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Introduction 
Direct, high-sensitivity sensing of biomolecules would invite numerous applications in cost-effective 

platforms for immunoassays and genetic sequencing.  Current methods are generally low-sensitivity or 

require fluorescent labeling of molecules prior to detection, which is expensive, time-consuming, and 

often limits the testing to laboratories with specialized equipment.  Significant effort has recently been 

devoted to label-free sensing platforms, which eliminate the need for fluorophore attachment.1 

Particularly exciting are biosensing platforms based on silicon photonics.  Leveraging decades of 

fabrication development from the microelectronics industry, it is possible to manufacture sensors that 

rely on optical systems micromachined onto a common silicon wafer.  The low cost and small size of 

these systems, as well as their potential for integration with well-developed microfluidics technology, 

would allow production of “lab-on-a-chip” devices that would bring advanced assay and diagnostic tools 

directly to the point of care. 

A common form of these sensors relies on the attachment of biomolecules to the surface of a resonant 

cavity or waveguide; modulation in the cavity resonance or waveguide cutoff frequency caused by 

biomolecule attachment indicates a detection event.  Unfortunately, the optical influence of very small 

molecule attachment, or essentially the addition of thin layers to a photonic structure, is intractable to 

model directly with computational methods common in electromagnetism.  While a common approach 

is to average the refractive index of the material over a larger volume2, this can be inaccurate and does 

not reflect the true sensing mechanism at work. 

We seek to design a technique to model the addition of thin cladding layers of known refractive index 

on an optical system with high index contrasts, as is common in silicon photonics.  This will provide a 

much improved method by which surface biosensors can be modeled, providing a fast and accurate 

design metric for the analysis and further improvement of such systems. 

Background and Theoretical Discussion 

Silicon Photonics 

The field of silicon photonics has grown tremendously since it was proposed over 40 years ago at Bell 

Labs shortly after the birth of the laser.3  In one of its most common implementations, these devices 

consist of structures patterned in the top (“active”) 

crystalline silicon layer of a silicon-on-insulator wafer 

(Figure 1).  Light, launched into the edge of this thin 

silicon layer, is confined via total internal reflection, 

as the refractive index of silicon (n ≈ 3.5) is much 

greater than that of silicon dioxide (n ≈ 1.5) or air (n 

= 1).  The thick buried oxide (BOX) layer sufficiently 

isolates the light in the silicon active such that the 

substrate’s effect can be ignored. 

Figure 1: SOI raised strip waveguide cross-section (not to 
scale). Dimensions typical. 
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Waveguides can be formed in silicon by etching the active layer into a narrow strip.  Much like in a 

traditional metal waveguide, supported propagation modes in a silicon waveguide depend heavily on its 

shape and size, the limiting condition now being the Fresnel conditions for total internal reflection 

rather than the requirement that components of the electric and magnetic field vanish at the 

conducting boundary.4  It can be shown that light can be almost completely confined inside a high-index 

waveguide whose width is greater than the wavelength; however, these widths also support several 

higher-order modes.  Waveguides with narrower widths, such as silicon wire waveguides, will still guide 

light, but will carry much of the energy in the external medium rather than in the waveguide itself.3  The 

size of the waveguide can be selected to promote single- or few-mode operation at the wavelength of 

interest; for many applications single-mode propagation is desirable since it reduces a number of losses 

and complications with polarization sensitivity.5 

Typical dimensions (220nm thickness, 450nm width) for single-mode TE01 waveguides operating near λ = 

1.5μm are a tradeoff between suppression of higher-order modes and increased losses caused by 

scattering from greater field interaction with sidewall surface roughness, an inherent artifact of the 

reactive ion etch used to fabricate the waveguides.6  It is important to note that such waveguides carry 

significant energy outside the waveguide itself, in evanescently decaying fields.  The strong confinement 

afforded by the high refractive index contrast of the silicon/air or silicon/oxide interface allows silicon 

photonic systems to be miniaturized well beyond systems demonstrable in conventional optics; 

lithographic patterning likewise makes the large-scale production of such optical circuits readily 

possible. 

