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Abstract

	In this paper, I explore what it might mean to take the body as the focus of design to support learning in mathematics classrooms, and more specifically, to support learning to work with graphs. I will provide an overview of the literature on embodied cognition, as a genre of research that challenge or reject the traditional view of cognitive science. The difference between these two paradigms provides a context for understanding the current research interest in the role of the body in mathematics and also for understanding implications for learning. Then, I review some research focusing specifically on the role of the body in mathematics. The third section, I briefly discuss what learning to work with graphs entails. In the last section, I will take a leap, and look at a scientific practice, protein crystallography, that appears to have interesting elements of body-work. An ethnographic account of the laboratory and pedagogical work of protein crystallographers becomes an anchor for me to think about designing for the body in mathematics classroom as I think about future steps.



Designing for the Body in Mathematics Classrooms


Introduction
My capstone is an exercise in exploring what it might mean to take the body as the focus of design to support learning in mathematics classrooms, and more specifically, to support learning to work with graphs. Many studies point to how the body plays a crucial role in the knowledge and learning of mathematics, e.g. Alibali & Nathan (2012) Lakoff & Núñez (2000), and Nemirovsky & Ferrara (2009). This means that the body can be of pedagogical use in mathematics classroom. However, it has not been clear what implications from these lines of research are for teaching and learning in mathematics classrooms. The main purpose of the paper is to review these recent works with an eye towards design principles for a design of learning environment that supports bodily engagement in learning to work with graphs.
These lines of research differ in their theoretical and methodological commitments; however, there has also been an attempt to bring these different perspectives together under one framework (Hall & Nemirovsky, 2011). Scholars in these lines of research have already been debating different interpretations of the role of the body in the knowledge and learning of mathematics with one another in the literature. However, working from and within their theoretical assumptions, they do not always elucidate those assumptions—especially regarding how and what kind of mathematics learning happens. Therefore, the aim of this paper is less about evaluating different interpretations, and more about understanding each perspective’s underlying theory of learning, and what kind of opportunities to engage with mathematics each of these perspectives implies. 
Not all research perspectives brought together in this paper place emphasis on the actual corporeal engagement in the context of learning mathematics. In fact, some may view it as secondary or unnecessary. However, I will be focusing on what these perspectives might contribute to an understanding for designing for bodily engagement in mathematics classrooms. The reason for designing for actual bodily engagement is that there is evidence that when students have opportunities to leverage their bodily experience, they can make sense of mathematical concepts even when it is typically thought to be beyond their cognitive readiness (Wright, 2001).
The rest of the paper is divided into four parts. The first section is a brief overview of embodied cognition, as a genre of research that challenges or rejects the traditional view of cognitive science. The difference between these two paradigms provides a context for understanding the current research interest in the role of the body in mathematics and also for understanding implications for learning. The second section is a brief overview of the three lines of works focusing specifically on the role of the body in mathematics. I summarize the findings and implications for designing for mathematics learning. The third section, I briefly discuss what learning to work with graphs entails. In the last section, I will take a leap, and look at a scientific practice, protein crystallography, that appears to have interesting elements of body-work. An ethnographic account of the laboratory and pedagogical work of protein crystallographers becomes an anchor for me to think about designing for the body in mathematics classroom as I think about future steps.

