Programming a New Society

Modularity as an Instrument of Cooperation and Programmer Autonomy

from the 1960s to the Free Software Movement

Richard Williams
History Honors Thesis

April 12,2013

Programming a New Society: Modularity as an Instrument of Cooperation and Programmer
Autonomy from the 1960s to the Free Software Movement

By
Richard Williams

Thesis
Submitted to the Faculty of the
Department of History of Vanderbilt University
In partial fulfillment of the requirements
For Honors in History

April 2013

On the basis of this thesis defended by the candidate on /},ﬁr, / L (/ VE /
we, the undersigned, recommend that the candidate be awarded ﬁ/ G Ae;]L Agﬂaff

in History.
,//,/ %/Mw]

Dlrector Honors—l\/latthew Ra sey

Faculty AdV|ser/,@(e l\/IOIVIg

/
Third Reader — Sarih Igo

Table of Contents

Introduction 3

..

The Computer Scientists behind Modular Programming.............co.vvvvviiiininininiininnen.. 14

Modularity and Software Engineering: Programming’s Professional Aspirations.....15

Clashing Conceptions of Modularity

... 20
Computer Scientists and New Communalists.........c.cvcvvvrieiiiiiiiiiininiiininn., 27
Embracing Modularity, Facilitating Creativity, and Challenging Property...................... 35
Attitudes toward Modularity........ocoviiiviiiiin i e 36
Modularity and the Art 0f Programming.oveevuveeeeeeeeeeeeerieeeesieenennin, 41
Reactions to Proprietary Restrictions on Software.............oocvvvviviiiiiniiiiininnnnn, 47
Free, Open Source, and Modular Software: The Rise of Cooperative Development........... 58
The Role of Modular Programming in a Distributed Development Model............. 59
Pragmatism and the Permissibility of Proprietary Software...................oovveninns 67
Revolutionaries, by Intent and by Accident...........ccovviviviiiviviiiii e, 72
L0701 L1 3 101 PP 81
BIblOGrapRY . . e ettt 85

Introduction

Much has been made of the tendency of technological de?elopments, particularly thdse
associated with industrialism, to displace, deskill, and subjugate the people whose work they
purportedly make more efficient. This is especially true of the electronic digital computer, which,
since its invention during the 1940s, has been applied extensively in automating tasks that had
previously been the responsibility of human workers. Even as computers devalued the skills of
many workers, they also created a new category of skilled workers responsible for controlling
them: computer programmers. Initially, the arcane nature of these programmers’ expertise
allowed them to demand a great deal of autonomy from their employers and managers. By the
late 1960s, though, a software development methodology with the potential to change this had
emerged: “modular” programming, or the decomposition of development tasks into smaller
pieces that could be distributed amongst many programmers. Much of the surrounding scholarly
literature emphasizes the role managers played in introducing modular programming, arguing
that it represented an attempt to deskill programmers just as computers themselves had deskilled
other workers. Yet modular programming was first formulated not by managers, but by
programmers. These programmers believed that modular programming could provide the
common set of standards programming needed to achieve the status of a profession. Working
against the countercultural backdrop of the late 1960s and early 1970s, they hoped that by
prbfessionalizing, programmers would collectively secure their autonomy against managerial
efforts to undermine it. Though their efforts to transform programming into a profession were
largely unsuccessful, their efforts to convince other programmers of modularity’s value were not.
By the early 1980s, programmers in general had overwhelmingly accepted modularity as a

worthy goal in programming, identifying modular programs as high-quality, aesthetically-

pleasing works and, in some cases, coming to consider the production of such programs a
creative, artistic endeavor. When proprietary software firms began to leverage changes in
intellectual property law to impose increasingly-strong restrictions on the acts of reading,
sharing, and adapting programs, a subset of programmers, seeing these firms’ actions as a threat
to the values their conception of programming as a creative act had instilled, resisted. Forming
what would come to be known as the free and open source software movement, they applied
modular programming to distribute the task of producing freely-distributable replacements for
proprietary software over many programmers, setting an example of something that would
become a hallmark of Internet culture: the voluntary cooperation of enormous numbers of people
on projects far beyond the capabilities of any one person. The managers of the 1960s may have
hoped that modular programming would provide an instrument by which they could control
- programmers. However, much as computers and computer nefworks themselves came to be
applied for purposes beyond the automation of human work~—fr01ﬁ the free dissemination of
information to the coordination of revolutionary political movements—so did programmers
come to apply modular programming to assert, exercise, and preserve their autonomy.
Kk Kk Kk ok

“Information wants to be free, because the cost of getting it out is getting lower and lower
all the time,” veteran of the late 1960s American counterculture Stewart Brand remarked at the
Marin County, California Hackers’ Conference of 1984, thereby unintentionally coining a phrase
that would become a favored slogan among critics of intellectual property and other limitations
on access to information. Four hundred programmers who identified as “hackers” were invited to
the conference, and the roughly one hundred and fifty that actually attended included such

prominent figures as Richard Stallman of the GNU Project and Steve Wozniak of Apple. Brand,

along with other members of the team responsible for producing the Whole Earth Catalog, had
organized the conference for the purpose of discussing such contemporary trends in the computer
industry as the expansion of intellectual property restrictions in the field of software
development. According to Fred Turner’s From Counterculture to Cyberculture: Stewart Brand,
the Whole Earth Network, and the Rise of Digital Utopianism, Brand hoped that the conference
would provide an opportunity to determine whether or not the act of hacking—defined not as the
act of finding and exploiting weaknesses in computer systems but as the act of programming
motivated by a sense of playfulness and a love of programming itself—might be a “precursor to
a larger culture,” with hackers forming “the sort of cultural vanguard for the 1980s that the back-
to-the-land and ecology crowds had hoped to be for the 1970s.”!

Turner’s investigations of this conference and of other interactions between the segment
of the counterculture Brand represented and the software development community together
constitute an attempt to answér a question. How was it that, by the mid-1990s, “pundits, scholars,
and investors alike saw the image of an ideal society: decentralized, egalitarian, harmonious, and
free” in the “shiny array of interlinked devices” that characterized the arrival of “ubiquitous
networked computing,” when, just thirty years earlier, computers had seemed to many student
activists to be “the tools and emblems of the same unfeeling industrial-era social machine whose
collapse they now seemed ready to bring about”? Turner argues that while the fact that this shift
was possible at all may be attributed to a shift in the technology itself—specifically, to the
increasing capabilities and decreasing size of computer hardware, culminating in the emergence
of “personal” computers—the facts that the “particular utopian visions” that emerged were so

strikingly similar to those of a particular subset of the counterculture, whom Turner termed the

' Fred Turner, From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network, and the Rise of

Digital Utopianism (Chicago: University of Chicago Press, 2006), 1.

“New Communalists,” and that this subset interacted so often with the burgeoning community
computer programmers through “network forums” such as Brand’s Whole Earth Catalog and its
short-lived, software-focused extensions, the Whole Earth Software Catalog and the Whole
Earth Software Review, indicate that the “digital utopianism” of the mid-1990s was descended
directly from New Communalists’ idealism.”

Like others in the counterculture, the New Communalists distinguished themselves from
the New Left by concerning themselves first and foremost with maintaining their autonomy,
turning “inward, toward questions of consciousness and personal intimacy, and toward small-
scale tools such as LSD or rock music as ways to enhance both” rather than “outward, toward
political action.” For the New Communalists, though, “the work of expanding consciousness and
increasing interpersonal intimacy was not an end in itself; it was a means by which to build
alternative, egalitarian communities,” to the point that “in the early 1970s, some 750,000 people
lived in ten thousand communes nationwide.” It was the members of these communes at whom
the Whole Earth Catalog was aimed. Functioning “primarily as an evaluation and access device”
with the purpose of letting the user “know better what is worth getting and where and how to do
the getting,” the Catalog served to inform New Communalists seeking to get “back to basics”
what those “basics” were. That is, it served to provide them with the knowledge both of what
tools they could use to build successful communes and of how to access those tools. The way in
which the Catalog gathered this information—by soliciting contributions from its readers—
prefigured, Turner argues, the proliferation of user-generated content on computer networks such
as the Internet, cultivating attitudes that viewed this sort of collaborative production of
information as fundamentally tied to the New Communalists’ vision of a decentralized,

nonhierarchical society and “would go on to shape popular attitudes toward networked

2 Ibid., 2-5, 136.

computing in the 1990s.” Moreover, the Catalog’s success was indicative of the New
Communalists’ preoccupation “with reclaiming the products of government and industry and
transforming them into ‘tools.”” Even though the “back-to-the-land” drive animating many of the
Catalog’s readers often implied a certain degree of suspicion of the potential of these “products
of government and industry” to control and oppress, their very interest in the Catalog implied the
belief that such technologies could also be used to liberate, often by facilitating alternative,

egalitarian forms of social organization. >

It was against this cultural backdrop that, in 1969, a group of programmers working for
AT&T’s research-and-development subsidiary, Bell Laboratories, began work on a new kind of
operating system. At least initially, their product, which they would dub “Unix,” was a creature
of their own initiative. Having grown out of these programmers’ involvement in Bell Labs’
abandoned collaboration with General Electric and the Massachusetts Institute of Technology on
another operating system called “Multics,” it received no funding from Bell Labs itself until the
second year of development. Dennis Ritchie, oné of the principal programmers of Unix,
expressed sentiments strikingly reminiscent of the sort of preoccupation with the use of tools to
facilitate the construction of communities that Turner argues characterized the New
Communalists when he remarked on the intent driving the creation of Unix. This intent, he said,
was to provide “not just a good environment in which to do programming, but a system around
which a fellowship could form,” as he “knew ﬂo1n experience that the essence of communal

computing [...] is not just to type programs into a terminal instead of a keypunch, but to

734

encourage close communication.” Unix’s significance went beyond its status as both a product

of programmers’ agency and a tool for enhancing programmers’ sense of community, though. It

Ihid., 31-32,79, 91.
Dennis Ritchie, “The Evolution of the Unix Time-Sharing System,” in Lecture Notes in Computer Science #79:
Language Design and Programming Methodology (Springer-Verlag, 1980).

also featured a number of technological innovations, among the most striking of which was the
fundamentally modular nature of its design. Rather than being composed entirely of one
monolithic program that provided all of the functionality expected of an operating system, Unix
was divided into many small programs. One of these, the “kernel,” provided a set of core
features to which every program was expected to require access, including starting or stopping
other programs, managing the file system, and scheduling access to limited resources. The
others, known as “utilities,” provided the remainder of Unix’s functionality independently of one
another.

This design decision did not occur in a vacuum. Rather, it reflected a major shift that had
engulfed the software development industry during the late 1960s: the formalization and
propagation of modular programming techniques, which allowed development processes to be
broken down into smaller pieces and distributed amongst many programmers. Unix itself did not
fully take advantage of this, at least during its initial development. A relatively small group of
programmers wrote the code for the operating system, with many of them writing multiple utility
pro grams while also contributing to the code for the kernel. Over a decade and a half later,
though, another operating system, explicitly intended to be “Unix-like” and to be compatible
with programs written to run on Unix, did: GNU, whose name was a recursive acronym standing
for “GNU’s Not Unix.” Developing GNU was the first task of the GNU Project and the Free
Software Foundation, organizations founded by the programmer Richard Stallman to facilitate
the development of a non-proprietary alternative to Unix (i.e., GNU) and, later, “free” software
in general, with “free” software defined as software that users would be free to modify and
redistribute at will. Motivated by the belief that contemporary expansions of intellectual property

law as it applied to software represented threats to programmers’ autonomy and to the “hacker

ethic,” which regarded the sharing of code among programmers as a moral imperative, GNU, as
well as later free and open-source software projects, relied on a development model that
reasserted both of these on a massive scale, calling on large numbers of geographically-separated
programmers to collaborate, with the work of each being incorporated into the whole. The
modularity of Unix, as Stallman himself would note, made it easy for the GNU versions of each
Unix utility to be implemented independently and, ultimately, combined to form a complete
operating system. It thus played a key role in allowing the GNU Project to successfully apply
this development model.

Dennis Ritchie, along with the other researchers behind the development of Unix, took
the initiative in applying modular programming techniques to the development of an operating
system whose express goal was to be something around which a “fellowship” could form.
Richard Stallman and the free software movement would later make use of it in their attempts to
assert their autonomy in the face of increasingly stringent restrictions on the reuse and
redistribution of code. Yet the relatively sparse literature examining the causes and effects of the
software development industry’s adoption of modularity as a basic methodological principle
pays little attention to the role of programmers in formulating and propagating modular
programming techniques. Instead, it focuses on the role of management in the introduction of
these techniques and emphasizes the notion that they were intended to “routinize” computer
programming, making it more like more conventional industrial work, For instance, the
sociologist Philip Kraft's Programmers and Managers advances the argument that modular
programming (though Kraft uses the term “structured programming,” which has come to denote
a particular technique associated with modular programming) primarily served to deskill, and

thus extend managers' control over, programmers. In it, Kraft claims that modularity “freed

managers from dependence on individual high-level software workers” and “made possible for
the first time a genuine job-based fragmentation of labor in programming,” becoming “the
software manager's answer to the assembly line.” Kraft acknowledges that the Taylorist division
between labor of the “head” and labor of the “hand” that he claims had emerged in the form of a
separation between low-level “coders,” mid-level “programmers,” and high-level “systems
analysts” was somewhat tenuous since “everyone does at least some coding, for example.”
However, he nevertheless insists that the industry was characterized by an increasing tendency to
divide workers along these lines. To his credit, he explicitly notes one of the major omissions of
his study in his introduction: he chose to avoid examining the role of academic and research-
oriented programmers, or “computer scientists,” in formulating modular programming, instead
focusing on “what managers have selected from the work of researchers in order to further their
own ends.” He does not, however, note the other major omission: he never acknowledges that
programmers might have actually influenced the purposes to which modular programming
techniques would be applied, rather than simply playing a role in inventing those techniques.’
Chris Benner’s examination of the manner in which workers in Silicon Valley's
information technology sectors have organized further shows the insufficiency of Kraft’s
approach for understanding the impact of modular programming on programmers. Benner argues
that, rather than taking the form of the more-familiar industrial unions that dominated the labor
movement in the twentieth century, collective associations amongst these workers have tended to
eschew the term “union” in favor of “guild” and to take forms more analogous to professional
associations, benefiting their members primarily by having “improved their member's career

opportunities, through improving skill development, facilitating access to new job opportunities,

5 Philip Kraft, Programmers and Managers: The Routinization of Computer Programming in the United States

(New York: Springer-Verlag, 1977), 9, 15-16, 58-59,

10

and organizing advocacy efforts,” not through collective bargaining. These guilds developed, he
claims, around occupations in which “employment conditions change rapidly over time, with
workers being more connected with their occupation and trade, rather than a particular
employer.” That such a form of organization would have predominated within the information
technology industry implies that this industry remains one in which individual craft, after the
manner of artisans rather than that of industrial workers, is of foremost importance. However, it
does not explain why this is the case. If the 1960s shift in approach to software development
really was more an attempt to deskill and proletarianize programmers than anything else, why
did it, apparently, fail?°

It may well be the case that managers, as Kraft argues, deliberately encouraged
programmers to make use of modular programming techniques, hoping that their use had the
potential to displace, deskill, and subjugate these programmers. However, modular programming
techniques did not originate in the minds of managers, and the computer scientists who first
articulated these techniques during the 1960s and early 1970s did not share the managers’
interest in making programmers easier to control. Formulated and propagated against a
countercultural backdrop infused with the New Communalists’ preoccupation with transforming
the potentially-oppressive technologies produced by industry and government into tools for
liberation—and amongst a community of programmers who, as Fred Turner argues, had
substantial interaction with representatives of precisely that countercultural current in the form of
Stewart Brand and the Whole Earth Catalog—modular programming techniques played the role
of such tools both in intent and in practice. The researchers who formulated them did so

intending for them to provide programming with a base of practical knowledge, driven by the

S Chris Benner, “‘Computers in the Wild": Guilds and Next-Generation Unionism in the Information Revolution,”

in Uncovering Labour in Information Revolutions, 17502000, ed. Aad Blok and Greg Downey (Cambridge:
Cambridge University Press, 2003), 182, 190.

11

conviction that to do so would lead to the advancement of the field of computer programming
and, perhaps, would enable programmers to gain recognition as professionals. Thus, for these
researchers, modular programming was a tool by which programmers could, collectively, secure
their autonomy. By the late 1970s and early 1980s, programmers had overwhelmingly adopted
modularity as a goal to which to aspire in software development, and were considering these
techniques as a means through which they would be able to exercise and share the products of
their creative energies, much as the New Communalists made use of small-scale tools in artistic
endeavors designed to enhance both individual consciousness and personal intimacy among
individuals. Finally, when developments in intellectual property law began to impose
increasingly-restrictive constraints on behavior (such as the sharing of source code) that had
previously been common among programmers, they undercut the ability of programmers to use
modularity for this purpose. In response, programmers, beginning in the mid 1980s with the
GNU Project, undertook a series of enormous, cooperative projects, all made possible by the use
of modular programming techniques, the fruits of which would be freely available to all
programmers and, in many cases, would replicate features provided by newly-proprietary code.
Here, then, modular programming served as a tool for the creation of networked, collaborative
communities of programmers reminiscent of both the New Communalists’ communes and the
Whole Earth Catalog itself,

Viewing modular programming through this lens renders the apparent failure of the
managers' attempt to industrialize the industry less surprising by making modular programming
more than just a means by which managers attempted to subjugate programmers. It makes it, in
both intent and application, a means by which programmers autonomously acted to improve both

their own lot and the lot of their fellows. From modular programming’s origin as an attempt to

12

provide a practical foundation for the field of programming to its use as a means by which
programmers could share the products of their creativity up through its employment by networks
of programmers collaborating to build free and open source software for all to use, modular
programming affirmed the New Communalists’ belief in the possibility for technology—even

technology with an apparent potential to act as an instrument of control—to serve as a tool of

liberation.

