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Abstract
We introduce Approximate Unrolling, a compiler loop opti-
mization that reduces execution time and energy consump-
tion, exploiting code regions that can endure some approxi-
mation and still produce acceptable results. Specifically, this
work focuses on counted loops that map a function over
the elements of an array. Approximate Unrolling transforms
loops similarly to Loop Unrolling. However, unlike its ex-
act counterpart, our optimization does not unroll loops by
adding exact copies of the loop’s body. Instead, it adds code
that interpolates the results of previous iterations.

CCS Concepts • Software and its engineering → Just-
in-time compilers.
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1 Introduction
Approximate computing exploits the fact that some computa-
tions can be made less precise and still produce good results
[25]. Previous works in the field have proven that when small
reductions in accuracy are acceptable, significant improve-
ments in execution times and energy consumption can be
achieved [40]. Opportunities for approximation exist across
the whole stack and previous works have explored this con-
cept in both hardware [6, 33, 36] and software [3, 28, 30, 34].

In this work, we describe Approximate Unrolling, a novel
compiler loop optimization that uses the ideas of approxi-
mate computing to reduce execution times and energy con-
sumption of loops. The key motivation of Approximate Un-
rolling relies on the following observation: data such as time
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series, sound, video, and images are frequently represented
as arrays where contiguous slots contain similar values. As
a consequence of this neighboring similarity, computations
producing such data are usually locally smooth functions.
Our technique exploits this observation: it searches for loops
where functions are mapped to contiguous array slots in
each iteration. If the function’s computation is expensive,
we substitute it by less costly interpolations of the values
assigned to nearby array values. In exchange for losses in
accuracy, we obtain a faster and less energy consuming loop.

Approximate Unrolling combines static analysis and code
transformations in order to improve performance in ex-
change for small accuracy losses. Static analysis has two
objectives: determine if the loop’s structure fits our trans-
formations (counted loops mapping computations to con-
secutive arrays slots); estimate if the transformation could
actually provide some performance improvements (compu-
tation mapped to the array elements is expensive). The code
is transformed using two possible strategies. One that we
call Nearest Neighbour (NN), which approximates the value
of one array slot by copying the value of the preceding slot.
The other strategy, called Linear Interpolation(LI) transforms
the code so the value of a slot is the average of the previous
and next slot. A key novel aspect of these static transfor-
mations is that they ensure accuracy for non-approximated
iteration of the loop, avoiding error to accumulate. This is a
unique feature that is not found on other approximate loop
optimization techniques.
We have implemented a prototype of Approximate Un-

rolling, inside the OpenJDK C2 compiler. This design choice
prevents phase ordering problems and allows us to reuse
internal representations that we need for our analysis. An
implementation in a production-ready compiler is also key
to assess the relevance of our optimization on already highly
optimized code, such as the one produced by the JVM.
We experimented with this implementation using a four

real-world Java libraries. The objectives of our experiments
are to determine whether Approximate Unrolling is able to
provide a good performance vs. accuracy trade-off and to
compare Approximate Unrolling with Loop Perforation [34],
the state of the art approximate computing technique for
loop optimization.
Our results show that Approximate Unrolling is able to

reduce the execution time and CPU energy consumption of
the x86 code generated around 50% to 110% while keeping
the accuracy to acceptable levels. Compared with Loop Per-
foration, Approximate Unrolling preserved accuracy better
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in 76% of the cases and raised less fatal exceptions than Loop
Perforation (2 vs. 7).

The contributions of this work are: (i) Approximate Un-
rolling, an approximate loop optimization. (ii) An efficient
implementation of Approximate Unrolling inside the Open-
JDK Hotspot VM (iii) An empirical assessment of the effec-
tiveness of Approximate Unrolling to trade accuracy for time
and energy savings. (iv) An empirical demonstration of Ap-
proximate Unrolling’s novel contribution to the state of the
art, as an effective complement to Loop Perforation.

2 Approximate Unrolling
In this section we describe the main contribution of our
paper. We use the example of Listing 1 to illustrate the kind
of loops targeted by the optimization as well as the process
for the approximate transformation.

for ( in t i = 0; i < N ; i++) {

phase = phase+phaseInc;

double v = Math.sin(phase)*ampl;

A[i] = v; }

Listing 1. Illustrative Example: A loop mapping a sine wave
into an array.

for ( in t i = 0; i < N ; i+= 2) {

phase = phase + phaseInc;

double v = Math.sin(phase) * ampl;

A[i] = v;

// UNROLLED ITERATION:

phase = phase + phaseInc;

double v1 = Math.sin(phase)*ampl;

A[i + 1] = v1; }

Listing 2. Approximate Unrolling first unroll the loop as
Loop Unrolling would normally do. In this listing, the
Illustrative Example is unrolled using Loop Unrolling.

