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Chapter 1

Introduction

In the past decade, we have witnessed a rapid growth in the quantity, quality, and di-

versity of personal data we shed through our daily activities. These data are collected by

a wide range of organizations to assist in the optimization and refinement of the services

they provide [2, 3].

At the same time, it is increasingly recognized that personal data has tremendous value

in supporting a variety of endeavors beyond its initial purpose; e.g., ensuring transparency

in activities, transparency in operation and basic discovery-driven research [4]. For in-

stance, the personal health information in electronic medical record (EMR) systems can

enable predictive modeling [5, 6], learning health systems [7], novel association studies

[8, 9, 10], as well as the discovery of personalized treatment regiments [11, 12].

The secondary usage of data often leads to the need for broad access and data sharing.

For instance, federal grant policies (e.g., [13]) may require sharing patient-level data for

information reuse (e.g., [14]) and transparency (e.g., [15, 16]). Despite the recognized

value of personal data, organizations worry about how best to protect the privacy rights of

their constituents while maximizing the benefits [17].

Data privacy is an overloaded term that takes on many different forms [18]. One con-

cern centers around private information disclosure risk of a de-identified personal dataset

(i.e., a dataset in which each record is associated with one individual and explicit iden-

tifiers or identifying information of the individual (such as name and phone number) are

removed). A malicious adversary might use the information gathered from the de-identified

dataset with or without external data resources to infer private information of the subjects

of the records in the de-identified dataset[19, 20, 21]. For example, an adversary can use

de-identified genome sequencing data with auxiliary information gathered from free, pub-
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licly available genetic genealogy databases from the Internet to infer the last surname of the

data subject [21]. Further, the combination of the surname and other information provided

with the sequencing data (e.g., race and U.S. state of residence), can lead to the identity of

the data subject in some cases [21].

The majority of the prior investigations on privacy disclosure in data publishing from

the computer science community focus on formal protection models (e.g., k-anonymity or

ε-differential privacy). These formal models protect against a predefined possible disclo-

sure attack conducted by a motivated adversary equipped with necessary auxiliary infor-

mation. Since converting the dataset to satisfy these models often introduces noise or gen-

eralization (e.g., replacement of a 5-digit ZIP code with a 3-digit ZIP code) to the dataset,

they affect the utility of the dataset. Optimization algorithms have been developed to find

ways to manipulate the data to satisfy a formal model while minimizing the information

loss (or maximizing the data utility).

For instance, k-anonymity [22] requires that each record in the dataset be in an equiv-

alence group of size ≥ k. In this case, an equivalence group is a group of records with

equivalent values on a set of predefined attributes that can be used to link to an individual

(e.g., demographic information) called a quasi-identifier. For example, in the de-identified

dataset shown in Figure 1.1, there are 3 equivalence groups, each indicated by a different

color, when the attribute set {gender,race,age} is considered as the quasi-identifier. In this

scenario, the underlying assumption is that the adversary knows that an individual is in the

de-identified dataset and will link that individual to the group of records in the dataset with

a matched value on the quasi-identifier. Therefore, a dataset that is k-anonymous guaran-

tees that when such an attack happens, no individual will be linked to less than k records.

Another privacy protection model is ε-differential privacy [23]. This model is defined

as a condition on the release mechanism of the dataset. In particular, a randomized algo-

rithm A is ε-differentially private if for all datasets D1 and D2 that differ on a single element

(i.e., data of one person), and all S⊆ Range(A), Pr[A(D1) ∈ S]≤ eε×Pr[A(D2) ∈ S], where

2



Figure 1.1: An example of equivalence groups in a de-identified dataset (each color repre-
sents a equivalence group).

Range(A) is the output range of the algorithm A. Differential privacy assumes that the

adversary knows information about all of the individuals in the dataset except one indi-

vidual and his goal is to learn the information about the last individual. Thus the release

mechanism that satisfies ε-differential privacy prevents such an adversary from learning

information about the last individual with certainty higher than what is determined by the

parameter ε . The implementation of a differentially private release mechanism often re-

quires introduction of noise to the released result of the algorithm A [24]. Thus it can

influences the integrity of the data and render it unsuitable for certain applications, such as

a medical study that requires the data to be precise [25].

While the attack scenarios for which the formal disclosure protection models are de-

signed are possible, it does not mean they are probable. In other words, the aforemen-

tioned assumptions about the adversary’s prior knowledge and motivation might be un-

likely. Moreover, laws and regulations do not require perfect protection, but rather that

data be shared in a manner that makes it difficult to ascertain an individual’s identity. For

example, the Privacy Rule of the Health Insurance Portability and Accountability Act of

1996 (HIPAA) [26] in the United States allows using an “Expert Determination” (section

164.514(b)(1)) method to meet the de-identification standard. The “Expert Determination”
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methods states that “A covered entity1 may determine that health information is not indi-

vidually identifiable health information only if (1) A person with appropriate knowledge

of and experience with generally accepted statistical and scientific principles and methods

for rendering information not individually identifiable: (i) Applying such principles and

methods, determines that the risk is very small that the information could be used, alone or

in combination with other reasonably available information, by an anticipated recipient to

identify an individual who is a subject of the information; and (ii) Documents the methods

and results of the analysis that justify such determination” [26]. Therefore, if organiza-

tions can demonstrate that the type of attacks and adversaries the formal protection models

assume are of sufficiently low probability, they can be afforded an opportunity to achieve

more data utility by replacing the implementation of formal protection models with risk

management strategies.

1.1 Thesis Goal

The focus of this thesis is to develop a risk management framework towards an optimal

balance between disclosure risk and data utility in data publishing. Instead of making

an assumption about the adversarial scenario, this framework evaluates disclosure risk by

explicitly taking into account the probability that the aforementioned assumptions about

the adversary hold true in a particular data publishing case: 1) the adversary is motivated to

conduct an attack; and 2) the adversary has the necessary prior knowledge; 3) the adversary

has access to the external resources needed for the attack.

In order to calculate the probability that these assumptions hold true, a variety of pa-

rameters need to be evaluated, such as the adversary’s gain from such an attack, the cost of

access external resources, the penalty defined in the deterrents that are put in place (e.g.,

data use agreements, the time and effort to gather the external information necessary to

1HIPAA defines a covered entity as 1) a health care provider that conducts certain standard administrative
and financial transactions in electronic form; 2) a health care clearinghouse; or 3) a health plan.
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compromise the data, or penalties for misusing data), and the rate of detection of attacks.

However, the value of these parameters may be uncertain, such that the model should be

capable of providing a risk assessment under uncertainty.

To generate an optimal data publishing plan, three critical questions should be consid-

ered. First, how can we formally represent the disclosure risk without relying on a set of

predefined assumptions? There is a solution [27] which determines whether or not the ad-

versary will conduct an attack by a single payoff value - which is the sum of the adversary’s

potential gain and cost of committing an attack. Yet, this model fails to consider that, in

the attack process, the adversary may choose to abort the attack in the process.

Second, how can we evaluate the values of the parameters that are incorporated into

the disclosure risk framework? This is a challenging task due to several reasons: 1) There

is little historical data on re-identification attacks [28]. This may be an indication of the

rareness of such events. Alternatively, these events may have happened, but only behind

closed doors; 2) There are various external resources, and it is often difficult to determine

the probability that a record is linked to an individual in an external resource; 3) the deter-

rents do not always impose a penalty in monetary terms, and thus require extra analysis to

convert it into a cost value.

Third, how can we find the optimal data publishing strategies based on the disclosure

risk? Some of the existing solutions perturb the dataset to satisfy a formal mathematically

provable constraint, such as k-anonymity [29] or ε-differential privacy [23]. Some of these

solutions perturb the data to maximize the payoff of the data publisher by considering the

adversary as the opponent of the data publisher in a game theoretic framework [27]. How-

ever, these methods usually do not provide a series of solutions with a range of disclosure

risk and data utility levels. This is partially due to the computational complexity of the

problem. Thus, this dissertation introduces efficient and scalable algorithms to search for

data publishing strategies on a Risk-Utility (RU) frontier.

Figure 1.2 provides an overview of the three aims of this dissertation in the big picture
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Figure 1.2: The domain of privacy disclosure control in publishing individual data and the
aims of this dissertation.
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of privacy disclosure control in publishing individual data. In the dissertation, we assume

that a data publishing strategy is composed of a deterrent and data manipulation strategy.

The modified dataset based on the manipulation strategy will be published. The data ma-

nipulation process often causes utility loss to the dataset. The goal of privacy disclosure

control in publishing individual data is to find an data publishing strategy that yields an

optimal outcome in terms of a set of predefined objectives, such as minimizing privacy

disclosure risk and/or maximizing data utility. A data publishing strategy, as denoted in

Figure 1.2 is composed of deterrents and data manipulation strategies that is used to per-

turb the data. Each of the three aims of this dissertation, along with the elements in the

domain associated with it, are grouped by color in the figure. In general, the three aims fall

into two primary subjects in the domain. The first subject is the privacy disclosure risk. In

particular, this dissertation proposes a new approach to formalize a privacy disclosure risk

model based on an adversarial model that takes into account external identifiable datasets,

an adversary’s gain and the available deterrents. The second subject is the optimization

algorithms for an data publishing strategy. The subjects colored in black including data

utility, computational disclosure control, and privacy disclosure games are those that are

considered beyond the scope of this dissertation.

Private information disclosure can be categorized into three classes. The first class

argues that privacy is compromised when a record is linked to an individual from who it was

derived (often referred to as identity disclosure or re-identification) [30]. The second class

is the inference of a sensitive value associated with the corresponding individual (often

referred to as attribute disclosure) [31]. The third class is the ability to detect if someone is

a member of a dataset (often referred to as the presence/absence problem) [32, 33], or the

degree to which viewing an individual’s contribution to a dataset permits an adversary to

gain knowledge about them (the basis of models like ε-differential privacy) [34, 35, 36].

In this thesis, we focus on the identity disclosure because all other privacy disclosures

require the adversary to link the data to the identity of a single individual or a group of
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individuals in order to commit the specific attack or cause any harm. Moreover, existing

privacy regulations are centered around the notion of anonymity. There are various regula-

tions that encourage organizations to suppress identifying information from personal data

prior to its dissemination. Several examples of regulations with explicit identity protec-

tions include HIPAA [26] in the United States and the Data Protection Directive [37] in

the European Union. In particular, we assume that the data to be published is composed

of a set of tuples in the form of a relational table. Each tuple contains a set of attributes of

an individual. In this setting, identity disclosure means that the identity of the subject of a

tuple in the published dataset, or the identities of a group of individuals that are associated

with certain sensitive information provided in the dataset, are revealed unintentionally. The

revelation is often not explicit, but achieved through some inference.

1.2 Problem Statement

It has been demonstrated that de-identified personal data can still be linked to, or reveal

sensitive information about, the corresponding individual by adversaries [38, 21, 39, 40,

41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51]. Therefore, disclosure control methods are

required for publishing personal data. In the meantime, disclosure risk is the probability

that an adversary driven by economic gain given limited resources takes a series of steps

to achieve a successful attack. Possible disclosures are not necessarily probable, and thus

a demonstration of possible disclosure does not necessarily indicate the disclosure risk

level. The majority of existing investigations in privacy disclosure control in publishing

personal data only focus on providing protection methods without consideration for the

probability of a privacy disclosure, i.e., the risk. Depending on the situation, applying

these methods can lead to overprotection, which causes unnecessary data distortion and

harms the legitimate usage of the data, as well as underprotection, which could harm the

data subjects and/or data publisher.

The goal of this thesis is to build a framework to reason about disclosure risk given the
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dataset and the context in which it is published including the adversary’s decision making

process, the adversary’s gain from a successful attack, the adversary’s cost for accom-

plishing the attack process and external identifiable data and develop methods to find data

publishing solutions that provide desirable tradeoff between identity disclosure risk and

data utility.

1.3 Specific Aims

There are three specific aims of this dissertation.

1.3.1 Specific Aim 1. Develop an accurate and efficient model to quantify the identity

disclosure risk of individual-level records in a de-identified dataset which accounts

for the re-identification attack process.

Multiple factors in the context in which the dataset is made available influence how

and whether an adversary will attempt to re-identify the individuals to whom the records

correspond. These include the potential gain the adversaries will obtain by exploiting the

re-identified information in a way that benefits them, the potential loss the adversaries will

face if the attack gets caught by the some authority or the publisher of the data if deterrence

mechanisms are set in place (e.g., execution of a data use agreement (DUA)), the potentially

available external data resources containing the identifiable information, and the cost of

accessing these resources. We propose a model that explicitly captures these factors in

a Markov decision process (MDP) and assess the adversary’s motivation to initiate a re-

identification attack and overcome the challenges in each step until reaching the end goal.

Based on the adversary’s decisions, we quantify the identity disclosure risk of the dataset

as the probability that the adversary eventually reaches a successful re-identification and

causes harm. The MDP model can grow exponentially with the number of state variables,

and thus we propose to develop scalable algorithms to solve the model.
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1.3.2 Specific Aim 2. Develop methods for evaluating the parameters of the identity

disclosure risk model for various adversaries and available external identifiable re-

sources given a deterrence mechanism.

To use an identity disclosure risk model in practice, there are at least two parameters

that need to be evaluated: 1) the penalty a deterrence mechanism enforces and 2) the ad-

versary’s gain in committing a re-identification attack. We first aim to develop methods

to measure the cost of penalty in an existing deterrence mechanism (e.g., time-based de-

terrence adopted by various organizations, such as the National Institutes of Health (NIH)

database of Genotypes and Phenotypes (dbGaP) [52] 2 and Wellcome Trust Case Control

Consortium (WTCCC) [53]). Time-based deterrence mechanisms do not impose a direct

fine on the adversary, but instead bar the adversary from accessing the datasets for a lim-

ited period of time. Secondly, there may exist different types of adversaries, some of which

may be extremely aggressive, but at the same time extremely unlikely, while others may

be rational decision makers and at the same time extremely likely. Thus, we futher aim to

profile the different types of adversaries in terms of their exploitations and gains from the

re-identified information.

1.3.3 Specific Aim 3. Develop algorithms to search for data publishing solutions on the

Risk-Utility frontier

The data publisher can combine different data manipulation strategies and deterrence

mechanisms to form a data publishing solution. Data manipulation often leads to less data

utility, so we aim to develop methods to automatically discover optimal data publishing

solutions in the format of a series of data manipulation strategies that yields a de-identified

dataset on Risk-Utility frontier; i.e., the solutions for which there are no other solutions

2The National Center for Biotechnology Information (NCBI) created dbGaP to serve as a platform for
sharing data from large scale cohort and clinical studies initiatives of genome-wide association studies
(GWAS) to enable investigator access to data from these initiatives at NIH and beyond.
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with better utility and less risk than. There are two challenges we need to overcome to reach

this goal: 1) formalize the solution space in a manner that efficient search algorithms can

be built upon and 2) develop efficient and scalable dual-objective optimization algorithms

(e.g., possibly via heuristic based search) to find optimal solutions in an extremely large

solution space.

1.4 Contributions

• We propose a novel re-identification risk framework, which formalizes incentive and

deterrence mechanisms in a real world environment where the de-identified dataset

is released. This framework explicitly models the adversary as an optimal planning

agent using a factored Markov decision process (FMDP). Given that the state space

of the FMDP grows rapidly, we introduce a two-level linear programming algorithm

to efficiently solve it. We conduct a case study in which an adversary has the option

of leveraging a public voter registry in a specific U.S. state to attack de-identified

records. The results illustrate how traditional beliefs about re-identification risk can

be underprotective and overprotective of the data. Moreover, we conduct a detailed

sensitivity analysis that demonstrates how changes in costs of each stage of attack,

penalty of a violation, and violation detection rate influence when the adversary will

abort an attack. The results indicate that the adversary can be sufficiently deterred

with a small amount of data manipulation, provided appropriate detection and penal-

ization policies are in place.

• We investigate if a real world penalization mechanism that is assumed to work is

actually feasible. In particular, this penalization mechanism imposes a temporal

penalty, which suspends an adversary who violates the terms in the data use agree-

ment (which prohibits privacy violations, such as re-identification) from accessing

any dataset from the system for a period of time. The temporal penalty is assumed

to provide deterrence for the adversaries based on the assumption that the value of
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the data for academic research declines over time. Therefore, we propose a novel

approach to investigate the feasibility and effectiveness of this penalty by examining

the change of the value of the data over time using linear regression. It is a challeng-

ing task to define the value of the data. Thus, in this dissertation, we use a proxy

in the form of the impact of the publications that relies on the data. We enriched

a dataset of publications authored by authorized investigators of data in dbGaP by

adding the Journal Citation Reports (JCR) journal impact information, the dbGaP

dataset made available date, and the publication made available date. We analyzed

the data using several linear regression based models. The results demonstrate that

there is no evidence to suggest that such a temporal policy provides the anticipated

protection.