Optical Resonators 

One of the important elements of silicon photonic systems is the ring resonator.  Bending a strip 

waveguide into a ring creates a resonant cavity, much like that inside a free-space ring laser.  Light 

trapped inside the cavity will continue to circulate around the ring, accumulating a phase difference and 

interfering with itself on multiple passes.  Thus, only wavelengths that are an integer multiple of the 

optical path length of the ring remain for any length of time.7 

The frequency selectivity of these rings is ultimately limited by the decay of light from the cavity over 

time, through a combination of surface scattering effects and bending losses.  Making the analogy with a 

mechanical oscillator, the selectivity of these rings can be expressed as a quality (Q) factor as a measure 

of the degree of underdamping in the cavity: 

     
             

                
  

The quality factor of a ring resonator grows exponentially with increasing ring radius as bending losses 

decrease.8  Quality factor is directly related to the bandwidth of the resonance: 
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Where    is the center frequency and    is the FWHM of the resonance.  It is in fact usually measured in 

this manner using spectroscopic techniques, rather than directly measuring energy dissipation, though 

the two methods are equivalent. 

A strip waveguide routed alongside these rings (within a few hundred nanometers) can couple light into 

and out of the ring through evanescent fields in a process directly analogous to quantum tunneling 

between two potential wells.  Light energy is built up in the ring cavity over many cycles, after which the 

field in the ring resonator interferes with the field in the waveguide at its resonant wavelengths, causing 

those frequencies to drop from the output spectrum of the strip waveguide, forming a very selective 

filter (Figure 2, Figure 3). 

 

Figure 2: Schematic of ring resonator with waveguide, top view. 

 

 

Figure 3: Transmission spectrum of an ideal ring-resonator filter. 

The addition of a waveguide alongside the ring reduces its quality factor (often significantly), since the 

waveguide provides a loss mechanism for the energy stored in the ring.  The new quality factor can be 

expressed as: 

      
     

   

Where    is the quality factor of the isolated ring and    is the quality factor of the coupling structure.  

Another notable characteristic of the coupled-cavity filter is the spacing between subsequent resonance 

zeros, or the free spectral range (FSR).  The FSR is inversely proportional to the radius of the resonator, 

and thus large resonators with high Q have somewhat low FSR.7  The free spectral range of the system is 
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important for many applications (e.g. telecommunications) where band spacing is a key consideration, 

but does not play a significant role in the specification of photonic systems for biosensing. 

It is useful to compare the ring resonator to its free-space counterpart, the Fabry-Perot or Gires-

Tournois etalon (Figure 4).  In this free-space setup, light is coupled into the cavity through a partially-

reflecting mirror, then traverses some distance, reflecting off a mirror or series of mirrors with near 

100% reflectance, and then exiting the cavity with an accumulated phase shift.7  This is equivalent to 

light coupling into a ring evanescently, travelling around the ring for one or more passes, and then 

exiting with a phase shift equal to the ring’s optical path length.   The interference of this phase shift 

with the light remaining in the waveguide causes the ring resonator’s spectral filtering.  The advantage 

of fabricating such a resonator on silicon is ease of design and mass-production without hand tuning 

and, in the case of sensors, the ability to easily bring a very small volume of analyte into the high field 

concentrations around the resonant cavity.  The size of silicon ring resonators can also be several orders 

of magnitude smaller than traditional etalon interferometers. 

 

Figure 4: Gires-Tournois Etalon, in two equivalent representations. 

