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CHAPTER 1

Introduction

Flow simulations have emerged as a crucial tool for understanding and modeling complex flow structures that

impact various aspects of our daily lives. In recent years, numerous disciplines in engineering and applied

science, such as aerodynamics, oceanography, chemistry, medicine, and meteorology, have embraced numer-

ical flow simulations. This growing adoption has been made possible by advancements in high-performance

computing (HPC) environments, which offer advanced computational hardware, robust networking capabili-

ties, and ample memory and bandwidth. These advancements have established a dependable framework for

precisely simulating and generating flow datasets. This enables researchers to thoroughly analyze and acquire

a deeper understanding of the underlying physical phenomena. As a result, scientists are consistently con-

ducting numerous simulations using various configurations to extract valuable insights. The outcome of these

simulations is the creation of dense, high-resolution, time-varying flow datasets. These datasets encompass

crucial quantitative details such as velocity, pressure, and density. However, it is important to recognize that

these quantities, whether primitive or derived, are essentially numerical values linked to specific space-time

positions. While certain measures like average magnitude across the entire simulated space-time domain can

be computed, they alone fail to provide a comprehensive understanding of the flow’s evolution or the inherent

flow structures within the data. Relying solely on numerical analysis to interpret raw numbers and draw con-

clusions may result in flawed analyses. Therefore, a more holistic approach is required to extract meaningful

insights from these simulations.

Humans are inherently visual beings. Our brains are adept at processing visual data swiftly and with

less cognitive strain compared to raw numerical data. As a result, data presented in a graphic format is

considerably easier for us to comprehend. Our innate abilities to discern variations in size, shape, color,

quantity, and relative positioning of data points aids in the identification of patterns within the data, which

would otherwise be significantly more challenging to differentiate. This drives the necessity for techniques

that graphically represent data for analytical purposes. Flow visualization is a particular branch of scientific

visualization that tackles issues related to the graphical depiction of flow data. Over the years, it has proven

to be an incredibly effective tool for the exploration and analysis of flows (144). By enhancing our ability to

understand complex flows, flow visualization has considerably expanded our knowledge base.

Flow visualization is an active area of research and numerous techniques of varying complexities have

been developed over the years to help scientists make sense of the data. Even though the basic principle of

flow visualization is to generate graphical representations from which insights about the flow field can be
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(a) Isotropic (b) Mantle

Figure 1.1: Shown in the figure are graphical representations in the form of streaklines for two large-scale
datasets (a) isotropic turbulence dataset - showcasing the chaotic nature of the dataset and (b) mantle dataset
- illustrating the convection processes of the Earth’s mantle.

obtained, it is the nature of the flow field, its representation, and the visualization task at hand that dictate

the diversity of existing techniques. Take for instance two distinct tasks: first, visualizing the separation

structures present within the flow data, and second, visualizing the integral curves produced by advecting

massless particles along the flow over a given time span. These tasks, by their very nature, require divergent

visualization techniques. The latter task can be simply visualized by plotting graphical lines, whereas this

technique is unsuitable for the former task, necessitating the adoption of alternative methods for effective

visualization. Moreover, the representation of flow data also plays a decisive role in determining the type

of visualization required for effective flow analysis. Thus, the complexity and variety of techniques in flow

visualization are driven by these multifaceted requirements.

Next, we delve deeper and describe two distinct types of data representations commonly used in flow

visualization. Subsequently, we provide a high-level description of diverse visualization techniques, thereby

establishing a comprehensive understanding of their respective roles and applications within the broader

context of flow visualization.

1.1 Flow Specification

Flow is usually described as the variation of a physical quantity (e.g velocity vector) as a function of time

over a fixed spatial domain. In fluid dynamics, two different types of specifications are used to describe the

flow, namely, (1) Eulerian and (2) Lagrangian.

Eulerian Specification Within the Eulerian framework, changes in flow properties are described from

the perspective of fixed spatial and temporal locations. This can be likened to an observer monitoring the
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flow from a stationary position external to the system. In practical applications, data utilizing Eulerian speci-

fication is stored as velocity fields. Here, each point in the space corresponds to the velocity of the flow at a

specific moment in time.

Lagrangian Specification In contrast, the Lagrangian framework portrays variations by tracing the flow’s

path through space, analogous to an observer moving synchronously with the flow, becoming part of the flow

system. Practically, Lagrangian specifications are embodied in flow maps. A flow map effectively outlines

the final position of massless particles that have been advected along the flow for a certain duration of time,

having commenced from a starting position at a specific time.

The choice between Eulerian and Lagrangian specifications for visualization purposes largely depends

on the specific context and the nature of the data. Both approaches have their own advantages and can be

more suitable in certain scenarios. Suppose we are interested in monitoring weather patterns at a specific

geographic location, then Eulerian specification is advantageous in this case because it offers a static view-

point and allows us to observe how the weather (e.g., temperature, humidity, wind speed, etc.) changes at a

specific location over time. In contrast, a Lagrangian perspective would follow a moving air particle, which

would not be as useful for understanding weather changes at a fixed point. However, if we were interested

in understanding the life cycle of a storm, then in that case, Lagrangian specification would be more appro-

priate as it would allow us to follow the storm from its inception, through its development and dissipation.

Additionally, we can track the changes in the storm’s properties (like size, intensity, speed) and its path.

Overall, Lagrangian particle tracking provides a very intuitive visualization of flow transport behavior. On

the other hand, Eulerian perspective is useful for visualizing broader flow pattern evolution. Using a mix of

both techniques can provide the most physical insight into complex flows.

1.2 Flow Visualization Techniques

There is a myriad of flow visualization techniques being used by scientists for the visual exploration of

flow data. Traditionally, these techniques are sub-divided into direct, texture-based, geometry-based and

feature-based categories. However, some techniques are more commonly used than others. First, we have a

glyph-based visualization that operates directly on the raw data (data produced by the numerical simulation

such as velocity vectors). Glyphs (cones, cylinders, or arrows) are placed at a given spatial position pointing

in the direction of the flow. Optionally glyphs can encode the magnitude of the vector via its size. Due to its

simplicity, glyph-based visualization is widely used in 2D flow visualization, however, its usage is limited in

3D due to excessive occlusion.

Another common technique used for the purpose of finding flow structures and analyzing global flow

behavior are integral curves. These are obtained by integrating massless particles in the flow field to obtain
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(a) Streamline (b) Pathline (c) Streakline

Figure 1.2: In the figure we show the space-time illustration of various integral curves.

the trajectories of the moving particles. These trajectories reveal structural patterns and the flow behaviour

over the time-span they were integrated for. Commonly, these trajectories come in three forms: streamlines,

pathlines, and streaklines. A streamline is characterized as a curve that is uniformly tangential to the im-

mediate velocity of the flow field. It represents a snapshot of the flow field at a specific moment in time,

demonstrating the direction of the flow at every point. The pathline, on the other hand, delineates the tra-

jectory traced by a massless particle as it moves along the flow from a specific starting point. Unlike the

streamline that represents a particular moment, the pathline is a historical record of the particle’s journey and

is tangential to the velocity of the flow over a period of time. Lastly, the streakline represents the locus of

particles that have traversed a given spatial point at any previous time. It visualizes the history of particles

that have passed through a certain point in space, serving as a unique tool to study the past behavior of flow

patterns. In Fig. 1.2 we illustrate the different between the differnt types of integral curves and in Fig. 1.3,

we provide an example showcasing the structural pattern created by different integral curves for the flow over

cylinder dataset. For steady flow, all the aforementioned integral curves are the same. However, for unsteady

flows these are quite different and reveal different structures of the flow field. Moreover, all the curves are

tangential to a special derived (n+2)-dimensional flow field (143; 142).

Computationally, integral curves are approximated by using (1) an interpolant - required to access the

velocity vectors at arbitrary particle positions and (2) a numerical integration scheme. In practice, both in-

terpolation and approximation through numerical integration are computationally expensive processes. Fur-

thermore, the computational expense of both interpolation and numerical integration is further compounded

when dealing with large data sets that exceed the available memory. In such cases, the data needs to be paged

into the main memory from a secondary source, introducing additional overhead and constraints. As a re-

sult, interactive exploration becomes impractical, hindering the ability to interactively analyze and visualize
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(a) Streamlines

(b) Pathlines

(c) Streaklines

Figure 1.3: We show the different types of structural pattern formed by various integral curves for the flow
over cylinder dataset.
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integral curves.

Lastly, a widely used visualization technique that focuses on the structural analysis of the flow field from

the Lagrangian perspective is the finite-time Lyapunov exponent (FTLE) (38). It essentially determines the

exponential separation rates among neighboring particles from a dense set of pathlines covering the spatial

domain. The ridges obtained from the FTLE allow us to extract the Lagrangian Coherent Structure (LCS)

that described the dynamic behaviour of the flow field in terms of its structural evolution.

1.3 Research Challenges

While numerous visualization techniques have been proposed in the literature, flow visualization comes with

it’s own challenges and several factors need to be addressed first. We list these factors below:-

1. Data Reduction : The conventional workflow for data analysis typically involves conducting extensive

numerical simulations on networked high-performance computing (HPC) environments. Subsequently,

the obtained high-resolution data is saved onto storage disks and then transferred to a local workstation

for further visual analysis. However, the process of transferring data from the HPC system to the local

workstation often becomes a bottleneck due to limitations in storage space and network bandwidth.

Consequently, there arises a crucial requirement for a compact data representation capable of preserv-

ing the essential information necessary for accurate post-hoc visual analysis while minimizing storage

and bandwidth demands.

2. Computation Time : In the literature, substantial advancement in the design of novel and informative

visualization techniques has been made. Among these techniques, notable ones include the finite-time

Lyapunov exponents (FTLE) (38), and its resulting Lagrangian coherent structures (LCS) (39; 38),

extracted as the ridges of the FTLE field. Streaklines are another visualization technique widely used

by researchers, used to factor out background motion in flows, and identify underlying vortices that

might be present. A core component common to all the above techniques is the computation of the

flow map. The flow map provides the position of a particle advected under a flow over a finite time

span, and typically, this is computed by integrating a time-varying vector field. For large time spans,

this integration process can become computationally expensive, and thus impede interactivity within

visual analysis. This necessitates the need for approaches that can improve the computation times of

flow maps and thus, interactivity of the underlying visualization process.

To address the challenges described above we take advantage of the recent advancements in the area of

deep learning. In particular, two types of deep learning models show promise for addressing the identified

challenges:
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(1) Convolutional Neural Networks (CNNs) (70) for superresolution of sampled grid representation. By

leveraging the inherent spatial relationships and patterns in grid-sampled flow data, CNNs can provide high-

resolution representations, enabling detailed analysis and visualization of the flow behavior. Utilizing CNNs

for superresolution can alleviate the storage and bandwidth limitations, allowing for more efficient transfer

and analysis of flow data.

(2) Implicit neural representation (INRs) (120; 130) for compact data representation and reduced compu-

tation in flow visualization. INRs provide a learned parameterization of the flow field, enabling efficient and

compact representation of the essential information. By endowing INRs with scales further data reduction

can be achieved and at the same time improve the utility of INRs for downstream visual analysis tasks. Ad-

ditionally, INRs can effectively reduce the computational burden associated with the computation of the flow

map over large time spans, enabling interactive exploration and analysis of flow features.

By harnessing the power of deep learning, specifically, CNNs for superresolution of grid sampled data and

INRs for data reduction and reduced computation, flow visualization can benefit from improved efficiency,

scalability, and interactivity.

1.4 Contributions

In the first part of this dissertation, we primarily focus on the data reduction aspect of flow visualization. For

the purpose of data reduction when the data specification is in Eulerian frame of reference several techniques

like compression (6) and super-resolution (36) have been explored in the literature. Traditionally, simple

interpolation techniques were used for super-resolution, however, these techniques lack the ability to capture

the global flow behavior since upsampling is based on local information only. In recent years, deep learning

based techniques have received significant attention and have shown to outperform these more traditional

techniques. Yet a limitation common to existing methods is that no consideration is made to how upsampled

flow fields are used in practice. Specifically, as part of a scientist’s visual analysis workflow, it is extremely

common to integrate the flow field to obtain streamlines, in order to discover more global, structural flow

features. On the other hand, a key advantage to optimization-based techniques for super-resolution, e.g. deep

learning methods, is that we may optimize for what we ultimately visualize, e.g. streamlines. To this end, we

developed an integration-aware approach to vector field super-resolution technique. In this work, we showed

how to augment more traditional super-resolution objectives with integration-aware losses, and studied the

impact of various factors like seeding technique, integration length on the optimization process. This work

has been published in Sahoo and Berger (105).

While techniques like compression and super-resolution have been explored in the literature for data

reduction, these techniques only consider the Eulerian specification for flow fields. In practice, Lagrangian
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specifications are also used widely. Agranovsky et al. (1) showed that Lagrangian specification for flow fields

are more efficient and compact as compared to Eulerian specifications when the temporal resolution of the

flow data is low. Thus, developing techniques that can make use of the Lagrangian specification for data

reduction is an attractive option. To this end, we developed a novel method for representing and recovering

unsteady flow that enables substantial data reduction in time-varying flow fields. Our approach takes on a

hybrid Eulerian-Lagrangian viewpoint. Our representation of unsteady flow is Eulerian, in that we leverage

INRs (120) to model time-varying flow fields. The manner in which we optimize these representations,

however, is Lagrangian. Our method assumes that a small set of flow map samples from the underlying field

have been provided, and we optimize our implicit neural representation to best reproduce these flow map

samples. We show how this integration-based optimization can lead to neural flow-based representations

that, both, faithfully recover the original time-varying vector field, as well as its flow map, when provided

with just a sparse set of flow map samples. We show superior performance in comparison to other Eulerian,

and Lagrangian, unsteady flow data reduction approaches. This work has been published in Sahoo, Lu, and

Berger (107).

INRs have received significant attention in recent years and have shown promising results in learning

compressive representations of volumetric fields (80). However, existing methods for designing and optimiz-

ing INRs are not yet suitable for what is typically required of visual analysis techniques, e.g. if we want

to build a progressive representation of a field for level-of-detail analysis, then it is necessary to (1) sample

the INR to a grid, and (2) then build the relevant progressive representation. For the integration of INRs

within visualization systems, we argue that INRs should be endowed with operations and properties that

users wish to access. To address this, we propose a novel approach that incorporates a sense of scale into

INRs, enabling user-oriented operations and fulfilling visual analysis needs. Our technique modulates the

parameters of INRs with scale-dependent transformations, allowing them to accurately model scale-space

field representations. This facilitates compressive, scale-dependent feature analysis using implicit frequency

domain filtering, including both linear and non-linear filters. Furthermore, we demonstrate the possibility

of distilling a scale-based INR into a more compact, scale-independent representation, leading to simplified

fields. This work is currently being prepared for submission to the IEEE Pacific Vis Conference, authored by

Berger, Sahoo, and Lu.

Lastly, we shift our focus towards interactivity aspect of flow visualization. The flow map is pervasive

within the area of flow visualization, as it is foundational to numerous visualization techniques, e.g. integral

curve computation for pathlines or streaklines, as well as computing separation/attraction structures within

the flow field. Yet bottlenecks in flow map computation, namely the numerical integration of vector fields,

can easily inhibit their use within interactive visualization settings. In response, in this work, we seek neu-
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ral representations of flow maps that are efficient to evaluate, while remaining scalable to optimize, both in

computation cost and data requirements. A key aspect of our approach is that we can frame the process of

representation learning not in optimizing for samples of the flow map, but rather, a self-consistency criterion

on flow map derivatives that eliminates the need for flow map samples, and thus numerical integration, alto-

gether. Central to realizing this is a novel neural network design for flow maps, coupled with an optimization

scheme, wherein our representation only requires the time-varying vector field for learning, encoded as in-

stantaneous velocity. We show the benefits of our method over prior works in terms of accuracy and efficiency

across a range of 2D and 3D time-varying vector fields, while showing how our neural representation of flow

maps can benefit unsteady flow visualization techniques such as streaklines, and the finite-time Lyapunov

exponent. This work is under review submitted as part of TVCG journal. Preprint can be found in Sahoo and

Berger (106).
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CHAPTER 2

Background and Related Work

2.1 Flow Visualization Techniques

In the field of flow visualization, over the years, countless visualization techniques have been proposed that

present the flow data in ways allowing for easier visual exploration and analysis. Generally, flow visualization

techniques are classified into the following widely accepted categories (98) :-

2.1.1 Direct Visualization

Direct visualization methods offer a straightforward approach to flow visualization by displaying the raw

data points without any transformations or interpretations. This category of techniques is based on a one-to-

one mapping between the graphical representation and the data point, making it very intuitive and easy to

understand. An example of a direct visualization technique is the arrow plot (97), which utilizes vectors to

show the direction and magnitude of flow data. However, while the simplicity of direct visualization can be

an advantage, it often results in problems such as occlusion and aliasing (30). Occlusion is an issue when

overlapping data points hide some information from the viewer, making it difficult to accurately interpret the

data. Aliasing, on the other hand, occurs when the sampling rate of the data is not high enough, resulting in

the visualization showing inaccurate representations of the flow patterns.

2.1.2 Texture-Based Visualization

Texture-based visualization techniques are more complex as they involve the dense encoding of data through

the convolution of a noisy texture across the flow field. They provide a continuous and comprehensive view of

the flow field, making them ideal for observing global flow patterns and structures. A well-known technique

in this category is the Line Integral Convolution (LIC) method (13). LIC uses convolution along streamlines

with a white noise texture to create a blurred image that reveals directional flow patterns. Other variants,

like Fast LIC (122) and Accelerated Unsteady Flow LIC (141), aim to address some of the limitations of the

original LIC method, such as computational efficiency and applicability to unsteady flows.

2.1.3 Feature-Based Visualization

Feature-based visualization techniques aim to extract and emphasize the most significant features of the

data. These methods involve advanced computations and data analysis to identify and represent the primary

characteristics of the flow field. For example, the finite time Lyapunov exponent method (114) identifies
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chaotic regions in the flow, which are areas of high sensitivity to initial conditions. These techniques often

involve the use of topological concepts, which are mathematical tools used to describe the shape and structure

of data. An extensive survey by Laramee et al. (69) provides a detailed overview of various topology-based

visualization techniques.

2.1.4 Geometry-Based Visualization

In geometry-based visualization, the flow dynamics are captured through integral curves and surfaces, such as

streaklines, streamlines, and pathlines. These techniques are powerful tools for representing time-dependent

flow fields and visualizing the trajectory of particles in a flow. McLoughlin et al. (85) provides a compre-

hensive review of various integration-based visualization techniques. Although they can be computationally

intensive, the detailed insights that these methods provide about the flow dynamics make them invaluable

tools in many research and application contexts.

In conclusion, each category of flow visualization techniques offers unique approaches for representing

and interpreting complex flow data. By choosing the appropriate technique based on the specific requirements

and constraints of a given scenario, researchers and practitioners can effectively visualize and understand

complex flow dynamics. In this thesis, we focus mainly on Geometry-Based Visualization techniques. We

provide additional background and introduce some important concepts relating to Geometry-based visualiza-

tion techniques below.

2.2 Flow Field and Particle Trajectory

A flow field describes the motion of a fluid in space and time. It can be classified as either steady or unsteady.

In steady flow, the velocity vector at any point in space does not change over time. Mathematically, it can be

represented by the equation:

dx(t)
dt

= ν(x(t)) (2.1)

where x ∈ Rn represents the spatial position and ν : Rn → Rn is the time-independent flow field.

On the other hand, an unsteady flow is associated with a flow field whose instantaneous velocity changes

over time. And the path traced by a massless particle under the influence exerted by the time-varying flow

field gives us the particle trajectory. It can be determined by solving the following ordinary differential

equation (ODE):

dx(t)
dt

= ν(x(t), t), x(t0) = x0 (2.2)
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Here, ν : Rn×R→Rn represents the time-dependent flow field and x0 is the initial spatial position of the

particle at time t0. The solution to this ODE provides the particle trajectory.

To simplify the analysis, the ODE in Equation 2.2 can be treated as an autonomous ODE by introducing

time as a state variable. This results in the following equation:

d
dt

(
x(t)

t

)
=

(
ν(x(t), t)

1

)
,

(
x
t

)
(0) =

(
x0

t0

)
, (2.3)

This autonomous ODE allows us to study the particle trajectory as a function of time.

2.3 Flow Map and Integral Curves

2.3.1 Flow Map

The flow map describes the final position of a massless particle after being integrated for a specified time

duration (τ). It is defined as:

Φ(x0, t0,τ) : Rn ×R×R→ Rn = x0+
∫ t0+τ

t0
ν(x(t), t)dt (2.4)

The flow map takes the initial position x0, starting time t0, and integration time τ as inputs and gives the

final position of the particle.

2.3.2 Integral Curves

Integral Curves are the particle trajectories computed by integration of massless particles in a flow fields.

These curves are widely used as a visualization tool because they captures the flow dynamics and provide

valuable insights regarding the flow behaviour. The three different types of integral curves used as part of this

thesis are describe below:-

Streamlines: Streamlines are integral curves that are tangent to the flow field everywhere i.e. the mapping

between the particle trajectory and the flow field is bijective.

Pathlines: Pathlines represent the trajectories of particles starting at a specific time t0 and integrated for

a finite time duration. They are obtained by solving the autonomous ODE in Equation 2.3.

Streaklines: Streaklines are formed by tracing the flow maps of particles originating from the same

spatial position but at different times. To compute a streakline at time t, flow maps of particles seeded at

position x0 at times ts ∈ [t0, t] are computed. The curve connecting these flow maps represents the streakline.

In summary, the flow field describes the motion of a fluid, and the particle trajectory represents the

path followed by a particle in that flow field. The flow map gives the final position of a particle after a
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specified integration time, and integral curves (streamlines, pathlines, streaklines) provide insights into the

flow behavior and are valuable for visualization.

2.4 Numerical Integration

In practice, most of the times analytical solution of autonomous ODEs are not readily available and thus the

solution has to be approximated using numerical integration schemes. In this section, we describe the two

most widely used numerical integration scheme to compute the solution of the autonomous ODE described

in Eq. 2.3 and Eq. ??.

Explicit Euler Integration Given a particle initial position (x0, t0), integral curve via numerical integra-

tion is computed by iteratively advecting the particle under the flow field. In case of Euler Integration the

following set of operations are performed recursively until the desired duration is reached.

xi+1 = xi + εν(xi, ti) (2.5)

ti+1 = ti + ε (2.6)

The euler integration scheme is simple, and fast. However, the simplicity and fast computation speed comes at

the cost of numerical accuracy. The accuracy of the integration is heavily dependent on the step size ε . There’s

a trade-off between computation speed and accuracy when it comes to explicit Euler integration scheme.