• We develop a de-identification policy discovery platform that selects high perfor-

mance de-identification policies using the tradeoff between risk and utility as the

criteria. We formally define the de-identification policy frontier discovery (DPFD)

problem. Given the extremely large search space structured as a lattice, we developed

a set of novel heuristic-based algorithms to construct a high quality frontier more ef-

ficiently than baseline algorithms. We conduct a extensive empirical analysis using

the Adult dataset with simulated ZIP code information from 10 US states , North

Carolina voter registration list and US census 2010 data to evaluate our algorithms.

The result demonstrates that the heuristic algorithms outperforms the random search

strategy. Moreover, we demonstrate that our approach consistently discovered fron-

tier policies that provide more utility and less risk than a commonly adopted health

data de-identification policy (in the form of HIPAA Safe Harbor).

1.5 Dissertation Outline

The reminder of this dissertation is organized as follows. Chapter 2 reviews relevant

literature and highlights their limitations. Chapter 3 introduces a novel process based model
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to quantify re-identification risk of de-identified personal information in a particular context

in which the data is published. Chapter 4 describes the statistical analysis of a temporal

penalty mechanism in a real world data setting using dbGaP data. Chapter 5 introduces

the Risk-Utility frontier search problem in the de-identification solution space and several

heuristic based algorithms to tackle this problem. Chapter 6 concludes this dissertation and

highlights the opportunities for future research.
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Chapter 2

Related Work

The problem of how to mitigate identity disclosure while keeping the data useful for a

secondary purpose when publishing de-identified datasets is an essential part of the more

general privacy preserving data publishing challenges. There is existing work in the com-

puter science community on computational disclosure control via formal protection mod-

els, as well as in the statistics community on identity disclosure risk assessment. However,

none of these investigations provide a framework to reason about the optimal disclosure

control mechanisms under various adversarial assumptions.

In this section, we first review the big picture of privacy in data publishing. We then

examine the area of computational disclosure control and statistical disclosure risk assess-

ment with a particular focus on the identity disclosure issue. In addition, we survey the

research fields related to the methods we propose including: Markov decision processes,

the economics of identity disclosure, game theory, and multi-objective optimization.

2.1 Privacy in Data Publishing

There are many different definitions on what constitutes a privacy violation when pub-

lishing data that contains personal information. These views argue that privacy can be

compromised when a record is linked to the individual from whom it was derived (often

referred to as identity disclosure) [30], the inference of a sensitive value associated with the

corresponding individual (often referred to as attribute disclosure) [31], the ability to detect

if someone is a member of a dataset (often referred to as the presence/absence problem)

[32, 33], or the degree to which viewing an individual’s contribution to a dataset permits

an adversary to gain knowledge about them (the basis of models like ε-differential privacy)
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[34, 35, 36].

In this dissertation, we focus on the identity disclosure problem because this is the

primary focus of current regulation. Specifically, various laws state that data are sufficiently

protected when it is “difficult” to ascertain an individual’s identity [54]. For example, the

European Union’s Data Protection Directive refers to such data as “anonymised” [37] and

the U.S. Health Insurance Portability and Accountability Act (HIPAA) calls that data de-

identified [55] (the convention we use henceforth). In so doing, these laws aim to prevent

identity disclosure, which transpires when a recipient of the data links it with some resource

containing explicit identifiers (e.g., a voter registration list [56, 19]).

2.2 Computational Disclosure Control

The majority of existing methods for addressing the issue of privacy disclosure in data

publishing falls into the category of computational disclosure control, which was first pro-

posed by Sweeney [57]. A disclosure is defined as an unintended release of explicit or

inferable information about individuals who are the subjects of the person specific data.

Computational disclosure control is rooted in a mathematical representation of the privacy

disclosure problem. Assuming that the information in the published dataset is intended

to release, the only concerns are the facts that might be inferred from the information in

the published dataset and, perhaps, with other auxiliary information. As such, computa-

tional disclosure control is centered around an inference problem with two inputs: 1) the

published person specific data and 2) the auxiliary information.

The goal of computational disclosure control is to provide a mathematical guarantee

on the limitations of the inferable information (i.e., the unintended release) that can be

obtained by solving the inference problem (or the certainty of the inference). There exist

different techniques, such as generalization, suppression and noise addition, that can help to

reduce what can be inferred from a published dataset. These techniques introduce different

types of distortion to the data and therefore affect the data utility. The challenge is to find
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a minimum distortion of data which ensures that the inferable information (or the certainty

of the inference) is below a threshold.

Computational disclosure control first focused on the inference of the identity of sub-

jects in a de-identified dataset, (i.e., identity disclosure), though over the years, it has ex-

panded to other types of disclosures. Here, we focus on identity disclosure because it is

the most relevant to the proposed study. There exist different definitions of inference with

respect to identity, each of which is referred to as a protection model. These models also

often assume that the de-identified dataset and the external resource are all drawn from the

same population.

These models also assume that the data holder can identify a set of attributes, called

quasi-identifiers, that can be used to infer the identity of an individual. A common example

of a quasi-identifier is a set of variables related to an individual’s demographics. Attributes

that are in the quasi-identifier usually also appear in an external information that communi-

cates the individual’s identity. Thus, a linkage of the de-identified and the external datasets

on the quasi-identifier can map a record in the de-identified dataset to a set of individual

identities. These linkages may or may not be correct, since there might be individuals in

the population who are not in the de-identified dataset.

A protection model defines assertions that can be made upon these linkages. For ex-

ample, the k-map [57] model maintains the property that each record in the de-identified

dataset must be linked to at least k individuals given the external resources. Other models,

such as non-map and wrong-map [57], define different assertions on the invariance of the

datasets. Given these models, optimization needs to be performed to turn the de-identified

dataset into a form for which this assertions can be made upon with minimal distortion.

However, enforcing the assertions defined by such protection models on the de-identified

dataset are deemed impractical, thus there rarely methods developed for the optimization.

Instead, more strict, but computationally feasible, models are considered in practice. These

models are designed with the necessary conditions that if ensured, the invariant defined
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by the original model will hold true. One broadly studied model is k-anonymity [38]. A

dataset is said to satisfy k-anonymity when every value of the quasi-identifier occurs at least

k times in the dataset. The group of records with the same value on the quasi-identifier is

an equivalence group [58].

Formal protection models focus on providing a mathematically guaranteed protection

level based on the chosen value of the parameters, such as k in k-map, regardless of the

actual risk of a re-identification attack1. Thus, it is difficult for the data holders to know

what specific attacks these models protect their data from and whether or not the damage

caused to the data is justified by the reduced risk from applying the protection model.

On the other hand, the data holders also do not know whether or not the protection is

sufficient. The essential rule is that k needs to be large enough that it is very difficult for

any potential adversary to go through each potential individual to unambiguously find out

which individual is the actual subject of the tuple from the dataset.

To justify that a selected k is large enough to provide sufficient protection, the adver-

sary’s cost of contacting each individual, the adversary’s motivation and gain need to be

taken into account. However these models do not provide a principled method for reason-

ing about these elements. Thus, computation disclosure control can either underprotect or

overprotect the dataset in practice.

Moreover, the formal protection models often face tremendous resistance in deploying

in practical systems, even though the protection ensured is mathematically sound. Let us

take k-anonymity as an example. Given the same k value, it provides at least the same

level of protection as k-map. However, the extra distortion introduced by k-anonymity in

comparison to k-map can vary to a large extent depending on the population from which

the de-identified dataset and the external datasets are sampled from. Only if the set of

individuals in both the de-identified dataset and the external dataset are the same, the extra
1Informally, the risk of re-identification attack is considered as the product of the probability that a suc-

cessful re-identification happens and the harm it brings to the data subject and/or the organization that releases
the data.
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distortion is 0.

In practice, however the probability of this situation can be very low. In situations

in which the population is extremely large in comparison to the size of the de-identified

dataset, the extra distortion is very high. For example, if the de-identified dataset includes

a group of 5000 patients from Vanderbilt University Hospital and the external dataset is the

Davidson county voter registration list (where the hospital resides), the population set that

covers both is at least the size of the Davidson county population, which is over 600,000

people. In this case, it is possible to ensure that each tuple in the de-identified dataset

links to at least 1000 individuals in the population to meet the requirement of k-map when

k = 1000 . However ensuring the same k for k-anonymity can render the dataset com-

pletely useless for many applications, especially for analysis on the dataset that requires a

high level of integrity of the data. By applying models such as k-anonymity, we face the

risk of overprotecting the dataset substantially. Thus, computational disclosure control is

impractical in practice without a principled method to evaluate the risk before, as well as

after, converting the de-identified dataset into a form that satisfies the protection model.

2.3 Methods for Data Protection

Under a computational disclosure control framework, many techniques have been de-

veloped to convert the dataset to reduce the probability (or certainty) of unintended dis-

closures, such as generalization, suppression, and noise addition. In this dissertation, we

focus on applying generalization and suppression to the de-identified dataset to mitigate

disclosure risk. Since there are different generalization strategies, here, we review the most

relevant to our work. [59] introduced the concept of full-domain generalization in which

all values of each attribute are generalized to the same level of the domain generaliza-

tion hierarch (DGH). This paper also proposed greedy heuristics to generate k-anonymous

solutions. [29] showed the generalization space maps to a partially ordered lattice and in-

troduced a binary search method, which guarantees the solution is optimal according to a
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certain cost metric.

By relaxing the constraint of mapping the entire domain to the same level of the DGH,

[60] defined the generalization solution space as all arbitrary partitions on the ordered set

of values in a single attribute’s domain (e.g., age 14 is reported as 10-15 while age 16 is

reported as 16-30). Given that the size of the search space is exponential in the size of a

QI’s domain, exhaustive search strategies are impractical. Thus, [60] proposed a genetic

algorithm, to perform a partial search of the generalization space. This work is also notable

because it represents QIs and their generalization as bit-strings, a model we adopt in this

dissertation.

Since genetic algorithms do not provide a guarantee about the optimality of the solution

and are often associated with long runtimes, [61] restructured the space of [60] to a tree and

provided a systematic search algorithm using pruning and rearrangement to find an optimal

k-anonymization in a practical amount of time. [62] further expanded the solution space

to permit arbitrary partitioning of each attribute domain without forcing a total order on it.

Based on this partitioning, they proposed a novel method to create a partition enumeration

tree and search algorithms to efficiently discover the optimal anonymization solution. In

all of the generalization strategies mentioned above, each attribute is generalized indepen-

dently (i.e., a single-dimension attribute domain). Thus, any specific value in each domain

is generalized in the same way in every tuple of the dataset.

[63] extended this model to a multi-dimensional space by generalizing values of tuples

in the dataset. A greedy partitioning strategy was introduced to discover a k-anonymization

solution. While flexible (e.g., females with age 14 are expressed as [female, 14] while

males with age 14 are expressed as [male, 10-14]), the expansion of the search space pro-

vides more generalization options. As a result, the generalized dataset can be difficult to

interpret because the same value of a QI attribute can be mapped to different values in the

same generalized dataset.

In this dissertation, we use full-domain generalization and full-subtree generalization
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and adopt the lattice structure to represent the generalization hierarchy. However, the op-

timization algorithms for k-anonymity given these generalization strategies can not be di-

rectly used to find a solution on the Risk-Utility (R-U) frontier, which is the set of policies

for which there is no other policy with both better utility and less risk. The search for the

k-anonymous solution which minimizes the total quantity of generalization is an NP-hard

problem [64, 65]. Given the definition of k-anonymity, 1/k can be considered as an dis-

closure risk limit in a particular situation, in which the adversary has access to an external

dataset which covers the exact same set of population as the de-identified dataset and the

amount of generalization is a particular case for data utility metric. Thus, searching for an

optimal generalization solution that satisfies k-anonymity can be considered as a special

case of the broader problem of searching for generalization solutions that are on the risk-

utility frontier given an arbitrary risk metric and utility metric. Thus, the frontier search

problem is at least at the same complexity level as k-anonymization. As a result, we will

need to develop heuristic search strategies to find the frontier solutions efficiently.

2.4 Identity Disclosure Control Using Risk Management

It has been suggested that assessing disclosure risk requires a holistic modeling of dif-

ferent types of adversaries [66, 67]. Such models should account for the motivation, means,

opportunity cost, consequence of attempt, and likelihood of success. However, such inves-

tigations have not provided a formal approach to risk quantification that accounts for the

elements in the data environment. Rather, existing disclosure risk measures mainly focus

on the uniqueness of records in the dataset and in the population. For instance, three popular

disclosure risk metrics (i.e., prosecutor, journalist and marketer) [68] assume that the adver-

sary is always motivated to attack and the extra information required for re-identification is

always available. As a consequence, the risk level is only dependent on the data itself.

The risk model we propose, on the other hand, explicitly formalizes elements beyond

the de-identified dataset itself, which influence the adversary’s decision making. We note

20



that there have been several investigations in applying game theoretic frameworks to ana-

lyze the adversary’s best course of action and the corresponding disclosure risk [27, 69].

For instance, the adversary in [27, 70] is formalized as an opponent of the data publisher

in a Stackelberg game. To maximize payout, the adversary decides if they should attack

by comparing the potential gain against the cost of committing an attack. Yet, this model

oversimplifies the adversary’s decision process of gathering, linking, and exploiting data.

Moreover, in their formalization, there were no explicitly modeled penalties for detecting

the misuse of the data.

Moreover, the existing disclosure risk management methods did not give an frontier

of solutions with a range of disclosure risk levels and data utility levels to guide the data

holder’s decision making.

2.5 Adversarial Modeling and MDPs

As mentioned earlier, we propose to build the adversarial model of the disclosure attack

for risk evaluation based on the assumptions that 1) the adversary is rational and optimal

planner and 2) the adversary makes a series of decisions in the attack process. In particular,

we propose to use a Markov decision process (MDP) [71, 72] to represent the adversary’s

decision making process. An MDP is designed to model sequential decision making in

which there is a reward associated with taking an action at each state, while the outcome of

the action can be random. In technical terms, an MDP is a discrete time schochastic control

process. At each step the decision maker is at a state, and the decision maker will make

a decision to choose an action from a finite set of actions. There is an amount of reward

granted to the decision maker given the action taken and the current state.

The next state a random state generated based on a probability distribution over a set

of possible states given the current state and the action. In our model, the adversary is a

decision maker, the state where the decision maker is at, is the state of the attack process

(e.g,, the adversary has gained access to the external resource). At each step, the adversary
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makes a decision on the next action. For example, whether or not to contact an individual

that is linked to a tuple in the de-identified dataset. The adversary’s action can bring some

reward, which can be negative. For example, if the adversary’s action is to access an exter-

nal dataset, the value of the reward is the negative value of the cost of the external dataset.

Moreover, the next state is not completely determined by the adversary’s action. For exam-

ple, when the adversary chooses to exploit an individual, he is uncertain about whether or

not he will be detected and pulished. Also, before the adversary chooses to access the ex-

ternal dataset, he may not be certain about the number of identified individuals to which the

de-identified record may be related. Therefore, our adversary’s decision making naturally

fits into the representation of the MDP framework.

To the best of our knowledge, MDPs have not been used to model adversaries in the

privacy preserving data publication setting. Yet it has proven to be a useful tool in modeling

adversary’s optimal planning in security problems. This is because the MDP representation

captures an adversary’s uncertainty on the outcome of a security related action [73], similar

to the disclosure adversary. An important difference between our adversarial model and

the one in Letchford and Vorobeychik [73] is that, in the security scenario, the adversary

terminates once he is caught, whereas in our model, the adversary may only pay a fine and

continue to attack.

In particular, we propose to use a factored MDP to represent the adversary’s decision

making process. A factored MDP is an MDP model in which the state is represented by

an assignment of the state variables. The computational challenge we face is how to solve

the factored MDP (i.e., how to compute the optimal action at each state) [74]. Standard

methods to solve a MDP include linear programming and dynamic programming. How-

ever, these methods have scalability issues, especially when dealing with a factored MDP

because the state space of which grows exponentially with the number of state variables.

Approximation algorithms have been designed to solve large scale MDPs including ap-

proximate dynamic programming [75, 76, 77, 78], neuro-dynamic programming [79] and
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approximate linear programming [80, 81, 82, 83]. There also exist algorithms that leverage

the structure of the MDP [84, 85, 86, 87, 88] to construct an approximate solution without

enumerating the state space. For MDPs that can be decomposed to a series of weakly cou-

pled tasks, algorithms have been designed to construct a global solution from the solutions

of the small tasks [89, 90].