Photonic Crystals 

Photonic crystals are another important silicon photonic component that can act as a resonant filter 

under some circumstances.  Photonic crystals are materials with periodic dielectric functions in one or 

more dimensions that, much like the periodic crystal lattice of a semiconductor does for electrons, can 

maintain propagation without scattering of certain wavelengths of light in certain directions.  They are 

the ultimate designer material—by introducing an arbitrarily varying refractive index of some 

periodicity, it is possible to engineer an entire optical band structure including, in some cases, a band 

gap—a region of wavelengths where propagation in the crystal is not allowed in any direction (Figure 

5).9  The simplest example of a photonic crystal is the famous Bragg mirror, where alternating layers of 

different refractive index create an arbitrarily high-quality, though wavelength-selective mirror for one 

direction of light propagation. 
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The particular implementation of photonic crystals with two dimensions of periodicity in the dielectric 

function is particularly useful for integration on silicon.  This structure uses a two-dimensional triangular 

lattice of air holes machined into the 

active silicon layer of an SOI wafer.  

However, the 2D photonic crystal 

alone does not confine light, as it 

allows it to propagate freely along the 

direction normal to the crystal plane.  

Rather, the crystal is fabricated to be 

of limited vertical extent, with total 

internal reflection confining the light in 

the out-of-plane direction.  The 

buffered oxide is usually etched away 

to increase symmetry and field 

confinement, leaving the silicon layer 

suspended in air and creating a 

“photonic crystal slab.” 

Defect states, analogous to donor or 

acceptor levels in an electronic band gap, can be created in photonic crystals by removing one or more 

holes from the lattice (leaving them filled with silicon).  A waveguide is created as an “W1” defect by 

removing an entire row of holes from the lattice.  Other common defects are “L1” and “L3” defects, 

where one or three adjacent holes are removed from a single row of the lattice.  These point defects act 

as resonant cavities for frequencies in the photonic band gap and, much like ring resonators, can be 

used as wavelength-selective filters. 

We have previously developed a sensitive photonic crystal-based surface biosensor that measures small 

changes in the transmission spectrum upon molecular binding (Figure 6).  The desire to rigorously model 

and predict the behavior of this sensor system—a very complex surface for biomolecule attachment—

motivates the present work: the development of a perturbation theory to model the effects of adding a 

thin cladding layer to silicon photonic components. 

Figure 5: (From Ref. 9) Band structure of a triangular lattice of air holes. 
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Figure 6: SEM of Photonic Crystal Sensor and corresponding transmission spectra.  Colored curves denote spectra after 
attachment of a monolayer of 0.8nm molecules.  MHD = multiple-hole-defect, the sensor design we describe in Ref. 2. 

Finite-Difference Time-Domain Technique 

The vast majority of photonics problems are too complex to admit analytical solutions.  Instead, it is 

necessary to turn towards computational modeling techniques to extract useful information about a 

system.  One of the most common computational techniques in electromagnetism is the finite-

difference time-domain (FDTD) method. 

The FDTD method discretizes space into a cubic grid, maintaining arrays in memory of the electric and 

magnetic field components at each point.  In most implementations, the grid used is a Yee Lattice, in 

which electric and magnetic field components are distributed in space such that every E component is 

surrounded by four circulating H components and vice-versa (Figure 7). 
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Figure 7: (From Ref. 10) The Yee Lattice.
10

 

Maxwell’s equations are then formulated in finite-difference form, and are stepped in time, updating 

the electric and magnetic fields in a leapfrog fashion.  This essentially runs a numerical experiment, 

where, having defined field sources and a spatially-varying function of permittivity, it is possible to 

determine field components anywhere in the simulation domain at any future time step.11 

A significant disadvantage of FDTD is its extreme computational intensiveness.  For accuracy, the spatial 

grid resolution generally must be high enough to resolve features with several grid points.12  Most FDTD 

techniques do not use nonuniform grids as they tend to introduce numerical error, so memory and 

computational time is spent calculating fields across the entire domain even if only a small section has 

structures justifying high resolution.11  Adding to the computational time is the issue of numerical 

stability.  FDTD simulations are bound by a Courant stability condition S: 