Approximate Unrolling replaces the unrolled iteration’s
original instructions by others that interpolate results. We
perform this transformation in such a way that errors do not
accumulate as the loop runs. We currently implement two
interpolation strategies: Linear Interpolation (LI) and Nearest
Neighbor (NN). A policy determines which strategy, if any,
is likely to optimize each loop. In the following paragraphs,
we discuss each step.

Like normal unrolling, Approximate Unrolling can unroll
more than one loop iteration. For simplicity, we only show
the transformation where 1 iteration out of 2 is unrolled/ap-
proximated.
Step 1. Target Structure: Every compiler optimization

is able to target only certain code structures. In the case of
Approximate Unrolling, these are ‘for’ loops that (i) have
an induction variable incremented by a constant stride – i.e.
counted loops – (ii) contain an array assignment inside their

body, and (iii) the indexing expression of the array assign-
ment is value-dependent on the loop’s induction variable.
The example at Listing 1 is indeed a ‘for’ loop where

(i) the induction variable ‘i’ is incremented by a constant
stride, i.e. ‘i++’; (ii) ‘A[i]’ is an array assignment inside
the loop’s body and (iii) the indexing expression of ‘A[i]’
is value-dependent on the induction variable ‘i’.

for (i = 0; i < N - 1; i += 2) {

phase = phase + phaseInc;

double v = Math.sin(phase) * ampl;

A[i] = v;

phase = phase + phaseInc;

//v1=Math.sin(phase)*ampl; REMOVED

A[i + 1] = A[i]; }

// Guard Loop g

for (j = i; j < N; j ++) {

phase = phase + phaseInc;

double v = Math.sin(phase) * ampl;

A[i] = v;}

Listing 3. After unrolling, our optimization approximates
the unrolled iteration. The loop of Listing 2, transformed
using nearest neighborg interpolation.

// Initial iteration peeled:

phase = phase + phaseInc;

double v0 = Math.sin(phase) * ampl;

A[0] = v0; in t i = 1;

i f ( N > 2 )

for (i = 2; i < N - 1; i += 2 ) {

phase = phase + phaseInc;

//v=Math.sin(phase)*ampl; REMOVED

phase=phase+phaseInc;// Exact iteration:

double v = Math.sin(phase)*ampl;

A[i] = v;

// Approximate iteration:

A[i - 1] = (A[i]+A[i-2]) *0.5f; }

for (j=i; j<N; j++) {//Guard Loop

phase = phase + phaseInc;

double v = Math.sin(phase) * ampl;

A[i] = v;}

Listing 4. The loop of Listing 2 transformed by Approximate
Unrolling using Linear Interpolation.

Step 2. Approximation Policy: In compiler optimiza-
tion is often the case that is possible to predict whether the
optimization will have a beneficial impact on speed. This es-
timate is called policy in C2’s terms. Approximate Unrolling
also features a policy that can predict speed and energy
efficiency gains. The indicator is computed over the C2’s
internal representation, a graph where each node roughly
represents an assembler instruction. This policy determines
the approximation strategy to use (if any) as follows: let |O |
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be the predicted number of nodes to remove from the origi-
nal code, while |LI | and |NN | represent the number of nodes
needed to perform the LI and NN interpolations respectively.
If |O | > |LI |, resp. |O | > |NN |, the policy indicates that LI,
resp. NN, should be used to approximate the loop. Is possible
for a small loop that (|O | > |LI |) = (|O | > |NN |) = f alse . If
so, the loop is not optimized. If both (|O | > |LI |) = (|O | >
|NN |) = true , LI is preferred since it produces better accu-
racy results in 70% of the cases in our dataset.
This simple policy model proved to be accurate enough

in our experiments, even when performance prediction is a
quite challenging topic. We believe this is because the code
introduced by Approximate Unrolling is very small and lim-
ited to basic instructions such as mov, add, and mul. The
policy also applies to function calls, as several nodes are de-
voted to resolving the method’s owner address and pushing
and popping data from the stack that are removed as result
of removing the call. This gives little room for false positives
such as loop bodies containing more instructions than the
ones introduced actually running faster due to requiring less
CPU cycles or having better branch prediction, etc.
Notice that: being a compiler-level concern, the policy

can only predict speed and energy efficiency improvements.
Detecting forgiving zones is an algorithm-level concern.
Step 3. Loop Unrolling: If the policy predicts that the

loop will gain performance, the optimization unrolls the loop,
just like a regular optimizing compiler would perform Loop
Unrolling. Just like Loop Unrolling, Approximate Unrolling
can unroll the code multiple times, we keep our analysis and
examples to the case it unrolls the loop once for brevity sake.
Step 4(A). Approximating the loop with Linear In-

terpolation: Approximate Unrolling adds code to the loop’s
body that interpolates the computations of the odd iterations
as the mean of the even ones (the computations of iteration
one are interpolated using the results of iterations zero and
two, computations of iteration three are interpolated using
the results of two and four and so on). Initially, Approximate
Unrolling’peels’ iteration zero of the loop. Then, it modifies
the initialization and updates the statements to double the
increment of the loop’s counter variable. The approximate
loop is terminated earlier and a guard loop is added to avoid
out-of-bounds errors. Listing 4 shows the example loop us-
ing linear interpolation. Notice that some computations have
been deleted. This is actually done in Step 5.
Step 4(B). Approximating the loopwithNearestNeigh-

