
Enhancing the Robustness of
Deep Neural Networks Against Security Threats

Using Radial Basis Functions

By

Matthew P. Burruss

Thesis

Submitted to the Faculty of the

Graduate School of Vanderbilt University

in partial fulfillment of the requirements

for the degree of

MASTER OF SCIENCE

in

Computer Science

May 8, 2020

Nashville, Tennessee

Approved:

Abhishek Dubey, Ph.D.

Xenofon Koutsoukos, Ph.D.

DEDICATION

To BPL, gone too soon.

ii

ACKNOWLEDGMENTS

Thank you to my advisor Abhisheky Dubey Ph.D. and colleague Shreyas Ramakr-

ishna for supporting me throughout my undergraduate career at Vanderbilt and guiding me

throughout my Master’s program. Their knowledge and professionalism throughout my

time in their lab has inspired my curiosity in computer science and pushed me to continue

to learn more about the field. I am also thankful for the Institute of Software Integrated

Systems for allowing me to be a part of the research community over the past 3 years.

I would like to thank my family, especially my parents who financially and lovingly

supported me throughout college and during this degree program. They have always been

by my side and I am forever aware and grateful of their support. I would also like to thank

my grandparents, all of which inspire me to be my best. Finally, I would like to thank all of

my friends at Vanderbilt that I have made over the past four years during my undergraduate

career and who have been an integral part of my Vanderbilt experience.

iii

TABLE OF CONTENTS

Page

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . vi

LIST OF FIGURES . vii

LIST OF ABBREVIATIONS . ix

Chapter

I Introduction . 1

I.1 A Quick Overview of Security Threats Facing Deep Neural Networks . . . 1
I.2 Major Contributions . 4
I.3 Outline . 4

II Background . 6

II.1 Deep RBF Network . 6
II.1.1 Definition . 6
II.1.2 Training a Deep RBF . 7
II.1.3 Interpreting the Deep RBF Output 7

II.2 Related Research . 8

III Out-of-Distribution Black-Box Attack Detection 11

III.1 Black-Box Physical Attack Setup . 12
III.2 Offline Out-of-Distribution Detection Results 14
III.3 Online Out-of-Distribution Detection Results 16

IV Data Poisoning Detection and Mitigation 19

IV.1 Data Poisoning Attack Setup . 19
IV.2 Explaining the Data Poisoning Results 21
IV.3 RBF Outlier Detection Method . 23
IV.4 Comparison of RBF Outlier Detection and AC Method 25

V White-Box Adversarial Attack Robustness 27

V.1 Adversarial Attack Setup . 27
V.2 Definition of Robustness . 28

iv

V.3 Evaluation of Adversarial Attacks . 30
V.4 Results of Adversarial Analysis . 30

VI Closing Remarks . 34

VI.1 Discussion and Future Work . 34
VI.2 Conclusion . 35

BIBLIOGRAPHY . 37

v

LIST OF TABLES

Table Page

III.1 The results of the online black-box physical attack performed when both
the RBF and regular DAVE-II model are deployed on DeepNNCar. . . . 18

IV.1 A summary of the DNN architectures used in the MNIST and GTSB
data poisoning attacks. 20

V.1 Each column shows the results of a particular attack where 100 adversar-
ial images were constructed by targeting first the regular model and then
the deep RBF. The RBF version of InceptionV3 is more robust than the
regular model on all of the attacks tested and also expresses a decrease
in confidence to the adversarial images 31

vi

LIST OF FIGURES

Figure Page

I.1 (Left) A simple two-layer RBF network and (right) a deep RBF network.
The simple two-layer network has a single hidden layer where the jth

RBF unit operates on the input using e−β ||X−µ j||pp and the output is a
weighted sum of the RBF units per class k ∈ {1, ...,c}. The deep RBF
network consists of a DNN feature extractor Ff eat that extracts salient
features Ff eat(x) from the input which then undergo a high dimension
`-p norm distance operation that compares Ff eat(x) to the learned class
prototypes stored in the weights of each RBF unit. The prediction is the
the prototype nearest to the extracted features. 2

III.1 The modified DAVE-II CNN architectures evaluated in the OOD online
and offline attacks. 12

III.2 The regular DAVE-II architecture predicts a steering output in the range
12 to 1 8° or right turn on the clean image (a) and -18 to -24° or left
turn on the physical attack image (b). On the other hand, the deep RBF
correctly rejects the physical attack image while classifying the clean
image between 6 to 12° or slight right turn. 13

III.3 The i′th column in the confusion matrices above represents the ground
truth label of the prediction in the j′th row, where true-positives are
defined along the diagonal i = j. Neither the DAVE-II architecture (a)
nor the deep RBF (b) violate the bound ŷi > 1± yi on the clean test data
set (n = 908). This bound is the basis for the dangerous criteria with
which we evaluate the OOD data detection mechanism. 14

III.4 A significant shift (p < 0.0001) was discovered in the distribution of the
rejection class for the clean data (µ = 0.33,σ = 0.049,n = 908) and the
distribution of the offline physical attack data (µ = 0.817,σ = 0.096,n=
120) for the deep RBF version of DAVE-II. 15

III.5 The deep RBF’s rejection class confidence increases as the α-value con-
trolling the opacity of the anomaly increases for the 6 classes targeted
by the physical attack while the standard deviation of the confidence
decreases. 16

III.6 The physical attack caused DeepNNCar to crash when being controlled
by the regular DAVE-II model; however the deep RBF was able to catch
the physical anomaly and safely stop. 17

vii

IV.1 Examples of poisoned backdoor instances. 20

IV.2 The accuracy of fm1, fm2, and fm3 on the backdoor MNIST test images
(top left) as well as the overall accuracy on the test data (top right). The
bottom row graphs show the same data but for fg1 and fg2 on the GTSB
poisoning attack. The RBF models are less susceptible to data poisoning
attacks as a result of learning strict representations of the feature-space
that aids in generalization. 21

IV.3 The performance of the RBF outlier detection method is effective as
long as the number of poisoned samples is insignificant; however, if the
attacker has access to a large amount of the training data then the AC
method is preferred. 24

IV.4 The stacked bar charts compare the AC method using K-means (nc = 2)
and PCA (|D| = 10) with the RBF outlier detection method (β = 1.72)
and show the number of true positives, true negatives, and false positives
based on the method labeling each training sample as poisoned or clean.
When there is a significant amount of poisoned data the AC method
outperforms our method; however, if the number of poisoning data is
sparse, the RBF outlier detection method is preferred due to the high
number of false positives that the AC method produces. 25

V.1 FGSM was used to target the RBF and regular InceptionV3 models and
produce adversarial images. The top row in every pair represents the
clean image and the bottom row represents the adversarial image. Each
column shows an example image from a batch (n=100) where the mean
and standard deviation of the distortion measure DM of the batch are
recorded at the top of each column. 29

V.2 (Top) The accuracy of the deep RBF and regular InceptionV3 model for
both the direct FGSM attack, transfer FGSM attack, and random noise
attack as a function of the mean distortion of the adversarial batch (each
mark corresponds to a trial with a batch (n=100) selected uniformly at
random from the test data set). (Bottom) The rejection class confidence
of the RBF model for the clean and adversarial data. 32

viii

LIST OF ABBREVIATIONS

AC Activation Clustering

API Application Programming Interface

DNN Convolutional Neural Network

DNN Deep Neural Networks

GTSB German Traffic Sign Benchmark (Data Set)

LEC Learning Enabled Components

OOD Out-of-Distribution

RBF Radial Basis Function

ix

CHAPTER I

Introduction

I.1 A Quick Overview of Security Threats Facing Deep Neural Networks

Today, Cyber-Physical Systems (CPS) have started to rely on learning enabled com-

ponents (LECs) as part of the control loop in autonomous tasks. Commonly, machine

learning approaches like deep neural networks (DNNs) are used as LECs due to their suc-

cess in a variety of complicated tasks [1]. For example, NVIDIA’s DAVE-II convolutional

neural network (CNN) architecture has been used as an LEC to provide steering controls

for autonomous vehicles [2]. Tesla’s autonomous driving has also recently completed 2

billion driving miles [3] using several LECs to perform object detection and image seg-

mentation [4]. Additionally, DNNs have been used in aircraft collision systems to reduce

the policy search [5]. However, despite the success of DNNs as LECs, it is still difficult

to assure their correctness. For example, in 2016 a fatal incident occurred when Tesla au-

topilot failed to recognize an incoming trailer and crashed [6]. Additionally concerning are

the plethora of algorithms that could target a CPS system by exploiting a corner case [7],

poisoning the underlying DNN [8], or producing adversarial instances [9].

Typically, algorithms to produce these security threats differ in their goal and knowl-

edge of the DNN [9]. For example, an attack can be non-targeted to induce a general

misprediction or targeted to induce a misprediction of a particular label. A white-box at-

tack has access to the model architecture and may be able to adjust model parameters or

modify the training procedure whereas a black-box attack has no knowledge or access to

the base DNN. Black-box attacks instead rely on the transferability of an attack from one

DNN to another or exploiting a known corner case to accomplish their goals [10]. Finally,

security threats can be an intentional result of an attack or an unintentional result of the

environment e.g. out-of-distribution (OOD) data.