  
   

  
   

Or, equivalently: 

    
  

 
 

Time steps greater than this bound create an exponentially growing numerical wave introduced by 

errors of the computational grid, namely, an unstable simulation.11  Together, these requirements make 

the three-dimensional FDTD algorithm running time scale asymptotically with the fourth power of 

resolution.  For typical problem sizes, simulation times stretch into multiple days even on fast parallel 

computers; modeling especially small features in large problem domains quickly becomes intractable. 
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Methods 

Electromagnetism as an Eigenvalue Problem 

The common task of modeling thin cladding layers on photonic elements falls into exactly the high-

resolution, large-domain problem case that makes direct numerical modeling impractical.  To combat 

the intractably long simulation times, I propose a hybrid computational-analytical technique that solves 

a desired system for resonant frequencies at lower resolution and then applies an analytical 

perturbation to that solution to find the resonant frequency shift caused by the added cladding layer. 

We begin by formulating electromagnetism as an eigenvalue problem.  We first restrict consideration to 

the source-free case with linear, isotropic, dispersionless, nonmagnetic, and transparent materials.  

While only a small subset of the general theory of electromagnetism, these limitations describe typical 

photonic systems well and pose no real limitation for the theory.  Specifically: 

 ( )     ( ) ( ) 

      

Where  ( ), the dielectric function, is a scalar function of position that does not depend on frequency or 

the strength of the electric field. 

This yields: 

  [ ( ) (   )]    

   (   )    

   (   )    

  (   )

  
   

   (   )     ( )
  (   )

  
   

Since Maxwell’s equations in this form are linear, we can leverage Fourier analysis to represent any 

solution as a sum of Fourier modes: 

 (   )  ∑ ( )     

 (   )  ∑ ( )     

Where  ( ) is a “mode profile” at its resonant frequency ω. 

With these stipulations, it is possible to formulate Maxwell’s equations as an eigenvalue problem:9 

     ( )  (
 

 
)
 

 ( ) ( ) 

This can be shown to be both linear and Hermitian,9 allowing application of the same perturbation 

theory that finds use in the mathematically similar problem in quantum mechanics.  
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Perturbation Theory 

A naïve perturbation theory for photonics is well-established:9 

 ( )  
  ( )

 

〈 ( )|  | ( )〉

〈 ( )| | ( )〉
 

Where  ( )is the unperturbed frequency,  ( )is the corrected frequency, and 〈 | | 〉 is the Dirac 

notation, where: 

〈 | | 〉  ∫          

    
     

 

Problematically, though, this first-order theory is only valid for small shifts in the permittivity ε, a 

requirement clearly not valid for the present problem, where perturbations are often a change of 50% 

or more in ε. 

Instead, we take a suggestion from Johnson et al.13 and model the system as a shifting boundary 

problem (Figure 8). 

 

Figure 8: Setup for the cladding perturbation. 

Here we add the layer ε2, extending from ε1 into ε3 between h1 (the original boundary) and h2.  The one-

dimensional problem is considered for mathematical simplicity, and suffices for our applications.  

Mathematically, ε(x) can be represented using Heaviside step functions: 

 ( )     (     ) (    )  (     ) (    ) 

Or, defining the cladding thickness as t = h2 – h1 and changing variables to h = h1: 

 ( )     (     ) (   )  (     ) (     ) 
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The effect on the mode frequency ω of an infinitesimal change in thickness t can be expressed via a 

form of the Hellman-Feynman theorem:13 

  

  
 

  ( )

 

⟨ ( )|
  
  | ( )⟩

⟨ ( )| | ( )⟩
 

The only non-trivial part of this expression is the derivative dε/dt: 

  

  
 

 

  
(   (     ) (   ))  

 

  
((     ) (     )) 

        (     ) 

Where δ(x) denotes the Dirac delta function.  The numerator of the Hellman-Feynman theorem then 

evaluates to: 

⟨ ( )|
  

  
| ( )⟩        ∬ (     )          

This would at first appear to be a simple integral across the surface at x = h + t.  Indeed, for electric fields 

parallel (tangential) to the surface, this integral forms a valid perturbation theory for thin cladding 

layers.  However, electromagnetism requires that the electric displacement       be continuous 

across boundaries, thus making the electric field discontinuous across a discontinuous step in 

permittivity.  The integral above asks us to evaluate the electric field at that discontinuity, thus giving 

undefined results for fields perpendicular to the interface. 