2.6 Game Model vs Multi-objective Optimization

Applying game theoretic models [27, 91, 70] to assess disclosure risk and generate

optimal data sharing strategies for the data holder is an emerging research area. Wan [27]

formalized the problem of releasing personal data in the form of a Stackelberg (leader-

follower game) game, in which the data publisher is the leader and the data recipient (the

potential adversary) is the follower. It is assumed that both the data publisher and the

data recipient are economically driven with the goal of the maximizing the payoff. The

data publisher’s strategy set is the different ways of obfuscate the data, the adversary’s

strategy set is whether or not to re-identify a record. The data publisher’s optimal strategy

is obtained by solving the Nash equilibrium of the game.

The Risk-Utility frontier search method we introduce, which is essentially multi-objective

optimization shares common roots with game theoretic model based methods. Yet there are

significant differerences in terms of the goals, computational challenges and applications.

Both the game model and the frontier search algorithm consider the adversary as a ra-

tional and economically driven agent who makes decisions based on the payoff of each

alternative action. Therefore, both of the two frameworks require the analysis of the ad-

versary’s gain from re-identifying a record, external resource cost, computational cost, and

potential penalty cost from the authorities. The game model introduced in [27] did not

emphasize constructing an elaborate adversary process model for identity disclosure at-

tack, but instead, relied on an ultra simplified one-step decision model. We believe that the

process-based adversarial model introduced in this dissertation can help advance privacy
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game models.

Despite what is in common between the privacy game and the Risk-Utility frontier

search, they are two irreplaceable approaches designed for finding the optimal data releas-

ing strategy. In general, the solution to a game is a strategy that optimizes the goal of

the game. Essentially it is a single objective optimization, while the solution to a multi-

objective optimization is a Pareto frontier composed of the set of non-dominated strate-

gies2. The implication is that, in order to adopt the game model based method, both

the value of publishing the personal data and the loss brought about by a successful re-

identification attack for the data publisher need to be measured in the same term, such as a

monetary value.

This condition does not always hold true. For example, in some cases, the value of the

data is measured by the utility of the data for certain type of scientific research, the value

of which can not be measured in monetary terms, while the loss is a fine from the regulator

for failing to protect subject’s privacy. In this example, the game model is not applicable.

On the other hand, the Risk-Utility frontier search method can provide guidance in making

a decision on the data releasing strategy.

Another exclusive application for the Risk-Utility search method is when the data pub-

lisher can make a decision based on how the utility increases with the increase of the risk

in a acceptable range. In other words, by using the Risk-Utility frontier search method, the

data publisher is awarded the opportunity to trade a significant gain in data utility with a

small loss in privacy (or vice versa).

2.7 The Economics of Identity Disclosure Attack

It is essential for the identity disclosure risk modeling proposed in this work to under-

stand and analyze what types of exploitation an adversary can conduct and the amount of

2Given a strategy s, if there does not exist any other strategy s′ is better than s in all dimensions, then s is
a non-dominated strategy

24



gain can be obtained from such exploitations with the personal information inferred from

the de-identified dataset (i.e., the economics of identity disclosure attack). However, there

is only a limited amount of investigation into this issue.

Sweeney [57] enumerated a few entities that can potentially make a profit by exploiting

personal health information [92]. For instance, a bank can make decisions on whether or

not to call in outstanding loans based on whether or not the individual has a severe medical

condition, such as cancer [93]. Alternatively, companies can make employment decisions

about employees based on their medical records [94]. And insurers can sell personal health

information to lenders, employers, or marketers [95]. However, the amount of profit gained

from these exploits are difficult to measure without internal information from these entities.

In the meantime, there do exist some studies that can provide insights into the eco-

nomics of an identity disclosure attack indirectly. For example, one study on the economics

of financial and medical identity theft [96] looked at the financial flows and business mod-

els of the possible exploitation of personal medical data with a particular focus on medical

identity theft. This study pointed out several ways to obtain a financial gain using personal

health information, such as selling this information to an individual without insurance cov-

erage or a wanted criminal who needs to obtain access to medical care, especially expensive

procedures (e.g., organ transplant), or using this information to fake an identity to obtain

prescription drugs and medical equipment to resell into black markets. Yet these types of

exploits require personal health information that includes secret identity information which

is normally not available in publicly available data resources that can be used in identity

disclosure attacks against protected personal data, such as an SSN or an insurance ID. Thus,

these exploits of personal health information are unlikely to happen with the information an

adversary can gather by committing an identity disclosure attack against personal data pub-

lished for secondary usage. However, the same methods that have been used in conducting

medical identity theft study can be adopted to study the ways in which the information

about an individual gathered from the identity disclosure attack can be exploited and the
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subsequent potential financial gain from the exploitations.

An indirect way to estimate the financial gain from the exploitation of personal infor-

mation discovered via an identity disclosure attack is the price of this information at which

the subject or the owner of the information is willing to sell at. There exist studies on the

value that individuals assign to their personal information, privacy market, and pricing per-

sonal information [97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108]. A study [97]

through online experimens based on behavioral economics and decision research found that

the value an individual assigns to her private information forms a non-normal distribution

that is dependent on the context in which, and how, the transaction is made. In particular,

the individual values the private information differently depending on, not only the endow-

ment, but also the order in which different privacy options are presented. Moreover, the

value of the private information is highly affected by factors that are not supposed to affect

decision making.

With respect to privacy market, a personal identifiable information market is proposed

in [105], in which the value of the personal identifiable information is decided by the auc-

tion between the information aggregators and the data subjects. Moreover, different private

information markets have been recognized [103], such as a market in which data aggrega-

tors buy and sell data to other organizations and a market in which the data subjects trade

their information for free services. If the market is known beforehand, the value of the

information can be evaluated in the framework of the particular market. The economics of

privacy studies have recognized the relationships between personal private information and

the dynamic pricing (in other words, price discrimination) [109, 110]. Therefore, a possible

way to evaluate the value of the personal information is to measure the profits brought up

by the dynamic pricing strategy based on the consumers’ private information.

Another alternative way to evaluate the adversary’s gain from exploiting the informa-

tion discovered from the identity is applying similar methods in measuring the cost of

breaching a security system. Different security system offers a different cost to break
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(CTB) [111]. Economic approaches have been proposed to measure the CTB of a sys-

tem, such as offering a reward to the first exploitation of the vulnerability of the system and

use the lower bound of the reward as the CTB [112].

2.8 Sampling and Prior Probability

An essential issue of assessing identity disclosure risk when releasing a de-identified

dataset is to estimate that the prior probability the subject of the record in the dataset is also

in the available external identifiable datasets. To address this issue, it is critical to estimate

the population statistics from which the published personal dataset and the external dataset

are sampled. Models have been proposed to estimate the number of population uniques

(i.e., the number of people in the population with an unique value on the quasi-identifier)

using sample data based on the assumption that the size of the equivalence group in the pop-

ulation is a realization of a superpopulation distribution, such as a Poisson-gamma model

[113], Argus method [114], log-linear models [115, 116], neighborhood regression model

[117], and a smoothing model using a local neighborhood [118]. These methods cannot

be directly used to compute a prior probability, but the population statistics derived from a

sample set based on these models can be adopted in further computing the prior probability.
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Chapter 3

Theoretical Modeling of Re-identification Risk

3.1 Introduction

Many formal privacy protection models have been developed for publishing personal

data. However, these formal models are based on simplistic adversarial frameworks, which

can lead to both under- and over-protection. For instance, such models often assume that

an adversary attacks a protected record exactly once. Moreover, these models protected

against possible attacks, but it is unclear if they are probable. This is important because laws

and regulations do not require perfect protection, but rather that data be shared in a manner

that makes it difficult to ascertain an individual’s identity. Organizations are thus afforded

an opportunity to achieve data protection using risk management techniques. However,

there does not exist a principled method to evaluate re-identification risk while accounting

for the elements beyond the scope of the data itself that contribute to re-identification risks,

such as deterrence mechanisms (e.g., data user agreements, the time and effort to gather the

external in- formation necessary to compromise the data, or penalties for misusing data),

that influence an adversary and the adversary’s behavioral pattern. Thus, in this chapter, we

introduce a principled approach to assess re-identification risk that that incorporates data-

and penalty-based disincentives and the adversary’s behavioral pattern.

3.2 Re-identification Risk Quantification Framework

Our framework quantifies the re-identification risk of publishing each record in a de-

identified dataset. We assume the dataset is composed of person-level records in a relational

form. We define re-identification risk as the composite of the probability that an adversary
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Figure 3.1: The re-identification attack process.

re-identifies a record and the harm it causes:

risk = Preid×Lreid (3.1)

where Preid is the re-identification probability and Lreid is the associated publisher loss. We

assume Lreid is a predefined input, and focus on Preid .

The re-identification probability is derived from the adversary’s sequential decision pro-

cess, outlined in Figure 3.1. The adversary begins with a de-identified record r. The adver-

sary’s first decision is to access an external table De or not. His second decision is whether

to conduct a linkage attack, which yields an equivalence group of records Ge. This corre-

sponds to the set of individuals with the same value as the target’s published quasi-identifier

(QI). At this point, each individual α ∈Ge has a probability that they actually correspond to

the targeted record r. This translates into a probability that an attack (e.g., confirmation of

the patient’s identity) on α will be successful. If the attack fails, the adversary can choose

to exploit another individual from Ge. This process can repeat until the adversary decides

to stop or he exhausts all of the records in Ge.

There are several notable aspects of this attack process. First, it should be recognized

that this is a stochastic process. For example, the adversary may not know if the individual
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Figure 3.2: A general architecture of the re-identification risk quantification framework.

to whom the target record corresponds is in De. Therefore, the outcome of accessing the ex-

ternal dataset is uncertain. Furthermore, the result of exploiting an individual is stochastic,

with outcomes ranging from success to failure to being detected and punished. A second

notable aspect of the attack process is that there is a cost and a reward associated with each

action, for instance, the reward for a success, the cost of accessing De and the penalty if an

attack is detected.

More precisely, we model the adversary as a planner using a factored Markov decision

process (FMDP) [85]. In a FMDP, a state of the world is characterized by a collection of

random variables (or factors). The adversary is modeled as a rational agent computing an

optimal policy; i.e., an optimal action to choose in each state of the FMDP. Given such a

policy, we can compute risk according to Equation 3.1.

In Figure 3.2, we show the general architecture of the re-identification risk quantifi-

cation framework. The framework is composed of three modules (the black rectangles in

Figure 3.2): 1) the FMDP formalization of the adversary’s decision process, 2) the FMDP

solver, and 3) the re-identification risk computation module. The FMDP formalization

module takes four inputs: i) the attack decision process, ii) the de-identified data, iii) the

external dataset profile, and iv) the adversary’s profile. The factored MDP model is then

solved by the FMDP solver module to determine the adversary’s optimal policy. Finally,
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Table 3.1: The state variables of the FMDP model.

Variable Explanation
Xt , binary If T, attack is terminated
Xd , binary If T, exploit of an individual is detected
Xp, integer Number of previous exploits penalized
Xs, binary If T, target record r is successfully re-identified
Xa, binary If T, external dataset De has been accessed
Xl , binary If T, target record r has been linked to the external dataset De
Xg, integer The size of the equivalence group of target record r in external dataset De
Xr, integer The remaining number of unexploited individuals in the equivalence

group for record r in external dataset De

the risk computation module computes the quantified risk value given optimal attack policy

and associated probability of successful re-identification attack. In the following sections,

we dive into the details of each of the three modules.

3.3 Re-Identification as an FMDP

The FMDP model is a 4-tuple (X ,A,R,P), where X = {X0, ...,Xm} is a finite set of

random variables, each with a finite domain. In this model, A is a finite set of actions; R is

the reward function R(x,a), representing the reward for each action a taken in state X = x;

and P is a Markovian transition function P(X ′i |X
parent
i ,a), which represents the probability

distribution of the state variable X ′i in the next state given the value of a subset of state

variables X parent
i and action a (X parent

i is the set of variables that X ′i is dependent on given

the action is a). We denote the value of a state variable Xi in state x as x[Xi]. We assume

that the FMDP has an infinite horizon, and time is exponentially discounted with a discount

factor γ .

State variables

As summarized in Table 3.1, the FMDP model is based on eight state variables. Here,

we take a moment to provide intuition into each of these variables. First, Xt is a binary vari-

able that represents the termination of an attack. When Xt = T (true), the corresponding

state is absorbing, effectively ending the decision process. Next, we assume the existence
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Table 3.2: The actions of the FMDP model.

Action Explanation
terminate Abort the attack
access Access the external dataset De
link Link the de-identified record ri to the external dataset De
exploit Exploit a random individual in the equivalence group of record r in the

external dataset De

of an attack detection mechanism, and the state of detection is indicated by a binary vari-

able Xd . The following variable, Xs, indicates whether the exploit is successful (in which

case the adversary obtains a positive reward). The next two variables are associated with

data manipulation. Xa is a binary indicator of whether the external dataset De has been

accessed, while Xl is a binary indicator of whether it has been linked to the published target

record r. Xp maintains the number of times the exploitation has been detected and penal-

ized. The final two variables, Xg and Xr keep track of the size of the equivalence group

and the remaining unexploited individuals in the group. Thus, as the adversary attempts

(unsuccessful) attacks on matched records, Xr decreases while Xg remains constant. This

is because the original group size associated with linking is fixed. To keep our presentation

compact, we represent each state x as a vector [x0, ...,xm] in the FMDP model, where xi

denotes the value of the ith variable in the list [Xt ,Xd,Xp,Xs,Xa,Xl,Xg,Xr].

Action set

There are four classes of actions in our system, which are summarized in Table 3.2.

The adversary has the option of aborting the attack at any time by choosing the terminate

action. The other three actions represent the adversary’s operation in three different phases

of the attack. The access action represents the accessing of the external dataset De. The link

action represents the linking of the de-identified record r to the external dataset De. The

exploit action represents a potentially harmful exploitation of an individual that is deemed

to be related to the record r under attack. The particular type of exploitation may differ

under various circumstances. For example, if the adversary’s goal is to demonstrate the

vulnerability of the system, the exploit may be to prove they can contact the individual and
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confirm the record is really associated with them [119]. Or, the adversary’s goal may be to

conduct direct marketing to the individual based on the sensitive information in the record

(e.g., for a particular pharmaceutical). Regardless, an exploit is assumed to be successful if

it is conducted against the individual to whom the record corresponds.

Reward

Reward functions are determined by several factors: the cost of taking an action, the

loss to the adversary from detection (both negative rewards), and the gain from a successful

attack. We formally define the reward function as:

R(x,a) = Rg(x[Xs],x[Xt ])+Rp(x[Xd],x[Xp])−Ca (3.2)

where Ca is the cost of action a (denoted by Cd , Cc, and Ce for access, link, and exploit

actions, respectively). Ca = 0 for the terminate action. Rg(x[Xs],x[Xt ]) represents the gain

from a succussful exploitation. Rg(x[Xs],x[Xt ]) = G, if Xs = T and Xt = F and 0 otherwise.

We assume there is a maximum number of times, n f , that the adversary will be subject

to a penalty (e.g., a fine for law or contract violation) if he is detected. Note that this permits

an analysis on the special case of n f = 1, where the adversary is only penalized once. This is

notable because it represents the real scenario where a data user is penalized for violating a

contract, but is not prevented from continuing to exploit the data they have already received.

We denote the cost related to the fine as Rp(x[Xd],x[Xp]). Rp(x[Xd],x[Xp]) =−Cp, if Xd =

T ∧Xp < n f and 0 otherwise.

State transition dynamics

We use a dynamic Bayesian network (DBN) τa = 〈Ga,Pa〉 for each action a (except ac-

tion terminate), as shown in Figure 3.3, to represent the transition function P(Xi|X parent
i ,a).

We denote the current state and the next state as x and x′, respectively. If the action is to

terminate, x′[Xt ] = T .

If the action is to access, as the DBN shows in Figure 3.3(a), there are 3 state variables
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Figure 3.3: The dynamic Bayesian network (DBN) for each action of our FMDP model.

that may change in the following step: Xa, Xg and Xr. We highlight that if the external

dataset De has not yet been accessed (i.e., x[Xa] = F), the adversary’s belief of the equiv-

alence group size in the next state x′[Xg] is a probability distribution over a set of values,

represented as P(Gr,De). Our experiments simulate P(Gr,De) under different levels of cer-

tainty and its influence on the adversary’s behavior and re-identification risk.

In Figure 3.3(b), the link action sets x′[Xl] = T when x[Xa] = T (i.e., external dataset is

available for linkage).

The prerequisite condition for the exploit action is x[Xl] = T , x[Xs] = F , and x[Xr]> 0.

In other words, we can only exploit a record if 1) the equivalence group is non-empty, 2) the

dataset has been linked to the record, and 3) the record has not already been re-identified.

In this case, the number of remaining candidates in the equivalence group is decremented

(x′[Xr] = x[Xr]−1).

