

Theoretical isosteric heat of adsorption calculation in the Henry's law region for carbon nanopores and nanocavities

Jian Liu and M. Douglas LeVan

Department of Chemical & Biomolecular Engineering Vanderbilt University

Outline

Introduction

Theory

Results & Discussions

Conclusions

Gas adsorption?

A process that occurs when a gas solute accumulates on the surface of a solid (adsorbent), forming a film of molecules or atoms (adsorbate).

Gas adsorption applications

Bulk separation or storage:

Oxygen supply CO₂ capture, etc.

Purification:

Air quality
Packaging (silica gel)
Gas mask
Natural gas sweetening, etc.

Space shuttle

Gas Mask

Pressure-swing application

Isotherm: adsorption equilibrium, adsorbent capacity *Heat of adsorption*: heat effects, ease of regeneration

Motivation

knowledge of the isosteric heat of adsorption for a molecule as a function of pore width is of great importance in the design and application of these novel materials.

Purification or storage application---high heat of adsorption is preferable because higher heats of adsorption mean stronger retention of gas molecules.

Pressure swing adsorption process---lower heat of adsorption is preferable because lower heats of adsorption reduce thermal swings and allow for easier regenerations.

Isosteric heat of adsorption

1. Calorimetric measurement

2. Clausius-Clapeyron equation

$$q_{st}^0 = -R \frac{\partial \ln P}{\partial 1/T}$$

3. Theoretical calculation

Outline

Introduction

Theory

Results & Discussions

Conclusions

Henry's law region in adsorption

Henry' Law region

$$n = k_H P$$

 k_H : Henry constant

$$\phi_{\text{total}} = \phi_{\text{adsorbate-adsorbent}} + \phi_{\text{adsorbate}}$$

Infinitesimal gas concentration

Theory and model

$$q_{\rm st}^{\rm o} = RT - N_{\rm a} \frac{\int_0^{H_{\rm c}} V_{\rm ext}(r) {\rm exp}[-V_{\rm ext}(r)/kT] \ dr}{\int_0^{H_{\rm c}} {\rm exp}[-V_{\rm ext}(r)/kT] \ dr} \label{eq:qst}$$

Steele WA. The interaction of gases with solid surfaces. 1974.

 $V_{\rm ext}(r)$ is the external wall potential, which is different for different geometries.

Lennard - Jones potential

$$\Gamma_{\rm sf} = 4\epsilon_{\rm sf} \left[\left(\frac{\sigma_{\rm sf}}{r} \right)^{12} - \left(\frac{\sigma_{\rm sf}}{r} \right)^{6} \right]$$

where *r* is the interatomic distance

LJ parameters

Molecule	$\sigma_{\mathrm{ff}} \; (\mathrm{\AA})$	$\epsilon_{\rm ff}/k~({ m k})$	σ_{sf} (Å)	$\epsilon_{\rm sf}/k$ (k)
Ar	3.305	118.05	3.35	55.0
CH_4	3.82	148.2	3.60	64.4
CO_2	3.454	235.9	3.43	81.5
$___ \int \mathrm{H}_2$	2.83	59.7	3.10	40.87
☐ He	2.56	10.21	2.98	16.90
N_2	3.575	94.45	3.494	53.22

$$ightarrow \sigma_{
m sf} = \left(\sigma_{
m ff} + \sigma_{
m ss}\right)/2 \ {
m and} \ \epsilon_{
m sf} = \sqrt{\epsilon_{
m ff}\epsilon_{
m ss}}$$
 Lorentz-Berthelot combining rules

All parameters except for hydrogen and helium are acquired from the literature by using density functional theory (DFT) method to fit the experimental data.

