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Abstract 
  
 Past research has examined students’ comprehension of and reasoning with evolutionary 

relationships depicted by cladograms (i.e., tree thinking). Cladograms serve as a fundamental 

resource when studying macroevolution and it is for this reason that students need to have a clear 

understanding of, and ability to reason with, these diagrams.  Past research has found 

misconceptions and difficulties within the understanding of cladograms, particularly with 

students in upper level biology classes. This difficulty has left researchers calling for cladogram 

education to be introduced prior to upper level biology courses and perhaps as early as high 

school. This study created an early prototype of a curriculum in order to give students this basic 

cladogram education. The curriculum was effective in raising scores on previously tested skills 

for college students, with both  stronger and weaker biology backgrounds. Although the 

curriculum was not effective for every tree-thinking skill tested, overall it led to higher 

performance for both groups. 
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 Cladogram Curriculum: A First Look Into A Teaching Prototype For The Fundamentals 

Of Phylogenetics 

Evolution is an important part of a biology education. For a biologist, evolution serves as 

the tool with which to organize all species. “Animals may be classified in some societies 

according to their usefulness or destructiveness to human endeavors. Others may group animals 

according to their roles in mythology. Biologists group animals according to their evolutionary 

relationships” (Hickman, Roberts, Keen, Larson& I’Anson, 2004). The concept of evolution is 

divided into two subcategories: microevolution and macroevolution. Microevolution looks at 

small changes to a specific species. Macroevolution looks at the entire history of life culminating 

in a single common ancestor for all species. Previous research has focused on microevolution 

(e.g., Anderson, Fisher, & Norman, 2002; Nehm & Schonfeld, 2008; Sandoval & Reiser, 2003). 

However, because of recent calls for teaching of macroevolution (Baum, 2005; Catley, 2006; 

Novick & Catley, 2007, 2009, 2010; O’Hara, 1997), my research focused on this important 

evolutionary biology concept.   

Catley (2006) recently called for “a paradigm shift in evolution education so that both 

perspectives – micro and macro- are given equal weight, and perhaps even more importantly, 

that each is presented in such a way as to inform the other”. Catley made the case for this shift by 

explaining that a student must be able to understand macroevolution to grasp evolution as a 

whole. He presented the case that microevolution is taught to such a degree in schools that 

macroevolution is given little, if any, attention. Moreover, when instruction is given on these 

larger concepts, those giving the instruction often have a poor understanding of it themselves.   

Basics of Cladistics  
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One of the main areas studied by evolutionary biologists is the relationship among 

species due to descent from common ancestors. The main goal of finding these patterns of 

common ancestry is to be able to reconstruct the Tree of Life. As the Hickman, Roberts, Keen, 

Larson, and Eisenhour (2007) biology textbook explains, there are two ways in which to classify 

species in order to create this tree. One way is using phenetic classification, which groups 

together species solely based on their overall similarity. However, using the phenetic 

classification, evolutionary history of the species is ignored. The second way, and the preferred 

method for evolutionary biologists, is to classify species using phylogenetic classification. 

Phylogenetics is the study of evolutionary relatedness and classifies species based on 

evolutionary principles. Phylogenies, or evolutionary trees, allow for inferences to be made 

about related species and also are the most common way to organize current knowledge, as the 

tree is slowly reconstructed. Figure 1 provides an example of a cladogram in the most commonly 

used type of the evolutionary tree: the tree format. 

Phylogenies are read to depict the common ancestry of species, or taxa, from the bottom 

of the diagram to the top of the diagram. Thus, species depicted in a cladogram are not ancestors 

of one another, as one might believe by reading the diagram from left to right.  Instead, species 

are descendents of common ancestors located at the branching points. In Figure 1, the ancestor of 

pig and camel is more recent than the ancestor shared by pig, camel, and human. One concept 

that is important in understanding how to interpret cladograms, or branching diagrams that depict 

evolutionary relatedness, is that the arrangement of the taxa on the ends of the branches is 

unimportant. The branches can rotate, similar to the branches on a child’s mobile. Looking at the 

taxa on the far right of the cladogram in Figure 1, the branches can be rotated in many different 

ways and the structural integrity of the cladogram will remain constant. For example, the last 
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three taxa could be camel, pig, human; pig camel human; human, camel, pig; or human, pig, 

camel. There are different formats of cladograms, but the most commonly used format is the tree 

form, which is shown in Figure 1.  

“Cladograms are a vitally important tool used by evolutionary biology because they 

represent and organize existing knowledge about species and higher-order taxa…they enable 

evidence-based inference and prediction and provide a conceptual framework for basic and 

applied biology” (Novick & Catley, 2010). As the popularity of this diagram in evolutionary 

biology has risen, it has become apparent that students have not been given adequate education, 

if given any at all, on these tools used so readily in the real world (Catley, 2006).  

Necessity of Teaching Tree Thinking  

As explained by Sandvik (2008), tree thinking is an ability that must be taught. To 

demonstrate this, Sandvik gave a questionnaire of four questions about evolutionary diagrams to 

university students in Norway who had previously taken courses in biology. Sandvik found that 

none of the students were able to correctly interpret the cladogram that was used in the 

questionnaire. These students had taken biology classes before, so this presumably would not 

have been the first cladogram they had seen, and yet, they were not able to answer the questions 

on this relatively simple cladogram. The conclusion drawn from this study was that the students 

had simply not been taught to understand phylogenetics. Sandvik hypothesized either that the 

students had learned with incorrect diagrams found in the textbooks or that they had learned with 

correct diagrams but had not gained a full understanding of phylogenetics. Whatever the reason 

behind it, Sandvik called for textbooks to catch up with current research and for students to be 

taught specifically how to read and interpret cladograms.  
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This notion that part of the problem lies in the textbooks students are using was 

reinforced by a textbook analysis done by Catley and Novick (2008). The researchers examined 

31 textbooks, which contained 505 cladograms. Of those, 45% were tree diagrams and 55% were 

ladder diagrams. Ladder diagrams are another format of cladograms. Figure 2 depicts the ladder 

version of a cladogram. The textbooks also contained 192 evolutionary diagrams that are not 

cladograms, most of which, therefore, did not depict evolutionary relationships in a manner 

consistent with scientific evidence. The high school textbooks, which are used during what has 

been stressed as a vital early learning period, had the same number of evolutionary diagrams that 

were not cladograms as they had actual cladograms. In addition, these non-cladogram diagrams 

actually appeared more frequently than cladograms in the middle school texts. This research 

showed that textbooks are not teaching specifically with cladograms.  