Moreover, the probability that the exploited individual is associated with the record

is the probability of selecting an individual at random from the set of individuals in the

population (with the same quasi-identifier) who have not been exploited. The number of

individuals with the same quasi-identifier in the population who have not been exploited is

the sum of the number of individuals outside (i.e., 1−priorr,De
priorr,De

× x[Xg]) and inside (i.e.,x[Xr])

the external dataset de. Thus, the success probability of an exploitation can be formally

34



represented as:

Psuc(x[Xg],x[Xr], priorr,De)

=
(1− priorr,De

priorr,De

× x[Xg]+ x[Xr]
)−1 (3.3)

where priorr,De is the probability that the individual corresponding to the data is in the

external dataset De.

P(x′[Xd] = T ) (i.e., the probability of being caught) denoted as Pdet can be modeled in a

number of ways. Since the probability an exploit is detected is very likely to increase with

repeated attempts due to various factors (e.g., increased vigilance), we model the detection

probability using a sigmoid function:

Pdet = (1+ e−(h0+h1×(x[Xg]−x[Xr])))−1 (3.4)

where x[Xg]− x[Xr] corresponds to the number of exploit attempts the adversary has com-

mitted against records in the equivalence group. Note that this formulation allows us to

model the special case, where the probability of detection does not increase over time by

setting h1 = 0.

Finally, regardless of the action, the transition of variable Xt is determined as follows

(see Figure 3.3(d)): x′[Xt ] = T if x[Xt ] = T ∨ x[Xs] = T ∨ (x[Xl] = T ∧ x[Xr] = 0).

3.4 Algorithms

Solving the MDP

Solving an infinite-horizon discounted MDP amounts to computing an optimal policy,

π(x), which prescribes an optimal action to take in each state [74]. Equivalently, it suffices

to compute a value function, V (x), which is the optimal discounted sum of rewards of an

optimal policy.

A number of methods exist for solving an MDP. Linear programming (LP) is one such
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method, which computes the value function, V (x), for every state x. An important lim-

itation of the standard methods, including LP, is scalability. In particular, if we do not

take advantage of problem structure, the runtime is polynomial in the number of states,

which itself grows exponentially in the number of state variables. Approaches exist that

leverage the structure of the factored MDP, but they are approximate, and require the pre-

specification of a fixed set of basis functions over the state space. Next, we present a

special-purpose method, which we call Two-Level LP, that takes advantage of our problem

structure (including the factored state) and reports an exact answer.

Two-level Linear Programming

We designed the Two-level LP algorithm under the principle of removing all the “well-

known” parts from the FMDP structure to save space and runtime. The algorithm constructs

a two-level structure from the state space. The states in the FMDP model form a sink

cluster sub-structure, which satisfies the following properties: a) there is no outbound and

b) there is only one inbound state (i.e., xstart has only one inbound edge). Based on the

property of the FMDP, each sink cluster can be solved independently. The bottom-level of

the Two-Level LP algorithm solves a LP and stores the value of the state xstart for each sink

cluster. The top-level algorithm then constructs and solves a LP of the entire state space

by replacing each sink state with its corresponding xstart and assigns the pre-computed

V (xstart) to it.

Specifically, each sink cluster contains the descendant states of a state xstart in which the

adversary has taken the action of access and link, but has not yet started exploitation, i.e.,

xstart = [F,F,0,F,T,T,si,si], si ∈ (0,max(Gr,De)). Given two different group sizes s1 and s2,

the two sink clusters with xstart = [F,F,0,F,T,T,s1,s1] and xstart = [F,F,0,F,T,T,s2,s2] do

not overlap because the value Xg remains constant when Xa = T and Xl = T . The resulting

values of all the xstart states are used in the top-level LP to solve the values for the remaining

states, such as the state in which the adversary is attempting to access the external dataset

(i.e., x = [F,F,0,F,F,F,0,0)]).
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We make two performance improvements for Two-Level LP. First, we introduce a prun-

ing strategy which leverages the fact that the value of the starting states for each cluster

(i.e., V (xstart = [F,F,0,F,T,T,s,s])) decreases as the size of the equivalence group Xg = s

increases. We omit the proof of this property due to brevity.

Thus, we sort the sink cluster by the value of xstart [Xg] in ascending order. Specifically,

if V (xstart) = 0 given xstart [Xg] = s, then all of the sink clusters with xstart [Xg] > s will be

pruned. Second, we use a result caching strategy. In doing so, the result from the bottom-

level LP is cached and reused with multiple records. This happens when there is an overlap

in the adversary’s belief of the probability distribution interval of the equivalence group

size Xg.

Computing Re-identification Probability

The re-identification probability Preid is the sum of the probability of reaching each of

the states with x[Xs] = T and x[Xt ] = F in 1 to tmax time steps. Formally, Preid is computed

as:

Preid =
t=tmax

∑
t=0

∑
x∈xsuc

Mt [x0,x] (3.5)

In equation 3.5, x0 = [F,F,0,F,F,F,0,0] represents the state in which the adversary has not

accessed the external dataset yet, xsuc is the set of states with x[Xs] = T and x[Xt ] = F , x is

an arbitrary state. M is the state transition N×N matrix of a Markov chain, where N is the

number of states.

The state transition matrix M is obtained by replacing the action a in the transition

dynamics function of the FMDP with policy(x), i.e., P(X ′i |X
parent
i , policy(x)). However,

there is one exception. Given the current state is x0, in the FMDP model, x′[Xg] is a prob-

ability distribution over a range of values due to the uncertainty of the adversary’s belief,

while, in the risk computation Markov chain, P(x′[Xg] = gr,De) = 1, gr,De is the actual group

size in De. This is because the Markov chain already embeds the adversary’s optimal pol-

icy, and consequently the adversary’s belief in the group size no longer matters. Instead,

what matters is the actual group size. We assume that gr,De is an input to the risk framework.
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Figure 3.4: Runtime (log10) of the FMDP solving algorithms for a dataset of 5000 de-
identified records.

The value tmax is the maximum number of time steps it takes for all the states to transit

into a state where Xt = T (i.e., an absorbing sink state). Formally: ∃tmax > 0 ∀xi,x j ∈

xi, i ∈ [0,N], if x j[Xt ] 6= 0,Mtmax [xi,x j] = 0.

3.5 Experiments

Dataset

Our experiments make use of three resources. First, we use the freely available North

Carolina voter registration (NCVR) list [120] as the identified external dataset. This dataset

consists of 6,018,999 records without missing values over 18 fields. These records include

explicit identifiers (e.g., personal name and phone number), as well as quasi-identifiers

(e.g., age, gender, race, and ethnic group). For the purposes of this study, we restricted

the dataset to a set of four quasi-identifying attributes, {Age, Race, Gender, 5-Digit ZIP

Code}.

Second, we use the Adult dataset from the UCI Machine Learning Repository, as the

de-identified dataset. This dataset consists of 32,561 records with 14 fields each, based

on a sample of the U.S. Census, without missing values. This dataset contains Age, Race,

and Gender, but not 5-Digit ZIP Code. As such, for each record in the Adult dataset, we

synthesize and append a 5-digit NC ZIP code based on the population distribution in the

38



US Census Bureau’s 2010 Census Tables PCT12A-G. We also replaced a topcoded age

value [90+] by a random value in the range of [90,120].

Third, we assume that both the de-identified and identified datasets are sampled from

the entire population of NC. In this case, it should be noted that the total size of the NC

population, according to the census is 9,553,967.

Equivalence Group Size Distribution

In the experiments, the probability distribution of the value Xg after the adversary takes

the action to access the dataset P(Gr,De) is derived from the adversary’s knowledge about

the external dataset De or the population statistics. Here, we consider two scenarios. In

the first scenario the adversary knows the target’s equivalence group size when starting the

attack. Specifically, P(Gr,De = gr,De) = 1. We refer to this scenario as the known group

model.

However, the adversary may not have such knowledge before accessing De. In this case,

we assume the adversary knows only the total size of the external dataset, n, and the proba-

bility density of the target’s record, i.e., the joint probability of the target’s quasi-identifying

values P(r[QI]), in the population. Assuming that the external dataset is sampled uniformly

at random from the population, P(Gr,De) can be represented as a binomial distribution de-

fined in Equation 3.6:

P(Gr,De = k) = B(k,n,P(r[QI])) (3.6)

We refer to this mechanism as the unknown group model.

3.6 Results

Performance Analysis

We evaluated the runtime of the framework with 5000 randomly selected Adult records.

In this analysis, we consider the unknown group scenario with a P(Gr,De) computed as

Equation 3.6 in which the size of the external dataset is set to 3 different values: 5K,
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Figure 3.5: The equivalence group size for the target record in the NCVR dataset and the
re-identification risk under the known group scenario.

50K, and 500K. We present the result of the unknown group scenario because the known

group scenario yield FMDP with constant size state space, while unknown group scenario

leads to increasing state space when the external dataset size n increases simply because

of the interval of P(Gr,De) increase with n. The detection and penalty mechanism is set to

h0 =−4.59, h1 = ∗,n f = 1 (i.e., penalize only once and the probability of detection is 0.01

based on equation 3.4). The other parameters of the model were set to priorr,De = 0.63,

Cd = 100, Ce = 10, G = 8000 and Cp = 10000.

The algorithms were implemented in Python and all experiments were run on an Ubuntu

server with 24 Intel(R) Xeon(R) CPUs at 2.4 GHz and 64 GB of RAM. The LP solver was

implemented in the IBM ILOG CPLEX optimizer.

Figure 3.4 reports the runtime for the LP and Two-level LP algorithms. It can be seen

that, as expected, the Two-level LP is always faster than the standard LP algorithm. The
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difference in speed is accentuated as the size of the external dataset grows. By the time there

are 500K records in the external dataset, the runtime of the Two-level LP is approximately

21x faster (616 seconds vs. 13,444 seconds).

Case study

To perform a case study, we assume the Adult and NCVR records are random samples

of the NC population. Thus, the prior probability that the individual corresponding to an

Adult record is in the NCVR is the sample ratio, or priorr,De = 6,018,999/9,553,967 =

0.63. The NCVR data is free; however, considering the effort to obtain it, we set the cost

of accessing the external dataset Cd to $100.

The cost to exploit, gain and penalty values were set to Ce = $10, G = $8000 and Cp =

$10000 for each record, respectively. We acknowledge these values may vary in practice.

The goal is to simulate a case in which the adversary will attack at least a subset of the

records. This allows us to examine how different deterrence mechanisms and uncertainty

about the equivalence in the external datasets affects the adversary’s behavior and the re-

identification risk. Therefore, these parameters are selected from a range in which the

adversary will attack some of the records.

Known Group Model

We compare the known group model to the risk model in [27]. This is the only available

model for re-identification based on an adversary’s optimal decision. In the baseline, the

adversary makes a single decision on when to attack based on the total payoff:

Payoff baseline = G∗ ( priorr,De

Gr,De

)− pdet ∗Cp−Cd−Cl−Ce (3.7)

If Payoff baseline > 0, the adversary exploits a random individual and the risk of re-identification

is priorr,De/Gr,De . Otherwise, the risk is 0. The FMDP is configured under three detection

and penalty settings: a) a constant detection probability with repeated penalties (i.e., h1 = 0

and n f = ∞), b) a one-time penalty (i.e., h1 = ∗ and n f = 1)1 and c) an increasing rate of

1The ∗ indicates that h1 can be anything because only a single penalty is assigned.
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Figure 3.6: The equivalence group size of of the target record in the NCVR dataset and the
adversary’s expected payoff under the known group scenario.

detection with repeated penalties (i.e., h1 = 0.18 and n f = ∞). In each setting, we set

h0 = −4.59. This yields a 0.01 detection rate for the first exploit, an increase to 0.012 for

the next exploit, and so on.

The results are illustrated in Figure 3.5. There are three notable findings to highlight.

Finding 1: The baseline risk never exceeds the FMDP models. This is because

the baseline assumes that the adversary can only select one random individual, which is

suboptimal. Thus, as can be seen in Figure 3.6, the baseline adversary’s expected value

drops at a faster rate than the adversary who acts according to the FMDP. Moreover, the

adversary’s success rate is also lower for the baseline. This is because the adversary only

exploits one random individual from the equivalence group. This indicates that the baseline

model often underestimates the re-identification risk.

Finding 2: When the detection probability is constant (i.e., h1 = 0) and there is no

upper bound on the number of times a penalty is levied on the adversary (i.e., n f = ∞),
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Figure 3.7: The size of the equivalence group of the target record in the NCVR dataset and
the actual number of individuals the adversary exploits before terminating under the known
group scenario.

the adversary either exploits 1) all records in the equivalence group or 2) no records.

Finding 3: When the probability of detection grows with repeated attempts (i.e.,

h1 > 0) or there is an upper bound on the number of times a penalty is levied on the

adversary (i.e., n f is a finite value), the adversary exploits a subset of the equivalence

group. In the scenario represented by Finding 2, the adversary chooses not to issue an

attack when the equivalence group size is ≥ a threshold k, but the adversary exploits all

the individuals in the equivalence group otherwise. Thus, the re-identification risk is either

equal to the prior probability priorr,De or 0. This is because when the optimal action is

to attack one individual in the NCVR equivalence group the subsequent optimal action is

always to continue to exploit each of the remaining individuals provided that each exploita-

tion has the same probability of being detected and the adversary will always be fined if

detected.

In the scenario of Finding 3, the adversary may terminate the attack before exhausting

the candidates in the equivalence group. Thus, the risk can be any value between 0 and the

prior probability priorr,De . This is due to two possible reasons. First, if h1 > 0, both the
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likelihood of detection and a successful re-identification are increasing when more individ-

uals are exploited. Thus, the adversary stops when the increment in the expected penalty

exceeds the increment in the expected payout, which can happen before the adversary ex-

hausts all the candidates. Second, if n f is finite, and the adversary was not detected in the

previous exploitations, the expected payout can decrease when the number of the remaining

cadidates reduces.

Similar to Finding 2, if the group size is < k, the adversary exploits all the individuals

in the equivalence group. By contrast, if the group size is ≥ k′, the adversary stops issuing

an attack. For the group size in the range of (k,k′), the adversary’s optimal action is to

stop before reaching the last candidate in the group. The actual number of candidates the

adversary will exploit before termination is shown in Figure 3.7. In this case, k = 14 and

k′ = 29.

These two findings are contradictory to what is expected by the baseline model. In

particular, the records with equivalence group size < k all have the same level of risk

according to the FMDP model, while the records with smaller equivalence groups have

more risk than those with larger equivalence groups according to the baseline model. The

indication of this finding from the data protection perspective is that applying mechanisms,

such as generalization, to increase the equivalence group size can only effectively reduce

risk if the equivalence group size ≥ k. In other words, increasing the equivalence group

size to any value < k will only harm the utility of the data without reducing the risk.

Unknown group Model

The FMDP enables us to evaluate risk when the adversary is uncertain in the equiva-

lence group size; i.e., the unknown group scenario. We assume that the adversary’s belief

of the group size is as in equation 3.6 with n = 6018999, with pr[QI] equal to the probability

density of the corresponding target record in the NC census population. The other parame-

ters are the same as defined in the known group model. Our result illustrates the following

findings.
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Finding 4: The unknown group scenario can yield lower risk than the known group

scenario.

Finding 5: The unknown group scenario can yield higher risk than the known

group scenario. These findings illustrate that uncertainty in the group size can change the

action of the adversary. To make this observation more concrete, Figure 3.8 depicts the

risk for the 1920 records that have exhibited different risk scores. 1118 of these records

(or 58%) have a risk of 0.63 under the known group scenario and 0 under the unknown

group scenario. The remaining 802 (or 42%) records have the exact opposite result. The

former is due to the fact that the adversary underestimates the payoff by using the proba-

bility distribution of the equivalence group size. As a result, the adversary does not access

De, while the actual group size is < the threshold k = 48 and in the known group scenario

the adversary will access De and attack. The latter is, on the other hand, due to adversary’s

overestimation of the expected payoff based on their inaccurate belief about the equiva-

lence group size. These cases are counterintuitive because one may argue that even if the

adversary decides to access De, he or she will not exploit and there is no risk because the

actual equivalence group size is ≥ k = 48. However, this is not always true because after

the adversary obtains De, the cost Cd (i.e., the cost of accessing the external dataset) be-

came a sunk cost. As a consequence, the payoff is computed without considering Cd and

the threshold the adversary can tolerate increases from 48 to 51. If the actual equivalence

group size is between the two thresholds, the adversary with less knowledge (i.e., in the

unknown group scenario) may be able to cause greater risk, even though the adversary does

not necessarily obtain a higher payoff than the known group adversary.

Records resulting in different risk levels in the known and unknown group scenarios are

not very common in this experiment setting. A majority of the records lead to the same risk

(94%, or 30641 in total). The is due primarily to the fact that this analysis is dominated by

records whose corresponding equivalence group size is larger than 55. Specifically, 64%,

or 20891 in total, satisfy this situation. This is notable because, even if a positive payoff
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expected from P(Gr,De) leads the unknown group adversary to access the external dataset,

the adversary never chooses to exploit such records, yielding a risk of 0.