13

The Computer Scientists behind Modular Programming

In October 1968, the same year Stewart Brand published the first edition of the Whole
Earth Catalog, the NATO Science Committee invited “50 experts from all areas concerned with
software problems” to Garmisch, Germany for the first NATO Conference on Software
Engineering. Intended “to shed further light on the many current problems in software
engineering” and “to discuss possible techniques [...] which might lead to their solution,” the
conference aimed to address one problem in particular: large software projects’ perceived
tendency to be excessively error-prone and inflexible. As the capabilities of computer hardware
had grown, the size, complexity, and importance of the software programmers were expected to
produce had grown as well, “placing demands on us which are beyond our capabilities [...] at
this time.” Central to the proposed solutions to this problem were the techniques that would
come to be associated with modular programming. The computer scientists who formulated these
techniques hoped that they would provide the theoretical and practical framework necessary for
programming to attain the status of a profession in the form of “software engineering.” Their
preferred approaches to making programs modular diverged from those of managers to a degree
sufficient to set their efforts to professionalize programming at odds with managerial efforts to
the same end. Finally, their efforts were linked to the New Communalists’ efforts to transform
society not only by a common time period and even common participants, but also by similar
motivations—where the New Communalists hoped to assert their autonomy and to protect the
world from the threat of nuclear weapons, these computer scientists hoped to secure

programmers’ autonomy and to protect society from the potential dangers' of poorly-written

software.”

" Peter Naur and Brain Randell, Software Engineering: Report on a conference sponsored by the NATO Science

Committee, Garmisch, Germany, 7th to 11th October 1968 (Brussels: NATO Scientific Affairs Division, 1969),

14

Modularity and Software Engineering: Programming’s Professional Aspirations

“The phrase ‘software engineering,”” wrote the computer scientists Peter Naur and Brian
Randell in their report on the Garmisch conference, “was deliberately chosen” to describe the
conference’s subject because of its “provocative” implication that there existed a “need for
software manufacture to be based on the types of theoretical foundations and practical
disciplines, that are traditional in the established branches of engineering.”® Even before the
conference had begun, it was believed—Dby the organizers of the conference, if not necessarily by
all of the attendees—that the solution to the perceived software crisis would involve the
transformation of programming into a discipline similar to the established branches of
engineering. It would involve, in other words, the professionalization of programming.

“Professionalism” is a problematic term, partially because it carries with it a set of
meanings and connotations that make it difficult to define in a manner that is both satisfactory
and concise. In Professionalism: The Third Logic, the sociologist Eliot Freidson describes the
ideal world associated with professionalism as one in which “those workers who have the
specialized knowledge that allows them to provide especially important services have the power
to organize and control their own work,” protected by legal guarantees that “only they can offer
their particular services to consumers or hold jobs performing them in organizations: neither
consumers nor managers are free to employ anyone else” and that “only members of the
occupation have the right to supervise and correct the work of colleagues.” All this comes with
the caveat that the members of the profession “do not abuse these exclusive rights,” if only
because “they are more dedicated to doing good work for their own satisfaction and for the

benefit of others than to maximizing their income.” From this description, another reason the

13-14, 17.
8 Ibid., 13.

15

term is problematic becomes apparent: as Friedson .acknowledges, this ideal professional world
has never existed. Rather, “where some of [its] clements have existed, predicted virtues are
always accompanied by unanticipated vices,” with some members of professions putting
“economic advantage ahead of the good of their clients,” so that the world in question represents
an “ideal type” or, more plainly, a “pipe-dream.””’

A key aspect of professionalism as Friedson describes it is that members of a profession
alone have the right to “supervise and correct the work of colleagues.” For them to be able to do
so, though, there must be some notion of what constitutes correct work. There must exist, to
borrow Naur and Randell’s words, “theoretical foundations and practical disciplines” on which
that work will be based and by which that work can be judged. Ensmenger argues that
programmers had attempted to professionalize in the early 1960s and that, as part of this
enterprise, they had formed organizations such as the Association for Computing Machinery
(ACM). This academically-oriented organization was devoted to the study of computer science
and, in particular, to a strategy of professionalization that focused on providing just the sort of
theoretical and practical foundations for the aspiring profession of programming to which Naur
and Randell would later refer when explaining the choice of the phrase “software engineering.”
Yet Ensmenger’s treatment of the Garmisch conference and of the use of the term “software
engineering” (and, by extension, the modular programming techniques developed to facilitate
software engineering) explicitly separates both from the issue of programmers’ attempts to
professionalize, instead describing them as attempts to reassert “control over a recalcitrant

workforce.” The literature surrounding the genesis of modular programming and of software

engineering suggests that this separation is not justified. It reflects both the ethical concerns and

? Friedson, Eliot, Professionalism.: The Third Logic (Cambridge: Polity Press, 2001), 1-2.

16

the need for standards on which to base and by which to judge work that are associated with
professionalism. '

Consider, for example, Douglas MclIlroy's keynote address from the Garmisch
conference, “Mass Produced Software Components.” Mcllroy was, in many ways, the archetypal
computer scientist. Not only did he have a Ph. D. in applied mathematics from Cornell
University, he was also the head of the Computing Techniques Research Department at AT&T’s
Bell Laboratories and would eventually write a number of the tools associated with Unix, of
which the GNU Project would later produce non-proprietary replacements. That Mcllroy was
arguing for the use of modular programming seems clear from the example he uses to introduce
his argument, which implies that software projects ought to be broken down into modules (or, to
use his term, components) that can then be reused: “when we undertake to write a compiler, we
begin by saying ‘what table mechanism shall we build?’ Not, “What mechanism shall we use?’
[...] I claim we have done enough of this to start taking such things off the shelf.” That he was
advancing it in a manner reminiscent of the managers’ purported attempts to use it control
programmers also seems élear, this time from his statements that he “would like to investigate
the prospects for mass-production techniques in software” and that what he was proposing was
“simply industrialism, with programming terms substituted for some of the more mechanically
oriented terms appropriate to mass production.” His motivations, however, diverged sharply
from those attributed to the managers. His opening claim that “[w]e unbdoubtedly produce
software by backward techniques” and “get the short end of the stick in confrontations with
hardware people because they are the industrialists and we are the crofters” betrays an overriding
concern with the idea that the field of software development was somehow behind the field of

hardware development, a more traditional branch of engineering. This, taken together with

1% Ensmenger, The Computer Boys Take Over, 174, 198.

17

Mcllroy's reference to programmers in general with the pronoun “we” in statements such as “I
don't think we are ready to make software subassemblies of that size on a production basis” and
his insistence that the profit motive acted as a “prime hangup” of manufacturers with regard to
their ability to produce “high class” component libraries “of general utility,” indicates that he
identified primarily with programmers and was interested in providing a common base of
knowledge—high class component libraries—on which programmers could build. The same is
true of his reasons for regarding government as a good choice for initial funding: that his
proposals would result in “across-the-board improvement in systems development.” Finally, his
claim that “the software industry is weakly founded” due in part to the lack of a software
components industry suggests that he was interested in enhancing the foundation of software

industry and, thus, providing a practical basis for the establishment of programming as a

profession.'!

The prominent Dutch computer scientist Edsger Dijkstra was likewise a vocal advocate
of modular programming. In particular, he famously condemned the use of “go to” statements, or
commands in a program that cause the flow of execution to “jump” to some specified point in a
program when executed, in his paper, “Go To Statement Considered Harmful,” advocating that
they be replaced with control structures such a loops and procedure calls. The systematic use of
such structures, or “structured programming,” was one of the chief techniques used to make
program modular. Upon receiving the ACM’s Turing Award in 1972, Dijkstra gave an address
entitled “The Humble Programmer.” In it, he related the story of “a turning point in [his] life” in
which, early in his career, he had chosen to pursue programming rather than theoretical physics
on the grounds that “up till that moment there was not much of a programming discipline,” but

that “automatic computers were here to stay” and he might thus “be one of the persons called to

" Naur and Randell, Software Engineering, 138-139, 144, 148, 150,

18

make programming a respectable discipline in the years to come.” The beginning of his speech
sheds light on his use of the term “respectable discipline.” When introducing his dilemma, he
asked, “But was [programming] a respectable profession? After all, what was programming?
Where was the sound body of knowledge that could support it as an intellectually respectable
discipline?” In a manner strikingly similar to that of Mcllroy, he then proceeded to contrast the
intellectual foundation of software development with that of hardware development, saying, “I
remember quite vividly how I envied my hardware colleagues, who, when asked about their
professional competence, could at least point out that they knew everything about vacuum tubes,
amplifiers and the rest, whereas I felt that, when faced with that question, I would stand empty-
handed.” Dijkstra’s very reason for becoming a programmer in the first place, and likely for
advocating the use of structured programming, was to contribute to the professionalization of
programming, to contribute to a body of knowledge that, in his view, was too small to serve as
the basis for a profession at the time he became a programmer. 2

The aspects of professionalism associated with the rise of “software engineering” and of
modular programming techniques are not limited to the creation of an adequate foundation for
programming as a profession. Among the first subsections of the Naur and Randell report was
one that considers the impact of software development practices on society and, as such, was
aptly entitled “Software Engineering and Society.” The existence of this subsection, according to
Naur and Randell, can be attributed to the fact that “[o]ne of the major motivations for the
organizing of the conference was an awareness of the rapidly increasing importance of computer
software systems in many activities of society.” That this section was featured so prominently in

the report indicates either precisely the sort of preoccupation with the impact of software

12 Edsger Dijkstra, “The Humble Programmer,” Communications of the ACM 15, no. 10 (1972): 859-860,
d0i:10.1145/355604.361591.

19

developers’ work on others that Freidson attributed to professionals as an ideal type, or, at least,
indicates a desire for software developers to be perceived as having this sort of preoccupation
and, therefore, as embodying professionalism. Similarly, Brian Randell himself expressed
sentiments embodying such preoccupation during a discussion of the implications of the
existence of a “software crisis,” saying, “There are of course many good systems, but are any of
these good enough fo have human life tied on-line to them, in the sense that if they fail for more
than a few seconds, there is a fair chance of one or more people being killed?!?

Modular programming, at least in the eyes of the computer scientists of the 1960s who
articulated its importance, was the product of a collective effort to create a shared set of
standards and body of knowledge that would contribute to the establishment of programming as
a “respectable discipline.” By providing programmers with a theoretical and practical foundation
according to which they could supervise and correct each other’s work, modular programming
would allow the community of programmers to obtain one of the qualities Eliot Freidson
describes as characteristic of a profession as an ideal type: self-regulation. This, together with the
evidence of another of these qualities, concern for the social good, in the computer science
literature of the late 1960s, indicates that .these computer scientists’ research into modular
programming represented part of programmers’ ongoing attempts to professionalize. Drawing
conclusions about their reasons for wanting to transform programming into the profession of
software engineering necessitates a more careful exploration of the literature they produced.
Clashing Conceptions of Modularity

The computer scientists who formulated the techniques associated with modular
programming and the related concept of software engineering appear to have had the

establishment of programming as a profession as their first concern. However, this does not

% Naur and Randell, Software Engineering, 120.

20

necessarily imply that they were acting primarily with the interests of programmers, rather than
those of managers, in mind. After all, as Ensmenger points out, managers may have viewed
professionalism, provided it stayed “corporate-friendly,” as a way to simplify the task of
measuring the qualifications of potential programmer employees and to reduce their own
dependency on individual programmers by standardizing the practice of programming, '
Examining more closely what the computer scientists in question meant by “modular
programming,” and, in particular, the relationship between their conceptions of what modularity
was and how it was to be applied and those of managers reveals a key subject on which the
managerial literature differed from that produced by computer scientisfs: the use of modular
programming techniques to promote a Taylorist division of labor.

Before proceeding to a discussion of managers’ conceptions of modularity, it is necessary
to more precisely specify the meaning of the term “manager,” and to deal in particular with the
extent to which progrémmers and managers overlapped. Certainly it was possible for some
programmers to be in charge of other programmers and thus to act as managers in some sense.
However, Ensmenger’s use of the term “managers” appears to apply primarily to those
individuals whose training and experience deals with the organization and supervision of
employees rather than the development of software. Moreover, Ensmenger argues that,
particularly when compared with workers in the traditional engineering disciplines, programmers
had relatively few opportunities to advance up the “corporate ladder” into management positions,
perhaps due to the fact that it “was just not clear to many corporate employers how the skills—
and personality types—possessed by programmers would map onto the skills required for

management.”"> Ensmenger claims that situation is part of what led to programmers wishing to

14‘ Ensmenger, The Computer Boys Take Over, 168.
¥ Ibid., 22, 166.

21

establish their occupation as a profession in the first place, as a way of compensating for the lack
of opportunities to move into management. Likewise, it led to managers seeking to promote a
division of programmers’ labor along Taylorist lines. Since programmers were perceived as
lacking the skills needed to effectively manage themselves and each other, doing so would
purportedly enable large software projects to be completed more reliably and efficiently by
making it easier for managers to control programmers.

As Philip Kraft describes it, such a division of labor involves a process whereby
“engineers broke down a product’s manufacture into the smallest possible component parts” with
the result that “employers needed fewer skilled production workers.”'® That this process
resembles the process of breaking up a program into modules that can be implemented more-or-
less independently is clear. Brian Rothery’s guidebook for managers, Installing and Managing a
Computer, described how a successful manager of programmers must divide the task at hand into
“simple work units,” that is, modules, to be implemented by “simple programmers,” lest said
manager lose control of the task and thus be “held in contempt by clever programmers
dangerously maintaining control on his behalf.”!” Thus, according to the managerial conception
of modular progrémming, all important design decisions would be made by the managers, who
would decompose the task into modules and allocate each module to a programmer to implement
without having any knowledge of, or control over, the overall design of the system.

This contrasts with the épproach outlined in a paper written by the Canadian software
engineering pioneer David Parnas, who was notable for developing the notion of “information
hiding” or of ensuring that certain pieces of data can only be accessed by certain pieces of code.

As its name, “On the Criteria To Be Used in Decomposing Systems into Modules,” would

16 Philip Kraft, Programmers and Managers: The Routinization of Computer Programming in the United States
(New York: Springer-Verlag, 1977), 20.

17" Brian Rothery, Installing and Managing a Computer (London: Business Books, 1968), 152.

22

suggest, this paper’s purpose was to “suggest some criteria which can be used in decomposing a
system into modules” and, more generally, to discuss the process of making a program modular.
First, it is notable that, while enumerating various benefits of modular programming, Parnas
explicitly claimed that one of these was “managerial—development time should be shortened
because separate groups would work on each module with little need for communication.”
Initially, this appears to indicate a striking resemblance between Parnas’ conception of how
programs ought to be modularized and the aforementioned Taylorist conception of the same.
Modularizations of a system would, following Parnas’ method, be designed explicitly to reduce
communication between the programmers working on each module, a process that could
facilitate the ability of managers to keep the overall design of that system out of the control and
the knowledge of the programmers of each module. However, considering the specific method
Parnas proposed yields a very different interpretation. Parnas claimed that “it is almost always
incorrect to begin the decomposition of a system into modules on the basis of a flowchart,” since
doing so—having each module represent one step in a process—could strongly couple cach
module to the modules representing the steps preceding and following its own step, so that
changes to one module might well require changes to the other modules as well. Parnas instead
proposed these alternative criteria for modularizing a system: “one begins with a list of difficult
design decisions or design decisions which are likely to change. Each module is then designed to
hide such a decision from the others. Since, in most cases, design decisions transcend time of
execution, modules will not correspond to steps in the processing.” In order to encapsulate
specific design decisions in modules, though, the programmers writing those modules would
need to be aware of those design decisions. Moreover, the fact that these encapsulated design

decisions were, according to Parnas’ criteria, explicitly the “difficult” ones and the ones that

23

were “likely to change” implies that these modules would not be, as Rothery put it, “simple work
units” that could be implemented by “simple programmers.” They would demand cleverness on

the part of the programmers implementing them rather than lending themselves to the deskilling

of those programmers.'®

Parnas was not the only exponent of modularity whose preferred approach to making
programs modular contradicted the Taylorist one embodied by Rothery’s statements. Edsger
Dijsktra, in his 1972 article “Notes on Structured Programming,” outlined an approach that did
so just as clearly. In it, Dijkstra’s first concern was not with the manageability of programmers,
but rather with programmers’ need to be confident of the correctness of their programs.
Remarking that “it is fairly hopeless to establish the correctness [of programs] beyond even the
mildest doubt by testing” due to the often astronomically-large number of cases that would need
to be tested, he claimed that, instead, successful proofs of correctness would have to operate by
“taking the structure of the mechanism into account.” Given that “it is not only the programmer’s
task to produce a correct program but also to demonstrate its correctness in a convincing
manner,” he argued, “the above remarks have a profound influence on the programmer’s
behavior: the object he has to produce must be usefully structured,” that is, structured in a
manner that would facilitate demonstrations of a program’s correctness. To this end, he
suggested,‘ programmérs ought to arrange their programs in layers. The main body of the
program—the top layer—would be implemented in terms of the second-highest layer, which
would hide the details involved in the implementation of still-lower layers from the top layer and
would thus allow “the correctness of the main program” to “be discussed and established”

independently of that of the lower layers. The task of writing a program would thus be divided

' David Parnas, “On the Criteria To Be Used in Decomposing Systems into Modules,” Communications of the
ACM 15, no. 12 (1972): 1053-1054, 1058, doi:10.1145/361598.361623.

24

into separate tasks, each “structurally similar to the first one,” involving the production of one
layer. The end result of this process would be a program built as a set of distinct, hierarchically-
organized levels of abstraction, each of which would provide the functionality needed to
implement the level residing immediately above it in the hierarchy, implemented in terms of the
level residing immediately below. The highest of these levels would be the main program,
intended to provide precisely the functionality desired by the user, while the lowest would be the
bare hardware. Each level of abstraction, like the top level, could be “understood all by itself”
and could thus be proven correct independently of the other levels.'”