Moreover, research showed that when textbooks were teaching with cladograms they 

were the ladder format of cladograms that was proven proven to be not as easily understood by 

students. Previous research had shown that subjects had more difficulty understanding ladder 

cladograms than tree cladograms (Novick & Catley, 2010), and subjects performed worse on 

translation problems (translating from one diagram format to another) when a ladder was 

involved (Novick & Catley, 2007).  If we expect students to be able to understand and reason 

with this important biology diagram, we must make sure the material we use to teach it is based 

off of findings in previous research.   

Throughout past research (Baum, 2005; Novick & Catley, 2007, 2009; O’Hara, 1997), 

there has been a common call for students to be taught a foundation in phylogenetics prior to 

taking higher-level biology classes. By gaining a foundation, students will be able to better learn 

higher level tree-thinking skills. Novick and Catley (2010) suggested that the introduction of this 
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material earlier in the education process, either in middle or high school, would lay a foundation 

on which later tree thinking could be built. However, incorrect prior knowledge can also interfere 

with performance on tree-thinking problems. Thus, it is also important that this introduction, 

however early or late it may be, is taught correctly.  

O’Hara (1997) also supported teaching tree thinking earlier in the education process and 

said “just as beginning students in geography need to be taught how to read maps, so beginning 

students in biology should be taught how to read trees and to understand what trees 

communicate”. O’Hara did a wonderful job of illustrating the necessity of understanding 

cladograms to biologists. Maps are one of the pillars of geography just as cladograms are one of 

the pillars of biology. Baum (2005) elaborated on this quote and stressed that cladograms are the 

fundamentals of the evolutionary theory and that students must have a better understanding of 

them in order to understand evolutionary biology.  

Previous Research Towards Effective Teaching of Macroevolution 

To effectively teach tree thinking in high school or middle school, it is necessary to 

understand what concepts have not been learned or are misunderstood at the college level. If we 

can identify errors made later in evolutionary biology education, we can begin to teach these 

concepts earlier, or at the very least lay the ground work so acquisition is easier later in the 

education process.  

While putting together a program called EvoBeaker to teach evolutionary biology, Meir, 

Perry, Herron, and Kingsolver (2007) found that there was no literature on the misconceptions of 

college students on macroevolution such as there is for microevolution. To compensate for this, 

they created a list of misconceptions that Herron and Kingsolver believed the students would 

have and turned the list into multiple-choice problems testing for these misconceptions. All of 
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the students had taken some college level biology; however, some were in upper-level biology 

classes and some had only taken lower-level biology classes.  

There were four misconceptions identified: time moves left to right; taxa on branches 

close together are more related than to those on branches farther away; the fewer the number of 

nodes between two taxa, the more closely related they are; and if there is a straight line between 

two taxa, it connects the ancestor to its descendent. Three skills were also identified: being able 

to read traits from the diagram; being able to identify traits shared with common ancestors; and 

given set of species, being able to construct the diagram. Although they found that students in the 

upper level courses of biology showed fewer misconceptions than the lower level students (for 

reading traits from a tree, straight line equals no change, and incorrect mapping of time), there 

was no difference between the two groups for deducing ancestral traits, reconstructing trees, tip 

proximity, and node counting. These misconceptions have also been replicated in studies done 

by Novick and Catley (2007, 2010).   

With this collective call for phylogenetics to be taught prior to upper level biology 

courses, researchers began to look at students in classes prior to college. Passmore and Stewart 

(2001) created a curriculum, with the aid of high school teachers and college professors, which 

would be introduced at the high school biology level. Passmore and Stewart looked to find 

supporting material that would reinforce what was being taught. They used a case approach in 

which they gave “realistic contexts” which allowed the students to connect the material to a 

“body of known information” making the learning of such a difficult topic less abstract. 

Although Passmore and Stewart taught microevolution (natural selection), and not 

macroevolution as I did, their study gives support to supplementing a curriculum with a realistic 
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metaphor or context. Within the curriculum I wrote, subjects were presented with the real world 

context of the material they were learning.  

Like Passmore and Stewart, Goldsmith looked to find material that would support what 

was being taught. Goldsmith though looked at college level students. Goldsmith (2003) created 

the method called the Great Clade Race in which phylogenetics is taught using a race metaphor. 

Goldsmith explained that the vocabulary and principles of phylogenetics are not introduced until 

the students understand the race metaphor. This suggests that once the students understand the 

underlying concepts, this foundation will enable understanding and reasoning using higher-level 

concepts. He reported that this way of teaching phylogenetics was successful for both biology 

majors and non-biology majors, although no detailed presentation of the supporting data was 

provided. This study suggested that the curriculum for teaching phylogenetics earlier must begin 

by teaching the underlying concepts, and then later incorporating the vocabulary and principles 

of phylogenetics.  

Although many have called for phylogenetics to be taught in high school and college as a 

foundation for future higher-level biology classes, no research has been done to look at a 

prototype of the curriculum that needs to be taught. By creating a prototype for a curriculum to 

be taught in a college-level biology course, and later to be revised for high school, I hoped that 

students with both stronger and weaker biology backgrounds would be able to understand and 

perform better, when compared to baseline performance, on cladogram test problems.  Having 

been given instruction of all underlying principles, subjects’ performance should increase on 

problems that have been proven to be difficult for even the stronger-background subjects (e.g., 

Novick & Catley, 2010).  

Overview of the Curriculum  
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 The prototype curriculum I created was founded on past research on the misconceptions 

students have about cladistics.  The specific concepts or skills taught were those that had been 

previously found to be difficult for students, even those with a stronger biology background 

(Meir et al., 2007; Novick & Catley, 2007, 2010). These concepts were evolutionary distance, 

polytomies, clades, and inferences made using the cladogram. All of these concepts are 

explained in greater detail later in this paper. Additionally, the curriculum taught subjects about 

skills that are commonly used in real world applications but may not appear as frequently in 

textbooks or previous research. These skills looked at manipulating a larger cladogram to create 

smaller versions that include only specific taxa. Conversely, the skills also looked at the concept 

of creating a larger cladogram from two or three smaller ones.  

 The primary goal of the curriculum was to increase students’ ability to understand and 

reason with cladograms. For this reason, all cladograms used in the curriculum were of the tree 

format, which has been proven to be easier for subjects to understand (Novick & Catley, 2007, 

2010). Thus, I decided to present the instruction, and all of the subsequent test problems, in this 

format. Half of the subjects received the instruction and half did not.  

In addition, I examined the effectiveness of my curriculum for those who had taken more 

courses for biology majors and those who had taken fewer courses. I predicted that with 

instruction, subjects’ performance on previously identified difficult skills would improve. In 

addition, I wanted to see the curriculum be effective for those with a variety of biology 

backgrounds.  

