with external data sources such as weather, traffic, and road infrastructure)

for training and maintaining the fixed-line transit energy prediction models. We evaluate

our MTL and ITL models using real-world data from our partner agency’s mixed-fleet of

EVs, HVs, and ICEVs. We show that in both the MTL and ITL settings, our approach out-

performs state-of-the-art methods. The greatest improvements over baselines were in the

ITL setting when the target vehicle class suffers from a lack of data. However, we also find

that in some cases ITL does not work well, such as when transferring learned abstractions

from EV to ICEV.

4.3 Model

4.3.1 Predicting Energy Consumed and Emissions

Transit agencies are concerned with reducing a) costs by limiting energy used, and b)

the impact of their vehicles on the environment by reducing emissions. For ICEVs and

HVs, energy expended by a vehicle is a function of the fuel consumed, measured in liters.

On the other hand, the energy expended by an EV is a function of the dissipated charge of

its battery, which is the change in its state-of-charge (SOC). This presents a problem since

transit agencies primarily use prediction models to optimize the assignment of vehicles to

trips. As a consequence, they require a common metric to compare across vehicle classes

in their mixed-fleet for both energy consumed and emissions. For energy, we use kWh. For

ICEVs and HVs, we convert liters of diesel fuel consumed to kWh using a conversion rate

of 10.639 kWh/liter [84]. For EVs, we multiply the change in SOC and the capacity of the

battery. We measure emissions as kg of CO2. For ICEVs and HVs, fuel consumed in liters

can be converted to emissions (kg CO2) at a rate of 2.689 kg/liter [85]. For EVs, dissipation

in charge can be converted to emissions (kg CO2) at a rate of 0.707 kg/kWh [85]. As shown
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Figure 4.1: MTL Model: DNN with hard parameter sharing for predicting emissions (kg
CO2) of EVs (ŶEV ), HVs (ŶHV ) and ICEVs (ŶICEV ). Energy consumed (kWh) is a linear
function gi(·) for vehicle class i, separate of the neural network per the conversion discussed
in Section 4.3.1.

in Figure 4.1 and Figure 4.2, the function gi(Ŷi) represents the linear conversion between

the predicted target (emission) and energy consumed for an arbitrary vehicle class denoted

by the index i.

4.3.2 Preliminaries and Model Formulation

Our goal is to learn energy consumption and emissions in a mixed fleet of vehicles

conditional on a set of relevant determinants (Figure 4.1 and Figure 4.2). We refer to

learning prediction models as tasks, consistent with the terminology in the area of trans-
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fer learning [86]. We introduce the formalism for our problem next. We define a domain

D as the combination of a feature space X and a probability distribution P (X), where

X = {x1, x2, . . . } ∈ X . For example, X can include features like vehicle speed and

weather. Given a specific domain, a task is then defined as T = {Y , f(·)} where Y is the

space of output labels, and f is a predictive function over y ∈ Y conditional on x. Proba-

bilistically, f denotes the probability of a realization of y given x (P (y | x)). For example,

Y can denote the energy consumed by a vehicle, and subsequently, the function f can
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be used to denote a distribution on the energy consumed conditional on the determinants.

Typically, f is unknown; instead, we assume access to observations (data) in the form of

input-output pairs {(x1, y1), (x2, y2), . . . , (xm, ym)}. We deal with a scenario with multiple

tasks (and associated domains). Specifically, there are three vehicle classes, and therefore

three domains DEV ,DHV ,DICEV representing the domains of EVs, HVs and ICEVs, re-

spectively. Similarly, we have three output label spaces YEV , YHV , and YICEV , and three

predictive functions fEV , fHV , and fICEV , which need to be learned.

The functions fEV , fHV , and fICEV are parameterized by a set of parameters θ, that

we seek to learn by minimizing a predefined loss function given the observed data. The

input features for each of the vehicle class domains are derived from the characteristics of

the road segments, weather, traffic features, and vehicle dynamics. Therefore, we can state

that the feature spaces are equivalent, XEV = XHV = XICEV . Additionally, the marginal

probability distributions over the features are independent of vehicle class and therefore, the

marginal probability distributions over the features are equivalent, P (XEV ) = P (XHV ) =

P (XICEV ). Finally, given that the feature spaces and marginal probability distributions are

the same for all vehicle classes, we have that DEV = DHV = DICEV .

As the energy consumed for ICEV and HV vehicles are measured in fuel (liters) con-

sumed, the space of output labels Y is the set of positive real numbers R+. On the other

hand, EV vehicles have regenerative braking, therefore the energy consumed can take neg-

ative values and the task space for EV vehicles is R. Additionally, since the performance

of the three vehicle classes varies greatly, we consider that the predictive functions for

each vehicle class are different; as the conditional probability distributions are not equal

and P (YEV |XEV ) ̸= P (YHV |XHV ) ̸= P (YICEV |XICEV ). Finally, we can generalize the

problem to n classes of transit vehicles in the fleets (e.g. the classes can be categorized

based on the model and year as well); such a generalization will focus on learning the tasks

{T1 ̸= T2, · · · , ̸= Tn} ∈ T , given the domains {D1 = D2, · · · ,= Dn} ∈ D.
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Table 4.1: Data description; data collected from Jan 1 2020 to July 1 2020.

Data Source Description Features Frequency Scope
ViriCiti - ICEVs vehicle telemetry fuel level, GPS 1 Hz 3 vehicles
ViriCiti - HVs vehicle telemetry fuel level, GPS 1 Hz 4 vehicles
ViriCiti - EVs vehicle telemetry current, voltage, GPS 1 Hz 3 vehicles
Clever Devices automated vehicle trip ID, 0.1 Hz all

location vehicle ID vehicles

HERE traffic (per TMC)
jam factor, current speed,
free flow speed 0.0166 Hz

major roads,
highways

DarkSky weather
visibility, wind speed,
precipitation intensity,
humidity, wind gust, temperature

0.0033 Hz whole city

Static GTFS transit schedule

routes, trip IDs, stop sequences,
stop locations (latitude, longitude),
schedule trip times,
trip shape (GeoJSON)

static whole city

GIC - Elevation LiDAR elevation location, elevation (meters) static whole city
Trip Segments multiple sources segment length, time to travel, static whole city

average speed, roadway type

4.4 Approach

We now discuss our approach to learning the energy prediction functions (fEV , fHV ,

and fICEV ). In order to perform data-driven learning, we first need to accumulate data

from various sources. In real-world problems pertaining to public transportation, creating a

data pipeline is often an arduous task due to the variety of data sources, formats, recording

precision, and data collection frequency. As a result, we begin by discussing the data

sources (Table 4.1) and the data pipeline. We gather data from 3 ICEVs, 4 HVs, and 3

EVs from our partner agency for a period of six months from January 1, 2020 to July 1,

2020. Each vehicle has a telematics kit produced by ViriCiti LLC [37], that provides speed

and GPS positioning at a minimum of 1Hz resolution. In addition, for ICEVs and HVs

the sensors provide fuel consumed (liters) while for EVs we collect current and voltage

levels which are used to calculate energy consumed as well as emissions. Each vehicle is

equipped with a kit from Clever Devices [36]. The Clever Devices feed provides a unique

vehicle ID corresponding to the vehicle ID in the ViriCiti feed, as well as the unique trip ID

which maps to scheduled trips in the static General Transit Feed Specification (GTFS) [27].
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We collect weather data from multiple weather stations within the transit region at 5-

minute intervals using the DarkSky API [31], including temperature, humidity, wind speed,

and precipitation. Traffic data was collected at 1-minute intervals using the HERE API [38],

which provides speed recordings for segments of major roads. The traffic data is reported

per TMC (Traffic Message Channel), which is a custom geographical mapping unit. We

perform map matching similar to prior work [7] to obtain traffic data for each road segment

of interest to us. Road network map data was collected from OpenStreetMaps [24]. Lastly,

we collect static GIS elevation data from the state Geographic Information Council which

provides high-resolution digital elevation models (DEMs) derived from LiDAR elevation

imaging, with a vertical accuracy of approximately 10cm.

Fixed line transit vehicles travel at pre-determined times (trips) covering a sequence of

stops along a route. The latitude and longitude of each stop and the geographical shape of

the path (the route segment) that the vehicles travel by visiting each stop is specified using

the static GTFS schedule published by CARTA. Using this information, it is straightforward

to divide the path taken by a bus during a given trip into a sequence of segments ⟨SEG ⟩,

where each segment is marked by a start stop and an end stop. As the specific characteristics

of segments are important, a unique segment is created for every spatial path that exists

between a pair of stops. Note that effectively, each SEGi is described using a discrete

sequence of points (latitude and longitude), close enough to draw the shape of the road

on the map. We use these segments as the fundamental spatial unit for which we predict

emissions (or energy). This has two advantages: first, the generation of route segments for

prediction can be derived directly from a transit agency’s schedule, rather than relying on

external infrastructure data such as OSM [7] or time intervals [83], and second, segments

can be shared between trips thereby providing additional data for learning.
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Figure 4.3: Overlapping segments. Segments 1 and 5 traverse the same section in opposite
directions.

4.4.1 Mapping Vehicle Trajectories to Route Segments

To generate the joined data samples, we first map the vehicle trajectories to segments.

By joining the ViriCiti and Clever Device feeds, we determine a set of GPS points that a

vehicle traverses. We refer to this ordered sequence of points as a trajectory T consisting of

spatial points {l1, l2, . . . }. Consider that the trajectory T serves the trip R. The goal of the

mapping process is to label each location li ∈ T to a corresponding segment SEGj ∈ R,

thereby representing the specific segment that each vehicle traverses at a specific point in

time.

In principle, it is possible to perform an exhaustive search on the segments to iden-

tify the one that matches (or is the closest to) each point in a trajectory. However, such

an approach does not work in practice with real-word trajectory feeds due to two reasons.

First, routes often traverse segments between spatial points close to each other during trips.

For example, consider the overlapping segments in Figure 4.3 in which the vehicle passes

through SEG1 relatively early in the trip and through SEG5 later. Due to noise in the
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Figure 4.4: Overlapping segments. Segments 1 and 5 traverse the same section in opposite
directions. Intersecting segments. Vehicle locations near the intersection of segments 1 and
4 can lead to incorrect mapping. Stops not shown.

measurement, a point early in the trip can erroneously get mapped to SEG5, resulting in

incorrect representation of the features that are induced by the segment. Similar problems

arrise when segments cross each other as shown in Figure 4.4. Our exploratory analysis on

the data obtained from our partner agency showed several examples of such incorrect map-

pings. Second, the mapping of trajectory data to segments is computationally challenging

for transit agencies. As an example, consider our partner agency CARTA, which operates

a total of 60 vehicles. The number for bigger cities is larger in orders of magnitude; for ex-

ample, the New York Metropolitan Transit Authority (NY-MTA) operates more than 5000

buses [87]. Considering location data collected at the frequency of 1 Hz for 3 years, the

matching must be done for over 3.5×109 spatial locations, each of which could potentially

be mapped to one out of hundreds of segments (for a larger city like New York, the number

of matches is 3× 1012).

To alleviate these concerns, we propose an algorithm for mapping vehicle trajectories to

route segments (Algorithm 3). The algorithm takes the trajectory T of the vehicle traversing
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Algorithm 3 Mapping Trajectories to Route Segments
1: Input:
2: R← sequence of segments {SEG0, . . . , SEGN} for each trip
3: T ← set of vehicle GPS locations l along the trip
4: W ← number of segments to lookahead
5: B ← max distance between segment and vehicle GPS
6: Output:
7: TrajSegMap→ list of segments for each SEG in R
8: Initialization:
9: c← 1, index of current segment

10: TrajSegMap← []
11: for i ∈ {1, . . . , |T |} do
12: SegWindowDist← []
13: for j ∈ {c, . . . , c+W} do
14: test
15: if j ≤ |R| then
16: SegWindowDist.push(dist(SEGj, li))
17: else
18: TrajSegMap[i]← None
19: end if
20: end for
21: end for
22: Return: TrajSegMap

the sequence of segments ⟨SEG ⟩ of trip R. During matching, we maintain a lookahead

window, denoted by W , that represents the number of segments to consider for the match.

For example, if a location li ∈ T is already matched to segment SEGc in a route, then

for matching the next location li+1 ∈ T , we consider the set {SEGc, . . . , SEGc+W}. By

maintaining a short lookahead, we alleviate duplicate matches from segments further away

in the route. Also, a shorter lookahead provides computational efficiency as opposed to an

exhaustive search. We maintain a tolerance distance B for matching where a segment is

matched to a location from a trajectory only if the distance between them is less than or

equal to B. The function dist(SEGj, li) is used to calculate the minimum distance between

segment SEGj and GPS point li.
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4.4.2 Generating Samples

To generate the joined data samples, we split each of the trajectories T based on the

locations mapped to trip segments. We create one data sample per continuous travel on a

trip segment, providing average speed and the total fuel/energy consumption and emission

on that segment. For ICEVs and HVs, the fuel consumed is provided in liters. While EVs

provide state-of-charge (SOC) readings, the precision is too low to use for representing

energy consumed. Therefore, we estimate the amount of energy from the battery current

A and voltage V . The energy used between consecutive data points is given by Ei =

Ai · Vi · (TSi − TSi−1), where Ei, Ai, and Vi are the consumed energy (Joule), current

(Ampere), voltage (Volt) at time step i, respectively, and TSi is the timestamp (in seconds)

at time step i. To get the energy on a segment, the energy consumed between each sample

is accumulated for all locations of the vehicle mapped to that segment.

Weather features for each sample are taken from the weather reading closest to the time

at which the vehicle starts traversing a segment. For traffic features, we take the average

jam factor (JF) and speed ratio (SR) of all TMCs mapped to the segment traversed by the

vehicle when the vehicle enters a segment. Speed ratio is defined as the traffic speed divided

by the free flow speed.

4.4.3 Learning

Recall that our goal is to address two specific problems. The first scenario is where

a transit agency has access to many vehicles, and consequently data, from each vehicle

class. In this case, our goal is to improve the predictive accuracy of f for all tasks. One

method of addressing this problem is to learn a predictive model f over each vehicle class.

However, we hypothesize that there are generalizable patterns between vehicle classes that

can be leveraged to aid learning. Consequently, we formulate a MTL model as shown in

Figure 4.1. We use hard parameter sharing to learn a common representation of the input
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Table 4.2: Data processing summary.

Class Model Year Vehicles Raw Samples Distance Filtering Final Samples
ICEV 2014 3 139,652 127,212 114,348
HV 2014 4 235,671 223,913 201,491
EV 2018 3 48,969 47,804 43,022

Table 4.3: Pearson’s correlation coefficient of input features with emissions.