This process might seem at first as though it would lend itself, even if unintentionally, to
a concentration of all important design decisions into the hands of the people writing the main
program (or even the specification for the main pro gram) and a clear division of the task of
programming into “simple work units” in the form of the separate layers of abstraction.
However, consider fhe sorts of decisions that programmers would have to make while
implementing each of these layers. To use Dijkstra’s words, in programming one such layer, “we
have to decide upon data structures to provide for the state space of the upper [layer];
furthermore we have to make a bunch of algorithms, each of them providing an implementation
of an instruction assumed” in the implementation of the upper layer. Far from being unimportant,
the choice of a particular data structure needed to represent the data to be used by the layer
immediately above or of a particular algorithm to implement a pieée of functionality needed by
that layer would have the potential to drastically impact the performance and stability of the
program as a whole. Moreover, a large part of Dijkstra’s reasoning for the use of the model he

described hinged precisely on its ability to avoid committing to any such design decisions until

1" Edsger Dijkstra, “Notes on Structured Programming,” in Structured Programming, ed. Ole-Johan Dahl, Edsger
Dijkstra, and C. A. R. Hoare (London: Academic Press Ltd., 1972), 5-6, 61-62.

25

as late as possible by pushing code amounting to such commitments as far “down” in the
hierarchy of layers as possible. Doing s0, he argued, would reduce the amount of code dependent
on any particular design decision by reducing the number of layers shaped by that decision,
thereby allowing programmers to change such a decision relatively easily. It was for this reason
that he ended his article with a declaration of the virtue of seeing “[pJrogramming (or problem
solving in general?) as the judicious postponement of decisions and commitments!” Yet this
would not be the only effect of postponing decisions in thié manner. Doing so would also ensure
that the programmers working on lower layers of abstraction would both be aware of and have a
degree of input in the design decisions that had been postponed until these levels. Thus, any
attempt to apply Dijkstra’s model as Dijkstra himself envisioned it would undermine attempts to
impose a straightforward, Taylorist division of the labor involved in the development of levels of -
abstraction into “head” labor associated with the highest level and “hand” labor associated with
the others.*’

The computer scientists responsible for the key techniques of modular programming
conceived of several distinct processes according to which large programs could be decomposed
into modules, often arguing for their proposed processes on the grounds that they would produce
easily-adaptable programs. Where managerial conceptions of modular programming regarded it
as a means to divide programs into simple work units that could be implemented by simple
programmers, these computer scientists sought to decompose programming tasks along lines that
made programmers responsible for important design decisions and made their tasks anything but
simple. Rather than reinforcing managers’ attempts to assert their control over programmers, the

application of modular programming techniques, at least as envisioned by their creators, tended

to subvert them.

2 1bid., 62, 84.

26

Computer Scientists and New Communalists

If the computer scientists behind modular programming did not have managerial interests
at heart, what did they hope to achieve by providing programming with the practical foundation
it would need to professionalize? It would be a mistake to attribute the same motivations to all of
these computer scientists. Nevertheless, two distinct threads driving the pursuit of
professionalism in programming can be distinguished in the literature they produced: ethical
concerns about the social implications of the increasingly-important role played by software and
less-altruistic concerns for the benefits professionalism would have for programmers themselves.
Somewhat paradoxically, given that these concerns drove computer scientists to pursue
professionalism, both of these have parallels in the New Communalists’ motivations for
attempting to reclaim the products of government and industry and turn them into tools, to the
point that modular programming might be regarded as a “tool” the computer scientists émployed
to pursue the same ends as the New Communalists.

The first of these two threads, the sense that an ethical imperative for programmers to
professionalize existed, appeared in Brian Randell’s aforementioned concern that poorly-
designed systems shouldering important responsibilities might cause harm to actual people,

embodied in his skepticism that “any [systems] [were] good enough to have human life tied on-

2521

line to them.””" Randell expressed this concern in the midst of a discussion of the extent of the

purported software crisis, and he was not alone. Edward E. David, Jr. and Alexander Fraser
issued a joint statement claiming that “[pJarticularly alarming is the seemingly unavoidable
fallibility of large software, since a malfunction in an advanced hardware-software system can be

a matter of life and death, not only for individuals, but also for vehicles carrying hundreds of

! Naur and Randell, Software Engineering, 120,

27

people and ultimately for nations as well.”*

Both of these perspectives effectively impose upon
programmers an ethical obligation to write code that would be considered “good,” which, at least
in the aftermath of the Garmisch conference, would imply that said code be modular. Recent
discussions of the question of whether or not programming ought to adopt such aspects of a
profession as certification have echoed these sentiments. For example, in a 1998 article
appearing in an ACM newsletter, Don Gotterbarn asserted that “[given the degree of impact of
our products, developing and maintaining quality products is a moral obligation,” that “[t]he
impact of [Software Engiﬁeering] is too great to be used in frivolous and dangerous ways,” and
that “[t]here is significant agreement on this among practitioners.”*

In the same discussion that gave rise to Parnas’ remarks, R.C. Hastings offered a
contrasting viewpoint by saying that he was “very disturbed that an aura of gloom has fallen over
this assembly” and that he did not “think software engineering should be confused with time
sharing system engineering. Areas like traffic control, hospital patient monitoring, etc., are very
explosive, but are very distinct from general purpose computing.”** He was joined by Alan
Perlis, who noted that certain software projects “have taken a lot longer to develop than we
would have wished” with “disappointing” results, but proposed that “perhaps we are
exaggerating the importance of these facts. Is bad software that important to society? Are we too
worried that society will lose its confidence in us?”®’ Hastings and Perlis both presented opinions
that failed to impose the sort of ethical urgency on “good” software engineering practices that
Randell, David, Fraser, and Gotterbarn’s perspectives did. However, Perlis’ last question implied

a different justification for the use of such “good” practices, without the ethically-charged

2 Ibid.,

» Don Gotterbarn, “Software Engineering as a Profession,” 4ACM SIGSOFT Software Engineering Notes 23, no. 6
(1998): 206, doi:10.1145/291252.295145,
* Naur and Randell, Software Engineering, 120.
» Ibid., 121.

28

character of the first: a self-interested justification that sought to prevent society from “losing its
confidence” in programmers. The perception that, as the Soviet computer scientist Andrei Ershov
remarked during his keynote address at the ACM’s Spring Joint Computer Conference of 1972,
as “the claim of programmers to be a special employee has come to be disputed,” “authority over
the freewheeling brotherhood of programmers is slipping into the paws of administrators and
managers—who try to make the work of the programmers planned, measurable, uniform, and
faceless” may explain this concern for maintaining society’s confidence in programmers.® This
is consistent with Nathan Ensmenger’s claim that programmers who attempted to professionalize
were driven as much by the desire for higher status, better pay, protection from the fluctuations
of the labor market, and, particularly, a greater degree of autonomy, as they were by the desire to
guarantee “basic standards of quality and reliability” to their clients.?’

Both in their ethically-charged arguments for the social necessity of professionally- |
standardized programming practices and in their interest in preserving programmers’ autonomy,
the reasons these computer scientists offered for professionalizing programming (and, therefore,
for encouraging the use of modular programming techniques) mirrored at least some of the
reasons that Fred Turner argues motivated the New Communalists in their use of “tools” derived
from the technological products of mainstream society. The New Communalists “embraced the
notion that small-scale technologies could transform the individual consciousness,” to the point
that an early manifestation of New Communalist social ideals, the San Francisco Trips Festival
of 1966, constituted a “techno-social hybrid,” which “surrounded dancers with the lights, images,
and music of electronic media” so that “[t]o the extent that they felt a sense of communion with

one another, the sensation was brought about by their integration into a single techno-biological

%6 Andrei Ershov, “Aesthetics and the Human Factor in Programming,” Communications of the ACM 15, no. 7
(1972): 502, doi:10.1145/361454.361458.

" Ensmenger, The Computer Boys Tuke Over, 166, 168.

29

system.” The New Communalists’ efforts represented their attempts to answer the two questions
Turner identifies Stewart Brand’s generation as having faced as they came of age: “How could
they keep the world from being destroyed by nuclear weapons or by the large-scale, hierarchical
governmental and industrial bureaucracies that built and used them? And how could they assert
and preserve their own holistic individuality in the face of [a world dominated by such
bureaucracies]?”” By turning the products of these bureaucracies into tools that they would use to
build alternative, communal societies, they believed they would achieve the second of these
goals, and by influencing the direction of mainstream society through the example of these
alternative societies, they believed they would achieve the first. Similarly, the computer
scientists of the late 1960s and eatly 1970s saw modular programming techniques as “tools” that
would make programs easier to understand, debug, and maintain, thereby protecting society from
the dangers posed by buggy, poorly-written programs responsible for controlling critical devices,
and would provide a practical basis of knowledge for programmers, thereby allowing
programmers to professionalize and maintain their autonomy in the face of perceived attempts by
managers to “routinize” their work.?

The connections between the computer scientists’ modular programming techniques and
the New Communalists’ “tools” were not limited to their similarities of purpose. For example,
the idea of programming methodologies being “tools” in the sense that the New Communalists
used the word would probébly not seem strange to the New Communalists themselves. After all,
“the great majority of the ‘tools’ offered by the Whole Earth Catalog were books and
periodicals,” which, for example, might have “offered ways to [...] transform the products of the

military-industrial complex, such as army jackets and boots, into individual statements of

2 Turner, From Counterculture to Cyberculture, 43, 67, 74.

30

personal identity,” so that many of the Catalog’s vtools were themselves informational, and
particularly methodological, in nature.” The forms of autonomy that the computer scientists and
the New Communalists championed were also limited in similar ways. Much as the
professionalization of programmeré would enhance the autonomy of a small and in some sense
elite portion of society, so did the Catalog emphasize “that its products belonged to the do-it-
yourself tradition of frontier elite” and that its readers “might be exceptional individuals, might
be part of a vanguard” of people who would be the first to “merge consumption and technology
with the dream of pre-industrial community.”° Just as there was a sense among the New
Communalis‘ts that their own elite status was temporary and that the tools that made their
alternative forms of social organization possible “would be deployed first by an elite and later by
the whole population,” though, there was also a sense among computer scientists that, to again
quote Andrei Ershov, “the highest aesthetic idea of our profession” was “to make the art of
programming public property, and thereby to submerge our elite exclusiveness within a mature
mankind,” so that the elite status of programmers would likewise be temporary and programmers
would not long be “arbiters between the lay generality of mankind and the arcane informational
model of the world hidden in the machine.”' Finally, there is good reason—beyond the
similarities of purpose between the computer scientists’ formulation of modular programming
and the New Communalists’ use of tools—to believe that the computer scientists in question
would have been aware of, and in some cases directly influenced by, the New Communalists’
ideology. Alan Kay, the computer scientist who coined the term “object-oriented” for a particular
modular programming paradigm and designed the programming language Smalltalk, had come

across a copy of the Whole Earth Catalog in 1969. In 2004, he remarked that he and his

¥ Ibid., 92.
* Ibid., 93.
31 Ershov, “Aesthetics and the Human Factor in Programming,” 505,

31

colleagues “thought of the Whole Earth Catalog as a print version of what the Internet was going
to be” and drew some of their ideas from its pages; for instance, he remembered thinking that,
just as the Catalog made it “easier to do your own composting,” “you should have the ability to
deal with complicated ideas by making models of them on the computer.”*?

It is likely that many motivations drove the computer scientists behind the techniques
associated with modular programming in their attempts to use these techniques as a foundation
for the establishment of software engineering as a profession. Yet the motivations that seem most
prominent in the literature these computer scientists produced, the desire to secure the collective
autonomy of programmers and the desire to prevent poorly-written software from causing harm
to society, closely mirrored those of the contemporaneous New Communalists. Just as the New
Communalists sought to harness the technological products of bureaucracy in constructing
alternative communities as part of an effort both to secure their collective autonomy and to
transform mainstream society into one that would not threaten the world with its use of nuclear
weapons, these computer scientists sought to put modular pro gramming to use in a way that
would both secure programmers’ autonomy and prevent poorly-written software from causing
harm to individuals or to society as a whole.

* ok)k ¥k
- The computer scientists of the 1960s were not successful in remaking the occupation of
computer programming into the profession of software engineering, at least as far as society was
concerned. As Ensmenger notes, in 1967, the US Civil Service Commision declared data
processing personnel to be nonexempt employees, and, therefore, to be non-professional
technicians in the eyes of the government. This is not because they failed to provide the practical

basis for such a profession, or, for that matter, because pro gramming failed to acquire the other

32 Turner, From Counterculture to Cyberculture, 112.

32

“trappings” associated with one. “[A]cademic computer science departments, certification
programs, and professional asséciations” all existed by 1968 and continue to exist today. Rather,
Ensmenger identifies three primary causes of the failure to professionalize. First, programmers
faced opposition from their corporate managers, to whom “professionalism was a potentially
dangerous double-edged sword,” since the “last thing that traditional managers wanted was to
provide data processing personnel with additional occupational authority.” Second, professional
institutions such as the ACM “failed to convince employers of their relevance to the needs of
business,” with the result that programmers derived little benefit from joining them. Finally,
“internal rivalries within the computing community,” primarily between the academically-
oriented programmers of the ACM, which emphasized the importance of establishing
programming as a “well-founded” discipline, and the business-oriented programmers of the Data
Processing Management Association (DPMA), which emphasized the need for certification
programs, undermined programmers’ ability to counteract the external opposition they faced, and
they “lost the leverage necessary to push through any particular professionalization agenda.”
Here, again, the situation of programmers invites comparison to that of the New Communalists.
The method the New Communalists employed in their quest for autonomy and for social
transformation involved the use of tools to build alternative communities. Likewise, computer
scientists aimed to use modular programming techniques as the practical and theoretical basis for
the formation of a community of programming professionals, motivated not by the desire to
enable managers to more easily control programmers, but by the desire to secure programmers’
autonomy and to mitigate the potential dangers of poorly-written software. Yet the community
they created was too divided and, consequently, too weak to compel either society or the state to

recognize its calls for professional status. This was not the last time programmers would attempt

33

to use modular programming as a tool to build a community and to assert their autonomy,
though. Over the next two decades, the programming community would continue to be divided
along various lines. However, modularity would gain near-universal acceptance among
programmers as a mark of a well-written program and as a tool for sharing the products of their
creativity. The ultimate expression of modularity’s potential to enable such collaboration would
come in the form of a community of programmers that, like the New Communalists before them,

sought to assert their own autonomy and to transform society at large through the use of

technology: the free software movement.**

3% Ensmenger, The Computer Boys Take Over, 191, 193,

34

Embracing Modularity, Facilitating Creativity, and Challenging Property

Over the course of the 1970s, a number of historic developments with links to both the
New Communalists and the wider counterculture unfolded within the computing industry, from
the emergence of “personal” computing to the creation of the first widely-accessible computer
network communication systems. Among the more prominent of these developments was the
rapid spread of the techniques and ideas associated with modular programming. By the early
1980s, nearly every programmer regarded modularity itself as a worthwhile goal, even if
disagreements remained regarding the efficacy of particular techniques intended to enable or
enforce modularity. Moreover, these programmers had come to link a program’s modularity with
its aesthetic quality, suggesting that they saw modularity as a means by which programmers
could express themselves to each other creatively. Their ideas regarding modular programming
reflected its history as a methodology both formulated against a countercultural backdrop and
propagated within a computing industry characterized by numerous connections to the lingering
remnants of the counterculture. This history was again reflected in many programmers’ reactions
when changes in the state of intellectual property laws allowed pieces of software to be
copyrighted or patented, increasingly limiting programmers’ freedom to use modularity to
express their creativity cooperatively and outside the control of any employer. Together, these
three factors—programmers’ acceptance of modularity, their conception of it as a way to
improve the aesthetic quality of their code and to express themselves creatively to other
programmers, and their reactions to the new developments in intellectual property laws—set the
stage for a new way of developing software through which programmers could be creative

autonomously and cooperatively, making use of modularity and challenging the very idea of

intellectual property in software.

35

Attitudes toward Modularity

By the 1980s, programmers had already come to overwhelmingly embrace modularity as
an idea, even to the point of regarding non-modular elpproaches to software development as in
some sense backward. This shift occurred in the context of a 1970s computing industry many of
whose key innovations were driven by individuals with connections to the 1960s counterculture.
In 1973, the Xerox Palo Alto Research Center’s Alto computer pioneered the mouse-driven
graphical user interface that would come to be associated with “personal” computers. Among
those responsible for its design was Alan Kay, the same computer scientist who coined the term
“object-oriented” and regarded the Whole Earth Catalog’s approach of providing tools through
the use of which individuals could transform themselves and their communities as “the right
idea.” Slightly over two years later, Bob Albrecht, an early proponent of the idea that individuals
could use computers as “tools [...] to enhance their own learning,” published the specification
for Tiny BASIC, a dialect of the BASIC programming language that would see widespread use
in programs for the first generation of home computers, in his newsletter, the People’s Computer
Company. Albrecht would note in a 2001 interview that this newsletter, whose influential spin-
off Dr. Dobb’s Journal of Software Tools had published the founding document of the free
software movement, Richard Stallman’s “The GNU Manifesto,” “was heavily influenced by the
Whole Earth Catalog. I wanted to give away ideas.” Meanwhile, the efforts of Lee Felsenstein, a
computer engineer and participant in the Free Siaeech Movement at the University of California,
Berkeléy, anticipated the function of the Internet as a means of enabling peer-to-peer exchange
of information, though not the precise technology behind it, by establishing a set of public
terminals connected to a single time-sharing, multi-user computer in the San Francisco Bay area.