Sensitivity Analysis
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Figure 3.9: Sensitivity analysis on group size threshold (k) as a function of (a) external
dataset cost Ca; (b) exploit cost Ce; (c) Penalty; and (d) detection probability Pdet .

In this section, we investigate how the deterrence parameters influence the threshold

k of the size of the equivalence group when the adversary walks away, such that the risk

is 0 when equivalence group size is ≥ k under the three scenarios studied above. For this

analysis, we assume a known group scenario and both the de-identified and external datasets

cover the entire population, such that priorr,De = 1. We vary 1) the cost to access data, 2) the

cost to exploit the targeted individual, 3) the penalty levied when re-identification attempts

are detected, and 4) the detection probability. In the analysis, we vary one variable at a time

while holding all other variables constant to: Cp = $20000, G = $1000, Ce = $10, Cl = $0,

Ca = $100.

The result is unsurprising, but notable. Specifically, as illustrated in Figure 3.9, as
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the deterrence mechanism is ramped up, the expected payout is lower and the adversary

tolerates less risk. For example, when the penalty is set to $10,000, the adversary always

attacks when the group size is smaller than 9 individuals. By the time the penalty is raised

to $50000, the adversary will only risk an attack if there is one individual in the group.

This result clearly indicates that penalties and costs for access to data can quickly deter an

adversary from committing an attack.

3.7 Discussion and Conclusions

This research provides a formal process-based approach to characterize the privacy risks

for published data and opens a novel direction in the field of data privacy. It also introduces

a scalable algorithm based on linear programming to solve the attacker’s optimal planning

problem. A core contribution of this approach is that it accounts for deterrence mechanisms

beyond data manipulation methods. We demonstrated the feasibility through a case study in

a real world scenario, where an adversary uses a publicly available population registry (with

over 6,000,000 individuals) to attack a record subject to a data obfuscation mechanism.

Our results reveal that a broadly accepted adversarial model in which the adversary will

randomly choose one individual that matches the record to attack can be suboptimal, and

an adversary may try and exploit every individual in the corresponding equivalence class.

In addition to penalization mechanism, our result demonstrated that the adversary’s optimal

decision depends on the information about the external resources they may use (e.g., voter

registration lists) before they access them to mount an attack. This work provides strong

evidence that the risk to such systems in the real world is heavily dependent on the amount

of effort an adversary needs to exert and the expected payout they can receive based on their

attack. This investigation further provides intuition into how data perturbation techniques

can be complemented by alternative disincentive strategies (e.g., charging for access to data

or levying fines for malicious behavior) to lower the risk inherent in data sharing.

Our approach has several limitations which can provide directions for future research in
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this area. First, if such a risk estimation procedure is to be put into practice, policy makers

will need information about the nature of deterrence mechanisms, the existence and costs

of external data resources, as well as the adversary’s potential gain. Moreover, our work

shows that knowing the prior probability that the corresponding target is in an external

resource is critical to the model. Our model assumes that the external dataset is a random

sample from a large population that also covers the protected data. Such information is

not always readily available to the data publisher when evaluating risk. In the event the

publisher believes they could underestimate such parameters, they may lobby for larger

fines on misuse, thus deterring users with legitimate interests from accessing their resource.

Thus, a future direction for research is in the development of approaches to estimate such

parameters of the attack process. This may be possible, for example, by building a model

for the detection rate based on existing detection mechanisms.

Second, there are limitations in the scope of the adversary’s goals. Consider, the process

model assumed an adversary targets only one record in the protected dataset at a time. It

also assumes that the adversary has access to only one external resource to mount an attack.

Perhaps more significantly, we assume that the success of an exploit will be confirmed.

Yet, certain adversaries may be interested in multiple records in the protected data (or

even the entire dataset) and may have access to multiple resources. Removing any of

these assumptions will lead to an increase in the complexity of the adversary’s decision

problem. We note that the process model can be extended to account for these scenarios

by introducing more state variables and actions. However, this will lead to an explosion in

the state space. Therefore, a future direction of research is to generalize the FMDP model

while improving the scalability of the solver algorithm.

Finally, our empirical analysis was conducted on a specific type of data, namely the

demographic information within the publicly available population registry. Such a process-

based approach to privacy risk assessments is applicable to other types of data where the

attack is not a linkage-based exploit, but focuses rather on other definitions of privacy, such
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as inferential disclosure. The adaptation of such a technique will depend on the extent to

which the adversary’s process for realizing their exploit can be represented.
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Chapter 4

A Feasibility Assessment for Temporal Penalties in Data Sharing

4.1 Introduction

Sharing de-identified personal data can cause potential harm to the sharer and the data

subjects if the data is not handled properly (e.g., being used in a way that is not supposed

to or being re-identified), therefore oftentimes the data users need to sign a data use certifi-

cation (DUC) or data use agreement (DUA) with the data publisher before the data access

can be authorized. A DUC or DUA usually includes a term that specifies that the data

user should not try to re-identify any data subject. In order to future prevent privacy and

other violations from happening, certain penalties need to be enforced on the data users

that violate the terms in the DUC or DUA.

Some of these penalties have a straightforward quantifiable consequence for the data

users. For instance, a fine will cause immediate monetary loss to the data user. Other

penalties, however, have a less quantifiable impact on the data user. A special case of

the latter is the temporal penalties that have been adopted by the NIH genomic data shar-

ing platform dbGaP and the Wellcome Trust Case Control Consortium (WTCCC) [53].

The temporal penalties basically mean that the user will be suspended from accessing the

database, conducting research, publishing papers or writing grant proposals using the data

from the database for a period of time. The length of the period can be influenced by the

types or severities of the particular violation. The assumption behind the temporal penalties

is that the value of the data for academic research decreases over time and being revoked

access will have a negative impact on the user’s grant funding applications in the future.

However, whether or not the value of the data for academic research actually declines over

time has not been investigated. To the best of our knowledge, this dissertation is the first
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one to look into this problem.

To ascertain the relationships between the value of the dataset a data user can obtain

and the length of the time that has passed since the release of the data, we conducted an

extensive regression analysis on the set of publications that use dbGaP data. We consider

the impact of the publication of a data user as a measurement of the value of the data that

is obtained by the data user. We admit that there are other values that a data user can obtain

from the data, for instance, the researching funding obtained by writing a proposal using

the data. However, the value beyond the impact of the publication is outside the scope of

this dissertation, since our goal here is to gain perspective on the change of the value of the

data as time passes from a particular perspective.

In particular, we collected information from journal impact reports (JCR) on the impact

factor and eigenfactor scores of a set of publications that use dbGaP data in the scholarly

journals enlisted in the JCR annual report from 2007 to 2014. Moreover, we collected the

manuscript’s first received date which indicates the finish date of the work and the published

date of the publication. In addition, we associated each publication with the date when the

data used in the publication is made available. We fit linear regression models to the impact

factor as a function of the length of the period between the data made available and the date

when the dataset is released for the set of publications under a series of constraints. The

results strongly suggest that the impact of the publication and how soon it comes out after

the data is released may not be correlated.

4.2 Preliminaries

4.2.1 dbGaP

dbGaP is a public central repository created by NCBI at NIH to host individual-level

phenotype, exposure, genotype, and sequence data, and the associations between them [52].

The data in dbGaP are organized as studies. Each study is assigned a unique identifier with
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a prefix “phs” which means phenotype and a six digit number, a version number (.v#)

and a participant set number (.p#). The version number update indicates a change in the

phenotype variables collected, while the participant set number update indicates a change

in the set of participants.

4.2.1.1 Embargo

Each dbGaP study with a particular version number and participant set number has a

embargo release date. Before the embargo release date, only the investigators who con-

tribute to the study that generate the data (i.e., the primary investigators) have the right to

seek publications on the data, other investigators can request and download the data, but

they are not allowed to publish.

4.2.1.2 Requested data

Although the summary level data, including the study meta data, the association analy-

sis result, and the summary statistics of the phenotype variables are accessible for all users,

the individual-level data, including individual-level phenotype and genotype information

are only accessible for users that are granted access to. In particular, an Principle Investi-

gator (PI) can request for access to individual-level data of a study in dbGaP, at which time

the NIH institute that sponsors the study in dbGaP (i.e., the appropriate NIH Data Access

Committee (DAC)) will make a decision on whether or not to grant access. Once the access

is granted, the PI can download the de-identified individual-level data file. The authorized

users and the institution of a dataset are obliged to comply with the Data Use Certification

(DUC) document and responsible research use and data handling of the genomic datasets

as defined in the NIH Genomic Data Sharing (GDS) Policy [121]. NCBI only releases

de-identified individual-level data. However, as we has been discussed at length earlier in

this dissertation, de-identification does not eliminate the possibility of linking the data to

a specific individual to violate their privacy [122]. Therefore, the DUC usually states that
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the data users agree to not use the datasets to re-identify individuals from whom data were

collected. For example, the DUC of the GAIN: International Multi-Center ADHD Genetics

Project1 specifies that “Approved Users agree not to use the requested datasets, either alone

or in concert with any other information, to identify or contact individual participants from

whom data and/or DNA samples were collected.”.

4.2.1.3 Temporal Penalty

According to the GDS Policy, if a data user violates the terms of conditions for sec-

ondary research use, NIH will take actions against the user as specified in the DUC. How-

ever, to the best of our knowledge, neither the GDS policy nor other NIH policies define

the specific penalties that will be enforced on a data user given an DUC violation. As such,

the penalty is up to the DUC to specify or to the DUA to decide case by case. One type

of penalty that is specified in DUCs is revoking user’s access to the dbGaP. For example,

the DUC of the GAIN: International Multi-Center ADHD Genetics states that if the user

violates the terms in DUC, the DAC may revoke the user’s access to all NIH genomic

datasets. How long the users, who violated DUC terms, are revoked from the system is,

on the hand, recorded in the dbGaP compliance violation report 2. There were only 27

reported DUC compliance violation incidences. A brief summary of the each incidence,

the policy expectations violated, and the action taken and/or preventative measures imple-

mented are reported. An example of such a incidence is, in 2009, an approved user of the

dbGaP study: phs000021: Genome-Wide Association study of Schizophrenia, conducted

research that was not stated in the data access request. This was a violation because the

DUC requires approved users only use the data for the purpose that is described in the

approved data access request. After this incidence happened, the DAC revoked the users’

access to all NIH genomic datasets for three months. This report shows that the users who

violated the DUC are usually suspended from accessing data on dbGaP for a period ranging

1https://dbgap.ncbi.nlm.nih.gov/aa/wga.cgi?view pdf&stacc=phs000016.v2.p2
2https://gds.nih.gov/20ComplianceStatistics dbGap.html
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from three to six months. We refer to the suspending of a user’s access to the data for a

period of time as temporal penalty.

4.2.2 Journal Impact Factor and Eigenfactor Score

The impact factor of journals was first computed in 1969 to rank journals sampled from

Science Citation Index (SCI) [123] by the founder of Science CItation Index, Dr. Eugene

Garfield. Since 1975 the Intellectual Property and Science of business of Thomson Reuters

has been publishing annual Journal Citation Reports (JCR). The JCR 2016 edition includes

11,365 journals from 81 countries in 234 disciplines within the sciences and social sciences.

The JCR impact factor is the ratio between the total number of citations in the current

year to the papers published in the previous two years and the total number of papers

published in the previous two years. For example, the 2015 impact factor of a journal is the

ratio between the total citations in 2015 to the papers published in that journal during 2013

and 2014 and the number of papers published during 2013 and 2014. The citation data for

computing the metrics in JCR is from the Thomson Reuters Web of Science.

Journal impact factor has its limitations, since there are factors unrelated to the influ-

ence and impact of the journal that affect its value (e.g., the average number of items in

the reference list of a published paper in that journal and the type of the articles that are

published in the journal). Moreover, the journal impact factor is not suitable for comparing

journals across disciplines because the maximal impact factor in different disciplines vary

to a large extent.

An alternative measure for journal influence is importance is the eigenfactor score3[124]

reported in JCR since the 2007 edition. The goal of creating the eigenfactor score is to de-

rive a metric that reflects the volume of citations, as well as the quality of the citing journals.

To reach this goal, the eigenfactor score approach first built the entire citation network from

the same citation data as used in computing journal impact factor. Each node in the citation

3http://www.eigenfactor.org/about.php
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network represents a journal, while the weight of each directed link represents the number

of citations from one node to the other. Based on the citation network, an iterative algo-

rithm similar to Google’s PageRank [125] algorithm is used to compute the eigenfactor

score for each journal.

To mitigate bias by each of the journal metrics, in this dissertation, we use each of JCR

journal impact factor and eigenfactor score of each publication to represent the importance

and influence of the publications in a journal in our analysis, respectively.

4.3 Methods

4.3.1 Materials

4.3.1.1 Dataset of Publications involving analysis of dbGaP data

To assess the impact of dbGaP data on facilitating additional biomedical research stud-

ies, the librarians at NCBI composed a dataset by gathering information on publications

involving analysis of dbGaP dataset authored by approved users of dbGaP data [126] in

2013. This dataset contains information available for each publication on MEDLINE (Med-

ical Literature Analysis and Retrieval System Online, or MEDLARS Online), which is a

database of citations for literatures in the domain of life sciences and biomedical informa-

tion, including title, authors, year, journal name, citation, PMID (the identification number

on PubMed, which is the online search engine for MEDLINE), and PMCID (the identi-

fication number on PubMed Central, which is an archive of free-access biomedical and

life sciences journal literature at the U.S.National Institutes of Healths National Library of

Medicine (NLM)).

In addition, the librarians also manually labeled the following fields for each publica-

tion:

1. The accession numbers of the dbGaP data cited in the publication (or guessed based

on text),
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2. The study category (such as methods/computational biology, microbiome, or muscu-

loskeletal),

3. The studied disease or trait (such as bone density, type 2 diabetes, and schizophrenia),

4. Primary study or not,

5. Validation/replication study or not,

6. Methods or not,

7. Controls or not,

8. Population/variation or not.

The NCBI librarians were able to identify approximately 1205 publications between

2007 (the year dbGaP was launched) and the end of 2013 (the year this database was

created) that describe studies involving analysis of dbGaP data. Among these publications,

885 did not include the dbGaP accession number in the manuscript. Instead the dbGaP data

is referred to by the dataset name.

When a dbGaP dataset is referred to by name, it can be ambiguous. An example of this

is the publication with PMID 21796100 and title “The Neuropeptide Galanin and Variants

in the GalR1 Gene are Associated with Nicotine Dependence”. The dataset that is stated

in the manuscript by name is Collaborative Study on the Genetics of Alcoholism (COGA)

from dbGaP; however, this name matches two dbGaP accession number including: CIDR:

Collaborative Study on the Genetics of Alcoholism Case Control Study with dbGaP Study

Accession number phs000125.v1.p1 and The Collaborative Study on the Genetics of Al-

coholism (COGA) with the dbGaP Study Accession: phs000763.v1.p1. The librarians at

NCBI were able to determine the actual dataset used in this paper is phs000125. Further

investigation revealed that the dbGaP study phs000763.v1.p1 was released on January 22,

2015 while this paper is published in published on July 27, 2011, thus the most likely

dataset is used in the publication is phs000125.v1.p1.
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A set of the publications listed involves data from multiple studies on dbGaP. For ex-

ample, the publication with PMID 22073273 titled GALC Deletions Increase the Risk of

Primary Open-Angle Glaucoma: The Role of Mendelian Variants in Complex Disease used

data from two studies in dbGaP: Whole Genome Association Study of Bipolar Disorder

(phs000017.v2.p1) and CIDR: Genome Wide Association Study in Familial Parkinson Dis-

ease (PD) (phs000126.v1.p1).

The field “primary study or not” indicates whether or not the publication is describing

the original study that created the data by genotyping study subjects and deposited the

genomic data in dbGaP. If the study described in the publication is the source of the dbGaP

data, this usually means that the study genotyped the DNA sample of the subjects, and

this publication is considered as a primary study. Some of these publications recruited and

sampled their own study subjects for genotyping, others genotyped subjects samples from

existing study populations. For example, the publication with the PMID 21741921 and

title “Gastrointestinal Micbobiome Signatures Of Pediatric Patients With Irritable Bowel

Syndrome” is a primary study that recruited the subjects, gathered their data and deposited

the data on dbGaP with name The Human Gut Microbiome and Recurrent Abdominal

Pain in Children and the dbGaP Study Accession phs000265.v2.p1. On the other hand,

the publication with PMID 22508271 and title Fasting Glucose GWAS Candidate Region

Analysis across Ethnic Groups in the Multi-Ethnic Study of Atherosclerosis (MESA) is also

a primary study involving dbGaP study Multi-Ethnic Study of Atherosclerosis (MESA)

SHARe (dbGaP Study Accession: phs000209.v4.p1) that genotyped the subjects in the

study but the subjects are not recruited by this study. Instead they are from an existing

study population.