Class Length Time to ∆Ele max ∆E Speed Visibi Wind Precip Hum Wind Jam Tempe Avg
Segment Travel vation levation Ratio lity Speed itation idity Gust Factor rature Speed

EV 0.860 0.752 0.523 0.222 0.038 0.008 -0.002 -0.003 -0.009 -0.012 -0.015 -0.037 -0.093
HV 0.916 0.838 0.505 0.135 0.038 0.006 0.004 -0.008 -0.008 -0.002 -0.026 0.013 -0.134
ICEV 0.886 0.865 0.539 0.103 0.028 0.004 0.011 -0.005 0.001 ≈ 0 -0.016 -0.005 -0.262

features which enables us to extract generalizable patterns across the tasks. Additionally,

each task (vehicle class) has a vehicle-specific set of hidden layers which outputs the pre-

dicted energy consumed/emissions for EVs (ŶEV ), HVs (ŶHV ), and ICEVs (ŶICEV ) along

route segments. At each training iteration, a batch of samples from EVs, HVs, and ICEVs

is fed through the network and mean-squared error (MSE) loss is calculated between the

predicted target and true target for each vehicle class. The gradient of the loss is then

propagated back through the network.

The second problem we seek to address is where an agency has significant variation

in the number of vehicles from each class. In such a case, while a common model can be

learned using the MTL framework, the tasks with a significantly larger number of samples

are likely to dominate learning. Also, learning a model solely for the task with few samples

can result in overfitting. In this case, we seek to learn f for classes with sufficient data

(source model) first, and transfer the learned abstraction to improve the predictive accu-

racy for the class with insufficient data (target model). Our ITL framework is shown in

Figure 4.2. When training the target model, the transferred layers are frozen and only the

vehicle-specific layers are updated during training.
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Figure 4.5: Distribution of emissions (kg CO2) per trip segment for each vehicle class.

4.5 Experiments and Results

Vehicle telemetry, weather, and traffic data is collected for a six-month period between

January 1, 2020 and July 1, 2020 for 10 vehicles as shown in Table 4.2. We include two

post-processing steps in generating the final datasets for each respective vehicle class. First,

we remove partial trajectories by eliminating samples where the total distance traveled was

less than 50% of the segment length and greater than 150% of the segment length. Second,

to address outliers and potential errors in the mapping process, we remove samples with

the target value (energy/emission) in the bottom 2% and top 2% quantiles. The final data

size is shown in last column of Table 4.2.

The distributions of emissions (kg CO2) and energy (kWh) consumption are shown in

Figure 4.5 and Figure 4.6. As energy consumption for ICEVs and HVs is derived from

liters of diesel fuel consumed, emissions must be greater than 0 kg CO2 for these vehicle

classes. The EVs in the fleet have regenerative braking, which allows for energy consumed,

and thus emission, to be negative. We predict energy/emissions per route segment. The

distributions over energy and emission for each of the vehicle classes has a long right tail

and the average varies between vehicle classes. Therefore, the task of energy/emission

prediction is also different, by virtue of having a different distribution over the space of

output labels Y .
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Figure 4.6: Distribution of energy (kWh) consumption per trip segment for each vehicle
class.

The Pearson correlation coefficient between input features and emissions is provided

in Table 4.3. Distance traveled and time to traverse the segment have a strong positive

correlation with emissions. ∆ Elevation, which is the change in elevation from the start to

the end of the segment, also has a strong correlation with emissions for all vehicle types.

Max ∆ elevation, which is defined as the difference between the maximum and minimum

elevation along the segment, has a relatively weaker correlation. Additionally, the average

vehicle speed has a stronger negative correlation of -0.262 with emissions for ICEVs than

with HVs (-0.134) and EVs (-0.093).

4.5.1 Hyperparameter Tuning and Baseline Models

We randomly select 43,022 samples from each vehicle class. For each vehicle class,

we use 80% of the samples for training and 20% for testing. Of the training samples,

10% are withheld from training and used as a validation set to identify the best set of

hyperparameters for the subsequent analyses. We perform the hyperparameter search using

the model derived from the MTL formulation.

We tested shared hidden layer widths of {200, 300, 400} and shared hidden layer depths

of {3, 4, 5}. We use 3 vehicle-specific layers and tested the configurations of {128, 64, 32}

and {64, 32, 16}. Mean-squared error (MSE) is used for the loss function and the networks
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are optimized using the Adam algorithm [88]. We test learning rates of {0.01, 0.005, 0.001,

0.0005, 0.0001} and batch sizes of {64, 128, 256, 512}. The best performing configuration

is shown in Figure 4.1, which consists of 5 shared hidden layers of 300 fully connected

neurons with ReLU activation functions [89], and 3 vehicle-specific hidden layers of 64,

32, and 16 hidden neurons respectively. For the output layer we test using ReLU as well

as linear activation functions for ICEVs and HVs and linear activation function for EVs,

however we find that using a linear activation function as the output layer for all 3 vehicle

classes provides the best performance. An early stopping strategy was performed, where

we stopped training if MSE on the validation set did not improve for 10 epochs. The best

performing learning rate was 0.0005 and the best batch size was 256.

In the baseline model no layers are shared between vehicle-classes resulting in a sepa-

rate neural network for each vehicle class. The same grid search from the proposed models

was used to find the hyperparameters of the baseline models. In all experiments, we use

Kaiming initialization [90] to initialize the weights of the networks.

4.5.2 Multi-task Model Evaluation

First, we investigate the performance of the MTL model compared to vehicle-specific

baseline models. To evaluate the robustness of the models, we train 10 MTL models (30

vehicle-specific models, 10 for each vehicle class) and present the average MSE and MAE

in Figure 4.7 and Figure 4.8. Models are trained for up to 150 epochs. We find that for

all vehicle classes, the MTL model outperforms the vehicle-specific baseline models. The

mean percent improvement in MSE is 8.6%, 17.0%, and 7.0% for ICEVs, HVs, and EVs,

respectively. The mean percent improvement in MAE is 6.4%, 9.0% and 4.0% for ICEVs,

HVs, and EVs respectively.

Even with improved accuracy, it is important to investigate the bias and the variance

of the proposed approaches. Therefore, we repeat the entire evaluation using 30 datasets

creating through bootsrapping [91] from the original data. At each iteration, we sample
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Figure 4.7: MSE of MTL model compared to vehicle-specific neural network models (base-
line) on testing set. Prediction target: emissions (kg CO2).
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Figure 4.8: MAE of MTL model compared to vehicle-specific neural network models
(baseline) on testing set. Prediction target: emissions (kg CO2).
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Figure 4.9: Distribution of MTL and baseline model bias per sample for each vehicle class
from bootstrap evaluation, 30 bootstrap iterations. Prediction target: emissions.
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Figure 4.10: Distribution of MTL and baseline model bias per sample for each vehicle class
from bootstrap evaluation, 30 bootstrap iterations. Prediction target: energy.

a training set, with replacement, from the ICEV, HV, and EV datasets. The samples not

selected for each training set are used as the testing set for that iteration. For each iteration,

we train a single MTL model and vehicle-specific baseline models on the training set and

evaluate on the testing set. The distribution of empirical bias per sample for the MTL and

baseline models is presented in Figure 4.9 and Figure 4.10. We observe that the MTL

model results in a lower bias for each vehicle class compared to the baseline models. The

MTL model also results in lower median variance per sample.

4.5.3 Inductive Transfer Learning Evaluation

Next, we evaluate the performance of the ITL model formulated in Figure 4.2. To train

the ITL models, we use data from all of the three vehicle classes, each of which contains

43,022 samples, as outlined in Section 4.5.1. For each pair of source and target task, we

first train the source model, freeze the shared hidden layers, and transfer to the target model.

Then, we optimize the target model’s vehicle-specific layers. For each model, the available

sample size to train the target model is varied from 2%, 5%, 10%, and 15% of the total

number of available samples to investigate the influence of sample size in training of the

target models. This is consistent with what transit agencies might face in practice; as a new
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Figure 4.11: ITL models compared to corresponding baselines. ITL model is trained on
full dataset in the source vehicle class and is evaluated on the target vehicle class (source
−→ target). Average MSE compared to fraction of data samples used for training in the
target vehicle class. Prediction target: emissions (kg CO2).

vehicle is introduced, agencies gradually collect more data from it. We test our approach

for all pairs of vehicle classes.

To compare the performance of the models, we train baseline models that only use the

training data from the target domain. For example, while evaluating inductive transfer from

EV to ICEV with 2% of the target data available, the baseline model is trained exclusively

on the same amount data from ICEV class. In order to consider the randomness in training

process, when evaluating the target and baseline models, we trained each model 10 times

on 10 random samples from the target domain’s dataset and 10 different initial values for

the parameters using Kaiming initialization [90].

We provide the results of the proposed ITL approach in Figure 4.11. We observe that in
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Figure 4.12: t-SNE on raw input features for each data sample from the source domain.
t-SNE parameters: number of components=2, perplexity=10, initialization=PCA, number
of samples=860 (2% of dataset)

general, the proposed approach results in improved forecasting accuracy across the tested

scenarios (except when EV is used as source and ICEV is used as target). We also observe

that as the amount of data from the target domain increases, both the ITL and the base-

line method show improved forecasting accuracy; however, the baseline methods shows

relatively higher improvement, to the extent of outperforming the ITL framework in some

cases (15% data from target domain in Figure 4.11 b, c, e and f).

Additionally, we seek to understand the role of the shared-hidden layers in our pro-

posed approach. Conceptually, the role of such layers in the target model is to extract

generalizable patterns across the spectrum of tasks to aid learning in the target task. We

use t-distributed stochastic neighbor embeddings (t-SNE) [92] to visualize the separation

of multi-dimensional information in a two-dimensional space. In Figure 4.12, we show

t-SNE on the raw input features of the three vehicle classes color coded by emissions (kg

CO2). All three plots are very similar, thereby corroborating our assumption that the input

features are similar across the tasks (DEV = DHV = DICEV ). We separately apply t-SNE

on the output of the shared-hidden layers across all pairs of source and target tasks and

show the results in Figure 4.13. We observe that the ICEV source model and HV source

model (plots (a) to (f) of Figure 4.13) effectively discriminate the samples with high emis-

sions and low emissions (increasing the distance between light points and dark points). On

the other hand, EV source model (plots (g) to (i) in Figure 4.13) shows poor discrimination,

reflecting the negative transfer.
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Figure 4.13: t-SNE on the output of shared-hidden layers for each data sample from the
target domain. t-SNE parameters same as Figure 4.12.

4.5.4 Discussion

We now present the key takeaways from the experiments. First, we observe that in

general, both the MTL and the ITL framework outperform the baseline methods, thereby

resulting in improved emission (and consequently energy) predictions for transit agencies

that operate mixed-fleet vehicles. Second, we observe that the MTL, ITL, and baseline

models are less accurate in predicting EV emissions compared to HV and ICEV, most likely

due to the complexity of the energy cycle in EV engines. Third, a key finding for practi-

tioners is that the greatest improvements over baselines are seen when the target vehicle

class suffers from lack of data. However, it is important to switch to standard models once

sufficient data is collected for the class. The point at which such a switch should be made

depends on the specific task and data at hand. In our work with CARTA, we implement a

periodic check to facilitate such a switch. Fourth, we find that when the goal is to predict

the emissions for ICEV class using a source model trained based on EV class dataset (this
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situation rarely arises in practice due to precedence of the ICEV class), ITL models under-

performed baseline models, irrespective of the size of training data from the target domain.

This indicates negative transfer between the EV domain and the ICEV domain.

Lastly, while this work is a general approach that can be used by cities to improve

their energy prediction models there are a couple limitations agencies should be aware of.

First, our models were trained on data from Chattanooga, TN, which is a mountainous

city in the southern United States with a warm climate and limited snowfall or freezing

temperatures. Therefore any direct transfer of our pre-trained models to other cities should

take into account potential biases in these determinants. Second, like most macroscopic

energy prediction models we do not take into account the impact of delays at stops or the

number of passengers on the vehicles. We intend on incorporating these parameters into

future work.

Code, data, and supplementary results of this study are available at https://github.com/

smarttransit-ai/ECML-energy-prediction-public

4.6 Conclusion

By framing emission (and energy) forecasting as an MTL problem, we showed that an

agency with access to many vehicles can improve the predictive accuracy for EVs, HVs,

and ICEVs over current state-of-the-art, vehicle-specific models. We also showed that in a

situation with imbalanced data the predictive accuracy of classes with insufficient data can

be improved by transferring a learned abstraction from vehicle classes with sufficient data

through ITL. Lastly, we provided a general online pipeline for joining the various sensor

streams for emission and energy prediction of mixed-vehicle transit fleets.
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Chapter 5

Time-dependent Decentralized Routing Using Federated Learning

5.1 Overview

In Chapters 3 and 4 we addressed challenges in the design of real-time MoD systems

from the perspective of algorithm design (sequential decision-making) and AI respectively.

In the next two chapters we shift our focus to deployment methods and architectures for

MoD. In particular, we focus on the potential, and address challenges related to, deploying

MoD applications on decentralized edge-computing architectures.

Current research largely assumes that algorithms and model training are performed in

a centralized system such as the cloud. In centralized settings, the edge devices (vehicle

telemetry kits, mobile devices ect.) stream various sensor data to a centralized cloud where

algorithms evaluate the state of the system and return actions. An example of this is rout-

ing applications such as Google Maps which ingest large-scale data in real-time to update

congestion models while providing congestion-aware routes for users. Route planning al-

gorithms have progressed in line with the cloud environments in which they run. Current

state of the art solutions assume a shared memory model, hence deployment is limited to

multiprocessing environments in data centers. By centralizing these services, latency has

become the limiting parameter in the technologies of the future, such as autonomous cars.

Additionally, these services require access to outside networks, raising availability con-

cerns in disaster scenarios. Therefore, this work provides a decentralized route planning

approach for private fog networks. We leverage recent advances in federated learning to

collaboratively learn shared prediction models online and investigate our approach with a

simulated case study from a mid-size U.S. city.

The work comprising this chapter has been published in the Proceedings of the 2020

75



IEEE 23nd International Symposium on Real-Time Distributed Computing (ISORC) [19]:

• Michael Wilbur1, Chinmaya Samal1, Jose Paolo Talusan, Keiichi Yasumoto, and

Abhishek Dubey. “Time-dependent decentralized routing using federated learning”,

in 2020 IEEE 23nd International Symposium on Real-Time Distributed Computing

(ISORC). IEEE, 2020

5.2 Introduction

Cities are evolving at a rapid pace. Over half the world’s population currently lives

in urban areas [93]. Along with a growing population, new ch allenges are emerging as

an increase in housing density, population, and traffic strain city services. To meet these

demands, both cities and private companies have turned to data-intensive applications to

maximize efficiency of existing resources.

Cloud environments provide near real-time scalability of processing and storage re-

sources, making cloud deployment the standard model for data-intensive applications. One

such case is route planning services, which process millions of queries a day to guide ve-

hicles from point A to point B. These services take into account the global transportation

infrastructure and current traffic conditions to return the shortest route to the end user. In

this context, routing is done on a time-dependent graph where the shortest path depends on

the departure time and the current location of the end user.

Current approaches consist of deploying classic shortest path algorithms on either a

single server or using a parallel approach in which a full road network is partitioned into

multiple processes. The parallel approach assumes a shared memory model in which there

is constant time communication between processes. Hence, its deployment is limited to

multiprocessing environment such as in a data center or the cloud. By assuming constant

time communication between processes, adapting these models to fog or edge deployments

is intractable.
1These authors have contributed equally
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There are numerous disadvantages in deploying route planning services to the cloud.