This idea achieved its first truly large-scale implementation in 1980 with the creation of Usenet,

36

an early computer network communications system that might be informally described as a
hybrid of email and of modern Internet forums. Unlike its close relative, the ARPANET, Usenet
was accessible to anyone with the money to afford the service and the technical ability to use it.
Together with the advent ofpersonal computers, the creation of Usenet provided an opportunity
for programmers to express their thoughts on a number of subjects, including modularity, to each
other.**

During the early to mid 1980s, the net.]lang newsgroup, a discussion group within Usenet
that was focused on programming languages, was riddled with posts evaluating languages (and
methods of implementing languages) by their tendencies to encourage or discourage modular
programming. For example, one poster harshly criticized the facilities for modular programming
provided by the C programming language, saying, while “[sJome try to argue that ‘C” is modular,
simply because functions and data can be separately compiled,” the language “does not enforce
any sort of binding within such modules” and, consequently, fails to effectively ensure “loose
coupling” between modules.”® Another poster, while defending the relative merits of interpreted
languages, whose programs are read and executed directly by a program called an “interpreter,”
when compared with compiled languages, whose programs are first translated into machine-
executable code by a program called a “compiler,” did so on the grounds that “techniques of
modularity, information hiding, levels of abstraction and simplicity can be applied with an
interpreted language as well, if not better, than a compiled one.”*S A third poster, on a related
note, asked, “Do interpreters teach bad habits?” and concluded that the problem was not “the

interpreter as much as the language. BASIC, for example, [...] makes writing modular code

34

Turner, From Counterculture to Cyberculture, 112-115,
35

Jan Steinman [jans@mako.UUCP], “RE:Definition of Buzzwords: ‘Object-Oriented,”” in [net.lang], 23 J anuary
1985, http://groups.google.com/group/net.lang/topics,

Dave Newkirk [den@ixnSh.UUCP], “Re:Intepreters vs. Compilers — Who wins?” in [net.lang], 23 March 1983,
http://groups.google.com/group/net.lang/topics.

36

37

difficult. [...] My friends who were weaned on BASIC tend to produce sloppier code than those
who were weaned on a structured language. That may just be their own fault, but I think the
language has something to do with it.”*” As this comment suggests, programmers did not limit
themselves to judging languages based on their support for modular programming: they also
evaluated other programmers and themselves based on their tendency to program in a modular
manner. For instance, while describing a data structures course he had taken one summer at the
University of Wisconsin, another poster credited it with having “broke[n] me of my worst
habits,” which he listed as “poor modularity, too few comments, variables called ‘x,’” and, with
a touch of irony, “a good night’s sleep.”® This recalls the original purpose motivating the
computer scientists who articulated the importance of modularity in programming during the
1960s: to provide standards by which the community of programmers could self-regulate and,
thus, professionalize.

Programmers likewise exhibited a near-universal acceptance of some particular modular
programming techniques, such as structured programming. Consider, for instance, programmers’
attitudes toward unstructured “spaghetti code,” or code with a complex flow of execution
resulting from the “go to” statements that Edsger Dijkstra had condemned in the late 1960s. One
Usenet poster complained about how the programming language FORTRAN's characteristics
encouraged such “spaghetti code,” saying that “I have grown tremendously intolerant of
FORTRAN in the last few years for its come-hither-and-write-spaghetti attitude. [...] If you live

in the shadow of decades of FORTRAN, heaven help you and pass the Parmesan.””

37 Alan Hu [ajh@sdcsvax. UUCP], “RE:Difficulty of recursion,” in [net.lang], 25 March 1983,

http://groups.google.com/group/net.lang/topics.

Ken Perlow [ken@ihuxq. UUCP], “RE:Professionalizing Programmers, Going Off-line,” in [net.lang], 8 June
1984, http://groups.google.com/group/net.lang/topics.

George Sherouse [sherouse@unc. UUCP], “RE:Unix for physicists (atin:finn),” in [net.physics], 14 June 1984,
http://groups.google.com/group/net.physics/topics.

38

39

38

Interestingly, this statement implied more than just impatience with “spaghetti code.”
FORTRAN is one of the oldest compiled programming languages, having been originally
developed in 1957, and as of 1984, it lacked many of the constructs newer languages used to
prevent programmers from writing “spaghetti code” and to encourage and enable a more
modular coding style. By identifying spaghetti code as characteristic of FORTRAN programs,
this statement implied that the poster viewed such code as a relic of an earlier period in software
development, before modular programming techniques came to be widely-used by programmers
and widely-supported by programming languages. Anofller poster boldly declared that “I think
every line of a C or assembler program should be documented even if you as a programmer think
the code is so obvious anybody could understand it. I came to this conclusion after years of
trying to decipher other people's spaghetti.””*® The idea that every section of code should be
documented with an explanation of its purpose itself implied adherence to the modular paradigm.
In the absence of such adherence, the divisions of the code into discrete blocks with well-defined
purposes would be impossible. All that said, some programmers did defend the use of “go to”
statements in certain circumstances. One noted that “In a language like Modula-2 where goto is
not supported, there is no way to code the exceptional handling procedures nicely as there is no
exceptional handling construct either,” or, in other words, there is no way for execution to
quickly jump to a block of code designed for handling errors when an error occurs.”! However,
even this example did not represent a rejection of structured programming. Rather, it represented
an acknowledgement that, within a program that generally uses control structures to avoid the

complexities associated with “go to” statements, “go to” statements might be still be necessary if

“" John Crane [crane@fortune. UUCP], “RE:Self-modifying code,” in [net.lang], 3 January 1984,
http://groups.google.com/group/net.lang/topics.
C.J. Lo [cjl@iuvax. UUCP], “Gotos, tail-recursion,” in [net.lang], 20 June 1984,
http://groups.google.com/group/net.lang/topics.

39

the provided control structures prove insufficient—because, for example, of the lack of an
“exceptional handling construct.”

Other modular programming techniques lacked the level of acceptance that structured
programming enjoyed. However, just as the above defense of “go to” statements did not
constitute a rejection of structured programming, so did these critiques of various modular
programming techniques not constitute rejections of modular programming in general. In
particular, one poster, criticizing the performance penalty that programs written using the
technique known as “object-oriented programming” often took, countered the claim that
“programming languages are designed to express ideas” (a claim that he implicitly associated
with advocates of object-oriented programming) with the claim that “programming languages
[...] are ways of telling the computer WHAT TO DO” and went on to note that “object-oriented
programming is only ONE model of abstraction, and isn't the most accepted one. It would be
accepted more if there were implementations thaf performed as well as the others.”*?Yet this
criticism in itself implied support for “abstraction” in general, as long as that abstraction did not
come about through object-oriented programming. This support for abstraction, meanwhile,
implied support for modularity in general, since the underlying implementation of an abstraction
would necessarily constitute a module—an independent section of code, decoupled from the rest
of the program. In rejecting object-oriented programming, then, this programmer affirmed his
acceptance of modular programming,

Much as the Whole Earth Catalog had “served as a textual forum within which back-to-
the-landers could meet one another, as well as technologists, academics, and artists, and share

information,” Usenet served as a forum through which programmers could exchange information

" Dave Brownell [brownell@harvard. ARPA], “RE:Object oriented (flames at end),” in [net.lang], 21 June 1984,
http://groups.google.com/group/net.lang/topics.

40

and ideas with each other.”® As this exchange makes clear, the programmers posting on Usenet
had come to accept modularity as a worthy goal, and even those posters who rejected some
particular method of achieving modularity embraced modularity itself. Their reasons for doing so
reflected modular programming’s history as a technology conceived in the midst of the 1960s
and propagated within a computing industry heavily influenced by the counterculture.
Modularity and the Art of Programming

That programmers had come to embrace modular programming by the early 1980s says
little about the purposes to which they sought to put modular programming. A more careful
cxamination of the written material produced by these programmers indicates that they saw
modularity as a way of not only simplifying the task of maintaining large software projects, but
also as a tool to use to create aesthetically-pleasing code in much the same way that
countercultural artists such as USCO saw “multimedia slide, light, and sound shows” as tools to
convey selisations of unity by purportedly “plug[ging] in to mystical currents that flowed among
the group members and within each of them.”* This conceptualization of programs as works of
art with aesthetic qualities had precedents in the material produced by the computer scientists of
the late 1960s and early 1970s. The computer scientist Donald Knuth, known for, among other
contributions, creating the TeX typesetting system and for introducing and popularizing formal
mathematical techniques for analyzing the efficiency of algorithms, began writing an influential
series of books called The Art of Computer Programming in the 1960s. Upon receiving the
ACM’s Turing Award in 1974, Knuth explained the title of his series by saying that “[w]hen I
speak about computer programming as an art, I am thinking primarily of it as art form, in an

aesthetic sense,” that “[t]he chief goal of my work as educator and author is to help people learn

" Turner, From Counterculture to Cyberculture, 79,
“ Ibid., 50.

41

how to write beautiful programs,” and, referencing the thoughts of Andrei Ershov, that much
like “composing poetry or music,” “programming can give us both intellectual and emotional
satisfaction, because it is a real achievement to master complexity and establish a system of
consistent rules.” Knuth made haste to note that “there is no one ‘best’ style” in programming
and that “the important thing is that programmers are creating something they feel as beautiful.”
However, citing utilitarian philosopher Jeremy Bentham, he also noted the existence of “certain
principles of aesthetics which are better than others, namely the “utility’ of the result.” Although
“[w]e have some freedom in setting up our personal standards of beauty” and, indeed, the
pleasure derived from creating beautiful programs represented an “incontestable’” form of
“utility” in itself, “it is especially nice when the things we regard as beautiful are also regarded
by others as useful.” In particular, he identified a program as “useful” to others when it “works
correctly” and “won’t be hard to change, when the timé for adaptation arrives,” both of which
“are achieved when the program is easily readable and understandable to a person who knows
the appropriate language.” Furthermore, a key part of his conception of programming as an art
form was the fact that “when we read other people’s programs, we can recognize some of them
as genuine works of art,” which in turn would be dependent on these programs being readable. It
was precisely these aesthetic considerations—the clarity or readability of code—that animated
the material written by programmers on the subject of modular programming during the early
1980s.%

In the early 1980s, Usenet featured a number of widely-circulated, tongue-in-cheek posts
about “real programmers,” programmers from an earlier périod who had not yet adopted

common practices such as the use of modular programming techniques or even, in some cases,

* Donald Knuth, “Computer Programming as an Art,” Communications of the ACM 17, no. 12 (1974): 670-671,
doi:10.1145/361604.361612,

42

high-level programming languages, languages that simplify programming by abstracting away
the details of a computer’s instruction set. One of these posts declared, with regard to programs
written by “real programmers,” that “if you throw them on the machine they can be patched into
working in 'only a few' 30 hour debugging sessions,” an ironic statement indicaiing the belief
that the non-modular code that might be written by a “real programmer” would be difficult for
other programmers to read and maintain.*® The popularity of such posts indicates a widespread
belief that modularity made code more readable, which in turn made life more convenient for
programmers who had to work with the code of other programmers. This would have constituted
a fairly obvious reason for programmers, following Donald Knuth’s example in considering
“useful” standards of beauty to be “better” than alternative standards, to embrace readability as
an aesthetic criterion and modular programming as a means of fulfilling that criterion.

One of these posts in particular indicates something less obvious and more interesting
about the ways in which at least some programmers believed modular programming could be
applied: that by making code more readable, modularity would make the creativity that went into
writing the code easier for a reader to perceive. The post in question (now a fairly famous piece
of hacker folklore known as “The Story of Mel”) related the tale of the posfer’s attempt to
modify a machine-language program written by a “real programmer” named Mel. Ultimately, the
poster “quit looking” because “I didn't feel comfortable hacking up the code of a Real
Programmer.”*’ This phrase had a double meaning: on the one hand, the poster felt that “hacking
up” the code would be a violation of the original coder's artistic integrity, and on the other hand,

the poster simply found the process too exhausting to endure. By linking the latter meaning with

S Jim Livingston [jiml@pesnta. UUCP], “RE:REAL PROGRAMMERS,” in [net.jokes], 7 September 1984,
http://groups.google.com/group/net.jokes/topics.

‘T Matt Crawford [matt@oddjob.UChicago.UUCP], “RE:The realest programmer of all,” in [netjokes], 20
November 1984, http://groups.google.com/group/net.jokes/topics.

43

the former and declaring, “I have often felt that programming is an art form” featuring “lovely

gems and brilliant coups hidden from human view and admiration, sometimes forever, by the

very nature of the process,”*®

the post implied that writing code in a non-modular fashion served
to obscure the creativity that went into the writing of that code. In a sense, the ingenuity and
artistry of “real programmers” who wrote non-modular code was wasted, lost to history because
of other programmers’ inability to read the code in question. Modularity, then, might serve as a
means by which programmers could make their art more apparent and more accessible to
others—a notion that one poster expressed by saying that a “programming language may be
considered just a means of communicating with a computer, but it should not be forgotten that it
is also a means of communicating with other programmers (including the original author, say in
three weeks or s0).”* This is consistent with the important role Knuth assigned to the act of
recognizing others’ programs as “genuine works of art” in his argument for regarding
programming as an art. It also sheds some light on why Andrei Ershov regarded “the highest
aesthetic idea of our profession” to be “to make the art of programming public property, and
thereby to submerge our elite exclusiveness within a mature mankind,” as the extent to which the

creativity of any given program would be appreciated and acknowledged would be proportional

to the number of people capable of comprehending it and, consequently, to the extent to which

programming was “public property.”*’

Most Usenet posters seemed to have followed the approach of the previously-mentioned
posters in regarding modularity as making programs aesthetically pleasing as a result of making

them readable. However, at least one poster went beyond this claim, instead directly equating the

48 g
Ibid.
“" Dan Frank [g-frank@gumby, UUCP], “RE:High-levelity,” in [net.lang], 26 December 1984,
http://groups.google.com/group/net.lang/topics.
0 Ershov, “Aesthetics and the Human Factor in Programming,” 505.

44

modularity of a program with aesthetic qualities such as beauty, clegance, or expressivity.
Arguing against another’s proposal that a windowing system be included as part of the core
functionality of the Unix operating system (i.c., the Unix “kernel””) while sarcastically
identifying as “another programming-as-art nut,” claimed that the “beauty” of Unix “is that the
kernel contains the minimum amount of code to do what a good operating system should do” and
that a feature of Unix the other programmer had identified as a problem, “the lack of knowledge
that the kernel has about the [user’s] environment [...] simply is not a problem, but rather a

benefit,” since it meant that “the kernel does not have to be tailored to meet specific

9551

requirements.” The beauty of Unix, in other words, lay precisely in the modularity of its

design, with all but its core functionality being kept out of the main program itself and
implemented as separate applications.

Such sentiments appeared not only in programmers’ praise ,Of programs they believed to
be clear.and elegant, but also in their castigation of programs they believed to be unreadable and
inelegant. After one programmer proposed a contest which would present an award to the person
capable of writing the “Most Disgusting Code,” others quickly rejected the notion on the grounds
that, first, “good code (defined as portable, readable and maintainable) being much rarer, much
more valuable to look at (and learn from), and (unfortunately) alot harder to find,” “perhaps what
we need is a ‘Best Code I've ever seen’ award,” and, second, such a contest actually already
existed, and was known as the “International Obfuscated C Code Contest.”** The name of the
existing contest is particularly significant. It equates “disgusting” code with “obfuscated” code,

implying that good code would be defined by its readability and, as a result, by its modularity.

U PD. Guthrie [pdg@ihdev.UUCP], “RE:Windowing systems,” in [net.unix-wizards], 16 April 1986,
http://groups.google.com/group/net.unix-wizards/topics.

52 Joe Boykin [boykin@datagen. UUCP], “RE:Disgusting Code,” in [net.unix-wizards], 9 February 1986,
http://groups.google.com/group/net.unix-wizards/topics.

45

On-a related note, another programmer reflected that “many so-called coders have little or no
circumspection or (to rob from D. Knuth) art to what they are doing,” and that “to be genuinely
creative requires background and a developed ability to intuit an elegant solution. Else all you
get is pretty shitty code cranked out by somebody who doesn’t care and doesn’t appreciate the

overall quality and elegance (there's that word again!) of the program or system that is
developed.” >® Here, again, the notion that “good” code is elegant, creative, and artistic is the
key, underlying sentiment.

This raises the question: why would the aesthetic features of code matter so much to
programmers? One programmer, reflecting “all this talk of ‘good” and ‘bad’ code,” proposed that
“we programmers,” in contrast to “managers who more often than not emphasize short-term
goals” and “probably don’t care how the code ‘looks’ as long as it ‘works,”” “have to ‘look’ at
the code, often for long hours seemingly without end,” with the result that it “is on [an] aesthetic
level that code is often judged fish or fowl” (though he goes on to say that “one may argue that
code really doesn't ‘work’ when it ‘looks’ bad. This often comes into play when someone,
usually not the original author, must ‘look’ at such code, and “fix’ it”).54 For him, then, the desire
to make code aesthetically-pleasing was simply the result of programmers’ desire to make their
jobs more enjoyable by making code more pleasant to read.

Yet this was not the only implication of programmers’ attempts to use modularity to craft
aesthetically-pleasing code and of their conceptualization of clear and readable code as
acsthetically-pleasing. By implying that programmers ought to view programming as pleasurable

in itself and, in Knuth’s words, implying that they “shouldn’t shy away from ‘art for art’s sake’”

3 Mark Kenig [cbspt002@abnjh.UUCP], “RE:Teaching programming —~GOTO’s, Object Oriented Languages, etc.”

in [net.lang], 20 June 1984, http://groups.google.com/group/net.lang/topics.
Glenn Adams [glenn@LL-XN.ARPA], “RE:code quality,” in [net.unix-wizards], 9 October 1985,
http://groups.google.com/group/net. unix-wizards/topics.