Method 

Subjects 
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 Subjects of this study were 127 undergraduate students of Vanderbilt University. Subjects 

were voluntarily recruited for pay through the university’s psychology research sign-up system. 

Subjects were asked prior to the study if they were currently enrolled or had taken the second 

semester of the biology course Introduction to Biological Sciences B (BSCI 110B) or a 

comparable course at another university, and if they were enrolled in or had taken the biology 

sciences course Evolution. Subjects were excluded from participating if they were currently 

enrolled in BSCI 110B in order to enforce a greater difference between the stronger and weaker 

background subjects. Students were also excluded if they were enrolled or had taken Evolution 

as they had already been taught the material being tested. The data from one subject who 

participated in the study were excluded from the analyses because I discovered, after her 

participation, that she had taken the Evolution class, BSCI 205. The data from another subject 

were excluded from the analyses because she did not complete the experiment within the allotted 

2 hrs. Finally, the data from a third subject were excluded from the analyses due to inaccurate 

reporting of her academic background (N=124).   

  Subjects in this study completed a background questionnaire in which they were asked 

whether they were enrolled in or had taken any of the 10 listed biology classes and 3 listed 

historical geology classes at the university, or comparable courses at another university, and the 

grade they had received. The students who had completed BSCI 110A and 110B, or comparable 

courses at another university, were assigned to the stronger biology background group (n = 63). 

Subjects who had not completed these courses were assigned to the weaker biology background 

group (n = 61).  These two subject groups differ greatly in the number of potentially relevant 

classes taken. The stronger background students on average had taken 2.20 (sd = 0.43) such 

classes. The weaker background students on average had taken .41 classes (sd = .62).  
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Design 

 A second factor of my study was whether or not the subjects received the instructional 

condition (n = 62) or the no-instruction (control) condition (n = 62). There were 31 stronger 

background subjects and 31 weaker background subjects in the instructional condition. There 

were 32 stronger background subjects and 30 weaker background subjects in the control 

condition. Subjects in the instructional condition were given the instructional curriculum, which 

was created to teach the foundation of tree thinking and corrected errors identified in previous 

research.  

Subjects in the control condition were not given any instruction on tree thinking. Instead, 

they completed three individual differences tests that took approximately the same amount of 

time as the instructional booklet in the instructional condition. The three tasks were a subset of 

the science reasoning section of the ACT and two spatial reasoning tasks. Each of these is part of 

a separate study.   

Procedure 

 The instructional booklet was self-paced and took about 30 minutes. The measures for the 

control condition were timed and took approximately the same amount of time as the 

instructional booklet and practice problems. Then, all subjects were given two test problem 

booklets and the Conceptual Inventory of Natural Selection (CINS). Finally, they were given the 

background questionnaire. The second half of the study was also self-paced and took roughly an 

hour and a half.   

 The second test booklet is part of another study looking at superficial similarity and how 

this affects subject’s comprehension of relationships among taxon compared to evolutionary 

relatedness. The Conceptual Inventory of Natural Selection (CINS) also is part of another study.  
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Instructional Condition 

All of the measures were completed using paper test booklets. Subjects were supplied 

pencils. The instructional condition consisted of two booklets. The first booklet was 16 pages 

that educated subjects on three levels of cladogram skills and reasoning. The second booklet 

contained two practice tests for the material taught in the first booklet.   

Curriculum. The first sections (cladogram structure and clade; nested hierarchical 

structure) are considered foundation instruction on tree thinking. The cladogram structure section 

taught students how to construct and read a cladogram. Subjects were given instruction in the 

following areas: how time (past and present) is read on a cladogram; most recent common 

ancestors; evolutionary relatedness; and how a cladogram is based on a 3-taxon statement, the 

principle that two taxa are more closely related to each other than either is to a third taxon.  

The clades and nested hierarchical structure section instructed subjects on what 

constitutes a clade, a group of taxa that includes the most recent common ancestor and all of its 

descendants. The section also instructed subjects on what constitutes a sister group, a clade that 

consists of only two taxa, and how clades can be nested within each other.  

The third section, a deeper understanding of evolutionary trees, taught a more global 

understanding of how the individual cladogram fits into the larger tree of life. While the previous 

sections taught a more local understanding of cladograms, this section covered reasoning about 

polytomies, a group of three or more taxa at the same level in a cladograms, and common 

misconceptions about evolutionary distance/relatedness. 

 To reason about the tree of life using this more global understanding, it is important for a 

biologist to consider subsets of the larger tree. One of the ways to do this is to make a larger 

cladogram smaller by pruning off taxa not being considered with the subset. A second way is to 
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collapse taxa into a larger group. An example of this, from the instructional condition, would be 

collapsing bears and felines into their larger group mammals.  A third way to do this is to merge 

several smaller cladograms into a single cladogram. The instructional condition ended with a 

section that instructed the subjects about the real-world importance of proper tree-thinking 

education.  

The prototype of the curriculum was written in order to teach the basics of tree thinking. 

In order to do, there were certain key features I added to enhance the instructions. The first was 

the use of figures. Embedded within the text were figures that helped to depict the concept being 

taught. The first figure was a simple cladogram with only three taxa and characteristics. This is 

shown in Figure 3a.  

Each cladogram that followed also had certain characteristics marked. Subjects were 

taught that specific shared characteristics, known as synapomorphies, are used to define a group 

of taxa that includes the most recent common ancestor of the group and all of the descendants, or 

a clade. All of the following cladograms in the instructional booklet, except that demonstrating 

polytomies, were built from this original cladogram. This was done so as not to confuse the 

subjects with too many taxa presented, and to demonstrate to the subject that all of the concepts 

were built upon each other. The cladograms used throughout the instruction were taken from the 

Tree of Life website. In order to have an accurate polytomy example, I could not use an 

extension of the original cladogram as it did not incorporate a polytomy.  

A second key feature of the curriculum was the color-code used to help the subject 

understand each individual concept being taught. Each time the instruction identified a new or 

different structural aspect of the cladogram, that structure was bolded in a color. Figure 3b 

followed the introduction of a polytomy. The polytomy in the cladogram is highlighted in purple. 
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New colors were used for each concept and the colors did not carry over from cladogram to 

cladogram. I believed that using color indicators would help the subjects more easily identify the 

part of the cladogram structure being addressed. Because structure is such a vital part of each 

concept, the color helped draw the eye of the subject to the area on which I wanted them to 

focus.  

