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Abstract
CpG‐related single nucleotide polymorphisms (CGS) have the potential to perturb 
DNA methylation; however, their effects on Alzheimer disease (AD) risk have not 
been evaluated systematically. We conducted a genome‐wide association study 
using a sliding‐window approach to measure the combined effects of CGSes on AD 
risk in a discovery sample of 24 European ancestry cohorts (12,181 cases, 12,601 
controls) from the Alzheimer's Disease Genetics Consortium (ADGC) and replication 
sample of seven European ancestry cohorts (7,554 cases, 27,382 controls) from the 
International Genomics of Alzheimer's Project (IGAP). The potential functional rele‐
vance of significant associations was evaluated by analysis of methylation and expres‐
sion levels in brain tissue of the Religious Orders Study and the Rush Memory and 
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1  | INTRODUC TION

Much has been learned about the genetic basis of Alzheimer disease 
(AD), the most common cause of dementia in the elderly. Genome‐wide 
association studies (GWAS) have identified common and rare variants 
in more than 30 loci that contribute to AD risk (Bellenguez et al., 2017; 
Hollingworth et al., 2011; Jakobsdottir et al., 2016; Jun et al., 2017, 
2016; Lambert et al., 2013; Mez et al., 2017; Naj et al., 2011; Sims et 
al., 2017). However, these associations explain only a fraction of the 

heritability of AD, and their functional consequence also remains un‐
clear (Lambert et al., 2013; Ridge, Mukherjee, Crane, & Kauwe, 2013). 
Thus, here we investigate AD risk from a different perspective.

Epigenetic phenomena such as DNA methylation may be involved 
but have not been studied extensively in AD. DNA methylation is inti‐
mately associated with genetic variation because of frequent attach‐
ment of a methyl group directly to a DNA nucleotide, particularly a 
dinucleotide comprising a cytosine and guanine (CpG). CpG‐related 
SNPs (CGS) alter the sequence of the primary target sites for DNA 
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Aging Project (ROSMAP), and in whole blood of Framingham Heart Study participants 
(FHS). Genome‐wide significant (p < 5 × 10−8) associations were identified with 171 
1.0 kb‐length windows spanning 932 kb in the APOE region (top p < 2.2 × 10−308), five 
windows at BIN1 (top p = 1.3 × 10−13), two windows at MS4A6A (top p = 2.7 × 10−10), 
two windows near MS4A4A (top p  =  6.4  ×  10−10), and one window at PICALM 
(p = 6.3 × 10‐9). The total number of CGS‐derived CpG dinucleotides in the window 
near MS4A4A was associated with AD risk (p = 2.67 × 10−10), brain DNA methylation 
(p = 2.15 × 10−10), and gene expression in brain (p = 0.03) and blood (p = 2.53 × 10−4). 
Pathway analysis of the genes responsive to changes in the methylation quantitative 
trait locus signal at MS4A4A (cg14750746) showed an enrichment of methyltrans‐
ferase functions. We confirm the importance of CGS in AD and the potential for cre‐
ating a functional CpG dosage‐derived genetic score to predict AD risk.
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methylation (Lister et al., 2009) and account for a significant frac‐
tion (~38%–88%) of allele‐specific methylation (ASM) regions in the 
human genome (Shoemaker, Deng, Wang, & Zhang, 2010). It has been 
demonstrated that more than 80% of CGSes have a regulatory role in 
DNA methylation (Zhi et al., 2013). Recently, we found that a haplo‐
type of multiple CGSes is associated with DNA methylation patterns 
on a genome‐wide scale (Ma et al., 2016). DNA methylation has been 
shown to influence risk of age‐related diseases (Hunter et al., 2012; 
De Jager et al., 2014). For example, a genome‐wide DNA methylation 
study reported association of AD pathological features with methyla‐
tion changes at several loci (De Jager et al., 2014). Also, levels of DNA 
methylation of GSTM1 and GSTM5 have been associated with risk of 
age‐related macular degeneration (Hunter et al., 2012).

In this study, we evaluated the association of AD with CGSes ge‐
nome‐wide and validated significant findings by expression quanti‐
tative trait locus (eQTL) and methylation QTL (mQTL) analyses.