1

OOD data or anomalies pose a risk to CPS by potentially causing the LEC to behave

unexpectedly. This type of vulnerability was partly responsible for the fatal Tesla 2016

crash. In the most extreme case, when fed an unrecognizable image, like random noise, a

DNN may respond with a consistent high-confidence prediction [11]. There are, however,

more realistic OOD examples. For example, in the self-driving simulator CARLA, it was

experimentally shown that a shadow resembling a lane that is projected across a road can

induce crash scenarios [7]. This type attack can be referred to as a black-box physical

attack and is successful mainly due to the fact that DNNs are unable to reliably lower their

confidence to the OOD data [11]. However, simple two-layer radial basis function (RBF)

networks (see Figure I.1) require a dense amount of highly activated features to make a

confident prediction and can therefore reliably reject anomalies [10]. We hypothesize that

a deep RBF classifier can use this property to successfully reject real-time anomalies like

those shown on the CARLA simulator.

Figure I.1: (Left) A simple two-layer RBF network and (right) a deep RBF network. The simple
two-layer network has a single hidden layer where the jth RBF unit operates on the input using
e−β ||X−µ j||pp and the output is a weighted sum of the RBF units per class k ∈ {1, ...,c}. The deep
RBF network consists of a DNN feature extractor Ff eat that extracts salient features Ff eat(x) from
the input which then undergo a high dimension `-p norm distance operation that compares Ff eat(x)
to the learned class prototypes stored in the weights of each RBF unit. The prediction is the the
prototype nearest to the extracted features.

A newer and even more pervasive threat to DNNs is a data poisoning attack where an

attacker modifies the training procedure, alters the model’s logic, or manipulates labels in

2

the training data set to encode a backdoor key that can be exploited in production. For

example one data poisoning attack on a facial recognition system allowed an individual to

impersonate another by simply wearing sunglasses [12]. Poisoning attacks mainly pose a

threat to the training pipeline as data sets are often pulled from an unreliable online source

or models are pretrained using unknown weights [13]. The most popular data poisoning at-

tacks focus on injecting poisoned samples into the training data set by encoding a backdoor

key into a clean image and manipulating the ground truth label so that when the backdoor

key is present in a test image the poison target label will be predicted [12]. Concerningly,

a poisoned model may succumb to the attack while maintaining high confidence on clean

data. However, we show that deep RBFs can generalize better than regular DNNs due to

their strict encoding of the feature space of the data and are therefore harder to attack by

a poisoning attack. This discovery combined with the deep RBF’s ability to reduce its

confidence to anomalous data is the basis for our RBF outlier detection method which can

effectively clean a sparsely poisoned data set without relying on a verified, clean data set.

Finally, adversarial attacks add imperceptible non-random perturbations to an input to

cause high-confidence mispredictions [14]. Adversarial examples exploit the linear prop-

erty of DNNs rather than their non-linearity. For example, the Fast Gradient Sign Method

produces adversarial images by linearizing the loss function in `∞ neighbourhood and solv-

ing a closed form equation to generate an adversarial image [10]. Since this initial discov-

ery, several other powerful white-box algorithms have been proposed to generate adversar-

ial instances [9,10,15–17]. Not only can these attacks generalize as black-box attacks [10],

but advanced attacks like the Carlini & Wagner attack can adapt to and evade defense mech-

anisms [18]. Two-layer RBF networks are known to be resistant to adversarial images in

that they respond to adversarial images with a decrease in confidence [10]. However, two-

layer RBF networks lack the capacity to generalize to complicated tasks. Only, recently

has it been shown that a deep RBF can be successfully trained on MNIST data set [19];

however, to the best of our knowledge it has yet to be shown whether or not a non-trivial

3

example of a deep RBF is robust to adversarial attacks; therefore, in order to argue that a

deep RBF can be used in CPS we extend the evaluation on adversarial attacks on non-trivial

examples.

I.2 Major Contributions

We address the security concerns threatening LECs that use DNNs, specifically OOD

black-box physical attacks, white-box adversarial attacks, and data poisoning attacks, through

the following contributions:

1. A scalable and real-time OOD black-box physical attack detection mechanism im-

plemented on an end-to-end autonomous RC vehicle utilizing a deep RBF to simul-

taneously provide steering angles and a rejection class.

2. Experimental evidence and theoretical discussion on why a deep RBF is less suscep-

tible to a data poisoning attack than a traditional softmax classifier.

3. A novel RBF outlier detection method which can be used to clean a sparsely poisoned

data set without relying on a verified, clean data set.

4. An analysis of the robustness of a production-grade deep RBF classifier on a non-

trivial task against a variety of state-of-the-art white-box adversarial attacks to show

that deep RBFs can viably be used in CPS systems.

I.3 Outline

Chapter II explains how to design a deep RBF. Section II.2 discusses the state-of-the-art

defense mechanisms to defend against the previously introduced security threats. Chap-

ter III explains and evaluates the integrated OOD black-box attack detection mechanism

offline and online using the DeepNNCar autonomous RC car testbed. Chapter IV describes

two data poisoning attacks to explain why deep RBFs are less susceptible than traditional

DNNs and compares our novel RBF outlier detection mechanism to the state-of-the-art

4

data poisoning cleaning method. Chapter V evaluates a production-grade deep RBF on a

variety of white-box adversarial attacks and compare its robustness to a regular DNN. Sec-

tion VI.1 summarizes the findings and describes potential areas of future work using deep

RBFs. Finally, our conclusions are presented in Section VI.2.

5

CHAPTER II

Background

II.1 Deep RBF Network

In its simplest form, a RBF network is a two-layer neural network with a single fully-

connected hidden layer and an output layer that uses RBFs as the activation function. The

following section defines deep RBFs based on previous work [19].

II.1.1 Definition

A RBF is a real-valued function that measures the distance of an input x to some pro-

totype vector. The similarity measure can be captured in the following definition of a RBF

unit using `p-norm distance where A ∈ Rn×l , b ∈ Rl , x ∈ Rn and l ≤ n [19].

φ(x) = (||AT x+b||p)p (II.1)

In the context of deep learning, RBF units can be applied to the high-level features f (x)

extracted by the model from the raw input x in order to classify the input into k classes such

that k ∈ {1, ..,c}. Using the Euclidean metric and allowing A = In, the deep-RBF unit is

defined as follows

φk(x) = (|| f (x)−Wk||2)2 (II.2)

where Wk ∈R| f (x)| is a trainable weight vector intuitively representing the learned prototype

of class k. A prediction is therefore the prototype nearest to the input. We have found that

in practice, applying hyperbolic tangent function to the features f (x) preceding the RBF

layer and randomly initializing W ∈ [−1,1] achieves sufficient model performance.

6

II.1.2 Training a Deep RBF

A metrics-learning inspired loss function named SoftML has been proposed to avoid the

vanishing gradient problem of deep RBFs [19].

JSo f tML =
N

∑
i=1

(φyi(x
(i))+ ∑

j 6∈yi

log(1+ e(λ−φyi(x
(i))))) (II.3)

where yi is the correct class of input x(i). We select λ = 0.5 because it has been previously

noted that λ has little effect on convergence [19].

II.1.3 Interpreting the Deep RBF Output

Advantageously, it was shown that Eq. II.3 can be interpreted as the negative log-

likelihood [19]. Therefore, the outputs can be interpreted as non-normalized probabilities

following the transformation below.

P(y = k|x) = e−φk(x)(1+ eλ−φk(x))

∏ j(1+ eλ−φk(x))
, k ∈ {1,2, ...,c} (II.4)

As such, a rejection class k = 0 can then be defined to capture the probability that x belongs

to no class in {1,2, ...,c}.

P(y = c+1|x) = 1
∏ j(1+ eλ−φk(x))

(II.5)

Therefore, a prediction of a deep RBF is defined such that

ŷ(x) = argmax
k∈{1,...,c+1}

P(y = k|x) (II.6)

where the rejection class can be optionally included depending on the task at hand. For

example, when presented with OOD data we use the rejection class to detect the anomaly;

however, in the data poisoning experiments we ignore the rejection class in favor of using

7

the confidence assigned to the ground truth (potentially altered) label to detect a poisoned

instance.

II.2 Related Research

We now consider related work in defending adversarial attacks, OOD data, and data

poisoning attacks. Various defenses have been proposed to combat these threats against

DNNs, yet to the best of our knowledge, no single defense mechanism has been able to

generalize across the different attack types and be incorporated directly into the DNN ar-

chitecture without significantly affecting the model’s accuracy. We now briefly explore the

current state-of-the-art methods of defending against these threats.

Defenses to mitigate adversarial attacks generally rely on input transformations, gra-

dient masking, or adversarial training. Input transformations (preprocessing) methods use

the intuition that an adversarial attack perturbs a clean image. Typically, these techniques

denoise or capture the salient features of the image (e.g. denoising autoencoder or JPEG

compression [20,21]). The biggest criticism of input transformation techniques is that they

introduce an accuracy-robustness trade-off on clean images. Gradient masking techniques

make the gradient non-differentiable or force it to zero to prevent adverse responses to

small changes in the input. For example, defense distillation [22] trains a robust model on

the predictions of a trained model, rather than the actual labels, using the class probabilities

to enhance its generalization. However, the adaptive Carlini & Wagner attack [17], which

iteratively uses various parameterizations to generate adversarial inputs, was shown to by-

pass this defense [23]. Finally, adversarial training methods augment the training data set

with adversarial instances, effectively learning gradient masking [10,14]. Although simple,

this method is unable to scale to new attacks.

Other adversarial defense mechanisms have focused on detection instead of mitigation.