The instructional condition was created to not only teach the basics of tree thinking, but 

also to specifically teach skills that have been problematic for stronger background subjects in 

previous research (Novick & Catley 2010). These skills include evolutionary relatedness; what 

constitutes a clade; reasoning with polytomies; and inference questions about character 

possession. Within each section of instruction, the subjects were told about common 

misconceptions students have when using these skills (Meir et al. 2007; Novick & Catley 2007, 

2010). My instruction thus also is a refutational text. A refutational text, as explained by Mason 

et al. (2008), is one that “acknowledges students’ alternative conceptions about a topic, directly 

refutes them, and introduces scientific conceptions as viable alternatives”. Refutational texts 

have been proven to be superior to traditional ones in science education (Hynd, 1998; Mikkila-

Erdmann, 2002; Wang & Andre, 1991). 

Practice problem booklet. The practice booklet was included in the study in order to 

allow subjects to test what they had learned prior to the problems in the test booklets and to re-

learn any material that they had not understood. In this way, the instructional condition aimed to 

mimic actual class instruction. Subjects were given text and example problems, tests throughout 

the instructional period, and a final exam.  

The practice problem booklet of the instructional condition was comprised of two 

practice quizzes. The first quiz came after the first instructional section on cladogram structure. 
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Subjects were instructed to stop in the instructional booklet and turn to the practice booklet. The 

first quiz asked subjects true and false questions about evolutionary relatedness, yes and no 

questions about 3-taxon statements, and fill-in-the-blank questions about shared characters. After 

the quiz, subjects were instructed to turn to the next page of the instructional booklet and check 

their answers. If they had gotten an answer wrong, they were then asked to re-read sections that 

provided the relevant instruction. After the second instructional section on clades and nested 

hierarchical structure, subjects were once again told to stop and take a practice quiz. This second 

quiz asked subjects yes and no questions about what constitutes a clade and what constitutes a 

sister group. Subjects were also asked fill-in-the-blank questions about which character the most 

recent common ancestor of a clade possessed. After completion, subjects were once again asked 

to review their answers and re-read sections if necessary. A practice quiz was not given after the 

third instructional section, as these skills were not considered foundation skills but rather higher-

level skills. This concept of using tests while studying to increase performance was also 

demonstrated in a study done by Jaffe (Jaffe 2008). This study showed that subjects who were 

tested while studying performed better and were able to retain information for longer when 

compared to subjects who simply studied the material.  

Tree-Thinking Skills Assessed 

 The test booklet assessed how well the subjects knew the concepts taught in the 

instructional condition. The first test booklet was made up of questions that assessed nine 

different tree-thinking skills. The skills comprised two groups: the first group were skills that 

have been assessed as problematic in previous research for both stronger and weaker background 

students. These skills were evolutionary distance incorporating a polytomy, evolutionary 

distance incorporating levels, recognizing clades, nested clades, and inference. These test 
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problems were taken from the experimental materials used in previous research in the lab. The 

second group of problems addressed skills that do not commonly appear in textbooks or cladistic 

instruction. However, they are tree-thinking skills that are commonly used by biologists in 

studying the Tree of Life. These questions focused on the understanding that any given 

cladogram is simply a smaller depiction of the larger Tree of Life and can be manipulated to 

study different parts of the larger tree. These skills were collapsing branches on the tree into a 

single group branch, pruning off branches to focus on a specific subset of taxa, and merging 

together two smaller versions of the tree. A final skill that was tested was the ability to identify 

errors presented in a cladogram. Previous appropriate test questions for these final types of 

questions did not exist. For these questions, I wrote new problems that were used in this study 

for the first time.  

Evolutionary distance  

Incorporating a polytomy. The booklet contained two evolutionary distance questions 

that incorporated polytomies. The question asked subjects to reason about relatedness of three 

taxa of a polytomy. In addition, the subjects were asked to explain their answer. Figure 1 gives 

an example of this question type. Novick and Catley (2007) found that subjects had difficulty 

understanding the structure of cladograms when a polytomy was present. Preliminary analyses of 

research in progress suggest that the evolutionary distance incorporating a polytomy is difficult 

for students, even after instruction in phylogenetics in an evolution class. 

Incorporating levels. The booklet contained 4 evolutionary distance questions that 

incorporated levels of most recent common ancestry. These questions were of two types. The 

first type asked subjects to reason which of two taxa had the closest evolutionary relationship to 

a specified taxon. All of the taxa were located at different levels of the cladogram. Previous 
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research showed that subjects from both backgrounds performed poorly on these question types. 

Stronger background subjects had a mean of 0.39 and weaker background subjects had a mean of  

0.29 (Novick and Catley 2010). The second question type, a follow-up to the first in a subset of 

cases, asked subjects to reason if their answer would change if 5 additional characters were 

added at a specific point in the cladogram. Figure 4 gives examples of both question types.  

Clades. As “clade” was a term learned in the instruction condition but also used in the 

test booklets, subjects in both conditions were given a definition sheet to use throughout the test 

which defined the word “clade”. This allowed for the subjects in the control condition to also be 

able to understand and use the term. There were two types of clade questions: recognizing clades 

and nested clades.  

Recognizing clades. The booklet contained 4 recognizing clades questions. In one 

problem of this type (from Novick, Catley, & Funk, 2010), subjects were shown a cladogram and 

asked which subset of taxa is a valid biological group. Subjects were then given three answers 

from which to choose. Figure 5 gives an example of this type of recognizing clades question. In a 

second problem type (from Novick & Catley, 2010), subjects were asked whether the bracketed 

taxa comprised a clade. If the subject said “no”, they were asked what taxon/ taxa would need to 

be added or removed in order for it to be a clade. With both types of problems, subjects were 

asked to explain their answer. Previous research using the bracketed taxa question (Novick & 

Catley, 2010) showed that stronger background subjects were able to recognize and justify what 

comprised a clade with a mean of 0.64. In contrast, weaker background subjects had a mean of 

0.49. I hoped with specific instruction detailing what a clade is, students would be better able to 

identify and explain a clade.   
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Nested clades. The booklet contained two nested clades questions. Subjects were shown a 

cladogram with a clade already marked. The subjects were then asked to mark the remaining 

clades on the diagram and write the number of clades. Figure 1 gives an example of a nested 

clades question. These questions tested subjects’ understanding of what comprises a clade and 

how clades can be nested within each other. Preliminary analyses of research in progress suggest 

that the nesting of clades is difficult for students, even after instruction in phylogenetics in an 

evolution class.  

Inference. The booklet contained two inference questions. These questions asked 

subjects to make judgments about what taxa are most likely to share a characteristic with a 

specified taxon and explain their choice. Figure 5 gives an example of an inference question. 

These questions tested subjects’ understanding that inferences made about shared characters 

should be based on a shared most recent common ancestor. Previous research found that without 

instruction subjects had a mean of 0.51 on these types of questions (Novick & Catley, 2010). I 

hoped that with instruction, students’ performance on these questions would improve. 

Subsets of the tree of life. 