2  | RESULTS

2.1 | Sliding Window Association of CGSes with AD

Association of AD with CGSes was tested genome‐wide using sliding 
windows that were 1 kb in length, overlapping by 0.5 kb and con‐
tained at least two CGSes. These analyses, which were performed 
using SKAT‐O (Lee, Wu, & Lin, 2012), considered the combined 
effects of all CGSes in a window and weighted rare variants more 
heavily than common variants. Because the SKAT‐O window‐based 
test does not consider the effect direction of the variants in each 

window, we also tested a model including CGS dosage which was 
calculated as the total number of CpG dinucleotides created by the 
CGSes in the window. Genome‐wide analysis of 2,288,371 over‐
lapping windows each containing at least two CGSes showed little 
evidence of inflation (λ = 1.099, Figure S1). SKAT‐O and CGS dosage 
approaches provided similar results across the genome (Figure S2) 
including five distinct genome‐wide significant loci with windows 
at BIN1 (SKAT‐O p  =  1.27  ×  10−13, CGS dosage p  =  4.74  ×  10−18), 
MS4A6A (SKAT‐O p = 2.66 × 10−10, CGS dosage p = 3.40 × 10−10), 
MS4A4A (SKAT‐O p = 6.36 × 10−10, CGS dosage p = 2.67 × 10−10), 
PICALM (SKAT‐O p = 6.34 × 10−9, CGS dosage p = 1.42 × 10−9), and 
APOE (SKAT‐O p  =  2.99  ×  10−46, CGS dosage p  =  2.77  ×  10−556) 
(Table 1). Although the top windows at BIN1 and PICALM identified 
by SKAT‐O do not reach genome‐wide significance in the CGS dos‐
age test, the CGS dosage test identified significant associations with 
other windows at these loci. Windows at LRFN2‐UNC5CL and TREM2 
are genome‐wide significant with only the SKAT‐O test, whereas the 
windows at CR1 are genome‐wide significant with only the CGS dos‐
age test. All genome‐wide significant windows identified by SKAT‐O 
were replicated (Table 2).

Windows in MS4A4A and MS4A6A showed a strong nega‐
tive dosage effect of CpG dinucleotides on AD risk (change in log 
odds of AD = −0.01 and −0.02 per one unit dinucleotide increase, 
p = 2.67 × 10−10 and 3.4 × 10−10, respectively). This effect was evi‐
dent in 18 out of 24 cohorts (Figure 1). The dosage of CpG dinucleo‐
tides created by the two CGSes in the APOE window has significantly 
positive association with AD risk (change in log odds of AD = 0.2 per 
one unit dinucleotide increase, p = 2.77 × 10−556).

TA B L E  1  Top‐ranked windows associated with AD by SKAT‐O and CG dosage methodologies in discovery stage

Chr Gene Start End
N of 
CGSes

P range of 
CGSes (min, 
max) Window Pa Window Pb Beta (SE)

Common loci identified by two methods

2 BIN1 127,847,001 127,848,000 2 (1.48E−13, 
5.88E−06)

1.27E−13 2.14E−03 −0.02 (0.005)

2 BIN1 127,881,001 127,882,000 2 (2.5E−12, 
3.67E−03)

1.09E−03 4.74E−18 0.18 (0.02)

11 MS4A6A 59,923,001 59,924,000 2 (1.41E−10, 
1.25E−09)

2.66E−10 3.40E−10 −0.01 (0.002)

11 MS4A4A 60,087,501 60,088,500 2 (8.44E−12, 
1.23E−05)

6.36E−10 2.67E−10 −0.02 (0.003)

11 PICALM 85,759,501 85,760,500 2 (3.77E−05, 0.11) 6.34E−09 9.28E−05 0.01 (0.002)

11 PICALM 85,845,001 85,846,000 2 (3.77E−05, 0.11) 5.10E−02 1.42E−09 0.13 (0.02)

19 APOE 45,411,501 45,412,500 2 (<2.23e−308, 
3.56E−28)

2.99E−46 2.77E−556 0.2 (0.004)