bor: If the policy determines that NN should be used, Approx-
imate Unrolling modifies the update statement to double the
increment of the loop’s counter variable. It also adds code
with the nearest neighbor interpolation at the end of the
loop’s body. The loop is terminated earlier and a guard loop
is also added to avoid out-of-bounds errors. Listing 3 shows
the loop interpolated using nearest neighbor. Again, some
computations are removed in the example, as discussed in
the next step.

Step 5. Dead code removal:Once the approximate trans-
formation is performed, some code is left dead (i.e. its com-
putations are no longer used). In our example, the computa-
tion of the sine (‘v1=Math.sin(phase)*ampl’) is no longer
needed in the interpolated iteration once the interpolation
code is added. This last transformation step removes such un-
used code. The expected improvement in performance comes
precisely from this removal, as less code is executed. Listings
4 and 3 illustrate our example after dead code elimination.

Is important to notice that only dead code resulting from
the approximation is removed. Therefore, loop-carried depen-
dencies are not removed, since their values are needed in the
following iteration. This provides a guarantee that the exact
iteration of the loop will always produce precise results. This
way, the error does not accumulate as the loop executes in
the approximate iterations. In the context of approximate
loop optimizations, this is a unique feature to Approximate
Unrolling.
Indicating approximable areas to the compiler: Ap-

proximate techniques act on parts of the system that can en-
dure accuracy losses. As said before, this is an algorithm-level
concern and the compiler can do very little to detect approx-
imate zones. This is why such detection is out of the scope
of this paper. Finding zones that will endure approximation
have been addressed in numerous previous works through
automated tools [5, 34] or language support [3, 8, 23, 30].
Automated tools work by injecting modifications to the ap-
proximate system and then evaluating the impact through
automated testing and accuracy metrics. Language support
provides keywords that allow the programmer to indicate ap-
proximate zones. Our technique can work with any language
having counted ‘for’ loops, being agnostic to the detection
mechanism.

3 Implementation
This section describes our experimental implementation of
Approximate Unrolling in the C2 compiler of the OpenSDK
Hotspot VM, a Java compiler used by billions of devices
today. We choose to implement Approximate Unrolling di-
rectly in the C2 to avoid the Phase Ordering problem [17],
reduce implementation’s effort by means of code reuse, and
most importantly, this implementation showed that we could
improve the performance of a production-ready compiler.
Our modified version of the Hotspot JVM is available on the
webpage of the Approximate Unrolling project 1

3.1 The Ideal Graph
The C2’s internal representation is called the Ideal Graph
(IG) [11]. It is a Program Dependency Graph [12] and a Value
Dependency Graph[2]. All C2’s machine independent opti-
mizations work by reshaping this graph.

1https://github.com/approxunrollteam
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Figure 1. The ideal graph of the example loop of Listing
5. Dashed arrows represent control edges and solid arrows
represents data edges.

Figure 2. The ideal graph for the unrolled loop of Listing 5.
Nodes to be deleted by the optimization, along with all their
related data edges, are marked with a gray background.

In the Ideal Graph (IG), nodes are objects and hold meta-
data used by the compiler to perform optimizations. Nodes
in this graph represent instructions as close as possible to
assembler language (i.e. AddI for integer addition and MulF
for float multiplication). The IG metamodel has nearly 380
types of nodes. We deal with four to illustrate Approximate
Unrolling in the example: Store, CountedLoop, Add and Mul.
Store nodes represent storages into memory. Their meta-

data indicates the type of the variable being written, making
it easy to identify Store belonging to arrays. CountedLoop
represents the first node of a counted loop (‘for’ loop with
a constant stride increment). This node’s metadata contains
a list of all nodes in the loop’s body instructions and a list
with all nodes of the update expression. Finally, Add and Mul
nodes represent the addition and multiplication operations.
Nodes in the IG are connected by control edges (which

describes control flow) and data edges (which describes data
dependencies). Data edges are the most important ones for
our implementation, and we will refer to this kind of node
exclusively. If a node B receives a data edge from a node A,
it depends on the value produced by A. Edges are pointers
to other nodes and contain no information. Edges are stored
in nodes as a list of pointers. The edge’s position in the list
usually matters. For example, in Div (division) nodes the
edge in slot 1 points to the dividend and the edge in slot 2
points to the divisor.
The Store requires a memory address and a value to be

stored in the address. The memory edge eM is stored at index
2 and the value edge eV at index 3. Edge eM links the Store
with the node computing the memory address where the
value is being written, while eV links the Store with the
node producing the value to write.