Specifically, sufficiently smaller step sizes gives accurate integral curves, however, are more expensive to

compute. And vice versa, with larger step size the errors accumulate resulting in inaccurate integral curves.

Fourth order Runge-Kutta Integration The fourth order Runge-Kutta (RK4) integration scheme is a

more stable integration scheme as compared to explicit euler integration scheme. This integration scheme is

more forgiving towards the choice of step-size. The flow map computation using Runge-Kutta is done using

the following set of operations:-

k1 = ν(xi, ti) (2.7)

k2 = ν(xi +
ε

2
k1, ti +

ε

2
) (2.8)

k3 = ν(xi +
ε

2
k2, ti +

ε

2
) (2.9)

k4 = ν(xi + εk1, ti + ε) (2.10)

xi+1 =
ε

6
(k1 +2k2 +2k3 + k4) (2.11)

ti+1 = ti + ε (2.12)
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The computation cost per step in RK4 mainly involves the evaluations of the derivative function at different

points within the time step. Since RK4 evaluates the derivative function four times, it is generally more com-

putationally expensive compared to simpler methods like the explicit Euler scheme. However, this increased

cost is accompanied by improved accuracy and stability, making it a popular choice for many practical appli-

cations. It’s worth noting that the computational cost per step can vary depending on the complexity of the

derivative function and the dimensionality of the problem. In some cases, the cost can be further reduced by

exploiting the problem’s structure or employing adaptive step-size control techniques to dynamically adjust

the step size based on error estimates.

Continuing from the brief overview of some of the fundamental concepts in the field of flow visualization,

in the subsequent section we delve into the relevant literature and research closely related to the contribution

made as part of this thesis.

2.5 Related Work

Image-Based Super resolution Super resolution methods for generating high resolution images have re-

ceived significant attention in the literature. Conventional methods like interpolation-based (25; 61) and

reconstruction-based techniques (83; 123; 20; 150) are simple but fail to generate perceptually accurate im-

ages. Dong et. al (23) introduced SRCNN - a pre-upsampling framework where the low-resolution(LR)

images are upsampled first and then finetunes using CNN models to generate the high-resolution (HR)

image. Similar to SRCNN many other techniques were introduced varying the network architecture and

learning strategies (63; 125; 126; 117). To overcome the computational expense of a pre-upsampling net-

works, (24; 116) introduced post-upsampling networks where the LR input image is passed through a Deep

CNN network with upsampling layers to generate HR images. Following the success of this framework,

most of the recent work use this framework (75; 125; 136; 44; 153; 67). Regarding network architectures,

ResNet (47) and DenseNet (53) has been widely used (71; 125; 75; 153). Lai et.al (67) introduced a Laplacian

pyramid network to learn multi-scale super resolution. In practice, l1 loss between image pixels has shown to

be a better choice as compared to l2 loss (154; 75; 3). However, pixel based loss are known to produce over-

smooth textures. Many other loss functions like content loss (59), texture loss (108) and adversarial loss (71)

has been explored to generate more photo-realistic image.

Super resolution methods for data reduction. A common form of data reduction for flow fields is super

resolution, where the objective is to upsample a low-resolution flow field to a high-resolution flow field. Guo

et. al (36) showed promising results for 2x and 4x up-sampling of flow field data using a deep learning based

approach where they optimize for the magnitude and angle of the target vectors. The work by Guo et. al was

only limited to the spatial domain of a dataset and did not account for the spatio-temporal coherence present in
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unsteady flow fields. Han et al. (42) proposed SSR-TVD a method for flow field super-resolution that takes the

spatio-temporal coherence present in the data into consideration while performing super-resolution and does

not treat space and time domain independently. Other deep learning-based super resolution schemes (23; 24)

based on convolutional neural networks (CNN) have been explored, where the assumption is that patterns in

downsampled data can be exploited to appropriately resolve details in the upsampled data. Jakob et al. (56)

used a CNN based neural network to perform flow map super resolution. In all such methods, there exists a

reliance on training data – paired low-resolution and high-resolution flow field, or flow map, examples. As

such, at inference time, if there exists a domain mismatch between train and test data then super resolution

methods are less effective. Closely related to superresolution are works that aim to reconstruct the flow field

from a sparse set of scattered data. Prior works (113; 28; 152) achieve flow field reconstruction by directly

optimizing for the velocity vectors. Han et al. (41) and Gu et al. (32) reconstruct flow fields from a set

of representative streamlines. The work done by Han et al. (43) has similar goals to ours; however their

approach uses a neural network that predicts flow maps directly.

Compression-based data reduction. Given that 3D unsteady flow is often in an Eulerian representation,

e.g. a time-varying flow field, a common method for data reduction is lossy compression. Although volu-

metric compression of scalar fields has a long history within scientific visualization (90; 37), with numerous

approaches specifically targeting time-varying data (112; 82; 57), exploiting the redundancy between (1)

space, (2) time, and (3) vector components presents challenges for effective reduction. One common strategy

is to flatten the data as a 1D function, and approximate the function through different fits, e.g. B-splines (68)

or more adaptive fitting (22). Highly-compressive representations can also be obtained by treating the data as

a tensor, e.g. a 5-tensor for space, time, and vector component, and performing a tensor-based decomposition

of the data (124; 4). TTHRESH (6) is a notable tensor compression method that exploits the fast decay in

transform coefficients, achieved via adaptively thresholding and quantizing these coefficients for significant

compression gains. Recent work considers fitting implicit neural representations (120; 130) to time-varying

volumetric scalar fields (81) (neurcomp), with compression achieved by controlling the network size, and

weight quantization. In an follow up work, Weiss et al. (145) improved neurcomp by taking advantage of the

GPU tensor cores.

Implicit Neural Representation (INR) The development of neural representations of field-based data

has grown at a rapid pace in the past 2 years, please see the following surveys (132; 147) for a comprehensive

overview on the breadth of applications. The field has burgeoned, in large part, due to the development of

neural radiance fields (NeRF) (87), or reconstruction of radiance fields from a collection of images. Their

success has led to rapid development within so-called implicit neural representations, a class of coordinate-

based neural networks for representing fields. Numerous methods have been developed that study how to
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encode position as input to a neural network (48; 120; 130), and different network architecture designs and

optimization schemes (29; 54). There has also been significant effort on methods that can handle large data

sizes, e.g., high-resolution geometric shapes (84; 127) and images (84) that are scalable to train and permit

reasonably fast inference. More broadly, localized representations (18; 86) have also been investigated to

handle larger data sizes.

Scale-space and Multiresolution Representations The use of scale is predominant within visualization.

For the purposes of preventing aliasing, scale-space representations are quite common to use in conjunc-

tion with subsampling, as seen in many visualization approaches that rely on multiresolution representa-

tions (51; 52; 118; 138). Multiresolution methods have further been studied within tensor-based modeling

of volumetric fields (124). Multi-scale methods have further been employed for vector fields (91) and tensor

fields (62), in order to extract features (e.g. coherent structures, expansion/contraction of flows) of multiple

scales within complex vector/tensor-valued fields. More traditional scale-space representations, e.g. those

based on successive applications of low-pass filters such as Gaussian filters, have been used for the design

of transfer functions in volume rendering (19), as well as feature extraction within scalar fields for medical

images (58), and for vector field feature extraction (139; 140). However, other types of nonlinear, data-

dependent filtering approaches have shown beneficial for visual analysis, e.g. bilateral filtering has been used

in medical imaging (40), viewpoint selection (131), and feature-preserving temporal smoothing (134). Topo-

logical simplification (27) is another natural way to express scale as the thresholding of critical point pairings

within a persistence diagram (33; 133). One of our proposed works SCALE-INR (Chapter 5) aims to support

all such notions of scale in augmenting INRs, without necessarily tying a single scale to the compressive

representation, as, for instance, pursued in Soler et al. (121) for topology-controlled compression.

Multiscale INR and INR Filtering Approaches that seek multiscale implicit neural representation are

most relevant to SCALE-INR. The recent work of BACON (77) demonstrates how one can adapt a multi-

plicative filter network (29) to be band-limited by design. Unlike SCALE-INR, BACON does not require an

explicit scale-space representation on which to optimize, but in turn, can only handle one kind of scale: a box

filter applied in the frequency domain. The approach of mip-NeRF (8) proposes an integrated positional en-

coding, thus enabling a multiresolution representation akin to classic mipmaps in computer graphics. Similar

to SCALE-INR, this method can learn fields of varying scales, but is limited to antialiasing. SCALE-INR

considers a broader notion of scale, made possible by shifting how scale is incorporated within the network.

In particular, SCALE-INR is influenced by recent methods that characterize the space of functions repre-

sented by INRs, both for precise characterizations of specialized models (29), and more broadly, multi-layer

perceptrons (MLPs) that utilize positional encodings (151). Recently, Xu et al. (148) proposed a new ap-

proach called INSP-Net that allows for direct modification of INRs without explicit decoding. They achieve
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this by using differential operators on the INRs to perform signal processing. Similar to INSP-Net, Nsampi et

al. (93) proposed a method to convolve neural fields using piecewise polynomial kernel. Similar to SCALE-

INR both the approaches operate on the neural fields directly, however, both approaches are limited to simple

Gaussian filters while SCALE-INR can be reinforced with non-linear filters as well.

Lagrangian Particle Interpolation. The Lagrangian representation of unsteady flow fields stores data in

the form of trajectories of massless particles. Agranovsky et al. (1) showed that, for exploratory analysis, in-

situ trajectory computation and post-hoc interpolation is more storage-efficient than compared to traditional

Eulerian representations. Several works to improve the accuracy of post-hoc Lagrangian particle interpolation

have been proposed since (16; 2; 12; Sane et al.; 99). Bujack and Joy (12) proposed a method for representing

trajectories as parametric curves for a more accurate post-hoc interpolation, and additionally, they performed

an error estimation of the proposed Lagrangian representation. In a similar way, several works focused on

theoretical/empirical error analysis of Lagrangian interpolation (15; 55; 109). Even though these techniques

do not require expensive numerical integration during post-hoc analysis, they are still expensive because of the

number of steps required to compute the full trajectory. In the recent work by Li et al. (72) they represent the

trajectories as B-spline curves and improve the computation time of new trajectories by interpolation between

the B-spline control points. Lagrangian representations of flow are attractive as a kind of data reduction,

and assuming a sufficiently-dense sampling of trajectories, can often be quite accurate. Nevertheless, this

representation can come at a steep computational cost for interactive analysis, as a common bottleneck is

repeatedly performing spatial queries over irregularly-sampled particles in space-time.

Fast FTLE computation. Computation of FTLE and its applications have received significant attention

in the literature. Haller et al. (38? ) showed that Lagrangian coherent structures can be extracted as the

ridges of FTLE. Following this pioneering work many researchers focused on improving the computation

time of FTLE. Garth et al. (31) proposed an incremental flow map approximation technique for improving

the computation time of FTLE. Sadlo et al. (103) introduced a technique for FTLE ridge extraction using

adaptive mesh refinement. Their proposed approach provides a speed-up in FTLE computation by avoiding

integration of seed particles where no ridges are present. Kasten et al. (60) constructed a localized FTLE and

additionally, a faster way to compute it by reusing the separation values from previous time steps. Lipinski et

al. (78) proposed a ridge tracking algorithm that approximates ridges in the FTLE for each time step and then

approximates the ridge location in subsequent times. Brunton et al. (11) proposed a fast FTLE computation

technique taking advantage of flow map composition for longer flow map approximations. Hlawatsch et

al. (50) introduced a hierarchical line integration scheme taking advantage of spatial and temporal coherence

to improve the computation time of a dense set of particles. This work focuses on projection of particles based

on the short pre-computed integral curves and thus has an accuracy trade-off. Sadlo et al. (104) proposed a
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grid advection technique for efficient FTLE computation taking advantage of temporal coherence. All these

techniques are specifically targeted towards improving the computation time of a specific downstream task

i.e. either FTLE or extraction of LCS from FTLE.

Neural Differential Equations Neural ordinary differential equation (Neural ODE), a technique to solve

initial-value ODE problems proposed by Chen et al. (17) has been extended (79; 92) and applied to various

different research domains (45; 96). Theoretically, since, flow maps are solution to an initial-value ODE,

neural ODE should naturally extend to solve the problem. However, learning a flow map representation using

neural ODE has not been studied yet. Biloš et al. (10) proposed an alternative technique to neural ode, wherein

they approximate the solution directly in a single step instead of integrating within a latent representation

space (17; 102). Other methods have explored gradient-based learning, e.g. modeling shapes with gradient

fields (14), and accelerating the volume-rendering integral through learning antiderivative networks (76). Li

et al. (73) proposed a self-consistent approach for solving partial differential equations (PDEs). It is worth

noting that their work closely aligns with one of our methodologies presented in this thesis (106) as concurrent

work. However, the key distinguishing factor of our approach lies in the proposed novel network design.
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CHAPTER 3

Integration-Aware Vector Field Super-Resolution

In this chapter, we delve into the problem of super-resolution as a means of reducing data for the Eulerian

flow field representations. While previous research has explored super-resolution techniques for vector fields,

there is a significant limitation shared by existing approaches: they overlook how vector fields are practically

employed once an upsampled vector field is obtained. Streamlines, or integral curves of the vector field,

play a crucial role in flow visualization, and their visual analysis is a cornerstone of this field. To this end,

we propose an integration-aware super-resolution approach specifically designed for 3D vector fields, which

incorporates streamlines into the optimization process.

Our approach goes beyond simply enhancing the resolution of vector fields; it takes into account the

practical aspects of streamline analysis. By considering streamlines as an integral part of the optimization

process, we ensure that the resulting upsampled vector field aligns with the requirements of flow visualization.

We address important factors related to streamline integration, such as seeding and streamline length, and

investigate how these factors impact the upsampled vector field. Additionally, to showcase the effectiveness

of our proposed approach, we conduct a comprehensive evaluation, both quantitatively and qualitatively, on

various flow field datasets to assess the performance of our model and highlight its advantages over existing

techniques and emphasize its relevance in the context of flow visualization.

3.1 Approach

In this work, our goal is to estimate a high-resolution vector field, denoted Vh ∈ Rw×h×d×3 of spatial resolu-

tion (w×h×d), given its corresponding low-resolution counterpart, denoted Vl ∈ Rw′×h′×d′×3. We assume

(a) Ground Truth (b) IA-VFS (c) CL

Figure 3.1: Comparison of streamline results between our technique (b), ground truth (a) and the baseline
(c) for tornado dataset, differences highlighted in yellow.
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a subsampling factor r, a positive integer such that w = r ·w′, h = r ·h′, and d = r ·d′. Our approach to super-

resolution is to learn a mapping that we denote as f : Rw′×h′×d′×3 → Rw×h×d×3, where f is parameterized as

a volumetric convolutional neural network, following prior work (36). We depart from Guo et al. in what we

optimize: we would like the mapping f to upsample vector fields in such a manner that integral curves of Vh

are preserved. Namely, integrating f (Vl) produces streamlines that are as close as possible to streamlines of

Vh.

3.2 Integration-Aware Upsampling Loss

Loss functions used in super-resolution tend to focus on content given in the high-resolution target, e.g. pixels

in a high-resolution image, or in our case, vectors in a high-resolution vector field (36). This can be expressed

as follows:

LM =
1

|P| ∑
p∈P

∥ f (Vl))[p]−Vh[p]∥2 , (3.1)

where P indexes over vertices of a (w×h×d) grid.

To ensure that our network can preserve streamlines, we introduce a loss function that is based on integral

curves of, both, Vh and upsampled vector field f (Vl), please see Fig. 3.2. Specifically, we denote S =

{s1,s2, . . . ,sn} as a set of integral curves derived from Vh, where si = (pi,1,pi,2, . . . ,pi,m) is a set of points

on curve si. Given the upsampled vector field f (Vl), we also form integral curves, taking the seed points

from ground truth for integration. Specifically for streamline si, we integrate f (Vl) starting at position pi,1 to

obtain streamline s′i = (p′
i,1,p

′
i,2, . . . ,p

′
i,m), where p′

i,1 = pi,1. Our loss function is designed to ensure that the

two curves remain close at all integrated positions:

LS =
1

n×m

n

∑
i=1

m

∑
j=1

∥∥pi, j −p′
i, j
∥∥

2 . (3.2)

In practice, we combine the two loss terms, ensuring a balance between vector content (LM) and flow

structure (LS):

LT = λLS +(1−λ )LM (3.3)

where λ is a hyper-parameter which determines the relative importance of integration-based loss – a high λ

places large importance on integration. We optimize the loss via stochastic gradient descent, which requires

backpropagating over the integration method of choice. However, integration schemes like Euler integration

and Runge-Kutta, can be expressed as a differentiable function with respect to the vector field, assuming a

differentiable form of interpolation for accessing vectors at arbitrary positions. In practice, we use trilinear

interpolation, thus we may optimize the loss function LT end-to-end.
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Table 3.1: The dimensions and number of timesteps of each dataset.

datasets dimensions (x× y× z) timesteps (t)
tornado 128×128×128 50
square cylinder 192×64×48 100
tangaroa 300×180×120 200

What remains is a way to form the streamline set P . We would like to ensure the streamlines are

representative of predominant flow features. To this end, we consider seeding and integration length, studied

further in Sec. 3.6.

Seeding: The starting positions from which to integrate are important for ensuring flow features are

preserved (110). To capture flow features, we use the entropy-based seeding technique of Xu et al. (149).

We normalize the resulting entropy scalar field and treat it as a probability distribution from which to sample

positions. In order to not starve low-entropy regions of the flow field, we modify the distribution to interpolate

between a uniform distribution, one that is a function of the entropy field:

s(x) = x
ex + e−x

e−x −αex , (3.4)

where α ∈ [−1,0] interpolates between distributions.

Integration Length: The length of the streamlines further has an impact on flow features. Specifically,

we use Euler Integration with sufficiently small step size and consequently, identify streamline length with

the number of steps m taken during integration. The streamline length with which we train can have an impact

on the network’s ability to generalize, e.g. by training on small-length streamlines, will the network produce

vector fields that faithfully reflect long streamlines? Similarly, training on long streamlines may sacrifice the

ability to preserve small streamlines.

3.3 Implementation Details

Our network architecture for f closely follows Guo et al. (36), the only exception that we replace their voxel

shuffle layers with nearest-neighbor upsampling for simplicity. Through experimentation, we found training

the model using Eq. 3.3 from scratch posed challenges for optimization. Hence, we first train the model

using the content loss (Eq. 3.1) for 25k iterations, and then fine-tune the model using the total loss (Eq. 3.3)

for another 10k iterations. We found Euler Integration with sufficiently small step size and 4th order Runge-

Kutta integration give similar results. However, the former trains significantly faster, making it our choice

of integration scheme for all the experiments. We use the Adam optimizer (64), with a starting learning rate
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Content Loss

Streamline Loss

+

Back-propagate

Generate Streamlines Generate Streamlines

HIGH RESOLUTION VECTOR FIELD LOW RESOLUTION VECTOR FIELD SUPER RESOLUTION VECTOR FIELD

 Downsample

Figure 3.2: Overview of our approach. The network takes in the low-resolution vector field as input and
outputs a super-resolution vector field. A content loss, alongside a streamline-based loss, between super-
resolution and ground truth vector fields are used to optimize the network parameters. The use of 2d vector
fields in the figure is for illustrative purpose only.

of 10−4, we reduce it by a factor of 0.8 every 1000 iterations until the model fails to improve on withheld

validation data. While training, for all the experiments we used a subsampling factor r = 4, batch size of 1

and 2,000 streamlines within a batch to form the loss function (LS).

3.4 Dataset and Training Details

All our experiments were carried on the datasets listed in Table 4.2, where x,y,z represents the spatial dimen-

sions and t represents the number of timesteps in the dataset. To assess generalization of IA-VFS, we include

every 4th timestep of a given dataset in the training set and randomly select t = (t̂ mod 10) timesteps for

validation, where t̂ represents the timesteps not being used for training. All the remaining timesteps are then

used for testing purposes. All the experiments were carried out on NVIDIA TESLA V100 GPU.

Baseline We use the following 2 baselines to compare with our technique. (1) Trilinear Interpolation

(TI): We use trilinear interpolation to upsample the low-resolution vector field to high-resolution vector field.

(2) Content Loss (CL): Using the same network architecture described in Sec. 3.3, we optimize only for the

content loss in Eq. 3.1. Note, this represents Guo et al. (36), without using an angle-based loss, which we

experimentally found to produce similar streamline results.

Evaluation Metric We use two different evaluation metrics to quantitatively evaluate IA-VFS. We use
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(a) GT (b) IA-VFS (c) CL (d) TI

Figure 3.3: Comparision of the differences in streamlines of vector fields generated by different models with
respect to the ground truth highlighted in yellow. Top to bottom: square cylinder, tangaroa.

PSNR to evaluate the quality of the super-resolution vector field. PSNR is defined as follows:

PSNR(Vh, f (Vl)) = 20log10 R−10log10 MSE(Vh, f (Vl)), (3.5)

R represents the difference between the minimum and maximum value of the vector fields across all the

timesteps for a given dataset and MSE(Vh, f (Vl)) represents the mean square error between the vector fields

Vh and f (Vl).

Since errors accumulate quite easily when calculating streamlines, the position of the last point on a given

streamline of f (Vl) can indicate how much it deviated from the last point position of streamline of Vh. To

this end, we define ALP (Average last position loss) to evaluate the quality of streamlines as follows:

ALP =
1
n

n

∑
i=1

∥∥pi,m −p′
i,m
∥∥

2 (3.6)

where n represents the number of streamlines, pi,m represents the last point’s position of ith streamline of Vh

and p′
i,m represents the last point’s position of ith streamline of the f (Vl).

3.5 Quantitative and Qualitative Results

In Table 3.2, we summarize the quantitative evaluation of IA-VFS against TI and CL by averaging the PSNR

(Eq. 3.5) and ALP (Eq. 3.6) values across all the test timesteps. We observe that IA-VFS outperforms TI and

CL in ALP, indicating that our method more faithfully preserves streamlines. In case of tornado dataset, CL

has the highest PSNR but it comes at the cost of lower ALP - this can be seen in Figure ?? where, IA-VFS (b)

produces more faithful streamlines as compared to CL (c) which fails to capture the helix like pattern at the
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Table 3.2: Average last position loss (Eq. 3.6) and PSNR for all the datasets.

Dataset Method PSNR ALP
TI 47.33 0.233

Tornado CL 51.69 0.092
IA-VFS 50.84 0.058
TI 32.53 0.791

Square cylinder CL 48.85 0.268
IA-VFS 48.86 0.245
TI 49.68 1.222

Tangaroa CL 51.96 1.025
IA-VFS 52.21 0.914

Table 3.3: Average PSNR and ALP values for various α values for tornado dataset.