I. Embodied Cognition
Why the body?
	In one sense, it might seem more appropriate to ask why not the body, because we always engage with the world with our bodies. In many ways, we see what we see, we do what we do, and we think what we think because we have the kind of human body that we have. At the same time, the body does not determine all that we see, do or think. Culture and experience play important roles. 
Regardless of the ever-present body, the body has been missing from the account of how we think. Since the Cognitive Revolution in 1970s, the dominant account of how we think has been that of the brain as a computer (Gigerenzer & Goldstein, 1996). According to traditional views of cognitive science, “mental processes proceed algorithmically, operating on symbolic representations. … Because cognition begins with an input to the brain and ends with an output from the brain, cognitive science can limit its investigations to processes within the head, without regard for the world outside the organism” (Shapiro, 2011). If it has any role, the body provides limited and flawed information for the brain, which processes that impoverished information with a fascinating computational capacity. 
What does a brain-as-computer mean for learning? It means that, “once the desired cognitive outcomes and potential pitfalls had been thoroughly analyzed, the favored educational technique remained one of direct instruction and practice, under conditions designed to optimize motivation and transfer” (Case, 1996). If the assumption is that perception is flawed, one major challenge for organizing instruction is how to present information such that input accuracy is maximized, for example, arranging texts in a textbook to minimize cognitive load and to eliminate split-attention effect (Sweller, van Merrienboer & Paas, 1998). If the assumption is that there is an internal mental representational structure, it is then important to ensure that it matches the correct or efficient structure, for example, providing an “advance organizer” in order to provide an efficient mental structure for better storage (Driscoll, 2005).
What body? It’s not clear.
	In the recent decades, the body has reentered the picture. Embodied cognition as a conceptualization of cognition comes in various forms (Wilson, 2002); in this paper, embodied cognition is an umbrella term that refers to any perspective on cognition that challenges standard cognitive science’s commitment to a computational theory of mind, the brain-as-computer. “Embodied cognition (in any form) is about acknowledging the role perception, action, and the environment can now play” (Wilson & Golonka, 2013). 
	That a brain-as-computer is an incomplete view is all that could be said about what different forms of embodied cognition research have in common. Many researchers (Glenberg, 2008; Glenberg, 2015; Núñez, 2012; Shapiro, 2013) are calling for a unified account of embodied cognition, arguing that such unification is a requirement for the field to be recognized as science. It is unclear that such unification is possible, given that works under the umbrella of embodied cognition span a wide spectrum. Shapiro (2011) identified three themes in embodied cognition research—conceptualization, replacement, and constitution—which capture how embodied cognition is conceptualized ontologically. The conceptualization theme includes works that emphasize how human cognition is limited and constrained by biological and physical properties of the human body. The replacement theme includes works that attempt to entirely substitute representational models of traditional cognitive science with embodied cognition. The constitution theme includes works that conceptualize the body and the physical world as constituent of cognition, rather than having merely a causal role in cognition. Similarly, Stevens (2012) also identified different ontological commitments, and he described them as conceptualist (i.e. works that treat embodied actions as observables for underlying—possibly more important—cognitive system) and interactionist (i.e. works that consider embodied actions as resources for thinking during naturally occurring interaction).
	What does embodied cognition mean for learning? Because embodied cognition means many different things, it is hard to say what embodied cognition means for learning without naming a specific form of embodied cognition. However, it can be argued that organized instruction tends to result in less-than-optimal learning outcomes when important resources that learners bring with them are not leveraged in a particular learning environment. The body may be such an ignored resource. In the next section, different perspectives on the role of the body in the knowledge and learning of mathematics are explored.

Three views of the role of the body in mathematics
	In this section, I provide brief overviews of three perspectives on the role of the body in mathematics knowledge and mathematics learning. They are 1) embodied mathematical concepts, 2) gestures as visible embodiment, and 3) a lived body in a lived-in world. In each of these overviews, I include what I understand as each perspective’s underlying theory of learning, and what kind of opportunities for engagement with mathematics is implied. Table 1 summarizes important elements of these perspectives.
Embodied mathematical concepts 
	This perspective builds on Lakoff and Johnson (1980)’s Metaphors We Live By, which argues that metaphor is fundamental to the human conceptual system. Abstract concepts like “winter is behind us” or “love is a journey” can be traced back through metaphorical mapping to bodily-based experiences shared among humans. Similarly, abstract mathematical concepts such as “infinity” or “Euler’s function” can be traced back to bodily-based experience (Lakoff & Núñez, 2000). The formality of mathematical axioms hides such embodied conceptual connection (Núñez, Edwards & Matos, 1999). 
	The main goal of this perspective is to uncover the underlying conceptual structure of mathematical ideas using a proposed method called “mathematical idea analysis.” This method is driven by an observation that mathematics appears to be “timeless, eternal, absolute, and effective,” and yet it is achieved by biologically-constrained human bodies (Núñez, 2009). Thus, an important part of understanding where this mathematics comes from is to understand how it could arise from such a body. This observation leads to a focus on “non-material supra-individual cognitive products and their genesis—conceptual systems” (Núñez, 2008). This perspective then falls under Shapiro (2011)’s conceptualization theme and Steven (2012)’s conceptualist stance. 
While acknowledging the role of the physical environment on the shaping of metaphorical mapping and thus the meaning of abstract concepts, this perspective focuses on unconscious cognitive processes. Núñez et al. (1999) wrote,
From our perspective, embodiment is not simply about an individual’s conscious experience of some bodily aspects of being or acting in the world (e.g., memories of the first time we went skating or riding in a roller coaster). Embodiment does not necessarily involve conscious awareness of its influence. Nor does embodiment refer to the physical manipulation of tangible objects (e.g., playing with Cuisinaire rods or pattern blocks), or to the virtual manipulation of graphical images and objects instantiated through technology. … Rather, embodiment provides a deep understanding of what human ideas are, and how they are organized in vast (mostly unconscious) conceptual systems grounded in physical, lived reality (p. 46).