A publication that did not describe the process of subject recruitment, sampling or

genotyping or sequencing might still be a primary study because the genomic data gener-

ation process could have been described in a separate publication for the same study. For

example, the publication with PMID 22185703 title as “Morphometic analysis of TCGA
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glioblastoma multiforme” is labeled as a primary study involving dbGaP study under ac-

cession number phs000178 and phs000489, while the process of generating the genomic

data is not described in it.

4.3.1.2 The extension to the dataset

We constructed a relational table from the original dataset by mapping each publication

to each dbGaP study accession number without the version number .v# and the participant

set number .p# involved in this publication, since the version and participant set numbers

are not provided in publications that cite the used dbGaP data by the name. Then we

extended the original table by adding the following fields:

9. The dbgap data release date,

10. The dbgap data embargo release date,

11. The received day of the manuscript,

12. The published online date of the manuscript,

13. The published in print date of the manuscript,

14. The impact factor of the journal,

15. The eigenfactor score of the journal.

The dbgap release date and the embargo release date are directly obtained from NCBI

(dbGaP release date 03-14-2016). There are a release date and embargo release date for a

particular version (.v#) and participant set (.p#) of a study (phs#). We use the release date

and embargo date of the first version and first participant set (.v1.p1).

The received date, the published online date and published date are extracted from the

XML file of each publication from the PubMed and PMC databases on the NCBI entrez

system. This information is not available for all the publications. The values of the received
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date are missing for a large proportion of of publications with high impact factors, such as

publications in Science, Nature Genetics, and Nature. A subset of journals are publishing

in print only, such that the paper they publish do not have a published online date. The

rest of the journals are either publishing in electronic format only, for which the published

online date is the same as published date, or in both electronic and print format, for which

the published online date might be different from the published in print date.

We also downloaded the Journal Citation Reports of the involved journals from 2006

and 2015. Based on how the JCR journal impact factor is computed, the journal impact

factor of the next two years are based on the citation data of the papers published in the

each year. Therefore, for each paper in the dataset, we assign the average journal impact

factors in the two JCR releases after the year in which the paper is published as the journal

impact factor for the paper. For example, if a paper is published in 2006, we assign a paper

the mean of the journal impact factor of 2007 and 2008. Similarly, we assign a paper the

mean of the journal eigenfactor score of the next 5 years after it is published, because the

eigenfactor score of the next 5 years are affected by the citation number of the paper of the

current year.

The main variables in the extended dataset for each publication are detailed in Table

4.1.

4.3.2 Data imputation

The XML files we downloaded from PubMed and PMC provide the manuscript re-

ceived date for a subset of publications. PubMed and PMC data also provide a published

in electronic form date for all the publications that are available in electronic format. The

published date is available for all the publications in the XML files 4. This published date

can be either the electronic version published date or the print version published date. If a

4There are papers which only have the volume and issue numbers, the publication date is obtained from
the journal’s website based on the volume and issue numbers.
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Table 4.1: The variables for each publication in the extended dataset

Variable Description
pmid PubMed identification
pmcid PubMed Central identification number
primary study A boolean variable that indicates whether or not this publication is the

description of the study by the primary investigators of the correspond-
ing dbGaP data

category The category of the study described in the paper (e.g., Ethics, Diges-
tive Disorders, Immune System, Mental Disorders, Behavior/ Cogni-
tion, Anthropometry, Cancer, Population Genetics, Respiratory & Envi-
ronment )

disease/trait The disease or trait studied
validation/replication A boolean variable that indicates if the publication is the description of

a validation/replication of another study
methods A boolean variable that indicates if the publication is the description of

a methods study
controls A boolean variable that indicates if the related dbGaP data is used as a

control set
pop/variation A boolean variable that indicates if the related dbGaP data is population

variation
journal title The title of the journal
journal impact fac-
tor

The mean of the JCR journal impact factors of each of the two year after
the year in which the paper is pulished

journal eigenfactor
score

The mean of the JCR journal eigenfactor scores of each of the five year
after the year in which the paper is published

dbGaP study The accession number of the dbGaP dataset involved and the version
number and the participant set number phs#.v#.p#

dbGaP study data
release date

The release date of the dbGaP data

dbGaP study data
embargo release
date

The ending date of the embargo period

manuscript re-
ceived date

The date when the manuscript is received

paper published
date

The date when the paper is published in the journal

paper electronic
version published
date

The date when the electronic version of the paper is published in the
Internet
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journal is specified as published in print only, the published date is the published in print

date. On the other hand, if a journal is not specified as in print only, it can be either elec-

tronic only or electronic and print, which is unspecified. We infer the published date as

published in print date only if it is different from the published in electronic format date.

The availability of these date information for publications in our sample set is summarized

in Table 4.2.

Table 4.2: Summary of the Availability of Date Information in the Sample Publication Set

Electronic Only Print Only Electronic & Print Total
Received Date Available 98 18 176 292
Received Date Unavailable 6 47 60 113
Total 104 65 236 405

We imputed the missing values in the received date column. The imputation is based on

the hypothesis that the there is a linear relationship between the manuscript received date

and the published date including the published in electronic form date and the published

in print form date. In particular, we sampled two datasets from all the publications in the

original publication set. The first dataset contains all the publications with received date

and published in electronic form date; the second dataset contains all the publications with

received date and the published in print form date. The sample size of the first and the

second dataset is 752 and 566, respectively (the numbers there are overlaps between them).

We use ordinary linear squares (OLS) and fit a linear regression model to each dataset.

The results are depicted in Figures 4.1 and 4.2. Each date value is converted to an integer

that corresponds to the number of days between the date and a fixed starting point, which

in this case is 2007-01-01. The reason for selecting this date as starting point is because

most of the publications in our dataset are published after this date.

The regression coefficients and measurements are shows in Tables 4.3 and 4.4, respec-

tively. The results suggest that the stderr of the model of received date and electronic

version published date is less than that of model of received date and print version pub-

lished date. Therefore, we use the linear regression model that fit the data of the electronic
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Figure 4.1: The scatterplot and the OLS fitted line of the published in electronic form date
versus the manuscript received date.
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Figure 4.2: The scatterplot and the OLS fitted line of the published in print form date versus
the manuscript received date.
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Table 4.3: Parameter estimates of the OLS model for predicting received date

y = received date, x = print version published date
coe f f std err t P > |t| 95.0%Con f . Int.

Intercept -167.2629 16.624 -10.061 0.000 [-199.916, -134.610]
print version published date 0.9580 0.009 106.425 0.000 [0.940, 0.976]

y = received date, x = electronic version published date
coe f f std err t P > |t| 95.0%Con f . Int.

Intercept -142.7491 11.140 -12.814 0.000 [-164.619, -120.879]
electronic version published date 0.9867 0.006 159.517 0.000 [0.975, 0.999]

Table 4.4: The performance measures of the OLS model for predicting received date

y = received date
x=print version publish date

y=received date
x=electronic version publish date

R-squared 0.953 0.971
Adj. R-squared 0.952 0.971
F-statistic 1.133e+04 2.545e+04
Prob (F-statistic) 0.00 0.00
Log-Likelihood -3462 -4355.2

version published date and received date to predict the missing manuscript received date

if a publication has electronic version. Otherwise, we use the model of received date and

print version published date to predict the missing manuscript received.

4.3.3 Regression analysis

The goal of the regression analysis is to anwser the question of whether or not the value

of the data from a dbGaP study data declines over time after the embargo release date of

the dbGaP data. The value of data from a dbGaP study is measured by the influence of

the publication that uses the data in terms of journal impact factor and journal eigenfactor

score.

4.3.3.1 Linear mixed effects model

We use a linear mixed effects (LME) model to describe the relationship between the

journal impact factor/journal eigenfactor score and the (manuscript received date - dbGaP

study embargo release date). To simplify the presentation, we denote journal impact factor
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as jif , journal eigenfactor score as jes, (manuscript received date - dbGaP study embargo

release date) as period.

An LME model is a generalized linear regression model tha consists of fixed effects and

random effects. The probability distribution of the response variable depends on both the

variable with fixed effects and random effects. If the relationship between a variable and

the response variable is fixed, this variable has a fixed effect on the response variable. The

usual linear regression terms are the fixed effects. On the other hand, the random effects in

the LME model are those variables that affect the response variable in a manner that can

not be described by linear regression. A typical example is a dataset consisting of repeated

measures to each individual, who are randomly sampled from a population. The individual

variance has an effect on the response variable, but this effect is random instead of linear.

The random effects usually represent the individual or the group where the data is from.

The individual or group variance contribute to the variance in the response variable which

is independent of the random error. The cases that belong to the same individual or group

are dependent, such that an LME model captures this dependency, while a simple linear

regression model does not.

We use the LME model because the cases in our dataset are grouped by the dbGaP

study where the data used in a publication is from. The publications that use data from the

one dbGaP study belong to a cluster. The publications in one cluster might have a different

initial impact from publications that use data from another. Also, the rate at which the

impact factor of the publications changes can also vary from one cluster to another. The

size of the clusters vary to a large extent as shown in Figure 4.3, but the LME model does

not require the clusters to have similar sizes. As shown in Figures 4.4 and 4.5, the fitted

simple linear regression lines using ordinary least square (OLS) differ from one cluster to

another for the top 5 clusters.

We fit two LME models: Model 1 for jif and Model 2 for jes. We denote the ji f and

jes of the jth publication in cluster i as ji fi, j and je fi, j, respectively. m is the number of
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clusters, ni is the size of cluster, periodi, j is the period of the jth publication in cluster i.

εi, j is the random error. β0 is the fixed effect parameter of the constant term 1, and β1 is the

fixed effect parameter of the term period. γ0 is the random effect parameter of the constant

term 1, and γ1 is the random effect parameter of the term period. D is the covariance matrix

of random effect γi.

Model 1
ji fi, j = β0 +β1× periodi, j + γi0 + γi1× periodi, j + εi, j

γi ∼ N2(0,D)

εi ∼ N(0,σ2)

i = 1, ...,m; j = 1, ...,ni

(4.1)

Model 2
e f si, j = β0 +β1× periodi, j + γi0 + γi1× periodi, j + εi, j

γi ∼ N2(0,D)

εi ∼ N(0,σ2)

i = 1, ...,m; j = 1, ...,ni

(4.2)

4.3.3.2 Data used in the regression analysis

We use the extended dataset of publications to do the regression analysis after proper

imputation as described in the previous section. The fields in the extended dataset is shown

in Table 4.1. Each publication corresponds to a case in the extended dataset. We removed

the publications that use data from multiple dbGaP studies because each of these publica-

tions correspond to multiple cases in the extended dataset. There are 532 publications in

total, which use only one dbGaP study. We also removed publications that are received be-

fore the embargo release date of the dbGaP study. By doing so, the number of publications

are reduced to 491. Finally, we excludes the publications in journals not listed in JCR. By

doing so, the number of publications used in our analysis is further reduced to 439.

66



0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

primary and secondary

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

lo
g(

nu
m

be
r o

f p
ub

lic
at

io
ns

 +
 1

)

secondary

dbGaP study
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5

primary

Figure 4.3: The number of secondary and primary publications that use data from each
dbGaP study in the publication set. The top 5 dbGaP studies with most publications
are: phs000178: The Cancer Genome Atlas (TCGA), phs000007: Framingham Cohort,
phs000020: Major Depression: Stage 1 Genomewide Association in Population-Based
Samples, phs000021: Genome-Wide Association Study of Schizophrenia, phs000017:
Whole Genome Association Study of Bipolar Disorder.
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Figure 4.4: The impact factor versus the length of time between the publication received
date and the related dbGaP study embargo release date of secondary and primary publi-
cations that use data from the top 5 dbGaP studies with most publications: phs000178:
The Cancer Genome Atlas (TCGA), phs000007: Framingham Cohort, phs000020: Major
Depression: Stage 1 Genomewide Association in Population-Based Samples, phs000021:
Genome-Wide Association Study of Schizophrenia, phs000017: Whole Genome Associa-
tion Study of Bipolar Disorder. The lines are the OLS lines for each cluster of publications
grouped by the dbGaP study.
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Figure 4.5: The eigenfactor score versus the length of time between the publication received
date and the related dbGaP study embargo release date of secondary and primary publica-
tions that use data from the top 5 dbGaP studies with most publications: phs000178:The
Cancer Genome Atlas (TCGA), phs000007: Framingham Cohort, phs000020: Major De-
pression: Stage 1 Genomewide Association in Population-Based Samples, phs000021:
Genome-Wide Association Study of Schizophrenia. The lines are the OLS lines for each
cluster of publications grouped by the dbGaP study.

69



Table 4.5: The summary of the sizes of clusters in the dataset of primary and secondary
publications.

number of clusters 38
min. cluster size 2
max. cluster size 81
mean cluster size 10.7

Table 4.6: The summary of the sizes of clusters in the dataset of secondary publications.

number of clusters 30
min. cluster size 2
max. cluster size 71
mean cluster size 11.7

There are primary publications (79 in total) and secondary publications (360 in total) in

our dataset. The summary statistics of the sizes of the clusters by dbGaP study are shown

in Tables 4.5 and 4.6. The summary graph of the primary and secondary publications are

shown in Figures 4.6 and 4.7. The primary investigators might have a competitively edge

to publish prestigious papers before the secondary investigator because they created the

dataset.

We conduct regression analysis on 1) the secondary publications and 2) the primary and

secondary publications. For each analysis, we remove a case if the dbGaP study associated

only has one case in the analyzed dataset.

4.4 Results

4.4.1 Model 1: ji f ∼ period

The results were obtained using Python 3 MixedLM package. The random effects

parameter estimates and fixed effects parameter estimates of Model 1 for the dataset of

all the primary and secondary publications are shown in Tables 4.7 and 4.8. The random

effects parameter estimates and fixed effects parameter estimates of Model 1 for the dataset

corresponding to all the secondary publications are shown in Tables 4.9 and 4.10.

70



−500 0 500 1000 1500 2000

publication received date - dbGaP study data embargo release date

−10

0

10

20

30

40

50

jo
ur

na
l i

m
pa

ct
 fa

ct
or

primary secondary

Figure 4.6: The impact factor versus the length of time between the publication received
date and the related dbGaP study embargo release date of primary and secondary publica-
tions.
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Figure 4.7: The eigenfactor score versus the length of time between the publication re-
ceived date and the related dbGaP study embargo release date of primary and secondary
publications.
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Table 4.7: Random effects parameter estimates of Model 1 fitted to the data of primary
and secondary publications.

Coe f Std.Err.
D[0,0] 9.519 1.288
D[0,1] -0.010 0.001
D[1,1] 0.000 0.000

Table 4.8: Fixed effects parameter estimates of Model 1 fitted to the data of primary and
secondary publications.

Coe f Std.Err. z P > |z| [0.025 0.975]
β0 9.468 1.209 7.834 0.000 [7.099, 11.837]
β1 -0.002 0.002 -1.310 0.190 [-0.005, 0.001]

The random effects parameter estimate show that, for both datasets, the variance of

the random effects on the variable period is rounded to 0. The indication is that the impact

factor of publications belonging to different clusters (using data from different dbGaP stud-

ies), change at the same rate as the period changes. Therefore, we only need to focus on

the slope itself to perform a hypothesis test to see if there is a significant linear relationship

between period and ji f . The null hypothesis is:

H0 : β1 = 0 (4.3)

The alternative hypothesis is:

Ha : β1 6= 0 (4.4)

The p-value is 0.190 for the dataset consisting of both primary and secondary publications,

and 0.495 for the dataset consisting of only secondary publications. Therefore, there is no

significant evidence to reject the null hypothesis to believe that there is a significant linear

relationship between period and ji f .
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Table 4.9: Random effects parameter estimates of Model 1 fitted to the data of secondary
publications.

Coe f Std.Err.
D[0,0] 19.251 2.057
D[0,1] -0.023 0.002
D[1,1] 0.000 0.000

Table 4.10: Fixed effects parameter estimates of Model 1 fitted to the data of secondary
publications.

Coe f Std.Err. z P > |z| [0.025 0.975]
β0 9.357 1.519 6.161 0.000 [6.380, 12.333]
β1 -0.001 0.002 -0.682 0.495 [-0.005, 0.003]

4.4.2 Model 2: jes∼ period

The maximum likelihood optimization failed to converge for Model 2. Thus we con-

strained the LME model to only allow the random effect on the intercept by setting D[1,1] =

0 and D[0,1] = 0. The estimated model parameters for both primary and secondary pub-

lications are shown in Tables 4.11 and 4.12. The estimated parameters for primary and

secondary publications are shown in Tables 4.13 and 4.14.