Top loci identified by either method

1 CR1 207,737,501 207,738,500 3 (1.49E−10, 0.06) 7.01E−04 8.57E−11 −0.15 (0.02)

6 LRFN2‐UNC5CL 40,825,501 40,826,500 3 (1.38E−06, 0.90) 1.21E−08 8.00E−02 −0.01 (0.005)

6 TREM2 41,128,501 41,129,500 5 (1.34E−06, 0.92) 1.73E−08 6.80E−06 −0.08 (0.002)

aP values obtained by SKAT‐O test. 
bP values obtained by CGSes dosage test and beta represent the change in log odds of AD per 1‐unit increase in dosage of CpG dinucleotides com‐
prising the CpG‐related SNPs in the window. 
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In order to show the unique role of CGSes in these windows, 
we compared the significance level for the windows under two con‐
ditions, (a) including only CGSes and (b) including only non‐CGSes, 
which are the SNPs that do not disrupt CpG dinucleotide formation. 
As shown in Table 3, the p values of all the identified AD‐associated 
windows in Table 1 were attenuated when only non‐CGSes were in‐
cluded in the test. The number of CGSes and non‐CGSes in each 
top window differed by no more than two except for the windows 
at MS4A4A and PICALM. There is very modest LD between the top 
CGS and non‐CGS for the most of the windows except for a win‐
dow at MS4A6A (R2 = 0.98) which is 165 kb from the top window at 
MS4A4A (R2 = 0.37). The attenuation of the significance level was 
also observed at the individual SNP level for the comparisons of the 
two types of SNPs in each window, noting that the APOE region did 
not contain any non‐CGSes (Table S4).

2.2 | Association of CGSes with DNA 
methylation and gene expression

Windows containing CGSes located in MA4A4A, PICALM and APOE 
were associated (p ≤ 0.05) with the degree of DNA methylation in 
brains (Table 4); however, only the MS4A4A window was significantly 
associated in brains after correction for the 176 methylation probes 
tested for association (adjusted p = 2.15 × 10−9 at cg14750746). This 
window was also nominally associated with increased methylation in 
blood after correcting for the same 176 methylation probes (nominal TA
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F I G U R E  1  Forest plot of dose–response effect of the number of 
CpG dinucleotides created by the CGSes in the intergenic window 
close to MS4A4A on the logged odds ratio of AD. The filled square 
and horizontal line for each population or the filled diamond for the 
summary denote the estimated logged odds ratio and its 95% CI per 
unit increase in the number of CpG dinucleotides in the window
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p = 3.34 × 10−4 and adjusted p = 0.06). In addition, the number of CpG 
dinucleotides created by the CGSes in the intergenic window be‐
tween MS4A4A and MS4A6E was associated with increased expres‐
sion of MS4A4A in both brain (p = 0.03) and blood (p = 2.53 × 10−4). 
The MS4A6A window was associated with DNA methylation (ad‐
justed p  =  1.47  ×  10−7) and gene expression (p  =  5.89  ×  10−26) in 
blood, but rs12226022 was not well imputed in the ROSMAP data‐
set to test this association in brain.

2.3 | Pathway analysis at the MS4A4A window

Transcriptome analysis using RNAseq data from the Religious Order 
Study and Rush Memory and Aging Project (ROSMAP) brain sam‐
ples was performed to identify the set of genes whose expression 
is influenced by methylation of CpG site cg14750746 that was as‐
sociated with the dosage of MS4A4A CGSes (Table 4). In total, 
15,508 protein‐coding genes remained in the analysis after remov‐
ing genes expressed in less than 10% subjects. Although no genes 
remained significant after correcting for the number tests (threshold 
p = 3.2 × 10−6), there were 34 nominally associated genes (p < 5×10‐3) 
(Table S5) and pathway analysis showed enrichment in methyltrans‐
ferase activity (Table 5).

3  | DISCUSSION

Our study using a sliding‐window approach confirmed the impor‐
tance of CGS in AD and is the first to report dosage effects of CpG 
dinucleotides created by CGSes on AD risk. In particular, we iden‐
tified six windows with a significant effect of the number of CpG 
dinucleotides on AD risk, including a novel and robust dose‐depend‐
ent effect in an intergenic window located between MS4A4A and 
MS4A6E. The number of CpG dinucleotides created by the CGSes 
within this window is inversely associated with the risk of AD. The 
potential functional importance of CGSes in AD is supported by evi‐
dence showing that the significance of almost all of the top windows 
was attenuated when non‐CGSes were included instead of CGSes. 