Then, from this perspective, designing for the body may be unnecessary. Some recommendations for mathematics education from this perspective is that students should be “told” that mathematical concepts are human-embodied ideas, for example, by “providing an understanding of the historical processes through which embodied ideas have emerged” Núñez et al. (1999, p. 62). In some ways, this may means presenting to students another organization of content that better resembles a more meaningful, and thus effective, schema structure. 
Visible embodiment in Gestures
	This perspective focuses on the role of the body in producing representational gestures, which include deictic, iconic and metaphoric gestures. They argue that, “[the] tight coupling of motor and perceptual processes that is so important for physical interaction with the world may also be important for mental representation of the world” (Hostetter & Alibali, 2008, p.497).  In that sense, gestures reveal the internal cognitive structure. This perspective would predict that, “speakers with stronger spatial skills tend to gesture more than speakers with weaker spatial skills” (p. 503).  
	In mathematics classrooms, two main kinds of teachers’ gestures are of interest (Alibali & Nathan, 2012). The first is pointing gestures, which is gestures that refer to objects in the physical environments, for example, when a teacher points to the side of the rectangle she is referring to in her speech. The second is depictive gestures that reveal simulations of actions on mathematical objects, for example, when a teacher raises her arm at a slant to imitate a graph with a certain slope, and then moves her arm to simulate a graph changing the slope. For both kinds of gestures, there are two ways in which gestures link objects or ideas (Alibali et al., 2014)—sequential and simultaneous. Sequential gestures include instances when teachers produce pointing or depictive gestures one after another. Simultaneous gestures include instances when teachers point to two objects at the same time or produce gestures depicting two objects at the same time. There is some evidence that shows that students learn more when teachers use more simultaneous gestures.  
	The rationale for production of gestures and also for gestures’ influence on learning relies on the cognitive load theory. When teachers point to something in the physical environment, the cognitive load is reduced for students because they do not have to hold an abstract object in their working memory (Alibali & Nathan, 2012). This perspective recommends that teacher candidates be taught to produce gestures that lead to higher learning outcomes. The focus on teachers’ gestures and cognitive load theory imply that the problem of instruction is one of organizing information. 
A lived body in a lived-in world
This line of research commits to a phenomenological approach to understand what is the lived experience of the body in a lived-in world, and it argues for “the collapse of the abstract” (Nemirovsky, Rasmussen, Sweeney & Wawro, 2012, p. 288). The main goal of this research perspective is to understand how mathematical insights are expressed in and constituted by perceptuo-motor activity. Tools figure very importantly in this perspective (Nemirovsky, Tierney & Wright, 1998; Noble, DiMattia, Nemirovsky & Barros, 2006), since it believes that experience “tends to be wildly distributed in space and time and across tools, environments, and interpersonal transactions” (Nemirovsky et al., 2012, p. 288). Because of its commitment to how experience is distributed in the body, tools and the environment, this work then falls into Shapiro (2011)’s constitution theme.
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This perspective on tools will become important in the design principles later, so I want to take a moment to elaborate it. If you are reading this paper, it is almost certain that you live in a culture that Figure 1a signifies a familiar everyday object. You recognize it as a cup, something that you can use to put coffee or tea in and drink from it. Throughout your life, you probably have had frequent experience using a cup that, when you see one, “the perceived handle of a cup activates a grasping simulation that inadvertently affects motor responses on an unrelated task” (Barsalou, 2008). This neurological findings echoes J.J. Gibson’s influential theory on the ecology of perception, that perception entails the detection of tacit invariants and “these invariants enable the organism not only to get a sense of what is ‘there’ but also, and crucially, of what the organism can do with it [emphasis added]” (Nemirovsky, Rasmussen, Sweeney &Wawro, 2012, p. 292). This means that when you see a cup, you do not only see colors and lines that demarcate the cup from the background, but you also perceive it as a graspable object and your body is ready to grasp it. How about the next figure, Figure 1b? And how about the last figure, Figure 1c? What kinds of action is your body ready for when you see it? Are a cup, a hammer and a graph similar or different kinds of objects? Can we design a learning environment that supports the kind of engagement such that a body is ready to do certain things with a graph? 
	According to this perspective, the body comes to incorporate tools in ways that the distinction between the body and the tools are blurred, and that body-tool change occurs in lived-in spaces (Noble et al., 2006). They write, 
A lived-in space of a student who is using a tool includes many different aspects of the experience of using that tool, such as the student’s interactions with the tool, the student’s intentions and feelings regarding the tool, the student’s interactions with others regarding the tool, and the student’s past experience. … One way to describe the experience of developing competence with a tool is to describe the change over time of one’s lived-in space” (p. 390).