Perturbation Theory for E 

To develop a theory for the electric field components normal to the clad surface, we make the 

observation that the expected solution for any sharp boundary is the limit of the solution for a smooth 

transition as it is made progressively sharper.   Moreover, that limit must be unique, so any self-

consistent method for smoothing the material boundaries will be equally valid.  In that spirit, we 

convolve the inverse of the epsilon function with an arbitrary smoothing function gs(x), essentially 

creating a harmonic mean: 

(   ̅)   ∫   (    )  (  )  
 

  

    

Here,   ( ) can be any nascent delta function (sinc, Gaussian, etc.), i.e. a function of unit integral, 

centered at x = 0, which converges to the Dirac delta function as s → 0 (Figure 9).  The precise choice of 

function does not change the following derivation, where the smoothing function is simply a matter of 

mathematical convenience. 
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Figure 9: Example smoothed epsilon function for Gaussian smoothing function and various values of s.  Axis scales are 
arbitrary for demonstration of the smoothing concept. 

Now differentiating with respect to t: 

 

  
 (̅ )  

 

  

 

∫   (    )  (  )      

  

 

   (̅ ) ∫   (    )
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   (̅ ) ∫   (    )  (  )         (      )    
 

  

 

   (̅ ) ∫   (    )  (  )   
  

  
[        (    )       (      )]    

 

  

 

   (̅ )    (     )(  
     

  ) 

This result and that for fields parallel to the surface can be combined by considering ε(x) to be a tensor 

quantity depending on the direction of the electric field: 

 ( )  (

 (̅ )

 ( )

 ( )

) 

Thus, the numerator of the Hellman-Feynman theorem becomes: 

⟨ ( )|
  

  
| ( )⟩  ∬[(    |  

( )
|
 
 (  

     
  ) (  ̅ 

( )
)
 
]   (     )      

Note that here, when we take the limit s → 0,  →̅   and   ̅ 
( )

      
( )

   
( )

.  Since the electric 

displacement is continuous across the boundary, it is now valid to evaluate the above expression 

completely: 
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And: 
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This serves as a complete first-order perturbation theory for thin cladding layers on high index-contrast 

surfaces. 

One-dimensional Numerical Verification 

With the mathematical theory now established, we seek an efficient method to test the results of this 

perturbation method against direct simulation.  In essence, we would like to compare the resonant 

frequency calculated by application of the perturbation theory to an unclad system, where the 

perturbation theory is used to account for the influence of the added cladding, to a direct simulation of 

that system with cladding included.  Problematically, however, almost all systems are too large to 

directly simulate (that is indeed the very motivation for developing the perturbation theory). 

In some sense, however, the particular system chosen for this comparison does not matter—once 

shown correct, the perturbation theory should be correct for all systems of linear and isotropic dielectric 

materials.  Thus, we choose the simple system of an isolated silicon ring resonator in air, extending 

infinitely in the direction of the ring’s axis of revolution, with thin cladding on its outer surface (Figure 

10).  Unlike most other systems, the isolated ring resonator has the advantage of perfect cylindrical and 

z-axis translational symmetry, thus reducing an otherwise intractable three-dimensional problem to one 

dimension (the radial distance r).  Because the running time of the one-dimensional FDTD problem only 

scales with the second power in resolution and the ring resonator requires a notably small 

computational domain, this allows scaling of the resolution to astounding levels—a simulation with 2000 

pixels across the width of the ring waveguide completes in less than one hour.  This allows the 

simulation to fully resolve even very thin cladding layers in direct simulation. 
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Figure 10: Diagram of isolated infinite ring resonator and corresponding 1d dielectric function. Dashed line indicates cladding 
location. Not to scale. 