First, the end user must send each request to a distance data center through a WAN network,

inducing significant latency. This is satisfactory for current routing applications in which

it is assumed that latency can be sustained for each request. However, latency demands

of future technologies such as autonomous vehicles are already showing the limitations of

centralized cloud-base route planning models. Additionally, cities typically use third party

services [94] for dispatching emergency services. By relying on centralized services in re-

mote data centers, cities risk service availability issues during disaster scenarios, precisely

when such services are of most importance.

One solution to these issues is to move routing services to the network edge with a

fog computing model. In this case, routing services are moved to road side units (RSUs),

which are low powered raspberry pi like devices [95] scattered throughout a city. Each RSU

provides a limited amount of processing and storage. By linking these devices together in

a private city owned sub-network, a reliable network can be created for smart city route

planning services that can remain in operation without connection to outside networks.

Additionally, moving processing to the edge allows end users to connect to nearby RSUs

and potentially reduce latency.

The primary concern in moving route services to a fog computing model is that memory

is not shared between processes and communication between fog nodes is a primary source

of latency to be accounted for. Therefore, we aim to provide a decentralized route planning

approach that accounts for communication latency and is well-suited for deployment in

private fog networks.

While the use of prediction models helps to limit communication at inference time,

training of the models can induce significant bandwidth requirements as data is transferred

to a centralized cloud for training. Therefore we use federated learning to collaboratively

learn shared prediction models online for the route planning problem. In our approach,

all training occurs at the RSUs and only the model weights are shared between processes,
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therefore reducing communication overhead during training. We use a case study from a

mid-size U.S. city to demonstrate this work. The specific contributions of this paper are as

follows:

1. We provide a decentralized route planning approach for time-dependent transporta-

tion networks. Our approach handles all routing at the network edge within a private

RSU fog network and thus can remain active in scenarios where the centralized cloud

is unavailable.

2. Prediction models are used to condense the search space and limit communication

between fog nodes, and thus minimize response time.

3. We apply federated learning [96] to collaboratively learn shared prediction models

online for the route planning problem. All training occurs on the RSUs and by shar-

ing model weights our system avoids costly transfer of raw data.

4. We apply our approach using a simulated case study from a mid-size U.S. city and

compare it to current state of the art methods.

We find that our approach reduces latency and memory requirements compared to cur-

rent state of the art parallel route planning approaches. The outline of this work is as

follows: Fundamental notation, related work and limitations of existing approaches is pro-

vided in Section 5.3. Section 5.4 covers the system model and deployment while 5.6 out-

lines our decentralized route planning approach. Lastly a simulated case study is provided

in Section 5.7.

5.3 Related Work

In this section we provide necessary background on modeling transportation networks

in the context of this work. Table 5.1 summarizes the symbols we used throughout this

paper.
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5.3.1 Transportation Networks as a Graph

Transportation networks are naturally modelled as time-dependent graphs [97]. Let

Gτ = (Vτ , Eτ ) be the time-dependent, directed graph, where Vτ is the set of vertices,

Eτ ⊆ Vτ × Vτ the set of edges of a road network at time interval τ .

Since the graph Gτ is time-dependent, the travel time on an edge e ∈ Eτ varies with

time. All edges in a transportation network are weighted by a periodic time-dependent

travel time function T (e, τ) : Π → N0 where Π depicts a set of time points or time-period

(seconds, minutes or hours of a day).

The function T (e, τ) is impacted by the routes taken by all the vehicles in the road

network or graph Gτ and often can be modeled as a latency function [98]. It can be learned

from historical states of the network {G0, G1, ..., Gτ−1} and the current state of the network

Gτ , to get expected travel times for time intervals {τ + 1, τ + 2, · · · , τ + f}, where f is

the number of time intervals in the future. To differentiate this from the actual travel time

function, we denote the learned travel time function as T̂ (e, τ).

By modeling the transportation network as a graph, routing becomes a problem of find-

ing the shortest path between two nodes. In time-dependent graphs, the shortest path de-

pends on the departure time at the source node. Hence the route query is defined by a tuple

(s, d, τs), where s ∈ Vτs is the source, d ∈ Vτd is the destination, τs is the departure time

from s and τd is the arrival time at destination d. This might result in shortest paths of dif-

ferent length for different departure times or even a completely different route. In contrast

to the time-independent graph, here the directed route R for the query (s, d, τs) involves

finding a sequence of edges along the time [(e1, τ1), (e2, τ2), · · · , (en, τn)] from source s at

time τs to reach destination d at time τd. The cost of the route len(R) is defined as the sum

of the time-dependent weights from the function T (e, τ) for each edge in route, such that

len(R) =
∑

(e,τ)∈R T (e, τ).
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Table 5.1: List of symbols

Symbol Description
R Real Numbers
N0 Natural numbers
G Static graph, G = (V,E)

V Set of network vertices
E Set of network edges
τi Actual time interval i of a day
τ̂i Estimated time interval i of a day
Π Set of time points or time-period (seconds, minutes or hours of a day)

RSUi Road Side Unit i
R Directed path from source vertex s ∈ V to destination vertex d ∈ V , at time interval

from source τs

Rs
d Partial route from source vertex s ∈ V to destination vertex d ∈ V , at time interval

from source τs

len(R) Travel time of the route R

Gτ State of time-dependent graph (V,E) at time τ

Vτ Set of vertices at at time interval τ
Eτ Set of edges at at time interval τ
T Travel time function
T̂ Travel time predictor
Ê Equivalent Grid Routing predictor
SP Shortest path algorithm that uses Travel time predictor T̂ to find route with minimum

travel time
gi Grid i

Gi Subgraph whose each vertices and edges maps to grid i

t̂uv Estimated travel time from vertex u ∈ V to vertex v ∈ V using Travel time predictor T̂

5.3.2 Current State of the Art Routing

Current state of the art route planning is typically deployed in centralized cloud-based

systems [99, 100, 101]. In this architecture, data is stored in distributed databases while a

travel time model represents the current state of the transportation network. Vehicles query

a central router for routes.

We draw on two bodies of work in routing algorithms that heavily influence the central

architecture for route planning. The first is single server routing where it is assumed that

the routing network resides entirely in a single physical node or server which handles all

routing queries. The second is parallel routing where the network is partitioned between
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multiple nodes and routing queries are processed concurrently using multiple processes.

The single server approach relies on work from Dijkstra [102] and Bellman and Ford [103,

104], who proposed some of the first algorithms to solve the routing problem in a single

server. Many advanced route planning algorithms that exist today are variants of these

works. While these algorithms compute optimal shortest paths, they are too slow to process

real-world data sets such as those derived from large-scale road networks. To address this

issue, there are many techniques aimed at speeding up these algorithms. Such techniques

often are based on clever heuristics that accelerate the basic shortest paths algorithms by

reducing their search space. Bi-directional search [105, 101] not only computes the shortest

path from the source s to the target t, but simultaneously computes the shortest path from

t to s on the backward graph. Guided search approaches such as A∗ [106] use heuristics to

guide the search and limit the search space. Goldberg et al. proposed the ALT approach in

which they enhance A∗ by introducing landmarks to compute feasible potential functions

using the triangle inequality [101, 107]. In other work, contraction techniques are used to

speed-up the shortest path computation. This includes highway hierarchies [108, 99] which

exploits the hierarchical in road networks, while contraction hierarchies [100] contract the

graph in a pre-processing stage.

To parallelize the routing problem, a full road network is typically partitioned into

multiple processes and the edge expansion proceeds similarly to Dijkstra. In parallel ver-

sions of Dijkstra, the priority queue is based on a shared memory model where it is as-

sumed that communication between processors is constant [109, 110]. The parallel priority

queue supports simultaneous insertion and deletion of an arbitrary sequence of elements

ordered according to key, in addition to find-minimum and single element delete opera-

tions [109, 111]. Techniques to parallelize advanced routing algorithms such as contraction

hierarchies are only limited to the pre-processing step where the contraction of nodes can

be done in parallel [112].
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5.3.3 Limitations of Centralized Route Planning

Cloud based route planning models assume near unlimited processing and network

availability. This makes current approaches poorly suited for deploying route planning

services on private fog networks where resources are constrained and access to outside

cloud resources can be intermittent, particularly in disaster scenarios.

Some of the prior work discussed earlier, for parallel route planning [109, 110, 111],

assume that the graph network has static weights, which doesn’t hold in real transportation

network where traffic congestion changes with time. In a time-dependent network, edge

expansion depends on arrival/departure time at each edge, hence processing is sequential.

There are some approaches [112] which model the time-dependent nature of the network

but the parallelization is only limited to the pre-processing phase and not during real-time

query.

All of these approaches use a parallel shared memory model where an assumption is

made that the shared memory allows a constant time direct communication between each

pair of processors. This holds in a multiprocessing system and possibly in a data center,

but this assumption is not realistic in a decentralized setting where communication between

processes can add significant latency. While previous work of ours has focused on data

integrity in distributed RSU networks [18], limited work has been done on routing in such

networks.

5.4 System Model

In this section we outline the system architecture and data collection for decentralized

route planning.
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Figure 5.1: Decentralized architecture for route planning

5.4.1 Architecture

Figure 5.1 shows our decentralized architecture for route planning. The fundamental

components are outlined as follows:

1. Road Side Unit (RSU): low-powered compute nodes [95] located near roads and high-

ways throughout the transportation network. These nodes are assumed to have com-

putational resources similar to Raspberry Pis. Linked together, the RSUs form a

private fog network.

2. Central Server: The central server is assumed to be a cluster of compute and storage

nodes with horizontal on demand scaling. The primary role of the central server is as

the central administrator for the RSU network meta-data and resources. It is assumed

that access to the central server is intermittent and can fail in disaster scenarios.

3. Vehicle: Vehicles are assumed to be GPS equipped and network enabled. They pro-

vide two functions. First, they periodically send location data and travel speed to the

RSU network. Second, vehicles can query the network for routes from their current

location to a destination.

83



4. Admin: Maintains the global transportation network graph G = (V,E) and helps

divide the network into sub-graphs as outlined in Section 5.5.

5.4.2 Data collection

Our system consists of the following types of data:

1. Location data: This data is periodically collected from multiple vehicles and are

stored as a set {(e1, τ1, t1), · · · , (en, τn, tn)}, where ei is the edge traversed, τi is the

time interval of the day.

2. Trip data: This data consists of a set of route plans {R1, · · · , Rn} where each route

is a sequence of edges Ri = [(e1, τ1), (e2, τ2), · · · , (ep, τp)] from the location of the

vehicle to its destination.

3. Network data: Each RSU maintains a list of subgraphs of the global routing graph

G = (V,E). Location data and trip data from vehicles travelling on this subgraph is

maintained at that RSU.

5.5 System Deployment

In this section we outline the procedure for deploying the system using Algorithm 4

and Algorithm 5.

5.5.1 Central Server Setup

First, Admin sends the full graph G = (V,E) and a geohash precision prec to the

Network Partitioner in Central Server. The geohash precision value determines the reso-

lution or area of the desired grids. For this we use geohash encoding [113] to encode the

geographical coordinates.
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Algorithm 4 Partition Network

1: Data: G = (V,E), g = {g1, g2, · · · , gn}, prec =geohash precision value
2: for all v ∈ V do
3: v.grid = gh.encode(v, prec); geohash encode
4: end for
5: for all ei ∈ E do
6: eu,v = edge between vertices u and v;
7: if u.grid ̸= v.grid then
8: w = intersection(eu,v, u.grid, v.grid)
9: w.grid = (u.grid, v.grid)

10: G.add(w, eu,w, eu,v)
11: G.remove(eu,v)
12: end if
13: end for

The Network Partitioner receives the graph G = (V,E) and prec from the Admin

and partitions the network into grids {g1, g2, · · · , gk} using Algorithm 4. The algorithm

proceeds by first annotating each vertex v with the grid they belong to using the geohash

encoding function gh.encode(v, prec), where prec represents the precision of the encoding.

Then for each edge eu,v it checks if both the vertices u and v are in the same grid. If they

are in different grids a boundary vertex w is found at the intersection between the two

grids through which the edge passes using the function intersection(eu,v, u.grid, v.grid).

Vertex w splits edge eu,v into edges eu,w and ew,v and the graph G is updated accordingly.

5.5.2 Deployment to RSUs

First, each RSU requests the subgraphs for a set of grids {g1, g2, · · · , gk} from the

Central Server. The Central Server receives the set of grids {g1, g2, · · · , gk} and maps

the network for each grid using Algorithm 5 and ultimately returns the set of subgraphs

{G1, G2, · · · , Gk} to the RSU.
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Algorithm 5 Grid Network Mapping

1: Data: A graph G = (V,E), g = {g1, g2, · · · , gk}
2: Result: {G1, G2, · · · , Gk}
3: Initialize GridNetworkList
4: for all gi ∈ g do
5: Initialize graph Gi

6: for all v ∈ V do
7: if v.grid == gi then
8: Gi.add(v)
9: end if

10: end for
11: for all e ∈ E do
12: if e.grid == gi then
13: Gi.add(e)
14: end if
15: end for
16: GridNetworkList.append(Gi)
17: end for
18: Return: GridNetworkList

5.6 Decentralized Routing

Our system needs to provide a shortest route from an origin location to destination. Any

RSU can receive a route query between two points, which may be within one of the RSU’s

subgraphs or require communication with neighboring RSUs.

In this section we outline prediction models for estimating both travel times throughout

the network as well as predicting which next RSU should be contacted to find the current

shortest path for that query. We then provide the full decentralized routing algorithm.

5.6.1 Training With Federated Learning

Model training occurs on the RSUs. We achieve this by leveraging recent advances in

federated learning [114] which enable the RSUs to collaboratively learn a shared prediction

model without transferring raw data from the devices to the centralized cloud.

The goal of federated learning is to learn a model with parameters embodied in a real
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matrix W ∈ Rd1×d2 , from data stored across the RSUs. Here W is a 2D matrix represent-

ing the parameters of each layer in a fully-connected feed-forward network [115]. d1 and

d2 represents the output and input dimensions respectively. The tasks proceed in rounds

and each round alternates between local and global model updates:

1. Distribute global model: Admin randomly initializes the weights W0 of the pre-

diction model and stores it in Central Server. In round t ≥ 0, the Central Server

distributes the current model Wt to a subset St of nt RSUs.

2. Local update: Each RSU then independently updates the model based its local data.

Let the updated local models be W1
t ,W

2
t , · · · ,Wnt

t , so the update of each RSU i

can be written as Hi
t := Wi

t −Wt, for i ∈ St. For this update we use stochastic

gradient descent (SGD) [116]. Each RSU then sends the update back to the Central

Server.

3. Global update: aggregation of local updates.

Ht :=
1

nt

∑
i∈St

Hi
t,Wt+1 := Wt + ηtHt.

Here ηt is learning rate. For simplicity we can choose ηt = 1.

5.6.2 Prediction Models

Our decentralized routing approach requires two prediction models described as fol-

lows.