Let us consider the very simple example of Listing 5. The
resulting IG for this loop is shown in Figure 1. In the figure,
the StoreI represents the assignment to A[i], the MulI node
represents the i*i expression. The address is resolved by
the nodes in the Cluster A (containing the LShift node).
for ( in t i = 0;i < N;i++) A[i]=i*i;

Listing 5. Example loop for the implementation

3.2 Detecting Target Loops
Java for loops with a constant-increment update expres-
sion are targeted by other C2 optimizations. Therefore, the
C2 recognizes these loops [10, 39] and marks them using
CountedLoop nodes. We reuse this analysis for our optimiza-
tion. Once counted loops are detected, we determine if there
is an array whose index expression value depends on the
loop’s update expression. This is done by searching for a
Storewriting to array-owned memory on the CountedLoop
body’s node list. In the example of Figure 1 we find the
StoreI node (in gray). Finally, we check if the array index
expression value depends on the loop’s update expression by
looking for a data-edges path between the Store node rep-
resenting the array assignment and any node on the loop’s
update expression. In the example of Figure 1 this path is
highlighted using bold gray edges and is composed by the
following nodes: AddI → Phi → CastII → ConvI2L →
LShiftL → AddP → AddP → StoreI.

3.3 Unrolling
Our implementation piggybacks on the Loop Unrolling al-
ready implemented in the C2 compiler. At the point Approx-
imate Unrolling starts, the compiler has already unrolled the
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loop. While unrolling, the compiler clones all the instruc-
tions of the loop’s body. Figure 2 shows the IG once the loop
of Listing 5 has been unrolled. The cloning process intro-
duces two Store nodes: StoreI and StoreI-Cloned. The
cloned nodes belong to the even iteration of the loop (by
C2’s design). Once the loop is unrolled, Approximate Un-
rolling reshapes the graph to achieve the interpolated step
by modifying one of the two resulting iterations.

1 B8: #

2 movl [rcx + #16 + r9 << #2], R8 # int
3 movl r9, r10 # spill

4 addl r9, #3 # int
5 imull r9, r9 # int
6 movl r8, r10 # spill

7 incl r8 # int
8 imull r8, r8 # int
9 movl [rcx + #20 + r10 << #2], r8 # int
10 movl rdi, r10 # spill

11 addl rdi, #2 # int
12 imull rdi, rdi # int
13 movl [rcx + #24 + r10 << #2], rdi # int
14 movl [rcx + #28 + r10 << #2], r9 # int
15 addl r10, #4 # int
16 movl r8, r10 # spill

17 imull r8, r10 # int
18 cmpl r10, r11

19 jl,s 7

Listing 6. Assembler code generated for the example loop
without using Approximate Unrolling

3.3.1 Nearest Neighbor Interpolation
As mentioned in section 3.1, a Store node takes two input
data edges eM and eV . Edge eM links with the node comput-
ing the memory address, while eV links with node producing
the value to write.
Approximate Unrolling performs nearest neighborhood

interpolation by disconnecting the cloned Store node from
the node producing the value being written (i.e. it deletes
eV ). In Figure 2 this means to disconnect node MulI-Clone
(in gray) from node StoreI-Clone by removing edge eV .

This operation causes the node producing the value (in
the example MulI-Clone) to have one less value dependency
and potentially become dead if it has no other dependencies.
A node withoutBy desconecting value dependencies means
that its computations are not being consumed and there-
fore is useless dead code. In this case, the node is removed
from the graph. We recursively delete all nodes that do not
have dependencies anymore, until no new dead nodes appear.
In Figure 2, we delete MulI-Cloned and then AddI-Cloned.
This simplification of the IG translates into fewer instruc-
tions when the IG is transformed in assembler code. After the
removal, Approximate Unrolling connects the node produc-
ing the value for the original Store into the cloned Store.

Listing 6 shows the code generated by C2, without per-
forming Approximate Unrolling: the compiler has unrolled
the loop twice, generating four storages to memory (lines 2,
3, 9, 10) and four multiplication instructions (imull, lines 5,
8, 12, 17). Listing 7 shows the code generated for the same
loop using our transformation: there are still four storages
(lines 4, 5, 9, 10), but only two multiplications (Lines 8, 13).

1 B7: # B8 <- B8 top-of-loop Freq: 986889

2 movl rbx, r8 # spill

3 B8: #

4 movl [r11 + #16 + rbx << #2], rcx # int
5 movl [r11 + #20 + r8 << #2], rcx # int
6 movl rbx, r8 # spill

7 addl rbx, #2 # int
8 imull rbx, rbx # int
9 movl [r11 + #24 + r8 << #2], rbx # int
10 movl [r11 + #28 + r8 << #2], rbx # int
11 addl r8, #4 # int
12 movl rcx, r8 # spill

13 imull rcx, r8 # int
14 cmpl r8, r9
15 jl,s B7

Listing 7. Assembler code for the example loop using
Approximate Unrolling

3.3.2 Linear Interpolation
To use linear interpolation, Approximate Unrolling performs
the same disconnect-and-then-remove-dead-code analysis
than with nearest interpolation. Is important to remark that
this is not a simple iteration skip. By detaching the cloned
Store and then performing a dead-code elimination, we
guaranty that loop-carried dependencies stay alive, ensur-
ing the non-approximate iteration exactitude. In a second
step, another loop is added to the program that interpolate
between every two elements of the array.