54

46

and “shouldn’t feel guilty about programs that are just for fun,” they implied that programmers
ought to see programming, particularly when undertaken autonomously, as a rewarding act of
creativity not unlike crafting music or poetry.” By implying that programmers ought to strive for
an aesthetic ideal that emphasized the importance of their code’s comprehensibility to other
programmers, they implied that programmers might be able to collaborate effectively on creative
endeavors involving the construction of large amounts of code. Finally, by stressing the
importance of programs’ readability and adaptability, they implied that programmers ought to be
free to read and adapt programs. The conceptualization of programming as having aesthetic
qualities identified as readability and clarity, in other words, lent support to the values that would
soon come to be associated with the free software movement and the growth of a programming
subculture that would be willing to collectively undertake large programming projects with little
incentive other than the love of programming. However, the first such projects did not occur
under conditions lacking incentives other than the love of programming, Rather, they occurred in
the context of what many, though by no means all, programmers perceived as a threat to the core
values of programming as an art.
Reactions to Proprietary Restrictions on Software

During the 1980s, barriers resulting from the application of intellectual property law to
the field of software development began to impede the previously-unrestricted redistribution of
code, limiting the one of the chief benefits modular programming techniques were supposed to
bestow on programmers—the ability to create new code using preexisting software as a base. As
a result of these new barriers, such creation could often only occur when the programmer held a
license to use the preexisting software in question, usually when he or she took on the role of

employee to an employer able and willing to purchase such a license. Consequently,

% Knuth, “Computer Programming as an Art,” 672,

47

programmers faced an environment in which their ability to create software outside the control of
managers grew ever more restricted. They reacted to these restrictions in a sharply polarized
manner that echoed a controversy from the 1960s: the debate over the permissibility of classified
research in a university environment.

According to Stuart Graham and David Mowery, the increasing importance of
“packaged” software (often, though not always, distributed as proprietary modules that, once
licensed, could be used in oﬂler programming projects, in a manner reminiscent of the “software
component libraries” Douglas Mcllroy envisioned), together with the increasing degree to which
software was decoupled from hardware, drove the software industry’s increasing reliance on
intellectual property protection. During the early years of the industry, they contend, pieces of
software were generally tied to particular pieces of hardware. The lack of standardized computer
architectures or of portable high-level programming languages prevented software from being
developed and run on many different machines, with the result that “most of the software for
carly mainframe computers was produced by their manufacturers and users.” As these conditions
changed, “independent software vendors” emerged that produced software that could run on
many different computers even as hardware producers “unbundled” their software products from
their hardware products, distributing each separately. The advent of large-scale computer
networks and, eventually, the Internet accelerated this process, lowering barriers to entry for
independent software vendors by providing a low-cost means of distributing software that was
not controlled by the hardware producers against whom they competed.>

As “packaged” software became increasingly important to the profits of both independent

software vendors and companies that had originally been hardware producers, securing and

56 Stuart Graham and David Mowery, “Intellectual Property Protection in the U.S. Software Industry,” in Patents in
the Knowledge-Based Economy, Washington, DC: The National Academies Press (2003), 220-222.

48

restricting the rights to distribute this software likewise became increasingly important. To this
end, vendors initially relied on their products’ status as trade secrets, which they attempted to
defend by requiring their employees and the users of their software to sign non-disclosure
agreements. This approach granted them a legal basis for protecting their software from
industrial espionage and from public redistribution by its users and developers. However, if the
software ceased to be secret through legitimate means—ﬂncluding independent invention,
reverse-engineering, and the lack of sufficient efforts to maintain its secrecy on the part of the
vendors —this legal protection would disappear. In the Copyright Act of 1976, the United States
Congress had, among other provisions, granted copyright holders the exclusive right to
reproduce, distribute, and create derivative works from copyrighted works either for the duration
of the creator’s lifetime plus fifty years or, in the case of works made for hire, for exactly
seventy-five years. Perhaps with the limitations of trade secret protection in mind, policymakers
“singled out” copyright protection ““as the preferred means for protecting software-related
intellectual property,” leading the United States Congress to amend the Copyright Act in 1980 to
include a definition of “computer program.” Software copyright soon saw application at the
federal judicial level in thé 1983 case Apple Computer, Inc. v. Franklin Computer Corp, in
‘which the court held that the operating system for the Apple II computer was protected by
copyright even if compatibility with existing software could only be achieved by copying it, as
well as in later decisions that extended the protection that copyrighted status conferred on a piece
of software from the “traditional copyright protection of expression to such non-literal elements
of software as structure, sequence, and organization.” The scope of patent law was expanded to
include certain aspects of computer programs around the same time. In the 1981 cases Diamond

v. Diehr and Diamond v. Bradley, the United States Supreme Court ruled that “inventive

49

concepts” or algorithms underlying a piece of software could be patented—a marked departure
from 1972’s Gottschalk v. Benson, which suggested the opposite. The 1990s would see some of
the extensions of the meaning of copyright protection in the case of software overturned. For
instance, in Lotus Development Corporation v. Borland International, Inc., the Supreme Court
affirmed a lower court’s decision that the imitation of the “look and feel” of a copyrighted
program for the sake of compatibility did not constitute infringement. However, court decisions
“consistently broadened and strengthened the economic value of software patents.””’

Many programmers reacted to these developments with a great deal of skepticism. As one
programmer argued, “when a company takes and declares restricted under trade secrets things
which are just not reasonable to so do, it is more than reasonable to argue with them,” objecting
in particular to the idea that someone could “suddenly” declare “top-down parsing” to be a “trade
secret because it is used in some part of Unix (must be somewhere)” and holding that “creative
works should be protected but not using that route.”*® This programmer was not objecting to
intellectual property in software per se. Rather, he was objecting to the idea that what many
programmers would consider a fundamental technique of computer science could be owned, to
the notion that the use of an algorithm could be restricted by law. On a similar note, others
expressed disbelief at Bell Labs’ claiming copyright protection of the code for extremely simple
Unix programs. For example, in response to one programmer’s post containing implementations
of \bin\true and \bin\false, which respectively do nothing “successfully” and do nothing
“unsuccessfully,” another programmer declared, “A clear case of independent creation! An idea
whose time has come! (Of course, the question can be asked, ‘What other possible reasonable

way could there be to do it?”),” ridiculing Bell Labs’ ownership claim over the code in

ST Ibid., 223-225.

% Dave Farber [farber@udel-huey. ARPA], “RE:software ethics,” in [net.unix-wizards], 3 March 1985,
http://groups.google.com/group/net. unix-wizards/topics.

50

question.” Perhaps the simplest expression of these related objections came from the same
thread, when one poster stated, “You cannot copyright ideas.”®® (This statement was literally
true, as only expressions of ideas are eligible for copyright. However, as another postér
responded, equally-truthfully: “Sure, but you can use them [ideas] as the basis as a patent, can
you not?”)°!

These objections in particular have much in common with the objections many university
faculty members raised regarding their universities’ acceptahce of classified research contracts
from government agencies—often, the Department of Defense—during the period from World
War II to the Vietnam War. The results of research funded by these contracts were kept secret,
and university personnel participating in these projects had to be investigated by the Department
of Justice to determine whether or not they posed a “security risk.”®* Though some faculty
supported this secrecy on the grounds that it contributed to national security, many regarded it as
fundamentally compromising the goal of the “modern research university Wheré free and open
exchange of ideas is the hallmark of higher learning,” and, by the end of the war, “there was a
broad consensus among major research universities that classified or secret research was
incompatible with the values of academic science,” since “the pursuit of certifiable knowledge
requires transparency to actualize the self-correcting function of science.”®® Much as these
programmers saw the potential for new developments in IP law to conflict with their basic

values, such as the notion that algorithms and programs regarded as “fundamental” ought to be

" Bric Black [eric@chronon. UUCP], “RE:lex and yacc in the public domain (tesponses),” in [net.unix-wizards], 1

May 1986, http://groups.google.com/group/net.unix-wizards/topics.

David Gast [gast@ucla-cs. ARPA], “RE:lex and yacc in public domain (responses),” in [net.unix-wizards], 3 May
1986, hitp://groups.google.com/group/net.unix-wizards/topics.

Gregory Smith [greg@utcsri, UUCP], “RE:lex and yacc in public domain (tesponses),” in [net.unix-wizards], 6
May 1986, http://groups.google.com/gropu/net.unix-wizards/topics.

Sheldon Krimsky, “When Sponsored Research Fails the Admissions Test,” in Universities at Risk: How Politics,

Special Interests, and Corporatization Threaten Academic Integrity, ed. James Turk (J. Lorimer & Co., 2008),
80.

8 Ibid., 80-81.

60

61

62

51

freely available for all programmers to use, so did the academics objecting to classified research
see restrictions on the publication of research results as conflicting with the basic values of
modern, open universities. There was even at least one concrete connection between the two
groups. Richard Stallman, the future founder of the Free Software Foundation, an organization
dedicated to the advancement of non-proprietary software, worked as a programmer at the
Massachusetts Institute of Technology’s Artificial Intelligence Lab during and after his time as
an undergraduate at Harvard University in the 1970s. As a first-year student, he had been known
for his strong performance in Harvard’s infamously-difficult class Math 55, but after graduating,
he became known for his activism. When the Defense Department attempted to initiate the use of
passwords on the system in the lab to restrict access to the information on the ARPANET,
Stallman and a number of other programmers in the lab changed their passwords to the empty

string of characters as part of Stallman’s “guerilla war” against restrictions on the sharing of

information.®*

Not all programmers who objected to the application of intellectual property restrictions
to software did so on the grounds of their implications for the values associated with
programming. On examining a set of Unix source and documentation files and finding that few
had been marked as copyrighted despite the mixed copyright status of these files, one
programmer asked, “How are we poor innocent programmers to know what's copyrighted and
what isn't if BTL [Bell Telephone Laboratories, the producers of Unix] doesn't bother marking
the stuff and there's non-copyrighted stuff in the same directories? I'm perfectly willing to

respect everyone's copyright (even the ‘big bad guys’ like IBM and BTL), but I think I'm entitled

% Roy Rosenzweig, “Wizards, Bureaucrats, Warriors, and Hackers: Writing the History of the Internet,” The
American Historical Review 103, no. 5 (1998): 1542.

52

to fair notice!”® He then elaborated on the reasons such conditions were problematic: “Awhile
back a fellow netter called me to task for including the entire text of dd.c along with a fix I was
sending out to net.sources. I looked back at it. NOT ONE WORD ABOUT COPYRIGHT
appears anywhere in the original source.” His objection, then, focused more on the difficulties
that introducing intellectual property to a software industry in which code had traditionally been
freely redistributable imposed on programmers. He was not alone in having such concerns,
cither. Another programmer expressed his concerns about the implications of the proprietary
status of Unix tools, asking whether it was true that “the object [machine] code from a
proprietary C compiler is itself proprietary” and that “any program written in yacc is proprietary,
because the algorithms output by yacc are proprietary.”®® Together, these would imply that he
would be unable to distribute software produced using these two programs “without requiring
that the site I distribute the software to has a Unix license,” an idea that he had “trouble adjusting
to [...] coming from a world (DEC-20) where no matter how proprietary the compiler may be,
the ownership of the executable binaries belongs to the owner of the source code even if some
library routine from the compiler’s runtime is used.”®’

That said, programmer reaction to these developments in intellectual property law was far
from unanimous. One programmer, for example, responded to the first of the above objections
(that is, the assertion that software intellectual property protections might problematically allow
companies to claim ownership of fundamental algérithms or of obvious approaches) by saying,
“If someone came up with a new way of doing top-down parsing that took substantial work on

their part and represented a potential commercial advantage, I see nothing wrong with their

% Barry Gold [barryg@sderdef. UUCP], “RE:Where’s the (¢) on unix?” in [net.unix-wizards], 21 March 1984,
http://groups.google.com/group/net.unix-wizards/topics.
Mark Crispin [Admin MRC@SU-SCORE.ARPA], “RE:public domain?” in [net.unix-wizards], 26 December
o 1984, http://groups.google.com/group/net.unix-wizards/topics.

Ibid.

66

53

placing it under trade-secret protections.”®® Earlier, she had claimed that “It's attitudes like yours
that have forced vendors into ever more restrictive agreements, copy protection schemes, and
other similar sorts of things to try protect themselves” and that “I treat other people's software
and trade secrets the same way I expect them to treat mine, which is to say I respect them.”®
Another programmer, responding to her, equated intellectual property restrictions on the
distribution of software with ensuring that programmers were compensated for their labor,
saying, “If, as our economic system and culture embrace, people are to benefit from their labors
[...] then one must include programmers' labors, too.”™ Finally, a third programmer responded
to a fourth’s inquiries after public domain versions of the proprietary Unix programs lex and
yace with “I am amazed. You *know* that these things are somebody else’s property. You
know that they don’t want you to take them. Yet people can quibble over whether there were
proper copyright notices or if trade secrets were properly enforced,” asking, “If you see
somebody's money on the ground, do you take it if you can get away with it? If it isn't tagged
but you know who it belongs to, do you take it?””"!

Much as the introduction of classified research to university campuses failed to meet
uniform opposition among university faculty during the late 1960s, the imposition of
increasingly restrictive constraints on the distribution of software failed to meet uniform
opposition among programmers during the 1980s. On the contrary, many programmers
considered the use of patent, copyright, or trade secret protections to control the distribution of

code to be as justifiable as the ownership of a tangible good. Moreover, those that did oppose

68 Tauren Weinstein [lauren@rand-unix. ARPA], “RE:software ethics,” in [net.unix-wizards], 3 March 1985,

http://groups.google.com/groups/net.unix-wizards/topics.

Lauren Weinstein [lauren@rand-unix. ARPA], “RE:software ethics,” in [net.unix-wizards], 2 March 1985,
http://groups.google.com/groups/net.unix-wizards/topics.

Ed Gould [ed@mtxinu, UUCP], “RE:software ethics,” in [net.unix-wizards], 21 March 1985,
http://groups.google.com/groups/net.unix-wizards/topics.

Brad Templeton [brad@looking. UUCP], “RE:lex and yacc in the public domain (responses),” in [net.unix-
wizards], 7 April 1986, http://groups.google.com/groups/net.unix-wizards/topics.

69

70

71

54

these constraints were much less successful than the university professors that opposed classified
research. Though major universities reached a consensus that classified research was
incompatible with the values of academic science, no corresponding consensus emerged among
programmers with regard to intellectual property in software, and the use of both copyrights and
patents remained common in the software development industry.” Nevertheléss, the opponents
of intellectual property in software remained vocal and passionate in their opposition, and,
whether it was rooted in a belief that the ownership of the ideas underlying a program was
inherently unjustiﬁéble or simply in a pragmatic evaluation of the impact such constraints would
have on their ability to continue to reap the benefits of modular, reusable code as they had
previously, this opposition ultimately represented resistance against policies that promised to
limit programmers’ autonomy. These beliefs, coupled with the impulse to create, would soon
motivate the many programmers who would come to contribute to the emergence of an
alternative model of software development, one which would challenge the idea of intellectual
property in software and which modularity would make possible.

* % ¥k * %

The computér scientists of the late 1960s had introduced the ideas and techniques
associated with modular programming in hopes that doing so would allow programmers to
professionalize and to secure their autonomy. When the programmers of the 1970s and early
1980s adopted these techniques, they did so largely because they believed they had the potential

- to make their code clearer, more readable, and, thus, both more useful to other programmers and
more pleasing to behold. Growing to regard readability and clarity as key criteria by which to
judge the aesthetic quality of code, they followed Donald Knuth in identifying aesthetic criteria

with a tendency to produce useful results as “good” aesthetic criteria. In the process, many—

" Krimsky, “When Sponsored Research Fails the Admissions Test,” 80-81.

55

reflecting the countercultural influences on the development of modular programming and other
developments in the computing industry—came to regard programming as an art form, a creative
act that was rewarding in itself. For those that did, the qualities by which they judged programs
aesthetically, readability and clarity, encouraged them to view large-scale collaboration among
programmers as both possible and worthwhile and to believe that programmers ought to be free
both to share their programs with others and to adapt programs written by others. These values
were not without precedent in the computing community, as they shared much in common with
the “hacker ethic” that the journalist Steven Levy identified as having originated among the
programmers at MIT’s Artificial Intelligence Laboratory during the 1950s and 1960s, which in
turn closely paralleled the countercultural values of the New Communalists: that “access to
computers [...] should be unlimited and total,” that “all information should be free,” that
programmers should “mistrust authority” and “promote decentralization,” that “you can create
art and beauty on a computer,” and that “computers can change your life for the better.”” Yet
with the mass adoption of modularity as a tool by which to improve the aesthetic quality of code,
these values were able gain traction far beyond the confines.of MIT’s Al Lab, laying the
foundation for a large, geographically-distributed community of adherents to emerge on network
forums such as Usenet. When changes in the United States’ body of intellectual property law
imposed new restrictions on programmers’ freedom to share and adapt programs, threatening the
core values embedded in both the “hacker ethic” and the conceptualization of pro graﬁlming as an
art form, many programmers who had internalized these values resisted. At first, this resistance
took the form of Usenet posts arguing against the legitimacy or the wisdom of proprietary

restrictions on the distribution of software. Soon, though, it would take the form of a series of

 Steven Levy, Hackers.: Heroes of the Computer Revolution, (Garden City, New York: Anchor Press/Doubleday,
1984), 26-31.

56

attempts to put the “hacker ethic” into practice on a massive scale and in a manner that would
directly undermine patent and copyright holders’ attempts to restrict the freedoms programmers
had previously enjoyed. At the head of the first of these efforts, the GNU Project, was one of the

“hackers” of MIT’s Al Lab: Richard Stallman.