This observation does not seem to be related to the differences in 
the number of variants or LD between CGSes and non‐CGSes.

The MS4A gene cluster encodes a family of proteins spanning 
the cellular membrane four times which share similar polypeptide 
sequence and predicted topological structure. MS4A6A expression 
in brain is positively associated with AD‐related neurofibrillary tan‐
gles and neuritic plaques (Karch et al., 2012; Martiskainen et al., 
2015). AD risk alleles at these loci were reported to be associated 
with higher expression in brain (Allen et al., 2012; Karch et al., 2012; 
Martiskainen et al., 2015). The underlying mechanism for the effects 
of MS4A genes on AD may be related to their regulation of calcium 
channels (Walshe et al., 2008), immune system (Zuccolo et al., 2013). 
Our findings of an association of the CpG dinucleotide dosage in 
this region with AD risk suggest a potential novel AD‐related mech‐
anism involving MS4A genes. Further experiments examining DNA 
methylation in the MS4A region are necessary to clarify the exact 
mechanism.

All of the loci identified in our study using a sliding‐window ap‐
proach were previously reported to be associated with AD through 
DNA methylation analyses, indicating an overlap between genetic 
and epigenetic mechanisms. For example, brain DNA methylation 
levels of CpG sites located in the top‐ranked loci have been asso‐
ciated with clinical and pathological diagnoses of AD in a sample of 
740 ROSMAP participants, many of whom are included in the ADGC 
GWAS dataset (De Jager et al., 2014). The mQTL CpG sites identified 
in our study are correlated with the previously reported (De Jager 
et al., 2014) AD‐associated CpG sites in both brain and blood (all 
p < 0.05) (Table S6), but it is unclear why the pairs of methylation 
probes in MS4A region and APOE are inversely correlated in brain 
and blood.

All of the genes identified by our analyses have been implicated 
in inflammation and the immune system. BIN1 knock‐out mice 
were shown to have higher incidence of inflammation during aging 
(Chang et al., 2007). BIN1 was also reported to be related to inflam‐
mation and immunity by its participation in the phagocytic pathway 
(Gold et al., 2004) and regulation of critical enzymes against patho‐
gens (Muller, DuHadaway, Donover, Sutanto‐Ward, & Prendergast, 

TA B L E  3   Comparisons of the top windows containing CGSes versus non‐CGSes

Chr Start End Gene

P of window N of variants
LD between CGS and non‐
CGS (R2)

CGS Non‐CGS CGS Non‐CGS

Top 
CGS and 
non‐CGS

Any pairs 
(min, max)

2 127,847,001 127,848,000 BIN1 1.27E−13 3.30E−05 2 2 0.01 (2.38E−05, 
0.01)

11 59,923,001 59,924,000 MS4A6A 2.66E−10 0.786 2 4 0.98 (8.73E−03, 
0.98)

11 60,087,501 60,088,500 MS4A4A 6.36E−10 0.029 2 9 0.37 (5.99E−04, 1)

11 85,759,501 85,760,500 PICALM 6.34E−09 0.035 2 6 0.15 (1.33E−03, 
0.24)

19 45,411,501 45,412,500 APOE 2.99E−46 NA 2 0 NA NA
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2005). Genes in the MS4A family have been shown to activate T 
cells and trigger production of inflammatory cytokines (Yan et al., 
2013). Expression of PICALM was reduced in subjects who un‐
derwent gastric bypass surgery to reverse their pro‐inflammatory 
state of obesity (Ghanim et al., 2012), and PICALM overexpression 
in vitro was found to reduce the endosomal localization of the 
mannose‐6‐phosphate receptor (M6PR) which binds to the herpes 
virus (Brunetti, Dingwell, Wale, Graham, & Johnson, 1998). It is still 
controversial whether APOE‐ε4 causes anti‐ or pro‐inflammatory 
effects, but it is generally accepted that APOE is related to inflam‐
mation (Dorey, Chang, Liu, Yang, & Zhang, 2014). Our collective 
findings suggest that DNA methylation may be a molecular mech‐
anism underlying aberrant inflammatory responses related to AD.