Examples include training an adversarial detector [24], analyzing the activation artifacts

for outliers [25], or comparing the prediction of the adversarial image to a fabricated input

8

that captures the salient features of the clean image (e.g. feature squeezing) [26]. Besides

feature squeezing, these other detection technique have been shown to also fail the Carlini

& Wagner attack when the attack is properly tuned [27]. Deep RBFs are most similar to

detection methods in that they can decrease their confidence to adversarial images [10].

Previous work has been done on training a deep RBF on the trivial MNIST data set [19] to

shows that the network can reliably reject adversarial images [28]. We extend this work to

analyze a deep RBF in a non-trivial task which we find necessary to show that the robust-

ness scales with the model’s size and can be used in CPS.

Defense mechanisms for OOD data have largely focused on detecting, rejecting, or

mitigating these anomalies. For example DeepXplore is a white-box framework that first

detects potential corner cases in the model by analyzing neuron coverage of the training dis-

tribution and then fabricates patches for the problem [29]. This method makes the strong

assumption, however, that high neuron coverage eliminates corner cases. Furthermore, this

method is offline. Other approaches involve using a diversified ensemble method in which

the output of a diverse set of models are averaged to increase the reliability of the predic-

tion [30]; however ensemble approaches typically require longer training time and more

computational resources. Our work is most similar to outlier detection methods which

have previously relied on clustering of the training space [31] or higher level feature space

partitioning to discover outliers or areas of the network that lack sufficient training [32].

Autoencoder anomaly detectors have also been proposed, relying on the latent space rep-

resentation of the input to perform anomaly detection [33, 34]. A disadvantage of these

detection techniques is that they are not integrated into the model’s architecture and must

work outside the base model. The RBF rejection class however is computed alongside the

class probabilities and can thus more readily be used in CPS. Furthermore, the RBF tech-

nique scales in dynamic environments because it is able to learn the rejection class without

specifying a particular label during training.

Data poisoning defense methods often focus on detecting the poisoned data and either

9

mitigating the attack or removing the poisoned sample. Previous work focused on outlier

detection; however, such methods rely on a clean data set in order to work effectively [35].

Currently to the best of our knowledge, there is only one proposed defense mechanism that

is able to clean a poisoned data set without relying on a certified clean data set. This acti-

vation clustering (AC) method relies on k-means clustering of the activations of the DNN’s

penultimate layer following a dimensionality reduction [36]. However, this method has a

large number of hyper-parameters (e.g. the number of clusters, dimensions to reduce, and

the choice of the dimensionality reduction and clustering technique) and assumes that a

significant portion of the data set has been poisoned in order to have discriminative clus-

ters. In the realistic scenario where we have a sparsely poisoned data set (<10%) [13] this

assumption fails and the AC method has a large false-positive rate which can reduce the

model’s baseline accuracy and increase the potential number of corner cases. Our intuition

is that a deep RBF trained on a sparsely poisoned data set will lower its confidence of the

(poisoned) target label due to the presence of the clean images features in the poisoned

image allowing the deep RBF to create a discriminative ordering of the clean and poisoned

data. In later sections, we validate this hypothesis by showing that a deep RBF is less

susceptible to data poisoning attacks and then compare our RBF outlier detection method

directly to the AC method.

10

CHAPTER III

Out-of-Distribution Black-Box Attack Detection

OOD data can be detrimental to CPS systems. For example, these anomalies can cause

self-driving cars to misclassify road signs [37] or even crash from the presence of tire-like

marks on a road [7]. However, deep RBFs are able to decrease their confidence in response

to anomalies due to their strict class prototype representations. We explore the sensitivity

of this response and in particular use the rejection class defined in Eq. II.5 to show that

NVIDIA’s DAVE-II architecture [2] can be re-formulated as a deep RBF to detect an OOD

black-box physical attack similar to that described by [7] in which black lines drawn on the

input space (images of a road) induce a crash scenario. We then implement this attack on

an end-to-end autonomous RC vehicle known as DeepNNCar [38] to analyze the defense

mechanism online.

DeepNNCar is a testbed for autonomous algorithms built on the chassis of the Traxxas

Slash 2WD 1/10 RC car and computationally powered by a Raspberry Pi 3 [39]. The

sensors on the vehicle include a camera to collect RGB images (320x240x3 @ 30 FPS)

and a slot-type IR opto-coupler sensor attached near the rear wheel to measure the RPM

and compute speed. DeepNNCar can be wirelessly controlled to collect training data or

deployed with a learning algorithm like an end-to-end DNN model.

We use a data set collected by DeepNNCar in the following section to perform the

offline attack and then deploy a model on DeepNNCar to perform the online attack. In

the offline attack, image processing techniques are used to design the attack whereas in the

online attack, a physical black lane is placed across the track to emulate tire marks, debris,

or a shadow on the road that may induce a misprediction.

11

III.1 Black-Box Physical Attack Setup

NVIDIA’s DAVE-II model uses normalized 66x200x3 images collected by a frontward

facing camera to steer a self-driving vehicle. The DeepNNCar data set (n = 6000) which

was originally designed for a regression task is discretized into 10 categories based on the

ground truth steering label to convert the task into a classification task and then randomly

split 70/15/15% into training, testing, and validation. Each discretized class represents a

range of 6°, allowing DeepNNCar to turn discretely between -30° (sharp left, yi = 0) and

30° (sharp right, yi = 9) from its forward facing direction.

Input

66x200x3

Conv1 Conv2 Conv3

Conv4 Conv5

24@(5,5) 36@(5,5) 48@(5,5)
64@(3,3)

64@(3,3)

FC6

FC7

FC8

FC9 FC10

Steering

1164
100

100
10 10

DAVE-II	Softmax	Classifier

Input

66x200x3

Conv1 Conv2 Conv3

Conv4 Conv5

24@(5,5) 36@(5,5) 48@(5,5)
64@(3,3)

64@(3,3)

RBF	Anomaly	Detector

RBF6

Steering

10

Rejection

Figure III.1: The modified DAVE-II CNN architectures evaluated in the OOD online and offline
attacks.

Figure III.1 summarizes the two architectures evaluated on the physical attack. The

regular DAVE-II regression architecture is converted into a classification network (k=10)

by adding 10 fully connected neurons to the last layer followed by softmax activation. The

deep RBF classifier is designed by adding a hyperbolic tangent activation layer following

the convolutional layers of the DAVE-II architecture and replacing the fully connected

layers with an RBF layer. The DAVE-II classifier and its RBF counterpart are both trained

for 150 epochs using the default parameters of the Adam optimizer [40] and respectively

categorical cross-entropy and softML loss.

The black-box physical attack is inspired by [7] and first performed offline using image

12

(a) Clean Image (b) Physical Attack

Figure III.2: The regular DAVE-II architecture predicts a steering output in the range 12 to 1 8° or
right turn on the clean image (a) and -18 to -24° or left turn on the physical attack image (b). On
the other hand, the deep RBF correctly rejects the physical attack image while classifying the clean
image between 6 to 12° or slight right turn.

processing to draw a potentially dangerous black “lane-like” marks on 120 clean test im-

ages selected randomly but equally from every class yi ∈ {0,1,2,7,8,9} which represents

left and right steering controls. For yi ∈ {0,1,2} we draw the lane leading diagonally right

with some jitter and for yi ∈ {7,8,9} we draw the lane leading diagonally left with some

jitter. Figure III.2 shows an example of the physical attack conducted offline where yi = 7.

We denote a successful attack on the regular DAVE-II model and deep RBF model based

on the dangerous criteria defined below by a boolean statement.

dangerous criteria =

ŷi > 1± yi fθ = REG

ŷi > 1± yi∧¬re ject fθ = RBF

where fθ specifies which trained model is currently being attacked. The dangerous criteria

is selected because neither model fθ violated the bound ŷi > 1± yi on the clean test data

set when the rejection class was ignored for the deep RBF as shown by the confusion

matrices in Figure III.3. Furthermore, this criteria allows the deep RBF to reject the point

anomalies per Eq. II.5 and II.6. The criteria ensures that the deep RBF’s prediction is

deemed dangerous if the prediction is off by more than one of the true class and the RBF

fails to reject the class. Because of the rejection class, a false-positive can occur for the RBF

whenever ŷi ≤ 1±yi∧+re ject or when the prediction otherwise would’ve been considered

safe but the RBF model rejects the input.

