Data in brief 24 (2019) 103939

Contents lists available at ScienceDirect

Data in brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Data on the negative regulation of invadopodia activity by MLCK

Rachel J. Jerrell^a, Aron Parekh^{a, b, c, *}

^a Department of Otolaryngology, Vanderbilt University Medical Center, US

^b Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, US

^c Department of Biomedical Engineering, Vanderbilt University, US

ARTICLE INFO

Article history: Received 18 March 2019 Received in revised form 10 April 2019 Accepted 15 April 2019 Available online 24 April 2019

Keywords: Cancer Invasion Invadopodia MLCK Contractility

ABSTRACT

Actomyosin contractility can promote extracellular matrix (ECM) degradation by invadopodia in cancer cells. However, we previously found that inhibiting myosin light chain kinase (MLCK) with siRNA did not change force generation by the head and neck squamous cell carcinoma (HNSCC) cell line SCC-61. We provide data here that this targeted method of MLCK knockdown (KD) resulted in a significant increase in the amount of ECM degradation, number of actively degrading invadopodia, and the number of total invadopodia formed. These data are related to the research article entitled "Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2" Jerrell and Parekh, 2016. © 2019 The Author(s). Published by Elsevier Inc. This is an open access article enters of the constrained by the cC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).

1. Data

Actomyosin-generated contractile forces promote ECM degradation by proteolytic subcellular protrusions called invadopodia [1,2]. Cellular contractility can be regulated by several kinases including MLCK; however, we and others have found that MLCK inhibition does not always affect force generation [1,3,4]. Despite this finding in our laboratory using SCC-61 cells, we show here that KD of MLCK increased ECM degradation by SCC-61 cells (Fig. 1A and B) as well as the number of invadopodia

https://doi.org/10.1016/j.dib.2019.103939

^{*} Corresponding author. Department of Otolaryngology, Vanderbilt University Medical Center, 522 Preston Research Building, 2220 Pierce Avenue, Nashville, TN, 37232, US.

E-mail address: aron.parekh@vumc.org (A. Parekh).

^{2352-3409/© 2019} The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

Specifications table

Subject area	cancer research, cell biology
More specific subject area	cancer cell invasion
Type of data	Table, figure
How data was acquired	The invadopodia assay was imaged using a Nikon Ti-E inverted microscope with a Plan Fluor
	$40 \times$ oil immersion objective.
Data format	Raw, analyzed
Experimental factors	SCC-61 cells were transfected with non-targeted control (NTC) siRNA or siRNA against MLCK.
Experimental features	Invadopodia formation and ECM degradation.
Data source location	Nashville, TN, USA, Vanderbilt University Medical Center
Data accessibility	Data are available in this article.
Related research article	R. J. Jerrell, A. Parekh. Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2, Biomaterials, 84, 2016, 119–129 [1].

Value of the data

• The data presented here reveal the impact of siRNA targeted inhibition of MLCK on invadopodia activity.

- The data may be of interest to researchers studying cancer biology and mechanisms of invasion including the roles of contractility regulators in cancer cell mechanotransduction.
- The data provide the basis for future studies to uncover other mechanisms of MLCK activity in invasive cancer cells.

actively degrading ECM (i.e., colocalized with ECM degradation; Fig. 1Aand C) and the total number of invadopodia (i.e., actively degrading and non-degrading or not colocalized with ECM degradation; Fig. 1Aand D) when compared to NTC in the rigid PAA invadopodia assay which approximates high grade tumor rigidity (raw data presented in Table 1). Western blot data confirming MLCK KD in SCC-61 cells used in these experiments was previously reported and technically described [1].

2. Experimental design, materials, and methods

2.1. Cell culture and MLCK inhibition

SCC-61 cells were cultured as previously described as well as KD of MLCK with siGENOME SMARTpool siRNA (ThermoScientific) or the NTC following the manufacturer's protocol to maximize inhibition while minimizing off-target effects [1].

2.2. Rigid PAA invadopodia assay

Rigid PAAs were synthesized and cast on activated coverslips of 35 mm MatTek dishes as previously described [1]. Briefly, these substrates were composed of a 12%/0.6% ratio of acrylamide/BIS-acrylamide, 0.1% N-hydroxysuccinimide ester, and 230 µg/ml of fibronectin yielding an elastic modulus of 22,692 Pa which mimics tumor rigidity and maximizes invadopodia activity. To detect and evaluate ECM degradation, the rigid PAAs were overlaid with 1% gelatin (crosslinked with glutaral-dehyde) and FITC-labeled fibronectin.