Specifically, we define a one-dimensional FDTD problem with continuous cylindrical symmetry 

containing a silicon (ε = 11.68) ring waveguide of inner radius 1 and width 1 in the computational 

domain (sizes are arbitrary since Maxwell’s equations are scale-invariant).  A dipole electric field source 

with field component out of the plane of revolution is placed just inside the ring, at 0.1 units from the 

inside edge to excite all modes regardless of symmetry.  A variable-thickness layer of silicon dioxide (ε = 

3.9) is added to the outer edge of the ring.  The entire structure is kept in a background of air with 

absorbing perfectly matched layer (PML) boundaries to emulate an infinite simulation space.11 

FDTD simulations were run using the open-source MIT Electromagnetic Equation Propagation (Meep) 

software.14  To find resonant frequencies of the unclad cavity, fields were excited using a Gaussian 

source envelope, exciting a range of frequencies centered at a normalized frequency of 0.12 (specified in 

units of c / a, where a is the simulation’s characteristic length scale and the waveguide width).  After 

sources had decayed, harmonic inversion,15 a relative of Fourier analysis, was used to extract 

frequencies and decay rates of the cavity modes. 

Selecting a mode of interest, the simulation was run again with a narrow-bandwidth source at that 

frequency to extract a single mode profile.  To ensure that the mode profile was captured at a time 

when all of the energy was in the electric field, the electric field profile was captured twenty times over 

a single frequency cycle and the profile with the highest peak field was chosen as the true mode profile.  
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This field profile, along with the known resonant frequency, was then post-processed in Python to 

calculate the perturbation correction. 

To assess the validity of the theory over several cladding thicknesses, simulations were completed with 

oxide cladding thicknesses varying from zero to one-quarter of the waveguide width and compared with 

the corresponding perturbation of the unclad ring. 

Ring Resonator Fabrication 

With the theory established and numerically verified, we seek to validate it experimentally.  To this end, 

we fabricate and measure a complete silicon ring resonator filter.  After baseline measurements, we 

coat this resonator with a thin layer of silicon dioxide via atomic layer deposition, and measure the 

resonant wavelength shift caused by this added cladding layer. 

Ring resonators and coupled strip waveguides were fabricated on a silicon-on-insulator wafer (silicon 

layer 220nm, 2μm BOX) by electron beam lithography followed by a reactive ion etch to transfer the 

pattern into the silicon in a manner similar to Ref. 16.16  Samples were manually cleaved perpendicular 

to the straight input/output waveguides to allow light to be coupled into them; no other coupling or 

mode-matching method (grating couplers or nano-tapers) was used. 

Room-temperature Silica ALD 

Applying the thin cladding layer of oxide requires a method that is conformal, uniform, and easily-

controlled.  Atomic layer deposition, where a precursor molecule is applied in vapor phase to the sample 

surface and then catalyzed to form a single atomic layer of the target material, satisfies these 

requirements.  Traditionally, this process requires a carefully controlled vacuum chamber, as the process 

gases are toxic and pyrophoric and require thermal or plasma sources to speed deposition.  Vanderbilt 

does not possess such equipment. 

Instead, we adapt a recently-published silica atomic layer deposition technique that can be 

accomplished in a test tube in air with liquid reagents.17  In a two-step process, samples are suspended 

by copper wire in 15mm ID test tubes approximately 2 cm above 2mL of tetramethyl orthosilicate 

(TMOS) for ten minutes, then 2 cm above 2mL of 30% ammonium hydroxide (NH4OH) for ten minutes.  