The kinds of learning and mathematical engagement according to this perspective may be different from direct instruction. It is crucial to pay attention to the lived-in spaces that students experience mathematical tools. 
Summary
	The first perspective does not specify what it means to engage with mathematics, but implies that any learning activities are more likely to be meaningful when it adheres to the metaphorical projections that trace the mathematical ideas back to bodily-based metaphors. The second perspective implies that appropriate uses of gestures can increase certain learning outcomes. The third perspective implies that mathematical ideas are constituted by bodily activities and are distributed in the body, tools, and environments, and thus all these should be taken into account in design for learning. 
While all contributing to a body of literature on the role of the body in mathematics, these research perspectives differ in many ways, and they debate each other’s interpretations and methodologies in the literature. Their debate in some ways helps provide cautions for adopting some of the implications in designing a learning environment. For example, Núñez (2012) questioned a simulated gesture interpretation, raising this question:
Although this view of embodied cognition may be appropriate when the concepts under investigation are “chairs” and “balls,” it is not clear how this view would give a full account of cases in which the invoked entities by definition cannot be perceived directly through the senses: “the point at infinity” … or “the Euclidean point” … If embodied mathematical cognition is primarily about perceptual and physical interactions with the real world, how then can these “simple” mathematical notations be “embodied” if no such interaction can exist? … how can we simulate actions and perceptions of entities to which we do not have access through experience? (p. 333).

This skepticism raises the question of whether graphs are the same kind of thing as “chairs” or “balls,” or more productively, whether graphs can be the same kind of thing as “chairs” or “balls,” and when and how they can be so.
	Hall and Nemirovsky (2011) have proposed bringing all the perspectives together under the framework of histories of modal engagement, which focuses on “the content and meaning of mathematical concepts under development and in use, attending to how these concepts are enacted with whole bodies, in interaction between people, and with cultural artifacts that carry a rich history for thinking and action.” The historical aspect of this framework helps incorporate those perspectives that might not focus on learning. With this historical element, questions about learning and development can be asked. For example, how does metaphorical mapping get constituted in learners’ engagement with mathematics, and what kinds of mathematical activities support learners to make such metaphorical mapping? 

Learning to Work with Graphs
	Graphs are important representations and inscriptions in mathematical and scientific practices. Leinhardt, Zaslavsky and Stein (1990) observed that, “Although much of the prior mathematical work in the student’s life may have dealt with concrete representations as the basis for learning more abstract concepts, functions and graphs is a topic in which two symbolic systems are used to illuminate each other.” In their review, they focused on tasks involved in interpreting and constructing graphs (for example, scaling the axes, identifying types of graphs, etc.) and common misconceptions that students have. The review suggests further understanding of what kinds of intuition and misconceptions that students have, and the tasks that develop a stronger sense of graphical and algebraic landscape. 
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Others (e.g. Greeno & Hall, 1997) suggested that graphs (and other representations) have to be introduced to students differently, not as tasks, but as tools, and graphs become tools in their uses, when students have opportunities to adapt the representations to meet intended purposes. Roth (2002) proposed a semiotic framework for interpreting graphs and argued that students (and also experts, Roth & Bowen, 2003) only develop a competent reading of graphs when they understand the phenomenon that a graph refers to. Learning to work with graphs involves both learning related mechanical/procedural skills and learning to use graphs as tools in different situations and different practices. 