57

Free, Open Source, and Modular Software: The Rise of Cooperative Development
“‘Free software,”” according to Richard Stallman’s definition, “is a matter of liberty, not

price,” with the “free” in its name meaning “‘free’ as in ‘free speech,’ not as in ‘free beer,’”
although his stringent definition of free software ensured that virtually all programs considered
“free” in the first sense were also free in the second sense. When Stallman announced his
intention to create a replacement for the Unix operating system in 1983, he also announced that
the product of his efforts, GNU, would be “free software” as he formulated it. Such software was
characterized by four specific freedoms: the freedoms “to run the program, for any purpose,” “to
study how the program works, and adapt it to your needs,” “to redistribute copies so you can
help your neighbor,” and “to improve the program, and release your improvements to the public,
so that the whole community benefits.” These freedoms were integral to the “hacker ethic” of the
community of programmers at MIT’s Artificial Intelligence Laboratory from which Stallman
came. Moreover, they were precisely the freedoms that intellectual property law had begun to
threaten during the 1980s and that Stallman created the GNU Project and the Free Software
Foundation to protect. The 1980s and 1990s would see the emergence of large, geographically-
distributed groups of programmers who would use modular programming as a tool to enable
them to collaborate on complex, freely-distributable software projects such as GNU. In the
process, these programmers would build a community that—despite internal divisions between
those who favored the term “free” and those who favored the term “open source” to describe
freely-distributable software-—embraced a common vision of autonomy and cooperation and,
like the countercultural alternative communities built by the New Communalists before it,

believed in its potential to remake society in its own image.™

™ Richard Stallman, “Free Software Definition,” in Free Software, Free Society. Selected Essays of Richard M.
Stallman, ed. Joshua Gay (Boston: GNU Press, 2002), 43,

58

The Role of Modular Programming in a Distributed Development Model

The idea behind GNU was straightforward: programmers interested in preserving
Stallman’s four freedoms would collaborate to create an operating system compatible with the
ubiquitous, proprietary, and highly modular Unix operating system that would not be derived
from any existing Unix code. The resulting product would then be “copylefted,” that is,
copyrighted and distributed under a license (the GNU General Public License) that would grant
all four freedoms Stallman associated with free software while also imposing the requirement
that any programs incorporating GNU code be distributed under the same license. GNU would
thus provide a starting-point for the development of a wide varietyv of free software, beginning
with essential programs such as operating systems and then proceeding to include less-essential
applications as well. Eventually, free software might even approach the point that, for every
proprietary program containing pieces of code a programmer might want to reuse or modify, a
free alternative would exist, with the result that the freedom that programmers had experienced
prior to the 1980s would be effectively restored. For this to succeed, a sufficiently large number
of programmers would have to be willing to donate their time and effort to the creation of free
software. More than that, though, the collaboration of such a large number of programmers,
likely separated from each other by vast geographical distances, on complex software projects
would have to feasible in the first place. Here, there exists a parallel between the free software
movement’s use of the provisions of already-existing copyright law and of modular
programming (both of which, if Philip Kraft’s argument is to be believed, may have contributed
to a reduction of programmer autonomy in the past): much as the General Public License took
advantage of provisions of already-existing copyright law to ensure that software derived from

GNU would remain free, so would programmers make use of modularity to enable themselves to

59

work independently on pieces of enormous, complicated programs, which, when completed,
could be combined to form a freely-accessible whole.

The free software movement’s reliance on modular programming techniques to make its
distributed development model possible—and, for that matter, its advocates’ acknowledgement
of this reliance—stretches back to Stallman’s founding of the GNU Project. In “The GNU
Manifesto,” his 1985 essay appealing to programmers for support and participation in the
undertaking that would eventually spawn the free software movement, Stallman declared, “T'm
asking individuals for donations of programs and work,” explaining that, while “for most
projects, such part-time distributed work would be difficult to coordinate” because “the
independently-written parts would not work together,” “for the particular task of implementing
Unix, this problem is absent.” He went on to note that, since “[a] complete Unix system contains
hundreds of utility programs, each of which is documented separately” and “[m]ost interface
specifications are fixed by Unix compatibility,” if “each contributor can write a compatible
replacement for a single Unix utility, and make it work properly in place of the original on a
Unix system,; then these utilities will work right when put together.” What separated the task of
implementing Unix from other projects to which this distributed model of development might
not be so applicable, then, was the modularity inherent in the Unix design. Thanks to this
modularity, each utility could be implemented independently by programmers working
independently and could be expected to work when incorporated into GNU as a whole.”

As the project progressed, programmers working on it also took steps to ensure that
individual utilities had a modular design, often expressly because doing so would make it easier

for future programmers to contribute to those utilities. For example, while discussing design

" Richard Stallman, “The GNU Manifesto,” in Free Sofiware, Free Society: Selected Essays of Richard M.
Stallman, ed. Joshua Gay (Boston: GNU Press, 2002), 35.

60

choices that would need to be made while writing a window manager for the GNUStep
programming environment in a GNU-oriented Usenet newsgroup, one programmer wrote, I
tend to think that modularity is the key for expansion. So perhaps the window manager could fit
in such that things people might need to/want to change could easily be changed.”’® Another
programmer, while discussing a potential redesign of the Concurrent Versions System (CVS), a
free program for managing revisions to pieces of software, had as his first concern the notion that
“CVS shouldn’t become too large, [...] a project management [and] build tool shouldn’t be
integrated directly into CVS. CVS is a source code control tool. If the number of commands is
increased more and more, it will become too complicated, too hard to test and, especially for
beginners, too hard to learn.””’ Instead, this programmer proposed, “The code of CVS should be
divided into several modules or libraries which are independent from each other,” listing the
advantages of this approach as being that the “modules could easily be reused by other programs
and graphical user interfaces [...] or even project management and build tools. Their
programmers don’t have to invent the wheel again,” that by “putting together all the modules a
more powerful tool can be built step by step. Developers don’t have to use all the features and
capabilities from the beginning and they don’t have to learn about functions, which they
probably would never need,” and thaf “splitting up the functionality into separate modules has a
lot of advantages during testing.””® Making the CVS code modular, in other words, would make
it possible for programmers to use its modules again in other projects and to make and test

adjustments to individual modules independently of the others.

" Prashant Singh [prash@ghg.net], “RE:window manager” in [gnu.gnustep.discuss], 20 September 1998,

http://groups.google.cony/group/gnu.gnustep.discuss.
" Lars-Christian Schulze [schulze@aerodata.de], “RE:Again: CVS redesign” in [gnu.cvs.help], 14 October 1999,
http://groups.google.com/group/gnu.cvs.help.
™ Ibid.

61

By the early 1990s, according to Stallman, the GNU operating system was nearly
complete. Almost all of the system’s utility programs had been written, and all that was left to
write was the Hurd, the GNU kernel. The programmers working on GNU had decided to
implement the Hurd “as a collection of server processes,” or, to explain the name, a “herd of
gnus” that would run on top of another kernel, Mach, and “do the various jobs of the Unix
kernel,” with the result that “the start of development was deiayed as we waited for Mach to be
released as free software, as had been promised.”” Difficulties in the debugging process further
stalled the Hurd’s development, and in 1991, long before the Hurd was ready for release, a
twenty-one year old Finnish programmer named Linus Torvalds began and completed
preliminary work on another free software project: the development of a Unix-based kernel
called Linux. Torvalds initially described Linux as “just a hobby” and said that it “won’t be big
and professional like gnu.”*® As more people began contributing to Linux, though, it advanced,
and by 1992 it could be combined with the GNU utilities to form a complete, free, Unix-like
operating system known as GNU/Linux.

Among members of the community surrounding Linux, ideas similar to Stallman’s
regarding the implications of a modular design for the distributed development of free software
were in circulation. For example, in one post, a programmer working on Linux defended its
design from an accusation of insufficient modularity by writing, “This isn't true—although the
kernel is one big chunk of code, it is subdivided into smaller modules, such as the VM code,
each one of the file systems, each device driver, etc.,” and, though he admitted that “Some of

these modules have incestuous relationships with each other due to various kludges and hacks”

" Richard Stallman, “The GNU Project,” in Free Software, Free Society: Selected Essays of Richard M. Stallman,

ed. Joshua Gay (Boston: GNU Press, 2002), 27.

Linus Torvalds [torvalds@klaava. Helsinki. FI], “What would you like to see most in minix?” in [comp.os.minix],
26 August 1991, http://groups.google.com/group/comp.os.minix/topics.

80

62

and that, to modify the kernel, “[y]Jou do have to understand some basic ‘common’ things used”’
in it, he insisted that “to say you have to understand the whole kernel to write a device driver is a
gross overstatement.”® That he felt the need to defend Linux on the grounds of the ease with
which programmers would be able to change it shows that he considered this to be an important
criterion, and the way he did so shows that he viewed modularity as intricately tied to this
criterion. A later post announcing the release of a more “modularized” version of the Linux
kernel, which opened with the declaration that, thanks to the modularization of the kernel, “the
cfforts of individual working groups need no longer affect the development of the kernel
proper,” likewise indicates the presence of an attitude toward the importance of modularity to the
development of free software much like Stallman’s. * Moreover, it indicates that programmers
working on Linux regarded the modularity of a system as an important enough factor in its
maintainability to expend the effort needed to modularize it.

Given the Linux community’s receptive attitude toward the potential for modularity to
facilitate the radically distributed development of software, it is perhaps unsurprising that Linux
progressed as rapidly as it did from Torvalds’ initial release. Yet Linux was a single program,
unlike the GNU utilities, and, although it had a fairly-modular design, it also had a number of
“kludges and hacks” that likely caused some of its modules to be more tightly coupled than they
could have been. Why, then, was Linux completed so quickly, while the GNU Hurd, the
fundamental design of which was much more aggressively modular, has yet to be released and,

given the dominance of GNU/Linux in the “market” for free and open source operating systems,

may never be completed?

81 Drew Eckhardt [drew@opbhelia.cs.colorado.edu], “RE:GNU kids on the block? (sorry... couldn’t resist)” in
[comp.os.linux], 29 August 1992, http://groups.google.com/group/comp.os.linux.

Peter MacDonald [pmacdona@sanjuan.uvic.ca], “RE:SLS 1.05: Softlandings Modular Linux Released,” in
[comp.os.linux.admin], 4 April 1994, http://groups.google.com/group/comp.os.linux.admin/topics.

82

63

If Eric S. Raymond, co-founder of the Open Source Initiative, co-developer of multiple
free software projects, and author of a number of influential papers on the development of free
and open source software, is to be believed, it is because Torvalds and the community
surrounding Linux took full advantage of their software’s modularity—something the GNU
Project of the early 1990s failed to do. In The Cathedral and the Bazaar, the Boston-born
programmer Raymond—who had previously been known for his work on NetHack, a famous
and free computer role-playing game—sought to understand how it was that “a world-class
operating system could coalesce as if by magic out of part-time hacking by several thousand
developers scattered all over the planet, connected only by the tenuous strands of the Internet.”®
He explained that, prior to the advent of Linux, he “had been preaching the Unix gospel of small
tools, rapid prototyping and evolutionary programming for years,” but he “also believed there
was a certain critical complexity above which a more centralized, a priori approach was
required,” that “the most importantv software (operating systems and really large tools like the
[GNU] Emacs programming editor) needed to be built like cathedrals, carefully crafted by [...]
small bands of mages working in splendid isolation, with no beta to be released before its
time.”®* Richard Stallman held the same view in 1985, when, after proposing that the tasks of
writing and testing the various GNU utilities be taken on by individual programmers working
independently, he promptly noted that the “kernel will require closer communication and will be
worked on by a small, tight group.”**This belief was also reflected in the methodélogy used for
writing individual GNU utilities. Though the work of writing the entire set of utilities was

distributed among many programmers, Raymond noted, “the Emacs C core and most other GNU

8 Eric S. Raymond, The Cathedral and the Bazaar: Musings on Linux and Open-Source by an Accidental
Revolutionary (Cambridge: O’Reilly, 1999), 29.

84 g7,
1bid.

8 Stallman, “The GNU Manifesto,” 35.

64

tools” were developed using a “cathedral-building style,” in which a small group of programmers
wrote and tested the code in relative isolation, “only releas[ing] a version every six months (or

less often),” when the new version seemed stable enough for widespread use, “and work[ing]

like a dog on debugging between releases.””®

Torvalds took a different approach. His style was to “release early and often, delegate
everything you can, [and] be open to the point of promiscuity,” so that, rather than being
characterized by “quiet, reverent cathedral building,” “the Linux community seemed to resemble
a great babbling bazaar of different agendas and approaches (aptly symbolized by the Linux
archive sites, which would take submissions from anyone).” In a manner that initially shocked
Raymond, the project “not only didn’t fly apart in confusion, but seemed to go from strength to
strength at a speed barely imaginable to cathedral builders,” that is, Stallman and the GNU
Project. After successfully leading development on a free email-retrieval client, “Fetchmail,” in a
manner that was consciously chosen to imitate Torvalds’ approach, Raymond came to the
conclusion that the Linux model worked as well as it did because it effectively leverage its users,
many of whom were programmers themselves, to “diagnose problems, suggest fixes, and help
improve the code far more quickly than [Torvalds] could unaided,” something made possible
both by a rapid release schedule that kept users interested in contributing by regularly
incorporating these user-produced modifications into the “official” Linux kernel and by the fact
that, as Raymond put it, “[g]iven enough eyéballs, all bugs are shallow” and the corresponding
fixes easy for someone. Herein, according to Raymond, lay the key to Linux’s success, the
crucial difference between the Linux and early-1990s GNU models of free software
development: in the eyes of cathedral-builders, “bugs and development problems are tricky,

insidious, deep phenomena. It takes months of scrutiny by a dedicated few to develop confidence

8 Raymond, The Cathedral and the Bazaar, 37-38.

65

that you’ve winkled them all out. Thus the long release intervals, and the inevitable
disappointment when long-awaited releases are not perfect,” whereas, in the bazaar approach,
“you assume that bugs are generally shallow phenomena—or, at least, that they turn shallow
quickly when exposed to a thousand eager co-developers pounding on every new release.
Accordingly you release often in order to get more corrections, and as a beneficial side effect
you have less to lose if an occasional botch gets out the door.” By making the process of
software development as open as its end result, Linux was able to invite the participation of
thousands of programmers in that process and, consequently, to truly live up to the potential for
widely distributed development granted by its modularity.®’

From its inception with Richard Stallman’s “The GNU Manifesto,” the free software
movement recognized modular programming’s potential application as a tool to enable
programmers to collaborate on complex software projects by breaking them down to be
distributed among those working on them. The GNU Project put this to use by distributing the
development of individual Unix-like utility programs among volunteers, but, because it assumed
that each utility—along with the kernel itself—needed to be developed by an individual or a
small group of “cathedral builders,” it failed to take full advantage of modularity’s benefits with
regard to the development of individual programs. It was only when the Linux kernel’s
development process rapidly overtook that of the GNU Hurd thanks to Linus Torvalds’ policy of
making frequent releases of the kernel and openly accepting contributions from its users that
these benefits became evident. Partially thanks to Eric Raymond’s criticism of the GNU Project,
the burgeoning free software movement took notice of these benefits, with many projects

adopting or switching to what Raymond would call a “bazaar” development model. However,

1 Ibid., 30, 36, 41-42.

66

Raymond’s criticism also foreshadowed a division that would soon split this community,
beginning in the late 1990s.
Pragmatism and the Permissibility of Proprietary Software

Eric Raymond’s examination and criticism of the GNU Project’s development model‘
reflected his priorities. Broadly speaking, he was interested primarily in the pragmatic
implications of free software. He believed that, if approached in the proper manner, it could be
developed more efficiently than proprietary software, with better end products as the result.
Richard Stallman and the Free Software Foundation were not entirely indifferent to Raymond’s
concerns. As Raymond himself noted, by the late 1990s, many GNU utilities—including the
GNU C Compiler, the initial release of which Stallman himself had been the primary
developer—had shifted to the bazaar model, either by making use of a rapid release cycle like
that of early Linux or by making incremental changes to the source code publicly visible even
between releases.®® However, their priorities lay elsewhere. They saw the distributed
development model used in producing free software more as a way to combat what it saw as
infringements on programmers’ liberty than as a way to produce better programs more quickly.
During the decade following the development of the Linux kernel, Raymond and other
programmers who shared his views grew increasingly frustrated with the perceived zealotry and
anti-commercialism of the Free Software Foundation, to the point that, by 1998, they were
eschewing the term “free software” in favor of the term “open source” and setting up a parallel
organization to the Free Software Foundation called the Open Source Initiative. The two camps
into which the free software movement had become divided were delineated by their positions on

one issue in particular: the morality of proprietary software.

88 Raymond, The Cathedral and the Bazaar, 258,

67

To Stallman and the other partisans of free, rather than open source, software, restricting
users’ ability to modify and redistribute software was simply reprehensible. To quote “The GNU
Manifesto,” “[t]here is nothing wrong with wanting pay for work, or seeking to maximize one’s
income, as long as one does not use means that are destructive,” but “[e]xtracting money from
users of a program by restricting their use of it is destructive because the restrictions reduce [...]
the amount of wealth that humanity derives from the program.” According to Stallman, “a good
citizen does not use such destructive means to become wealthier” because “if everyone did so,
we would all become poorer from the mutual destructiveness.” Here, Stallman argued from the
Kantian perspective that making software proprietary violates the categorical imperative. Earlier,
he had argued from the utilitarian perspective that, for programmers, to whom “[c]opying all or
parts of a program is as natural [...] as breathing,” a society that arranged to cover the cost of
program production through licensing arrangements and intellectual property laws would be
analogous to “a space station Whére air must be manufactured at great cost” that covered said
cost by “charging each breather per liter of air.” Doing so “may be fair,” but “wearing the
metered gas mask all day and all night is intolerable even if everyone can afford to pay the air
bill” and “the TV cameras everywhere to sec if you ever take the mask off are outrageous.” He
concluded that the better solution would be “to support the air plant with a head tax and chuck
the masks.” Finally, he outright rejected the notion the notion that “people have a right to control
how their creativity is used,” saying that “‘[c]ontrol over the use of one’s ideas’ really constitute
cohtrol over other people’s lives” and that, far from being intrinsic, “intellectual property rights

are just licenses granted by society because it thought, rightly or wrongly, that society as a whole

would benefit by granting them.”®

¥ Stallman, “The GNU Manifesto,” 36, 38-39.