α PSNR ALP
-1 50.93 0.0372
-0.01 50.88 0.0333
-0.001 50.78 0.0356
-0.0001 50.73 0.0378
0 51.47 0.0513

Table 3.4: Average PSNR and ALP values for different λ values for tornado dataset.

λ PSNR ALP
0 51.69 0.0521
0.001 52.04 0.0465
0.1 51.76 0.0379
0.3 51.22 0.0359
0.5 50.88 0.0333
0.7 50.65 0.0356
1 50.33 0.0374

eye of the tornado. In Figure 3.3 we can see the streamline errors made by CL and TI in all the datasets. In

square cylinder dataset we can see that IA-VFS captures the highlighted streamline whereas CL and TI fails

to do so. We can also observe that the spiral flow is more accurate in (b) as compared to (c) and (d).

3.6 Hyperparameter Study

In this section, we analyze how various streamline hyperparameters affect the training process and justify

our choices. We experimented with the following hyperparameter settings: the choice of λ (c.f. Eq. 3.3),

streamline seeding, and number of integration steps.

Study of α parameter From Eq 3.4, we may bias seeds towards high entropy or uniformly-distributed

positions via the parameter α . Here we study the influence of α , where α = −1 gives us the normalized

entropy scalar field back, and increasing α increases the chances of high entropy regions to be selected as

seeds.
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Table 3.5: Average last position loss of streamlines (Eq. 3.6) for models trained and evaluated on different
streamline lengths.

[5em]TrainEval 150 200 250 300 350 400
150 0.0262 0.0357 0.0454 0.0552 0.0657 0.0764
250 0.0260 0.0347 0.0438 0.0531 0.0630 0.0732
300 0.0262 0.0343 0.0427 0.0514 0.0605 0.0699
350 0.0261 0.0337 0.0419 0.0501 0.0588 0.0678
400 0.0264 0.0342 0.0424 0.0508 0.0596 0.0686

In Table 3.3, we observe that there is a trade-off between PSNR and ALP for the tornado dataset based on

the value of α . Heavily biasing towards the high entropy regions (α = [−0.0001,0]) leads to high ALP values.

Since the network receives few important streamlines it fails to capture them accurately during evaluation.

Meanwhile, a more spread out selection of seed points in and around high entropy regions with α = −0.01

gives us the best ALP value and with acceptable PSNR.

Study of λ hyperparameter We can see in Equation 3.3 that λ controls the weight on the content loss

and streamline loss. From Table 3.4 we observe that as we increase the value of λ we see a decrease in both

PSNR and ALP. We found that a λ = 0.3 provides a good balance between PSNR and ALP.

Study of streamline length Streamline length determines the maximum number of steps to be taken

while integrating the streamline. From Table 3.5 we can see that models trained on longer streamlines e.g.

300, 350 and 400 outperform models trained on smaller streamlines e.g. 150, 250 in terms of average ALP

values. We found that model trained on streamline length of 350 provides good generalization when evaluated

across different streamline lengths.

3.7 Conclusion and Future Work

In this work, we proposed an integration-aware super resolution technique for 3d vector fields. We think our

approach is an important steps towards incorporating visualization aspects of vector fields in the optimization

process. We show the benefits of using our technique and how various factors of vector visualization via

streamlines affects the training process. There are several directions we would like to explore for our future

work. In this work we experimented with a downsampling factor of 4, and we intend to try our framework

on larger scaling factor. We have thus far, only considered spatial super-resolution of vector fields, and we

intend to take into account the temporal coherence of unsteady vector fields.
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CHAPTER 4

Neural Flow Map Reconstruction

In this chapter, we shift our focus towards Lagrangian specification of data and address the problem of data

reduction. We treat a collection of flow map samples for a single dataset as a meaningful, compact, and

yet incomplete, representation of unsteady flow, and our central objective is to find a representation that

enables us to best recover arbitrary flow map samples. To this end, we introduce a technique for learning

implicit neural representations of time-varying vector fields that are specifically optimized to reproduce flow

map samples sparsely covering the spatiotemporal domain of the data. We show that, despite aggressive

data reduction, our optimization problem – learning a function-space neural network to reproduce flow map

samples under a fixed integration scheme – leads to representations that demonstrate strong generalization,

both in the field itself, and using the field to approximate the flow map. Through quantitative and qualitative

analysis across different datasets we show that our approach is an improvement across a variety of data

reduction methods, and across a variety of measures ranging from improved vector fields, flow maps, and

features derived from the flow map.

4.1 Approach

We describe our approach in this section, organized by the type of data our approach assumes, a description

of our neural field representation, and details on our approach for optimization.

Ground Truth Neural Flow Map TTHRESH Shepard Interpolation

Figure 4.1: We show a comparison of our method, Neural Flow Map, with existing time-varying vector field
data reduction schemes for compression (TTHRESH) and scattered data interpolation (Shepard Interpola-
tion). We show a volume rendering of the FTLE for the Tornado dataset for the recovered time-varying
vector fields found by each method. Our proposed approach optimizes a neural network to recover flow map
samples, leading to strong generalization in the flow map, and consequently, faithful recovery of derived
quantities such as FTLE.
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4.1.1 Data Reduction: Flow Map

There are, fundamentally, two different ways in which to represent unsteady flow data: Eulerian represen-

tations, and Lagrangian representations. Within the context of fluid dynamics, the Eulerian representation

of flow describes the time-variant instantaneous velocity of fluid particles at fixed spatial locations in the

domain. Typically, an Eulerian specification of unsteady flow manifests as a time-varying vector field, which

maps a given spatial position and (nonnegative) time value to a vector:

ν : Rd ×R≥0 → Rd , (4.1)

and we assume d ∈ {2,3}. In practice, we are given a sampling of ν , usually sampled on a regular grid with

spatial resolution (sx × sy × sz) and T time steps. As previously discussed, for the purposes of data reduction,

Eulerian representations are typically (1) compressed, or (2) downsampled, and then upsampled on-demand

via superresolution methods.

In contrast, in this work we use the Lagrangian representation of flow as a form of data reduction. The

Lagrangian viewpoint describes the underlying motion of flow as a set of massless particles in the domain

that travel through space and time. The mathematical object that represents how a particle is transported

under the flow field, starting at a given spatial position, time step, and for a given duration, is known as the

flow map. The flow map can be constructed by, first, defining how a particle x(t) traveling in the domain is

advected by the flow field, governed by the following ordinary differential equation:

dx(t)
dt

= ν(x(t), t), x(t0) = p, (4.2)

where the initial condition on the right-hand side specifies the particle’s initial position p at time t0. Secondly,

the particle’s advection for a duration δ can then be found via integration:

Φ
t0+δ

t0 (p) = x(t0)+
∫ t0+δ

t0
ν(x(t), t)dt. (4.3)

The flow map Φ is an important mathematical object for the analysis and visualization of unsteady flow

phenomena, e.g. for extracting Lagrangian coherent structure (? ) and for the visual analysis of attracting

and repulsive behaviors (100). Prior work on data reduction typically takes a collection of integral curves,

each curve being densely sampled in time, from which to then interpolate the flow map at arbitrary points in

space-time. In contrast, in our work we do not perform such a dense sample; rather, we assume substantially

less information for each item in our dataset: (1) an initial position p, (2) the starting time of advection t, and
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Figure 4.2: We show an overview of our approach. Our method assumes samples of a flow map for optimiza-
tion (top), namely the starting point, start time, and end point, being the result of integration. Given a single
sample of a flow map (bottom), our method aims to learn a neural representation of a time-varying vector
field that, upon integration, can recover the output of the flow map. The brightness of integral curves encodes
time.

(3) the result of applying the flow map Φ
t+δ
t (p). For simplicity, in our work we assume that the duration δ is

fixed as a constant, though this restriction can easily be relaxed. All told, our method assumes the following

dataset as input:

T =
{(

p1, t1,Φ
t1+δ

t1 (p1)
)
, . . . ,

(
pn, tn,Φ

tn+δ
tn (pn)

)}
, (4.4)
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namely, we assume n total flow map samples from Φ. As an example, in Fig. 5.2(top) this corresponds to

the start and end points of integral curves.

4.1.2 Neural Flow Map

The objective for our approach is to learn a model of unsteady flow that provides us with the following:

1. The model provides for an effective Eulerian representation of flow, e.g. it is a good approximation of

the ground-truth vector field ν .

2. The model provides for an effective Lagrangian representation of flow, e.g. it allows us to reproduce

the given dataset of flow map samples, T , whilst generalizing to arbitrary samples of the flow map.

To this end, our model takes on an Eulerian reference frame, namely, we utilize neural representations of

fields (120; 130), in particular those that are time-varying (81; 146). In our problem, this amounts to a neural

network that takes as input a spatiotemporal location, and outputs a vector. We denote this as a function, f ,

parameterized by a set of weights θ ∈ RD, such that fθ : Rd ×R≥0 → Rd . The function fθ is a multi-layer

perceptron with sinusoidal activation functions; we defer architecture details to Sec. 4.2.5. Ideally, we would

like fθ to be as close as possible to ν .

The manner in which we optimize for fθ , however, takes on a Lagrangian frame of reference, please see

Fig. 5.2 for an overview. Specifically, for a given spatial position p, time t0 and duration δ , we define our

neural flow map as follows:

Φ̃
t0+δ

t0 (p) = x̃(t0)+
∫ t0+δ

t0
fθ (x̃(t), t)dt, (4.5)

where a particle x̃(t) is governed by the following ODE:

dx̃(t)
dt

= fθ (x̃(t), t), x̃(t0) = p. (4.6)

Given samples of our flow map T , we wish to find a neural representation of the time-varying vector field

that minimizes the following equation:

1
|T | ∑

(p,t,q)∈T

∥Φ̃
t+δ
t (p)−q∥2

2, (4.7)

e.g. the output of the neural flow map is a good approximation of the actual flow map output q = Φ
t+δ
t (p),

where “good” is measured in terms of their squared Euclidean distance, though in principle any differentiable

loss function could be used. Note that our neural representation fθ can be evaluated at arbitrary points in

29



Algorithm 1 Pseudocode for memory-efficient backpropagation under explicit Euler integration

1: Input: spatial position p , time t0 , duration δ , integration step size ε

2: Form a time-dependent particle x̃(t) under the neural vector field through solving Eq. 4.6 under explict
Euler integration

3: Initialize position gradient a = dL
dx̃(t0+δ )

4: Initialize weight gradient dL
dθ

= 0
5: for t = (t0 +δ − ε) to t0 in increments of ε do
6: Integrate weight gradient dL

dθ
= dL

dθ
− ε aT ∂ fθ (x̃(t),t)

∂θ

7: Integrate position gradient a = a− ε aT ∂ fθ (x̃(t),t)
∂ x̃(t)

8: end for
9: Return dL

dθ

space and time. This obviates the need to interpolate from a sampled vector field, and further, permits us to

optimize over a set of flow map samples T whose positions and times originate at arbitrary locations.

In practice, to approximate the neural flow map in Eq. 4.5, it is necessary to select a numerical integration

scheme. For simplicity, we use an explicit Euler integrator with sufficiently small step size to mitigate global

truncation error. Thus, we can write a particle advected under our neural field representation fθ as follows:

x̃(t + ε)≈ x̃(t)+ ε · fθ (t), (4.8)

for an appropriately-defined step size ε .

4.1.3 Efficient Backpropagation

An immediate computational problem arises from naively optimizing Eq. 4.7 under standard reverse-mode

automatic differentiation. Namely, in order to compute gradients of the loss with respect to weights θ , we

must record all activations produced by the neural network fθ , for each step taken in our integration scheme

(Eq. 4.8). For large-scale datasets, and batch-based optimization, this scheme quickly overwhelms the amount

of memory necessary to perform backpropagation.

To address this challenge, we take advantage of the adjoint sensitivity method for ODEs, as proposed in

Chen et al. (17). In our setting, we are primarily concerned with efficiently computing the gradient over all

examples from Eq. 4.7, which we express as:

1
|T | ∑

(p,t,q)∈T

∇θ L(x̃(t +δ ),q), (4.9)

where L is the loss for a single flow map sample as in Eq. 4.7, and x̃(t + δ ) = Φ̃
t+δ
t (p). We can formulate

a memory-efficient gradient computation via “continuous backpropagation”, considering the following for
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ε > 0:

a(t) =
dL

dx̃(t)
=

dL
dx̃(t + ε)

· dx̃(t + ε)

dx̃(t)
, (4.10)

that is, the derivative of the loss with respect to the particle’s position at time t can be computed based on

the flow map spatial Jacobian at the subsequent time step, t + ε . It is straightforward to show (17) that this

condition, as well as Eq. 4.6 leads to the following backward ODE, starting from the end of integration:

da(t)
dt

=−a(t)T ∂ fθ (x̃(t), t)
∂ x̃(t)

, (4.11)

where the second term is the Jacobian of the neural vector field. By integrating forward to the full duration

δ , we obtain a(t + δ ) which serves as our initial condition in this ODE, and consequently, can solve for a

through numerical integration.

Introducing an autonomous ODE by prescribing differential equations on θ and t:

dθ

dt
= 0,

dt
dt

= 1, (4.12)

and using the same reasoning above in Eq. 4.11, we have a second ODE to find our primary quantity of

interest, the gradient of the loss:
dL

dθ(t)
=−a(t)T ∂ fθ (x̃(t), t)

∂θ
. (4.13)

An autonomous ODE is an ordinary differential equation that does not explicitly depend on the indepen-

dent variable, in this case, time t. To this end, we introduce an autonomous ODE by prescribing differential

equations on θ and t:
dθ

dt
= 0,

dt
dt

= 1, (4.14)

and using the same reasoning above in Eq. 4.11, we have a second ODE to find our primary quantity of

interest, the gradient of the loss:
dL

dθ(t)
=−a(t)T ∂ fθ (x̃(t), t)

∂θ
. (4.15)

The equation, dθ

dt = 0, signifies that the weight parameter θ remains constant throughout the integration.

This enables the computation of gradients with respect to this fixed-weight configuration, which can later

be used for optimization. We are not actively changing θ while performing backpropagation; instead, we’re

investigating how changes to θ would affect the loss. The second equation, dt
dt = 1, indicates that the ’rate of

change’ of time is constant. By adding these equations, we create an augmented ODE system that allows us

to capture the dynamics of all necessary quantities (a(t),θ , t) within a unified framework. We can then use an
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ODE solver to propagate this system in time and compute the quantities of interest (specifically, the gradients

of the loss) in a computationally efficient manner.

In principle, the gradient computation can be applied to any numerical integration scheme. In our case, for

explicit Euler integration, the formulation leads to a straightforward algorithm that we summarize in Listing 1

for a single flow map sample; batch computation is straightforward to extend. Note that this requires the

computation of two types of gradients of the neural vector field per integration step: (1) weight gradient, and

(2) positional gradient. This amounts to 2 applications of vector-Jacobian multiplication, a basic operation in

modern deep learning libraries.

4.2 Analysis

4.2.1 Fitting to Flow Map Samples, Fitting to Vectors

In this section, we show through experimentation an analysis of different factors that effect flow map-based

optimization. Specifically, our approach necessitates the use of an numerical integration scheme. Thus we

are left with a number of questions, namely, is Euler integration sufficient, in practice? How do we sample

seed points to generate the flow maps? For how long should we integrate? To answer these question, we

perform a study to determine and justify the choices we make as part of the numerical integration scheme.

We first qualitatively highlight the benefits of learning a vector field via flow map-based optimization,

compared to the more traditional baseline of directly fitting to vectors. Specifically, we have taken the Heated

Cylinder dataset and generated 128K flow map samples, sampling uniformly at random over space-time, with

integration duration δ = 0.15. For comparison, we fit an implicit neural representation (120; 130; 81) to the

vectors at the initial seeds of these flow map samples. Thus, both methods – directly fitting a vector field,

optimizing for a flow map – receive different, but the same amount of, information.

Fig. 4.3 shows the results. The top row shows the integral curves from which the flow map samples were

computed, namely, all such flow map samples that pass through time t = 6.23. Note the sparsity in the training

data (top-left). We find that our method (top-right) is able to fit well to these training flow map samples, as

one would expect assuming optimization is successful. For the vector field-based fit (top-middle), however,

we find that integrating this vector field at these seeds results in sub-optimal integral curves. The ramifications

of this on the rest of the data are presented in the middle row, where we take an arbitrary, dense set of seeds at

the aforementioned time, and compute integral curves with the same duration δ = 0.15. Here, we find that at

inference, flow map-based optimization leads to vector fields whose integral curves better capture features in

the dataset, e.g. swirling motion due to vortices shed throughout this simulation, in comparison to methods

that just fit to the vectors directly. The bottom row of Fig. 4.3 compares the FTLE for an integration duration

of δ = 0.3. Given the extreme sparsity of samples we do not expect a high-quality FTLE approximation, but
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Figure 4.3: We show the ability of our method to reproduce integral curves given a sparse set of flow map
samples (top-left). The top row shows all integral curves within a particular time range from which flow map
samples for training were derived, the middle row demonstrates generalization on withheld space-time seeds
for integration, and the bottom row shows the FTLE. We find that optimization of the flow map (right) better
captures swirling features in this Heated Cylinder dataset compared to directly fitting to vectors (middle).

nevertheless, we can see, qualitatively, that flow map-based optimization tends to better capture the FTLE

over fitting to vectors.

We perform an additional experiment wherein we vary the reduction rate for the heated cylinder dataset

(95; 34), in order to study the differences between optimizing for flow map samples and fitting directly to

vectors. For the experiment, we choose reduction rates of 50, 100, 200, 300, and 400, relative to the total size

of the time-varying vector field. We set the network capacity to be 0.5 times the size of the total number of

flow map samples. We generate flow map samples by integrating particle using Euler integration scheme with

a step size of 0.1, measured in grid units, for a duration of 10. We train the models using Adam optimizer

with a starting learning rate of 10−4, decaying every 60 epochs by a factor of 0.2. We train the models for a

total of 150 epochs.
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Figure 4.4: We show quantitative results for our reduction rate experiment, where we measure the RMSE of
flow map error across different integration durations.

In Figure 4.5 the top row shows the FTLE generated using flow map samples seeded at timestep 1100,

and integrated for a duration of 80 (grid units). In the bottom row we show the FTLE error maps with respect

to ground truth. We can see that optimizing for flow samples outperforms directly fitting to vectors across all

reduction rates. In Figure 4.5 we show the flow map error for different durations. All the points are seeded

on the grid at time step t=0 and integrated using Euler integration scheme. Consistent with the FTLE plots,

we observe an improvement in performance with our method in representing the flow map. We find that

when the reduction rate is comparatively low (e.g 50) both methods are able to learn a good representation

of the underlying vector field and thus the flow map error is rather low. However, the difference between the

two optimization techniques is more prominent under aggressive reduction rates (e.g 300 and 400). We can

see that flow map-based optimization better preserves the features (e.g the swirling motions in the FTLE) as

compared to optimizing for the vectors directly.

4.2.2 Effect of Integration Scheme

In order to understand the impact of different integration schemes, we experiment with two of the most

widely used integration schemes - namely Euler integration and 4th order Runge-Kutta (RK4) integration.

Euler integration, albeit sensitive to the step size, is simple and fast. On the other hand 4th order Runge-Kutta

integration is more robust and accurate. In our experimental setup, we use the Double Gyre dataset (115),

and take flow map samples with fixed integration duration of δ = 10 and a step size of 0.1, originating from

every timestep excluding the last 10 timesteps for both integration schemes. Fig 4.6(a) shows the results of

Table 4.1: We list the total training time in minutes, Inference time (time taken to integrate 10,000 particles
for a duration of 100 grid-time) in seconds, and the model size for different reduction rate.

Reduction Rate Training Time Inference Time Model Size
50 209.68 53.81 5.4
100 92.75 40.05 2.7
200 40.3 23.06 1.3
300 26.11 18.72 0.90
400 20.40 14.23 0.67
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Figure 4.5: We qualitatively compare our method – Neural Flow Map to Neural Vector across different
reduction rates. We show (top) the FTLE (generated by integration particles seeded at t = 1100 and for a
duration of 80 in grid-time, and (bottom) difference images between the approximated FTLE and the ground
truth FTLE. We find that optimizing for flow map samples yields better performance across all the reduction
rates as compared to optimizing for the vectors themselves. We highlight the differences in purple.
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Figure 4.6: We show the vector field PSNR across all the timesteps of the Double Gyre dataset reconstructed
using flow map samples under Euler and RK4 integration scheme (a) and different seeding scheme (b). We
find the performance to be comparable, thus motivating our choice for a simple, explicit Euler scheme for
optimization.

training using Euler and RK4 integration. Clearly, with sufficiently small step-size Euler integration performs

on par with RK4 integration scheme and in the meanwhile being significantly faster to train. The model under

Euler integration scheme was trained in about 97 minutes whereas the model under RK4 integration scheme

took about 152 minutes. Thus for the remainder of the paper we use Euler integration scheme because of its

simplicity, faster training speed and accuracy as compared to RK4 integration.
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Figure 4.7: We show the vector field PSNR (left) across all timesteps for the Double Gyre dataset for
different models trained with flow map samples of varying integration duration. We show the generalization
capabilities of the models to integration durations that were not trained on as a heatmap (right).

4.2.3 Effects of Sampling

The way that we sample flow maps is important to ensure that flow feature are captured by the pathlines,

enabling efficient learning. Since we are working with a substantially reduced amount of data we can only

cover so much of the dataset. To this end, we propose two different sampling schemes, namely sparse-time

dense-space - wherein we sample densely in space for a given timestep and consider only a subset of the

total timestep sparsely chosen, and dense-time sparse-space - here we give more importance to the temporal

frequency over spatial frequency given the same budget of samples. In Fig 4.6(b), we can see the results

Table 4.2: We list the datasets used for experimental comparisons, along with their size, the integration
duration we use for flow maps, and the sampling reduction rate.

Dataset Name
Dimensions
(x× y× z× t) δ Reduction Rate

Four Rotating Centers (2D)(35) 128x128x512 10 16x
Double Gyre (2D)(115) 256x128x512 10 16x
Fluid Simulation (2D)(56) 512x512x1001 5 16x
Tornado 128x128x128x50 3 100x
Isabel 500x500x90x48 3 300x
ScalarFlow(26) 100x178x100x150 5 300x
Half Cylinder(101) 640x240x80x151 3 300x

Table 4.3: We list the total training time, inference time (time taken to integrate 10,000 particles for a
duration of 20 in grid-time) and the model-size for all the 3D datasets.