2.3. Immunofluorescence

Cells were incubated overnight in invadopodia medium and immunostained in the rigid invadopodia assays as previously described [1]. Briefly, the invadopodia markers actin and cortactin were

Fig. 1. MLCK negatively regulates invadopodia activity. (A) Representative wide-field fluorescence images of NTC and MLCK KD SCC-61 cells in the rigid PAA invadopodia assay in which invadopodia were identified by the colocalization (pink) of actin (red) and cortactin (blue). Actively degrading (active; yellow circles) invadopodia were identified based on the colocalization of these markers with ECM degradation (i.e., black areas lacking FITC signal). Total invadopodia included the active and non-degrading (white circles) invadopodia. Quantitation of the (B) degradation area per cell, (C) active invadopodia per cell, and (D) total invadopodia per cell for NTC versus MLCK KD. Data are presented as box and whisker plots with the black lines indicating the medians, the whiskers representing the 10th and 90th percentiles, and * indicating p < 0.05 for n = 86–97 cells for each condition from 3 independent experiments. Scale bar represents 20 μ m.

identified with Alexa Fluor 546 phalloidin (Life Technologies) and a mouse monoclonal antibody (EMD Millipore), respectively. Fluorescent images were captured on a Nikon Eclipse Ti-E inverted microscope with a $40 \times$ Plan Fluor oil immersion lens. Metamorph software (Molecular Devices) was used for image analyses which included thresholding for ECM degradation and manual quantitation of invadopodia.

2.4. Statistics

Statistical analyses were performed on pooled data using SPSS Statistics (IBM) as previously described [1]. Briefly, data did not pass the normality test and were therefore analyzed with a Mann-Whitney test for comparisons between datasets.

ladie 1	
Raw data from the immunofluorescence image analyses of NTC and MLCK KD SCC-61 cells in the rigid PAA invadopodia	assay

Experiment	Condition	Replicate	Degradation	Degrading	Total
			(µm ²)	Invadopodia	Invadopodia
1	NTC	1	12.7,151,411	7	7
1	NTC	1	6.822,162,246	9	9
1	NTC	1	8.460,459,273	4	4
1	NTC	1	0	0	0
1	NTC	1	0	0	1
1	NTC	1	59.14,985,833	9	10
1	NTC	1	62.18,193,044	14	16
1	NTC	1	0	0	1
1	NTC	1	0	0	0
1	NTC	1	0	0	1
1	NTC	1	0	0	0
1	NTC	1	4.010,159,887	1	1
1	NTC	2	0	0	4
1	NTC	2	0	0	1
1	NTC	2	25.8.948.739	23	23
1	NTC	2	12 00602 747	5	6
1	NTC	2	0	0	2
1	NTC	2	0	0	3
1	NTC	2	1 051 444 361	2	2
1	NTC	2	17 01 872 732	2	2
1	NTC	2	0.216.296.079	7	7
1	NTC	2	9.510,280,078	7	7
1	NTC	2	0.557,948	0	0
1	NIC	2	0	0	2
1	NIC	2	22.3,982,101	10	10
1	NIC	2	29.02,475,479	4	4
1	NIC	2	18.70,592,874	14	14
1	NIC	2	8.680,529,023	l	4
1	NIC	2	0	0	0
1	NIC	2	19.21,942,482	9	12
1	NIC	2	4.156,873,053	0	7
1	NTC	2	0	0	6
1	NTC	2	0	0	7
1	NTC	2	0	0	1
1	NTC	2	34.6,976,639	10	14
2	NTC	1	7.091,136,385	0	10
2	NTC	1	79.39,627,532	28	38
2	NTC	1	7.94,696,319	2	4
2	NTC	1	0	0	7
2	NTC	1	45.18,765,531	23	26
2	NTC	1	3.521,115,998	1	4
2	NTC	1	59.17,431,052	25	25
2	NTC	1	12.61,733,233	3	8
2	NTC	1	29.416	8	17
2	NTC	1	4.08,351,647	7	8
2	NTC	1	1.66,275	1	7
2	NTC	1	207.6,235,829	32	42
2	NTC	1	31.81,230,496	34	34
2	NTC	1	27.70.433.418	8	10
2	NTC	1	0	0	14
2	NTC	1	55.60.429.014	43	43
2	NTC	1	12.22.609 722	16	22
- 2	NTC	1	0	0	8
2	NTC	2	10 88 100 650	8	8
<u>-</u> ว	NTC	2	10.00,122,032	0 8	0 22
∠ ว	NTC	∠ 2	45.07,251,075	0	22
2	NTC	2	31.03,0/3,/13 130.6 000 317	0 22	14
2	NTC	2	120.0,960,317	32	30
2	NIC	2	3./41,185,/48	5	/
2	NIC	2	5.159,413,025	U	12
2	NTC	2	10.8,079	5	7