Pruning. The booklet contained three pruning questions. Two questions presented an 

original cladogram and asked the subject to redraw that cladogram by pruning off certain taxa. 

Figure 6 gives an example of this type of pruning question. A third question was a multiple 

choice question that asked what cladograms could be created by pruning an original cladogram. 

This question came from Baum et al. (2005). However, I translated the original question, which 

contained cladograms in the ladder format, to tree format.   These questions tested the student’s 

understanding that cladograms can be manipulated, such as pruning off taxa, and the 

relationships among the remaining taxa can be preserved.   
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Collapsing. The booklet contained two collapsing questions. Each question presented an 

original cladogram and asked the subject to collapse multiple taxa into a single biological group. 

The same cladogram was used to ask both a pruning and collapsing question on separate pages. 

Figure 6 gives an example of a collapsing question. These questions also tested the 

understanding that you can manipulate a cladogram and preserve the relationships among the 

taxa.  

Merging. The booklet contained four merging questions. Three questions presented two 

or three cladograms and asked the subjects to merge them into a single cladogram. Figure 7 gives 

an example of this type of merging question. The subjects were told that two (or three) 

researchers studied different taxa, some of which overlapped. They were then told that a third 

(fourth) researcher was interested in studying all of the presented taxa. The subject was then 

asked to draw a single cladogram that depicted the evolutionary relationships among all of the 

given taxa. A fourth question was a multiple-choice question that asked what new cladogram 

could be made by merging the three existing cladograms. This question came from Baum et al. 

(2005). I used it in its original format.  These questions tested the skill of merging smaller 

cladograms together to get a larger cladogram. The questions also tested the understanding that a 

cladogram is simply a smaller subset of the greater tree of life and that you can merge two 

cladograms together to see a bigger part of the picture.   

Identifying errors. The identification of errors question was written to test whether a 

subject would be able to identify errors when presented with an incorrect cladogram. Previous 

research had found that asking students to identify errors is a good way to measure their 

understanding of a concept (e.g., Whitley, Novick, & Fisher, 2006). This question is presented in 

Figure 8. The subjects were told that Pat was given a cladogram (shown) and then was asked to 
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prune and collapse taxa. Subjects were then shown what Pat drew and were told to identify the 

several errors that Pat made. The three mistakes that Pat made were mistakes I believed subjects 

might make themselves when performing these manipulations to the cladogram. The first error 

was an incorrect collapsing error. Pat should have collapsed the taxa into Anglerfish but instead 

he/ she put a bracket over the cryptic anglerfish and blackspot anglerfish and labeled that 

Anglerfish. The second error is a pruning error. When pruning spiny dreamer, Pat created a 

polytomy involving whalehead dreamer, smooth dreamer, and rounded batfish/ slantbrow 

batfish. There should be a more recent common ancestor of whalehead dreamer and smooth 

dreamer that is not shared by the other two taxa. The third error is a second type of pruning error. 

When pruning monkfish, Pat leaves a bend in the branch where the taxon was removed. 

Results 

Overview 

 Twenty-nine questions were given scores of 0 or 1 for accuracy. Fourteen questions had 

written explanations and were coded with 0, 0.5, or 1 for evidence quality. A subject’s 

explanation was given a score of 1 if he or she talked about most recent common ancestry in the 

way appropriate to the question. A subject’s explanation was given a score of 0.5 if they talked 

about evolutionary relatedness, recent common ancestry, or the presence of some of the 

descendants. A subject’s explanation was given a score of 0 if they talked about any other 

concept to explain their answer. Examples of answers for each composite score are discussed in 

each score’s sub-section. The explanation questions were coded by two people independently, 

who agreed on 90% of the scores. Discrepancies were resolved by discussion. A composite score 

was created for each of nine tree-thinking skills. Each of these scores was analyzed by a 2x2 

between-subjects ANOVA. The results of all of the ANOVAs are given in Table 1.  
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Skills Assessed 

Evolutionary distance.  

Incorporating a polytomy. The polytomy evolutionary distance score was averaged 

across four scores. The questions were scored two ways: accuracy and explanation of answer. 

Subjects were given full credit for explanations that were more sophisticated. To get a score of 1, 

subjects had to say the taxa shared a most/more recent common ancestor, closest common 

ancestor, more common ancestor, most recent common branch, taxa are in the same clade, they 

are a sister group or the pattern of most recent common ancestry doesn’t change.   One example 

of this type of explanation is “all share same most-recent ancestor”. Subjects were given partial 

credit if their explanation was less sophisticated. To get a score of 0.5, subjects had to say they 

all have the same recent ancestor, they share a recent common ancestor, they have a close(r) 

common ancestor, share more ancestors, share direct ancestor, the taxa are most/more closely 

related evolutionarily, X & Y are equally distantly related to Z, this group has the same 

evolutionary history, or these taxa are part of a polytomy.  One example of this type of 

explanation is “Walking sticks & cockroaches directly share a common ancestor whereas 

crickets have a closer ancestral relationship w/ cicadas”. Subjects were given no credit if their 

explanation was anything else. An example of this is, “Walking sticks and cockroaches are only 

1 more characteristic removed, crickets are 3”.  

The ANOVA yielded only a significant effect of condition. As predicted, students in the 

instructional condition did much better than those in the control condition. The mean for the 

control condition was 0.20 (sd = 0.28). The mean for the instructional condition was 0.63 (sd = 

0.33).  
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Incorporating levels. The evolutionary distance questions incorporating levels score was 

averaged across 8 scores. The questions were scored two ways: accuracy and explanation of 

answer. Subjects’ explanations for these questions were scored the same way as the evolutionary 

distance questions involving a polytomy. One example of a full credit explanation is “The sea 

urchin and camel share a more recent common ancestor.”. One example of a partial-credit 

explanation is “It has the most recent evolutionary ties”. An example of a zero credit explanation 

is “lobsters & urchins are only two branches away from each other while camels and urchins are 

a lot further”.  

The ANOVA yielded only a significant effect of condition. As I predicted, students in the 

instructional condition did much better than those in the control condition. The mean for the 

control condition was 0.22 (sd = 0.23). The mean for the instructional condition was 0.68 (sd = 

0.33).  

Clades. 