Dataset
Training Time
(in minutes) Inference Time (in seconds) Model Size (in MB)

Tornado 226 5.939 2.1
ScalarFlow 128 5.740 1.7
Isabel 487 15.432 8.2
Half Cylinder 609 22.349 13.5
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of vector field PSNR. In this experiment, we used a total of 168K samples from the Double Gyre dataset

- sampled as 336 spatial points across 500 timesteps and 1680 spatial points sampled across 100 timesteps.

We observe that dense temporal sampling shows that temporal coverage is more important and gives better

results as compared to sparse temporal sampling. Thus, in the remainder of the paper we use the dense-time

sparse-space sampling scheme, to ensure better temporal coverage.

4.2.4 Integration Duration

The duration for which the particles are integrated to generate the flow map is an important factor for the

training process. When integrated for extremely small duration, then the scenario resembles that of vector-

based optimization, since the network need only predict the immediate vectors in close proximity of seed

location to yield an accurate flow map. We hypothesize that in such cases the model would not be able to

take full advantage of the flow map based optimization process and thus perform poorly. To confirm our

hypothesis, we design an experiment where we train different models on flow map samples generated with

increasing integration duration. For this experiment, we use the Double Gyre dataset, and we generate the

flow map samples using Euler integration with a step size of 0.1. We also keep the initial weights and the seed

locations from which flow map samples are generated for each of the models the same for fair comparison.

Fig 4.7 shows the results of the comparison. Our hypothesis generally holds true, more specifically,

models trained on smaller integration duration do not perform as well as models training on larger integration

duration. Nevertheless, we see that at a certain point, we obtain diminishing returns, as the longest integration

duration (20) is slightly worse than a duration of 10. We further test the generalization capabilities of the

models on integration durations for which they were not trained on. In Fig. 4.7(right) we see that, models

generalize well to integration durations for which they were trained. Importantly, though, for models trained

on longer durations we do not sacrifice quality in preserving short-duration flow maps. Interestingly, we

find that for integration duration of 20, we find that the model can generalize just as well, if not better, than

smaller integration durations. This is despite the fact that its corresponding vector field quality is lower (left),

suggesting that the flow map-based optimization can provide vector fields that take a small hit in performance

with respect to the ground truth vector field, but nevertheless, faithfully capture the flow map.

We emphasize that these results do not answer the question of what duration to select, given a dataset. We

believe that answering such a question is domain-dependent, e.g. for certain analyses, flow maps of longer

duration are more relevant than those of shorter duration. Rather, our results show the robustness of our

method to varying duration, capable of optimizing over a range of durations. We further hypothesize the drop

in PSNR near the start and end timesteps in Fig. 4.6 and Fig. 4.7 is most likely due to how the training data is

generated (please see Sec. 4.2.5) where we generated fixed duration flow map samples using forward integra-
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tion only, thus biasing the network more towards the intermediate timesteps. We believe generating training

data using a combination of forward and backward integration along with variable duration of integration can

help alleviate this problem.

We experimentally evaluate our method, both in 2D and 3D, by comparing across a range of baselines.

Specifically, in 2D we compare to the superresolution method of Jakob et al. (56), where we train a CNN-

based superresolution model of flow map upsampling via their provided dataset of 2D flow simulations, under

a 16x data reduction. Further, we compare to a standard baseline of bicubic upsampling, also 16x reduction.

In 3D, we compare to the state-of-the-art compression method of TTHRESH (6), where the compression

ratio is set to approximately the reduction rate that we use to train our model – this is an approximation, as

TTHRESH is error-controlled, so we choose the error that leads to a compression ratio that is approximately

our reduction rate. In addition, we compare to implicit neural representations (120; 130; 81), trained on the

initiating seed positions that we take for our flow map samples, namely, the vectors at those positions. We also

compare to two standard interpolation baselines: (1) Shepard interpolation, using the same aforementioned

collection of points, and (2) cubic upsampling, where we perform a 64x downsampling of the field. Though

other interpolation schemes exist, e.g. ones based on barycentric coordinates, these methods can be quite

expensive to compute due to the requirement of a triangulation / tetrahedralization, and thus we omit them

from our study. Table 4.2 lists all of the datasets that we use in the paper, along with their spatial resolution,

the reduction rate chosen for our experimental comparisons, as well as the integration duration. Since each

dataset lives on a different physical domain, and thus time is not comparable, in the table we list duration in

terms of the number of grid time steps taken.

4.2.5 Implementation Details

Network Architecture Settings Our network architecture is adapted from prior work by Lu et al. (81) –

comprised of fully-connected layers and sinusoidal activation function. We depart from Lu et al. in that we

utilize Rezero (5) wherein layers with skip connections are weighed by a learnable scalar value initialized

to 0 at the start of training process. This modification to the architecture helped in stabilizing the training

process. We use a total of 6 hidden layers in all of our experiments. The number of neurons in each of

the layers is computed based on the size of the flow map samples used for training and the hyperparameter

η ∈ (0,1] which is set by the user. The hyperparameter η controls the number of network parameters with

respect to the number of training samples. Setting η to 1 will result in a network with roughly equal number

of parameters as the number of training samples. In practice, we use η = .5 in most of our experiments,

unless otherwise specified.

Training Data Generation For a given duration δ we choose seed points in the spatial domain uniformly
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Neural flowmap Neural VectorGround Truth Super resolution Bicubic

Figure 4.8: We qualitatively compare our method – Neural Flow Map – to various baselines (columns)
across different 2D datasets (rows). We show (1) difference images between the approximated FTLE and the
ground truth FTLE, and (2) the FTLE (computed by integrating for a duration of 300, 500, 500 for the fluid
simulation, four rotating centers, and double gyre dataset respectively). We find that our flow map method
yields improved performance across all baselines.

at random for all timesteps in the temporal domain t ∈ [ts, te−δ ], where ts is the first timestep of the flow field

data and te is the last timestep. Based on the total budget (i.e. the total size of flow field data divided by the

reduction rate) - we allocate same budget of spatial seed points for each of the timesteps. We integrate these

seeds points using RK4 integration scheme with a step size of 0.1.

Training Hyperparameters We use the ADAM optimizer (65) with a starting learning rate of 10−4 and

decay it by a factor of 0.2 every 40 epochs. We train for a total of 100 epochs unless otherwise specified. We

use explicit Euler integration, where the step size is set to 1
10 of the grid-based time, in all of our experiments

to train our model.
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Figure 4.9: We show quantitative results for our 2D experiments, where we measure the RMSE of flow map
error across different integration durations. Across all baselines, we observe consistent improvements using
our flow map-based method – note, despite the fact that our method optimizes on a single duration, it is
nevertheless able to generalize to different (longer) durations.

4.2.6 2D Unsteady Flow

We first experimentally evaluate our method on 2D unsteady flows. In Fig. 4.8, we show a qualitative compar-

ison between our method and baseline schemes, where we show (1) FTLE error maps as absolute difference

between the ground truth FTLE and the predicted FTLE, and (2) the FTLE. Notably, we find that our method

has significantly less visual artifacts relative to Jakob et al. (56), despite their method being supervised on

a large collection of 2D fluid flows. This suggests that obtaining a quality flow map reconstruction, given

reduced data, can be addressed without the need of learning over a collection of fluid flows. We in fact obtain

improved visual results for in-domain examples as well (fluid flow dataset (56)), in addition to more standard

2D unsteady flow datasets,

In Fig. 4.9 we show the quantitative performance of our method over different datasets, where we eval-

uate the different methods under varying integration duration. Note that our method was trained on just one

integration duration, for each of these datasets (c.f. Table 4.2); nevertheless, our method is not merely over-

fitting to the durations that it was trained on, and is able to generalize to arbitrary durations. As one would

expect, we obtain similar flow map errors by a direct fit to the vectors (Neural Vector) for small durations,

since optimizing just for vectors should lead to good local (in small duration) approximations in the flow

map. However, for larger durations, we can see how our method, generally, improves over the neural vector

fit baseline.

4.2.7 3D Unsteady Flow

We next evaluate our method on a collection of 3D unsteady flows. First, we show in Fig. 4.10 a comparison

of different methods for capturing details in the FTLE for the ScalarFlow dataset. Relative to TTHRESH (6),
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Ground Truth Neural Flow Map Neural Vector TTHRESH

Figure 4.10: We qualitatively compare the FTLE (computed by integrating for the entire duration of the
simulation) for the ScalarFlow dataset between our method, neural vector fitting, and TTHRESH (6). We
find that our method does not inherit noisy artifacts away from the plume (blue circle), while in comparison to
TTHRESH, we find that close to the plume center our method is able to better retain details of high repulsive
behavior in the flow.
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Figure 4.11: We show quantitative results for the error incurred by flow maps obtained by different data
reduction schemes for 3D flows: our method, neural fitting to vectors, TTHRESH (6), and Shepard interpo-
lation. In general, our method obtains improved performance – note that at times, we obtain an improved
performance in flow map, despite having a higher error in vector field (c.f. Fig. 4.12).

we find that our method is able to better capture intricate repulsive features near the central portion of the

plume (yellow circle) for this smoke simulation. We find that a direct fit to the vectors yields comparable

results, but as highlighted (blue circle) our method does not reproduce noisy features away from the plume

center, as does the direct vector-based fit.

In Fig. 4.11 we show the quantitative performance of our method over different baselines. All in all, we

find that our method yields improved performance over existing methods, though in certain instances we find

TTHRESH leads to lower error. Note, however, that a significant advantage of our method over TTHRESH is

that the computation of integral curves, and consequently the approximation of the flow map, does not require

any such resampling to a regular grid. By representing the time-varying vector field as a coordinate-based

neural network, we can compute the flow map on demand, in a random-access manner, whereas compression-

based techniques, such as TTHRESH, require decompressing to the full, sampled regular grid in order to

compute integral curves.

Although our method is not designed to optimize for a vector field, we find that, in general, it is capable of

producing good vector field approximations. In Fig. 4.12 we measure the performance of our method, in terms
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Figure 4.12: We show quantitative results for 3D unsteady flows measured in terms of their vector field PSNR.
We find, in general, that our method leads to an improved, if not competitive, performance across existing
methods. We emphasize that our method does not explicitly optimize for a vector field, but nevertheless, the
vector field that is found is a faithful approximation.

of the vector field PSNR, relative to other techniques. Overall we find that our method is an improvement, if

not competitive, with other techniques. Interestingly, we find that a good approximation to the flow map need

not imply that the found vector field is faithful to the ground truth field. As an example, for the ScalarFlow

dataset, TTHRESH obtains an improved vector field relative to our method early in the simulation; later

our method sees an improvement, though the margin of improvement is modest. Nevertheless, as shown

in Fig. 4.11, for ScalarFlow our method generally obtains large improvement in the flow map, particularly

for longer integration duration, further verified qualitatively in Fig. 4.10. Thus, it’s critical to note that the

true depth of reconstruction quality extends beyond the PSNR metrics. Complementary measures like Finite-

Time Lyapunov Exponents (FTLE) that are sensitive to topological differences can shed light on aspects of

reconstruction accuracy that PSNR values may miss. Hence, by considering these measures alongside PSNR,

we gain a more detailed insight into the degree to which a method succeeds in preserving the underlying flow

structures.

4.3 Discussion

We have presented an approach for data reduction of unsteady flow, where we aim to learn Eulerian repre-

sentations, e.g. time-varying vector fields, through explicitly optimizing for Lagrangian representations, e.g.

samples of a flow map. Our experimental results demonstrate improvements in performance, both with re-

spect to the underlying vector field, as well as the ground truth flow map. By learning a neural representation

of a time-varying vector field, we further allow for the random-access computation of the flow map, obviating

the need to explicitly sample the vector field to a regular grid, and thus providing a low-friction, convenient

form of post-hoc analysis of unsteady flow. Although the main focus of our work has been for unsteady flows

we believe that our method is applicable to steady flows as well. However, from the perspective of data reduc-

tion, we expect marginal gains with our method for steady flows. For large reduction rates in unsteady flows,
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our method encourages spatio-temporal consistency in the learned time-varying vector fields, a property that

would be lacking in steady flows.

We acknowledge several limitations with our approach. Perhaps the main limitation is the time required

for optimization (c.f. Table 4.3). Like neural ODEs (17), each step of optimization, in effect, necessitates the

integration of a (learned) time-varying vector field. In practice, the adjoint sensitivity scheme for gradient

computation ends up dominating the computation time; in the case of explicit Euler integration, this method

requires performing backpropagation at each integration step. On the other hand, as studied in Chen et

al. (17), an advantage of framing optimization-via-integration is that we can employ adaptive integration

schemes. This has the potential to reduce the number of steps required for producing good gradient estimates,

e.g. only requiring finely-resolved integration when gradients for particular integral curves are important.

We further acknowledge that our results are competitive with state-of-the-art data reduction methods,

but in some instances our method is inferior. The restriction to optimizing only over fixed-duration flow

map samples is largely for simplicity, and we believe that the incorporation of a richer set of information

for optimization, e.g. a sparse sampling of vectors in addition to flow map samples, flow maps of varying

integration duration, would lead to more effective reconstruction.

For future work, we plan on extending our method for flow map extrapolation, rather than just interpo-

lation. We will investigate how to extend latent space integration (17; 102) rather than just integrating over

the spatial domain, in order to enable our models to extrapolate flow. We expect that such a dynamics-based

regularization on the latent space should prove useful for generalization, based on prior work in manifold

mixup (137), and we anticipate these advantages will transfer to coordinate-based MLPs.

We also plan on investigating schemes to facilitate the time required for optimization. We are encouraged

by recent works in meta-learning for coordinate-based MLPs (119; 128), in particular, learned initializations

for rapid training adaptation to novel signals (128). Such schemes should transfer well to the rapid learning

of unsteady flow. Moreover, thanks to recently-created datasets for building machine learning models on

flow datasets (56), we now have the opportunity to learn over a rich set of fluid flows. We plan on investi-

gating coordinate-based neural networks that can scale better in space-time, rather than the use of a simple

MLP. Since the size of the network grows quickly with the complexity of the input data, learning a good

representation of a large dataset would require a larger network, thereby increasing the training as well as

inference time. Methods such as ACORN (84) should prove useful in this regard, and we intend to adapt such

architectures to time-varying flows.

Last, we plan on extending our method to optimize not just for flow maps, but more general properties

of flows. In principle, it should be possible to optimize for quantities derived from flow maps, e.g. FTLE –

indeed, similar types of memory-efficient schemes that we developed can be adapted to this setting. Moreover,
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other flow properties, be it steady (vorticity) or unsteady (acceleration) should also be possible to gather as

part of data reduction in situ, and directly optimize post hoc. More broadly, we believe that coordinate-based

neural networks have significant utility for data reduction in scientific visualization, and we are excited to

pursue such directions as part of future work.
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CHAPTER 5

Scale-reinforced Implicit Neural Representations

In this chapter, we present a method aimed at enhancing the effectiveness of implicit neural representations

(INRs) as compressive representations, making them better suited for downstream visual analysis require-

ments. More specifically, we introduce the concept of scale within INRs. We achieve this by modulating the

parameters of an INR, left fixed, with a corresponding set of learned scale-dependent parameters, optimized

such that the resulting scale-reinforced INR accurately models a given scale-space field representation. We

show how such a weight modulation can be viewed as a multiplicative weighting of coefficients within an

exponentially-large linear combination of sinusoidal bases. As a consequence, for scale spaces based on

low-pass filters, our scheme implicitly performs filtering in the frequency domain. Through leveraging other

properties of INRs, this enables compressive, scale-dependent feature analysis, e.g. acceleration computed

from a compressive Gaussian filtered time-varying vector field (c.f. Fig. 1a), directly accessible from the

network. Yet our approach is not limited to linear filters: we can support other types of scale, e.g. those

based on data-dependent, nonlinear filters, demonstrated in Fig. 1b for a bilateral filter (135) scale-space

applied to the medical image of a lung. Furthermore, we show how one can distill a scale-based INR into

a more compact, scale-independent INR, fixed upon a provided scale – a consequence of most scale-spaces

yielding simplified fields. We show the generality of our method on a diverse set of scale spaces, ranging

from Gaussian filtering, bilateral filtering, and topological persistence-based filtering.

5.1 REINFORCING INRs with SCALE

A broader aim of our work is to make INRs a more viable representation for storing, accessing, and processing

field-based data, in turn addressing storage and memory limitations with more conventional, sampled, field

representations. An INR for field data can be viewed as a reduced, model-based representation, whose storage

footprint is determined by the number of model parameters and their precision. Controlling for model size

at the parameter level can enable highly compressive representations while faithfully approximating the field

(21; 80; 84; 151). Furthermore, accessing the field’s value at a given input amounts to a single forward

pass through the network, while field derivatives can be computed through backpropagation (120). Hence,

INRs enable compression-domain access of the field, and its derivatives. One can view field access in an

INR as a point-based query, independent of all other points in the field’s domain. Scale-space processing,

however, typically necessitates processing of spatial regions (or, optionally, spatiotemporal regions), not

merely individual points. Thus, if we would like to perform scale-space processing of an INR, then by
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(A) Gaussian Filtering (B) Bilateral Filtering

Figure 5.1: Our method seeks to incorporate scale spaces into implicit neural representations, specifically
those that model field-based data. A central advantage of our method is its generality, in the support of
varying types of fields, as well as scale spaces (Fig. 1a –time-varying vector field with Gaussian smoothing;
Fig. 1b – scalar field with bilateral filtering). Our method can be used in concert with field derivatives directly
accessible from the model, shown on the left as the norm of a derived acceleration field under varying scale.
On the right, we show how our method can learn nonlinear data-dependent filters, leading to a reduction in
noise within the pelvic region, whereas the structure of bones and organs are enhanced.

convention, obtaining a scale-parameterized sequence of transformations would necessitate sampling the

INR, e.g. onto a regular grid. As a consequence, we lose the benefits of random-access querying of the field,

conditioned on a particular scale value. It is this limitation that we address in our work, namely, how to build

a general notion of scale within an INR, retaining the benefits of compression-domain field access, both for

the field directly and its derivative.

5.1.1 Background: Implicit Neural Representation

INRs are a class of neural networks that accept as input a position from the field’s domain (e.g. x, y, z

positional coordinates), and produce values in the field’s range (a single value for a scalar field, multiple

values for a vector field). As our approach targets a broad class of INRs in the literature, we first present

a unifying view of existing INRs, structuring methods by (1) how they encode position , and (2) network

architecture details.

5.1.1.1 SIREN

The approach of SIREN (120) employs a sinusoidal embedding as its positional encoding along with an MLP

as its network architecture. More specifically, for a given di-dimensional point in the domain x ∈Rdi , SIREN

performs the following sequence of operations:
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z(0)(x) = γ(x) = sin(Ωx), (5.1)

z(l)(x) = sin(W (l)z(l−1)(x)), (5.2)

f (x) =W Lz(L−1). (5.3)

In the above, we treat z(l) as the learned representation output at a given layer l, within an L-layer MLP, and

W (l) are weight matrices that comprise the parameters of the network, 1 ≤ l ≤ L. We assume a layer width of

D used in all layers for simplicity. The very first learned representation, z(0), is SIREN’s positional encoding,

which applies a sine function, element-wise, to a linear projection of the input, denoted Ωx. All intermediate

layers similarly use sinusoids as activation functions, while the final layer maps the representation z(L−1) to an

element in the field’s range, which we assume to be a do-dimensional vector, e.g. do = 1 for a scalar field. For

simplified notation, we omit bias terms in the above; in practice each learned weight matrix W (l) ∈RD×(D+1)

for l < L, and all representation vectors z(l) are appended with a value of 1. A similar process is done for

Ω ∈ RD×(di+1) along with the last output layer W (L) ∈ Rdo×(D+1).

5.1.1.2 MFN

An MFN (29) uses a series of positional encodings, one for each layer (excluding the output), alongside an

architecture that joins subsequent layers through a linear projection, in conjunction with an element-wise

product:

z(0)(x) = γ
(0)(x), (5.4)

z(l)(x) = [W (l)z(l−1)(x)]◦ γ
(l)(x), (5.5)

where ◦ is the Hadamard product. The output of the model is a simple linear projection, as in Eq. 5.3.

The main distinction in an MFN is the type of positional encoding γ(l) used at a given layer l. We consider

the two flavors of MFNs proposed by Fathony et al.; first, the so-called Fourier encoding :

γ
(l)(x) = sin(Ω(l)x), (5.6)

where each Ωl ∈ RD×(di+1) as defined above. The second positional encoding is one that is spatially-

sensitive, the so-called Gabor encoding that incorporates a per-element Gaussian weighting :
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γ
(l)(x) = exp

(
−λ

(l)d2(x,X (l))
)
◦ sin(Ω(l)x), (5.7)

where X (l) contains D total di-dimensional points, d2(x,X (l)) forms a D-dimensional vector of squared

Euclidean distances between the given input x and each point in X (l), while λ ∈ RD is a per-element scale of

the Gaussian. The points X (l) and scales λ (l) are treated as learnable parameters, alongside weight matrices

W (l).

5.1.1.3 Localized Implicit Neural Representation

Lastly, we consider INRs that are designed to scale to larger data sizes, both for optimization and inference,

in contrast with using a single MLP or MFN as in the above. We utilize a variant of localized methods

(18; 86; 127), and define a coarse spatial grid of learnable frequencies, which we denote Z, whose shape

depends on the input dimensionality di. For instance, when di = 2 this amounts to Z ∈ RDi×w×h, where

the first dimension Di denotes feature dimensions, e.g., a collection of learnable frequencies, while w and h

denote, respectively, the width and height dimension. Similar grids can be formed for di > 2 domains.

Given an input x ∈ Rdi , we form its positional encoding by interpolating within the grid Z, element-

wise (127):

z(0)(x) = γ(x) = sin(interp(x,Z)), (5.8)

where interp corresponds to an interpolation of the frequencies defined at the locations of Z. In practice,

we use linear interpolation, performed element-wise, as considered in Takikawa et al. (127). Once the

positional encoding is obtained, we adopt the remainder of SIREN’s architecture, namely Eq. 5.2 and Eq.

5.3, to compute the field’s output.

