Show simple item record

Large protein organelles form a new iron sequestration system with high storage capacity

dc.contributor.authorGiessen, Tobias W.
dc.contributor.authorOrlando, Benjamin J.
dc.contributor.authorVerdegaal, Andrew A.
dc.contributor.authorChambers, Melissa G.
dc.contributor.authorGardener, Jules
dc.contributor.authorBell, David C.
dc.contributor.authorBirrane, Gabriel
dc.contributor.authorLiao, Maofu
dc.contributor.authorSilver, Pamela A.
dc.date.accessioned2020-04-29T18:29:14Z
dc.date.available2020-04-29T18:29:14Z
dc.date.issued2019-07-08
dc.identifier.citationeLife 2019;8:e46070 doi: 10.7554/eLife.46070en_US
dc.identifier.issn2050-084X
dc.identifier.urihttp://hdl.handle.net/1803/9984
dc.description.abstractIron storage proteins are essential for cellular iron homeostasis and redox balance. Ferritin proteins are the major storage units for bioavailable forms of iron. Some organisms lack ferritins, and it is not known how they store iron. Encapsulins, a class of protein-based organelles, have recently been implicated in microbial iron and redox metabolism. Here, we report the structural and mechanistic characterization of a 42 nm two-component encapsulin-based iron storage compartment from Quasibacillus thermotolerans. Using cryo-electron microscopy and x-ray crystallography, we reveal the assembly principles of a thermostable T = 4 shell topology and its catalytic ferroxidase cargo and show interactions underlying cargo-shell co-assembly. This compartment has an exceptionally large iron storage capacity storing over 23,000 iron atoms. Our results reveal a new approach for survival in diverse habitats with limited or fluctuating iron availability via an iron storage system able to store 10 to 20 times more iron than ferritin.en_US
dc.description.sponsorshipDeutsche Akademie der Naturforscher Leopoldina - Nationale Akademie der Wissenschaften LPDS 2014-05 Tobias W Giessen Gordon and Betty Moore Foundation 5506 Tobias W Giessen Pamela A Silver Wyss Institute for Biologically Inspired Engineering Tobias W Giessen Pamela A Silver The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.en_US
dc.language.isoen_USen_US
dc.publishereLifeen_US
dc.rights© 2019, Giessen et al. This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.
dc.source.urihttps://elifesciences.org/articles/46070
dc.subjectI-TASSERen_US
dc.subjectFERRITINen_US
dc.subjectNANOCOMPARTMENTen_US
dc.subjectMECHANISMen_US
dc.subjectBACTERIOFERRITINen_US
dc.subjectIMPLEMENTATIONen_US
dc.subjectVISUALIZATIONen_US
dc.subjectENCAPSULINen_US
dc.subjectEVOLUTIONen_US
dc.subjectPHOSPHATEen_US
dc.titleLarge protein organelles form a new iron sequestration system with high storage capacityen_US
dc.typeArticleen_US
dc.identifier.doi10.7554/eLife.46070


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record