The ammonia vapor catalyzes the hydrolysis of adsorbed TMOS to form silicon dioxide: 

Si(OCH3)4 + 2 H2O → SiO2 + 4 CH3OH 

While the method is sensitive to atmospheric conditions, particularly humidity, it produces a fairly 

consistent layer of SiO2 for each two-step cycle, approximately 2nm in thickness as measured by 

spectroscopic ellipsometry on silicon.  We use three cycles, applying approximately 6nm of silica to the 

waveguide surface. 

Optical Test 

The transmission spectra of the ring resonator filters were then measured using a straightforward 

optical setup (Figure 11).  Light from a tunable fiber laser is routed through a polarization controller and 

then a polarization-maintaining tapered fiber to the test chip.  Tapered fibers have a nominal spot size 

of 2.5 μm and were mounted on an XYZ piezo stage for accurate alignment to the fabricated 
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waveguide.  Output light was coupled into an identical fiber and into an optical power meter.  The 

fibers were aligned to maximize power transfer for a wavelength off the ring resonances. 

 

Figure 11: Optical Test Setup. PC = Polarization Controller. 

Under computer control, the laser wavelength was swept over its entire 1520nm-1570nm range at 0.25 

nm/s and the transmitted power measured at each wavelength.  Then a more detailed scan was 

performed around one of the observed resonances: 1550nm-1555nm at a sweep rate of 0.05 nm/s.  A 

droplet of deionized water was applied to the chip surface for these measurements to improve coupling 

from the waveguide to the adjacent ring.  Measurements were normalized to a concurrent 

measurement of an identical strip waveguide (without ring resonator). 

Results and Discussion 

Numerical Verification 

The simulation of the infinite unclad ring resonator (Figure 10) yielded the field profile shown in Figure 

12.  X-axis coordinates are the distance radially outward from the center of the ring.  As expected, the 

peak field intensity is shifted toward the outside edge of the ring, confirming the presence of a 

waveguide bend.  Especially of note is the significant field energy present outside the physical extent of 

the waveguide; it is this energy that interacts with the cladding layer, causing the frequency shift, and is 

likewise responsible for the shift seen in photonic sensors. 
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Figure 12: Electric field profile in ring waveguide.  Vertical blue lines indicate the physical extent of the waveguide.  Radial 
position is scaled to the waveguide width a; vertical axis scale is arbitrary units.  Note the significant field found outside of 
the ring. 

A comparison of the resonant frequencies from both direct simulation and the perturbation theory for a 

variety of cladding thicknesses is show in Figure 13.  The naïve perturbation theory (accounting for a 

small change in permittivity alone) is shown for comparison.  Notably, the newly-developed 

perturbation theory tracks the simulated result reasonably well even out to large (0.25 waveguide 

width) cladding thicknesses.  At this cladding level, the perturbation result (blue triangles) agrees with 

the simulation to approximately 0.1% in frequency.  Error does not exceed 0.2% over the entire range of 

thicknesses tested.  At a design wavelength of 1550nm and the equivalent physical ring of 182nm radius 

with less than 30nm of cladding oxide, this error corresponds to a wavelength shift of 1-2nm.  In 

contrast, the naïve perturbation theory (red circles) under-adjusts for the cladding thickness by 25%, or 

an error of 13nm at 1550nm.  Frequency error of the new perturbation theory compared to direct 

simulation, plotted versus cladding thickness, is shown in Figure 14. 
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Figure 13: Comparison of resonant frequencies calculated by direct simulation and perturbation techniques.  a = width of ring 
waveguide. 

 

Figure 14: Frequency error of the present perturbation theory vs. direct simulation. 
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Optical Test 

Spectroscopy measurements of transmitted light through the fabricated ring resonator filter display the 

expected periodic resonance dips (Figure 15).  This confirms that the ring resonator was fabricated 

correctly and that light is effectively coupling between the bus waveguide and ring.  Observations from 

an IR camera focused on the device likewise confirm light coupling into and scattering from the ring at 

resonance.   