5.1.2 Fitting to a Field

In our approach, we assume that we have been provided a sampled field, whose domain is di-dimensional

and range is do-dimensional. We further assume an arbitrary INR has been chosen, ostensibly one whose

number of weights is much smaller than the field’s resolution, to obtain a compressive representation. We

then optimize the INR to fit the field:

min
Θ

∑
x∈D

∥ fΘ(x)−h(x)∥2
2, (5.9)

where D contains all samples of the field, e.g., a regular grid, h denotes the ground-truth field, and

fΘ denotes the INR with Θ being the collection of parameters for a particular INR, e.g., parameters of its
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Figure 5.2: We illustrate the basic idea behind our method for building scale into INRs. On the top, we
notionally depict an INR – namely its positional encoding, followed by a fully-connected layer – used in part
to fit the 5123 Hazelnuts field (top-right). Links encode network weights, where link thickness encodes a
weight with large magnitude, and red/blue color encodes positive/negative. Our approach (bottom) learns to
modulate the weights in an existing INR, in this case decreasing their magnitude in proportion to a provided
scale, in order to accurately model a given scale-space transformation, here showing one based on a bilateral
filter.

positional encoding and weight matrices. In practice, we optimize an INR using gradient descent, sampling

uniformly at random from the field’s domain in D at each step.

5.1.3 Learning scale space

Once an INR has been optimized, to endow the model with scale, our approach takes its positional encoding

and architecture, and freezes all such parameters – they will remain fixed throughout learning a scale space.

Instead, we introduce a new set of modulation matrices, denoted M(l)
(s), for 1 ≤ l ≤ L, each of which parame-

terized by a single value s that represents the amount, or level, of scale within the scale space. Importantly, a

value of s = 0 represents no scale, and should correspond to the originally fit field of an INR (c.f. Eq. 5.9).
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Each matrix M(l)
(s) is in direct correspondence with a weight matrix in an INR W (l), specifically of identical

size, and is strictly nonnegative: M(l)
(s) > 0. We derive a new, scale-dependent, weight matrix by modulating

the weights, element-wise, via M(l)
(s):

W (l)
(s) = M(l)

(s) ◦W (l) (5.10)

We then replace the original weight matrices W (l) in an INR with their scale-dependent counterparts

W (l)
(s) , and retain the rest of the functionality of the INR for the purposes of both optimization and inference.

Importantly, we do not modify the positional encoding, only weight matrices. Given the augmented INR,

we next wish to optimize for the modulation matrices, such that it is capable of reproducing a full scale-

space representation of the field. To this end, we assume that a scale space has been provided as a scale-

parameterized series of function transformations, which we denote Gs, mapping from one field to another

field. As one example, to realize a Gaussian scale space the transformation Gs boils down to a convolution

with a Gaussian filter, and s corresponds to the Gaussian’s scale parameter. We thus seek to optimize the

following:

min
Θ̄

∑
s≥0

∑
x∈D

∥ f
Θ̄
(x,s)− (Gs ⊙h)(x)∥2

2 . (5.11)

In the above, the operation of transforming the field h by Gs is denoted ⊙, while Θ̄ corresponds to, collectively,

all modulation matrices M(l)
(s), and f

Θ̄
now conditions on (1) an input in the field domain, and (2) a scale value

s. Intuitively, the intent of optimization is to learn a series of scale-dependent INRs that faithfully represent

the scale-dependent transformations (Gs) of the original field (h).

What remains is a specific formulation of the modulation matrices. We introduce a single, scale-independent,

matrix Ml , in correspondence with weight matrix Wl . We then form the scale-dependent matrix as follows:

M(l)
(s) =

(
σ(M(l))

)(αl ·s)
. (5.12)

where σ is an element-wise sigmoid function, and αl is a layer-specific learnable scalar. In effect, the sigmoid

ensures each entry in the matrix lies in the range [0,1]; we then element-wise exponentiate each entry by

(αl · s). The αl term can be viewed as a way to calibrate the domain of the scale, mapped into an appropriate

range for exponentiating the modulation matrices. If αl > 0, this implies that as s increases, the entries of

M(l)
(s) will monotonically decrease, and thus the magnitude of entries in W (l)

(s) will also monotonically decrease.

The intuition behind this scheme is that certain entries within an INR’s set of weight matrices are more

predictive of the scale-induced transformation of the field than others. Through optimizing Eq. 5.11, we

intend to find these very weights. Fig. 5.2 shows a graphical depiction of this process. Note that when s = 0,
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Figure 5.3: Our approach is able to endow scale onto a broad class of INR models. Here we optimize
models ranging from SIREN, two variants of MFNs (Fourier, Gabor), and a local INR (SIREN-Grid), to fit a
Gaussian scale-space of a 2D scalar field (left), all of whose parameters lead to a compression ratio of 30x.
As demonstrated quantitatively (right), and qualitatively for SIREN (top), all models are able to adequately
learn a scale space for this field, as indicated by the high PSNR values.

each modulation matrix will become a matrix of exclusively 1’s. Thus when modulating the weight matrices

through Eq. 5.10, we obtain back the original weight matrices W (l), and the original INR remains unchanged.

A key feature of our approach is its generality: given the set of INRs discussed in Sec. 3.1, our method

can readily be applied to all such models. Indeed, what these models have in common is the transformation of

a representation at one layer (z(l−1)), to a subsequent layer (z(l)), and this is, in part, realized through a linear

transformation W (l). To experimentally verify this claim, we have taken each of these INRs – SIREN, Fourer

(MFN), Gabor (MFN), and the grid-based SIREN – and fit each to a Gaussian scale space of a 4096×4096

scalar field, originating from a turbulence simulation (74). We train each model on a sequence of equal-

spaced scales, and evaluate the models on these scales, as well as all scales in between to assess general-

ization. Fig. 5.3 shows the results, demonstrating that all such models are capable of learning scale-space

representations, namely that they retain high peak signal-to-noise ratio (PSNR) for scales both observed, and

not observed, during training. The main difference between models largely lies in differences in positional

encodings, and architectural differences. Of note, we find that for the grid-based approach (SIREN-Grid), the

performance tends to decrease more quickly over scales, relative to other models. We anticipate a trade-off
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in (1) the resolution of the coarse grid (here 83, set in accordance with compression ratio) and (2) the MLP

on which the scale space is learned. Namely, as the spatial support of the scale approaches the (coarse) grid

resolution, we expect the localized positional encoding to have an effect on the learned scale space.

5.2 Analysis

Our choice to modulate the weights of an INR, for the purpose of realizing scale-space representations, is

motivated by recent work that seeks to characterize the space of functions that can be represented by an INR

(29; 151). More specifically, an INR that uses a sinusoidal positional encoding (e.g. of the form Eqs. 5.1 or

5.6), regardless of architecture, can be written as a linear combination of sinusoidal basis functions:

fΘ(x) = ∑
ω∈Φ

αω sin(xT
ω), (5.13)

where Φ represents a collection of frequencies that are strictly a function of the learned positional encodings,

e.g. for SIREN this boils down to matrix Ω (c.f. Eq. 5.1), while for a Fourier MFN the dependency is on all

matrices Ω(l) (c.f. Eq. 5.6). The coefficients αω are strictly a function of entries in the weight matrices, and

independent of positional encoding. In particular, for an MFN, the size of the set, which we denote |Φ|MFN

can be precisely written as (77):

|Φ|MFN =
L−1

∑
i=0

2iDi+1
. (5.14)

We can thus see that the number of basis functions grows exponentially in the number of layers. For MLP

architectures, Yuce et al. (151) shows that the frequency set Φ amounts to integer-valued linear combinations

of frequencies as defined in Ω – the specific formation is a function of the activation function, e.g. the sine

function in Eq. 5.2. Similar to MFNs, this results in sinusoidal basis functions that grow exponentially in

layers. Last, for Gabor positional encodings (c.f. Eq. 5.7) a similar result holds for MFNs (29), while for

grid-based SIRENs, similar conclusions can be drawn, replacing dot products in Eq. 5.13 with interpolation

of frequencies.

5.2.1 Weight Modulation as Frequency Filtering

In light of the representational space of INRs, we can now characterize our weight modulation scheme: The

modulation of weights manifests as the following equivalent linear combination:

f
Θ
(x) = ∑

ω∈Φ

(mω(s) ·αω)sin(xT
ω), (5.15)
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where mω(s) corresponds to a multiplicative combination of entries found in modulation matrices M(l)(s).

Please see Sec. 5.2.2 for the proof. Assuming αl > 0, we thus observe that weight modulation has the effect of

filtering in the frequency domain, e.g. as the scale s increases, we are decreasing the influence of the weight

αω for frequency vector ω . If our scale space is based on a low-pass filter (e.g. a Gaussian), our approach will

implicitly reduce the importance of coefficients that correspond to high frequencies. This stands in contrast to

mip-NeRF (8) and BACON (77), where scale is controlled at the frequency level (ω). Although these methods

can handle low-pass filters to a certain extent, controlling for scale at the coefficient level (αω ) permits us to

build a broader family of scale-parameterized transformations into an INR. The expansion in Eq. 5.15 is not

feasible to compute (see: Eq. 5.14); the formation of MLPs and MFNs in computing a network output is far

more economical. Nevertheless, it is instructive to explicitly form the expansion, in order to verify the claims

made above, namely, that optimizing Eq. 5.11 for a Gaussian scale space should filter out high frequencies

– here we treat “frequency” as the norm of the 2-vector of frequencies resulting from the expansion. We

have taken a 300×300 medical image, and trained an MFN with Fourier positional encoding consisting of 2

hidden layers, and layer width D= 209 – its equivalent expansion amounts to |Φ| ≈ 108. We have trained both

Gaussian and bilateral filtering scale spaces for this image. The sheer number of frequencies, and wide range

of weights presents challenges for depicting the contributions of certain frequency ranges. To this end, we

uniformly split frequencies into a small number of bins, and within each separate frequency bin, we normalize

counts over a (log-spaced) binning of weight magnitudes. Fig. 5.4 shows the results, where we observe that

for a Gaussian scale space, the contribution of high frequencies are substantially diminished as we increase

in scale – the effects of this are further emphasized qualitatively in the smoothed images. Yet a key feature of

INRs is that they do not merely learn a grid-aligned frequency representation, the set of frequencies formed

by Φ are far more expressive. Thus we can learn more general scale spaces, as demonstrated by the bilateral

filter scale space, wherein, as one would expect, we diminish some high frequencies while keeping those that

contribute to the features preserved in the image (e.g. the bone structure in this image).

5.2.2 Proof of Theorem 5.1.1

In this section we provide the proof of Theorem 5.15 for the 2 forms of INRs covered in this work: multi-

plicative filter networks (MFN), and multi-layered perceptrons (MLP) with sinusoidal positional encodings.

In the following we omit bias terms for simplicity, but they are straightforward to incorporate, only adding a

negligible amount of terms to the expansion.
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Figure 5.4: This plot demonstrates the relationship between the frequencies’ L2 norm and their associated
weights for a Fourier-based MFN, trained for a medical image endowed with scale spaces for a Gaussian
filter, and bilateral filter, respectively.
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5.2.2.1 MFN

Following Fathony et al. (29), whether considering a Fourier positional encoding or a Gabor positional en-

coding, the equivalent expansion of an MFN (without introducing our modulation scheme) gives:

fΘ(x) = ∑
ω∈Φ

αω sin(xT
ω). (5.16)

The specific set of frequency vectors Φ can be found by considering the combination of components in

positional encodings, across all layers:

θiL−1,iL−2,...,i1,i0(x) = γ
(L−1)
iL−1 (x) · γ(L−2)

iL−2 (x) . . .γ(1)i1 (x) · γ(0)i0 (x), (5.17)

where each index il varies over [1,D]. This product of positional encodings can be expressed as a weighted

sum of the individual frequencies [1, 2], and the specific form of this expansion depends on the type of

positional encoding (Fourier vs. Gabor). Nevertheless, for a single configuration of indices (iL− 1, iL−

2, . . . , i1, i0), we can form a weight that is in direct correspondence, where for simplicity, we will assume the

field’s output dimension is 1 (e.g., a scalar field):

WiL−1,iL−2,...,i1,i0 =W (L)
1,iL−1 ·W

(L−1)
iL−1,iL−2 . . .W

(2)
i2,i1 ·W

(1)
i1,i0, (5.18)

Recall that our modulation scheme performs the following, at every layer l:

W (l)(s) = M(l)(s)◦W (l). (5.19)

Thus, following Eq. 5.18, we can form an analogous weight over all combinations of indices:

WiL−1,iL−2,...,i1,i0(s) =W (L)
1,iL−1(s) ·W

(L−1)
iL−1,iL−2(s) . . .W

(2)
i2,i1(s) ·W

(1)
i1,i0(s). (5.20)

The Hadamard product of matrices formed by our modulation scheme implies that we can separate terms (1)

exclusive to the modulation and (2) exclusive to the (already optimized) INR. For the former, we have:

MiL−1,iL−2,...,i1,i0(s) = M(L)
1,iL−1(s) ·M

(L−1)
iL−1,iL−2(s) . . .M

(2)
i2,i1(s) ·M

(1)
i1,i0(s), (5.21)

and thus we can express each weight in the explicit expansion of Eq. 5.15 as:

WiL−1,iL−2,...,i1,i0(s) = MiL−1,iL−2,...,i1,i0(s) ·WiL−1,iL−2,...,i1,i0. (5.22)
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The product in Eq. 5.17 can be expressed as a sum of 2L−1 terms; consequently, a weight WiL−1,iL−2,...,i1,i0(s)

is in direct correspondence with each of these individual basis functions, derived from the product-to-sum

rule for sinusoids (and exponentials for the Gabor encoding). This set of basis functions forms Φ, and thus

we can identify an individual modulation weight mω(s) and (frozen) INR weight αω with each frequency

vector ω ∈ Φ.

Before we cover the case of MLPs, we remark that, by design, the parameters for the positional encodings

across layers are not modulated. This implies that our proposed scheme leaves frequencies unchanged. Only

the weight coefficients associated with frequencies are adjusted.

5.2.2.2 MLP

Following Yüce et al. (151), for an MLP, we will assume that its nonlinear activation can be well-approximated

by a K-degree polynomial. For a sine activation, we have:

sin(x)≈
K

∑
k=0

βkxk, (5.23)

where the coefficients βk are specific to the sine activation but otherwise constant. While Yüce et al. [3]

studied the formation of sinusoidal bases resulting from an MLP with a sinusoidal positional encoding, here

we will consider the coefficients formed, those in correspondence with these bases.

We will start by considering the post-activation vector formed after the first nonlinearity:

z(1)(x) = sin
(

W (1) sin(Ωx)
)
, (5.24)

and denote the positional encoding by γ(0)(x) = sin(Ωx). Considering our polynomial expansion (Eq. 5.23),

we have:

z(1) ≈
K

∑
k=0

βk

(
W (1)

γ
(0)(x)

)k
. (5.25)

Isolating a single component j:

z(1)j ≈
K

∑
k=0

βk

(
D

∑
t=1

W (1)
j,t γ

(0)
t (x)

)k

. (5.26)

This expansion takes on a similar form to MFNs, in that we are computing products over frequencies as

well as products over weights—specifically, weights within a single row of W (1). Thus, for a given k with

1 ≤ k ≤ K, we can explicitly form these weight combinations:

W (1)
j,tk,tk−1,...,t2,t1

=W (1)
j,tk

·W (1)
j,tk−1

· . . . ·W (1)
j,t2

·W (1)
j,t1

, (5.27)
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where each ti ∈ [1,D]. Note that for k = 1, this would be all weights in row j of the matrix W (1). Corre-

spondingly, we have an expansion in our positional encodings:

γ
(0)
tk,tk−1,...,t2,t1(x) = γ

(0)
tk (x) · γ(0)tk−1

(x) · . . . · γ(0)t2 (x) · γ(0)t1 (x). (5.28)

Note that this can be written as an integer-valued linear combination of sinusoidal bases, again due to the

product-to-sum rule of sinusoids, similar to MFNs.

Incorporating our modulation scheme, we can form an analogous set of modulation products:

M(1)
j,tk,tk−1,...,t2,t1

(s) = M(1)
j,tk
(s) ·M(1)

j,tk−1
(s) · . . . ·M(1)

j,t2
(s) ·M(1)

j,t1
(s), (5.29)

and thus form a single modulated weight in the expansion:

W (1)
j,tk,tk−1,...,t2,t1

(s) = M(1)
j,tk,tk−1,...,t2,t1

(s) ·W (1)
j,tk,tk−1,...,t2,t1

. (5.30)

We form a set of frequencies at this layer Φ(1) corresponding to all combinations of indices (tk, tk−1, . . . , t2, t1),

and thus express the output at the first layer as:

z(1)j (x)≈ ∑
ω∈Φ(1)

(M(1)
j,ω(s) ·W

(1)
j,ω )sin(xT

ω), (5.31)

At this stage, one can see the major distinction from an MFN: for an MLP, a single weight coefficient αω

will be comprised of products of weights spread across input components (ti indices), and likewise for the

modulation weights. Yet importantly, like the MFN case, we see that the modulation terms M(1)
j,t (s) remain

paired with their corresponding weights W (1)
j,t .

We proceed by induction, assuming that at a given layer l, we may represent its output at some component

t as:

z(l)t (x)≈ ∑
ω∈Φ(l)

(M(l)
t,ω(s) ·W

(l)
t,ω)sin(xT

ω), (5.32)

In considering the subsequent layer l +1, we obtain:

z(l+1)
j (x)≈

K

∑
k=0

βk

(
D

∑
t=1

∑
ω∈Φ(l)

(M(l+1)
j,t (s) ·M(l)

t,ω(s)) · (W
(l+1)
j,t ·W (l)

t,ω)sin(xT
ω)

)k

, (5.33)

where we have grouped together the modulation terms and the weight terms, and we recognize that they

individually spread across rows, as in Eq. 5.26. The frequency (ω) expansion follows, again, from repeated
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application of the product-to-sum rule (151), and thus the resulting set of frequency terms, denoted Φ(l+1),

remain independent of the weights.

Considering the result formed by the multiplicative combination of modulation terms and weight terms,

note that the number of terms in the new expansion at layer l +1 will be of the order O(DK(l+1)), since the

expansion Φ(l) from the previous layer l has an order of O(DK(l)) terms (e.g., see Eq. 5.27 for layer l = 1),

and at layer l+1, the k-th degree polynomial will result in an order of O(DK) possible combinations of terms

from Φ(l). The modulation/weight terms in Φ(l) will become mixed across all entries in all matrices, due to

the matrix-vector product in Eq. 5.34.

Due to our modulation scheme being a Hadamard product of matrices, we can further separate weight

terms and modulation terms in the products. Writing ω(l) as a multi-index over different terms in layer l, in

correspondence with Eqs. 5.27 and 5.29, we have:

W (l+1)
j,ω(l+1) =

(
W (l+1)

j,tk
·W (l)

tk,ω(l)

)
· . . . ·

(
W (l+1)

j,t1
·W (l)

t1,ω(l)

)
. (5.34)

and

M(l+1)
j,ω(l+1)(s) =

(
M(l+1)

j,tk
(s) ·M(l)

tk,ω(l)(s)
)
· . . . ·

(
M(l+1)

j,t1
(s) ·M(l)

t1,ω(l)(s)
)
. (5.35)

given a combination of indices (tk, tk−1, . . . , t2, t1) in correspondence with the polynomial expansion. Thus,

the weight products and modulation products can be separately expressed, each of which is in correspondence

with one another in the expansion (Eq. 5.32). We remark that the frequency sets in the case of an MLP Φ

differ from those in an MFN, in that for MLPs, a resulting frequency is expressed as an integer-valued linear

combination of the input frequencies found in Ω. Thus, it is possible for low frequencies to be represented

in the expansion for an MLP, e.g., choosing just one frequency in Ω (when k = 1 in polynomial expansion

across all layers), whereas an MFN will always combine all frequencies across positional encodings. This

gives a potential high-frequency bias towards MFNs compared to MLPs. A consequence is that our weight

modulation scheme cannot correct for this high-frequency bias, leading to the prevalence of high-frequency

artifacts. Experimentally, we have verified this in simple 2D fields, see, e.g., Fig. 5.5.

5.3 Distilling to a smaller network

Most scale spaces intend to simplify the fields on which they operate, e.g. reducing the contribution of high

frequencies. This implies that our scale-dependent INR encodes fields of varying complexity, and thus if we

are only interested in a single scale, we can distill (49) the model into a scale-independent INR with fewer

parameters, directly from the original scale-dependent INR without requiring access to the original field.

To this end, we have adapted the neuron pruning approach of Molchanov et al. (88) for the case of
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Figure 5.5: A comparison of SIREN with the Fourier positional encoding MFN, for learning a bilateral filter
with scale s = 4.

coordinate-based MLPs. Specifically, we treat the scale-dependent INR as a “teacher” network (49), provid-

ing direct supervision for a “student” network. The student network is created by iteratively pruning rows and

columns from the weight matrices (and corresponding bias values) of the teacher network. We prioritize rows

by computing the magnitude of their weight derivatives, scaled by the magnitude of the weights themselves,

as a proxy to measure the sensitivity of pruning a weight entry (88) – this is summed over all rows, and

used in a greedy manner to prune rows that have low sensitivity. A row pruned at a given layer implies that

its corresponding column in the next layer’s weight matrix may also be pruned. We interleave this pruning

procedure with fine-tuning the resulting reduced model, and iterate these steps until a user-supplied error tol-

erance is exceeded. We emphasize that weight sensitivity and fine-tuning are all carried out under the original

scale-based INR; however, we experimentally verify that the discrepancy from ground-truth is not too large.

5.4 Results

To demonstrate the effectiveness of our approach we compare to a number of baseline techniques, and eval-

uate our approach across a number of datasets, flavors of INRs, and scale spaces. Please see Table 1 for

an overview of datasets used in our experiments. We employ three types of scale spaces in our experi-

ments: Gaussian filtering, bilateral filtering, and topological persistence-based filtering. For the Gaussian

scale spaces, we associate its variance parameter as scale, expressed in units of the grid (e.g. a value of “1”

would be one voxel unit in a volume). For bilateral filtering, we keep the variance for the data term fixed, and
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instead vary the spatial scale. Last, for topological filtering we treat the threshold at which critical pairs are

filtered as our notion of scale, e.g. as scale increases, critical points are merged and a smoothed field of sim-

plified persistence is produced – we use TTK’s implementation (133). We note that unlike Gaussian/bilateral

filtering, topological filtering is not a continuous scale space. We provide further implementation details on

model settings and optimization in the following section.

5.4.1 Implementation Details

There are two optimization schemes with our approach: (1) fitting an INR to a field, (2) and then building

scale into the INR. For field fitting, for simplicity and fair comparison we optimize each INR in the same

manner: we perform 80K optimization steps, using a batch size of 40K samples per step. We take samples

uniformly-at-random from the ground truth field. Unless otherwise specified in the main text, each model

has 5 hidden layers. In each model, we express a compression ratio, and subsequently compute the number

of parameters that will lead to a network size with, approximately, the desired compression. For SIREN,

Fourier, and Gabor, this amounts to setting the layer width to, with Fourier and Gabor considering the per-

layer positional encodings. For the grid-based SIREN, unless otherwise stated, to gain benefits of locality

we fix the layer width to 256 and then derive the coarse grid resolution that would achieve the provided

compression ratio. We use the ADAM optimizer, setting the initial learning rate to be inversely proportional

to the model’s layer width for stability in optimization (ranging from 10−5 to 10−4). During training, we

linearly decay the learning rate to 0 upon concluding optimization.