To provide a baseline comparison, we assess each model on the clean test data (n= 908)

13

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.87 0.13 0 0 0 0 0 0 0 0

0.01 0.88 0.11 0 0 0 0 0 0 0

0 0.06 0.84 0.1 0 0 0 0 0 0

0 0 0.06 0.86 0.08 0 0 0 0 0

0 0 0 0.13 0.73 0.13 0 0 0 0

0 0 0 0 0.09 0.89 0.02 0 0 0

0 0 0 0 0 0.04 0.9 0.07 0 0

0 0 0 0 0 0 0.06 0.86 0.07 0

0 0 0 0 0 0 0 0.21 0.74 0.05

0 0 0 0 0 0 0 0 0.1 0.9
0.00

0.15

0.30

0.45

0.60

0.75

0.90

(a) Regular DAVE-II Confusion Ma-
trix

0 1 2 3 4 5 6 7 8 9

0
1

2
3

4
5

6
7

8
9

0.74 0.26 0 0 0 0 0 0 0 0

0 0.89 0.11 0 0 0 0 0 0 0

0 0.11 0.75 0.14 0 0 0 0 0 0

0 0 0.06 0.83 0.1 0.01 0 0 0 0

0 0 0 0.18 0.71 0.11 0 0 0 0

0 0 0 0 0.11 0.79 0.1 0 0 0

0 0 0 0 0 0.12 0.86 0.03 0 0

0 0 0 0 0 0 0.22 0.76 0.03 0

0 0 0 0 0 0 0 0.39 0.52 0.09

0 0 0 0 0 0 0 0 0.1 0.9
0.00

0.15

0.30

0.45

0.60

0.75

0.90

(b) RBF DAVE-II Confusion Matrix

Figure III.3: The i′th column in the confusion matrices above represents the ground truth label of
the prediction in the j′th row, where true-positives are defined along the diagonal i = j. Neither the
DAVE-II architecture (a) nor the deep RBF (b) violate the bound ŷi > 1± yi on the clean test data
set (n = 908). This bound is the basis for the dangerous criteria with which we evaluate the OOD
data detection mechanism.

using the dangerous criteria. On the clean data, neither model had a dangerous prediction,

although the deep RBF had a false-positive rejection rate of 0.25. However, this can likely

be reduced by data augmentation, increasing model capacity, or adjusting training hyperpa-

rameters to improve the model’s accuracy on clean data. Furthermore, one can add an addi-

tional threshold γ such that we only accept the rejection class whenever P(k = c+1|x)> γ;

otherwise we only consider the probability scores for classes {1, ...,c}. In the online at-

tack, we use γ = 0.6 which covers the tail end of the rejection class confidence for both the

clean and OOD data (see Figure III.4). We believe this method of using an offline attack

to threshold the online attack could be useful in experimentally determining a good thresh-

old to reduce false positives in an online scenario. On the offline attack, we do not use a

threshold.

III.2 Offline Out-of-Distribution Detection Results

The regular DAVE-II architecture and the deep RBF are now evaluated offline on the

OOD black-box attack. For the regular DAVE-II classifier, the prediction was deemed

14

dangerous 50% of the time according to the dangerous criteria. Closer analysis of the

predictions on the physically manipulated images reveals that the model always predicts a

sharp left turn (ŷi ∈ {0,1}) even when the drawn anomaly leads to the right. These results

align with previous findings that point anomalies can result in consistent, high confidence

misclassifications [11]. On the other hand, the dangerous criteria rate for the deep RBF

classifier was 0.0 because the deep RBF was able to successfully reject the anomalous

images. Without the rejection criteria, the deep RBF classifier would have predicted an

unsafe situation 89% of the time due to the physical attack.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Rejection Confidence

0

2

4

6

8

10

De
ns
ity

DAVE-II RBF Rejection Class Confidence

Clean Data
OOD Data

Figure III.4: A significant shift (p < 0.0001) was discovered in the distribution of the rejection
class for the clean data (µ = 0.33,σ = 0.049,n = 908) and the distribution of the offline physical
attack data (µ = 0.817,σ = 0.096,n = 120) for the deep RBF version of DAVE-II.

In comparison to the clean test data, Figure III.4 shows how the deep RBF exhibited a

significant shift (p<0.001) in the confidence of the rejection class for the physical attack

data. To further analyze the sensitivity of the deep RBF’s rejection confidence, we drew

the “fake lane” on the clean image with various opacities controlled by an α value where

α ∈ [0,1]. Figure III.5 shows the sensitivity of the rejection class confidence for the six

classes that the physical attack targeted. The results show a generally increasing S-shaped

curve with inflection points in the range α ∈ [0.30.45]. As the anomaly becomes more

present in the clean image the standard deviation of the confidence also decreases. Figure

15

III.5 also reveals that the deep RBF was more sensitive to anomalies when the ground truth

indicated a right turn rather than a left turn. This provides a informal explanation as to

why the regular DAVE-II model consistently predicted a sharp left turn when presented

with the OOD data. The lack of sensitivity to the left turns is indicative of a poor relative

understanding of the feature-space encoding of left turns, likely caused by inaccurate or

insufficient data covering those classes. Therefore, it is likely that corner cases could exist

that cause the regular model erroneously predict left turns.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Av
er
ag

e
Co

nf
id
en

ce
 o
f R

ej
ec
tio

n
Cl
as
s

Effects of Increasing the Opacity of the Anomaly

Ground Truth
0
1
2
7
8
9

Figure III.5: The deep RBF’s rejection class confidence increases as the α-value controlling the
opacity of the anomaly increases for the 6 classes targeted by the physical attack while the standard
deviation of the confidence decreases.

III.3 Online Out-of-Distribution Detection Results

We now replicate the attack on the DeepNNCar physical test bed and use the rejection

class of the deep RBF to detect the anomaly in real-time. The online physical attack is

performed by placing an adversarial lane across the track as seen in Figure III.6. We place

the adversarial lane at four distinct sections of the track (a left, a straight leading to a left, a

right, and a straight leading to a right) at various angles θ off the line that perpendicularly

intersects the track such that θ ∈ {−30,0,30}. For each trial, we approach the lane at a con-

stant speed and record the number of times a crash occurs for the regular DAVE-II model

compared to the deep RBF model. For the deep RBF, we introduce a rejection acceptance

16

threshold of γ = 0.6 to reduce false positives, noting that a higher threshold will increase the

number of false negative. DeepNNCar is instructed to stop when using the deep RBF when

P(k = c+1|x)> γ . Sample videos of a left and right turn trial run for both models can be

found at https://drive.google.com/open?id=10Ek4SH2mBVL-M8pUb7pH-dT qGDcblDs.

(a) DAVE-II Deployed (b) Deep RBF Deployed

Figure III.6: The physical attack caused DeepNNCar to crash when being controlled by the regular
DAVE-II model; however the deep RBF was able to catch the physical anomaly and safely stop.

The results of the offline physical attack can be found in Table III.1. Because the DAVE-

II model is an end-to-end black box DNN, we consider four scenarios to evaluate the results

of the 12 trials. A crash is when DeepNNCar completely leaves the lane; a partial crash

is when DeepNNCar partially leaves the lane but recovers; a successful navigation is when

DeepNNCar does not leave the lane; and in the case of the deep RBF, a safe stop is when

the rejection class triggers DeepNNCar to safely stop before the physical attack.

In the online attack, we see the regular DAVE-II model consistently follows the track

and crashes several times; however, the deep RBF model is able to often safely reject the

physical attack and execute the stop action. In the scenarios that the deep RBF did not

reject the physical attack, we see that it never encountered a crash scenario. Furthermore,

the inference time of the deep RBF is lower than the regular model. This is because the

deep RBF has fewer operations to perform following the convolutional blocks; however

it shows that the transformations required to compute the class probabilities and rejection

class can be computed simultaneously in real-time.

In summary, the rejection class allowed for real-time attack detection and response that

prevented DeepNNCar from crashing. In the online experiments, the response to a rejection

17

https://drive.google.com/open?id=10Ek4SH2mBVL-M8pUb7pH-dT_qGDcblDs

Table III.1: The results of the online black-box physical attack performed when both the RBF and
regular DAVE-II model are deployed on DeepNNCar.

RBF DAVE-II REG DAVE-II
Crash 0 5
Partial Crash 2 3
Successful Navigation 3 4
Safe Stop NA 7
Inference Time (ms) 44±11 63±17

was to simply stop DeepNNCar. In practice, a CPS system can use the rejection class to

alert a human operator to take control or fix the anomaly post-hoc by partially re-training

the model offline with the anomaly. Additionally, after detecting the anomaly the end-to-

end system possible could hand the controls to a safety guaranteed simplex architecture [38]

which could allow for a more complex, yet still autonomous safety response.

18

CHAPTER IV

Data Poisoning Detection and Mitigation

We now consider the data poisoning security threat. Data poisoning attacks modify

the training procedure to allow the attacker to exploit the adversarial DNN. It is typically

assumed the attacker has limited influence on the training procedure and access to a small,

fixed portion of the data set. We adapt the popular injected pattern-key attack where the

labels of the training data set are altered whenever a backdoor key is encoded into the

training input, allowing the attacker to exploit the attack by encoding the backdoor key

into a test instance [12] [13]. This section first describes experimental evidence that RBFs

are less susceptible to data poisoning attacks than regular classifiers and then provides a

theoretical discussion as to why this is the case. The theoretical discussion is motivation

for our novel RBF outlier detection method to clean a sparsely poisoned training data set

without relying on a verified clean data set. The first poisoning attack we evaluate is a toy

rotating-label attack performed on the MNIST hand-written digit recognition task (k=10)

[28]. The second poisoning attack is a targeted label attack performed on the German

Traffic Sign Benchmark (GTSB) data set (k=43) that attempts to cause a DNN to predict a

road sign as 80 km/hr whenever a backdoor key similar to a post-it note is encoded in the

input [41].

IV.1 Data Poisoning Attack Setup

To poison the MNIST data set, we (1) uniformly at random select np instances from

Xtrain, (2) add the pattern-key shown in Figure IV.1b and (3) rotate the label such that

yi = (yi + 1)%10. To poison the GTSB data set we (1) uniformly at random select np

instances outside of the 80 km/h class, (2) add a yellow, post-it like note at a random

location in the image shown in Figure IV.1d, and (3) change the instance label to that of

the 80 km/h road sign. A poisoning attack is successful if a model predicts non-poisoned

19

images as their ground truth and poisoned images as the modified label.

(a) MNIST Clean (b) MNIST Poison (c) GTSB Clean (d) GTSB Poison

Figure IV.1: Examples of poisoned backdoor instances.

For the MNIST data poisoning attack, we train three CNN models fm1, fm2, and fm3.