Our findings also suggest that the sliding‐window approach 
focused on CGSes is useful for identifying loci whose influence on 
disease risk may involve clinically relevant epigenetic mechanisms. 
In the large GWAS conducted by the International Genomics of 
Alzheimer's Project (Lambert et al., 2013), approximately 44% of the 
top AD‐associated SNPs are CGSes. However, not all of these CGSes 
were significantly associated with AD in our analysis (e.g., CGSes in 
CR1, CD2AP, and CLU; Table S1). Interestingly, none of these three 
loci were reported to have significant brain methylation changes re‐
lated to AD pathology (De Jager et al., 2014), indicating that their 
effects on AD may not involve DNA methylation.

Our study has several limitations. All the identified top windows 
for AD were previously reported loci associated with AD (Guerreiro 
et al., 2013; Jonsson et al., 2013; Lambert et al., 2013; Naj et al., 
2011). This was expected because the samples of our and previously 
published GWAS are highly overlapping. However, our study ascribes 
potential function to some of these results, especially those occur‐
ring in noncoding regions. In order to identify the relative impor‐
tance of the CGSes in the top windows compared to non‐CGSes, we 
performed conditional analysis adjusting for the top GWAS SNP. For 
all windows, the association signal for both the GWAS SNP and CpG 
dosage was attenuated when both were included in the model. In 
particular, for the intergenic window between MS4A4A and MS4A6E, 
the p‐values for both CpG dosage and the GWAS variant had similar 

reduction in significance (Table S7). The squared correlation (r2) be‐
tween the GWAS variant and the CGS with the largest influence on 
the dosage effect in MS4A4A window is 0.56. Thus, it is not possi‐
ble to conclude from the conditional analysis whether the GWAS 
variant, the window CpG dosage, or another variant in the region 
that is correlated with both of these markers, is responsible for the 
association. We did not remove CGSes in high LD, which may inflate 
the number of significant findings. However, some of these associ‐
ations may be independent because multiple adjacent methylated 
CpG sites can serve as the platform for chromatin binding proteins 
that lead to changes in chromatin state (Bartke et al., 2010). Another 
concern is that despite experimental evidence suggesting an optimal 
window size of 1kb, it is unknown whether other window sizes may 
increase power. Also, our selection of the default weights of vari‐
ants has bias toward rare variants. Finally, we observed that the CGS 
most significantly associated with AD risk also has significant mQTL 
and eQTL effects that survive regional multiple test correction but 
do not achieve genome‐wide significance.

In conclusion, we confirmed the importance of CGS in AD and 
the potential for creating a functional genetic score based on CpG 
dosage to predict disease risk. However, it is unknown whether 
these CGS signals act as causative mechanisms in AD progression. 
Further replication and mechanistic studies are necessary to validate 
these findings. Future genome‐wide mQTL and eQTL analyses may 
extend our findings.

4  | E XPERIMENTAL PROCEDURES

4.1 | Genome‐wide association analysis of CGSes 
with AD

4.1.1 | CGS annotation

CGSes were annotated as described previously (Ma et al., 2016). In 
brief, CGS information was retrieved by Galaxy (Goecks, Nekrutenko, 
Taylor, & Galaxy, 2010) from UCSC human genome browser based 
on SNP141 and human hg19 sequence data.

TA B L E  4  Association between CGSes and methylation and gene expression

Gene Position Name

Methylation of CpG site Gene expression

Brain Blood Brain Blood

Beta (SE)a P1a P2a Pb Beta (SE)a P1a P2a Beta (SE)a pa Pb Beta (SE)a pa

BIN1 127,800,646 cg00436254 −1.87E−04 (2.28E−03) 0.93 1.00 2.08E−03 −5.48E−03 (6.40E−04) 1.97E−17 5.56E−15 2.40 (2.27) 0.29 0.41 −8.40E−03 (4.15E−03) 0.04

MS4A6A 59,824,541 cg01917716 NA NA NA NA −2.91E−03 (4.72E−04) 8.13E−10 1.47E−07 NA NA NA −0.04 (3.55E−03) 5.89E−26

MS4A4A 60,101,475 cg14750746 5.60E−03 (8.11E−04) 1.22E−11 2.15E−09 0.03 −2.49E−03 (6.93E−04) 3.34E−04 0.06 0.14 (0.07) 0.03 0.07 0.09 (0.02) 2.53E−04