In practice, we find that building scale into an already optimized INR is significantly faster to train than

the original fit, and more stable. Specifically, we take 4K optimization steps, using the ADAM optimizer with

an initial learning rate of 10−1, linearly decaying the learning rate to 0. We assume a fixed number of scales

on which we can access on demand, the scale-transformed field, and in each optimization step, we take a

number of samples over the field domain, at different scales, to learn the modulation weights. In practice, we

take 80K samples distributed equally over all training scales. The modulation matrices M(l) are initialized to

a value of 5, and the l parameters set to 1. This setting ensures that the sigmoid function produces values

close to 1, thus resembling the original INR prediction and serving as a reasonable initialization. This helps to

prevent saturated activations. We found that initializing to a value of 0, and thus having the sigmoid produce

a value of 0.5, led to poor local minima in optimization.

For our bilateral filter, we treat the spatial bandwidth in the Gaussian as the primary scale in the scale

space, whereas the data term is fixed and set to a constant – this constant is ultimately data-dependent and

subjective. We have strived to set this to ensure sharp features are preserved through the filter. For topological

persistence, to generate a scale space, we define scale with respect to the threshold at which critical pairings
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Figure 5.6: Comparison of our method with an alternative model that explicitly conditions on scale as a
coordinate. Our method fares much better in generalization, emphasizing the importance of how to represent
scale within an INR. Dataset: MHD-B (2563)

are removed. We manually set a maximum threshold, say , and equally sample over the interval [0, ] to

produce a series of scalar fields that serve as supervision.

5.4.2 Comparision

5.4.2.1 Scale-as-Coordinate

It is natural to ask whether a simpler, alternative scheme can be used to build scale into an INR. One option

is to explicitly condition on the scale value as an additional coordinate input to the network; this scheme has

been used in prior work, see e.g. ACORN (84), but not for explicit scale-space learning. We compare to

this baseline, in order to assess generalization: for the 2563 MHD-B scalar field we learn a SIREN. based

Gaussian scale space from scales s ∈ [1,9]. We optimize our scale-reinforced model, and said baseline, under

differing number of scales observed during training: {1,9}, {1,5,9}, and {1,3,5,7,9}. We evaluate the

methods on scales trained, and withheld scales, inclusive of the original field (e.g. a scale of s = 0).

Fig. 5.6 shows the results of this experiment. We first note that the baseline – treating scale as a coordinate

– clearly fails to generalize across scales that it did not observe during training. Our method sees good

performance once provided with 3 unique scales at training, but still performs reasonably well when given

just scales {1,9}, suggesting that our proposed method is learning a meaningful representation of scale. The

baseline method overfits, or “memorizes”, to scales provided during training, which might be acceptable if

an end user requires just a small number of scales for processing. However, this comes at a cost: the fit to
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Figure 5.7: We compare our method against the tensor-based Tucker decomposition, which permits
compression-domain linear filtering. In the linear case (Gaussian), our method is competitive, but for data-
dependent filtering (Bilateral) our method outperforms Tucker decomposition, and without needing to resam-
ple to a grid. On the bottom, we show a visual comparison for Miranda under Gaussian filtering at scale
s = 2, and Hazelnuts under bilateral filtering at scale s = 4.

the original field worsens as the number of scales for training increases. This is a central advantage of our

approach being retrospective, and instead reinforcing scale within an existing INR.

5.4.2.2 Tensor-based Filtering

We compare our method to Ballester-Ripoll et al. (6), where linear filtering can be exactly performed in the

compression domain of a Tucker-based tensor decomposition. We consider a Gaussian scale which exactly

fits this assumption, and a bilateral filtering scale, wherein it is necessary to resample to a grid, and sub-

sequently perform bilateral filtering, due to the data-dependent filtering. We have set both methods (ours

– SIREN) to have approximately equivalent compression ratios, where data reduction is strictly in terms of
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Figure 5.8: We show the results of our method applied to a diverse range of fields, across different types
of INRs. Each INR is compressive by design, while still enabling access to a scale-parameterized family
of transformations. By representing a field as a coordinate-based neural network, we can perform back-
propagation to compute spatial derivatives, thus enabling compressive, scale-dependent features on the field,
shown here as gradient magnitude for the pressure-based Isotropic Turbulence (bottom left), and vorticity of
a vector field for MHD (top right).

model reduction, and no other postprocessing (e.g., no quantization is performed (7; 80)). Fig. 5.7 shows the

results for two different volumes, across a set of scales, where we evaluate on the scales that we have trained

on. For Gaussian filtering, we observe that our method is mostly an improvement. As shown qualitatively, for

smaller scales, our method can excel in preserving features, highlighted for Miranda under Gaussian filtering

at a scale of s = 2. In certain cases, however, filtering the compressed Tucker-based volume can lead to an

improvement, where we hypothesize that the noise introduced by the low-rank tensor decomposition is of

high frequency, and thus smoothed out under Gaussian filtering. For bilateral filtering, however, our method

consistently outperforms the low-rank tensor decomposition, and without necessitating decompression to a

regular grid. Here, the compression artifacts introduced by the Tucker decomposition cannot be overcome

through bilateral filtering, which attempts to retain data-dependent features (e.g., sharp edges) whilst remov-

ing noise. On the bottom, we show a visual comparison for Hazelnut within a bilateral filtered scale space,

further conveying our method’s ability to learn a meaningful representation of scale; in contrast, bilateral

filtering a decompressed volume leaves artifacts intact.

5.4.3 Experimental Results

We have augmented existing INRs across a variety of models, and different forms of datasets. Fig. 5.8 shows

the quantitative and qualitative results for our method applied to four different types of INRs (c.f. Sec 3.1),
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and four volumes that range from (1) a CT scan, (2) scalar fields of turbulence simulations (pressure and tem-

perature fields), and (3) a vector field resulting from a turbulence simulation. In these experiments, we use a

Gaussian scale space, where each model is trained on odd-valued integer scales ranging from 1 to 9, and eval-

uated on all integer-valued scales within [1,9]. Hence, even-valued integers correspond to scales not observed

during training. From the plots depicting PSNR over scale, we find that all INRs successfully generalize over

these scales, as evidenced by no noticeable drops in performance in PSNR at withheld scales. A notable

advantage of our approach is that we may access scale-dependent derivatives from an INR, simply through

backpropagation, conditioned on a given scale. We show this qualitatively via the gradient magnitude of the

pressure field (lower left), leading to well known tube-like structures in pressure gradients within isotropic

turbulence that are gradually diminished over larger spatial scales of smoothing (of the pressure field, not its

gradient). Likewise, we show the vorticity of the (scale-space) vector field in this magnetohydrodynamics

simulation.

In general, we find that the SIREN INR tends to perform best. As discussed in detail in the Sec. 5.2.2,

MLP architectures are, in general, more expressive than MFNs, thus they have a higher capacity for learning

a better representation of scale. On the other hand, the grid-based model also uses an MLP akin to SIREN,

but whose positional encoding is based on a linear interpolation of learned features at grid vertices. In these

experiments, the grid resolution is left as a constant, whereas its layer width adjusts to compensate for a

target compression. For smaller data spatial resolution (e.g. MHD), we find that the grid-based approach

can deteriorate in performance, particularly when the spatial support of a chosen scale approaches the size

of a cell within the coarse grid. As we believe that localized implicit neural representations are a practical

representation for the visualization of large-scale field-based data (127; 77; 145), we study the effect of the

coarse grid resolution on model performance, here for the 10243 Flower CT scan. In contrast with Fig. 5.8

(top-left), here we study bilateral filtering. We vary the coarse grid resolution over 83, 163, and 323, while

adjusting the layer width of the models (D) to attain a compression ratio of 400x in each. Fig. 5.9 shows

the performance of each model, along with timings pertaining to (1) fitting to the field, (2) learning the

bilateral filtering scale space, and (3) time required to perform inference, at a scale of s = 7, in reconstructing

the bilateral filtered volume. We observe that as the grid resolution becomes too large (323), performance

begins to suffer. However, at 163, we only observe a small drop in performance, while training and inference

time both strike a reasonable compromise. In particular, we also show the time required to perform bilateral

filtering on the original volume for scale s= 7, under a GPU-optimized PyTorch implementation. Here we see

that it is slower than all such methods, approximately 3x slower for 163 coarse grid resolution. This example

demonstrates the inference-time benefit of using localized INRs as a more efficient means of reconstructing

filtered representations if so desired, while still permitting random-access evaluation within the volume.
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Figure 5.9: For grid-based SIRENs, we study the effect of the coarse grid resolution on learning a bilateral
filter scale space on a 10243 CT scan of a flower (compression: 400x). As shown, a good compromise
between quality (top-left) and training/inference time at a scale s = 7 (right) can be found (163), where ”GT”
corresponds to the time required to bilateral filter the original volume at this scale.
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Figure 5.10: We study the effect of compression on learning a bilateral scalespace for two different INRs,
namely, SIREN and Gabor (MFN), for the Lung dataset. In general we find that our method is insensitive to
the level of compression, maintaining a comparable level of quality across the learned scale space. On the
right we show that, qualitatively, the different levels of compression yield similar results (scale s = 3).

65



0 2 4 6 8
35

40

45

50

55

Scale

PS
N

R

0 2 4 6 8
0

500

1,000

1,500

Scale

C
om

pr
es

si
on

 R
at

io

SIREN
SIREN-Grid

Error Tolerance

Figure 5.11: Our approach can distill a scale-based INR into a scale independent INR to achieve higher
compression. We set an error tolerance of 10−5 for a bilateral filter scale-space Flower field (in range [0,1],
and compare distillation between SIREN and Grid-SIREN (83 grid). We observe both can roughly meet the
tolerance (left), while we observe SIREN is far more compressive than Grid-SIREN (right).

5.4.4 Effect of Compression

In Fig. 5.10, we show the effect of different compression ratios on learning a bilateral scale-space for SIREN

and Gabor (MFN) INR using a Medical CT scan image. We can see that with increasing compression ratio

the ability of both the INRs to model the data accurately decreases. This is due to the noise that is inherently

present in medical data and thus makes the learning task for the INRs with smaller capacity network harder.

We find that, consistently across different compression ratios irrespective of the choice of INR, the PSNR is

comparatively higher for larger scales. This suggests that the INRs are able to successfully reduce the noise

present in the modeled data as a consequence of bilateral filtering. We further find that the ability of an INR

to reproduce a scale-space is dependent on how well the INR models the data i.e., an INR that models the data

poorly will yield a lower quality scale space as compared to an INR that models the data more accurately.

5.4.5 Network Distillation

In Fig. 5.11, we show the results of network distillation, applied to the Flower dataset (c.f. Fig. 5.9) under

bilateral filtering. Here we prune weights until an error tolerance of 10−5 (PSNR 50) is met, and compare

SIREN and SIREN-Grid to assess how compressible these models are. We note that both models start from

INRs of a compression ratio of 400x, and consequently of lower PSNR, so it is only at scale s = 4 where

the error tolerance can be satisfied. It is anticipated that both methods would have an error slightly above the

tolerance (below the PSNR threshold). This is because we are using a ”teacher” INR for supervision, leading

to a small discrepancy, observed to be between 1 and 1.5 PSNR units. Both INR models achieve similar

PSNR, but interestingly, we find that SIREN is far more compressive across all scales. This suggests that
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network distillation for otherwise expensive SIRENs can effectively lead to reduced models.

The analysis presented in Sec. 5.2.2, for SIREN-based INRs, suggests that weights in deeper layers will

largely tend to contribute mostly towards higher frequencies. Our network distillation method, wherein we

weight-prune to meet a prescribed error tolerance, enables us to study this claim by counting the number of

neurons retained, at each layer, after pruning has been achieved. Fig. 5.12 depicts these results. We observe a

clear trend towards pruning weights in deeper layers as we increase scale. In this example we use a bilateral

filter scale space, where we should expect some high frequencies to be removed, while others (e.g. sharp

edges) should remain.

5.4.6 Persistence-based Scale Spaces

Finally, we demonstrate the results of our technique for learning a scale space based on persistence-based

topological filtering. We begin with results on a 2D scalar field example, specifically, the vorticity of a

velocity field from a fluid simulation, provided by the dataset of Jakob et al. (56). We sample persistence

threshold values at equal spacing, producing a series of scalar fields on which our model is trained. We train

on every other field in the sequence, and test on all scales. Fig. 5.13 presents the results, where we plot the

PSNR, as well as Wasserstein distance (66) between the persistence diagrams resulting from our predicted

scalar field at each scale, and the ground truth. For those scales at which our model is trained, we find that our

method performs quite well along both measures. However, for withheld scales, we observe that occasionally

our method may not capture the persistence-based features that are removed – we find this to be especially

the case for persistence-based thresholds at which a significant number of features are removed. Persistence-

based scale spaces are more challenging to capture than other nonlinear scale spaces (e.g. bilateral filtering),

due to the highly nonuniform change in the field.

For persistence-based scale spaces wherein the features do not change so abruptly, we find that our method

can generalize reasonably well. We demonstrate this for a 3D pressure-based scalar field of Isotropic Turbu-

lence. In general, we observe that the PSNR remains consistently high throughout, while qualitatively one

can observe that features removed – at withheld scales – are consistent between our method and ground truth.

The Wasserstein distance can be somewhat high in this setting, but we emphasize that our method does not

explicitly optimize for topology, only a mean-squared error to the filtered field. On the other hand, it should

be possible to extend our method to support topology-based objectives during optimization, similar to Soler

et al. (121), but we leave this for future work.
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Figure 5.12: For our network distillation results on the Flower dataset, and a SIREN-based INR, we show,
for each scale-distilled model, the number of neurons retained at each layer after performing pruning. We
find a strong tendency to remove neurons in deeper portions of the network.
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Figure 5.13: We show the results of learning persistence based scale-space for the vorticity field of a fluid
simulation dataset.
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Figure 5.14: We show the results of persistence based filtering quantitatively through PSNR and Wasserstein
distance between the original and the predicted field for different scales applied to the pressure field of the
Isotropic Turbulence dataset. We show qualitative results of the fields generated from the ground truth (top-
row) and INR predictions (bottom-row) for a subset of scales.

5.5 Discussion

We have presented a technique for endowing implicit neural representations with scale, enabling multi-

scale compressive analysis and visualization of field-based data. We have demonstrated the effectiveness
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of our method across a diverse set of data, INR models, and scale spaces, and improvements over existing

compression-domain filtering methods. A key takeaway from our work is the specific way in which one

should augment coordinate-based neural networks to learn scale. Naive approaches, e.g. tacking on scale as

an input coordinate, clearly suffer in generalization (c.f. Fig. 5.6). Our technique of weight modulation leads

to INRs that faithfully represent scale-space transformations, and we make this more precise in terms of the

space of functions that INRs can represent.

We acknowledge several limitations with our current approach. First, the time required to optimize INRs

remains quite expensive in the literature, even for methods that target larger-scale data (127; 84), and our

method is no exception. The computation/inference timings reported in Fig. 5.9 are, generally, reflective of

computational complexity across other models, as the time required to perform optimization is proportional

to the data size, and the model size. Nevertheless, in practice we find that building scale into an existing INR

converges significantly faster than the original fit to the data. We thus view our method as complementary to

existing INR techniques that seek to optimize for large data (89), and we envision our method can be applied

to future INR models as well.

In comparison to recent work that learns multi-scale INRs, namely BACON (77), our method necessitates

access to a scale space on which to optimize. It would be more ideal to build the INR with the scale space,

by design, rather than a post hoc process. However for scale spaces that do not have a clearly defined form

known a priori, e.g. a frequency domain characterization, it is challenging to instrument an INR to represent

a target scale space. We further acknowledge that our method has a bias towards learning continuous scale

spaces, where fields change continuously in response to increasing scale. The characterization of functions

represented by our method suggests this to be the case (e.g. frequency filtering, albeit in an extremely large

frequency decomposition) – thus for scale spaces that vary in a discrete manner, e.g. topological persistence,

our method may not capture such discrete phenomena. However, we view these as two distinct regimes, and

thus different inductive biases within an INR: scale spaces that vary discretely, or continuously.

We see several avenues for future work. First, although our method can support progressive representa-

tions through varying scale, our results on distillation suggest that INRs can be purposed to have a progressive

computational structure, in support of more efficient inference. As discussed in the Sec. 5.4.5, network prun-

ing over increasing scales leads to a structure wherein the larger the scale, the more likely we can prune

neurons in later layers. This observation suggests that 4the computation of an INR can be arranged to incre-

mentally introduce neurons, in accordance with scale, e.g. computation with few neurons to give a coarse

scale, with the introduction of additional neurons for finer scale. A naive approach, independent of a scale

space, would lead to artifacts, where as our scale-based approach can potentially lead to a progressive repre-

sentation where intermediate results take on properties of the scale space itself (e.g. few neurons used leads
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to smoothed results in the case of a Gaussian scale space).

We also plan on integrating our methods within neural rendering systems (89; 145) for interactive visual

exploration of field-based data. Upon a proper port to a GPU-based rendering system, we believe that the

methods we have introduced can open up a large number of possibilities for rendering systems that would

otherwise be complex, or too expensive, to realize. For instance, the ability to access scalebased derivatives,

directly from an INR would eliminate the need to perform 2 separate passes on a field for (1) filtering, and

(2) numerically estimating derivatives. More broadly, we believe that our method has a number of benefits in

the scale-oriented analysis of field-based data. We hypothesize that a continuous representation of scale can

enable new methods for scale selection, e.g. exactly which scales highlight important features in field-based

data, and where in the data. In this sense, we think that our method can support other methods that rely

on scale-based analysis (19; 94; 134), but done in a manner that permits compressive analysis. Further, our

specific approach to learning weight modulation is just one way to augment INRs. Like BACON (77), we

believe that a better understanding of the representation space of INRs can permit new methods for designing

models with built-in, theoretically-motivated, properties. We think this perspective can inform a large class

of new machine learning models for representing field-based data, designed for visualization.
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CHAPTER 6

Integration-free learning of Flow Maps

In the previous chapters, we focused on the data reduction aspect of flow visualization for different flow

field specifications. We showed that substantial data reduction can be achieved through deep learning based

techniques by incorporating what we visualize e.g. integral curves in the optimization process. Although

data reduction is an important factor, another equally important factor essential for effective visual analysis

is the computation time of visualization techniques. The flow map is pervasive within the area of flow

visualization, as it is foundational to numerous visualization techniques, e.g. integral curve computation

for pathlines or streaklines, as well as computing separation/attraction structures within the flow field. Yet

bottlenecks in flow map computation, namely the numerical integration of vector fields, can easily inhibit

their use within interactive visualization settings. To this end, we propose a technique for an alternative flow

map representation that is efficient to evaluate and scalable to optimize, both in computation cost and data

requirements. A key aspect of our approach is that we can frame the process of representation learning not

in optimizing for samples of the flow map, but rather, a self-consistency criterion on flow map derivatives

that eliminates the need for flow map samples, and thus numerical integration, altogether. We show the

benefits of our method over prior works in terms of accuracy and efficiency across a range of 2D and 3D

time-varying vector fields, while showing how our neural representation of flow maps can benefit unsteady

flow visualization techniques such as streaklines, and the finite-time Lyapunov exponent.

6.1 Approach

In this section we present our approach, where we first describe the objective we seek to optimize, followed

by a network design suited for this objective, and last we describe our specific approach to optimization.

6.1.1 Integration-free learning

The flow map is an important mathematical tool that is utilized by numerous visualization techniques. To

mathematically represent the flow map, let us consider a time-dependent flow field ν : Rn ×R→ Rn, where

ν(x(t), t) describes the vector of a particle at time t with spatial position x(t) ∈ Rn. The trajectory of a

mass-free particle, advected under the influence of the flow field ν , is governed by the following ordinary

differential equation:
dx(t)

dt
= ν(x(t), t), x(t0) = x0, (6.1)
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where x0 represents the initial position of the particle at starting time t0. Integrating this differential equation

under a specified time span τ gives us the flow map Φ, which varies in initial position x0, starting time t0, and

time span τ:

Φ(x0, t0,τ) : Rn ×R×R→ Rn = x0 +
∫ t0+τ

t0
ν(x(t), t)dt. (6.2)

In practice, the computation of the flow map depends on (1) a means of interpolating the vector field at

arbitrary space-time coordinates within the domain, and (2) a choice of numerical integration scheme, e.g.

Euler or Runge-Kutta. Integrating for long time spans, however, can become a computational bottleneck

when coupling the flow map with a particular visualization technique. This motivates the need for alternative

flow map representations that can mitigate the expense of numerical integration.

In this work, we seek neural representations of flow maps, which we will denote Φ̂, that are (1) scalable

to optimize, (2) efficient to evaluate, and (3) serve as accurate approximations. Satisfying all criteria, at once,

is challenging with prior methods, as the choice of network design, objective(s) to be optimized, and data

required for optimization, are all important considerations that interrelate. A standard approach (43; 107) is

to collect a dense set of samples of the flow map, and optimize a neural network to reproduce these samples,

either directly as its output (43), or indirectly through integrating a learned vector field (107). However, to

ensure good generalization, the number of flow map samples to collect needs to be quite large – at least on

the order of the vector field resolution – with each sample requiring expensive numerical integration. Further,

coordinate-based networks need to be sufficiently large for accurate learning, and thus combined, the dataset

size and network complexity can lead to expensive training, and inefficient evaluation.

Our work foregoes the need for numerically integrating the vector field altogether. Instead, we opti-

mize for flow map derivatives, rather than the raw flow map output, taking advantage of the following basic

property of a flow map:
∂Φ(x, t,τ)

∂τ
= ν(Φ(x, t,τ), t + τ). (6.3)

In other words, the derivative of the flow map taken with respect to time span τ , at position x and time t,

can be found by (1) evaluating the flow map at the given inputs, and (2) accessing the vector field at the flow

map’s positional output, at time t + τ . A flow map representation whose derivative is satisfied at all positions

and times will, by construction, produce valid integral curves. Specifically, upon fixing position and time,

evaluating the representation in increasing time span τ will yield a curve whose tangent vectors match the

vector field as defined in Eq. (6.3).