Table IV.1 summarizes the model’s architectures. The major differences between the three

models is that after the convolutional blocks fm1 performs classification using two fully-

connected layers followed by softmax activation; fm2 uses one fully-connected layer fol-

lowed by one RBF layer; and fm3 uses one RBF layer. This is to explore the effects of the

fully-connected layer in a rotating-label attack. For each poisoning attack, the models are

trained on the poisoned data set (n=60000) for 10 epochs and evaluated on the test data set

which always includes 9000 clean instances and 1000 random backdoor instances.

Table IV.1: A summary of the DNN architectures used in the MNIST and GTSB data poisoning
attacks.

Model Architecture

MNIST
Poisoning

Attack

fm1
2 conv-pool-ReLU blocks,
2 fully-connected layers,
softmax activation

fm2

2 conv-pool-ReLU blocks,
1 fully-connected layer,
1 RBF layer

fm3

2 conv-pool-ReLU blocks,
1 fully-connected layer,
1 RBF layer

GTSB
Poisoning

Attack

fg1

ResNet20:
20 CNN layers with
residual connections,
1 fully-connected layer,
softmax activation

fg2

Modified ResNet20:
20 CNN layers with
residual connections,
1 RBF layer

20

For the GTSB data poisoning attack, we train two models. The first model fg1 uses

the ResNet20 [42] to classify the 43 German road signs. The second model fg2 is a deep

RBF that uses the same ResNet20 architecture but replaces the final fully-connected layer

with an RBF layer preceded by hyperbolic tangent function. Both models are trained on

the poisoned data set (n=39209) for 10 epochs and evaluated on 11430 clean test images

and 1200 backdoor instances. The RBF networks are trained using the SoftML loss and the

regular classifiers are trained using categorical cross-entropy. All models are trained using

the Adam optimizer with default parameters.

IV.2 Explaining the Data Poisoning Results

We now evaluate the susceptibility of the deep RBFs on the data poisoning attacks by

adjusting the number of poisoned samples np in the training data set. We then use the

findings summarized in Figure IV.2 to explain why deep RBFs are less susceptible to data

poisoning attacks than regular DNN classifiers.

0.09 0.17 0.35 0.53 0.7
Percentage of Class 'Speed Limit (80 km/h)' Poisoned

0.000
0.111
0.222
0.333
0.444
0.556
0.667
0.778
0.889
1.000

Ac
cu

ra
cy

GTSB Backdoor Success (n=1200)
Models

fg1
fg2

0.09 0.17 0.35 0.53 0.7
Percentage of Class 'Speed Limit (80 km/h)' Poisoned

0.000
0.111
0.222
0.333
0.444
0.556
0.667
0.778
0.889
1.000

Ac
cu

ra
cy

GTSB Test Accuracy (N=12630, Clean=11630, Poison=1200)

0.03 0.04 0.05 0.06 0.07 0.08 0.1 0.13 0.15 0.25
Percentage of Training Data Poisoned

0.000
0.111
0.222
0.333
0.444
0.556
0.667
0.778
0.889
1.000

Ac
cu

ra
cy

MNIST Backdoor Success (n=1000)
Models

fm1
fm2
fm3

0.03 0.04 0.05 0.06 0.07 0.08 0.1 0.13 0.15 0.25
Percentage of Training Data Poisoned

0.000
0.111
0.222
0.333
0.444
0.556
0.667
0.778
0.889
1.000

Ac
cu

ra
cy

MNIST Test Accuracy (N=10000, Clean=9000, Backdoor=1000)

Figure IV.2: The accuracy of fm1, fm2, and fm3 on the backdoor MNIST test images (top left) as
well as the overall accuracy on the test data (top right). The bottom row graphs show the same
data but for fg1 and fg2 on the GTSB poisoning attack. The RBF models are less susceptible to
data poisoning attacks as a result of learning strict representations of the feature-space that aids in
generalization.

The MNIST poisoning results indicate that only 3% of the training data set needs to be

21

poisoned for the attack on fm1 to have more than a 90% success rate and 5% to have more

than a 95% success rate. This is because the high dimensional dot product performed by

the two fully-connected layers can easily overfit the data and encode the logic to rotate the

label given a backdoor key. We also see the fm2 slowly succumbs to the poisoning attack

as np increases. Given a large enough np, the fully-connected layer of fm2 can encode

the logic necessary to rotate the label without manipulating the highly non-linear weights

controlling the RBF layer which would cause a dramatic increase in the loss. However, fm3,

which has no fully-connected layers, never succumbs to the MNIST poisoning attack (<1%

attack success rate ∀np). This is because fm3 can not encode the poisoning attack logic in

its single RBF layer without sacrificing the current representation of each classes prototype

and dramatically increasing the loss function. Still, fm3 had lower general accuracy on the

test data than both fm1 and fm2. This is likely due to lack of capacity of the architecture

and makes it unclear whether or not this was the reason fm3 did not succumb to the MNIST

poisoning attack. Also, the backdoor key of the MNIST attack only affects the bottom right

corner of the input where there are no features of interest (i.e. the MNIST digits are always

centered).

In the GTSB poisoning attack, both fg1 and fg2 achieve similar overall accuracy on

the test data. This eliminates the possible argument that fg1 is simply learning the data

distribution better than fg2 and is therefore more likely to be successfully poisoned. In fact,

the poisoning success rate of fg1 is greater than 30% after only 5% of the class data has

been poisoned despite fg2 having better overall accuracy in that trial. We can also see that

fg2 eventually succumbs to the poisoning attack, but requires that over 30% of the 80 km/hr

class data is poisoned to only begin to have a poisoning success rate that nears 30%. It is

important, however, to remember that the GTSB attack was performed on a single class

rather than globally in the rotating-label attack. Therefore, beyond a certain percentage it

is unreasonable to assume that any model given enough capacity would not succumb to the

GTSB attack.

22

In summary the data poisoning results can be explained by comparing the effects of a

high dimensional dot product in the case of a regular classifier and the highly non-linear

RBF operation that forces the deep RBF to learn strict, feature-based representations of

the data. As a result, when np is small the regular classifier can still overfit the data and

encode the logic necessary to encode the backdoor key without significantly affecting the

model’s performance on clean data. However, the RBF layer must sacrifice the current

learned representation of the targeted class to encode the backdoor logic which increases

the error on the clean data for both the target class and the base class. As a result, the deep

RBF is less susceptible to data poisoning attacks and requires a larger np for the poisoning

attack to succeed.

IV.3 RBF Outlier Detection Method

The RBF outlier detection method for sparsely poisoned data sets is based on the previ-

ous findings that the RBF layer and the loss function in Eq. II.3 forces the network to learn

strict, rigid representations of the feature spaces for each class k ∈ {1, ...,c}. When applied

directly to the features extracted by the network before entanglement (i.e. before the fully

connected layers) the deep RBF will be able to discriminate between clean and poisoned

instances by producing an ordering of the training data where φyi(X
i
poison)> φyi(X

i
clean). As

a result, we can introduce a threshold β such that we label any training instance X i with

ground truth yi as poisoned whenever φyi(X
i
poison) > β . The hyper-parameter β is task-

specific and depends on the number of data points that are suspected to be poisoned and

the distribution of φŷi(X
i
train). In practice, we find that for sparsely poisoned data sets, the

RBF can robustly separate poisoned data from clean data. We now use the RBF outlier

detection method to clean the poisoned MNIST and GTSB data sets using the poisoned

models fm3 and fg2 respectively, remembering that these models have an RBF layer that

directly follows the convolutional blocks.

Figure IV.3 shows the receiver operating characteristics (ROC) curve for the RBF out-

23

0.0 0.2 0.4 0.6 0.8 1.0
FP Rate

0.0

0.2

0.4

0.6

0.8

1.0

TP
 R
at
e

RBF Outlier Detection Method on GTSB Attack

n=179 AUC=1.0
n=358 AUC=1.0
n=717 AUC=1.0
n=1075 AUC=1.0
n=1434 AUC=0.89

0.00 0.05 0.10 0.15 0.20
FP Rate

0.0

0.2

0.4

0.6

0.8

1.0

TP
 R
at
e

RBF Outlier Detection Method on MNIST Attack
n=1800 AUC=0.96
n=2400 AUC=0.96
n=3000 AUC=0.95
n=3600 AUC=0.95
n=4200 AUC=0.95
n=4800 AUC=0.94
n=6000 AUC=0.91
n=7800 AUC=0.88
n=9000 AUC=0.84
n=15000 AUC=0.51

Figure IV.3: The performance of the RBF outlier detection method is effective as long as the
number of poisoned samples is insignificant; however, if the attacker has access to a large amount
of the training data then the AC method is preferred.

lier detection method applied to the MNIST and GTSB data set. The area under the curve

(AUC) score provides an aggregate measure of the effectiveness of a binary classification

for various values of β . For the MNIST attack, the AUC is greater than 90% until the

data poisoning exceeds 10% of the total training set (np = 10000). For the GTSB attack,

the AUC is 1.0 until 43% of the 80 km/hr speed sign class data set has been poisoned

(np = 1434) at which the AUC only drops to 0.89 despite the poisoning attack success rate

of fg2 exceeding 90%. This show that the RBF outlier detection method can still succeed

despite a high poisoning success rate. Secondly, a comparison of the MNIST and GTSB

RBF outlier detection cleaning reveal that as the detector’s accuracy increases on the clean

data, so does its ability to effectively clean. Therefore, for the best AUC score, it is impor-

tant to train a model with sufficient capacity and to properly tune the hyperparameters.