Table 1. Three perspectives on the role of the body in mathematics.

	
	Núñez
	Alibali
	Nemirovsky

	What is embodied?
	Mathematical concepts are “embodied”—what seems to be an abstract concept finds its root in body-based metaphors.

	Mathematical communication is embodied—because it is based in action and perception (depictive gestures) and is grounded in the physical environment (pointing gestures). 
	Thinking is an “embodied” activity—that the human body as a whole, not just the brain, is involved in how we conceptualize situations.

	What is the body in embodiment?
	There is a biological body, with specific morphological and anatomical features. “The human body is an animal body. A body that has evolved over millions of years coping with real-world properties such as temperature, gravity, humidity, color, space, texture and so on. With this same body humans have been able to create concepts—and think with them—in a way that transcend immediate bodily experience” (Núñez, 2008). 
	The speaker’s body, especially the hands that produce gestures. 
	Any experience is distributed over bodies, tools, and the environment such that the boundary of these things becomes blurred. 

	When is the body in embodiment?
	This perspective focuses on what the human body comes to be throughout evolution. It is not clear what is the role of a physically present body in the moment.
	“Simulation involves activating premotor action states this activation has the potential to spread to motor areas and to be realized as overt action. When this spreading activation occurs, a gesture is born” (Hostetter & Alibali, 2008, p. 503). A concept of “gesture threshold” is proposed. People gesture when the level neural activity surpasses the gesture threshold.
	The body is always engaged in ongoing activities.

	How do you uncover the body in embodiment?
	Mathematical idea analysis, tracing an idea back to the basic bodily metaphors through metaphorical mapping
	Analysis of gestures that co-habit teachers’ speech in experimental and natural settings
	Ethnographic microanalysis



Future Steps
	The review of literature introduced me to different perspectives, and Hall and Nemirovsky (2011)’s framework of histories of modal engagement provides an anchor to incorporate different perspectives that can inform designing for the body in mathematics classroom. In addition, I also find that an account of a scientific practice which highlight the body-work is also a helpful anchor. For this, Myers (2008, 2009)’s work becomes very useful. This work helps me reflect on what else need to be understood for designing for bodily engagements in learning mathematics.
Molecular Embodiments and the Body-work of Modeling in Protein Crystallography 
	Myers (2008, 2009) provides an account of how protein modelers use their body to imagine protein molecules in their research and teaching work, and also how such embodied imaginations come about through pedagogical works. Myers argues that, “In a sense, model building is a means of reconfiguring researchers’ embodied imaginations with knowledge of protein forms and movements. Working with and building multidimensional models of proteins are practices that rearticulate modelers’ bodies” (2009, p. 167). Her ethnographic account is filled with descriptions like this one below:
As she [Diane, the PI of the lab] tells the story, she contorts her entire body into the shape of the misfolded protein. With one arm bent over above her head, another wrapping around the front of her body, her neck crooked to the side, and her body twisting, she expresses the strain felt by the misshapen protein model. ‘And I’ll just get this pained expression’, she tells me. ‘I get stressed just looking at it. ... It’s like I feel the pain that the molecule is in, because it just can’t go like that!’ She feels compelled to fix the model. She mimes a frantic adjustment of the side-chain by using one arm to pull the other back into alignment with her body, tucking her arms in towards her chest and curving her torso over toward the core of her body, demonstrating the correct fold. With a sigh of relief, she eases back into a comfortable position in her chair. The comically anguished look on her face relaxes back into a warm smile. 

Episodes like this one led Myers to focus on rich corporeal knowledge that the modelers use to “think intelligently” about the models. These gestures were not used to accompany speech, but are used when speech fell short. She also described different gestures that modelers-in-training use between those who have built a molecule and those who have not gesture, suggesting that corporeal histories play a crucial role in this practice. In addition, Myers (2008, p. 137) discussed a pedagogical work that focuses on “practices of looking and the corporeal discipline involved in working with and learning from molecular models.” 
	 This account helps me understand what it might means for someone to develop rich corporeal histories within a scientific practice. I am entertaining the thought: what if learning to work with graphs is similar to learning to work with protein molecules? Is there corporeal knowledge about graphs and what is it? How is such knowledge develops and what kinds of activities support such development?
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