Recognizing clades. The recognizing clades score was averaged across 9 scores. The 

questions were scored two ways: accuracy and explanation of answer. Subjects were given full 

credit for explanations that were more sophisticated. To get a score of 1, subjects had say that the 

taxa comprise a clade (monophyletic group), the taxa share a most recent common ancestor and 

all the descendants of that ancestor are include, contains all the taxa/organisms/etc. from this 

ancestor, or does not include all descendants of the most recent common ancestor.  One example 

of this type of explanation is “his definition accounts for all the given taxa of a MRCA”. Subjects 

were given partial credit if their explanation was less sophisticated. To get a score of 0.5, 

subjects had to say that only some (not all) descendants are included, taxon X is (other taxa are) 

also a descendant, other taxa also have character C, only part of the clade is included, all of the 
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descendants are included, they all have the same recent ancestor, they share a recent common 

ancestor, they have a close(r) common ancestor, share more ancestors, share direct ancestor, the 

taxa are most/more closely related evolutionarily, X & Y are equally distantly related to Z, this 

group has the same evolutionary history, or these taxa are part of a polytomy. One example of 

this type of explanation is “share close common ancestor”. Subjects were given no credit if their 

explanation was anything else. An example of this is, “these 3 are closest on the diagram, and 

share the same reptilian characteristics”.  

The ANOVA yielded a significant effect of condition. The mean of the control condition 

was 0.55 (sd = 0.24). The mean of the instructional condition was 0. 76 (sd = 0.23). As I 

predicted, students in the instructional condition did better than those in the control condition. 

The ANOVA also yielded a significant effect of biology background. The mean of the weaker 

background subjects was 0.57 (sd = 0.28). The mean of the stronger background subjects was 

0.73 (sd = 0.21). Stronger background subjects did better than those with a weaker biology 

background. There was an interaction between condition and biology background. This is 

depicted in Figure 9. Weaker background subjects in the control condition had an average of 

0.41(sd = 0.19) compared to those in the instructional condition who had an average of 0.73 (sd 

= 0.26). Stronger background subjects in the control condition had an average of 0.68 (sd = 0.21) 

compared to those in the instructional condition who had an average of 0.79 (sd = 0.20). The 

interaction shows that the performance gap between the weaker and stronger background 

subjects was smaller with instruction. Put another way, the instruction was more effective for the 

weaker background subjects whose scores in the control condition were much lower than those 

of the stronger background subjects.   
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Nested Clades. The nested clades score was averaged across four scores. The questions 

were of two types: number of clades the subject marked on the clade and the number of clades 

the subject reported. As explained before, subjects were asked to mark clades and then record the 

number they had marked. Each question was given an accuracy score of 0 or 1. Discrepancies 

occurred between these two numbers. To account for this, I took an average of the four numbers 

reported.  

The ANOVA yielded a significant effect of condition. The mean of the control condition 

was 0.44 (sd = 0.45). The mean of the instructional condition was 0.73 (sd = 0.36). As I 

predicted, students in the instructional condition did much better than those in the control 

condition.  The ANOVA also yielded a significant effect of biology background. The mean for 

the weaker background subjects was 0.47 (sd = 0.44). The mean for the stronger background 

subjects was 0.71 (sd = 0.39). Stronger background subjects did much better than those with a 

weaker biology background. There was no interaction.   

Inference. The inference score was averaged across 4 scores. These questions were 

scored two ways: accuracy and explanation of answer. Subjects were given full credit for 

explanations that were more sophisticated. To get a score of 1, subjects had to say the taxa share 

a most/more recent common ancestor, closest common ancestor, more common ancestor, most 

recent common branch, taxa are in the same clade, they are a sister group or the pattern of most 

recent common ancestry doesn’t change.  One example of this type of explanation is “Birds and 

lizards have an MRCA than birds and porcupines”. Subjects were given partial credit if their 

explanation was less sophisticated. To get a score of 0.5, subjects had to say they all have the 

same recent ancestor, they share a recent common ancestor, they have a close(r) common 

ancestor, share more ancestors, share direct ancestor, the taxa are most/more closely related 
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evolutionarily, X & Y are equally distantly related to Z, this group has the same evolutionary 

history, or these taxa are part of a polytomy. One example of this type of explanation is “closer / 

shorter evolutionary distance”. Subjects were given no credit if their explanation was anything 

else. An example of this is, “b/c lizards are a nearer branch to birds than are porcupines”.  

The ANOVA yielded a significant effect of condition. The mean of the control condition 

was 0.61 (sd = 0.25). The mean of the instructional condition was 0.75 (sd =0.26). As predicted, 

students in the instructional condition did better than those in the control condition.   The 

ANOVA also yielded a significant effect of biology background. The mean of the weaker 

background subjects was 0.63 (sd = 0.29). The mean of the stronger background subjects was 

0.74 (sd = 0.23). Stronger background subjects did better than those with a weaker biology 

background. There was no interaction.  

Subsets of the tree of life. 

Pruning. The pruning score was averaged across 3 scores. The subjects were given 

accuracy scores for following the directions and redrawing the cladogram correctly. The grand 

mean was 0.86 (sd = 0.23).   

Collapsing. The collapsing score was averaged across 3 scores. The subjects were given 

accuracy scores for following the directions and redrawing the cladogram correctly.  

The ANOVA yielded only a marginally significant effect of biology background. The 

mean for the weaker background subjects was 0.82 (sd = 0.32). The mean for the stronger 

background subjects was 0.91 (sd = 0.23). Stronger background subjects did marginally better 

than those with a weaker biology background. 
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Merging. The merging score was averaged across 4 scores. 3 of these questions were 

given scores for accuracy of following the directions and redrawing the cladogram correctly. 1 

question was scored on accuracy of the multiple-choice question.  

The ANOVA yielded only a significant effect of biology background. The mean for the 

weaker background subjects was 0.71 (sd = 0.26). The mean for the stronger background 

subjects was 0.83 (sd = 0.19). Stronger background subjects did much better than those with a 

weaker biology background. 

Identifying errors. The identifying errors score was averaged across 6 scores. These 

questions were scored two ways: accuracy of identification of the error and quality of 

explanation of how to correct the error. The correct explanation to fix the first error was to 

collapse the taxa into Anglerfish. Subjects were given full credit for responses that explain how 

to fix this, “instead of the [sister bracket drawn] for anglerfish it should just a be a straight line”. 

Subjects were given partial credit if their explanation was only partially correct or explained 

what the error was rather than how to fix it. An example of a partial credit response for the first 

error was “No need for brackets and double bar”. Subjects were given no credit if they 

incorrectly explained how to fix the first error or didn’t give an explanation, “the names of the 

two taxa should be written”. 

The correct explanation to fix the second error was that there should be a more recent 

common ancestor of whalehead dreamer and smooth dreamer that is not shared by the other two 

taxa. Subjects were given full credit for responses that explain how to fix this, “Whalehead 

dreamer and smooth dreamer share a common ancestor. They compose a sister clade and should 

be branched separately.” Subjects were given partial credit if their explanation was only partially 

correct or explained what the error was rather than how to fix it. An example of a partial credit 



Running head: PROTOTYPE OF A CLADISTICS EDUCATION  
 

28 

response for the second error was “dreamers should be grouped”. Subjects were given no credit 

if they incorrectly explained how to fix the second error or didn’t give an explanation, “smooth 

dreamer is not at the same level as whalehead dreamer”. 