PICALM 85,566,560 cg15822411 −3.42E−03 (1.77E−03) 0.05 1.00 1.00 −6.97E−04 (4.10E−04) 0.09 1.00 3.14E−03 (0.41) 0.99 0.76 7.68E−03 (5.11E−03) 0.13

APOE 45,395,297 cg02613937 −9.96E−04 (4.19E−04) 0.02 1.00 0.42 −4.25E−03 (2.90E−03) 0.14 1.00 −2.93 (6.19) 0.64 0.60 6.94E−03 (6.13E−03) 0.26

aStatistics obtained from CGSes dosage tests. P1 represents uncorrected p‐values, and P2 represents Bonferroni corrected p‐values calculated by  
multiplying the number of methylation probes included in the test which are within 1Mb distance to the window. 
bStatistics obtained from SKAT‐O tests. 
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4.1.2 | Discovery stage subjects

The discovery stage included 12,181 unrelated cases and 12,601 
controls from 22 cohorts with European ancestry participating in 
the Alzheimer's Disease Genetic Consortium (ADGC) (Table S2). 

Characteristics of the ADC7 cohort are provided in the Appendix S1, 
and details of other study cohorts were previously described (Jun 
et al., 2016; Lambert et al., 2013). Studies of the individual cohorts 
were approved by the appropriate Institutional Review Boards, and 
written informed consent for all subjects was provided on behalf of 

TA B L E  4  Association between CGSes and methylation and gene expression

Gene Position Name

Methylation of CpG site Gene expression

Brain Blood Brain Blood

Beta (SE)a P1a P2a Pb Beta (SE)a P1a P2a Beta (SE)a pa Pb Beta (SE)a pa

BIN1 127,800,646 cg00436254 −1.87E−04 (2.28E−03) 0.93 1.00 2.08E−03 −5.48E−03 (6.40E−04) 1.97E−17 5.56E−15 2.40 (2.27) 0.29 0.41 −8.40E−03 (4.15E−03) 0.04

MS4A6A 59,824,541 cg01917716 NA NA NA NA −2.91E−03 (4.72E−04) 8.13E−10 1.47E−07 NA NA NA −0.04 (3.55E−03) 5.89E−26

MS4A4A 60,101,475 cg14750746 5.60E−03 (8.11E−04) 1.22E−11 2.15E−09 0.03 −2.49E−03 (6.93E−04) 3.34E−04 0.06 0.14 (0.07) 0.03 0.07 0.09 (0.02) 2.53E−04

PICALM 85,566,560 cg15822411 −3.42E−03 (1.77E−03) 0.05 1.00 1.00 −6.97E−04 (4.10E−04) 0.09 1.00 3.14E−03 (0.41) 0.99 0.76 7.68E−03 (5.11E−03) 0.13

APOE 45,395,297 cg02613937 −9.96E−04 (4.19E−04) 0.02 1.00 0.42 −4.25E−03 (2.90E−03) 0.14 1.00 −2.93 (6.19) 0.64 0.60 6.94E−03 (6.13E−03) 0.26

aStatistics obtained from CGSes dosage tests. P1 represents uncorrected p‐values, and P2 represents Bonferroni corrected p‐values calculated by  
multiplying the number of methylation probes included in the test which are within 1Mb distance to the window. 
bStatistics obtained from SKAT‐O tests. 

TA B L E  5  Enrichment of methyltransferase activities in the regulatory network of MS4A cluster‐associated CpG site (cg14750746) in 
brain using Gene Ontology (GO) terms

GO term ID GO term description P FDR

GO:0050313 sulfur dioxygenase activity 8.31E−04 0.03

GO:0008276 protein methyltransferase activity 1.19E−03 0.03

GO:0008170 N‐methyltransferase activity 1.23E−03 0.03

GO:0070905 serine binding 1.66E−03 0.03

GO:0003713 transcription coactivator activity 1.69E−03 0.03

GO:0004843 ubiquitin‐specific protease activity 2.44E−03 0.03

GO:0042799 histone methyltransferase activity (H4‐K20 specific) 2.49E−03 0.03

GO:0019783 ubiquitin‐like protein‐specific protease activity 2.95E−03 0.03

GO:0036459 ubiquitinyl hydrolase activity 3.01E−03 0.03

GO:0008234 cysteine‐type peptidase activity 8.70E−03 0.06

GO:0008139 nuclear localization sequence binding 9.11E−03 0.06

GO:0008168 methyltransferase activity 9.91E−03 0.06

GO:0016741 transferase activity, transferring one‐carbon groups 0.01 0.06

GO:0003756 protein disulfide isomerase activity 0.02 0.08

GO:0016864 intramolecular oxidoreductase activity, transposing S‐S bonds 0.02 0.08