5.6.2.1 Travel Time Predictor

A travel time predictor model estimates travel time on an edge ei in time interval τi. Let

edge ei define a directed edge from vi to vi+1, then the travel time function is defined as

T (vi, vi+1, τi) where τi refers to the departure time at vertex vi.
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Table 5.2: Input features for Travel Time and Equivalent Grid predictors.

Feature Dim Description
From location 42 Geohash encoded binary of start loc
To location 42 Geohash encoded binary indication of To co-

ordinate of an edge
Week of year 52 One-hot encoded binary indication of Week

of year used to sample travel time data
Day of week 7 One-hot encoded binary indication of Day of

week used to sample travel time data
Hour of day 24 One-hot encoded binary indication of Hour of

day used to sample travel time data
Minutes 60 One-hot encoded binary of Minutes of hour

used to sample travel time data

Table 5.3: Target features for Travel Time and Equivalent Grid predictors.

Feature Dim Description
Travel time 1 One-hot encoded binary indication of the true

travel time data collected from HERE API
Next Grid 28 Geohash encoded binary indication of a Grid

For training, we build an input feature set described in Table 5.2. The resulting feature

space has 228 dimensions. We used one-hot encoding to map the travel time τi to one-hot

encoded binary for Week of Year, Day of Week, Hour of Day and Minutes of Hour. The

output of this model is travel time as shown in Table 5.3 which is a scalar value representing

the travel time on an edge.

Geohash encoding is used to map vi and vi+1 to the From location and To location

respectively. An important aspect of the feature set is the geohash resolution. We used a

resolution of 9.5m which matches the width of most major road segments in the United

States. We found that reducing resolution to greater than 9.5m caused some vertices to

belong to the same geohash while increasing resolution added complexity to the model and

did not noticeably improve model performance. A resolution of 9.5m was represented by

42 bits.
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5.6.2.2 Equivalent Grid Routing Predictor

The search procedure can extend to multiple RSUs. As more RSU are included in the

search, it can incur huge delays from communication costs. Hence, the goal is to minimize

the number of message exchanges required during the search. Therefore the equivalent

grid routing model predicts the best neighboring grid through which the shortest path likely

resides for a particular route. By iteratively finding the next grid the optimal route will pass

through, the search space is reduced and communication is optimized. Hence we learn

an Equivalent Grid Routing Predictor Ê such that Ê(s, d, τs) gives the next best possible

grid to travel to destination d and τs is the departure time from s. For this model, we use

the same feature set as shown in Table 5.2. The output of this model is the next grid as

described in Table 5.3 which represents the next grid in the route.

5.6.3 Decentralized Route Planning Algorithm

The goal of the decentralized route planning is to distribute the query among different

RSUs. One of the problems we discussed earlier is that state of the art solutions for par-

allelizing the query fails in a time-dependent network. We mitigate this problem by using

Travel Time Predictor T̂ . To minimize communication between RSUs during the search

we use Equivalent Grid Routing Predictor Ê.

Algorithm 6 handles decentralized routing queries from vehicles as well as from other

RSUs as the query is propagated forward through the network. Algorithm 7 iteratively

builds the route as the results propagates back to the RSU from which the query started.

We first list some utility functions that are used in the algorithm and then discuss the

algorithm in detail. The utility functions are:

1. gh.encode(v, prec): Uses geohash encoding to find the grid to which the vertex be-

longs to with geohash precision prec.

2. GetRSU(gi): Finds the RSU mapping for any grid i.

89



Algorithm 6 Handle Query

1: Data: A graph G = (V,E), s ∈ V, d ∈ V , τs = departure time from vertex s, RSUo =
RSU from where the query origins, id: Unique identifier to identify this query.

2: save(id, (s, d, τs))
3: gs = gh.encode(s)
4: gd = gh.encode(d)
5: if gs ̸= gd then
6: gnext = Ê(s, d, τs)
7: RSUnext = GetRSU(gnext)
8: {v1, v2, · · · , vb} = gs.intersect(gd)
9: for all v ∈ {v1, v2, · · · , vb} do

10: t̂sv = T̂ (s, v, τs)
11: msg(“query”, RSUnext, {id, v, d, τs + t̂sv, RSUo})
12: end for
13: for all v ∈ {v1, v2, · · · , vb} do
14: Rp = SP (G, s, v, τs)
15: msg(“partial path”, RSUo, {id, s, v, τs, Rs

v})
16: end for
17: else
18: Rp = SP (G, s, d, τs)
19: msg(“partial path”, RSUo, {id, s, d, τs, Rs

d})
20: end if

3. GetRoute(G, s, d, τs): This function uses network G, Dijkstra [102] and Travel time

Predictor T̂ to find the route from source s at departure time τs to destination d with

minimum travel time.

4. msg(type, RSUi, val): An async call for communicating the type of message (type)

and actual message (val) to a RSU i. There are two types of messages:

(a) query: Upon receiving this message, Algorithm 6 is executed. The message,

represented by (val) is passed as an argument to this function.

(b) partial path: Upon receiving this message, Algorithm 7 is executed, with the

message represented by (val) as input. If the final route plan is returned as a

response, it is communicated to the client which made the routing request.
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Algorithm 7 Handle Partial Path

1: Data: A graph G = (V,E), u ∈ V, v ∈ V , τu = departure time from vertex u, R =
Route from u to v, starting at τu, id: Unique identifier to identify this query.

2: Return: Final Route plan (id, Rfinal) or NULL
3: (s, d, τs) = get(id)
4: if v == d then
5: Rfinal = GetRoute(Gid, s, d, τs)
6: Return: (id, Rfinal)
7: else
8: Gid = GetGraph(id)
9: if Gid == NULL then

10: Initialize Graph Gid

11: end if
12: for all (ei, τi) ∈ R do
13: Gid.add(ei)
14: Gid[ei] = (τi, τi+1 − τi)
15: end for
16: SaveGraph(id, Gid)
17: Return: NULL
18: end if

5.6.4 Decentralized Route Planning Example

To demonstrate execution, Figure 5.2 shows an example where a network is partitioned

into 4 RSUs. Figure 5.3 shows a sequence diagram for this example.

In this example, RSU1 receives a route query (id, s, d, τs) from a client and calls Algo-

rithm 6 to find the route. Since the source s and destination d do not belong to the same

grid, Equivalent Grid Predictor is called to find the next best possible grid to reach desti-

nation d. Then the algorithm finds the nodes at the intersection of the current grid and the

next best possible grid. After getting all the boundary vertices, for each boundary vertex,

Travel Time Predictor estimates the time it will take to reach that vertex. An asynchronous

message (“query”, id, v12, d, τ̂v12 , RSU1) is sent to RSU2.

After sending the message, RSU1 proceeds to find the actual route from s to boundary

vertex v12. After getting the route, denoted by Rs
12, a message (“partialpath”, id, s, v12, τs, Rs

12)

is prepared and sent to the requesting RSU informing the starting RSU that the operation
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Figure 5.2: Decentralized Route Planning example

resulted in a partial path, i.e. the destination is not located in that RSU .

This message is meant to be sent to the RSU to which the client sent the request. Since

it’s RSU1, which is itself, a function call is made to handle this message where the function

arguments are the same as the message. This function implements Algorithm 7 which

handles the partial routes or paths. We call it partial route because this is still not the final

route that needs to be given to the client.

The goal of Algorithm 7 is to create a new graph with the id of the request or if it already

exists, add all partial routes to the graph and finally, do a simple shortest path routing on it.

At this step, RSU1 waits for partial routes from the other RSUs for this request, identi-

fied by its id, and executes Algorithm 7 if it receives a message with the partial route in it.

This process continues until RSU1 gets a partial route which has the destination in it. When

a partial route contains the destination vertex Algorithm 7 executes GetRoute(Gid, s, d, τs)

to obtain the final route.
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Figure 5.3: Sequence Diagram of Decentralized Route Planning example

5.6.5 Decentralized Route Planning Properties

As discussed in Section 5.3, A∗ is a classic algorithm for informed search, which relies

on a heuristic function to guide the search procedure. In this context, our approach for route

planning is an informed search procedure where Equivalent Grid Routing Predictor acts as

a heuristic function.

It is well established that if a graph G is finite and edge weights are non-negative, then

A∗ is guaranteed to terminate and is complete, i.e. it will always find a route from source

to destination if one exists. Our approach is similar to A∗, but it cannot give guarantees on

its termination and hence may not be complete. This is due to our use of learned models in

the Equivalent Grid Routing Predictor. Therefore as with all machine learning models, the
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accuracy of our approach is tied to the accuracy of the learned models.

5.7 Experiments and Results

In this section, we evaluate our decentralized architecture for route planning with a case

study from a mid-size U.S. city.

5.7.1 Experiment Setup

1. RSUs: Cluster of 5 RSUs simulated by Docker [117] containers. RSUs are static as

their location does not change with time.

2. Global Network Graph: We use OpenStreetMap to generate the underlying routing

graph G = (V,E). For the region in this study there are a total of 233, 123 nodes and

474, 213 edges.

3. Graph Partitioning: We used a geohash precision value of 28 bits, which results in a

grid area of 1.44km2. A total of 1034 grids are generated as a result of the partition.

These grids are assigned to the 5 RSUs as shown in Figure 5.4.

4. Location data: To simulate vehicle locations in the region, we use historical traffic

data collected at an interval of 1 minute from the HERE API [38] for the region.

Traffic data from January 1 to January 31, 2018 was used for training and data from

Feb 1 to Feb 7, 2018 was used for testing.

5. Trip data: To simulate routing queries from vehicles, we synthetically generate

1,000,000 source and destination pairs which are chosen randomly within the re-

gion. For the source-destination pairs, departure times were chosen uniformly from

9am-5pm.
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Figure 5.4: Partition of city into grids of area 1.44km2 and placement of grids in RSUs.
Grids are represented by the 1034 square grids while the RSU regions are represented by
bolded black lines.

5.7.2 Evaluation of Prediction Models

5.7.2.1 Travel Time Predictor - Training Evaluation

For the travel time predictor we used a deep feed-forward neural network (DNN) [118]

for regression to estimate travel time of an edge. We used SGD [116] as the optimizer and

a hidden layer configuration of [200, 190, 170, 150, 100, 50, 20, 10]. Early stopping criteria

was implemented to avoid over-fitting. Fig. 5.5 shows the change in validation Mean Ab-

solute Error (MAE) during the training. We found that the Federated learning model took

longer to train than the Central learning model.

Table 5.4 evaluates the resource consumption of the model during training for Feder-

ated learning and Central learning. As the Central learning model was trained on a single

large server, we divided the resource consumption of the Central model by the number of

fog nodes for a direct comparison with the Federated training model. Results show that

Federated learning used less CPU per node as well as 3.4 - 3.7 times less memory per node
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Figure 5.5: MAE vs Epoch curve during training of Travel time predictor

Table 5.4: Resource consumption for Travel time predictor.

CPU (%/RSU) Memory (MB/RSU) # Messages

Central Learning 78% (median)
97% (max)

191 (median)
307 (max) N/A

Federated Learn-
ing

67% (median)
84% (max)

51 (median)
88 (max) 6255

than Central learning. Lastly, federated learning sent 6255 messages while training.

5.7.2.2 Equivalent Grid Routing Predictor - Training Evaluation

We use a deep feed-forward neural network (DNN) [118] for a binary classification that

gives the next best possible grid for a given pair of source, destination along with the time

interval. For binary classification, we used a sigmoid function [119] for the output layer

and an Adam optimizer was used as the optimizer for the model. The configuration for

hidden layers was [250, 200, 170, 100, 50, 20, 10]. Fig. 5.6 shows the loss vs epoch curve

during the training phase for this predictor. Federated learning took more time to train than

Central learning. The loss for a model trained with Central learning was 0.32 which is less

than the model trained from Federated learning which was 0.37.

Table 5.5 evaluates the resource consumption of the Federated learning and Central

learning models during training. We find that Federated learning used less CPU than Cen-

tral learning per node on average. Additionally, Federated learning used 3.3 - 3.6 times
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Table 5.5: Resource consumption for Equivalent Grid Routing predictor.

CPU (%/RSU) Memory (MB/RSU) # Messages

Central Learning 81% (median)
93% (max)

217 (median)
336 (max) N/A

Federated Learn-
ing

74% (median)
97% (max)

64 (median)
91 (max) 9543

Figure 5.6: Loss vs Epoch curve during training of Equivalent Grid Routing predictor

less memory per node than Central learning. Federated learning sent 9543 messages while

training.

5.7.3 Evaluation of Decentralized Route Planner

During testing we monitored CPU and memory consumption per node compared to

current state of the art solutions. The resource requirements of each method is presented in

Table 5.6. To evaluate performance of our approach we measured the query response time

per request as well as the accuracy of the returned routes compared to the optimal route.

5.7.3.1 Resource Consumption

We find that our approach uses more CPU than Single server Dijkstra or Parallel Di-

jkstra because in our approach shortest paths are calculated between boundary nodes in

parallel when the request is received. In terms of memory, we find that our approach uses

less memory per node than Single server Dijkstra and slightly more memory than Parallel
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Table 5.6: Evaluation of routing algorithms.

Algorithm CPU per RSU (%
used)

Memory per RSU
(MB)

Query time per trip re-
quest (s)

Single server Dijkstra 23% (median)
31% (max) 5.78 0.97 (median)

Parallel Dijkstra 27% (median)
36% (max)

0.76 (median)
1.14 (max)

9.2 (median)
19.13 (max)

Contraction Hierarchies 18% (median)
23% (max) 13.36 0.016 (median)

Parallel Contraction Hierar-
chies

13% (median)
21% (max)

3.31 (median)
5.79 (max)

5.78 (median)
10.21 (max)

Our approach 52% (median)
67% (max)

0.94 (median)
1.31 (max)

2.43 (median)
5.81 (max)

Dijkstra. We find that Contraction Hierarchies and Parallel Contraction Hierarchies use the

most memory due to caching shortcut edges.

5.7.3.2 Query Response Time

Single server Dijkstra and Contraction Hierarchies result in the lowest query response

times as expected since this simulation was done on one machine. It is expected that in pro-

duction cloud environments the latency between vehicles and the cloud would factor into

this result. Parallel algorithms such as parallel Dijkstra and parallel Contraction hierarchies

have higher query times than our approach since their search proceeds sequentially.

5.7.3.3 Accuracy

We found that our approach returned no route for 0.8% of the queries and a sub-optimal

route (i.e. longer than the shortest route) for 7.6% of the queries. Therefore we found that

91.6% of routes from our model were the shortest route. As our approach is reliant on

trained models, it is expected that our model improves as more data is available for training.

5.8 Conclusion and Future work

In this work we provided a decentralized route planning approach and deployment

model for fog networks. Our approach uses prediction models to limit communication

between fog nodes and thus improve latency and memory demands over current parallel
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approaches to route planning. The core of our architecture relies on data-driven models

that estimates travel times and guides the search procedure during query time.