The correct explanation to fix the third error was that there should not be a bend in the 

branch where the taxon was pruned off. Subjects were given full credit for responses that explain 

how to fix this, “There should be no "step" in the cladogram. There should be one branch (stem) 

from the MRCA w/ the triggerfish.” Subjects were given partial credit if their explanation was 

only partially correct or explained what the error was rather than how to fix it. An example of a 

partial credit response for the third error was “he should not have left a kink in the diagram”. 

Subjects were given no credit if they incorrectly explained how to fix the third error or didn’t 

give an explanation, “she should add the monkfish, spriny dreamer, and longnose seabat taxa.” 

The ANOVA yielded only a significant effect of condition. The mean for the control 

condition was 0.67 (sd = 0.24). The mean for the instructional condition was 0.77 (sd = 0.24). As 

I predicted, students in the instructional condition did better than those in the control condition. 

Discussion 

Past research has suggested that students must be taught a foundation in phylogenetics 

prior to learning higher level tree-thinking skills in order for them to have an ability to truly 

understand and interpret cladograms, (Baum, 2005; Novick & Catley, 2007, 2009; O’Hara, 

1997). This study supports this call for prior-foundation learning and demonstrated the 

effectiveness of teaching the foundation of tree thinking not only for those with a weaker 

background but also for those with a stronger biology background. 

Effectiveness of Instruction  
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When creating this prototype I had two main goals: the first was to increase performance 

on questions testing specific tree-thinking skills that had been seen as problematic in the past 

even for students with a stronger biology background. Those in the instructional condition 

performed significantly better on all of these skills: evolutionary distance incorporating levels, 

evolutionary distance incorporating a polytomy, recognizing clades, nested clades, and inference. 

Across these five skills, the control condition had an average score of 40% compared to the 

instructional condition that had an average score of 71%.  Across all test questions, those in the 

control condition had an average score of 57% compared to those in the instructional condition 

with an average score of 76%. This showed that the curriculum was effective in increasing 

performance on the previously identified difficult skills. The curriculum was also effective in 

teaching one of the skills that had not been previously tested, identifying errors. However, the 

overall averages show that the curriculum may not have been effective in teaching each 

individual skill.  

The second goal was for the curriculum to increase performance for those with a weaker 

prior biology background as well as for those with a stronger biology background. There was a 

main effect of condition for six dependent variables and in all but one case there was no 

interaction with biology background. The one interaction showed that the instruction was better 

for the weaker background subjects, whose scores started lower. Our instruction thus 

accomplished this second goal.   

Analysis of Instruction and Test Problems 

 Although the instruction did prove effective in overall performance, an overall average 

score of 76% indicates that there are areas that can still be improved. Three areas of lower 

performance for subjects in the instructional condition were evolutionary distance incorporating 
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a polytomy, evolutionary distance incorporating levels, and nested clades. Although performance 

was higher on these three tree-thinking skills than in previous research, the instruction on these 

concepts will need to be strengthened in future versions of my curriculum.  

Another area for future improvement is the subset of the tree of life section of the test 

problems. For these skills, there was no main effect of condition. The lack of condition effect 

could reflect problems with the instruction, the test questions, or both. I believe the problem lies 

in the test questions. The problems had to be created from scratch, other than the two multiple-

choice questions (Baum et al. 2005), and had not been tested on previous subjects as the other 

questions had. If my first draft of problems could be answered by hierarchical knowledge, 

instead of knowledge of this subset of the Tree of Life skills, then this would account for the lack 

of significant performance difference between conditions.  

I believe that the high level of performance in the control condition can also be attributed 

to a college students’ general understanding of hierarchical relationships. Previous research done 

by Novick (2006) showed that college students have a clear understanding of hierarchical 

relationships. This would explain why those in the control condition were able to perform so 

highly on these problems without instruction. The average score for the weaker background 

subjects in the control condition was 0.78. The stronger background subjects in the control 

condition had an average score for these problems of 0.86.  

Research done by Novick (2006) also found that those in upper level computer science 

and engineering classes performed better on certain hierarchical properties. This might help 

explain the biology background difference found with the merging problems and marginally with 

the collapsing problems. Although all of the subjects may have had a strong understanding of 

hierarchical relationships, which led to high performance on the test problems, perhaps those in 



Running head: PROTOTYPE OF A CLADISTICS EDUCATION  
 

31 

the stronger background also have had either more experience or training on hierarchical levels. 

Because I have identified that my first draft of problems may have tested hierarchical knowledge 

more than these implicit concepts, I have worked on new test problems that I hope will better 

assess the pruning, collapsing, and merging tree-thinking skills.    

A final area of improvement is the material provided for those with a weaker biology 

background. The apparent effect of biology background, even after instruction, showed that there 

is still information that needs to be included in the instruction to help those with a weaker 

biology background. This knowledge will help as the curriculum continues to be strengthened.  

Future Implications  

I hope this prototype curriculum will be able to serve as a stepping-stone on the path of 

early instruction of tree thinking. This curriculum is currently being implemented in a college-

level introductory biology course for biology majors at another university. In the future, I want to 

teach the curriculum at the high school level because this is where the early education must 

begin. As I apply this curriculum in different settings and for different groups of students, I will 

continue to change and advance the curriculum.  

The increased performance in the instructional condition showed that with instruction, 

students can perform better on these tree-thinking tasks and avoid the common misconceptions 

previous students have had. This instructional booklet provides a complement to existing 

instruction that focuses on microevolution. By using the booklet as a supplement to a current 

textbook, students will be taught both sides of evolution education, micro and macro, that are 

called for by Catley (2006).  
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Table 1 

The results of all of the 2x2 between subject ANOVAs. 