GO:0005096 GTPase activator activity 0.02 0.08

GO:0016702 oxidoreductase activity, acting on single donors with incorporation of 
molecular oxygen, incorporation of two atoms of oxygen

0.02 0.08

GO:0016701 oxidoreductase activity, acting on single donors with incorporation of 
molecular oxygen

0.02 0.08

GO:0030695 GTPase regulator activity 0.02 0.08

GO:0005048 signal sequence binding 0.02 0.08

GO:0060589 nucleoside‐triphosphatase regulator activity 0.02 0.09

GO:0018024 histone‐lysine N‐methyltransferase activity 0.03 0.09

GO:0016278 lysine N‐methyltransferase activity 0.03 0.10

GO:0016279 protein‐lysine N‐methyltransferase activity 0.03 0.10
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themselves or for substantially cognitively impaired subjects, by a 
caregiver, legal guardian, or other proxy.

4.2 | Statistical analysis

Details of SNP genotyping and quality control are described else‐
where (Jun et al., 2016; Lambert et al., 2013). SNP genotype impu‐
tation was performed using IMPUTE2 with reference haplotypes 
from the March 2012 release of 1,000 Genomes. Principal compo‐
nent (PC) analysis was conducted using the smartpca program in 
EIGENSOFT (Patterson, Price, & Reich, 2006; Price et al., 2006) to 
evaluate population substructure within each dataset. Association 
of AD risk with CGSes was tested using a sliding‐window approach 
(Tang, Feng, Sha, & Zhang, 2009). Windows spanning 1kb were 
constructed based on evidence suggesting that sequence variants 
within 1 kb can affect the methylation status of a gene (Lienert et 
al., 2011). Consecutive windows with a 500 bp overlap were tested 
to optimize power for detection of associations and ensure a suf‐
ficient number of SNPs in each window. Thus, for example, each 
unique 2000 bp region contains three overlapping windows. CGSes 
with imputation quality (r2) ≤0.4 or genotype data available for less 
than half of the cohorts were removed. Windows with fewer than 
two CGSes were omitted from the analysis. After these filtering 
steps, 2,288,371 windows remained for association analyses.

The association of AD with the combined effects of multiple 
CGSes in each window on the risk of AD was evaluated by logistic re‐
gression using the optimal sequence kernel association test (SKAT‐O) 
(Lee et al., 2012) using R package seqMeta (https​://cran.r-proje​ct.org/
web/packa​ges/seqMe​ta/index.html) as implemented in Universal 
Genome Analyst (UGA) software (https​://github.com/rmkoe​stere​r/
uga). The fast P value calculation “integration” method was used as 
a screening tool. Windows with p ≤ 5 × 10‐4 or no reported p value 
were re‐analyzed using the “saddlepoint” method (Duchesne & de 
Micheaux, 2010). We used the default weights of the seqMeta pack‐
age to up weight the contributions from rare variants with the aim to 
identify potential novel loci. The same methodology was applied to 
the analysis of non‐CGSes. SKAT‐O is not sensitive to effect direction 
of the individual variants included in the test and thus does not pro‐
duce effect estimates. Thus, we also conducted the dose–response 
effect of the multiple CGSes in the window on AD risk using logistic 
regression. The allele that creates a CpG dinucleotide was considered 
as the effect allele and the allele that disrupts the CpG dinucleotide 
as the reference allele. The sum of the imputed dosages for multiple 
CGSes in each window was calculated and used as the exposure vari‐
able for the logistic regression model with AD status as the outcome. 
The summary statistics for regression coefficients and robust stan‐
dard errors from each cohort were meta‐analyzed using an inverse 
variance‐weighted, fixed‐effects approach implemented in METAL 
(Willer, Li, & Abecasis, 2010). Both SKAT‐O and dosage analyses were 
adjusted for age, sex, and PCs. Windows surviving Bonferroni‐cor‐
rected genome‐wide significance level (p ≤ 5 × 10−8) from both meth‐
odologies were considered. The genome‐wide summary statistics 
from the two methodologies are provided in Table S8.