Additionally, to limit communication during training we used recent advances in fed-

erated learning to train the models. Through this approach all training occurs on the RSUs

and only model weights are shared between nodes. Therefore costly transfer of raw traf-

fic data is avoided, reducing bandwidth stress during training. This work was evaluated

through a simulation using real traffic data for a mid-sized U.S. city.

Potential extensions of this work include investigating ways to improve travel time and

grid prediction models to mitigate the impact of errors on user trips, as well as expanding

the architecture to handle node failures. Additionally, our approach can be extended to

allow multiple modes of transportation.
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Chapter 6

A Decentralized Approach for Real Time Anomaly Detection in Transportation Networks

6.1 Overview

While decentralized deployment models have great potential for real-time transporta-

tion applications, a key challenge is ensuring the integrity of the sensor readings on which

these algorithms rely. A particular concern is orchestrated data-integrity attacks in which

an adversary attempts to compromise a subset of sensors with the goal of maximizing the

effect of the attack on the global transportation system. Transportation systems are par-

ticularly vulnerable to data-integrity attacks since well orchestrated in a specific area can

have cascading effects throughout the transportation network. Decentralized deployments

can improve reliability by removing the single point of failure associated with centralized

models. However, decentralized deployments also increase the risk by potentially exposing

computation methods and functionality on numerous nodes throughout the edge network.

In Chapter 5 we introduced the concept of a roadside-unit (RSU) network and pro-

posed a decentralized routing algorithm within this framework. In this Chapter we propose

a multi-tiered anomaly detection framework which utilizes spare processing capabilities of

the distributed RSU network in combination with the cloud for fast, real-time detection.

Additionally, we focus on implementation of our framework in smart-city transportation

systems by providing a constrained clustering algorithm for RSU placement throughout the

network. Extensive experimental validation using traffic data from Nashville, TN demon-

strates that the proposed methods significantly reduce computation requirements while

maintaining similar performance to current state of the art anomaly detection methods.

The work comprising this chapter has been published in the 2019 Proceedings of the

IEEE International Conference on Smart Computing (SMARTCOMP) [18]:
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• Michael Wilbur, Abhishek Dubey, Bruno Leão, and Shameek Bhattacharjee. A de-

centralized approach for real time anomaly detection in transportation networks. In

2019 IEEE International Conference on Smart Computing (SMARTCOMP), pages

274–282. IEEE, 2019

6.2 Introduction

Emerging trends and challenges: Internet of Things (IoT), edge/fog computing, and

the cloud are fueling rapid development in smart connected cities. Given the increasing

rate of urbanization, the advancement of these technologies is a critical component of mit-

igating demand on already constrained transportation resources. Recent research on smart

transportation systems has focused on optimal route planning for congestion reduction,

which has shown huge potential impact on maximizing existing transportation resources

[120]. The costs of optimizing route planning are relatively low compared to large scale in-

frastructure upgrades, making this an attractive option for city planners and transportation

experts.

Approaches to optimal route planning are typically data-driven [121], [122], [123]. The

scale and real-time nature of these systems require shared computing architectures to han-

dle the high velocity and volume of data originating from small sensors placed throughout

the network. One solution is edge/fog computing. In this case, services are moved to

road-side units (RSUs), which are low-powered edge devices [95] situated between the

sensor level and the cloud. Each RSU hosts various computation services for a collection

of sensors, and communicates with the cloud. Implementing a network of RSUs moves

computation to the edge of the network, creating a decentralized data processing system.

Data-driven approaches are susceptible to data integrity attacks. The dynamic nature of

real-time routing systems means that the effects of such an attack have immediate impact

and substantial cascading consequences [124]. Additionally, the distributed and shared na-

ture of the underlying architecture provides multiple points of entry, making data integrity
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attacks even more likely. Given the potential human and economic impacts of such an

attack, the trustworthiness of data in smart transportation networks is of critical impor-

tance. While there is substantial research regarding anomaly detection in transportation

networks [125], these approaches are often computationally costly and do not adapt well to

the real-time nature of distributed smart transportation data networks. Despite the critical

importance of data integrity in such systems, research in this area remains underdeveloped.

Current state of the art statistical detection methods typically rely on measures of cen-

tral tendency such as median and mean or their variants. While this approach works for

deductive attacks and additive attacks, in which sensor readings are decreased or increased

respectively, it fails for camouflage attacks in which sensor readings are increased at some

sensors and decreased at other sensors. Camouflage attacks are of particular importance

when working with data-integrity attacks in transportation networks, as such an attack

would aim to divert traffic and resources to specific regions or roads and thus, maximize

the effects of an attack.

Therefore we aim to improve data integrity in decentralized smart transportation sys-

tems by proposing a novel real-time anomaly detection algorithm for deductive and cam-

ouflage data integrity attacks. Our approach maintains similar accuracy to traditional meth-

ods, while addressing two critical components of scaling anomaly detection to decentral-

ized systems. First, it reduces the computational costs associated with computationally

expensive traditional anomaly detection by avoiding continuous computation on all sen-

sors in real time. This is accomplished by continuously monitoring anomalies at the RSU

level using a statistical means approach for aggregate anomaly detection and reserving the

more computationally costly sensor level detection for cases in which anomalies are found

at the RSU level. Second, our approach is designed so that the anomaly detection pro-

cess itself is distributed, mirroring the natural architecture of modern decentralized smart

networks and allowing seamless integration with such systems.

We also provide a constrained hierarchical clustering algorithm for RSU placement in
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an existing transportation system fitted with traffic sensors. As shown later, this approach

improves zone level detection while also maximizing spare processing capacity at the RSU

level.

Contributions: This paper presents a decentralized anomaly detection approach and

architecture for distributed smart transportation systems. Our focus is on orchestrated data-

integrity attacks, in which an organized attacker falsifies data in a systematic attack process.

This paper’s main contributions are as follows:

• Anomaly detection is framed as a decentralized computational system allowing for

real-time processing and scalability.

• An algorithm is provided for RSU placement which maximizes processing capacity

of the RSU network and optimizes central tendency anomaly detection methods.

• We present a novel real time anomaly detection algorithm which reduces the compu-

tational costs associated with traditional anomaly detection methods while maintain-

ing similar accuracy.

Outline: We start by defining the problem and model assumptions in Section 6.3. Re-

lated work is covered in 6.4. The System Model is covered in Section 6.5, while the Sensing

Architecture is covered in Section 6.6. RSU placement is outlined in Section 6.7 and the

anomaly detection framework is proposed in Section 6.8. Finally, simulations and results

are provided in Section 6.9.

6.3 Problem Statement

Our primary concern is orchestrated data integrity attacks in smart, decentralized trans-

portation systems.

6.3.1 Problem Overview

The goals of our system are the following:
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• Real-time identification of orchestrated data-integrity attacks.

• Decentralized implementation. The system should integrate easily with modern smart-

city infrastructure and be optimized for common hardware limitations in such sys-

tems.

• Deductive and Camouflage Attacks - extend traditional statistical means anomaly

detection to camouflage attacks in which mean and median are unchanged.

• Reduce computation requirements compared to traditional anomaly detection meth-

ods.

6.3.2 Assumptions

To achieve the above goals, we make the following assumptions.

1) Sensor Model: We assume that the city has sensors capable of transmitting traffic

speed data wirelessly to an RSU. In our investigation, speed data is collected by the sensor

and sent to its associated RSU.

2) Road-side Units: RSUs are low-powered fog nodes [95] placed throughout the trans-

portation network which are capable of collecting and transmitting data from a collection

of sensors to a centrally located cloud-based routing system.

3) Centralized Cloud: A centralized cloud network is available to provide additional

processing capabilities for sensor level anomaly detection.

4) Attack Model: The attacker is capable of compromising a subset of sensors or RSUs

by manipulating their outputs. These attacks occur at the sensor level. As the focus of this

paper is orchestrated data-integrity attacks, sensor or RSU faults from physical failures is

outside the scope of this paper.
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Figure 6.1: System Architecture

6.3.3 Our Approach

The architecture for our system is detailed in Figure 6.1, and consists of three funda-

mental components: the Sensor level, RSU level and Cloud. Our anomaly detection frame-

work thus consists of two components, zone level detection and sensor level detection.

Zone level detection is run at the RSU level, while the more computationally expensive

sensor level detection runs at the cloud. Framing detection in this way maximizes exist-

ing hardware resources while reducing computation requirements compared to traditional

detection approaches.

A major focus of this paper is on the integration and implementation of the anomaly de-

tection framework in decentralized smart transportation networks. As RSUs are fog nodes,

a fundamental question is how to deploy these devices throughout the network. We iden-

tify three critical considerations to answering this question. First, RSUs should be located

as close to possible to the sensors streaming to it in order to minimize network latency.
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Second, as RSUs are low-powered devices, the maximum number of sensors mapped to a

single RSU is to be constrained. Lastly, we look to group sensors together as to maximize

the efficiency of our anomaly detection approach.

6.4 Related Work

Smart city research has advanced rapidly in recent years. A large focus of this research

has focused on implementation of sensor systems for transportation, communication and

infrastructure monitoring [126], [127], [128], [129], [130]. In general, anomaly detection is

focused on finding deviations in single (point) or sequence (collective) values from normal

expected behavior. Traditional anomaly detection is based on classification, statistical, state

based, clustering or information theory [125]. Classification methods are usually based on

Support Vector Machines (SVM), Bayesian Models, Gaussian Processes or Neural Net-

works [131]. These methods require large scale, detailed and accurate models of system

behavior. Additionally, supervised classification models require careful consideration re-

garding user data privacy. This is of particular concern when dealing with transportation

systems and the specific movement of users over time. State based methods use Kalman

Filtering [132] to estimate normal behavior. These methods require making realistic as-

sumptions on data distributions, a challenging task. Additionally hardware considerations

must be accounted for [133].

Our primary concerns regarding the anomaly detection problem are accuracy, compu-

tational requirements and easy distribution over a decentralized network. For this reason,

our zone level detection uses a statistical approach. Related statistical approaches include

auto-regressive, exponential or cumulative weighted moving averages (ARMA, EWMA,

CWMA) and Cumulative Sum Control Chart (CUSUM) of data as metrics under normal

operating behavior. These approaches are light weight, and do not necessarily require

anomalous data. Our work presents a hybrid approach which uses a statistical mean ratio

that has proven effective in detecting data-integrity attacks in power grid networks [134]
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and Gaussian Processes for sensor level detection [135].

Hierarchical anomaly detection has shown to be useful in monitoring large scale dis-

tributed web architectures [136]. The advantage of hierarchical anomaly detection is that

the detection computation can be balanced between low-powered edge devices and central

computation clusters. One approach is to keep a central model of expected data behavior

to compare with current data [137]. In this case, when anomalous patterns are found in the

system the second, more computationally expensive, procedure of identifying anomalous

nodes within the subsystem is performed [138], [139].

RSU placement has been studied in relation to maximizing connectivity for smart cities

using intersection-priority [140], minimizing event reporting times along highways [141]

and maximizing information flow in urban areas [142]. Approaching RSU placement

through the context of anomaly detection efficiency is a new topic.

6.5 System Model

6.5.1 Data Overview

To simulate the framework provided in Figure 6.1, historical data is collected from the

HERE API [38] for use as real-time sensor data for Nashville, TN. Two months of data

was extracted from February 12, 2018 to April 12, 2018 for use as historical training and

reference data. Additionally, two weeks of data from April 16, 2018 to April 27, 2018 was

extracted for testing and simulation. Only weekdays (Monday-Friday) are considered.

The HERE data is composed of time stamped speed recordings, identified by its Traffic

Message Channel identification (TMC ID), [143]. Each TMC represents a segment of road

in which the speed was recorded. In our framework each TMC ID acts as a sensor which

provides speeds for optimal routing. There are 9,979 TMCs, and therefore sensors, in our

data set.
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6.5.2 Data Integrity Attack Overview

Traditional anomaly detection in transportation systems focus on detecting faulty sen-

sors [131] [135], whether from hardware failure or software issues in the collection of

data. In this model, anomaly detection is run in the cloud for each sensor in isolation.

Data-integrity attacks on the other hand are orchestrated from a collection of sensors si-

multaneously to maximize the effect of the attack on the global transportation system.

The shared nature of computing resources in smart connected cities provide multiple

entry points for attackers, making attacks likely events. Additionally, the dynamic real-time

nature of such systems means that well designed attacks will have substantial cascading

effects throughout the system. In this sense, focused localized attacks on a collection of

sensors will propagate throughout the network quickly.

While traditional anomaly detection operate at the sensor level, the identification of

orchestrated attacks requires aggregate detection across groups of sensors. In this context,

organized data integrity attacks spanning multiple sensors within a selected region can have

cascading effects throughout the transportation system.

Our focus is primarily on two types of data integrity attacks. In the first type of attack a

selected percentage of sensors have their speed values reduced and is referred to as a deduc-

tive attack. These attacks aim to diverge traffic away from attacked sensors by convincing

the routing system that certain roads have more congestion than in reality.

The second type of attack is camouflage attacks, in which an organized attacker bal-

ances additive and deductive attacks to evade detection and exert certain behaviors on the

system. Camouflage attacks are of particular concern in transportation routing systems as

an attacker can deviate network behavior at a fine granular level to maximize impact of the

attack. One scenario would be an attack aimed at gathering vehicles along a specific road

segment or crowding drivers in a highly dense area. Identifying attacks of this nature is of

critical importance to first responders and the defense industry, yet as this approach would

leave mean and median unchanged, camouflage attacks evade traditional central tendency
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approaches.

6.5.3 Simulated Deductive and Camouflage Attacks

To simulate deductive attacks and camouflage attacks, we use the historical standard

deviation of a sensor’s speed, represented by σs, as a basis for altering speed value d at

attacked sensor s. Therefore das represents the speed value at sensor s when attacked while

ds is the actual speed recorded at sensor s when not attacked. The severity of the attack

is governed by δ. Equation 6.1 represents the process for altering speeds from a deductive

attack at a single sensor while Equation 6.2 represents the process for altering speeds from

an additive attack at a single sensor.

das = ds − δ ∗ σs (6.1)

das = ds + δ ∗ σs (6.2)

Each RSU r is responsible for a subset of sensors Sr ⊂ S where Sr is the subset of

sensors at RSU r and S represents all the sensors in the network. Therefore, if we look

to simulate a deductive attack at RSU r during time window k affecting p percentage of

sensors, then p percentage of sensors are randomly selected for the attack.

Conversely, to simulate a camouflage attack during time window k, then p percentage

of sensors at that RSU are selected for attack and each of the attacked sensors is randomly

assigned to have its speed readings altered by a deductive attack from Equation 6.1 or an

additive attack from Equation 6.2.
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6.6 Sensing Architecture

In this section, we present a decentralized system architecture for efficient sensing over

a large city in real time. The system is comprised of three central components as shown in

Figure 6.1.

6.6.1 Road Sensor System - Sensor Level

Traffic information is maintained by sensors distributed throughout the network edges.

The sensor units are responsible for capturing current speed values at each road. Together,

the sensor network provides real-time monitoring of the transportation network. In the

context of our data, each TMC ID [143] represents a sensor streaming real-time vehicle

speed information.