Table 1 (continued)

Experiment	Condition	Replicate	Degradation	Degrading	Total
			(µm ²)	Invadopodia	Invadopodia
2	NTC	2	0	0	9
2	NTC	2	16.82,310,977	6	7
2	NTC	2	21.24.895.696	7	8
2	NTC	2	65 8 742 118	4	5
2	NTC	2	13 27 754 158	0	0
2	NTC	2	13 54 651 572	0	8
2	NTC	2	15 23 371 713	8	1/
2	NTC	2	75 2 304	17	19
2	NTC	2	21 00 016 621	17	10
2	NTC	2	15 25 816 022	0	10
2	NTC	1	15.25,810,955	0	12
2	NTC	1	2 860 006 740	1	3
2	NTC	1	2.860,906,749	1	4
2	NIC	1	0	0	4
3	NIC	1	0	0	5
3	NIC	1	0	0	0
3	NIC	1	0	0	0
3	NIC	1	0	0	0
3	NIC	1	0	0	5
3	NTC	1	0	0	0
3	NTC	1	0	0	7
3	NTC	1	0	0	0
3	NTC	1	12.51,952,355	10	11
3	NTC	1	0	0	0
3	NTC	1	0	0	2
3	NTC	1	0	0	2
3	NTC	1	8.436,007,079	1	5
3	NTC	1	0	0	1
1	MLCK KD	1	24.40,329,004	16	15
1	MLCK KD	1	20.07,525,163	9	7
1	MLCK KD	1	0	2	0
1	MLCK KD	1	6.308,666,163	5	3
1	MLCK KD	1	28.29,118,896	36	26
1	MLCK KD	1	7.65,354	3	3
1	MLCK KD	1	0	5	0
1	MLCK KD	1	21.00443,502	5	4
1	MLCK KD	1	3.570,020,387	0	0
1	MLCK KD	1	62.01,076,508	19	19
1	MLCK KD	1	0	9	0
1	MLCK KD	1	0	3	0
1	MLCK KD	1	24.94,123,832	14	13
1	MLCK KD	1	16.9,698	3	3
1	MLCK KD	1	9.31.629	7	7
1	MLCK KD	1	0	2	0
1	MLCK KD	1	0	1	0
1	MLCK KD	1	10 61 225 238	15	12
1	MICK KD	1	1116487198	16	16
1	MICK KD	1	47 8 529 445	17	12
1	MICK KD	1	86 78 083 804	9	9
1	MICK KD	2	4 52 365 597	12	5
1	MICK KD	2	50 90 946 881	30	30
1	MICK KD	2	46 10 010 578	10	10
1	MICK KD	∠ 2	-0.13,013,320	0	8
1	MICK KD	∠ ว	23.1,037,300	5	6
1	MICK KD	2	24.01,204,011 54 4 205 949	0 22	10
1		2	J4,4,3UJ,848 95 42 506 724	22 10	10
1	MICK KD	2	03,43,390,734	10	บ วา
1	WILCK KD	2	57,00,937,008	22 F	22
1	WILCK KD	2	19.21,942,482	5 10	5 10
1	WILCK KD	2	13./4,213,32/	10	10
1	MILCK KD	2	8.020,319,774	1	6

(continued on next page)

 Table 1 (continued)