4.2.1 | Replication testing

Cohort‐specific GWAS summary statistics were obtained from a 
prior AD GWAS conducted by the IGAP consortium, which includes 
7,554 unrelated cases and 27,382 controls from the Cohorts for 
Heart and Aging Research in Genomic Epidemiology (CHARGE) 
consortium, the European Alzheimer's Disease Initiative (EADI), and 
the Genetic and Environmental Risk in Alzheimer's Disease (GERAD) 
consortium (Lambert et al., 2013). The protocols and participant 
consent forms were approved by each institution. The combined ef‐
fects of multiple CGSes in each window on AD were determined 
using the GATES method, implemented in the GATES R package (Li, 
Gui, Kwan, & Sham, 2011). This method extends the Simes test to 
combine the p‐values of the SNPs within a region into an overall 
regional p value.

4.3 | mQTL Analysis

Brain mQTL was obtained for 740 subjects (mean age at 
death = 88 years, 63.6% female) from the Religious Order Study and 
Rush Memory and Aging Project (ROSMAP), and blood mQTL data 
obtained from 2,405 participants (mean age = 66 years, 54% female) 
of the Framingham Heart Study (FHS) Offspring cohort at examina‐
tion 8 were downloaded from dbGAP (Table S3). DNA methylation 
profiles for both studies were measured by the Illumina Infinium 
HumanMethylation450 BeadChip. Analyses of FHS data were con‐
ducted in two stages. A linear mixed model was used to derive the 
residuals of the DNA methylation of the probe adjusted for the im‐
puted cell types (CD8T, CD4T, NK, B‐cell, monocyte), row and col‐
umn as fixed‐effects, chip ID as a random effect at first. Then, each 
residual was regressed on the CGSes dosage in models including age 
and sex as fixed‐effects and kinship matrix as random effect to ac‐
count for familial correlation. Analyses of ROSMAP data were con‐
ducted with the linear model by adjusting the methylation batch, age 
at death, sex, post‐mortem interval, and study group (ROS or MAP), 
which was test to be the most appropriate model for the data as 
reported by De Jager et al. (2014). p‐values were adjusted using a 
Bonferroni correction for the total number of probes tested within 
each window.

4.4 | eQTL analysis

Brain RNAseq data were obtained for 580 ROSMAP subjects (mean 
age at death = 89 years, 63.3% female), and whole blood array‐based 
expression data for 5,252 FHS Offspring cohort (examination 8) and 
Generation 3 (examination 2) participants (mean age  =  55  years, 
54% female) were obtained from dbGAP (Supplementary Table 3). 
Normalized gene expression level was regressed on the sum of dos‐
ages of CpG dinucleotides in each window with covariates for age, 
sex, and the first three PCs of ancestry using a linear mixed model 
for analyses of FHS data and a general linear model for analyses of 
ROSMAP data. p‐Values were corrected for the seven tests (i.e., 7 
genes) performed.

https://cran.r-project.org/web/packages/seqMeta/index.html
https://cran.r-project.org/web/packages/seqMeta/index.html
https://github.com/rmkoesterer/uga
https://github.com/rmkoesterer/uga
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4.5 | Pathway analysis

Using the ROSMAP brain methylation and RNAseq data, we per‐
formed a genome‐wide expression‐methylation scan using a general 
linear model with the methylation of CpG site cg14750476 as the ex‐
posure variable and the normalized gene expression levels of all the 
protein‐coding genes as outcomes (n = 15,508), including the same 
covariates as in the mQTL and eQTL analyses. Genes with p < 0.005 
were included in the pathway enrichment analysis implemented 
in the software of STRINGdb (Szklarczyk et al., 2015), which con‐
ducted a hypergeometric test, using the false discovery rate (FDR) 
to correct for multiple tests (Benjamini, 1995), to query the enrich‐
ment of the input gene sets against the background gene list in Gene 
Ontology database classified as “molecular function”.
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