6.6.2 Roadside Unit System - RSU Level

Roadside Units (RSUs) are small, low powered devices with wireless capabilities [95].

RSUs have two main responsibilities. First, the RSU level is responsible for communicat-

ing data from the sensors to the central cloud. Second, spare processing capacity is used

for zone level anomaly detection described in Section 6.8.1. A depiction of the interaction

between the sensor level and RSU level is shown in Figure 6.2.

6.6.3 Utility System and Cloud Service

The cloud service is a broad term incorporating the utility system, routing services and

long term data storage. For this work we are primarily concerned with the utility system,

which is a collection of high powered computation nodes residing in the cloud. The role of

the utility system is providing processing for sensor level detection.
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Figure 6.2: Data Collection Framework - RSU-Sensor Interaction

6.7 RSU Deployment - Clustering Procedure

The way in which RSU devices are deployed affects resource utilization and network

efficiency. Therefore in this section we provide a constrained hierarchical clustering algo-

rithm for RSU deployment.

As each RSU is responsible for a subset of sensors, ultimately the goal of the algorithm

is to match each sensor si with an RSU. Through a mapping process, each RSU r will be

responsible for the data collected from a subset of sensors Sr ⊂ S where Sr is a collection

of sensors mapped to RSU r.

Since zone level detection outlined in Section 6.8.1 is optimized when sensors with

similar traffic patterns are grouped together (see Section 6.9.3), feature sets are generated

for each cluster using training speed data from the HERE API. For cluster c consisting

of sensors Sc, the speed data from these sensors is broken into 30 minute time windows

from 7:00AM to 9:00PM, resulting in 28 features total. By taking the mean speed at each

time window k, the feature set for cluster c is represented by F c = {f c(k1), ..., f
c(k28)}.

Clusters are grouped together by similarity. We therefore use euclidean distance to measure
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Algorithm 8 RSU Clustering
1: Input: m, η
2: Initialize: C ← S
3: while len(C) > m do
4: lmin =∞
5: for i ∈ {0, . . . , len(C)} do
6: cj ← nearest(ci, C)
7: if (len(Sci)+len(Scj )) ≤ η then
8: l(i,j) ← euclideanDist(F ci , F cj)
9: if l(i,j) < lmin then

10: lmin ← l(i,j), cv ← ci, cw ← cj
11: end if
12: end if
13: end for
14: cnew ← merge(cv, cw)
15: add cnew to C
16: remove cv and cw from C
17: end while

the similarity between two clusters.

The clustering procedure is detailed in Algorithm 8. Algorithm 8 relies on three helper

functions:

• nearest(ci, C): returns the cluster whose centroid is geo-spatially closest to the cen-

troid of cluster ci, according to haversine distance.

• euclideanDist(F ci , F cj): returns the euclidean distance between the feature sets of

clusters ci and cj .

• merge(cv, cw): returns a new cluster. The feature set of the new cluster is recalcu-

lated using the combined set of sensors in the new cluster.

Line one specifies the input parameters where m is the target number of clusters and η

is the maximum number of sensors in a cluster. In the initialization step, C represents the

set of all clusters. C is initially set such that each cluster consists of a single sensor.

The clustering procedure starts at line (3) and continues until the number of clusters

equals m. As we loop through each cluster ci, the geographically nearest cluster cj is
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Figure 6.3: Cluster RSU - full layout and downtown Nashville. The clustering approach
results in multiple RSUs in the highly travelled downtown area, allowing for resources to
be deployed according to demands of the sensor network.

Figure 6.4: Grid RSU - full layout and downtown Nashville. The grid layout results in only
one RSU in the highly travelled downtown area.

identified. If the η constraint is satisfied and the euclidean distance between Fi and Fj is

less than lmin then we reassign lmin to l(i,j) and update cv and cw accordingly. After each

cluster is iterated through, (cv, cw) are merged into a single cluster cnew which is added to

C and cv, cw are subsequently removed.

The visual representation of the cluster RSU network is provided in Figure 6.3. For

comparison, a grid RSU layout where the geo-spatial boundary of the sensor network is

divided into a square grid with an RSU located at the center of each grid was generated as

shown in Figure 6.4.
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Figure 6.5: Grid RSU layout histogram - sensors per RSU distribution. This layout places
high stress on a small number of RSUs while under-utilizing the full processing capabilities
of the network.
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Figure 6.6: Cluster RSU layout histogram - sensors per RSU distribution. Number of
sensors in an RSU does not exceed η = 50. Constraining the number of sensors at an RSU
places an upper bound on processing demand and ensures processing requirements do not
exceed the capacity of RSU hardware.

Comparing the two layouts, the cluster RSU layout does a better job concentrating

RSUs in areas where there are a high number of sensors. Additionally, by only merging

spatially adjacent clusters, the subset of sensors at each RSU maintains a connected sub-

graph of road edges.

The effect of η is illustrated by the sensor distributions in Figures 6.5 and 6.6. By

limiting the maximum number of sensors in each RSU, the processing and networking

demands placed on each RSU can be controlled. Conversely, the grid layout includes two

RSUs that taken together, are responsible for approximately 30% of all the sensors in the

network. This imbalance in sensor distribution creates high stress on a few RSUs while

114



under-utilizing the resources at the remaining RSUs.

6.8 Anomaly Detection

This section describes our novel two-tiered anomaly detection approach in which zone

level detection is continuously run at the RSU network and sensor level detection is used

to identify sensors compromised by data integrity attacks. Sensor level detection is only

performed on a set of sensors when an attack is first identified at the zone level.

6.8.1 Zone Level Detection

The zone level detection provides a mechanism for identifying data integrity attacks at

the RSU level. Zone level detection is processed at the RSUs.

Each sensor continuously transmits time-stamped speed data to its RSU. Since each

RSU r is responsible for a subset of sensors, the RSU collects the data from its set of

sensors in the last time window k. At each time window k, the harmonic mean HM r(k)

and arithmetic mean AM r(k) are calculated per Equations 6.3 and 6.4 respectively. The

statistical metric used for anomaly detection is the ratio of HM r(k) to AM r(k), as shown

in Equation 6.5.

HM r(k) =
S∑S

s=1

1

ds

(6.3)

AM r(k) =

∑S
s=1 ds
S

(6.4)

Qr(k) =
HM r(k)

AM r(k)
(6.5)

While traditional central tendency detection methods based on arithmetic mean or me-

dian are effective in detecting additive or deductive attacks, camouflage attacks go unde-
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Figure 6.7: Qr(k) under deductive and camouflage attacks at a single RSU. Time Window
(k) set to 30 minute intervals, δ=2.5 and p=35%.

tected since arithmetic mean and median remain the same. As shown in Figure 6.7, where

speed readings for 35% of sensors at a selected RSU were subjected to a δ attack of 2.5, Qr

responds to camouflage attacks as well as deductive attacks.

For detection, Qr(k) is compared to the historical average and standard deviation of

Qr(k) at time window k as shown in Equations 6.6 and 6.7. ϵr is a threshold that is unique

to each RSU. An investigation for determining ϵr is provided in Section 6.9.1

Qr(k) < Qr
ave(k)− ϵr ∗Qr

std(k) (6.6)

Qr(k) > Qr
ave(k) + ϵr ∗Qr

std(k) (6.7)

6.8.2 Sensor Level Anomaly Detection

For many smart transportation applications, such as optimal routing systems, we must

identify which sensors are attacked to mitigate the effects of data integrity attacks in real

time. Therefore sensor level detection is required.

For sensor level detection we use Gaussian Processes to get the expected speed and

standard deviation at a given sensor using the 15 sensors closest to that sensor. This ap-

proach assumes a high correlation between speed readings at nearby sensors [135]. We use
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Figure 6.8: Epsilon true positive rate (TPR) vs false positive rate (FPR) for a single RSU,
deductive and camouflage attacks. These curves were generated for each RSU and the
value of ϵr was selected such that FPR was 20%. Attack parameters: δ = 2.5, p = 35%

CUSUM for detection, however as sensor level detection is not continuous in our two-tiered

anomaly detection approach the process is restricted to two windows.

As a kernel function, the commonly used RBF (squared exponential) kernel is used. A

study of detection accuracy and computation time between continuous sensor level detec-

tion compared to two-tiered anomaly detection is provided in Section 6.9.

6.9 Simulations and Results

6.9.1 Parameter Tuning For Zone Level Detection

The effectiveness of zone level detection is highly dependent on ϵ. For each RSU we

simulated 100 deductive and 100 camouflage attacks with δ held constant at 2.5 in which

35% of the sensors at an RSU are attacked. For each attack, a random time window in the

testing set between 7:00AM and 9:00PM was attacked and zone detection was performed.

To obtain false positive and true negative results, zone detection was also run at the same

time window without the presence of a data integrity attack. The process was repeated for

ϵr values ranging from 0 to 10 and recall (TPR) and false positive rate (FPR) were recorded

at each simulation step.

The cost of false positives at the zone level in two-tiered anomaly detection is only in
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terms of the increased computation time required to run sensor level detection. Since the

cost of false positives is low, the value of ϵr is set such that the number of false positives

is approximately 20% at each RSU. Therefore while the exact value of ϵr is unique at each

RSU, we can expect the resulting false positive rate to be roughly 20%.

Figure 6.8 provides a graphical representation of this process for an example RSU,

where recall was 99% and 94% for deductive and camouflage attacks respectively when

FPR was 20%. As discussed in the following section, recall at the zone level remains

relatively consistent across the RSU network following this procedure.

6.9.2 Zone Level Detection - Investigation of Attack Methods

Here we investigate the bounds for which our zone level detection is viable. There are

two primary considerations in quantifying the severity of a data integrity attack. First, the

severity of the attack on each affected sensor is represented by δ (see Equations 6.1 and

6.2). Second, the percentage of sensors affected by the attack (p) represents the breadth of

an attack at each RSU.

Two simulations are configured. First, p was held constant at 35% and δ was varied

from 0 to 3.5. For each δ value, 100 deductive attacks and 100 camouflage attacks were

again simulated at each RSU in the network. However for this simulation, true and false

positives and negatives at each RSU were aggregated together at each value of δ, resulting

in a single recall value for the entire network at every δ. The results of this simulation are

provided in Figure 6.9, and show that for both deductive and camouflage simulations the

recall is greater than 90% when δ is greater than 2.25.

For the second simulation the same procedure was followed except this time δ was held

constant at 2.5, while p was varied from 0% to 60%. As shown in Figure 6.10, zone level

detection retains 90% accuracy for attacks affecting as low as 25% of the sensors at an

RSU.
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Figure 6.9: Recall (TPR) aggregated across all RSUs with five or more sensors vs magni-
tude of attack (δ). ϵr used for detection and the percentage of sensors attacked p is held
constant at 35%. Recall for the network is greater than 90% when δ is greater than 2.25 for
both deductive and camouflage attacks.
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Figure 6.10: Recall (TPR) aggregated across all RSUs with five or more sensors vs per-
centage of sensors attacked at each RSU (p). Full network simulation - each unique ϵr used
for detection and δ is held constant at 2. Recall for the network is greater than 90% for
attacks affecting 25% or more sensors for both deductive and camouflage attacks.

6.9.3 Zone Level Detection Comparison - Grid vs Cluster RSU Deployment

In Section 6.7 we discussed the advantages of constrained hierarchical clustering for

RSU placement in terms of maximizing hardware resources. Here we investigate the ben-

efits of this approach in terms of anomaly detection.

The same zone level attack simulation as detailed in Section 6.9.1 was applied to the

cluster RSU and grid RSU networks respectively, with δ = 2.5 and p = 35%. For detection,

ϵr, generated from Section 6.9.1, is used. To find ϵr for each RSU in the grid network, the

process in Section 6.9.1 was repeated for the grid network. Recall statistics for each RSU
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Figure 6.11: Zone level recall of (a) grid RSU layout - deductive attack simulation, (b)
Cluster RSU layout - deductive attack simulation, (c) grid RSU layout - camouflage at-
tack simulation, (d) cluster RSU layout - camouflage attack simulation. Each data point
represents recall at a single RSU in the network. Only RSUs with more than 5 sensors
considered. Attack parameters: δ = 2.5, p = 35%
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Figure 6.12: Zone level precision of (a) grid RSU layout - deductive attack simulation,
(b) Cluster RSU layout - deductive attack simulation, (c) grid RSU layout - camouflage
attack simulation, (d) cluster RSU layout - camouflage attack simulation. Each data point
represents precision at a single RSU in the network. Only RSUs with more than 5 sensors
considered. Attack parameters: δ = 2.5, p = 35%

is provided in Figure 6.11 while precision is shown in Figure 6.12.

Both networks are capable of running zone level detection, as average recall was over

90% for both RSU configurations. This implies that our zone level detection algorithm is

an adequate solution regardless of RSU layout. However, recall is higher for the cluster

RSU configuration showing that clustering groups of sensors by traffic pattern similarity

has a positive effect on zone level anomaly detection.
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Figure 6.13: Sensor level recall of (a) sensor only (GP) - deductive attack simulation,
(b) two-tiered detection - deductive attack simulation, (c) sensor only (GP) - camouflage
attack simulation, (d) two-tiered detection - camouflage attack simulation. Each data point
represents aggregate recall of sensor level detection at a single RSU in the network. Only
RSUs with more than 5 sensors considered. Attack parameters: δ = 2.5, p = 35%
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Figure 6.14: Sensor level precision of (a) sensor only (GP) - deductive attack simulation,
(b) two-tiered detection - deductive attack simulation, (c) sensor only (GP) - camouflage
attack simulation, (d) two-tiered detection - camouflage attack simulation. Each data point
represents aggregate precision of sensor level detection at a single RSU in the network.
Only RSUs with more than 5 sensors considered. Attack parameters: δ = 2.5, p = 35%

6.9.4 Two-Tiered Anomaly Detection vs Sensor Only Detection

In Section 6.8 two-tiered anomaly detection was outlined. We now move on from zone

level detection and investigate two-tiered anomaly detection compared to continuous sensor

only detection with Gaussian Processes. The simulation procedure remains the same as

outlined in Section 6.9.3, however now we find true positives, true negatives, false positives

and false negatives at the sensor level.

Recall and precision are provided in Figures 6.13 and 6.14 respectively. Note that
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Figure 6.15: Computation time (seconds) of (a) sensor level detection (GPs), (b) zone
level detection, (c) two-tiered detection

while true and false positives and negatives were calculated at the sensor level, recall and

precision as shown in Figures 6.13 and 6.14 are aggregated at the zone level. This procedure

allows us to visualize the interaction between zone level detection in the previous section

and two-tiered detection provided here, as well as directly compare computation time per

RSU as shown in Figure 3.5.

We find that precision and recall are similar between two-tiered and sensor only de-

tection. The major difference between these approaches is in computation time, where

two-tiered detection is 35% less than sensor only detection and the computation time of

zone level detection was negligible in relation to the other two approaches.

An important observation is that our simulation procedure effectively attacked 50% of

the time, a much higher percentage than can be expected in an actual deployment scenario.

As two-tiered detection only requires sensor level detection when an attack is detected at

the zone level and the computation time from zone level detection is negligible, it can be

assumed that a 35% reduction in computation time between two-tiered and sensor only

detection is a conservative estimate.