68

Others in the free software movement shared Stallman’s views on the morality of
proprietary software, going as far as to claim that, on the subject of free software, “there is no
neutral position.” To decide to “copyleft” one’s code using the GNU General Public License was
to decide to “support the users against the proprietary software makers,” while to “reject the
GPL” was to decide to do “the opposite.” For these programmers, “copylefting” their code to
ensure that not only it, but also all programs derived from it, would remain free was an ethical
imperative. Doing otherwise meant either directly infringing on users’ liberty or failing to

prevent future creators of proprietary software derived from the original freely-distributable

. 90
software from doing so.

Raymond, on the other hand, aligned himself with what he called the more “pragmatist,”
“less confrontational and more market-friendly strand in hacker culture,” which he contrasted
with the “more purist and fanatical elements” such as the “very zealous and very
anticommercial” Free Software Foundation, with its “vigorous and explicit drive to ‘Stamp Out
Software Hoarding!’” and its partisans’ tendency toward (in Raymond’s view) characteristic
statements such as ““‘Commercial software is theft and hoarding. 1 write free software to end this
evil.”” The typical pragmatist, on the other hand, “values having good tools and toys more than
he likes commercialism, and may use high-quality commercial software without ideological
discomfort,” regards “the GPL [...] not as a weapon against ‘hoarding,” but as a tool for
encouraging software sharing and the growth of bazaar-mode development communities,” and
has an attitude that “is only moderately anticommercial, and its major grievance against the
corporate world is not ‘hoarding’ per se; rather it is that world’s perverse refusal to adopt

superior approaches incorporating Unix and open standards and open-source software. If the

% Alan Curry [pacman@defiant.cqc.com], “RE:Free software vs. open source?” in [gnu.misc.discuss], 12 June
2000, http://groups.google.com/group/gnu.misc.discuss.

69

pragmatist hates anything, it is less likely to be ‘hoarders’ in general than the current King Log
of the software establishment—formerly IBM, now Microsoft.” In these quotes, Raymond
differentiated his own, “pragmatist” point of view with that of the “zealous” proponents of free
software mainly through the two sides’ respective attitudes toward “software ‘hoarding,”” that is,
through views on the legitimacy or illegitimacy of intellectual property in software.”!
Unsurprisingly, given that Raymond was one of the major partisans of the shift toward
the use of the term “open source” in lieu of the term “free software,” Raymond’s opinions were
shared by many who preferred “open source.” One such programmer, posting on Usenet,
responded to a programmer who had just declared that the key differences between the open
source movement and the free software movement were “more philosophical and political than
technical” with the retort, “Since the biggest problem with the free software movement is RMS’
[Richard Stallman’s] radical leftist politics, this is entirely appropriate.”””* Another pro grammer,
who declared open source “a better term, IMO, than free software,” suggested that the difference
between the two movements was “a bit technical as well; RMS (and thus the FSF) considers that
any ‘free license’ that does not permit GPLing isn’t ‘free’ enough. The ‘open source’ folks [...]
consider open source to be source-available with unrestricted redistribution for changes to the
source (at a minimum!) but do not generally require that derivatives be exclusively source-
available (only those parts that are from or within the original ‘open source’),” with the result
that while open source “allows you to make commercial products that are a mix of open- and

closed-source, the other does not,” enabling open source and proprietary software to coexist

more easily than free and proprietary software.”® Raymond and the partisans of open source,

' Raymond, The Cathedral and the Bazaar, 82-86.

2 Jay Maynard [jaymaynard@thebrain.conmicro.cx], “RE:Free software vs. open source?” in [gnu.misc.discuss], 9
June 2000, http://groups.google.com/group/gnu.misc.discuss.

” Austin Ziegler [aziegler@the-wire.com], “RE:Free software vs. open source?” in [gnu.misc.discuss], 13 June

70

then, did not regard the use of a closed, proprietary model for the development and distribution
of software as unethical so much as inefficient, and this was reflected in their choice of the term
“open source.”

Perhaps the most striking evidence of the rift between the open source movement and the
free software movement appears in a 1999 Usenet post in which the computer programmer and
author of the “Open Source Definition” Bruce Perens announced his resignation from the board
of the Open Source Initiative, which he had cofounded with Raymond the previous year. On the
one hand, Perens did not believe that the rift had arisen from fundamental differences within the
free and open source software community. As he declared, “Eric Raymond and I founded the
Open Source Initiative as a way of introducing the non-hacker world to Free Software” and
“although some disapprove of Richard Stallman’s rhetoric and disagree with his belief that _all
software should be free, the Open Source Definition is entirely compatible with the Free
Software Foundation’s goals, and a schism between the two groups should never have been
allowed to develop.” Nevertheless, Perens noted, “I fear that the Open Source Initiative is
drifting away from the Free Software values with which we originally created it,” with the result
that “The Open Source certification mark has already been abused in ways I find unconscionable
a;ld that I will not abide.” Saying that “We must make it clear that those freedoms [associated
with free software] are still important, and that software such as Linux would not be around
without them,” he announced that he would continue to work to promote these freedoms
“independently from the Open Source Initiative.” Despite seeing the division between the

advocates of open source and those of free software as ultimately unnecessary, Perens felt that

2000, http://groups.google.com/group/gnu.misc.discuss.

71

the Open Source Initiative had departed sufficiently from its roots in the free software movement

to necessitate his resignation.”

Divergent priorities and beliefs about the morality of proprietary software gave rise to
divisions émong programmers working on freely—distributabl_e software, with the community
splitting into those that preferred the term “free software” and those that preferred the term “open
source software.” In the eyes of the advocates of open source, the advocates of free software
were zealous and anti-commercialist to a degree that interfered with their ability to truly realize
the pragmatic benefits of their development model, while in the eyes of the advocates of free
software, the advocates of open source were insufficiently committed to the goal of liberating
programmers from proprictary restrictions on software. That said, it is easy to overstate the
extent of the division between the two sides. Despite their disagreements, the partisans of free
and open source software formed a community of programmers with both shared goals and a
shared vision of freely-distributed software’s potential to transform the software development
industry and, eventually, the rest of society.

Revolutionaries, by Intent and by Accident

By the late 1990s, the insistence of the partisans of free software on the moral bankruptcy
of proprietary software had divided them from the partisans of open source. Nevertheless, the
open source movement grew out of the free software movement, and the goals, ideals, and mores
of the two remained closely linked. Members of the free software movement were not
uncompromisingly anti-commercial, and members of the open source movement were not
strictly pro-market. The definitions of free software and open source software were similar

enough to ensure that virtually every program that was considered “open source” would also be

" Bruce Perens [bruce@k6bp.hams.com], “RE:It’s Time to Talk About Free Software Again” in
[muc.lists.debian.user], 18 February 1999, hitp:/groups.google.com/group/muc.lists.debian.user.

72

considered “free” and vice versa. The partisans of open source, like those of free software,
believed that their efforts would benefit the community of programmers as a whole. Perhaps
most significantly, both groups embraced the idea that their communities—and the connected
social structures that encouraged the free exchange of information and facilitated a production
model based on voluntary cooperation—could provide a template for the transformation of
society into one free of the hierarchical institutions characteristic of mainstream society.

Apart from their disagreements regarding the ethical status of proprietary software, the
positions of Stallman’s Free Software Foundation on the one hand and Raymond’s Open Source
Initiative on the other were remarkably similar. In The Cathedral and the Bazaar, Raymond
overstated the extent to which the Free Software Foundation’s opposition to intellectual property
in software was tied to an opposition to commercialism in general that contrasted with the
pragmatists’ more pro-market attitudes. Stallman himself had proposed ways in which
companies might profit fromAthe existence of GNU, writing, “If people would rather pay for
GNU plus service than get GNU free without service, a company to provide just service to
people who have obtained GNU free ought to be profitable,” and, indeed, this is precisely how
companies such as Red Hat, which sells support to users of otherwise-free software, would come
to operate.” Raymond, meanwhile, despite his pronounced libertarian leanings, was hardly a
market fundamentalist. While he claimed that the “verdict of history seems to be that free-market
capitalism is the globally optimal way to cooperate for economic efficiency” in a context of
scarce resources, he also claimed that “perhaps, in a similar way, the reputation-game gift culture
is the globally optimal way to cooperate for generating (and checking!) high-quality creative

work” in a context lacking scarcity.”® Raymond described the free and open source software

% Stallman, “The GNU Manifesto,” 37.
9 Raymond, The Cathedral and the Bazaar, 132.

73

community as such a “reputation-game gift culture,” in which people are motivated principally
by the desire to improve their reputation by producing gifts to freely distribute to others, and
indicated that it represented an concrete example of how a “severe effort of many converging
wills” could be achieved through the “principle of common understanding” as “vaguely
suggested” by the Russian anarchist and communist Pyotr Kropotkin.”” The free and open source
software community, Raymond suggested, resembled the sort of stateless society that Kropotkin
had advocated, organized as it was according to the principle “to every man according to his
needs” through “free contacts between individuals and groups pursuing the same aim.”*® Given
this, it is perhaps unsurprising that one programmer, while describing the culture of the open
source movement, declared that “the fundamental belief behind open source software is that
‘Information Should be Free,’” that “the open source movement is a very communist, a very
communal, activity; as such it doesn’t really support capitalist values very well,” and that those
who “hope to draw off of its resources without giving back to the community” should “return to
the Cathedral [...] back to your little world of proprietary software and suits.”””

The ideas of the open source and free software movements regarding what constituted
open source or free software respectively likewise remained closely connected. When describing
his objections to the use of the term “open source” as opposed to “free software,” Stallman noted
that the “official definition of ‘open source software,” as published by the Open Source Initiative,
is very close to our definition of free software,” in particular requiring both that such software be
freely modifiable and redistributable and that any software derived from open source code also

be open source. However, he also noted that “the obvious meaning for the expression ‘open

T Ibid., 63-64.

% Pyotr Kropotkin, The Conguest of Bread, Paris (1892), reprint, New York: Vanguard Press (1926), 26, 29.
? Levi [levi@top.monad.net], “RE:Open Source Development” in [comp.os.research], 5 August 1998,
http://groups.google.com/group/comp.os.research.

74

source software’ is “You can look at the source code,”” which “is a much weaker criterion.”
Despite the inexact nature of the term “open source,” then, its official definition reflected the fact
that the open source movement effectively spun out of the free software movement as much as it
reflected the open source movement’s desire to make itself more palatable to industry. %

The partisans of open source and of free software remained connected on a deeper level,
as well: both, perhaps unsurprisingly, saw the proliferation of free and open source software as
something that would serve the best interests of programmers as a group. Stallman’s first
concerns were for the autonomy and camaraderie of programmers. As he wrote when describing
his reasons for initiating the GNU Project, “Many programmers are unhappy about the
commercialization of system software. It may enable them to make more money, but it requires
them to feel in conflict with other programmers in general rather than feel as comrades. The
fundamental act of friendship among programmers is the sharing of programs; marketing
arrangements now typically used essentially forbid programmers té treat others as friends.”'"!
However, he was not dismissive of programmers’ need for an income as well, nor of the
implications a society without intellectual property would have for their ability to do so. On this

, point, he cited his own experience that “[p|rogrammers writing free software can make their
living by selling services related to the software. I have been hired to port the GNU C compiler
to new hardware, and to make user-interface extensions to GNU Emacs [...] I also teach classes
for which I am paid” and that even if independent proprietary software vendors were no longer
viable in such a society, hardware manufacturers would still “find it essential to support software
development even if they cannot control the use of the software. In 1970, much of their software

was free because they did not consider restricting it. Today, their increasing willingness to join

19 Richard Stallman, “Why ‘Free Software’ is Better than ‘Open Source,” in Free Software, Free Society: Selected
Essays of Richard M. Stallman, ed. Joshua Gay (Boston: GNU Press, 2002), 58.
1% Stallman, “The GNU Manifesto,” 35.

75

consortiums show their realization that owning the software is not what is really important for

them 25102

Similarly, Raymond addressed the argument that a shift from proprietary to free and
open-source software would devalue programmers’ labor by claiming that, practically speaking,
“most programmer-hours are spent (and most programmer salaries are paid for) writing or
maintaining in-house code that has no sale value at all,” from “the financial- and database-
software customizations every medium and large company needs” to “all kinds of embedded
code for our increasingly microchip-driven machines—from machine tools and jet airliners to
microwave ovens and toasters,” with the result that “software is largely a service industry
operating under the persistent but unfounded delusion that it is a manufacturing industry.”'% A
transition to open source would not, he argued, eliminate the need for this sort of programming
work. Programmers” salaries would still get paid. However, the community of programmers as a
whole would also enjoy the advantages of the presence of “[m]ore and more high-quality
software [...] permanently available to use and build on instead of being discontinued or locked
in somebody’s vault.”'™ Finally, when describing the motivations of the programmers who
worked on free and open source projects, one such programmer declared that “much of the work
done by hackers on open source software is for either of two reasons: a) gratitude for the
software being free, or b) a sort of mystical ‘giving back’ to the *whole* free software
community,” motivations whose very existence indicate that these programmers felt that free and

open source software represented a net gain for the software development community.'®

192 Richard Stallman, “Why Software Should Be Free,” in Free Software, Free Society: Selected Essays of Richard

M. Stallman, ed. Joshua Gay (Boston: GNU Press, 2002), 121,

19 Raymond, The Cathedral and the Bazaar, 142-143, 145,

" Ibid., 194.

195 1 evi [levi@top.monad.net], “RE:Open Source Development” in [comp.os.research], 5 August 1998,
http://groups.google.com/group/comp.os.research.

76

Somewhat more surprisingly, given the open source proponents’ supposed “pragmatism,”
both they and the partisans of free software showed signs of seeing free and open source
software as closely linked to broader political and social goals. Stallman declared, for example,
that “making programs free is a step toward the post-scarcity world, where nobody will have to
work very hard just to make a living” and that “we have already greatly reduced the amount of
work that the whole society must do for its actual productivity, but only a little of this has
translated itself into leisure for workers because much nonproductive activity is required to
accompany productive activity,” adding that “[f]ree software will greatly reduce these drains in
the area of software production.”'% After resi gning from the Open Source Initiative’s board,
Bruce Perens expended considerable effort toward “expanding the scope of collaborative works
beyond software,” particularly in the area of the dissemination of knowledge.'”’ As the editor of
a series of freely-distributable books on open source software published by Prentice Hall, he
expressed the hope that electronic versions of such books might be frequently updated in

accordance with feedback from readers in a manner reminiscent of the maintenance of an open

108

source software project. ~ Raymond was more cautious than cither Stallman or Perens in his

observations regarding the social implications of open source, saying that “staying focused on
the goal” of advancing open source software itself and “not wandering down a lot of beguiling
byways” was particularly important for the open source movement “because in the past our
representatives have shown a strong tendency to ideologize when they would have been more
effective sticking to relatively narrow, pragmatic arguments,” referring, of course, to Stallman.'%

However, he also wrote that “the success of open source does call into some question the utility

106 Stallman, “The GNU Manifesto,” 41.

197 Steve Lohr, “Steal This Book? A Publisher Is Making It Easy,” The New York Times, 13 January 2003,
Technology section.
1% 1bid.

199 Raymond, The Cathedral and the Bazaar, 226.

77

of command-and-control systems, of secrecy, of centralization, and of certain kinds of
intellectual property,” that “it suggests (or at least harmonizes well with) a broadly libertarian
view of the proper relationship between individuals and institutions,” and that “I expect the
open-source movement to have essentially won its point about software within three to five
years. Once that is accoinplished [...] it will become more appropriate to try to leverage open-
source insights in wider domains. In the meantime, even if we hackers are not making an
ideological noise about it, we will still be changing the world.”!!°

Real differences existed between the programmers in the free and open source software
movements who gravitated toward the term “open source” and those who kept to the term “free,”
particularly with regard to the question of the legitimacy of intellectual property in software and,
in general, with regard to what the partisans of open source saw as the free software movement’s
overly-confrontational attitude. However, ultimately, the two factions were more alike than not.
Their shared values and goals indicate that each comprised a subset of a community of
programmers who embraced the idea that freely-distributed software was either ethically or
practically superior to proprietary software and, further, saw in the process of developing such
software a model for an alternative social order in which hierarchical “command-and-control”
systems might be replaced with systems driven by the autonomous cooperation of individuals.
Eric Raymond may have considered himself an “accidental revolutionary” and, in contrast to
Richard Stallman’s emphasis of his belief that the spread of free software was a step on the path
to a post-scarcity world, regarded the open source development model’s social implications as a
low priority consideration when compared with that model’s implications for the quality of
software and the efficiency of the software production process. Yet the pragmatism characteristic

of the open source movement lay atop a foundation of idealism embodied in Raymond’s

10 1bid., 227.

78

assurance that, even when stripped of “ideological noise,” the open source movement’s efforts
were “changing the world.”
* % : * % * %

During the late 1960s, the New Communalists had sought to apply technology to assert
their autonomy and to build alternative communities that would serve as templates for the
transformation of mainstream society. Two decades later, a community of programmers that had
internalized a set of values rooted in the counterculture applied modulér programming techniques
to much the same end, giving rise to the free software movement. The opinions of the
programmers involved in this movement were far from unanimous, particularly with regard to
the permissibility of proprietary restrictions on software development, and, as a result, a subset
of the movement spun off in the late 1990s, referring to itself as the “open source” movement.
Both the free software movement and the open source movement made use of modularity to
enable the undertaking of enormous projects in which they were able to act autonomously, but
cooperatively. Both saw their actions as being in the best interests of programmers as a group, a
way to counteract the negative effects of the increasingly-stringent intellectual property laws on
these programmers’ ability to share information and to build on the knowledge of other
programmers by creating a large base of freely-available and freely-adaptable code. Finally, both
envisioned their projects—and the underlying development model, which relied on the voluntary
cooperation of large numbers of programmers to make them possible—as exemplars of
alternative principles of social organization, which might provide a basis for the transformation
of society at large according to these principles. Modular programming, conceived and
propagated against a countercultural backdrop, was applied to build a community of

programmers who, like the New Communalists before them, came to see themselves as potential

79

heralds of revolutionary social change that would be driven not by political action, but rather by
example. By showing that enormous, complex projects could be completed by programmers
cooperating on an entirely autonomous basis, they would not only provide a way for
programmers to continue freely sharing and adapting code as they had prior to the developments
in intellectual property law of the early 1980s. They would also plant the seeds of broader social
transformation by, to paraphrase Eric Raymond, calling into question the desirability of secrecy,

of centralization, and of hierarchical social structures in general.