4 Evaluation
To evaluate our approach we created a dataset of loops that
Approximate Unrolling could target. These were extracted
from well-known libraries belonging to different domains
where performance is paramount: OpenImaJ [15](a computer
vision Library), Jsyn[7](a framework to build software-based
musical synthesizers), Apache Lucene[22] (a text search en-
gine) and Smile[14](a Machine Learning library).
The objective of our evaluation is to assess whether Ap-

proximate Unrolling can increase performance and energy
efficiency while keeping accuracy losses acceptable. To an-
swer this question, we use a set of JMH[1] microbenchmarks
to measure speedups for each of the loops in our dataset. We
then observe the energy consumption of the microbench-
marks to evaluate energy reductions. Energy was assessed
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Figure 3. JSyn performance improvements
Figure 4. Lucene. Performance improvement

Figure 5. JSyn energy reductions Figure 6. Lucene. Energy consumption

Figure 7. JSyn Accuracy metric (Lower is better)
Figure 8. Lucene. Accuracy metric’s value (Higher is better,
zero means crash)

Figure 9. OpenImaJ. Performance improvement Figure 10. Smile. Performance Improvements

Figure 11. OpenImaJ. Energy consumption Figure 12. Smile. Energy consumption

Figure 13.OpenImaJ. Accuracymetric’s value (Higher is better) Figure 14. Smile. Accuracy metric’s value (Higher is better)
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by estimating the total CPU energy consumption of our mi-
crobenchmarks using JRALP [19].
To evaluate the impact of each loop on accuracy, we de-

signed individual workloads for each domain. In other words,
we evaluated impact in the accuracy of loops in OpenImaJ
using a workload that performs real-time face recognition
in videos featuring people of different sex, age and ethnicity
speaking directly to the camera. The workload to evaluate
Jsyn’s loops builds a clone of the popular 3xOsc2 synthe-
sizer and use it to render a set of scores into WAV sound
files. Lucene’s workload indexes a set of text files and then
returns the results of multiple text search performed over
these files. Finally, Smile’s workload consisted of a classifier
able to recognize zip-code handwritten digits.
Row ‘Loops’ of Table 1 shows the total number of loops

in each case study that Approximate Unrolling could target,
while ‘Covered’ shows the number of loops Approximate Un-
rolling could target in each case that were also covered by the
workload’s execution. We use for our experiments only the
latter, as performance, energy and accuracy measurements
can only be made running the loop with a workload.

Table 1. Case studies for our experiments

OpenImaJ Jsyn Lucene Smile
Loops 118 8 151 73
Covered 16 8 9 12

The accuracy impact for a given loop was measured by
comparing the output produced by the workload having this
single loop optimized vs. the original output (without our
optimization). This was done using a specific accuracy loss
metric for each project in our dataset. This is common in
approximate computing [5, 30], as each domain the result’s
quality is perceived differently and the degree of tolerance
w.r.t. accuracy losses vary from case to case.

Also, for each case, we define a function α(x) that defines
the acceptable application’s accuracy loss. We do so to inves-
tigate how many loops reduce the accuracy below tolerable
levels. In other words, we say that a loop reduces the accu-
racy of an application to unacceptable levels if value x of
the accuracy metric makes α(x) = f alse . The accuracy loss
metric and acceptable accuracy loss function α(x) used for
each project is described as follows:
OpenImaJ: We use the Dice metric: D(A,B) = 2∗|A∩B |

|A |+ |B | to
compare the pixels inside the rectangle detected by the face
recognition application without approximation against the
pixels obtained with the approximated version. A value of
0.85 produces results not distinguishable by humans, there-
fore we define the tolerable accuracy loss function for this
application as: α(x) → x > 0.85

2https://bit.ly/2FKjSEy

Jsyn: We use the Perceptual Evaluation of Audio Quality
(PEAQ) [41] metric. This is a standard metric designed to
simulate the psychoacoustic of the human ear, which is not
equally sensitive to all frequencies. PEAQ assigns a scale of
values depending on how well the modified audio matches
the original: 0 (non audible degradation), -1 (audible but not
annoying), -2 (slightly annoying), -3 (annoying) -4 (degraded).
Therefore: α(x) → x < −2.5

Lucene:We use a similar metric to Baek et.al [5] to eval-
uate the impact of approximate loops in the Bing search
engine. We give 1 point to each hit that the approximate
engine returned in the same order as the non-approximated
one, 0.5 if returned in a different order, 0.0001 points if the
hit is not in the original version and 0.0 points if the program
crashes. We define acceptable as: α(x) → x > 0.95.
SmileAccuracymetric:Weuse the classification’s recall