6.10 Conclusion and Future Work

In this paper we presented a novel two-tiered anomaly detection framework that main-

tains similar accuracy to current state of the art systems with a significant reduction in
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processing requirements. Additionally we covered the integration of our anomaly detec-

tion framework in decentralized smart transportation systems and provided a constrained

hierarchical clustering algorithm for RSU deployment.

Our current work focuses on deductive and camouflage attacks. We would like to extend

this to a variety of potential attacks. Therefore, future work will include extending this

work to additive attacks as well as strategic attacker events in which the attacker has a

comprehensive understanding of transportation system behavior. Additive attacks have

worked in other aggregate anomaly detection cases [134]. These attacks cause an increase

in the Q value, which is capped at one. By taking the inverse of our metric in relation to a

jam factor, which is also available as one of the data streams from the HERE API, we can

extend this work to such attacks.

Additionally, we would like to investigate the cascading effects of data-integrity attacks

on routing systems. We also plan to use additional information, such as weather or planned

events, to predict anomalies ahead of time.
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Chapter 7

SmartTransit-AI: A Software Framework for Mobility-on-Demand Services

7.1 Overview

The focus on this work has been on how to design real-time, adaptive transit solutions

with a focus on MoD and fixed-line operations. In the preceding chapters we discussed the

importance, and our contributions, related to data management, integrity, AI-driven mod-

elling and algorithms in this context. We showed how these contributions can improve and

extend existing transit by providing more demand-responsive and efficient transportation

services. To evaluate our contributions, we emphasized the potential of these applications

by testing them compared to state-of-the-art approaches on real-world datasets from our

partner CARTA (Chattanooga). However, to truly impact operations transit agencies need

ways to train their own models and access these algorithms through software. As it cur-

rently stands, the operations software used by transit agencies is provided by various private

companies. These offerings are closed in that the agencies themselves have limited access

to underlying algorithms and don’t have an easy way to apply agency-specific constraints.

These one-size-fit-all solutions severely limit the ability of transit agencies to customize

their services to their unique populations as well as implement state-of-the-art algorithms

from the academic and open-source communities.

Therefore, in this chapter we present the SmartTransit-AI application framework for

real-time MoD operations management. SmartTransit-AI fits within the broader category

of Mobility-as-a-Service (MaaS) software - however with two important distinctions. First,

like existing MaaS, SmartTransit-AI provides a software ecosystem where various private

and public mobility options can be managed under one system. It allows agencies to plug

in private providers as well as manage their own fleets and schedules in one interface.
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However, SmartTransit-AI is more than a wrapper joining existing mobility options. It

also allows direct access to modular optimization components including offline VRP and

real-time DVRP algorithms. These modular components provide standardized input and

output interfaces such that new algorithms can be incorporated into the framework provided

they implement the corresponding offline VRP or online DVRP interfaces. Second, we

make limited assumptions regarding operational constraints. We provide an easy to use

configuration framework that gives transit agencies full control over system constraints

and objectives. This includes constraints related to vehicle configurations and capacities,

pickup and dropoff time windows, waiting time and detour time. Additionally, agencies

can specify custom objective functions related to common metrics such as vehicle miles

travelled (VMT), vehicle detour miles (VDM) or service rate.

First, we will discuss the SmartTransit-AI software ecosystem which was published

in the Proceedings of the 14th IEEE International Conference on Cyber-Physical Systems

(ICCPS) [144]. This work was also awarded top honors in the demonstration track for

SmartComp 2023 [145].

• Michael Wilbur, Maxime Coursey, Pravesh Koirala, Zakariyya Al-Quran, Philip Pugliese,

and Abhishek Dubey. Mobility-on-demand transportation: A system for microtransit

and paratransit operations. In Proceedings of the ACM/IEEE 14th International Con-

ference on Cyber-Physical Systems (with CPS-IoT Week 2023), ICCPS ’23, pages

260–261, New York, NY, USA, 2023. Association for Computing Machinery. ISBN

9798400700361. doi: 10.1145/3576841.3589625. URL https://doi.org/10.1145/3576841.

3589625

• Michael Wilbur, Sophie Pavia, Maxime Coursey, Pravesh Koirala, Zakariyya Al-

Quran, Philip Pugliese, and Abhishek Dubey. Microtransit optimizer for mobility-

on-demand. In 2023 IEEE International Conference on Smart Computing (SMART-

COMP), 2023

125

https://doi.org/10.1145/3576841.3589625
https://doi.org/10.1145/3576841.3589625


Second, we will discuss our implementation and deployment for CARTA which was

used to run a pilot for their paratransit services in August 2023. Currently, we are working

with CARTA to adapt SmartTransit-AI for all of their paratransit services going forward

as well as to pilot microtransit operations in early 2024. Personally Identifiable Informa-

tion (PII) has been removed where noted. Names in this section were generated with the

”names” python package [146].

7.2 Introduction

Large-scale adoption of smart phones and sensing technologies has given rise to new

user-centric transportation modes including rideshare and shared-mobility services. We

collectively refer to these new transportation modes as mobility-on-demand (MoD). Led

by companies such as Uber, Lyft and Via, MoD provides users with reliable point-to-point

travel options through smart phone applications. As MoD continues to transform urban

mobility, cities are looking for ways to utilize new technologies to improve existing public

services and adapt to this new environment.

One domain in which public transit agencies are looking to better utilize is the case of

microtransit and paratransit services. These services fit under the umbrella of ridepooling,

which refers to MoD that utilizes high-capacity vehicles to service trip requests. From the

city’s perspective, microtransit services are available to all residents and can be thought of

as a low-cost extension of their public transit system. They can be used for direct point-to-

point travel as well as in hybrid transit systems where the vehicles shuttle passengers to and

from fixed-line transit [147]. Similarly, paratransit is a ridepooling service run by a transit

agency that provides curb-to-curb service for passengers that are unable to use fixed-route

transit (e.g. passengers with disabilities).

Many transit agencies operate both microtransit and paratransit services. However, the

objectives and constraints for implementing these services varies greatly between agencies.

This means that most agencies have to either design their own software or manually aug-
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ment their workflows to adapt existing off-the-shelf software. This ad-hoc process makes it

hard for researchers to implement new ridepooling algorithms and approaches in real-world

settings.

This paper describes our MoD transportation software for microtransit and paratransit

operations. The target audience is transit agencies managing these services and was initially

designed for an upcoming pilot to test our ridepooling algorithms with our partner agency

the Chattanooga Area Regional Transportation Authority (CARTA) in Chattanooga, TN.

An overview of the software design and components is provided in Figure 7.1. The software

includes three interfaces - an operations manager web application for dispatchers, a vehicle

operator (or driver) mobile application and the user mobile application for residents to book

requests. Additionally, it includes two modular optimization components - 1) an offline

VRP solver for ahead-of-time scheduling and 2) an online DVRP solver for same-day trip

requests. The offline VRP solver is used to batch all requests ahead of time and assign

vehicles to service the routes all at once. The online DVRP solver is used for same-day

operations where a trip request must be assigned to a route as it arrives. The optimization

components can be replaced with new solvers over time or augmented to handle various

constraints specific to each transit agency by implementing programming interfaces we

have designed for the offline and online tasks.

7.3 Software Overview

As shown in Figure 7.2, we provide an operations manager which is a web application

that allows the transit agency to manage clients, take bookings, update schedules and moni-

tor real-time operations. Through the operations manager the agency is provided with what

they need to handle both microtransit and paratransit services and is general enough to be

used for any centrally managed ridepooling service. The operations manager consists of

four sub-modules. There is a bookings module that allows transit agencies to take bookings

over the phone or manage existing reservations booked through the user mobile application.
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Figure 7.1: SmartTransit-AI software design. It includes three frontend interfaces con-
nected to a common backend.

The manifests module is for managing vehicle schedules and trip-to-vehicle assignments.

Through the real-time component dispatchers can monitor and track active vehicles for

more informed decision making. The real-time component is connected to the backend in

a way that shows operators the real-time location of their fleet as well as the upcoming lo-

cations for each vehicle in the fleet. Lastly, the reporting module allows operators to export

various components of their operations to Excel for offline or manual changes. They also

have access to optimization components that can automate or recommend trip-to-vehicle

assignment as discussed in Section 7.4.

We also provide two mobile applications that can run on tablet or phone. As shown

in Figure 7.3, the driver application allows vehicle operators (or drivers) to manage their

routes for the day. It allows a driver to login and get their route for the day which is a

schedule of users to pickup and dropoff. The driver application interacts directly with our

backend to get up-to-date routes and communicate with the dispatchers as drivers service

their schedules. GPS locations are published every second to our backend so the operations

managers, dispatchers and real-time algorithms have access to vehicle locations and status

in real-time. Lastly, we also provide a mobile application for users to schedule trips through
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Figure 7.2: Operations manager web application: allows the transit agency to manage
clients, take bookings, update route manifests and monitor real-time operations and dis-
patching.

their smart phone. Users can also call to request trips over the phone which is then booked

through the operations manager interface.

The interfaces rely on a set of APIs to manage the various automated processes and to

help inform decision-making. We are running a customized Open Source Routing Machine

(OSRM) deployment that is augmented with historical traffic conditions. For same-day

operations we rely on Mapbox for routing with real-time traffic conditions. For managing

bookings we integrated Google Maps Places Autocomplete in the text inputs related to

addresses and we use a combination of Mapbox and Google Maps APIs for geo-encoding.

The primary data store is MongoDB and we utilize Google Pub-Sub for pushing updates

to drivers and users as well as processing real-time vehicle locations. The software is

deployed on Google Cloud Platform (GCP).

7.4 Ridepooling Algorithms, Optimization and Interfaces

A key problem for transit agencies that manage ridepooling services is designing al-

gorithms to assign requests to vehicles. In microtransit and paratransit, requests can be

for some day in the future, which we refer to as ahead-of-time requests, or can be for the
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Figure 7.3: Vehicle operator mobile application: allows driver to manage their route for the
day.

same day. Therefore, we need two optimization components. An offline VRP solver is run

ahead of time and bulk assigns trip requests to vehicle routes for the upcoming day. In this

way, the offline VRP solver generates the initial vehicle schedules for the start of a day.

Then when a new same-day request arrives, an online DVRP solver assigns the request to

a vehicle that can accommodate the trip without violating the constraints set by the transit

agency.

Trip-to-vehicle assignment is fundamentally a vehicle routing problem (VRP). Most

research focuses on a set of common VRP formulations that can be classified by the types

of constraints applied to the system including vehicle capacities, pickups and dropoffs, and

time-related restrictions (time windows) [148]. However, in real-world scenarios the con-

straints and objectives vary between setting (microtransit vs paratransit) as well as between

agencies. This makes it hard to use off-the-shelf algorithms from the research community.

Therefore, our offline and online solvers are modular. We defined structured interfaces
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Figure 7.4: DVRP Interface: we defined a common interface for the input and output
for incorporating real-time ride-pooling algorithms within SmartTransit-AI so that new
algorithms can be quickly adapted and included within the software framework.

for both solvers so that the implementation details of the solver are decoupled from the

software itself. In this way, new solvers can be added or constraints can be adapted to

fit different transit agency requirements. The solvers are made available by a REST API

which means for a new solver to be incorporated the solver endpoint needs to be changed

in a configuration file.

A visual representation of the real-time DVRP interface is shown in Figure 7.4. The

input consists of a manifest and the status for each vehicle in the fleet that is currently active.

The manifest is an ordered list of locations the vehicle will visit. Each location is either a

pickup or dropoff for a passenger as well as the estimated arrival time at that location. The

status of the vehicle includes the current location of the vehicle, the passengers currently

onboard as well as any constraints on the vehicle. Example vehicle-level constraints include

the time in which the vehicle can leave the depot or must return to the depot as well as

capacities for different types of passengers. The locations in the manifest correspond with

existing trip requests that are currently, or scheduled to be serviced. Each request has a

131



pickup and dropoff location as well as any constraints applied to that request. Common

constraints may be time windows for which the pickup or dropoff must be serviced, the

number of passengers on this trip as well as types of passengers (wheelchair passengers,

ambulatory passengers). The new trip request or set of new trip requests includes the same

information as the existing requests but these requests are not yet assigned to any vehicle

yet. The goal of the DVRP solver is to assign these new trip requests to vehicles in a

way that does not violate any constraints and optimizes an objective function. Both the

constraints and objective function are set by the transit agency through a SmartTransit-AI

configuration file. For routing, we generate a travel time and distance matrix indexed by

Node ID. A Node ID is the set of all pickup and dropoff locations for both existing and

new requests as well as the depot. In this way the DVRP solver is provided with travel

times and distances to be used when optimizing the manifests without having to rely on

an external shortest path module. Finally, the DVRP solver must return the updated set

of manifests which is processed by the SmartTransit-AI backend and pushed to the various

SmartTransit-AI frontend (driver applications so that drivers have the updated routes as well

as the operations manager web UI). The offline VRP interface follows a similar structure

except all requests are considered new (unassigned) requests and the vehicle manifests are

initially empty.

We provide two offline solver implementations included with the software. First is

a heuristic solver implemented with Google OR-Tools that was customized to CARTA’s

paratransit requirements. The second solver is based on our recent work using temporal

decomposition which we had to adapt for the real-world constraints of our partner agencies

[2]. Additionally, we provide a greedy online solver as well as a state-of-the-art non-

myopic online solver for the paratransit setting based on recent work of ours [43]. For

the microtransit setting we are currently working on implementing a highly scalable batch

solver based on shareability graphs [13].
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7.5 Evaluation of Offline VRP Solvers

As discussed in the previous section, we implemented two offline VRP solvers within

SmartTransit-AI. The first is a heuristic solver implemented with Google OR-Tools, which

we refer to as the OR-Tools heuristic solver. The second is a temporal decomposition

method based on our work in this space which we refer to as Rolling Horizon [2]. Before

running the pilot, which we discuss in Section 7.6, we evaluated the solvers through a set of

experiments outlined here. First, in Section 7.5.2 we evaluate the offline VRP solvers in a

paratransit setting using synthetic data generated from mobility data in Chattanooga, Ten-

nessee. Second, in Section 7.5.3 we evaluate the offline VRP solvers using real, historical

data from microtransit services in Chattanooga (CARTA Go).

7.5.1 Experiment Setup

For both settings, we applied constraints based on CARTA’s paratransit setting. This

included the following time-window constraints: 1) if the request was appointment-based,

the passenger must be dropped off by appointment and picked up no earlier than 60 minutes

before the appointment, and 2) if the request was not an appointment-based request the

passenger must be picked up within 15 minutes before or after the requested pickup time

and then dropped off no later than 60 minutes after the requested pickup time. We also

applied to vehicle capacity constraints, in line with CARTA’s paratransit vehicles which

had a maximum capacity of eight ambulatory passengers and two wheelchair passengers. If

any of these constraints could not be met, a request could be dropped - therefore we provide

a service rate metric which is the percentage of trips that could be serviced compared to all

trip requests for that day.
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Figure 7.5: Spatial and temporal distribution of synthetic OD datasets from our generative
demand model in Chattanooga, TN. (a) Spatial distribution of trip requests for one day in
the synthetic paratransit dataset. (b) Temporal distribution trip requests over 24 hours.