24

IV.4 Comparison of RBF Outlier Detection and AC Method

We now compare our RBF outlier detection method to the activation clustering (AC)

method [36] which clusters the penultimate layer’s activations to separate poisoned and

clean instances. To perform the AC method we use the author’s suggestion of K-means

(k=2) and PCA to reduce the penultimate layer’s activations to 10 dimensions. Figure IV.4

compares the AC method to the RBF outlier detection method using β = 1.72 to modestly

cover the tail end of the distribution of φyi(X
i
poison). We now compare the two techniques,

the AC method and RBF outlier detection method, in cleaning the MNIST and GTSB

poisoning tasks in both sparse and non-sparse poisoning conditions.

0.09 0.17 0.35 0.53 0.7
Percentage of Class 'Speed Limit (80 km/h)' Poisoned

0

5000

10000

15000

Nu
m

be
r o

f D
at

a
Po

in
ts

AC Method: GTSB

0.09 0.17 0.35 0.53 0.7
Percentage of Class 'Speed Limit (80 km/h)' Poisoned

0

5000

10000

15000

Nu
m

be
r o

f D
at

a
Po

in
ts

RBF Outlier Detection (= 1.72): GTSB

0.03 0.04 0.05 0.06 0.07 0.08 0.1 0.13 0.15 0.25
Percentage of Training Data Poisoned

0

5000

10000

15000

20000

25000

Nu
m

be
r o

f D
at

a
Po

in
ts

AC Method: MNIST
True Positives
False Negatives
False Positives

0.03 0.04 0.05 0.06 0.07 0.08 0.1 0.13 0.15 0.25
Percentage of Training Data Poisoned

0

5000

10000

15000

20000

25000
Nu

m
be

r o
f D

at
a

Po
in

ts
RBF Outlier Detection (= 1.72): MNIST

Figure IV.4: The stacked bar charts compare the AC method using K-means (nc = 2) and PCA
(|D|= 10) with the RBF outlier detection method (β = 1.72) and show the number of true positives,
true negatives, and false positives based on the method labeling each training sample as poisoned or
clean. When there is a significant amount of poisoned data the AC method outperforms our method;
however, if the number of poisoning data is sparse, the RBF outlier detection method is preferred
due to the high number of false positives that the AC method produces.

Figure IV.4 reveals the results of adjusting np and comparing the two cleaning methods

for both the MNIST and GTSB poisoning attacks. In the sparse poisoning conditions for

the attacks, the RBF outlier detection method was able to achieve on average higher true

positive rates and lower false positive rates than the AC method. This is especially true for

the GTSB attack in which the AC method was never able to lower its false positive rate,

25

even when 43% of the data was poisoned (FPrate = 0.39). At the lower values of np where

the poisoning success rate on the regular classifiers still exceeds 90%, the AC method tends

to predict fewer true positives and a significant number of false positives exceeding 25000

(FPrate = 0.39) and 15000 (FPrate = 0.34) for MNIST and GTSB respectively. However,

the RBF method begins to fail as the number of poisoned instances increases whereas the

performance of the AC method dramatically increases.

In summary, the RBF outlier detection method is more effective in sparse poisoning

conditions whereas the AC method is more effective when a significant portion of the train-

ing data set has been poisoned. This is expected as the AC method requires a significant

number of poisoned instances to consider them as a unique cluster whereas our RBF outlier

detection method requires a significant number of clean data to consider the poisoned in-

stances as outliers. Still, the ability to control β in the RBF outlier detection method allows

easy tuning of the number of true positives at the sacrifice of false positives whereas it is

less obvious how one can better steer the AC method in the sparse poisoning conditions.

In practice, selecting an appropriate defense depends on a variety of factors including the

number of expected poisoned samples or the effects of accepting false positives. However,

with the addition of the RBF outlier detection method, one has the tools necessary to clean

sparsely poisoned data sets without relying on a verified clean data set and can also use a

deep RBF to reduce the likelihood that a poisoning attack succeeds at all.

26

CHAPTER V

White-Box Adversarial Attack Robustness

Adversarial attacks manipulate the input space by adding non-random imperceptible

noise typically using linear approximations of the gradient of the neural network to induce

a high confidence misprediction [10]. In this paper, the adversarial attacks are generated

using IBM’s Adversarial Robustness Toolbox [43] which provides an API for performing

FGSM, I-FGSM, Carlini & Wagner, Deepfool, and PGD [10, 15–18]. We use Carlini &

Wagner’s guidelines [27] to holistically evaluate the robustness of the deep RBF against

these specific white-box adversarial attacks, and (1) evaluate the deep RBF on a variety

of attacks stronger than FGSM, (2) prove its robustness against a white-box, adaptive at-

tack (Carlini & Wagner Attack), (3) report the true positive and false positive rates of the

atttack success, (4) use a data set more complicated than MNIST, and (5) release source

code at https://github.com/burrussmp/AdversarialDefense. The deep RBF classifier that is

evaluated is based on the InceptionV3 architecture [44] which has 42 layers and over 22

million parameters. We evaluate a non-trivial architecture to show that the RBF units still

enhance the robustness against white-box adversarial attacks despite using a model with

enough capacity for realistic CPS tasks.

V.1 Adversarial Attack Setup

The RBF InceptionV3 classifier is designed by replacing the final fully-connected layer

of InceptionV3 with a RBF layer which is preceded by a hyperbolic tangent function. To

effectively assess the adversarial attacks, the classification task is simplified to 10 random

classes from the ILVRC2012 challenge (1300 images per class) [45]. The data set is split

70/15/15% for the training, validation, and testing data respectively with simple data aug-

mentation that includes zooming, rotation, and random horizontal flips. Each model is

trained for 150 epochs using the Adam optimizer with default parameters with a learn-

27

https://github.com/burrussmp/AdversarialDefense

ing rate scheduler decay after 100 epochs. The regular InceptionV3 classifier and its RBF

counterpart achieve an accuracy of 79.95% and 78.11% respectively on the clean test data

(n = 1950).

Experimentally we find that for FGSM, I-FGSM, and PGD it is useful to adjust the

parameters ε,∆ε = 0.0001 which control the added amount of perturbation and the change

in perturbation (for the iterative algorithms) respectively to generate more realistic adver-

sarial images. Figure V.1 shows the effects of manipulating ε using the FGSM algorithm

to generate adversarial images. The default parameters are used for the Carlini & Wagner

and DeepFool attacks. Furthermore, for simplicity we use the non-targeted versions whose

goal is to cause a misprediction of no particular label.

V.2 Definition of Robustness

This section briefly defines robustness against an adversarial attack. For example, con-

sider the non-targeted version of the FGSM algorithm below [10].

Xadv
i = Xi + ε · sign(∇XiJ(Xi,Yi)) (V.1)

In FGSM, the RHS calculates the non-random perturbation to add to the clean image Xi

using a linearized approximation of the gradient. To determine the robustness, we would

like to know the minimum amount of perturbation ∆adv(Xi,F) we can add to Xi to cause

the model to produce a misprediction. Formally, we can write this as

∆adv(Xi,F) = argmin
δXi

{||δXi||F(X +δXi) 6= F(Xi)} (V.2)

Therefore, the robustness of a model F against adversarial attacks is defined as

ρ(F) = ED[∆adv(Xi,F)] (V.3)

28

µDM = 9.45e−04
σDM = 1e−07

µDM = 9.45e−03
σDM = 1e−07

µDM = 1.89e−02
σDM = 1e−07

µDM = 4.72e−02
σDM = 1e−07

µDM = 9.45e−02
σDM = 1e−07

µDM = 2.84e−01
σDM = 1e−07

Ta
rg

et
:R

B
F

In
ce

pt
io

nV
3

Ta
rg

et
:R

eg
ul

ar
In

ce
pt

io
nV

3

Figure V.1: FGSM was used to target the RBF and regular InceptionV3 models and produce adver-
sarial images. The top row in every pair represents the clean image and the bottom row represents
the adversarial image. Each column shows an example image from a batch (n=100) where the mean
and standard deviation of the distortion measure DM of the batch are recorded at the top of each
column.

29

where D is the distribution of data from which Xi is generated. Using this formal definition

of robustness, we can compare different models by analyzing the adversarial attack success

rate with respect to the amount of perturbation that is added to Xi.

V.3 Evaluation of Adversarial Attacks

To evaluate each attack, we construct 100 adversarial images Xadv from Xclean which

are drawn uniformly at random from the test data set. To provide a baseline comparison, the

model’s accuracy on the clean data is first reported followed by the true and false positive

attack success rate. A true positive is defined as a misprediction caused by Xadv, and a

false positive is a misprediction otherwise caused by Xclean. For each true positive Xadv
T P ∈

Xadv, the mean, maximum, and minimum of the perturbation added defined by (||Xclean
T P −

Xadv
T P ||2)2 and the model’s average confidence on Xadv

T P and Xclean
T P are reported. Finally,

the true and false positive transfer attack success rate are reported by assessing the attack

success rate of the adversarial images generated from one model on the other model.

To provide a metric on the robustness of the networks we consider the distortion mea-

sure DM defined as
√

(∑Xclean
i −Xadv

i)2

n which measures the perturbation evenly distributed

among the number of pixels n. We then use FGSM to generate adversarial instances with

various levels of distortion and compare the accuracy of the regular InceptionV3 architec-

ture to the deep RBF.