Using the same null hypothesis testing as in Model 1, the p-value is 0.067 for the dataset

consisting of both primary and secondary publications, and 0.003 for the dataset consisting

of only secondary publications. Therefore, there is insufficient evidence to reject the null

hypothesis to believe that there is a significant linear relationship between period and jes

for the combination of primary and secondary publications. However, there is a significant

linear relationship between period and jes for the secondary publications only. Since our

Table 4.11: Random effects parameter estimates of Model 2 fitted to the data of primary
and secondary publications.

Coe f Std.Err.
D[0,0] 0.035 0.040
D[0,1] 0 0
D[1,1] 0 0
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Table 4.12: Fixed effects parameter estimates of Model 2 fitted to the data of primary and
secondary publications.

Coe f Std.Err. z P > |z| [0.025 0.975]
β0 0.258 0.066 3.930 0.000 [0.129, 0.386]
β1 0.000 0.000 1.835 0.067 [-0.000, 0.000]

Table 4.13: Random effects parameter estimates of Model 2 fitted to the data of secondary
publications.

Coe f Std.Err.
D[0,0] 0.055 0.063
D[0,1] 0 0
D[1,1] 0 0

interest is whether or not the jes decreases when period increases, we formulate another

null hypothesis and the corresponding alternative hypothesis:

H ′0 : β1 = α,α <= 0 (4.5)

H ′a : β1! = α,α <= 0 (4.6)

For a non-positive value α , the p-value for the null hypothesis H ′0 will be < 0.0015. There-

fore, the null hypotheis is rejected for all the non negative α . As such, there is statistically

significant evidence to believe that the jes does not decrease as period increases.

4.5 Discussion and Conclusions

The results for the combination of primary and secondary publications and all the sec-

ondary publications suggest that there is not sufficient evidence to believe that the journal

Table 4.14: Fixed effects parameter estimates of Model 2 fitted to the data of secondary
publications.

Coe f Std.Err. z P > |z| [0.025 0.975]
β0 0.232 0.077 3.011 0.003 [0.081, 0.384]
β1 0.000 0.000 2.984 0.003 [0.000, 0.000]
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impact factor or the eigenfactor score of publications that use a dbGaP study dataset de-

clines over time after the embargo release date of the dataset.

Still, this analysis has several limitations which lead to several future research direc-

tions. First, the data that is used in the regression analysis may be incomplete and inaccu-

rate because it does not contain the publications after 2014 and the manual labeling process

might have introduced some errors.

In the future, natural language processing algorithms could be developed to discover

publications that use data from dbGaP studies and the particular dbGaP studies and the

versions and participants set numbers associated with it. Still, this task is nontrivial because

not all publications which use data from dbGaP refers to the dbGaP study identifier. We

anticipate that the algorithms to tackle this task need to intelligently identify the context in

which the dataset used in the analysis is mentioned. They also need to extract the text refer

to the dataset from the context.

Our models are based on the premise that only data from one dbGaP study is used in

each publication. However, this is not always the case. There are many instances in which

data from multiple dbGaP studies are used. In fact, this is one of the main reasons for

sharing these data in the first place (i.e., to allow new scientific discoveries by aggrega-

tion). This limitation is also responsible for the exclusion of around half of the publications

from the original publication set from our analysis. To account for publications that ag-

gregate data from multiple dbGaP studies, there needs to be an approach to estimate the

contribution of each dataset to the total value of the publication.

Third, our LME models only considers the random effects caused the dbGaP study that

is used in the publication. In other words, in our LME models, we only consider the dbGaP

study as the grouping variable. However, there might exist other variables which also have

random effects: such as the study category, the trait and disease studies, whether or not it

is a primary study and whether or not it is a method publication. In the future, an more

extensive analysis can be carried out by considering all these variables.
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Fourth, we chose to use the embargo release date of the first version and first participant

set of each dbGaP study as the date that the study is made available for all users without

accounting for the particular version and participant set that are used. This is due to two

reasons: 1) the version and participant set are not available for all publications in our data

and 2) the difference between versions was expected to be insignificant. The problem

with this strategy is that, for some dbGaP studies, the the difference between versions can

be significant if they were two different studies. In this case, our analysis can lead to

biased result by assuming the dbGaP study data is made available to all at the time it was

first embargo released instead of the embargo release time of the particular version and

participant set.

Finally, in the experiments we use the journal impact factor and journal eigenfactor

score of the publication to represent the impact and importance of the publication. In

the future, other different metrics can be also accounted for, such as other journal impact

metrics or the citations to the publication itself.
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Chapter 5

Search for Optimal Tradeoff between Re-identification Risk and Data Utility

5.1 Introduction

To achieve de-identification, many organizations often times follow a pre-defined de-

identification policy by privacy laws and regulations. One de-identification policy that is

broadly adopted by many healthcare organizations in US is the Safe Harbor model defined

by U.S. Health Insurance Portability and Accountability Act (HIPAA), which specifies 18

rules, including suppression of explicit identifiers ((e.g., personal names) and generaliza-

tion of “quasi-identifiers” which could enable linkage (e.g., dates of events, such as birth,

are replaced with time periods no more specific than one year and ages over 89 years-old

are recoded as 90). Yet, the rigidity of such rule-based policies is not ideal for sharing ev-

ery dataset, such as studies with the elderly (e.g., dementia patients). Thus, the law enables

publishers to use an alternative, which permits data to be shared in any format, provided

the risk of reidentification is appropriately measured and mitigated. In order to appropri-

ately balance the competing needs of minimizing risk (R) and maximizing utility (U), the

majority of previous works have focused on optimizing in the context of an anonymization

model(e.g., k-anonymity [38]), but this is a more rigid formalism than de-identification

[127], thus the solutions may not be optimal in turns of the RU tradeoff. This work devel-

ops an algorithm to efficiently discover a set of policies that form an R-U frontier, which

offers a collection of mutually exclusive deidentification policies.

As a concrete example, Figure 5.1 depicts how a record from a dataset investigated in

our experimental analysis is transformed by one of the frontier policies in comparison with

its Safe Harbor and 10-anonymous (i.e., the record is part of a group of no less than 10

records with the same values) versions. In this example, R is defined as inversely propor-
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Figure 5.1: An illustrative example of demographic de-identification policies in the risk-
utility space (where utility is defined as similarity between the original record and the
protected record.

tional to the size of this demographic group defined by the record in a population set, while

U is in terms of an information loss metric which represents the discrepancy between the

probability density of the record in the original dataset and the transformed dataset. Safe

Harbor transforms this record into a group with a large set of ZIP code areas, while 10-

anonymization and a policy on the R-U frontier transform it into two different age groups

and small ZIP code groups. Based on the population size in these different groups, the

record transformed via the frontier policy has slightly higher risk than its 10-anonymous

counterpart, while Safe Harbor has the highest risk. On the other hand, the record in the

dataset transformed via a frontier policy has lower information loss than its counterparts of

both Safe Harbor and 10-anonymous.
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Figure 5.2: An example of a de-identification policy defined over three quasi-identifying
attributes, {Age, Gender, ZIP}.

Figure 5.3: An example of a de-identification policy lattice with five quasi-identifying
values. Rectangular nodes depict a maximal chain, while oval nodes represent a sublattice.

5.2 The Policy Space

Our policy space is an extremely large set of de-identification strategies. The solution

space is limited to the different ways to de-identify the dataset that are compatible with

an existing de-identification policy, such as HIPAA Safe Harbor. Each de-identification

policy defines a generalization schema for each quasi-identifying attribute in the dataset.

In particular, we require a total order in the domain of each quasi-identifying attribute and

apply a full-subtree-generalization model [63], which means that the values in a domain are

mapped to a set of non-overlapping intervals. As such, a mapping function can be defined

by the corresponding partition on the domain of a quasi-identifying attribute.

Figure 5.2 provides an example of a de-identification policy. The set of QI attributes

is {Age, Gender, ZIP} and the domains are {1, . . . , 10}, {male, female}, and {37201, . . . ,

37229}, respectively. In this policy Age, Gender, and ZIP are mapped to the aggregated

groups: [1-2], [3-6] and [7-10]; [female] and [male]; and [37201, . . ., 37228] and [37229],

respectively. This policy is valid because the aggregated groups of values for each QI
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compose a partition of the corresponding domain. By contrast, a mapping of ages to [1−5]

and [3−10] does not constitute a valid policy because the intervals overlap (i.e., 3, 4, or 5

could be in either interval).

We use the full subtree generalization model because it offers several advantages over

alternative models. First, as shown in [128], it enables representation of fine-grained poli-

cies, as well as common policies encountered in the real world (e.g., HIPAA Safe Harbor).

Second, the set of policies can be structured as a lattice of generalizations which can be

systematically searched. Third, it is straightforward to interpret how a policy changes the

syntax of the data.

We represent policies as bit-strings. To characterize the translation, let n be the number

of values in the domain of a quasi-identifying attribute. After enforcing a total order on the

values, they are mapped to a bit-string of size n− 1. The original domain is represented

by a bit-string of 1’s, whereas a bit of 0 indicates a demarcation in the partition has been

removed to widen an interval1 (i.e., values have been generalized). For example, the bit-

string for Age in Figure 5.2 is [0,1,0,0,0,1,0,0,0].

Our algorithm first maps each policy into a quantitative risk-utility (or R-U) space. And,

in such a space, policies can be partially ordered and structured on a lattice, through which

a systematic search can be conducted. An example of such as lattice is depicted in Figure

5.3.

In preparation for our policy search algorithms, we define two types of subgraphs over

the lattice: 1) chain and 2) sublattice. A chain is a totally ordered subset in the lattice.

A maximal chain is one that is not a proper subset of any other chain. In Figure 5.3, the

rectangular nodes (i.e., [0, 0, 0, 0], [1, 0, 0, 0], [1, 1, 0, 0], [1, 1, 1, 0], [1, 1, 1, 1]) constitute

a maximal chain. A sublattice is a subgraph i) bounded by an upper node and lower node

on some chain and ii) contains every node in the set of all chains between them. Any two

policies with a chain between them can define a sublattice. An example of a sublattice is

1The final value in the domain is implicit in the partition.
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shown in the oval nodes of Figure 5.3. Here sublattice([0, 0, 0, 1], [1, 0, 1, 1]) defines the

set {[0, 0, 0, 1], [0, 0, 1, 1], [1, 0, 0, 1], [1, 0, 1, 1]}.

5.3 Search Algorithms

The size of a typical policy lattice is too large for an exhaustive, systematic search.

Thus, we developed two heuristic approaches: 1) Random Chain Search and 2) Heuristic

Sublattice Search.

5.3.1 Random Chain

The first strategy is called the Random Chain Search (RCS) and is shown in Algorithm

1.

Algorithm 1 Random Chain Search (RCS)
Input: n, the maximum number of policies to estimate; L, the length of a policy; T , a

dataset
Output: f , the frontier policies

1: i← 0
2: f ← InitializeFrontier() {This function returns a non-dominated set of policies,

including top and bottom.}
3: while i ¡ n do
4: c← selectRandomChain() {This function begins at bottom. It iteratively selects

a policy at random from the GLB, to which it proceeds until it reaches top. It
returns all the policies selected.}

5: for all α in c do
6: f ← updateFrontier( f ,α)
7: end for
8: i← i+L {L is the number of policies on the chain}
9: end while

10: return f

The process begins by assigning an arbitrary non-dominated set of policies in the lattice

to the frontier, which is accomplished through InitializeFrontier(). Next, we iteratively

select maximal random chains, via the selectRandomChain(), and update the frontier with

policies on the chains. This process iterates until n policies have been searched. Updating
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the frontier is accomplished through the function updateFrontier( f ,α), which attempts

to revise the frontier f with each policy α in the chain. If the frontier does not contain

policies that dominate α , it is inserted into the frontier. The frontier then drops all policies

dominated by α . As an example of this function, consider Figure 5.4(a).

(a) Frontier update (b) Sublattice Overlay

Figure 5.4: An example of updating the frontier in the R-U space using policies from Figure
5.3. The current frontier is composed of policies mapped to the stair-step curve. In 5.4(a),
the policy mapped to the square will be added to the frontier because it dominates policies
currently on the frontier (i.e., [1, 1, 0, 0] and [1, 1, 1, 0]), which will be removed. In 5.4(b),
the rectangle represents the bounding region of the R-U mapping of policies in sublattice
([0, 0, 0, 1], [1, 0, 1, 1])

5.3.2 Sublattice Heuristic Search

The RCS algorithm is naı̈ve in that it assumes all regions of the lattice are equally

likely to update the frontier. However, this is not the case, and we suspect sublattices

can be compared to the frontier to search more efficiently. Consider, given a frontier f ,

we can draw a stair-step curve in the R-U space that connects all policies on the frontier.

An example of such a curve is depicted in Figures 5.4(a) and 5.4(b). It is clear that any

policy mapped to the region above the curve will be dominated by at least one policy on

the frontier. Additionally, any policy mapped to the region below the frontier will always

update the frontier. Thus, this curve divides the R-U space into two regions: 1) dominated
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and 2) non-dominated.

Given sublattice(α , β ), it can be proven that the risk and utility values of policies in

the sublattice are bounded in a rectangle defined by the risk and utility values of policies

α and β , which we call the bounding region. In other words, all policies in the sublattice

will have risk in the range [RT (α), RT (β )] and utility in the range [UT (β ), UT (α)].2 For

example, in Figure 5.3, all policies in sublattice([0, 0, 0, 1], [1, 0, 1, 1]) are mapped to the

rectangular area bounded by the R-U mapping of the top and bottom policies of the frontier

in Figure 5.4(b).

To leverage this fact from a probabilistic perspective, we assume that the policies in a

sublattice are uniformly distributed in the bounding rectangle. This implies the probability

that a policy in a sublattice updates the frontier is the proportion of the lattice’s bounding

rectangle which falls below the curve of the frontier. Formally, imagine policies on the

frontier f are mapped to a set of R-U points that are ordered increasingly by risk {(r0,u0),

. . . , (rh,uh)}, where h is the number of polices on the frontier. Now, given sublattice(α , β ),

let us assume the policies α and β are mapped to points (rα ,uα) and (rβ ,uβ ), respectively.

We compute the area of the bounding region as (rβ − rα) × (uα − uβ ). If we draw a

line parallel to the y-axis at each point of the frontier in the R-U space, then the area of

the non-dominated region is composed of the resulting rectangles. More specifically, if

ri < rα < ri+1 and r j < rβ < r j+1, then the area of the non-dominated region is

ND(s, f ) =
j

∑
k=i

max(0, (uk−uβ )×

(min(rβ ,rk+1)−max(rk,rα)))

Finally, the probability that a policy in the sublattice can update the frontier is computed

2A proof sketch for this claim is as follows. Any policy γ in sublattice(α , β ) satisfies α ≺ γ ≺ β and
RT (α) and UT (α) satisfies the order homomorphisms. Thus, RT (α) 6 RT (γ) 6 RT (β ) and UT (α) > UT (γ) >
UT (β ).
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as:

H(s, f ) =
ND(s, f )

(rβ − rα)× (ut−uβ )
(5.1)

For example, in Figure 5.4(b), the probability that any policy in sublattice([0, 0, 0, 1], [1,

0, 1, 1]) can update the frontier is the ratio between the area below the step curve in the

rectangle (non-dominated region) and the entire rectangle (bounding region). Based on this

observation, we introduce a second search algorithm called the Sublattice Heuristic Search

(SHS). The steps of the process are shown in Algorithm 2, which we describe here.

Algorithm 2 Sublattice Heuristic Search (SHS)
Input: n, the maximal number of policies to assess; T H, the threshold for searching a

sublattice; L, the length of a policy; T , a dataset
Output: f , list of frontier policies of the searched policies

1: i← 0
2: f ← initializeFrontier()
3: prunedlist← /0
4: while i ¡ n do
5: sublattice← generateRandomSublattice(prunedlist)
6: p← H(sublattice, f ){Equation 5.1}
7: if p≥ T H then
8: c← selectRandomChain(sublattice)
9: for all α in c do

10: f ← updateFrontier( f ,α)
11: end for
12: i← i + length(c)
13: else
14: if p = 0 then
15: prunedlist.append(sublattice)
16: end if
17: i← i+2
18: end if
19: end while
20: return f

As in RCS, this algorithm begins with a call to intializeFrontier(), which instantiates the

frontier f as a non-dominated policy set. Next, the algorithm instantiates a list to maintain

memory of which policies (or sections of the lattice) have been pruned due to dominance

by the frontier. At this point, the algorithm iteratively selects a sublattice and tailors its
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process depending on the following conditions:

• Condition 1: If the entire bounding region of a sublattice is in the dominated region

of the frontier, the sublattice is pruned.