80

Conclusion
When Stewart Brand gathered over a hundred prominent programmers together for the
Hacker’s Conference of 1984, he did so hoping that the “hacker” community had the potential to
form “a precursor to a larger culture,” a vanguard that would initiate the kinds of social
transformations that members of the 1960s counterculture—in particular, the New

111

Communalists—had sought to bring about.” " The decades following the free software

movement’s emergence from this community vindicated Brand’s hopes. Free and open source
software came to be used extensively throughout the software development industry, to the point
that many proprietary software vendors began to use free tools during development or even to
incorporate open source components in their products. Thus, by 2008, Bruce Perens could claim
that “Free Software / Open Source is mainstream,” citing its “pervasive penetration [...] in
business servers and embedded systems,” its entrenchment in the market for network server
software, and “the fact that Free Software provides a large part of Apple’s MacOS today, and
critical elements of Microsoft Windows as well.”!?

More significant than the widespread adoption of free software itself, though, was the
growth of an Internet culture infused with the free software community’s values and
methodologies. In 2003, Perens had experimented with the idea of applying open source
development principles to the compilation of knowledge while editing Prentice Hall’s book
series on open source software, but perhaps the most radical—and successful—such application
of these principles had already been launched two years previously: Wikipedia. Dubbing itself
“The Free Encyclopedia,” Wikipedia relied on its users to voluntarily collaborate on the creation

and improvement of articles much as the free and open source software movement relied on the

" Turner, From Counterculture to Cyberculture, 136,

"2 Bruce Perens, “State of Open Source Message: A New Decade for Open Source,” 8 February 2008,
http://perens.com/works/articles/State8 Feb2008.html (accessed 25 March 2013).

81

users of software to voluntarily collaborate on its production and improvement. Alongside the
proliferation of websites reliant on such user-generated content, organizations such as Creative
Commons sought to provide a way to keep such content free by generalizing the GNU General
Public License’s notion of “copyleft” to apply to works other than software. To this end,
Creative Commons—two of whose co-founders, Lawrence Lessig and Hal Abelson, had been or
would be members of the Free Software Foundation’s board of directors—produced a set of
licenses designed to permit the free redistribution of creative works, some of which, like the
GPL, also required modified or “derived” works to be distributed under the same license. Like
the community of programmers that gave rise to the free software movement, the digital
communities that used these licenses to permit the free distribution and derivation of creative
works demonstrated a commitment to the value of voluntary collaboration and adaptation, and,
in particular, to the idea that information should be free. The New Communalists and, perhaps to
a lesser extent, the computer scientists of the late 1960s had regarded themselves as elites, as
cultural vanguards who would lead society at large through transformations: in the case of the
New Communalists, into a new society organized along networked, collaborative,
nonhierarchical lines that would preserve individual autonomy, and in the case of the computer
scientists, into a new society in which “the art of programming” would be “public property,” as
Andrei Ershov put it, much like reading and writing, By instilling the emerging culture of the
Internet with their values and methods, the free software movement played the role of a cultural
vanguard to a degree greater than either of the two groups preceding it had achieved. In the
process, the methods the programming experts in this movement applied to achieve autonomy
for themselves generalized, providing ways for all interested Internet users to autonomously

collaborate on, share, and modify creative works, from encyclopedia articles to videos.

82

By applying computer and computer network technology to build communities founded
on the principle of voluntary cooperation, these Internet users took technological products of
government bureaucracies and turned them into tools, much as the New Communalists had
attempted to do during the late 1960s. This mirrored the manner in which programmers had
sought to apply modular programming since formulating it contemporaneously with the New
Communalists’ efforts to transform society. Initially, computer scientists had conceived of
modular programming as a means to provide the base of common knowledge and standards
programmers would need to gain the status of professionals and secure their autonomy in the
face of managerial efforts to control them. Their professionalization efforts did not succeed.
However, by the early 1980s, these computer scientists had managed to propagate both the
techniques associated with modular programming and the notion that modularity was a
characteristic of “good” code throughout the broader community of programmers, particularly
those using the modern Internet’s predecessor, Usenet, to comﬁmnicate with each other. These
programmers, following utilitarian ideas about aesthetics in regarding utility as a particularly
good criterion by which to judge creative works, came to see modular programming as a means
by which to make a program more aesthetically pleasing by making it clearer, more readable,
and thus more useful to other programmers. By encouraging programmers to regard
programming as a worthwhile creative activity in itself and emphasizing the importance of
readability and adaptability, this encouraged the growth of a community of programmers who
had internalized the counterculturally-influenced “hacker ethic,” which held that programs
should be freely available to programmers to read, adapt, and redistribute. It was from this
community that the free software movement emerged, in response to the threat to programmers’

freedom to do just this embodied in proprietary restrictions on software. By applying modular

83

programming to distribute the task of programming replacements for fundamental pieces of
proprietary software among many programmers, the free software movement aimed to restore
the freedoms that proprietary restrictions on software distribution had removed. Moreover, it
built a community around a system of voluntary collaboration, providing an example of an
alternative social structure that the emerging Internet culture would reproduce many times.
Perhaps the managers of the 1960s had seen the modular programming as a potential instrument
by which they could control programmers. As programmers formulated, propagated, and applied
modular programming as a tool to secure their own autonomy, though, they demonstrated that it,

like the Internet and computers themselves, could act instead as an instrument of liberation and

social transformation.

84

Bibliography

Primary Sources

Adams, Glenn [glenn@LL-XN.ARPA]. “RE:code quality.” In [net.unix-wizards], 9 October
1985. http://groups.google.com/group/net.unix-wizards/topics.

Black, Eric [eric@chronon.UUCP]. “RE:lex and yacc in the public domain (responses).” In
[net.unix-wizards], 1 May 1986. http://groups.google.com/group/net.unix-wizards/topics.

Brownell, Dave [brownell@harvard. ARPA]. “RE:Object oriented (flames at end).” In [net.lang],
21 June 1984. http://groups.google.com/group/net.lang/topics.

Crane, John [crane@fortune. UUCP]. “RE:Self-modifying code.” In [net.lang], 3 January 1984.
http://groups.google.com/group/net.lang/topics.
Crawford, Matt [matt@oddjob.UChicago.UUCP]. “RE:The realest programmer of all.” In
[net.jokes], 20 November 1984, http://groups.google.com/group/net.jokes/topics.
Crispin, Mark [Admin. MRC@SU-SCORE.ARPA]. “RE:public domain?” In [net.unix-wizards],
26 December 1984, http://groups.google.com/group/net.unix-wizards/topics.

Curry, Alan [pacman@defiant.cqc.com]. “RE:Free software vs. open source?” In
[gnu.misc.discuss], 12 June 2000. http://groups.google.com/group/gnu.misc.discuss.

Dijkstra, Edsger. “The Humble Programmer.” Communications of the ACM 15, no. 10 (1972):
859-866. doi:10.1145/355604.361591,

Dijkstra, Edsger. “Notes on Structured Pro gramming.” In Structured Programming, edited by

Ole-Johan Dahl, Edsger Dijkstra, and C. A. R. Hoare, 1-82. London: Academic Press

Ltd., 1972.

85

Eckhardt, Drew [drew@ophelia.cs.colorado.edu]. “RE:GNU kids on the block? (sorry...
couldn’t resist).” In [comp.os.linux], 29 August 1992.
http://groups.google.com/group/comp.os.linux.

Ershov, Andrei. “Aesthetics and the Human Factor in Programming.” Communications of the
ACM 15, n0. 7 (1972): 501-505. doi:10.1145/361454.361458.

Farber, Dave [farber@udel-huey. ARPA]. “RE:software ethics.” In [net.unix-wizards], 3 March
1985. http://groups.google.com/group/net.unix-wizards/topics.

Frank, Dan [g-frank@gumby.UUCP]. “RE:High-levelity.” In [net.lang], 26 December 1984.
http://groups.google.com/group/net.lang/topics.

Gast, David [gast@ucla-cs. ARPA]. “RE:lex and yacc in public domain (responses).” In
[net.unix-wizards], 3 May1986. http://groups.google.com/group/net.unix-wizards/topics.

Gold, Barry [barryg@sdcrdcf. UUCP]. “RE:Where’s the (¢) on unix?” In [net.unix-wizards], 21
March 1984. http://groups.google.com/group/net.unix-wizards/topics.

Gotterbarn, Don. “Software Engineering as a Profession.” ACM SIGSOFT Sofiware Engineering
Notes 23, no. 6 (1998): 205-206. doi:10.1145/291252.295145.

Gould, Ed [ed@mtxinu.UUCP]. “RE:software ethics.” In [net.unix-wizards], 21 March 1985.
http://groups.google.com/groups/net.unix-wizards/topics.

Hu, Alan [ajh@sdcsvax. UUCP]. “RE:Difficulty of recursion.” In [net.lang], 25 March 1983.
http://groups.google.com/group/net.lang/topics.

Kenig, Mark [cbspt002@abnjh.UUCP]. “RE:Teaching programming ~GOTO’s, Object Oriented
Languages, etc.” In [net.lang], 20 June 1984,

http://groups.google.com/group/net.lang/topics.

86

Knuth, Donald. “Computer Programming as an Art.” Communications of the ACM 17, no. 12
(1974): 667-673. doi:10.1145/361604.361612.

Pyotr Kropotkin. The Conquest of Bread. Paris: 1892. Reprint, New York: Vanguard Press,
1926.

Levi [levi@top.monad.net]. “RE:Open Source Development.” In [comp.os.research], 5 August
1998. http://groups.google.com/group/comp.os.research.

Livingston, Jim [jiml@pesnta.UUCP]. “RE:REAL PROGRAMMERS.” In [net.jokes], 7
September 1984, http://groups.google.com/group/net.jokes/topics.

Lo, C.J. [cjl@iuvax.UUCP]. “RE:Gotos, tail-recursion.” In [net.lang], 20 June 1984,
http://groups.google.com/group/net.lang/topics.

Lohr, Steve. “Steal This Book? A Publisher Is Making It Easy.” The New York Times, 13 January
2003, Technology section.

MacDonald, Peter [pmacdona@sanjuan.uvic.ca]. “RE:SLS 1.05: Softlandings Modular Linux
Released.” In [comp.os.linux.admin], 4 April 1994,
http://groups.google.com/group/comp.os.linux.admin/topics.

Jay Maynard [jaymaynard@thebrain.conmicro.cx]. “RE:Free software vs. open source?” In
[gnu.misc.discuss], 9 June 2000. http://groups.google.com/group/ gnu.misc.discuss.

Naur, Peter and Brain Randell. Sofiware Engineering: Report on a conference sponsored by the
NATO Science Committee, Garmisch, Germany, 7th to 11th October 1968, Brussels:
NATO Scientific Affairs Division, 1969.

Newkirk, Dave [den@ixn5h.UUCP]. “RE:Interpreters vs, Compilers — Who wins?” In [net.lang],

23 March 1983. http://groups.google.com/group/net.lang/topics.

87

Parnas, David. “On the Criteria To Be Used in Decomposing Systems into Modules.”
Communications of the ACM 15, no. 12 (1972): 1053-1058. doi:10.1145/361598.361623.

Perens, Bruce [bruce@k6bp.hams.com]. “RE:It’s Time to Talk About Free Software Again.” In
[muc.lists.debian.user], 18 February 1999,
http://groups.google.com/group/muc.lists.debian.user.

Perens, Bruce. “State of Open Source Message: A New Decade for Open Source.” 8 February
2008. http://perens.com/works/articles/State8Feb2008 . html (accessed 25 March 2013).

Perlow, Ken [ken@ihuxq.UUCP]. “RE:Professionalizing Programmers, Going Off-line.” In
[net.lang], 8 June 1984, http://groups.google.com/group/net.lang/topics.

Raymond, Eric S. The Cathedral and the Bazaar: Musings on Linux and Open Source by an
Accidental Revolutionary. Cambridge: O’Reilly, 1999,

Ritchie, Dennis. “The Evolution of the Unix Time-Sharing System.” In Lecture Notes in
Computer Science #79: Language Design and Programming Methodology. Springer
Verlag, 1980.

Rothery, Brian. Installing and Managing a Computer. London: Business Books, 1968.

Schulze, Lars-Christian [schulze@aerodata.de]. “RE:Again: CVS redesign.” In [gnu.cvs.help],
14 October 1999. http://groups.google.com/group/gnu.cvs.help.

Sherouse, George [sherouse@unc.UUCP]. “RE:Unix for physicists (attn:finn).” In [net.physics],
14 June 1984. http://groups.goo gle.com/group/net.physios/topiés.

Singh, Prashant [prash@ghg.net]. “RE:window manager.” In [gnu.gnustep.discuss], 20
September 1998. http://groups.google.com/group/gnu. gnustep.discuss.

Smith, Gregory [greg@utcsri. UUCP]. “RE:lex and yacc in public domain (responses).” In

[net.unix-wizards], 6 May 1986. http://groups.google.com/gropu/net.unix-wizards/topics.

88

Stallman, Richard. “Free Software Definition.” In Free Software, Free Society: Selected Essays
of Richard M. Stallman, edited by Joshua Gay, 43-45. Boston: GNU Press, 2002.

Stallman, Richard. “The GNU Manifesto.” In Free Software, Free Society: Selected Essays of
Richard M. Stallman‘, edited by Joshua Gay, 33-41. Boston: GNU Press, 2002, Originally
published in Dr. Dobb's Journal of Software Tools 10, no. 3 (1985): 30-35.

Stallman, Richard. “The GNU Project.” In Free Software, Free Society: Selected Essays of
Richard M. Stallman, edited by Joshua Gay, 33-41. Boston: GNU Press, 2002. Originally
published in Chris DiBona, Sam Ockman, and Mark Stone, eds., Open Sources: Voices
Jrom the Open Source Revolution (O’Reilly, 1999).

Stallman, Richard. “Why ‘Free Software’ is Better than ‘Open Source.”” In Free Software, Free
Society: Selected Essays of Richard M. Stallman, edited by Joshua Gay, 57-62. Boston:
GNU Press, 2002. Originally written in 1999,

Stallman, Richard. “Why Software Should Be Free.” In Free Software, Free Society: Selected
Essays of Richard M. Stallman, edited by Joshua Gay, 57-62. Boston: GNU Press, 2002.
Originally written in 1992,

Steinman, Jans [jans@mako.UUCP]. “RE:Definition of Buzzwords: ‘Object-Oriented.”” In
[net.lang], 23 January 1985. http://groups.google.com/group/net.lang/topics.

Templeton, Brad [brad@looking. UUCP]. “RE:lex and yacc in the public domain (responses).” In
[net.unix-wizards], 7 April 1986.
http://groups.google.com/groups/net.unix-wizards/topics.

Torvalds, Linus [torvalds@klaava.Helsinki. FI]. “What would you like to see most in minix?”’ In

[comp.os.minix], 26 August 1991. http://groups.google.com/group/comp.os.minix/topics.

Weinstein, Lauren [lauren@rand-unix. ARPA]. “RE:software ethics.” In [net.ﬁnix—wizards], 2
March 1985. http://groups.google.com/group/net.unix-wizards/topics.

89

Weinstein, Lauren [lauren@rand-unix. ARPA]. “RE:software ethics.” In [net.unix-wizards], 3
March 1985. http://groups.google.com/group/net.unix-wizards/topics.

Ziegler, Austin [aziegler@the-wire.com]. “RE:Free software vs. open source?” In
[gnu.misc.discuss], 13 June 2000. http://groups.google.com/group/gnu.misc.discuss.

Secondary Sources

Benner, Chris. ““Computers in the Wild": Guilds and Next-Generation Unionism in the
Information Revolution.” In Uncovering Labour in Information Revolutions, 1750-2000,
edited by Aad Blok and Greg Downey, 180-204. Cambridge: Cambridge University
Press, 2003.

Ensmenger, Nathan L. The Computer Boys Take Over. Computers, Programmers, and the
Politics of Technical Expertise. Cambridge: The MIT Press, 2010.

Friedson, Eliot. Professionalism: The Third Logic. Cambridge: Polity Press, 2001.

Graham, Stuart and David Mowery. “Intellectual Property Protection in the U.S. Software
Industry.” In Patents in the Knowledge-Based Economy. Washington, DC: The National
Academies Press, 2003. 219-258.

Kraft, Philip. Programmers and Managers: The Routinization of Computer Programming in the
United States. New York: Springer-Verlag, 1977.

Krimsky, Sheldon. “When Sponsored Research Fails the Admissions Test.” In Universities at
Risk: How Politics, Special Interests, and Corporatization Threaten Academic Integrity,
edited by James Turk, 70-94. J. Lorimer & Co., 2008.

Levy, Steven. Hackers: Heroes of the Computer Revolution. Garden City, New York: Anchor

Press/Doubleday, 1984.

90

Rosenzweig, Roy. “Wizards, Bureaucrats, Warriors, and Hackers: Writing the History of the
Internet.”” The American Historical Review 103, no. 5 (1998): 1542.
Turner, Fred. From Counterculture to Cyberculture: Stewart Brand, the Whole Earth Network,

and the Rise of Digital Utopianism. Chicago: University of Chicago Press, 2006.

91