V.4 Results of Adversarial Analysis

Table V.1 compares the robustness of the regular InceptionV3 model and the deep RBF

version. On the clean images, both models have similar accuracy. Unlike the original

InceptionV3 model, the RBF version is robust to all the attacks, including the adaptive

white-box attack (Carlini & Wagner Attack). Furthermore, the deep RBF model generally

expresses a decrease in confidence on Xadv
T P unlike the regular InceptionV3 architecture

which typically expresses higher confidence on Xadv
T P than Xclean

T P . Secondly, the transfer

attack is more successful on the RBF model than on the regular model. However, the

30

transfer attack success rate on the RBF model is still significantly lower than the direct

attack success rate on the regular model. Overall, the significant finding of Table V.1 is that

the deep RBF is more difficult to attack than the regular DNN classifier at the given level

of perturbation for all of the attacks evaluated.

Table V.1: Each column shows the results of a particular attack where 100 adversarial images
were constructed by targeting first the regular model and then the deep RBF. The RBF version of
InceptionV3 is more robust than the regular model on all of the attacks tested and also expresses a
decrease in confidence to the adversarial images

FGSM I-FGSM Carlini & Wagner DeepFool PGD

Reg RBF Reg RBF Reg RBF Reg RBF Reg RBF

Baseline Accuracy on Xclean 77% 76% 77% 76% 83% 79% 77% 76% 83% 80%

True Positive Attack Success Rate 72% 7% 77% 15% 76% 26% 72% 22% 83% 10%
False Positive Attack Success Rate 11% 23% 11% 23% 8% 14% 14% 20% 9% 18%

Average Confidence on Xclean
T P 0.895 0.590 0.902 0.604 0.893 0.834 0.923 0.763 0.902 0.602

Average Confidence on Xadv
T P 0.845 0.544 0.998 0.575 0.613 0.440 0.790 0.512 0.998 0.653

Average `2-norm Perturbation 5.17e-2 5.17e-2 4.42e-2 4.24e-2 4.83e-2 3.62e-2 112 2.27e-2 4.41e-2 4.25e-2
Maximum `2-norm Perturbation 5.17e-2 5.17e-2 4.82e-2 4.49e-2 1.45 0.176 1402 0.117 4.65e-2 4.37e-2
Minimum `2-norm Perturbation 5/17e-2 5.17e-2 4.15e-2 4.09e-2 1.65e-05 5.75e-4 8.71e-05 4.62e-4 4.18e-2 4.19e-2

True Positive Transfer Attack Success Rate 7% 20% 7% 17% 3% 6% 2% 34% 3% 12%
False Positive Transfer Attack Success Rate 22% 20% 20% 23% 17% 21% 22% 24% 15% 17%

Figure V.2 allows us to more closely analyze the effects of increasing the distortion ap-

plied to an image to look at the robustness of the deep RBF. Random images were selected

to create adversarial batches (n=100) with different mean distortion measures using FGSM

to target the regular model and the RBF model. We compared the attack success rate for

a direct attack and a transfer attack as well as the effect of random uniform noise added

with different opacities to a clean image. The results reveals a few key insights. Firstly,

using a paired t-test we find that FGSM is significantly more effective at targeting the reg-

ular model than the deep RBF model at various distortion measures (p<0.05). Secondly,

we can find a significant difference in comparing the direct and transfer attacks on both

models at various distortion measures (p<0.05). Thirdly, the FGSM attack appears to be

more effective in targeting the RBF model than injecting random noise; however, there is

no significant difference (p>0.05). Finally, Figure V.2 shows how the deep RBF model

31

eventually increases its confidence in rejecting the adversarial images for µDM > 0.0001.

1003 1002 1001

Log Mean Distortion Measure

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
od

el
 A
cc
ur
ac
.

FGSM Distortion Measure Results (batch size = 100)
FGSM Di)ect (REG)
FGSM T)ans e) (REG t(RBF)
FGSM Di)ect (RBF)
FGSM T)ans e) (RBF t(REG)
Rand(m N(ise (REG)
Rand(m N(ise (RBF)

1003 1002 1001

L(g Mean Dist()ti(n Measu)e

0.4

0.6

0.8

1.0

Re
je

ct
i(

n
Cl

as
s C

(n
 id

en
ce

RBF Rejecti(n Class C(n idence (batch size = 100)
Clean Data
Ad−e)sa)ial Data

Figure V.2: (Top) The accuracy of the deep RBF and regular InceptionV3 model for both the direct
FGSM attack, transfer FGSM attack, and random noise attack as a function of the mean distortion
of the adversarial batch (each mark corresponds to a trial with a batch (n=100) selected uniformly
at random from the test data set). (Bottom) The rejection class confidence of the RBF model for the
clean and adversarial data.

Combining these key insights reveal two important properties of deep RBFs. Firstly,

although the RBF layer increases the network’s robustness, adversarial algorithms are still

more successful than random noise; however, once sufficient distortion has been intro-

duced, the confidence in rejection will increase allowing the adversarial input to be rejected

by a deep RBF. Secondly, adversarial algorithms are able to partially succeed by exploiting

the linearity of preceding layers which is why we see that an attack on the RBF network is

more effective than a random noise attack, as effective as the transfer attack on the regular

model, but less effective than the direct attack on the regular model. This is because FGSM

is able to partially exploit the linearity of the layers preceding the RBF layer. We would

also expect adaptive attacks like Carlini & Wagner to more be more effective at exploit-

ing this vulnerability as was found in Table V.1 in comparing the various attacks on the

32

deep RBF. Although this is still a preliminary finding, future work can focus on validating

this effect by injecting RBF layers into different areas of the network to determine if the

robustness of the network increases.

33

CHAPTER VI

Closing Remarks

VI.1 Discussion and Future Work

Deep RBFs address three major problems with DNNs that restrict their use in CPS sys-

tems. Firstly, traditional classifiers tend to respond abnormally to OOD data points whereas

the deep RBF networks provide a rejection class to handle such situations. Furthermore,

the confidence of this rejection class is sensitive to how obtrusive the anomaly is, allowing

a CPS system to respond with various protocols depending on the confidence of the rejec-

tion class. These findings are significant in that the OOD detection using RBFs is scalable

(i.e. doesn’t require specific labeling of anomalies) and real-time (i.e. rejection class pre-

dicted alongside class probabilities). We experimentally showed that an RBF-version of

NVIDIA’s DAVE-II architecture could catch an OOD black-box attack in a self-driving

task and prevent a crash in real-time. Future work should address the sensitivity of this re-

jection class to various types of OOD data (rotation, brightness, occlusion, etc.) and address

the problem of intelligently thresholding the rejection class to provide safety guarantees in

CPS systems by combining the RBF rejection in a simplex architecture.

Secondly, traditional DNNs are susceptible to data poisoning attacks that allow an at-

tacker to exploit a backdoor key encoded by the network. We provided experimental evi-

dence and a theoretical discussion as to why deep RBFs are less susceptible to data poison-

ing attacks. Using this understanding of deep RBFs, we devised a method to clean sparsely

poisoned data sets using a deep RBF trained on the poisoned data. We found that our RBF

outlier detection method outperforms the AC method in the realistic scenario that the data

set has been sparsely poisoned, whereas the AC method outperforms our method when a

larger portion of the data set has been poisoned. This is because the AC method relies on

a large sample of poisoned data to form discriminative clusters to separate poisoning and

34

clean data whereas the RBF outlier detection method depends on a large sample of clean

data to effectively label the poisoned data as outliers. However, the RBF outlier detection

method has the additive advantage of being easily tuneable and with fewer hyper parame-

ters. In reality, both tools should be used in the scenario that one has no idea what portion

of the data has been compromised. In reality, the cleaning process of a poisoned data set

will not use a black-box method. Therefore, future work should focus on using the RBF

outlier detection method in a visual analytics tool to help assess potential poisoned samples

and evaluate the effects of selecting various hyperparameters.

Finally, we showed that deep RBFs are more robust to white-box adversarial attacks

than regular classifiers in that they are more difficult to attack and express a decrease in

confidence on adversarial instances when the added perturbation crosses a certain thresh-

old. However, adversarial attacks generated by FGSM were slightly more effective than the

random noise injection attack due to the ability of FGSM to capitalize on the linearity of

preceding layers. Future work should focus on injecting RBF activations into intermediary

layers in order to increase the robustness of the network. However, such work would re-

quire accomodating for the unstable gradient caused by the intermediary RBF units. Also,

while we have only explored classification tasks, future work can find ways to inject RBF

activations in segmentation, detection, and regression networks.

VI.2 Conclusion

Despite the potential of using DNNs in CPS, they are susceptible to many security

threats. We analyzed three specific threats including black-box OOD attacks, data poison-

ing attacks, and white-box adversarial attacks. Until now defense mechanisms have been

disjoint from the underlying architecture and have not generalized across the attack types.

First, we showed that an integrated out-of-distribution detection mechanism can be im-

plemented on an end-to-end autonomous RC vehicle using the rejection class of the deep

RBF to achieve real-time and scalable anomaly detection and classification. Furthermore,

35

we explained how deep RBFs are fundamentally less susceptible to data poisoning attacks

because of their ability to learn strict representations of the feature space of the data that

helps the model generalize and not overfit the training data. We then used this finding to

present a novel RBF outlier detection method for cleaning a sparsely poisoned data set

without relying on a verified, clean data set. Finally, we showed that a production-grade

deep RBF classifier can parallel the performance of a traditional DNN yet be more robust

against a variety of white-box adversarial attacks. Overall, we showed that the enhanced

robustness of deep RBFs against these security threats could help foster more widespread

use of DNNs in safety-critical CPS.

36

BIBLIOGRAPHY

[1] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553,
p. 436, 2015.