Measure Condition Biology Background Interaction 

Evolut. Dist.Polytomy  F=61.46, p< .001,  

partial η2 = .34 

F=2.04, p>.15,  

partial η2 = .02 

F=1.28, p>.25,  

partial η2 = .01 

Evolut. Dist. Levels F=80.81, p< .001,  

partial η2 = .40 

F=1.28, p> .25,  

partial η2 = .01 

F=0.03, p>.85,  

partial η2 = .00 

Recognizing Clades F=29.71, p< .001,  

partial η2 = .20 

F=18.02, p< .001,  

partial η2 = .13 

F=7.98, p< .01,  

partial η2 = .06 

Nested Clades F=17.96, p< .001,  

partial η2 = .13 

F=12.25, p< .01,  

partial η2 = .09 

F=0.91, p> .30,  

partial η2 = .01 

Inference F=10.87, p<.01,  

partial η2 = .08 

F=6.46, p< .05,  

partial η2 = .05 

F=0.14, p>.70,  

partial η2 = .00 

Pruning F=0.62, p>.40,  

partial η2 = .01 

F=2.07, p> .15,  

partial η2 = .02 

F=2.12, p> .10,  

partial η2 = .02 

Collapsing F=1.45, p> .20,  

partial η2 = .01 

F=3.65, p< .10,  

partial η2 = .03 

F=2.51, p> .10,  

partial η2 = .02 

Merging F=0.72, p> .35,  

partial η2 = .01 

F=7.93, p< .01,  

partial η2 = .06 

F=0.51, p> .45,  

partial η2 = .00 

Identifying Errors F=5.62, p< .05,  

partial η2 = .05 

F=0.49, p> .45,  

partial η2 = .00 

F=0.71, p> .40,  

partial η2 = .01 

 

Note: all F (1,120).   
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The students in a basic biology class are learning about evolutionary relationships among 
taxa. According to biologists, the following cladogram provides this information about the 
indicated taxa, which are various invertebrates. Use this cladogram to answer the questions 
on this page. 

 
Example of an evolutionary distance question that incorporates a polytomy: 
 1. Which of the following three statements (A, B, or C) is best supported by the scientific 

evidence: (Answer: C) 
A. Walking sticks are more closely related to cockroaches than to crickets. 

B. Walking sticks are more closely related to crickets than to cockroaches. 

C. Cockroaches, walking sticks, and crickets are all equally closely related to each other. 

Explain your answer: 
 
Example of a nested clades question: 
2. Two taxa that constitute a clade are enclosed in brackets in the diagram.  

How many clades are there in this diagram (including the one already marked)? _________ 
(Answer:7) 
Mark each additional clade with a bracket as shown in the example. 
 

Figure 1. Example of an evolutionary distance question that incorporates a polytomy and a 
nested clades question. 
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hollow bones

modified forelimb

furcula (wish bone)

slashing
talon

elongated neck

distinctive
skull bones

reduced number
of finger bones

pencil-shaped teethspoon-shaped
teeth

peg-like
teeth

modified
vertebrae

 
 
 
Figure 2. A cladogram in ladder format.  
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(a) The first figure used in the instructional condition. The figure demonstrates a simply three 
taxa cladogram and shared characters.  
 
 
 

 
 
 (b) An example of one of the figures in the instructional condition that used color to emphasise 
instruction.  
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Figure 3. Examples of the cladograms used in the instructional condition.
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The students in a basic biology class are learning about evolutionary relationships among 
taxa. According to biologists, the following cladogram provides this information about the 
indicated taxa, which are various animals. Use this cladogram to answer the questions on 
this page. 

 
1. Which taxon—lobster or camel—is the closest evolutionary relation to the sea urchin? 

________________     (Answer: camel) 
Explain your answer: 

 
 
2. Suppose that, given new discoveries, biologists now realize that the black square on the 

diagram should be interpreted as representing 5 novel characters rather than just 1 as was 
thought when the diagram on this page was constructed. Given this new information, would 
your response to part (a) of this question change: 

 yes no (circle one)   (Answer: no) 
Explain your answer: 

 
Figure 4. Example of evolutionary distance questions that incorporate levels.  
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The students in a basic biology class are learning about evolutionary relationships among 
taxa. According to biologists, the following cladogram provides this information about the 
indicated taxa, which are various animals. The students understand that all of the taxa 
shown in this diagram share a common ancestor marked by the X. Use this cladogram to 
answer the questions on this page. 

 
Example of a recognizing clades question:  
1. The following students disagree about which taxa should be considered reptiles. Which 

student’s definition of reptiles is best supported by evolutionary evidence? 
_____________________      (Answer: Taylor or Robin) 

Taylor:  reptiles = snakes + lizards  
Robin:  reptiles = snakes + lizards + crocodiles 

Jordan:  reptiles = snakes + lizards + crocodiles + birds 

Explain your answer: 

Example of an inference question: 
2. Given that birds have a large hole in their palate, are lizards or porcupines more likely to 

share this character? 
(Answer: lizards) 
 

Explain your answer: 

 
Figure 5. Example of a recognizing clades question and an inference question.
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Consider the following cladogram, which shows evolutionary relationships among pine 

trees. 

1. Redraw the cladogram shown above 
without the following two taxa: 

(a) pinea  
(b) sylvestris  

Make sure the cladogram you draw 
preserves all of the relationships among 
the remaining taxa.  

Answer:
__________________________________________________________ 
 

1. Redraw the cladogram shown above 
incorporating the following two 
revisions: 

(a) put together the three taxa 
balfouriana, longaeva, and 
aristata into a single group 
labeled Balfourianae.  

(b) put together the four taxa 
heldreichii, halepensis, brutia, 
pinea into a single group 
labeled Pinaster.  

Make sure the cladogram you draw 
preserves all of the relationships 
among the remaining taxa. 

 

Answer: 

 
 

Figure 6. Example of a pruning question and a collapsing question. 
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Researcher 3 is interested in the evolutionary relationships among the Streptococcus 
bacteria taxa that were studied by Researchers 1 and 2. Those two researchers studied 
some of the same taxa but some different taxa as well, as described below. 
 
Researcher 1 studied the evolutionary 
relationships among 5 Streptococcus 
bacteria taxa. On the basis of this research, 
Researcher 1 drew the following cladogram: 

Researcher 2 also studied the evolutionary 
relationships among 5 Streptococcus 
bacteria taxa. On the basis of this research, 
Researcher 2 drew the following cladogram: 

     
 
1. Draw a single cladogram for Researcher 3 that depicts the evolutionary relationships among 

all 6 Streptococcus bacteria taxa studied by Researchers 1 and 2. Make sure the cladogram 
you draw preserves all of the relationships depicted in the two smaller cladograms. 

Answer:  
 

Figure 7. Example of a merging question. 
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Consider the following cladogram, which shows evolutionary relationships among fish. 

 
1. Pat was asked to redraw this cladogram with the revisions indicated below on the left. What 

Pat drew in response to these instructions is shown below on the right. 

(a) without the following three taxa: 
i. monkfish 

ii. spiny dreamer 
iii. longnose seabat 

 

(b) put together the two taxa cryptic 
anglerfish and blackspot 
anglerfish into a single group 
labeled anglerfish  

There are several errors in this drawing. Circle each error on Pat’s drawing. Then in the space 
below explain how each error should be corrected. 

Answer:  
 
Figure 8. Example of the identification error question. 
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Figure 9. Interaction between condition and biology background for the nested clades questions. 
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