(i.e. the number of properly classified elements over the
total number of elements). According to [16] a 2% error is a
good value for this dataset, so we define acceptable level as:
α(x) → x > 0.98

4.1 Performance improvements
For each of the covered loops we measured performance,
energy consumption and impact on application’s accuracy
without Approximate Unrolling and used this data as base-
line. We then repeated the same observations for the approx-
imated versions of all covered loops. This was done using
both approximation strategies (LI and NN).
Figures 3 to 14 show the performance, energy and accu-

racy results of our experiments. In all figures, each loop is
represented using three bars that show (from left to right)
the results obtained using Nearest Neighbor (NN) with ratio
1/2 (i.e. approximating one out of two iterations), Linear
Interpolation (LI) with ratio 1/2 and Perforation (PERF). Fig-
ures 3, 4, 9, 10 show the performance gains for each loop
in our dataset. Figures 5, 6, 11, 12 represent the percent of
energy consumption w.r.t to the precise version of the loop.
Figures 7, 8, 13, 14 show the impact of each loop in its host
application’s accuracy. In the performance graphs, the Y axis
represents the percent of gain w.r.t to the original loop. For
example, a 200% value means that the approximate version
of the loop run twice as fast. The same applies to energy
consumption, a 50% value means that an approximate loop
needs only half of the energy to finish than its precise coun-
terpart. In the accuracy graphs, the Y axis represents the
accuracy metric’s value. When the bar is missing, it would
mean that the approximation crashed the program. This is
the case for every approximation made to loop L4 in the
Lucene’s workload.

In Section 2, we illustrate how the policy recommends the
approximation strategy to approximate a loop. The policy
can also suggest not to optimize the loop at all. Stripped
bars represent the strategy recommended to approximate a
particular loop. For example, Figure 3 shows that the strategy
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Table 2. Resume of the performance, energy and accuracy results of our experiments.

Project Loops Speed ↑ Enrg↓ α Crash Rec. Rec. Speed ↑ Rec. Enrg↓ Rec α Rec. Crash
JSyn 8 7 8 8 0 7 7 7 6 0
OpenImaJ 16 9 8 10 0 8 6 7 8 0
Lucene 9 6 6 7 2 6 6 6 5 1
Smile 12 5 6 10 0 5 5 5 5 0
Total 45 27 28 35 2 26 24 24 24 1

proposed for loop J0 is NN while for loop J1 is LI. The policy
also indicated not to approximate some loops in our dataset,
for example, Figure 4 shows that this is the case for loops L2
and L8 (no striped bars). We include all loops in our dataset
in the plots, even those rejected by policy. We do so to learn
about the policy’s quality and to observe the optimization’s
impact in all cases.
Table 2 resumes the data presented in the figures. In the

table, column ‘Loops’ show the number of loops amenable
for Approximate Unrolling in our dataset, while columns
‘Speed↑’ and ‘Energ↓’show the number of loops that actu-
ally improved speed and consume less energy respectively.
Column ‘Rec.’ shows the number of loops the policy rec-
ommended to optimize and columns‘Rec. Speed↑’ and ‘Rec.
Energ↓’ how many among these loops actually improved
performance and energy efficiency respectively. Table 2 also
shows for how many loops accuracy looses were acceptable
and the number of crashes caused by approximate loops.
Column ‘α ’ shows the number of loops with acceptable per-
formance, while ‘Rec. α ’ indicates how many recommended
loops reduced the accuracy of the application to acceptable
levels. Column “Crash" shows how many loops crashed the
application and ’Rec. Crash’ how many recommended loops
made the application crash.

In our experiments, we can observe that Approximate Un-
rolling can in fact increase the speed and energy efficiency of
loops being optimized. The improvements are due to loops
executing fewer instructions. Some results are interesting,
such as LI having better speed than NN on J6. This is due
to factors that influence performance beyond our optimiza-
tion such as hardware architecture, machine-dependent op-
timizations, etc. In the case of J6, the LI interpolation loop is
subject to vectorization, a machine-dependent optimization
performed on the C2 after machine-independent techniques
such as Approximate Unrolling.

Policy’s accuracy In order to obtain a better grasp of the
policy’s role in the result’s quality, Table 2 is divided into two
segments. The left segment shows the improvementswithout
any policy, while the right segment shows a full-fledged
Approximate Unrolling working with all its components.
This shows that for a random loop in our dataset there is a
60% chance of performance improvement. However, if the
policy recommends the loop, there is a 92% chance of gains.
The policy indicated two false positives (O1 and O10) that

failed to gain performance in our dataset. This was due to
Approximate Unrolling’s C2 implementation inhibiting Loop
Vectorization in later phases of the compiler. The policy
had a 96% recall: a single case was not recommended and
still gained speed (loop J6). This occurs since the current
implementation is conservative w.r.t. branching and always
assume the worst case.