Of course, this approach assumes full access to the flow map itself, which is ultimately what we are trying

to find. To help formulate a well-defined optimization problem, we identify two basic properties of a flow

map that we expect any approximation should satisfy. Herein we refer to the neural flow map representation
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Optimization Objective

Figure 6.1: Our approach is based on a criterion of self-consistency, where the flow map derivative under
some time span τ should match the flow map’s instantaneous velocity at this location. A flow map whose
instantaneous velocity initially matches the vector field can give us a linear approximation (left), violating
self-consistency. By optimizing over a range of time spans, our approach aims to adjust the flow map such
that this criterion is satisfied (right).

(a) (b) (c)

Standard coordinate-based
network Our network architecture

Derivative network for
instantaneous velocity

.

+ +

Figure 6.2: Standard coordinate-based networks (a) serve as simple models for flow maps, but are difficult
to control and optimize. In contrast, our proposed network design (b) permits a clear delineation between
the instantaneous velocity of the flow map, and integration for nonzero time spans (τ), achieved via τ-scaled
residual connections. This leads to a simplified derivative network (c) at τ = 0, one that is straightforward to
fit to the vector field, and subsequently, stabilize flow map optimization.

as Φ̂.

(P1) Identity mapping. When we integrate a particle for a time span of τ = 0, then the flow map Φ̂

should return the starting position, irrespective of the starting time:

Φ̂(x, t,0) = x, (6.4)

We argue that any approximation Φ̂ should exactly satisfy identity preservation. Otherwise, a small perturba-

tion δ ∈ Rn yielding Φ̂(x, t,0) = x+δ would lead to an accumulation in error for repeated evaluation of the

flow map approximation Φ̂.

(P2) Instantaneous velocity. For a time span of τ = 0, if we compute the derivative of the flow map Φ̂

with respect to time span, then it should return the evaluation of the field ν at the provided position x and

time t:
∂ Φ̂(x, t,0)

∂τ
= ν(x, t). (6.5)
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A neural flow map representation Φ̂ whose derivative poorly approximates the vector field, e.g. points in a

different direction, can lead to particle trajectories that diverge from actual trajectories. Indeed, upon a simple

first-order approximation, we have:

Φ̂(x, t,ε)≈ Φ̂(x, t,0)+ εν(x, t). (6.6)

and thus, if the derivative of Φ̂ at τ = 0 is poorly approximated, then this negatively impacts the action of the

flow map itself. Also note that failing to preserve the identity mapping (P1) can further compound error.

Assuming the above properties hold, we propose the following criterion of self-consistency for learning

flow maps:

ls(x, t,τ) =
∥∥∥∥∂ Φ̂(x, t,τ)

∂τ
− ∂ Φ̂(Φ̂(x, t,τ), t + τ,0)

∂τ

∥∥∥∥. (6.7)

Here we have replaced the vector field in Eq. (6.3) with the flow map derivative. Hence, assuming property

(P2) holds, the derivative of the flow map at τ = 0 will faithfully represent the vector field. By minimizing

this objective over the full domain via:

Ls = E(x,t)∈D ,τ∈T [ls(x, t,τ)] , (6.8)

where D is the spatiotemporal domain, and T = [τmin,τmax] is an interval of time spans we aim to support in

our approximation, we can ensure global self-consistency. Such a property is fundamental to any flow map,

but it is possible for Φ̂ to minimize Eq. (6.8), while remaining a poor approximation of Φ. However, if in-

stantaneous velocity is well-satisfied (P2), and remains fixed, if not minimally changed, during optimization,

then this will limit the space of flow maps that satisfy Eq. (6.8).

To provide intuition for our approach, if a flow map initially satisfies properties (P1) and (P2) then this

can give a simple linear approximation, as shown in Fig. 6.1 (left). However, the self-consistency criterion

will naturally report a high loss for a sufficiently-large τ > 0. By optimizing over a range of time spans T ,

we can incrementally improve on self-consistency: first for small time spans, given (P2) holds, and then for

larger time spans, as notionally depicted in Fig. 6.1 (right). This idea of incrementally building the flow map

has precedence in the literature (50), but in our approach we eliminate the need for numerical integration, and

instead only require access to the original vector field. But critical to our approach, we require that the flow

map approximation satisfy properties (P1) and (P2). We next turn to a novel network design suited for these

ends.
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6.1.2 A network design for flow maps

Coordinate-based neural networks, in particular ones based on sinusoidal positional encodings (120; 129;

29), are a natural choice for our flow map network design. Specifically, position (n dimensions), time (1

dimension), and time span (1 dimension) can collectively be treated as individual coordinates as input to a

multi-layer perceptron (MLP) (120; 129), whose output corresponds to the flow map prediction, please see

Fig. 6.2(a). However, such an approach fails to guarantee property (P1) by design, and instead, the identity

mapping must be learned. Moreover, the input-based derivatives of MLPs are themselves nontrivial neural

networks (120), and do not permit a distinction between instantaneous velocity (P2) and flow map derivatives

of nonzero time span. This presents complications for ensuring a stable composition-based objective (c.f.

Eq. (6.7)).

Rather than use a standard coordinate-based network we propose a 2-tiered network design, please see

Fig. 6.2(b) for an overview. The first network, which we denote a fν : Rn ×R→ Rd learns a d-dimensional

spatiotemporal representation of the domain that is tasked with property (P2), learning a representation of

instantaneous velocity. We condition the representation fν with a given time span τ , via the following multi-

plicative scaling:

z(0) = σν(τm(0))⊙ fν(x, t), (6.9)

where m(0) ∈ Rd is a learnable vector aimed to reconcile the scaling of τ – initially expressed in terms of the

physical domain – for the neural representation. The function σν is a nonlinearity that serves to squash values

into a predetermined range, in practice this is set as a hyperbolic tangent, while ⊙ indicates element-wise

multiplication. The second network, which we denote fτ : Rn ×R → Rd , similarly learns a d-dimensional

spatiotemporal representation but one that is specific to the flow map for nonzero time spans. We combine

the two representations, fν and fτ , through a residual connection:

z(1) = z(0)+σν

(
τm(1)

)
⊙στ

(
z(0)⊙ (W (1) fτ(x, t))

)
, (6.10)

where m(1) ∈ Rd serves the same purpose as m(0), and W (1) ∈ Rd×d is a learnable linear transformation. A

consequence of the above construction is that the derivative w.r.t τ when τ = 0 evaluates to

dz(1)

dτ
=

dz(0)

dτ
=
(

σ
′
ν m(0)

)
⊙ fν(x, t). (6.11)

Subsequent representations are formed via residual connections, in order to preserve the above derivative:

z(l) = z(l−1)+σν

(
τm(l)

)
⊙στ

(
W (l)z(l−1)

)
, (6.12)
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and, finally the last layer L applies a single linear transformation to give us the output position, wherein we

also include a skip connection for the input position:

Φ̂(x, t,τ) = x+W (L)z(L−1). (6.13)

Returning to our properties, we note that this network design, by construction, satisfies the identity map-

ping (P1), so long as the chosen activation function σν satisfies σν(0) = 0. The multiplicative scaling per-

formed at each layer ensures that all representations will be zero vectors throughout the network. Critically,

we do not introduce bias vectors, in order to guarantee this identity mapping. More importantly, the designed

residual connections lead to a particularly simple network for the flow map derivative at τ = 0 (P2):

dΦ̂(x, t,0)
dτ

=W (L)(m(0)⊙ fν(x, t)). (6.14)

Please see the Sec. 6.2.7 for the supporting derivation. There are two implications of this result. First,

instantaneous velocity of the flow map does not depend on the representation fτ , as depicted in Fig. 6.2(c); in

fact it is entirely decoupled from the rest of the network (c.f. Eqs. (6.19) and (6.20)). Hence, we can directly

optimize instantaneous velocity of the flow map for the vector field ν using Eq. (6.14), without making

reference to the remainder of the model. In turn, a flow map that satisfies instantaneous velocity helps “prime”

the model in satisfying the self-consistency criterion, and ensures stability, e.g. we can choose to freeze

the parameters associated with fν , and W (L) when optimizing Eq. (6.8), and the network’s representation

of instantaneous velocity will remain unchanged. Secondly, the simplicity of this derivative network ensures

that we can easily optimize for the vector field. In contrast, for a standard MLP (c.f. Fig. 6.2) its instantaneous

velocity would amount to an involved derivative network (120) to be optimized. This network is no different

in structure for τ > 0, and as a consequence, optimizing for both instantaneous velocity, and derivatives for

τ > 0, would require a careful balancing act.

We remark that our network bears similarity to prior work on flow map representations (10; 43). In

particular, the distinction between spatiotemporal coordinates and time span is considered by Han et al. (43),

yet the ability to distinguish properties of the flow map for τ = 0 time span is not studied. Our network

design is inspired by Biloš et al. (10), where they similarly consider residual connections. However, we make

more precise the role of residual architectures in regards to flow map derivatives, and the relationship with

the vector field, this being the only source of supervision in our work.

What remains is a specific instantiation of functions fν and fτ . Though in principle these could be

arbitrary neural networks, in practice we adapt prior work on learnable feature grids (127; 145; 89), where
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the parameters of the model are, in part, comprised of learnable spatiotemporal feature grids, each of varying

resolution. For each feature grid we perform linear interpolation to obtain a feature vector, and concatenate

the vectors obtained across all grids. We then apply a shallow MLP to the concatenated vector. For simplicity,

grid cells are accessed exactly, rather than hashed as proposed in Müller et al. (89). The bulk of the network

parameters thus lie in the feature grids, rather than MLP weights, and so in practice the dimensionality d need

not be too large – in practice we set d = 64. As a result, the cost of evaluating the network is inexpensive,

requiring (1) interpolation of feature vectors from a set of grids, and (2) applying several matrix-vector

multiplication operations (c.f. Eqs. (6.18)–(6.21)).

6.1.3 Optimization Scheme

Our optimization scheme proceeds in two phases. In the first phase we optimize for the flow map’s instanta-

neous velocity, while in the second phase we optimize for the self-consistency criterion, in order to learn the

flow map over the full spatiotemporal domain, and varying time spans.

Vector field optimization. To find the flow map’s instantaneous velocity, we minimize the following

objective:

Lν = E(x,t)∈D

[
∥W (L)(m(0)⊙ fν(x, t))−ν(x, t)∥

]
. (6.15)

This amounts to optimizing over the parameters of fν , e.g. the multi-level feature grid, shallow MLP, vector

m(0), and final projection W (L). We emphasize that it is only this phase of optimization that requires the

vector field for supervision. The relevant portion of the model (c.f. Fig. 6.2(c)) can encode the vector field in

a persistent manner, even as we optimize for the flow map in the subsequent phase, and thus we may discard

the vector field post optimization. For large-scale vector fields that may not fit in memory, this gives us the

opportunity to learn a compressed vector field representation, e.g. one that can fit in memory for use in the

next optimization phase, as well as at inference time.

Flow map optimization. To learn the flow map, we are guided by the proposed self-consistency criterion

of Eq. (6.7). Although we often find taking just a single step is sufficient for giving accurate flow maps, for

certain datasets, we find it useful to instead take multiple steps in optimizing this loss. More specifically,

we define Φ̄(x, t,ε) = (Φ̂(x, t,ε), t + ε,ε) to be the resulting position, subsequent time step, and time span ε ,

from applying the flow map. Then for some target time span τ , we can compose the flow map into multiple

steps k ∈ Z+ as follows:

Φ̂k(x, t,τ) = Φ̄ ◦ Φ̄ ◦ · · · ◦︸ ︷︷ ︸
k−1

Φ̄(x, t,
τ

k
). (6.16)
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Optimization step 4K Optimization step 40K

Figure 6.3: We illustrate how flow map optimization incrementally learns longer time spans over the course
of optimization. Initially (40 steps), the flow map provides us with a linear approximation, owing to its
instantaneous velocity well-representing the vector field. Over optimization, the flow map becomes more
accurate in its predictions for longer time spans.

We then redefine our self-consistency loss as:

ls(x, t,τ) =
∥∥∥∥∂ Φ̂(x, t,τ)

∂τ
− ∂ Φ̂(Φ̂k(x, t,τ), t + τ,0)

∂τ

∥∥∥∥. (6.17)

Experimentally, we find that the number of steps k to take can be set in proportion to the time span. In

particular, for a given time span τ if we let τg be this value’s expression in grid units of the field’s time domain,

then we find it sufficient to set k(τ) = ⌈√τg⌉. Given that our network architecture permits efficient evaluation,

this is reasonably cheap to compute, especially in relation to full numerical integration. For further efficiency,

we find that the right-hand side of Eq. (6.17) can be frozen during optimization, and hence we only optimize

for the flow map derivative under nonzero time span τ .

During flow map optimization, we may freeze the network dedicated to instantaneous velocity, if not

fine-tune it with a learning rate much smaller than the flow map portion of the network, e.g. approximately

2 orders of magnitude less. Moreover, τ-scaled residual connections ensure that the derivative network for

nonzero τ is not overly complex, e.g. for small τ it will remain close to the derivative at τ = 0. We find

the ability of the flow map to well-represent small time spans (c.f. Eq. (6.6)) significantly helps stabilize

optimization, and in practice, we find that the flow map incrementally improves on larger time spans over the

course of optimization, please see Fig. 6.3 for an illustration.

6.2 Results

In this section we experimentally evaluate our method – herein termed NIFM for Neural Integration-free Flow

Maps – for both 2D and 3D time-varying vector fields, comparing against various baselines that accelerate

flow map computation in different ways. A requirement that is common to all baselines is access to samples

of the flow map. Unless otherwise stated (c.f. Sec. 6.2.4), the methods against which we compare NIFM are
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based on flow maps generated via 4th order Runge-Kutta integration (RK4), with step size set to half of the

temporal voxel size. We also use this very integration scheme to generate ground-truth flow map samples

for the purposes of evaluation. In Table 6.1 we list the datasets used for comparison purposes. Further, all

reported computational timings are based on a system with 12-core CPU AMD Ryzen 9 3900X, 16GB RAM,

and GPU NVIDIA GeForce RTX 2080 Ti with 12GB memory.

We consider the flow map super resolution technique proposed by Jakob et al. (56), wherein we train a

convolutional neural network (CNN) model using the 2D fluid flow dataset provided by the authors. To train

the CNN we generate 16x downsampled flow maps along with their corresponding high-resolution ground

truth flow maps, varying start times and time span of the integration, to permit model generalization for

arbitrary start time/duration.

Additionally, we compare our method with the deep learning based Lagrangian interpolation technique

proposed by Han et al. (43). This technique uses an encoder-decoder network and is most similar to ours

in terms of the input data the model expects, and the output of the model. We train the model on flow

map samples computed by, first, generating seeds sampled uniformly at random in space and time, and

secondly, integrating for varying small time spans. This flow map sampling technique is intended to resemble

the Lagrangian short generation scheme proposed by the authors. We made a minor modification to the

network by removing the ReLU activation function used in the output layer, allowing the model to output

negative values. Further, we compare our method with a SIREN (120) that tacks time span on as an additional

coordinate, along with particle space-time coordinates (c.f. Fig. 6.2(a)). We train the SIREN with the same

data used to train the encoder-decoder model. Note that we could use a hybrid grid-MLP model (89; 145) in

lieu of a standard coordinate-based MLP, but for 3D unsteady flows this would require storage of a 5D grid,

which is not feasible.

We also compare our method against the recent work by Li et al. (72), where the authors showed an im-

provement over prior work in efficiently interpolating Lagrangian representation to obtain new trajectories.

Note that the representation of flow in our datasets is Eulerian, whereas Li et al. works with particle-based

data, thus, requiring a conversion from the former to the latter. For a fair comparison, we convert the Eu-

lerian representation into a Lagrangian one by first placing ns number of seeds in the domain uniformly at

random, where ns is the spatial resolution of the vector field data, and integrate these seed points via RK4.

The temporal frequency with which we store particle positions is set as the temporal resolution of the field.

Furthermore, the Lagrangian representation is limited to the temporal duration on which we are evaluating,

to have a better distribution of particles throughout the domain.

Last, we compare our method with the streakline vector field (SVF) work of Weinkauf et al. (143). Specif-

ically, the SVF is first precomputed by estimating flow map derivatives, computed via RK4, and then at run-
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Table 6.1: We list all datasets and their respective sizes used in experiments.

Dataset Res [t,x,y(,z)]
Double Gyre 500x400x200

Cylinder 1001x400x50
Boussinesq 2001x450x150

Fluid Simulation 1001x512x512
Tornado 50x128x128x128

Scalar Flow 151x100x178x100
Half-Cylinder 151x640x240x80
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Figure 6.4: We show the quantitative evaluation of flow map approximation methods across different datasets,
and across different time spans, beginning at start times for which flow features have largely resolved.

time streaklines are generated by integrating the SVF. We view this as a fair comparison to our technique

in that both approaches incur a precomputation cost, and thus we aim to compare the computation and stor-

age requirement for the representations, as well as the accuracy and computation efficiency for generating

streaklines.

6.2.1 Implementation details

We first describe the details of our network architecture, followed by details on optimization.

Network architecture settings The design of fν and fτ rely on parameter settings related to the multi-

level feature grid, as well as the MLP. The feature grids for fν and fτ are of identical design, where we

use a 4-level feature grid, and each level is of a different spatial resolution. Specifically, for a given axis of

resolution w at level l, we set the resolution at the next level to be ws·l , with resolution scaling factor s set

to 1.65, following the guidance of Müller et al. (89). Each grid stores 8-dimensional feature vectors at its

nodes, and thus the resulting concatenated feature is 32-dimensional. We employ 2 and 1-layer MLPs for

fν and fτ , respectively, along with activation στ chosen to be a Swish activation (46). Experimentally we

found Swish to outperform other more standard activations for INRs, e.g. ReLU, sin, consistent with findings

in AutoInt (76). We control for the size of the network by a compression ratio, expressed as the ratio of

the vector field size to the network size. We adjust the spatial resolution of the feature grids to best match

a provided compression ratio, but leave the MLPs unchanged as they comprise a tiny portion of the model.

Last, we use a 3-layer MLP with 64 layer width for the residual network. Unless otherwise specified, we use

a compression ratio of 10 for all 2D datsets, and customize compression ratios for 3D as appropriate.
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Table 6.2: We report the preprocessing times for different methods across 2D unsteady flows, along with
corresponding timings for FTLE computation, varying time span and image resolution.

Dataset FTLE res τ
Inference
time(s)

Preprocessing
time(min) CR

Storage
(MB) method

Fluid Sim 512x512 7

21.161 - - 2003 GT
0.585 48.01 10 189 NIFM
2.010 63.33 1 Siren
4.701 1104.60 - FSR

Cylinder 1200x150 1

1.853 - - 153 GT
0.055 33.50 10 16 NIFM
0.554 74.26 - ED
0.324 41.76 1 Siren
29.94 0.04 - Spline

Boussinesq 450x1350 0.5

2.220 - - 1030 GT
0.079 37.25 10 97 NIFM
0.938 122.89 - ED
0.621 63.28 1 Siren
91.57 0.15 - Spline

Double Gyre 1200x600 10

34.453 - - 611 GT
1.020 34.80 10 29 NIFM
6.278 40.70 - ED
1.689 19.84 1 Siren

252.63 0.29 - Spline

Optimization details For both phases of optimization we use Adam (65), where we take a total of 40,000

optimization steps and decay the learning rate every 8,000 steps. Specific to optimization phase, in fitting

to the vector field we use a learning rate of 0.02, while for flow map optimization we use a learning rate

of 0.01 – fitting the flow map derivative to the vector field is quite stable, and benefits from larger learning

rates. In optimizing for the flow map, we have the choice of leaving the instantaneous velocity portion of the

network frozen, or fine-tuning its weights to compensate for the remainder of the network. Although we find

that both give results of comparable accuracy, in some occasions we found that fine-tuning can mitigate small

grid-based artifacts in the output when leaving these weights frozen, and hence we fine-tune this portion of

the network, using a learning rate of 0.0008.

Recall that our method supports a maximum time span τmax on which to sample during optimization.

Though in principle we could optimize for the full time span of a given dataset, we find that performance can

suffer, especially for datasets exhibiting complex temporal dynamics. Thus, as a compromise we set a limit

on τmax during optimization, and at inference time, for any target τ > τmax we take multiple steps with our

network until reaching the desired span τ . Specifically, for all 2D datasets, expressed in terms of grid units

we set τmax = 48 unless otherwise specified. For 3D datasets we customize τmax based on grid resolution, and

complexity of the flows.

6.2.2 2D unsteady flow

We first conduct experimental comparisons for various 2D time-varying flow fields. Specifically, we evaluate

different techniques by computing the error in flow map approximations over varying seed points (spatial

position and starting time) that have been integrated for varying time spans. We express error as the averaged
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Figure 6.5: We compare FTLE (top row) and integration error (bottom row) for two Fluid Simulation datasets
(Re 16 and Re 101.6) across different baselines. The left column corresponds to particles integrated beginning
at t0 = 0 for duration τ = 7, while the right column corresponds to particles integrated starting at t0 = 2 and
τ = 7.
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Figure 6.6: We compare FTLE (top row) and integration error (bottom row) for different baselines for the
Double Gyre dataset. Particles are integrated from t0 = 0 for a time-span τ = 10.

Euclidean distance between the ground-truth flow map output, and the approximation scheme’s output, nor-

malized by the domain’s bounding-box diagonal length. In Fig. 6.4 we present quantitative results comparing

our method against different baselines, and in Table 6.2 we report inference and preprocessing times. Specif-

ically, for the pathline interpolation approach of Li et al. (72), preprocessing refers to the time required to fit

B-splines, while for Jakob et al. (56) this refers to the time required to optimize the CNN for super resolution.

For all remaining methods, preprocessing refers to the time required for optimizing to an individual flow

field.

In comparing the fluid simulation flows of varying Reynolds numbers, we find that our method sees con-

sistent improvement in accuracy over SIREN and super resolution, while achieving faster inference times. We

note that the super resolution approach requires optimizing a CNN over a collection of flow maps just once,

and thus can generalize to low-resolution flow maps at inference time, albeit restricted to flows resembling

those observed during training. Our method is limited to just a single dataset at a time, but nevertheless, our

training times scale well in terms of standard INRs (e.g. SIREN), while exhibiting faster inference and more

accurate flow map approximations. Qualititative results for the fluid simulation flows are shown in Fig. 6.5 in
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Figure 6.7: We show the FTLE (top of each pair) and error maps (bottom of each pair) for the flow over
cylinder dataset generated by integrating particles starting at t0 = 18 for a time-span τ = 1.

the form of the FTLE – computed using the method of Haller (? ) – and color-encoded flow map errors. For

high Reynolds number flows, we see that the super resolution method can fail to adapt to the rate at which

particles separate, as indicated by the color shift, while also blurring out detailed ridges in the FTLE. Our

method, however, excels in capturing FTLE ridges, while remaining efficient to compute, since the super res-

olution method still requires computing a low-resolution flow map as input to a (otherwise highly efficient)

CNN. Recall that our method employs a compression ratio of 10 for all 2D experiments, which limits the grid
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Figure 6.8: We show the FTLE (top of each pair) and error maps (bottom of each pair) for the Boussinesq
dataset generated by integrating particles starting at t0 = 11.3 for a time-span τ = 0.5.

resolution, and thus might limit the details we can reproduce in the flow map. However, from these results,

we see that the coarser feature grid resolution does not limit the spatial resolution of the FTLE.