Carbon nanopore and nanocavity

Cylindrical nanopore **SWNT**

Spherical nanocavity Fullerene (C60)

External wall potential - cylinder

$$V_{\rm ext} = \int_A n_{\rm s} \Gamma_{\rm sf} \ d\alpha$$

$$r^2=z^2+\rho^2+R^2-2\rho R\cos\phi$$

Integrate over z and ϕ

$$\begin{split} V_{\rm ext,\ cyl} &= n_{\rm s} \pi^2 \epsilon_{\rm sf} \sigma_{\rm sf}^2 \left\{ \frac{63}{32} \left[\frac{R - \rho}{\sigma_{\rm sf}} \left(1 + \frac{\rho}{R} \right) \right]^{-10} \times F \left[-\frac{9}{2}, -\frac{9}{2}; 1; \left(\frac{\rho}{R} \right)^2 \right] \right. \\ &\left. - 3 \left[\frac{R - \rho}{\sigma_{\rm sf}} \left(1 + \frac{\rho}{R} \right) \right]^{-4} \times F \left[-\frac{3}{2}, -\frac{3}{2}; 1; \left(\frac{\rho}{R} \right)^2 \right] \right\} \end{split}$$

Tjatjopoulos et al. J. Phys. Chem. 1988.

External wall potential - sphere

$$V_{\rm ext} = \int_0^{2\pi} \int_0^{\pi} n_{\rm s} \Gamma_{\rm sf} R^2 \sin \phi \ d\phi d\theta$$

$$r^2 = R^2 + \rho^2 - 2\rho R\cos\phi$$

Integrate over θ and ϕ

$$V_{\text{ext, sphe.}} = 8\pi R^2 n_{\text{s}} \epsilon_{\text{sf}} \left[-\left(\frac{\sigma_{\text{sf}}}{R}\right)^6 \frac{1}{4\left(\rho/R\right)} \left(\frac{1}{\left(1 - \rho/R\right)^4} - \frac{1}{\left(1 + \rho/R\right)^4}\right) + \left(\frac{\sigma_{\text{sf}}}{R}\right)^{12} \frac{1}{10\left(\rho/R\right)} \left(\frac{1}{\left(1 - \rho/R\right)^{10}} - \frac{1}{\left(1 + \rho/R\right)^{10}}\right) \right]$$

Baksh et al. AIChE J. 1991.

Outline

Introduction

Theory

Results & Discussions

Conclusions

Cylindrical nanopore results

Empirical relationships

Geometry	Average dimensionless	Average dimensionless	
	pore diameter for $q_{\rm st}^{\rm o}=\max$	pore diameter for $q_{\rm st}^{\rm o}=0$	
	$H_{ m c\ max}/\sigma_{ m sf}$	$H_{ m c\ zero}/\sigma_{ m sf}$	
Slit-shaped	2.00	1.71	
Cylindrical	2.18	1.86	
Spherical	2.33	2.00	

Slit-shaped results are from Schindler and LeVan. Carbon 2008.

Predict the pore width where isosteric heat of adsorption is maximum or zero for non-polar or weakly polar gas molecules that have not been studied in this research

Comparison of results

CO,

CH,

 N_2

Ar

 H_{2}

He

15

CO,

CH₄

Ar

 H_2

He

Argon example

Geometrical effect

Cylinder

Sphere

k = surface mean curvature

$$k = 0$$

$$k = 1/(2r)$$

$$k = 1/r$$

Conclusions

- ➤ Isosteric heat of adsorption in the Henry's law region has been calculated as a function of pore width for six gas molecules for cylindrical and spherical carbon surfaces.
- \succ Constant linear relationships have been found between the pore diameter of maximum $q_{\rm st}^{\circ}$ and the specific $\sigma_{\rm sf}$ for all of the gas molecules considered.
- ightharpoonup Geometrical effects on the maximum $q_{\rm st}^{\rm o}$ have been ascribed to the difference of surface mean curvatures for different geometries.

Thank you!

Surface number density

C-C bond length: d = 1.42 Å $m = 3.82 \times 10^{19} \text{ m}^{-2}$

Wilder et al. Nature 1998.