7.5.2 Evaluation with Synthetic Origin-Destination Data

To evaluate our approaches, we utilized a generative demand model that generates

synthetic trip requests based on movement data. Each trip is represented as an origin-

destination (OD) pair with a start and end location and the requested time of day. The

generative demand model generates an OD dataset for a day and the number of trips in the

dataset can be scaled up or down based on the use-case. The model can scale over 80,000

requests per day, capturing a significant percentage of trips in the region. To evaluate our

offline optimization algorithms, we generated a week’s worth of OD datasets each with

200 trip requests which represents CARTA’s typical weekday paratransit operations. The

spatial and temporal breakdown of trip requests in the dataset is shown in Figure 7.5.

We evaluated three offline VRP solvers on the synthetic paratransit dataset. The first

solver was a heuristic solver implemented with Google OR-Tools as discussed in Sec-

tion 7.4. The objective of the Google OR-Tools heuristic solver was to minimize vehicle

miles travelled (VMT) with an additional large penalty term for dropping a trip request. We

also evaluated our Rolling Horizon Solver [2] with a penalty of 1000 and 2000. The larger

penalty represented a more significant impact on dropping a trip request.

We assumed a vehicle capacity of 8 and applied a tight time window constraint in which
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Figure 7.6: (a) Service Rate and (b) VMT/PMT ratio for our two offline VRP solvers
- Google OR-Tools and Rolling Horizon [2] evaluated on a synthetic dataset based on
mobility patterns in Chattanooga, TN. Rolling Horizon was evaluated with a penalty for
dropping a booking of 1000 and 2000.

requests had to be picked up within 15 minutes before or 15 minutes after the requested

pickup time and the maximum detour time was 15 minutes. Any trip request that could

not be serviced within these time windows was dropped. Therefore, the first metric to

consider was service rate, defined as the number of trip requests serviced compared to the

total number of trip requests on that day provided in Figure 7.6a.

Figure 7.6b shows the Vehicle Miles Travelled/Passenger Miles Travelled (VMT/PMT

ratio). PMT (Passenger Miles Travelled) is the summation of the shortest path between

origin and destination for each OD pair in the dataset for a specific day. PMT therefore

represents the vehicle miles that would be required if each passenger drove directly be-

tween their corresponding origin and destination. VMT represents the total vehicle miles

travelled by the vehicles over a day – including the miles a passenger or passengers were

on board and when a vehicle was travelling between locations without anyone on–board.

Modelling VMT/PMT in this way provides a measure of efficiency of the vehicle route

plans by comparing actual miles driven compared to the miles associated with the direct

shortest path of each passenger that was served. Therefore, a lower VMT/PMT ratio is

more efficient and a VMT/PMT close to 1 is highly efficient and must be evaluated in the

context of service rate since VMT/PMT only considers passengers served. As shown in
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Figure 3 the best performing model was the Rolling Horizon with a penalty of 2000 both

in the context of service rate as well as VMT/PMT - which was approximately one for 4

and 8 vehicles and less than one for 12 vehicles.

Current CARTA operations average a VMT/PMT ratio between 1.7 and 2, therefore

Rolling Horizon with a penalty of 2000 has the potential to reduce VMT/PMT by 40%-

50% while servicing the same number of requests with the same vehicle configurations.

In this way, our methods can service the same number of requests with fewer miles trav-

elled and thus reduces the emissions from the fleet. Alternatively, the improvement in

VMT/PMT ratio indicates that we can service more requests with the same number of

vehicles – assuming the new trip requests are sampled from the same distribution.

7.5.3 Evaluation with CARTA Go Data (Microtransit)

We also evaluated the SmartTransit-AI Google OR-Tools solver in the microtransit set-

ting using three weekdays of real data in July 2023 from CARTA’s microtransit operations

(CARTA Go). The results are presented in Table 7.1. The average number of Microtransit

requests was 170 per day and there were four vehicles operating in the morning and four

vehicles operating in the afternoon/evening. One important note is that we applied the con-

straints derived from the paratransit setting outlined in Section 7.5.1. However, CARTA Go

did not require hard time window constraints in this respect, and therefore the column Time

Constraint Violations refers to trips that would have violated these constraints. Conversely,

this is reflected when the Smarttransit-AI routes did not service 100% of the requests since

some requests could not be serviced without violating the QoS constraints. Note that all

requests in the microtransit setting are non-appointment-based requests.

7.6 Chattanooga Implementation and Pilot

To test and evaluate the software in a real-world setting we ran a pilot in August 2023

with CARTA’s paratransit team - CARTA Care-a-Van (CAV) in Chattanooga, TN. The goal
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Table 7.1: Microtransit results – evaluation of scheduled routes for CARTA’s current micro-
transit operations (CARTA Go) compared to routes generated by Smarttransit-AI. Results
were evaluated with real microtransit trip data over three week days in July 2023.

Solver VMT/PMT Shared Rate Service Rate Time Constraint
Violations

CARTA Go 1.51 60% 100% 31
SmartTransit-AI

(OR-Tools) 1.28 94% 91% 0

of the pilot was to test and evaluate the software framework in a real-world paratransit

setting. We chose paratransit over microtransit due to the complex system requirements

with paratransit services that are often overlooked when designing general-purpose VRP

solvers for MoD. This includes tight time-windows associated with ADA requirements in

paratransit and limited vehicles.

We identified three key tasks to evaluate during the pilot. First, we aimed to evaluate the

integration of our offline VRP optimizer with the CARTA CAV service. Second, we wanted

to evaluate the software during real-time operations. This involved equipping drivers with

the driver application on a tablet mounted in the vehicle and monitoring operations through

the real-time web interface with members of the CARTA CAV operations team. Third,

we wanted to gain feedback from schedulers and drivers on system usability and identify

possible improvements going forward.

7.6.1 Pilot Design and Setup

We selected two days for the pilot - August 3, 2023 and August 10, 2023. First, for

both days we exported the trip requests, driver schedules, vehicles and scheduled manifests

from CARTA’s existing system. The data was imported into SmartTransit-AI. For the test

dates we then generated new schedules with the Google OR-Tools offline VRP solver. On

both days there were 15 vehicles available with schedules staggered between morning and

afternoon shifts according to CARTA’s driver and vehicle availability. There were 159
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Table 7.2: Metrics recorded for system testing on August 3, 2023 and August 10, 2023.
VMT: Vehicle Miles Travelled, VDM: Vehicle Detour Miles, VMT/PMT: Vehicle Miles
Travelled to Passenger Miles Travelled, Shared Rate: percentage of trip requests that shared
their trip with another passenger.

Date Solver VMT VDM VMT/PMT Shared
Rate

Passengers
Served

8-3-2023
CARTA CAV 1531 601 1.41 61% 159

SmartTransit-AI 1175 300 1.07 86% 159

8-10-2023
CARTA CAV 1269 517 1.27 68% 129

SmartTransit-AI 1061 281 1.06 84% 129

passengers total on August 3, 2023 and 129 passengers total on August 10, 2023.

CARTA CAV has strict time window constraints for two types of passenger requests.

Pickup-constrained requests must be picked up within a 15 minute window before or af-

ter the requested pickup time and the passenger must be dropped off within an hour of

the requested pickup time at their destination. Dropoff-constrained requests represent ap-

pointments where a passenger must be dropped off before their appointment and must be

picked up no earlier than one hour before the appointment. Additionally, each vehicle had

two capacity constraints - no more than 8 ambulatory passengers and 2 wheelchair passen-

gers could be on a vehicle at any given time. The problem is fundamentally a resource-

constrained VRP where all of the passengers known ahead-of-time must be serviced. In

this way, CARTA CAV was a useful setting to test our software due to the complex set of

constraints as mentioned. All of the constraints were defined in the SmartTransit-AI config

as shown in Figure 7.4.

7.6.2 Evaluation of Offline VRP Solver

The objective was to minimize Vehicle Miles Travelled (VMT) while servicing all trip

requests. Key metrics related to performance of CARTA’s original schedule compared to

the schedule generated by the SmartTransit-AI offline VRP solver for both days is provided

in Table 7.2. As shown, the SmartTransit-AI VRP solver reduced VMT by 356 miles on
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Figure 7.7: GPS trace and status updates during the pilot with CARTA CAV (paratransit).
A driver serviced a route the morning of (a) August 3rd, 2023 and (b) August 10, 2023. Vi-
olations in which a location was visited outside the time window constraints set by CARTA
CAV are shown in red and GPS trace is shown in blue. Names and times were removed
due to PII.

August 3, 2023 and by 236 on August 10, 2023. We use Vehicle Miles Travelled to Pas-

senger Miles Travelled VMT/PMT as the metric to represent normalized efficiency where

PMT was the total shortest path distance between origin and destination for all trip re-

quests. There was a 24% and 17% improvement in VMT/PMT over CARTA CAV’s initial

schedule for August 3, 2023 and August 10, 2023 respectively. The efficiency gain corre-

lates with the finding that our implementation had a much higher Shared Rate, which is the

percentage of passengers who shared their trip with at least one other passenger compared

to CARTA CAV’s schedule (86% compared to 61% for August 3, 84% compared to 68%

for August 10).
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Figure 7.8: A screenshot of the real-time operations view in the operations management
web application while a driver served route 15 on August 10, 2023. Names and locations
of stops hidden to remove PII.

7.6.3 Real-Time Operations

For the pilot we deployed a version of the driver application to Apple TestFlight and

installed the application on a set of three iPad’s for the CAV team. We used two iPads

for testing with a series of test drives with drivers, operators and dispatchers on August 1st.

After the tests we selected a route and driver for Thursday August 3rd to run with the driver

application and repeated the process for August 10th. The iPad was mounted in one of the

standard paratransit vehicles and the driver used the application to follow his route and all

updates were watched by the operations team through the web application.

A screenshot of the route and updates from the test is provided in Figure 7.7 for both

days. The figures were generated after the runs ended through our reporting module in the

operations management web application. This report function joined the GPS traces of the

vehicles for each route serviced with the status updates input from the driver when a loca-
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tion was visited to generate an HTML file for download. Violations where the passenger

was serviced outside of the time window constraints set by CARTA CAV are shown in red

while stops visited on-time are shown in green. The GPS trace is shown in blue.

Figure 7.8 shows a screenshot of the real-time view in the web operations application

while a driver serviced route 15 on August 10, 2023. As shown, the real-time view shows

the current location of the vehicle servicing the route as well as the status of all locations

in the route manifest. We also provide real-time tags to alert the operations team when

a 1) violation occurs, 2) there was a no-show because the rider did not board at a pickup

location and 3) warnings related to future locations where the vehicle is anticipated to arrive

late and may be a potential violation. As shown in Figure 7.8, the driver was late to the

first pickup location but quickly was able to make up time and remain on schedule for the

subsequent locations. This functionality allows the operations team to both know what

violations have occurred in real-time as well as anticipate future delays. For this we use

real-time congestion-aware routing from Mapbox for accurate forecasting.

7.7 Conclusion and Outlook

In this chapter we presented SmartTransit-AI, a software framework for real-time MoD

operations management. SmartTransit-AI extends current MaaS to allow for customizable

constraints, objectives and algorithms so that transit agencies can better manage their op-

erations while incorporating state-of-the-art algorithms and approaches from academia and

the open-source community. We also provided an overview of a pilot run with our partner

agency CARTA in Chattanooga, TN. We show that the algorithms implemented can result

in more efficient services and the software ecosystem has the ability to improve ease-of-use

for transit agencies.

Going forward, we would like to test the software in new settings such as microtransit

as well as hybrid systems that utilize demand-responsive transit with fixed-line. Given

the customizable interfaces, there are minimal changes required to service these settings.
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Therefore, we look forward to partnering with our existing partners for further evaluation.
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Chapter 8

Conclusion

This dissertation presented a computational framework for demand-responsive urban

mobility. We focused on data-driven methods which aim to utilize vast sums of data gener-

ated from the now ubiquitous presence of network-connected sensing technologies in urban

areas. We studied the role of data and demand-responsive transportation in the context of

two high-impact modalities for transit agencies - MoD and fixed-line transit. Our com-

putational framework modelled demand-responsive transportation as a resource allocation

problem comprising of four concrete subproblems - 1) Planning, 2) Prediction, 3) Deploy-

ment and 4) Software Design. We made contributions to three key challenges. First, we

proposed a non-myopic, online algorithm for DVRPs that leveraged the structure of the

paratransit problem to combine domain-specific heuristics and MCTS for adaptive plan-

ning in this setting. Second, we showed how multi-task and transfer learning can be used

to overcome issues of data quality for energy and emissions prediction in the context of

fixed-line services. Third, we resolved challenges related to anomaly detection and appli-

cation design for edge-network deployments in the transportation domain.

Lastly, results of this project were codified into a cloud application for managing and

deploying demand-responsive transportation operations. The application framework targets

transit agencies and allows them to manage their fleets, schedules and bookings through a

collection of web and mobile interfaces. The software exposes the state-of-the-art opti-

mization algorithms and tools proposed in this work with the goal of easing technology

transfer between research and practice. We presented the results of a pilot with CARTA’s

paratransit operation using our software framework.

There are many potential ways in which to extend the work presented in this disserta-

tion. One important extension is in the domain of multi-modal transportation where MoD
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vehicles provide service to and from fixed-line transit. The goal of these services is to

increase utilization on fixed-line transit while extending coverage of public transit to ar-

eas of a city with limited access to existing transit service [10]. We are currently looking

at developing algorithms and middle-ware that allows transit agencies to service trip re-

quests with multiple public and private operators that provide service in different regions

of the city. Additionally, multi-modal services can then be incorporated within our software

framework to allow transit agencies to expand their demand-responsive offerings.
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CARTA Chattanooga Area Regional Transportation Authority

CBSE Component-based Software Engineering

CPS cyber physical systems

DDoS distributed denial-of-service

DSL Domain Specific Language

EV Electric Vehicle

FMLM First-Mile-Last-Mile

GTFS General Transit Feed Specification

HV Hybrid Vehicle

ICEV Internal Combustion Engine Vehicle

IID independent and identically distributed

ILP Integer Linear Program

ITL Inductive Transfer Learning

ITS Intelligent Transportation Systems

LP Linear Program

MCTS Monte-Carlo tree search

MDP Markov decision process

MIC Model Integrated Computing

ML Machine Learning

163



MoD Mobility-on-Demand

MTL Multi-task Learning

NLP natural language processing

OD Origin-Destination

OSM Open Street Maps

OSRM Open Source Routing Machine

PII Personally Identifiable Information

QoS Quality of Service

RL Reinforcement Learning

RSU Road-side Unit

RSU Roadside Unit

RTV Request-Trip-Vehicle Graph

RV Request-Vehicle Graph

SMDP semi-Markov decision process

VDM Vehicle Detour Miles

VMT Vehicle Miles Travelled

VMT/PMT Vehicle Miles Travelled to Passenger Miles Travelled
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