[2] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, et al., “End to end learning for self-driving
cars,” arXiv preprint arXiv:1604.07316, 2016.

[3] “Just how far ahead is tesla in self-driving.” https://www.forbes.com/
sites/greatspeculations/2019/11/08/just-how-far-ahead-is-tesla-in-self-driving/
#3b71f97c1b24.

[4] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[5] K. D. Julian, J. Lopez, J. S. Brush, M. P. Owen, and M. J. Kochenderfer, “Policy
compression for aircraft collision avoidance systems,” in 2016 IEEE/AIAA 35th Dig-
ital Avionics Systems Conference (DASC), pp. 1–10, IEEE, 2016.

[6] F. Lambert, F. Lambert, and Fred, “Understanding the fatal tesla accident on autopilot
and the nhtsa probe,” Jul 2016.

[7] A. Boloor, X. He, C. Gill, Y. Vorobeychik, and X. Zhang, “Simple physical ad-
versarial examples against end-to-end autonomous driving models,” arXiv preprint
arXiv:1903.05157, 2019.

[8] A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras, and T. Gold-
stein, “Poison frogs! targeted clean-label poisoning attacks on neural networks,”
CoRR, vol. abs/1804.00792, 2018.

[9] A. Kurakin, I. Goodfellow, S. Bengio, Y. Dong, F. Liao, M. Liang, T. Pang, J. Zhu,
X. Hu, C. Xie, et al., “Adversarial attacks and defences competition,” in The NIPS’17
Competition: Building Intelligent Systems, pp. 195–231, Springer, 2018.

[10] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial
examples,” arXiv preprint arXiv:1412.6572, 2014.

[11] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily fooled: High
confidence predictions for unrecognizable images,” in Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp. 427–436, 2015.

[12] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor attacks on deep
learning systems using data poisoning,” arXiv preprint arXiv:1712.05526, 2017.

[13] T. Gu, B. Dolan-Gavitt, and S. Garg, “Badnets: Identifying vulnerabilities in the
machine learning model supply chain,” arXiv preprint arXiv:1708.06733, 2017.

37

https://www.forbes.com/sites/greatspeculations/2019/11/08/just-how-far-ahead-is-tesla-in-self-driving/#3b71f97c1b24
https://www.forbes.com/sites/greatspeculations/2019/11/08/just-how-far-ahead-is-tesla-in-self-driving/#3b71f97c1b24
https://www.forbes.com/sites/greatspeculations/2019/11/08/just-how-far-ahead-is-tesla-in-self-driving/#3b71f97c1b24

[14] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R. Fer-
gus, “Intriguing properties of neural networks,” arXiv preprint arXiv:1312.6199,
2013.

[15] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple and accurate
method to fool deep neural networks,” CoRR, vol. abs/1511.04599, 2015.

[16] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples in the physical
world,” CoRR, vol. abs/1607.02533, 2016.

[17] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of neural networks,”
CoRR, vol. abs/1608.04644, 2016.

[18] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards deep learning
models resistant to adversarial attacks,” arXiv preprint arXiv:1706.06083, 2017.

[19] P. H. Zadeh, R. Hosseini, and S. Sra, “Deep-rbf networks revisited: Robust classifica-
tion with rejection,” arXiv preprint arXiv:1812.03190, 2018.

[20] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and composing
robust features with denoising autoencoders,” in Proceedings of the 25th international
conference on Machine learning, pp. 1096–1103, 2008.

[21] N. Das, M. Shanbhogue, S.-T. Chen, F. Hohman, L. Chen, M. E. Kounavis, and D. H.
Chau, “Keeping the bad guys out: Protecting and vaccinating deep learning with jpeg
compression,” arXiv preprint arXiv:1705.02900, 2017.

[22] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation as a defense to
adversarial perturbations against deep neural networks,” in 2016 IEEE Symposium on
Security and Privacy (SP), pp. 582–597, IEEE, 2016.

[23] N. Carlini and D. Wagner, “Defensive distillation is not robust to adversarial exam-
ples,” arXiv preprint arXiv:1607.04311, 2016.

[24] R. Feinman, R. R. Curtin, S. Shintre, and A. B. Gardner, “Detecting adversarial sam-
ples from artifacts,” arXiv preprint arXiv:1703.00410, 2017.

[25] K. Grosse, P. Manoharan, N. Papernot, M. Backes, and P. McDaniel, “On the (statis-
tical) detection of adversarial examples,” arXiv preprint arXiv:1702.06280, 2017.

[26] W. Xu, D. Evans, and Y. Qi, “Feature squeezing: Detecting adversarial examples in
deep neural networks,” arXiv preprint arXiv:1704.01155, 2017.

[27] N. Carlini and D. A. Wagner, “Adversarial examples are not easily detected: Bypass-
ing ten detection methods,” CoRR, vol. abs/1705.07263, 2017.

[28] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010.

38

[29] K. Pei, Y. Cao, J. Yang, and S. Jana, “Deepxplore: Automated whitebox testing of
deep learning systems,” in Proceedings of the 26th Symposium on Operating Systems
Principles, pp. 1–18, ACM, 2017.

[30] A. J. Sharkey and N. E. Sharkey, “Combining diverse neural nets,” The Knowledge
Engineering Review, vol. 12, no. 3, pp. 231–247, 1997.

[31] D. Kwon, H. Kim, J. Kim, S. C. Suh, I. Kim, and K. J. Kim, “A survey of deep
learning-based network anomaly detection,” Cluster Computing, pp. 1–13, 2017.

[32] X. Gu and A. Easwaran, “Towards safe machine learning for cps: infer uncertainty
from training data,” in Proceedings of the 10th ACM/IEEE International Conference
on Cyber-Physical Systems, pp. 249–258, 2019.

[33] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders with nonlinear
dimensionality reduction,” in Proceedings of the MLSDA 2014 2nd Workshop on Ma-
chine Learning for Sensory Data Analysis, pp. 4–11, 2014.

[34] B. Zong, Q. Song, M. R. Min, W. Cheng, C. Lumezanu, D. Cho, and H. Chen, “Deep
autoencoding gaussian mixture model for unsupervised anomaly detection,” 2018.

[35] J. Steinhardt, P. W. W. Koh, and P. S. Liang, “Certified defenses for data poisoning
attacks,” in Advances in neural information processing systems, pp. 3517–3529, 2017.

[36] B. Chen, W. Carvalho, N. Baracaldo, H. Ludwig, B. Edwards, T. Lee, I. Molloy,
and B. Srivastava, “Detecting backdoor attacks on deep neural networks by activation
clustering,” arXiv preprint arXiv:1811.03728, 2018.

[37] I. Evtimov, K. Eykholt, E. Fernandes, T. Kohno, B. Li, A. Prakash, A. Rahmati,
and D. Song, “Robust physical-world attacks on machine learning models,” CoRR,
vol. abs/1707.08945, 2017.

[38] S. Ramakrishna, A. Dubey, M. P. Burruss, C. Hartsell, N. Mahadevan, S. Nannapa-
neni, A. Laszka, and G. Karsai, “Augmenting learning components for safety in re-
source constrained autonomous robots,” in 2019 IEEE 22nd International Symposium
on Real-Time Distributed Computing (ISORC), pp. 108–117, IEEE, 2019.

[39] M. Burruss, S. Ramakrishna, G. Karsai, and A. Dubey, “Deepnncar: A testbed for
deploying and testing middleware frameworks for autonomous robots,” pp. 87–88, 05
2019.

[40] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[41] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “The German Traffic Sign Recog-
nition Benchmark: A multi-class classification competition,” in IEEE International
Joint Conference on Neural Networks, pp. 1453–1460, 2011.

39

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[43] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat, M. Wistuba, V. Zant-
edeschi, N. Baracaldo, B. Chen, H. Ludwig, I. Molloy, and B. Edwards, “Adversarial
robustness toolbox v1.1.0,” CoRR, vol. 1807.01069, 2018.

[44] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the incep-
tion architecture for computer vision,” CoRR, vol. abs/1512.00567, 2015.

[45] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A Large-
Scale Hierarchical Image Database,” in CVPR09, 2009.

40

	DEDICATION-0.2in
	ACKNOWLEDGMENTS-0.2in
	LIST OF TABLES-0.2in
	LIST OF FIGURES-0.2in
	LIST OF ABBREVIATIONS0.2in
	I Introduction
	I.1 A Quick Overview of Security Threats Facing Deep Neural Networks
	I.2 Major Contributions
	I.3 Outline

	II Background
	II.1 Deep RBF Network
	II.1.1 Definition
	II.1.2 Training a Deep RBF
	II.1.3 Interpreting the Deep RBF Output

	II.2 Related Research

	III Out-of-Distribution Black-Box Attack Detection
	III.1 Black-Box Physical Attack Setup
	III.2 Offline Out-of-Distribution Detection Results
	III.3 Online Out-of-Distribution Detection Results

	IV Data Poisoning Detection and Mitigation
	IV.1 Data Poisoning Attack Setup
	IV.2 Explaining the Data Poisoning Results
	IV.3 RBF Outlier Detection Method
	IV.4 Comparison of RBF Outlier Detection and AC Method

	V White-Box Adversarial Attack Robustness
	V.1 Adversarial Attack Setup
	V.2 Definition of Robustness
	V.3 Evaluation of Adversarial Attacks
	V.4 Results of Adversarial Analysis

	VI Closing Remarks
	VI.1 Discussion and Future Work
	VI.2 Conclusion

	 BIBLIOGRAPHY