4.2 Comparison with Loop Perforation
We compared our optimization against Loop Perforation
[34] a state-of-the-art approximate loop optimization. The
comparison is done using our implementation of Loop Per-
foration in the C2 compiler.
Scope of application: Perforation and Approximate Un-

rolling differ in the code transformation. The key difference
is that Approximate Unrolling replaces instructions in the
approximate iteration, while Perforation skips them com-
pletely. This means that Perforation does not preserve the
loop-carried dependencies. Hence, as the loops unfold, Ap-
proximate Unrolling preserves accuracy better. They also
differ in the scope of applications. Perforation works bet-
ter in patterns that can completely skip some task[34], like
Monte-Carlo simulations, computations improving a result,
or data filtering and search. Otherwise, our technique should
behave better in situations when no value of the array can be
left undefined, such as sets of random numbers that follow a
distribution, or sound and video data processing.

Figure 15. Approximation using NN (left). The recognition
system is still able to detect the face. With Perforation (right),
the image is too noisy image and the detection fails.

To exemplify how Approximate Unrolling is best suited
for signal data and that it can complement the series of
cases Loop Perforation can target, Figure 15 represents the
results of applying Nearest Neighbor and Perforation to a
Color Lookup Table in OpenImaJ. The pictures show that
the recognition algorithm fails when using Perforation as a
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consequence of the noisy image. Notice that while 12 out of
15 loops in OpenImaJ lose less accuracy using Approximate
Unrolling, three loops (O5, O9, and O11) are more accurate
using Perforation. This happens because these loops are up-
dating already good results, a situation for which Perforation
is known to work well [34].
Figure 5 shows that Approximate Unrolling’s accuracy

in the Musical Synthesizer was always higher due to the
continuous and smooth nature of the sound signal, which
is perfect for our optimization. As Approximate Unrolling
keeps loop-carried dependencies, it does not accumulate er-
ror. On the other hand, error accumulation with Perforation
caused the frequencies to drop, changing the musical note
being played. It also introduced noise.

In the Lucene use case, Perforation crashes the application
five times, while Approximate Unrolling crashes it twice. Ev-
ery time Approximate Unrolling crashes the application, so
does Perforation. Similar results with the Classifier: Perfora-
tion reduces the accuracy to zero twice, while Approximate
Unrolling does it once. Again, every time Approximate Un-
rolling reduces recall to zero, so does Perforation.
Performance, Energy, Accuracy & Trade-Off:We op-

timized all the loops in our dataset using both optimiza-
tions to find out which one produced the best results in
speedups, energy, and accuracy. From Figures 3 to 14 we
gather that from 45 loops in our dataset, Approximate Un-
rolling maintained better accuracy in 29 vs. 9 Loop Perfora-
tion. Meanwhile, Perforation provides a better performance
in 31 loops vs. 14 our technique. A similar result is obtained
when comparing energy consumption (16 Perforation vs 29
Approximate Unrolling). The figures also show that Perfo-
ration crashed the application 7 times vs. 2 Approximate
Unrolling. Every time our technique crashed the program,
so did Perforation.

Table 3. Approximate Unrolling Vs Perforation

Parameter Aprx. Unrol. Tie Perf.
Better Accuracy 29 7 9
Higher speedup 14 0 31
Lower consumption 16 0 29

We were expecting Perforation to be always faster. How-
ever, figures 3, 4, 9, 10 show that Linear Interpolation leads
to faster loops than Perforation in 7 loops. The reason is that
linearly interpolated loops undergo two more optimizations:
Loop Fission and Loop Vectorization. Also, Nearest Neighbor
can the same performance than Loop Perforation. This is due
to the architecture used for our experiments with Nearest
Neighbor, which introduces only one assembler instruction
and because when there is no loop-carried dependencies
in a loop, all instructions become dead code after the inter-
polation. These factors allowed Nearest Neighbor to match
Loop’s Perforation performance in 10 cases.

4.3 Best Fit Loops for Approximate Unrolling
The manual analysis of the results reveal the presence of
patterns in loops that benefit from Approximate Unrolling.
We found that Approximate Unrolling works best when it
must remove more instructions than the ones it inserts as
performance gains come from removing instructions and in-
serting others that perform fewer operations. As an example
of a loop that worked well with Approximate Unrolling in
our dataset, we show the loop in Listing 8. On the other side,
we encountered loop bodies so small that no instructions
could be inserted so the modified loop would perform less
operations than the original. Listing 9 is an example of such
small loops. We included this learning in our policy imple-
mentation. Secondly, the data being mapped to the array
must be a locally smooth function. This happens naturally in
signal-like data such as sound and images. However, other
types or data behaves also this way, such as arrays containing
starting positions of words in a text.
for ( in t i = 0; i < N; i++) {

f l oa t sum = 0.0F;

for ( in t j=0,jj=kernel.length -1;j<kernel.

length;j++,jj --)

sum += buffer[i + j]) * kernel[jj];

buffer[i] = sum;}

Listing 8. This OpenImaJ loopworks well with as the body is
computational intensive with no loop-carried dependencies

for (i=49;(i--) >0;){jjrounds[i]= -2147483648;}

Listing 9. This loop belongs to Lucene. It does not work
well with Approximate Unrolling.