In comparing our method to other baselines (c.f. Fig. 6.4) for Double Gyre, Cylinder, and Boussinesq, we

find that our method obtains higher accuracy in relation to other techniques. Prior INR methods such as the

encoder-decoder architecture of Han et al. (43), or a pure coordinate-based approach (120) poorly generalize.

We find that for small step sizes, the performance of these methods in fact steeply declines, as numerical error

accumulates with the more steps taken. We attribute this to the basic limitations of the network architectures

employed, failing to address the properties (identity mapping, instantaneous velocity) we target in our net-
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Figure 6.9: We compare our method’s ability to compute streaklines against the streakline vector field tech-
nique (143), which only necessitates integrating a derived vector field. Qualitatively and quantitatively we
find that our method produces comparable results, where we show varying step sizes used for evaluating the
flow map.

Table 6.3: We report storage requirements, preprocessing time and inference time for computing streaklines
on the Cylinder dataset, comparing our method against the streakline vector field technique (143).

Method
Preprocessing

Time
(min)

Inference
Time
(sec)

Storage

Ground Truth NA 21.391 160.20 MB
SVF 130.407 1.204 160.36 GB

NIFM (16 grid steps) 40.060 0.952 77.20 MBNIFM (24 grid steps) 0.671

work design. The inability to generalize in these methods is further demonstrated qualitatively for Figs. 6.6 -

6.8. Pathline interpolation (72) is notable in its small precomputation cost. Nevertheless, the method is less

accurate in preserving the flow map, while incurring a high computation cost at runtime.

We additionally evaluate our technique both quantitatively and qualitatively for the computation of streak-

lines. In Fig. 6.9 we show streaklines for the Cylinder dataset. We compare our method with SVF (143). We

can see that both the techniques are able to capture the vortices of the dataset faithfully, and are visually

indistinguishable from the ground truth streaklines. Quantitatively both the techniques consistently incur low

streakline error staying within the margin of 10−3 magnitude (relative to the bounding box diagonal). Inter-

estingly, we find that both methods have comparable inference time as well, as reported in Table 6.3, despite

the fact the streakline vector field evaluates its field fewer times than our neural flow map, since we must

take multiple steps for sufficiently long time spans. However, an advantage of our method lies in data paral-

lelism; we can evaluate the flow map over varying space/time/duration in a single batch, whereas integrating

the streakline vector field is, by necessity, a sequential process. We further note that SVF precomputation is

quite expensive, both in terms of speed and storage space. In Table 6.3 we can see that the computation of

the entire 4D SVF has very large storage requirements (160GB), whereas our method is in proportion to the

size of the vector field (77MB). We note that while our technique can be easily scaled to 3D datasets, SVF

preprocessing for 3D unsteady flows is infeasible in practice, necessitating a 5D grid for storage.
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Table 6.4: We report the processing times as well the FTLE computation times for different method across
different 3D unsteady flow datasets.

Dataset FTLE res τ
Inference
times (s)

Processing
times(m) CR Method

Tornado 128x128x128 50

27.16 - - GT
3.60 35.55 10 NIFM

14.14 93.21 10 SIREN
286.29 0.87 - Spline

Scalar Flow 100x178x100 2.5

81.72 - - GT
2.55 41.66 10 NIFM

21.48 95.57 10 SIREN
291.39 0.81 - Spline

Half-Cylinder 640x240x80 2
137.41 - - GT
3.82 45.56 40 NIFM

53.52 103.13 40 SIREN
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Figure 6.10: We compare, both qualitatively (volume rendering of FTLE field) and quantitatively (flow map
evaluation), our method with standard coordinate-based networks (120) as well as pathline interpolation
techniques (72) for modeling the flow map in 3D unsteady flows. We find our method is quantitatively an
improvement over other methods, and qualitatively our method contains fewer visual artifacts.

6.2.3 3D unsteady flow

We next evaluate our method on a set of 3D unsteady flows, comparing our method with a SIREN-based flow

map (120) as well as the B-spline pathline interpolation technique (72). We first compare to the Tornado and

Scalar Flow datasets, where we set the τmax to 8 and 24, respectively, to match the temporal complexity in the

flows. Fig. 6.10 shows qualitative results, via volume-rendering of the FTLE, as well as quantitative results.

Our method is an improvement, if not comparable, to prior methods, but we obtain significant gains in infer-

ence time, as reported in Table 6.4. We further compare to the Half Cylinder dataset, a large-scale unsteady

flow dataset that cannot be readily stored in memory. We found the pathline interpolation method (72) failed

to fit to the data, and thus we limit our comparison to SIREN, please see Fig. 6.11. In this experiment we set

τmax = 8 and the compression ratio to 40 to compensate for the larger data size. We find our method captures
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Figure 6.11: In this figure, we compare our method both quantitatively and qualitatively against SIREN for
the Half-Cylinder dataset. We find that our method is able to scale reasonably well to this large dataset,
whereas, the SIREN fails to learn meaningful flow maps as can be seen from the FTLE.
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Figure 6.12: We compare NIFM to Euler and RK4 integration schemes, showing FTLE (top), flow map error
(middle), and quantitative evaluation (bottom). We find NIFM performs consistently well across step sizes as
compared to Euler and RK4 which can become numerically unstable.

turbulent features in the wake of the half-cylinder object (Re = 320), whereas SIREN faces difficulties in ac-

curately modeling the data. Notably, for this dataset we find our training scheme scales well (c.f. Table 6.4)

relative to the 2D unsteady flow datasets, whereas SIREN’s increase in model size leads to slower training

times.
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6.2.4 Error analysis: numerical integration

Two key contributions of NIFM are (1) the reduction in computation time to compute flow maps, and (2) the

reduction in storage requirements, relative to the original time-varying vector field. We study these factors

in relation to existing numerical integration schemes, namely Euler and RK4 integration, for the 2D time-

varying vector field Boussinesq (c.f. Table 6.1). We compare methods by varying the step size taken for

integration, and report the computation time and accuracy of the approximation. To ensure fair comparisons

in timing, all methods were implemented in PyTorch using CUDA support for fast grid access. Moreover, for

fair comparison in data size, Euler and RK4 utilize the vector field subsampled by a factor of 2x in spatial and

temporal resolution, and NIFM uses the same level of data reduction (e.g. 1
8 the original data size). We take

as ground truth RK4 integration applied to the original data at a step size set to 1
10 the temporal resolution.

Fig. ?? shows the results, where we qualitatively compare the approximations using the FTLE (first row -

time span τ = 1.5) and the flow map error (second row). Qualitatively we can see that NIFM best captures the

FTLE while maintaining low error in the flow map, in contrast with Euler and RK4. This provides evidence

that our method is not merely a fixed linear (e.g. Euler), or higher-order (e.g. RK4) integration scheme, but

rather adapts to the features of the data. On the right, we show quantitative results for a time span of τ = 4,

again varying the step size. We can see that while NIFM has a consistent performance across all step sizes,

the flow map error increases significantly for both RK4 and Euler with increasing step size.

6.2.5 Ablation: compression and supervision

Last, we run model ablations to study the effects of various design choices. Due to space limitations we

limit ablation to compression, as well as the role of supervision in learning flow maps. Further experiments

regarding the architecture choices (number of levels in the multiresolution grid) and optimization scheme

(number of steps to take, c.f. Eq. 6.16) are detailed in the appendix.

In Fig. ?? we show the results of our model, for the FTLE of the Boussinesq, optimized under varying

compression ratios. In this experiment we specifically wish to study how compression might impart visual

artifacts in derived quantities of the flow map approximation, as a higher level of compression results in

coarser feature grids. Indeed, we find that lower levels of compression lead to fewer grid-like artifacts in the

resulting FTLE when taking a smaller steps, e.g. in this setting, a step size of 48 grid units in time amounts

to an evaluation of the model just 3 times per position. We further report inference times for the smallest

and largest level of compressions, and as expected, a larger number of steps requires longer inference times

(e.g. more feedforward passes with the network). Interestingly, we find the inference time is fairly consistent

across these compression ratios, indicating that the increased resolution of the grid has a negligible impact

on this matter. As detailed in the appendix, we also find that the flow map accuracy takes just a small hit in
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Figure 6.13: We study the effect of different schemes for taking steps in flow map optimization for the
Boussinesq flow: full corresponds to taking one step per grid unit in time (and thus the most costly), sqrt
corresponds to a square root scaling in (grid unit) time, log is a logarithmic scaling, while single corresponds
to taking just a single step (thus the cheapest in computation). We find little difference between these schemes
upon evaluation.
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Figure 6.14: We further study different schemes for taking steps in flow map optimization, here for Double
Gyre.

performance across compression ratios, indicating that flow map accuracy might not be predictive of visual

artifacts in derived quantities. Nevertheless, as shown in the figure, training times come at a cost with smaller

compression ratios. We thus see natural trade-offs in the (1) flow map quality, (2) inference time (hinging on

step size), and (3) training time.

Our choice to learn flow maps via a self-supervisory signal is in contrast with how numerous visualiza-

tion techniques interpolate (16; 72), or build models (43) given samples of the flow map, e.g. typically as

densely-sampled pathlines. Therefore we ask: is our self-consistency criterion an inferior objective to directly

supervising on flow map samples? To this end, we have gathered a large collection of flow map samples, and

modified our objective (Eq. 6.7) to accept the ground-truth flow map, and its corresponding derivative at the

output position. We optimize for Boussinesq, using 20M and 50M flow map samples, and compare with our
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proposed objective, please see Fig. ?? for the results. We find that our method is able to learn comparable, if

not better, flow map approximations, without ever observing flow map samples. In particular, at 50M samples

we find that flow map supervision starts to become competitive with our method. Although supervising an

on even larger number of samples might be more beneficial, clearly the data requirement starts to become

prohibitively expensive, both for integrating the flow field, as well as storage requirements. In contrast, our

method avoids these issues by requiring the vector field as the only supervision.

6.2.6 Ablation : Model

We include model/optimization ablation results to demonstrate the robustness of our method across a variety

of parameter settings. In all experiments the maximum time span τmax is set to 48 (in grid units), and we use

default parameters as originally specified in the paper, unless otherwise mentioned.

Figs. 6.13 and 6.14 compare different strategies for the number of steps taken by our method in optimizing

the self-consistency criterion: one step per grid unit, a square root scaling (the default choice used throughout

all results in the paper), a log scaling, as well as taking just a single step. As shown in the figures, across

datasets we find little difference in the results, evaluated across varying step sizes. As a compromise, we set

the square root scaling as it adds little computation cost, while ensuring additional stability in optimization.

In Fig. 6.15 we study the effect of model size, e.g. compression ratio, on accuracy for the Boussinesq

flow. In general we find a small drop in accuracy, suggesting that our model can generalize well even when

utilizing a smaller number of parameters. In Fig. 6.16 we study the impact on the number of grid levels

used for our multiresolution feature grid. Although we default the number of levels to 4 in the main paper,

in general, we find little difference in quality as we adjust the number of levels. In Fig. 6.17 we study the

impact of τmax on the performance of the model. We evaluate the model by taking the minimum between

the integration duration and the τmax the model was trained on as the step size. We found that when trained

with large values of τmax the overall performance of the model degrades affecting both smaller and larger

timespans. Next, in Fig. 6.18 we study the performance of NIFM when the integration duration is large. We

perform this experiment on the double gyre dataset and evaluate the model for τ = 20 and τ = 30 respectively.

From the FTLE and its corresponding flow map errors, we can see that even for long integration duration the

model performs reasonably well. Lastly, in Fig. 6.19 and Fig. 6.20 we study the performance of different

techniques under large integration duration. We find that quantitatively our method consistently outperforms

all the other techniques across all integration durations. Additionally, we also observe that our method incurs

the least amount of error and visual artifacts in the FTLE when integrated for a duration of τ = 20.
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Figure 6.15: We study the effect of model size on accuracy for the Boussinesq flow. We find a small drop in
accuracy as we decrease the model size.
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Figure 6.16: We vary the number of grid levels used in the multiresolution feature grid for Boussinesq, and
find that our method is robust to this particular hyperparameter setting.
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Figure 6.17: For the Boussinesq flow we compare the effects of τmax on the overall performance of the model,
finding that the self-consistency criterion when trained with large τmax gracefully degrades in performance,
indicating the stability of our optimization technique.
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Figure 6.18: We show the performance of NIFM under large integration durations for the double gyre dataset.
We show the FTLE and the corresponding flow map errors for τ = 20 and τ = 30. We observe the technique
is able to perform reasonably well even for very large integration durations.
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Figure 6.19: We show the performance of different techniques under large integration durations for the double
gyre dataset. We show the FTLE and the corresponding flow map errors for τ = 20. We observe that our
model is able to outperform all the baselines and incurs the least error.

6.2.7 Flow Map Instantaneous Velocity

In this section we show how our network design leads to a simple form for the flow map’s instantaneous

velocity.

First, we recall the specific form of our network. For clarity in derivations, we explicitly denote the

dependency on time span τ , and omit spatial position x and starting time t where necessary. The first layer
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Figure 6.20: We evaluate different techniques under varying integration duration for the double gyre dataset.

produces the following:

z(0)(τ) = σν(τm(0))⊙ fν(x, t). (6.18)

The function fν : Rn ×R → Rd is a d-dimensional spatiotemporal representation, for our purposes this is

an arbitrary neural network. Vector m(0) ∈ Rd aims to reconcile domain-specific scaling, σν is an activation

function, and ⊙ indicates element-wise multiplication. The second function fτ : Rn ×R → Rd also learns

a d-dimensional spatiotemporal representation. one specific to the flow map for nonzero time spans. These

two representations are combined to give us the next layer’s output:

z(1)(τ) = z(0)(τ) (6.19)

+σν

(
τm(1)

)
⊙στ

(
z(0)(τ)⊙ (W (1) fτ(x, t))

)
,

where m(1) ∈ Rd serves the same purpose as m(0), and W (1) ∈ Rd×d is a learnable linear transformation.

Subsequent representations are formed via residual connections:

z(l)(τ) = z(l−1)(τ)+σν

(
τm(l)

)
⊙στ

(
W (l)z(l−1)(τ)

)
, (6.20)

while the last layer L applies a single linear transformation to give us the output position, wherein we also

include a skip connection for the input position:

Φ̂(x, t,τ) = x+W (L)z(L−1)(τ). (6.21)
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We further make the following assumptions on activation functions σν and στ :

σν(0) = 0

σ
′
ν(0) ̸= 0

στ(0) = 0

We aim to compute the derivative of the neural flow map at time span τ = 0:

dΦ̂(x, t,0)
dτ

=
dΦ̂

dz(L−1)

dz(L−1)(0)
dτ

. (6.22)

The term on the left is simply:
dΦ̂

dz(L−1) =W (L) (6.23)

As for the term on the right, we have the following recurrence for l > 1:

dz(l)

dτ
=

dz(l−1)(0)
dτ

(6.24)

+σ
′
v(0)m

(l)⊙στ

(
W (l)z(l−1)

)
+σν(0)⊙

dστ

(
W (l)z(l−1)

)
dτ

.

The term in the second line will evaluate to zero, since activation vectors z(l)(0), for any layer l, will be zero

due to the multiplicative scaling with τ = 0, and the fact that στ(0) = 0. Likewise, the third line will vanish

due to our assumption on the activation function evaluating to σν(0) = 0. A similar reasoning can be applied

for layer l = 1 (c.f. Eq. 6.19), due to the multiplicative scaling of z(0)(0) with (W (1) fτ(x, t)). Thus, we have

the following:
dz(L−1)(0)

dτ
=

dz(0)(0)
dτ

=
(

σ
′
ν(0)m

(0)
)
⊙ fν(x, t). (6.25)

As we choose σν to be a hyperbolic tangent function, we obtain σ ′
ν(0) = 1. Thus, plugging Eqs. 6.23

and 6.25 into Eq. 6.22, we arrive at:

dΦ̂(x, t,0)
dτ

=W (L)(m(0)⊙ fν(x, t)). (6.26)

Note that in Eq. 6.19, the multiplicative scaling within the activation στ is essential for this result - a different

way of combining the representations, e.g. adding them together, would introduce dependencies on fτ , and

weight matrices W (l), l > 0, in computing the derivative.
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6.3 Discussion

In this work, we have presented an approach for integration free learning of flow maps, where we use

coordinate-based neural networks as surrogates for fast and accurate flow map computation. We achieve

this through our novel network design and optimization scheme that takes advantage of the basic properties

of flow maps, in order to learn only using the provided vector field. We demonstrate the strength of our

technique experimentally by comparing our method with various baselines and across multiple datasets.

There are several research directions we intend to pursue for future work. First, we acknowledge that

although our method is scalable to optimize relative to other methods, optimization remains the computational

bottleneck. We expect that porting our optimization scheme to the GPU, using fully-fused CUDA kernels for

both the grid and MLPs, will alleviate this cost, as studied in prior works (145; 89). Additionally, our self-

consistency scheme is only an approximation, whereas other approaches have studied the design of invertible

neural networks for computing discrete (9) or continuous (17; 10) mappings of learned representations. We

believe that adopting such approaches for representing flow maps in 2D and 3D unsteady flows is a fruitful

research avenue.
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CHAPTER 7

Conclusion

This thesis addresses various challenges in flow visualization, with a particular focus on developing tech-

niques that utilize neural representations to enhance the fidelity and efficiency of flow visualization work-

flows.

In Chapter 3, we introduced an integration-aware vector field super-resolution technique that incorporates

streamlines into the optimization process. Our method has demonstrated improved performance over existing

approaches through quantitative and qualitative evaluations on diverse datasets. We have also conducted a

comprehensive study of essential factors related to streamline integration, such as seeding and streamline

length, to investigate their impact on the upsampled flow field. We believe our approach is an important step

towards incorporating visualization aspects of vector fields into the optimization process and opens the door

for further exploration and investigation in this area.

In Chapter 4, we presented an approach for data reduction of unsteady flow fields by learning an Eulerian

representation through Lagrangian optimization. Our technique eliminates the need for sampling the vector

field onto a regular grid, providing a seamless and convenient method for post-hoc analysis. While we

acknowledge that our method has limitations and there are areas where it may not outperform state-of-the-art

techniques, we want to emphasize that our approach has shown substantial improvements in various aspects

of flow visualization. These improvements have been demonstrated through extensive experimentation and

rigorous evaluation.

In Chapter 5, we proposed a technique to incorporate scale into implicit neural representations (INRs), en-

abling multi-scale compressive analysis and visualization of field-based data. Our method surpasses existing

compression-domain filtering methods and successfully captures scale-space transformations. We recognize

the time-consuming optimization process for INRs and acknowledge the challenges of instrumenting scale

spaces without prior knowledge. However, we believe that integrating scale into existing models opens up

possibilities for rendering systems and scale-oriented analysis, facilitating new methods for scale selection

and compressive analysis.

Finally, in Chapter 6, we presented an integration-free learning approach for flow maps using coordinate-

based neural networks. Our technique leverages the properties of flow maps to enable efficient and accu-

rate computation solely from the given vector field. Through extensive experimental comparisons, we have

demonstrated the effectiveness of our method against various baselines and across multiple datasets.

While Implicit Neural Representations (INRs) are not the central focus of this dissertation, they play a
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significant role in numerous chapters. Consequently, it is essential to discuss their robustness when dealing

with noisy data. Broadly, INRs are generally robust to small amounts of random noise. However, the type

and level of noise can impact learning and generalization capabilities. The over-parameterization and smooth

function approximation of INRs provides an inherent denoising effect during training. This is evident from

the results of modeling image gradients as demonstrated by Sitzmann et al. (120). However, we hypothesize

that extremely high noise levels can overwhelm the network, preventing it from discerning the underlying

signal and resulting in poor training. Thus, in such cases, the robustness can be improved by using the

dropout mechanism to reduce reliance on individual inputs.

Looking ahead, the integration of neural representations within flow visualization frameworks presented

in this dissertation opens up numerous avenues for future research and development. Although the proposed

techniques show promising results, there is room for further enhancing the accuracy and efficiency of neural

representations for flow visualization. Investigating other deep learning architectures, such as generative ad-

versarial networks (GANs) or transformer models, could possibly result in more sophisticated and expressive

representations. Additionally, exploring techniques for adaptive neural representations that can dynamically

adjust the level of detail and fidelity based on the characteristics of the flow data would be valuable.

Uncertainty is inherent in many flow simulation datasets due to various sources of error and imprecision.

Incorporating uncertainty estimation and propagation within neural representations can provide valuable in-

sights for flow visualization. Future work can focus on developing techniques to quantify and visualize

uncertainty in neural representations, enabling scientists and researchers to make informed decisions and

interpretations based on the confidence levels associated with the flow data.

Interactive visualization plays a vital role in exploring and analyzing complex flow data. Expanding upon

the proposed neural representations, future work can investigate the development of interactive visualization

tools that leverage the power of these representations. This can involve techniques for real-time manipulation,

exploration, and interaction with high-resolution flow fields, enabling researchers to gain immediate insights

and facilitate hypothesis testing.

As numerical simulations continue to grow in complexity and scale, the management and analysis of

large-scale flow datasets become increasingly challenging. Future research can focus on developing tech-

niques for distributed neural representations that allow efficient storage, transmission, and processing of

massive flow data across distributed computing systems. This could involve exploring parallel computing

architectures, compression techniques, and scalable algorithms to handle datasets that are significantly larger

in size than the ones considered in this dissertation.

The techniques proposed in this dissertation have the potential to be applied to a wide range of real-world

flow problems, such as weather forecasting, aerodynamics, and fluid dynamics. Future work can focus on
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adapting and validating the proposed neural representations within these domains, addressing specific chal-

lenges and requirements unique to each application. This can involve collaborating with domain experts and

conducting extensive empirical evaluations to demonstrate the effectiveness and practicality of the developed

techniques.

Overall, through our research efforts, we have contributed novel techniques and insights to address the

challenges of flow visualization. We are confident that our findings pave the way for improved data reduction,

interactivity, and analysis of flow fields, and we look forward to the continued exploration of these ideas in

the field.
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