 

Figure 15: Transmission spectrum of the ring resonator prior to oxide cladding. Note the five evenly-spaced dips in 
transmission at resonance. 

A more detailed scan of the resonance near 1550nm is shown in Figure 16.  Silicon dioxide deposition 

(approximately 6nm thickness) causes a redshift of 0.12nm.  Reassuringly, this shift is in the proper 

direction, but it is significantly smaller than predicted by the one-dimensional models shown earlier.  

This can be explained by several factors. 
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Figure 16: Transmission spectra of one ring resonance before and after oxide cladding.  The oscillating pattern off-resonance 
is believed to be a Fabry-Perot effect from the two reflecting ends of the strip waveguide.  The wavelength shift is 0.12 nm. 

First, the fabricated rings were measured in a water background instead of the air background of the 

simulations.  Because the refractive index contrast between oxide and water is several times smaller 

than that between oxide and air, the expected perturbation decreases similarly.  While we found the 

water droplet necessary to ensure sufficient coupling to the rings, there is no fundamental reason why 

this needs to be the case.  Further fabrication refinement should allow coupling in air and a 

correspondingly larger wavelength shift. 

Additionally, the ring simulated for theoretical verification (results in Figures 12-14) is significantly 

smaller than the one fabricated.  A larger ring is convenient experimentally because of its higher Q-

factor and correspondingly sharper resonance.  As a consequence of the larger radius and wider 

waveguide, however, bending losses are reduced and less field energy is carried outside the waveguide 

in the cladding layer.  Because the frequency perturbation is proportional to the square of the field at 

the waveguide surface, a drop in field intensity in this region compared to the verification system 

creates a correspondingly smaller wavelength shift. 

Reassuringly, a one-dimensional simulation with parameters set to model the fabricated ring resonator 

agrees far more closely with the experimental results (a simulated shift of 0.09nm compared to an 

experimental shift of 0.12nm).  We posit that, given the close agreement between direct simulation and 

perturbation theory in the model system and the similarly close agreement between direct simulation 

and experimental results for the fabricated ring, that perturbation theory will continue to be valid for 

such systems. 
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A remaining obstacle in a full implementation and verification of this theory is the possible disparity 

between one-dimensional simulations and three-dimensional experiment.  While the theory is valid for 

fully three-dimensional simulations, applying it to such systems involves an extra layer of complexity, as 

the electric field must be interpolated from a low-resolution simulation grid to the points at the cladding 

surface and a numerical surface integral taken in three-dimensional space.  The additional code to apply 

the perturbation theory to results of three-dimensional simulations has not yet been developed, though 

it is a clear next step in the confirmation and application of this theory. 

Conclusion 
We have successfully developed a compact first-order perturbation theory to model the attachment of 

thin layers of known refractive index on a high index-contrast boundary surface, such as is often found 

in silicon photonics.  This theory is valid for all electric field components and arbitrary choice of index, 

and can be applied as a simple post-processing correction given both a mode profile and center 

wavelength of the optical resonance of interest. 

Results calculated by this theory match closely to direct simulations of oxide cladding on a model silicon 

ring-resonator system.  Experimental results likewise show a tentative confirmation of the theory, 

though further work is necessary to closely align experimental and theoretical results. 

Particularly, an immediate concern is the adaptation of the perturbation theory to a low-resolution, fully 

three-dimensional structure.  This requires an interpolation routine and surface integration code that, 

while not a difficult research problem, would significantly improve the usability of the theory and 

confidence in its results.  Such an extension would allow the theory to be applied to model more 

complex sensing systems, serving as a powerful metric by which to judge the quality of such designs.  

We hope that such an understanding will lead to the development of higher-quality devices for sensitive 

biomolecule detection and the consequent ability to bring sophisticated tests directly to the end-user. 
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