Experiment	Condition	Replicate	Degradation	Degrading	Total
			(µm ²)	Invadopodia	Invadopodia
1	MLCK KD	2	2.640,836,999	9	0
1	MLCK KD	2	10.07,430,411	4	4
1	MLCK KD	2	11.15,020,066	6	5
1	MLCK KD	2	33.96,409,807	10	6
1	MLCK KD	2	11.90,822,077	8	7
2	MLCK KD	1	161.3,111,267	18	17
2	MLCK KD	1	401.0159,887	47	43
2	MLCK KD	1	/2.64,/46,966	35	23
2	MLCK KD	1	41.86,215,687	12	7
2	MICK KD	1	24.1,832	18	5
2	MICK KD	1	0.064,001,444	52 21	20
2	MICK KD	1	252 6 404 659	38	38
2	MICK KD	1	4 03 461	9	8
2	MLCK KD	1	34 35 533 318	22	15
2	MLCK KD	1	93.87.201.628	11	10
2	MLCK KD	1	166.4.216.827	46	40
2	MLCK KD	1	64.18.701.038	33	23
2	MLCK KD	1	263.6,191,082	94	83
2	MLCK KD	1	5.844,074,469	18	2
2	MLCK KD	1	79.7,142	17	7
2	MLCK KD	1	203.5,156,143	40	34
2	MLCK KD	1	11.27,246,163	35	6
2	MLCK KD	1	17.63,003,219	7	5
2	MLCK KD	2	162.411	27	19
2	MLCK KD	2	1.34,487	7	0
2	MLCK KD	2	36.53,157,848	32	12
2	MLCK KD	2	0	33	0
2	MLCK KD	2	94.16,540,076	63	48
2	MLCK KD	2	4.376,942,803	7	0
2	MLCK KD	2	13.8,888	48	2
2	MLCK KD	2	0	18	0
2	MLCK KD	2	0	32	0
2	MLCK KD	2	6.944,423,219	66	3
2	MLCK KD	2	10.24,546,947	32	7
2	MICK KD	2	190.4,365,442	21	54 10
2	MICK KD	2	77 12 222 124	34	27
2	MICK KD	2	4 35 429	9	27
2	MICK KD	2	126 8 823 909	38	32
2	MLCK KD	2	44.67.415.923	21	7
2	MLCK KD	2	114.6.104	62	46
2	MLCK KD	2	36.8,006	23	5
2	MLCK KD	2	180.3,349,339	26	22
2	MLCK KD	2	116.0990,192	32	27
2	MLCK KD	2	155.320,339	34	26
2	MLCK KD	2	41.2,508	44	8
3	MLCK KD	1	0	14	0
3	MLCK KD	1	121.0,383,624	28	24
3	MLCK KD	1	12.69,068,891	18	2
3	MLCK KD	1	3.12,988	3	0
3	MLCK KD	1	8.876,141,581	22	4
3	MLCK KD	1	8.411,553,388	24	3
3	MLCK KD	1	0	0	0
<u>პ</u>	MLCK KD	1	U	/	U
კ	MICK KD	1	U 10.01.005.000	10	U
с С	WILCK KD	1	19.01,005,993	19	0 C
Э	MICK KD	1	10.41,003,483	50 21	20
3		1	5 403 034 060	21 17	20
	IVITA N ND	1	J.4UJ.JJ4.JU7	17	

Experiment	Condition	Replicate	Degradation	Degrading	Total
			(µm ²)	Invadopodia	Invadopodia
3	MLCK KD	1	1625.948,669	0	0
3	MLCK KD	1	41.32,420,742	11	10
3	MLCK KD	1	19.14,606,869	20	17
3	MLCK KD	1	11.12,574,847	26	7
3	MLCK KD	1	37.92,536,432	24	15

Table 1 (continued)

Acknowledgments

Research reported in this publication was previously supported by the National Institutes of Health grant K25CA143412 from the National Cancer Institute to A.P. Additional support was provided at the time by the Vanderbilt Clinical and Translational Science Award UL1TR000445 from the National Center for Advancing Translational Sciences and resources from the Vanderbilt Advanced Computing Center for Research and Education. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or National Center for Advancing Translational Sciences. Current support was provided by the Research Scholar Grant RSG-15-226-01-CSM from the American Cancer Society to A.P.

Transparency document

Transparency document associated with this article can be found in the online version at https://doi.org/10.1016/j.dib.2019.103939.

References

- [1] R.J. Jerrell, A. Parekh, Matrix rigidity differentially regulates invadopodia activity through ROCK1 and ROCK2, Biomaterials 84 (2016) 119–129.
- [2] R.J. Jerrell, A. Parekh, Cellular traction stresses mediate extracellular matrix degradation by invadopodia, Acta. Biomater. 10 (5) (2014) 1886–1896.
- [3] K.A. Beningo, K. Hamao, M. Dembo, Y.L. Wang, H. Hosoya, Traction forces of fibroblasts are regulated by the Rho-dependent kinase but not by the myosin light chain kinase, Arch. Biochem. Biophys. 456 (2) (2006) 224–231.
- [4] M.A. Wozniak, R. Desai, P.A. Solski, C.J. Der, P.J. Keely, ROCK-generated contractility regulates breast epithelial cell differentiation in response to the physical properties of a three-dimensional collagen matrix, J. Cell Biol. 163 (3) (2003) 583–595.