4.4 Impact of approximation ratio
We now report our experiments with three out of four(3/4)
and one out of four 1/4 approximation ratios.
We hypothesize that the approximation ratio’s impact in

performance is roughly proportional to the number of ap-
proximate iterations. For example, if by using a 1/2 ratio
we doubled performance, we can expect roughly a 300% im-
provement in performance using the 3/4 (three approximate
iterations out of four) and a 33% improvement using the
1/4 ratio (one approximate out of four). The opposite also
applies, if a loop’s performance degrades with the 1/2 ratio,
it will be even slower as we increase the approximate iter-
ations. Figure 16 shows the relationship between different
ratios. The figure was obtained using full-fledged Approxi-
mate Unrolling, including policy selection of optimization.
We observed similar results with energy consumption.

Accuracy wise, the results were more dependent on the
context and purpose of the loop, making difficult to draw
general conclusions. With Jsyn and OpenImaJ the accuracy
is proportional to the amount of approximation, with the
exception of loops updating already good results, which
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Figure 16. Each point represents the loop’s speedup percent. X axis shows the improvement percent using the 1/2 ratio, while
axis Y represents the improvement using 1/4 (left) and 3/4 (right).

have mixed behaviors. In the Text Search, many loops are
not dealing with signal-like data, therefore the accuracy
depends more on the strategy than on the ratio, and Nearest
Neighbor leads to better results than Linear Interpolation. In
the Classifier use case, some loops are extremely forgiving
and have no impact on the classifiers’ recall, while others do
not allow for approximation at all.

5 Related work
The quest for energy savings and performance has made Ap-
proximate Computing an attractive research direction in the
last few years[25, 29, 40]. The approaches are numerous and
diverse, as they exploit opportunities in both hardware and
software designs. Hardware-oriented approaches approxima-
tion techniques have proposed dynamically adaptable man-
tissa widths [37], approximate adders [13, 33], voltage scaling
[9, 18], circuit design to exploit the accuracy-performance
trade-off [4, 27, 38], and the non-determinism of hardware
[6, 20, 32, 35, 36]. On the other hand, software-oriented tech-
niques propose ways to approximate existing algorithms
automatically [21, 24, 28, 31, 34] or provide support for pro-
gramming using approximation [3, 5, 8, 23, 30].
Related to our technique is Paraprox [28], which also

works assuming that nearby array elements are similar. How-
ever, Approximate Unrolling uses the neighbor similarity to
avoid computations, while Paraprox uses it to avoid memory
accesses. We did not compare both techniques as Approxi-
mate Unrolling is a scalar optimization, while Paraprox is
meant for parallel computing, making difficult an objective
assessment.

Finally, Loop Unrolling is a well known compiler optimiza-
tion, whose gains are obtained by reducing branch jumps
and loop-termination operations. Approximate Unrolling
also provides gains in such way, as it also unrolls the loop.
Performance gains with Approximate Unrolling are much
higher as about half of the operations are removed, with

the added benefit of smaller code. On the down side, Loop
Unrolling increases code size, while Approximate Unrolling
reduces the system’s accuracy.

6 Conclusions and Future Work
In this paper, we describe Approximate Unrolling, an approx-
imate compiler optimization. We describe the shape of the
loops that Approximate Unrolling can target, the policy that
can determine the opportunity for performance gains and
the transformations performed to trade accuracy for speed
and energy efficiency. Also, we propose an implementation
of Approximate Unrolling inside the OpenJDK Hotspot C2
Server compiler. To evaluate Approximate Unrolling, we ap-
ply our implementation on four real-world Java libraries,
which are representative to different application domains
using intensive iterative processes (e.g., signal processing).
The assessment demonstrates the ability of Approximate
Unrolling to effectively trade accuracy for resource gains.
We also demonstrate that Approximate Unrolling supports a
more balanced trade-off between accuracy and performance
than Loop Perforation, the current state of the art approxima-
tion technique. Finally, we reason on the impact of different
approximation ratios and which are loops better suited for
Approximate Unrolling.

To effectively program with approximation, developers
must be given language, runtime and compiler support. Ap-
proximate languages allow the programmer to indicate for-
giving code areas, enabling the compiler to optimize based
on these hints. Similar to the way the C2 optimizes on the
presence of the volatile or final java keywords, approxi-
mate compilers can act on keywords such as @Approx from
EnerJ[30] or loosen from FlexJava[26]. We envision Ap-
proximate Unrolling as part of the optimization toolbox of
compilers for approximate languages such as EnerJ, FlexJava
or Rely[8].
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