• Condition 2: If the entire bounding region of a sublattice is in the non-dominated

region of the frontier, we search a random maximal chain of the sublattice. Though

any of the policies in the sublattice can improve the current frontier, they may dom-

inate one another. Moreover, the entire sublattice can contain a substantial number

of policies, which would make a complete search infeasible. By contrast, a maximal

chain is the maximal set of policies in the sublattice that can be guaranteed to be on

the new frontier.

• Condition 3: If neither of the previous conditions are satisfied, we use the update

probability to determine if the sublattice is worth further searching. Specifically, if

the update probability is greater than a threshold, we search a maximal chain of the

sublattice, selected at random. Otherwise, no search is initiated.

5.4 Experiments Setup

5.4.1 Real World Policy: HIPAA Safe Harbor

To perform a comparison with an existing rules-based de-identification policy, we com-

pare our frontier to the Safe Harbor policy of the HIPAA Privacy Rule. This policy enu-

merates eighteen specific attributes that must be generalized or suppressed from a dataset

before it is considered de-identified. Of importance to this study, we focus on Safe Har-

bor’s perspective of demographics. For such features, it states that 1) all ZIP codes must

be rolled back to their initial three characters and that codes with populations of less than

20,000 individuals must be grouped into a single code and 2) all ages over 90 must be re-

coded as a single group of 90+. Safe Harbor does not prevent the dissemination of gender
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or ethnicity, but we include these features because they are common demographics, which

could be generalized in favor of age and geocodes [129].

5.4.2 Evaluation Dataset

For evaluation, we use two publicly available datasets. The first is the Adult dataset

[130], which consists of 32,561 records without missing values. For comparison with Safe

Harbor, we restrict the quasi-identifiers to the demographics of Age, Gender, Race. To en-

able a comparison with respect to geography, we combine the available demographics data

from Adult with state-level demographic information obtained from the US Census Bu-

reaus 2000, 2010 Census Tables PCT12A-G [131] to provide each tuple with a 5-digit ZIP

code. To mitigate the bias that can be introduced through analysis over a single population,

we simulated the Adult dataset for 10 US states: Illinois (IL), Hawaii (HI), Massachusetts

(MA), Minnesota (MN), New York (NY), Ohio (OH), Pennsylvania (PA), Tennessee (TN),

Washington (WA), and Wisconsin (WI). The Census data of the corresponding states are

used as the population statistics to compute the re-identification risk of these synthesized

datasets. All of these states, with the exception of HI, correspond to regions that contain

academic medical centers participating in the Electronic Medical Records and Genomics

(eMERGE) network [132]. These centers are collecting and sharing de-identified data on

patients to the public and are actively using the Safe Harbor de-identification policy, but are

open to alternatives [133]. HI is selected as an additional state because of its unique demo-

graphic distribution (e.g., it has the highest percentage of Asians and the lowest percentage

of whites in the country).

To provide analysis on non-synthetic data, we also conducted experiments on the North

Carolina voter registration (NCVR) database [120], which contains 6,150,562 records with-

out missing values, each record consists of 18 fields. This is the same dataset as the one

used in Chapter 3. For this study, we restricted the dataset to a set of four quasi-identifying

attributes, Age, Race, Gender, 5-Digit ZIP Code. We use the entire dataset as the population
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and randomly sample datasets to publish. The policy lattice, based on the selected quasi-

identifier, contains on the order of 2700 policies, which would take a significant length of

time to exhaustively search.

5.4.3 Risk Computation

To compute risk, we adopt the disclosure measure in [128], which is based on the

distinguishability metric proposed by [134]. This measure assumes a tuple in the general-

ized dataset contributes an amount of risk inversely proportional to the size of the popula-

tion group that matches its QI values. Again, the population information is based on the

PCT12A-G Census tables.

For example, imagine a record in the Adult dataset is [39, male, white, 37203]. This

record is unique in the dataset, but the census tables show there are 5 people in the region

with the same demographics. As a result, this record contributes a risk of 0.2. Further

details on this risk computation can be found in [128].

The disclosure risk of the entire generalized dataset corresponds to the sum of the risk

of each record. To ensure the risk score for a dataset is normalized between [0,1], we divide

this sum by the risk value for the original dataset. This dataset has no generalization and

constitutes the maximum risk for all policies in the lattice. Given a dataset D, a population

P, the formal definition of the risk for generalized dataset D′ is:

risk(D′,P) =
∑d′∈D′

(
1

g(d′)

)
max(risk)

(5.2)

max(risk) = ∑
d∈D

( 1
g(d)

)
, (5.3)

where g(d′) is the size of the population group in P with the set of quasi-identifiers of record

d ∈ D′. [128] demonstrated this risk measurement satisfies the order homomorphism.
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5.4.4 Utility Computation

To compute utility we use an information loss measure. In particular, we use KL-

divergence to measure the loss incurred by a generalized dataset with respect to its origi-

nal form. This measure satisfies the order homomorphism constraint. Formally, the KL-

divergence is computed as:

DKL(P ‖ Q) = ∑
i

P(i) ln
P(i)
Q(i)

(5.4)

where P(i) and Q(i) are the probability distributions of the quasi-identifying values in the

original and de-identified datasets, respectively.

While P(i) is computed from the frequency of quasi-identifying values in the original

dataset, Q(i) is an approximation. Specifically, Q(i) is based on the assumption that if sev-

eral values are generalized to a single group, then the corresponding records are uniformly

distributed across the group. For example, imagine the quasi-identifier set is {Age, Gen-

der} and there is a record in the generalized dataset [Age = [1-2], Gender = [male, female]]

with a frequency of m. Then, each possible value (i.e., [1, male], [1, female], [2, male],

and [2, female]) is assigned a frequency of m/4. Following [135], we use the standard

convention that ln0 = 0. Based on this definition, the information loss measure is in the

range of [0,1] and there is no need for normalization.

5.5 Performance Evaluation Results

To conduct experiments on efficiency, we provide a search budget of 14,780 total poli-

cies to search. This value represents 20 maximal chain searches (i.e., the policy lattice is

composed of 739 levels).

First, we evaluated the efficiency of the search algorithms. We assessed the progress

of the algorithms over 20 complete runs. There is minimal variance in actual time to com-

pletion between the algorithms, but a significant difference in how quickly the algorithms
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Figure 5.5: The efficiency of search strategies on the Adult dataset as a function of number
of policies searched.

converge a high-quality frontiers.

To illustrate this finding, we established checkpoints during the runtime of the exper-

iments. At each checkpoint (e.g., every 100 policies examined), the current average area

under the frontier was determined (i.e., smaller areas illustrate better frontiers). The result

(mean and the standard deviation) of this evaluation is depicted in Figure 5.5. The result

shows that the SHS method dominates the RCS. In particular, after computing 100 policies,

the average result of the sublattice search is 28% better than the average result of the ran-

dom chain search. This result indicates that the SHS method is particularly efficient when

a quick solution is needed.

Next, we evaluated the effect of the sublattice heuristic (i.e., area under the frontier)

upon searching. In this experiment, we initialized the frontier to a random maximal chain

and subsequently generated 24240 random sublattices. For each sublattice, we applied

H() to predict the probability that searching a random chain through the sublattice yields
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Figure 5.6: An empirical evaluation of the sublattice heuristic H().

frontier updates. We then picked a random chain and computed the empirical probability

E() of a policy in a random chain in the sublattice updating the frontier in terms of the ratio

of the number of policies that actually updated the frontier and the total number of policies

in the searched chain. Finally, we analyze the correlation between the predicted probability

H() and the empirical probability E().

We first run a linear regression over the aggregated set of H() and E() values. In

particular, we partition the sublattices into 10 groups based on the value of H() (e.g., lattices

with H()∈ [0,0.1] are placed in the first group). The representative H() value of each group

is assigned to the upper bound of the interval. For the set of lattices in each group, the

average and confidence interval of the ratio of number of policies that update the frontier

to the total number of policies are computed. The results are depicted in Figure 5.6, where

the mean of the actual update ratio clearly increases with the predicted frontier probability.

This result suggests that the driving intuition behind the SHS heuristic was reasonable with
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respect to the Adult dataset.

To further demonstrate the relationship between the probabilities H() and E(), we ran a

linear regression and a correlation test on the set of values. The Pearson’s product-moment

correlation coefficient of H() and E() is 0.8643536, with a p-value of 2.2× 10−16. This

result indicates that the actual probability a policy in the path of a sublattice will improve

the current frontier is positively correlated with the estimated probability based on our

heuristic.

5.6 Empirical Analysis Results

5.6.1 Frontier Case Studies

The frontier for SHS and 10-anonymization for Adult-TN is depicted in Figure 5.7,

while results for the other states are in Figure 5.8. Notably, the results indicate that a region

of the frontier discovered by SHS dominates the Safe Harbor policy in all states. Moreover,

the frontier region that dominates Safe Harbor results in both greater utility and risk than

the results of 10-anonymization.

For illustration, two policies that dominate Safe Harbor (i.e., less risk and better utility)

are highlighted in Figure 5.7. The discovered policies exhibit notable differences from Safe

Harbor. For instance, both policies generalize race and ages below 90 to larger groups than

Safe Harbor (as illustrated in Figure 5.7(c)), but retain more specific geographic informa-

tion (as illustrated in Figure 5.7(d)). Additionally, the second policy generalizes gender to

[Male or Female].

5.6.2 Policies on the Frontier

Table 5.1 reports the number of policies on each frontier. The SHS frontier contains an

average of 4,700 policies while the k-anonymity frontier contains an average of 33 and 26

policies when k equals 5 and 10, respectively. This is because SHS can search a signifi-
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cantly larger space than the Incognito k-anonymization algorithm, due to the construction

of their respective lattices. Even though the number of policies in the SHS frontier is large,

these policies are ordered by their R-U values, so a data publisher can quickly locate the

policies they are interested in.

5.6.3 Policies Dominating Safe Harbor

The ratio of policies on the SHS and k-anonymization frontiers that dominate Safe

Harbor is summarized in Table 5.2. Notice that the SHS frontier contains policies that

dominate Safe Harbor in all states. By contrast, 5-anonymization leads to solutions that

dominate Safe Harbor for only HI, TN, MN, WA, and WI, while 10-anonymization can

only find dominant solution for HI. This is because k-anonymity datasets tend to have

more utility loss than does a dataset de-identified through Safe Harbor.

5.6.4 Frontier Ranges

We summarize the result of the comparison of ranges of the k-anonymity frontier and

the SHS frontier in Table 5.3. The results indicate k-anonymization solutions are con-

strained in a very small sub-interval of the SHS frontier. This interval tends to have very

small risk and large utility loss. Thus, SHS may be particularly useful when the data pub-

lisher is interested in solutions with better utility at the cost of an acceptable increase in

risk. For instance, in the state of NY, the maximum risk of the 5-anonymization frontier

is only 0.003 that of the SHS frontier. On the other hand, the minimum utility loss of the

5-anonymization frontier is between 0.15 and 0.52, while SHS is always at 0. This phe-

nomenon is visualized is in Figure 5.7 (a), where the 10-anonymization has a much smaller

range than that of the SHS frontier. This finding indicates that the SHS frontier can provide

solutions in a broader range than the k-anonymity frontier.
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Table 5.1: Number of policies on the frontier for the Adult dataset with ZIP codes simulated
based on U.S. Census data.

STATE
Number of Policies on Frontier
SHS k = 5 k = 10

HI 4545 28 25
IL 3999 28 21

MA 3510 29 23
MN 5655 34 25
NY 4374 27 20
OH 3257 39 27
PA 4161 29 23
TN 7766 39 27
WA 5296 33 35
WI 5147 42 34

Average 4771 33 26
St. Dev. 1234 5.5 5.03

5.6.5 Improvement of the Frontier R-U Tradeoff

The frontier R-U tradeoff improvement made by SHS over k-anonymization is reported

in Table 5.4. We use the relative difference of AU of the k-anonymization frontier Fk and

the SHS frontier Fs to represents the R-U tradeoff improvement rate of the SHS frontier

over the k-anonymization frontier: IR = (AU(Fk)−AU(Fs))/(AU(Fs)). A positive value

indicates Fs improves upon Fk. We truncate the SHS frontier to be in the same range of the

corresponding k-anonymization frontier for a fair comparison.

In 9 out of 10 states (OH being the exception), the SHS frontier dominates the k-

anonymization frontier. Recall that a positive value in this table indicates the corresponding

k-anonymization frontier is dominated by the SHS frontier.
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Table 5.2: Proportion of policies that dominate Safe Harbor for the Adult dataset with ZIP
codes simulated based on 2010 U.S. census data.

STATE
Proportion of frontier dominating Safe Harbor
SHS k = 5 k = 10

HI 0.01 0.36 0.28
IL 0.04 0 0

MA 0.01 0 0
MN 0.03 0.09 0
NY 0.001 0 0
OH 0.06 0 0
PA 0.003 0 0
TN 0.01 0.13 0
WA 0.01 0.12 0
WI 0.01 0.10 0

Average 0.018 0.08 0.028
St. Dev. 0.018 0.11 0.084

Table 5.3: Maximum risk values (MAX Risk) and minimum utility loss (MIN Utility Loss)
of the frontiers for the Adult dataset with ZIP codes simulated from U.S. census data.

STATE
Max. risk Min. utility loss

SHS k = 5 k = 10 SHS k = 5 k = 10
HI 0.057 2.6×10−3 1.8×10−3 0 0.15 0.18
IL 0.031 2.4×10−4 4.0×10−5 0 0.43 0.47

MA 0.032 3.8×10−4 9.0×10−5 0 0.36 0.42
MN 0.045 5.2×10−4 2.1×10−4 0 0.36 0.42
NY 0.027 9.0×10−5 4.0×10−5 0 0.48 0.50
OH 0.037 2.9×10−4 7.0×10−5 0 0.45 0.51
PA 0.041 2.9×10−4 7.0×10−5 0 0.49 0.52
TN 0.037 4.3×10−4 1.9×10−4 0 0.36 0.43
WA 0.033 4.1×10−4 2.6×10−4 0 0.35 0.41
WI 0.039 4.6×10−4 2.0×10−4 0 0.36 0.43

Average 0.038 5.7×10−4 3.0×10−4 0 0.38 0.43
St. Dev. 0.009 7.1×10−4 5.5×10−4 0 0.10 0.10
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Figure 5.7: Results from the case study for the Adult-TN dataset. (a) A comparison of the
10-anonymization frontier, Safe Harbor policy, and SHS frontier in the R-U space. The
policies between the 215th and the 292th on the SHS frontier (in the rectangle) dominate
Safe Harbor. (b)-(d) provide a comparison of Safe Harbor and two dominating policies -
232 and 292. (b) A comparison of the generalization rules for race and gender attributes.
(c) A comparison of the age generalization rule. The x-axis corresponds to the original
age, while the y-axis corresponds to the median of the generalized age interval. (d) A
comparison of the ZIP generalization rule. The x-axis corresponds to the original ZIP, while
the y-axis corresponds to the median of the ZIP interval. The ZIP codes are represented as
an ordinal index, the translation for which can be found in Appendix J of [1].
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Figure 5.8: A comparison of the 10-anonymization frontier, the Safe Harbor policy, and
the SHS frontier in the R-U space for the Adult dataset simulated over nine U.S. states.
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Table 5.4: Frontier R-U tradeoff improvement rate of the SHS over k-anonymization (IR)
for the Adult dataset with ZIP codes simulated based on U.S. census data

STATE
IR

k = 5 k = 10
HI 0.054 0.050
IL 0.035 0.018

MA 0.058 0.062
MN 0.020 0.049
NY 0.034 0.034
OH -0.003 0.005
PA 0.018 0.019
TN 0.018 0.050
WA 0.040 0.060
WI 0.026 0.050

Average 0.030 0.040
St. Dev. 0.017 0.019

5.7 Discussion and Conclusions

Organizations that must publish person-specific data for secondary use applications

need to make a tradeoff between privacy risks (R) and utility (U). To provide a guideline for

data publishers to make this tradeoff, we 1) added a semantic utility metric to an alternative

de-identification policy discovery framework, 2) mapped each policy to a two-dimensional

R-U space, and 3) formalized the frontier search problem. To solve the problem, we build

a set of policies that define a frontier in the R-U space through a heuristic search with a

probabilistic basis. We demonstrated that our approach dominates a baseline approach in

terms of the quality of the frontier obtained within a fixed number of searched policies.

The empirical analysis results illustrate that the SHS framework is, under many condi-

tions, superior to existing one-size-fits-all policies often invoked in practice (e.g., HIPAA

Safe Harbor). We wish to highlight that our empirical analysis was performed over a range

of diverse population distributions from 10 U.S. states to mitigate biases in the results. We

believe that the SHS strategy has the potential to be a method that overcomes the limita-

tions of a single fixed rule-based policy while being interpretable to health data managers.

A healthcare organization, for instance, could present the policy frontier as a documented
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method [55] to an Institutional Review Board or legal counsel to justify its selection of a

certain degree of protection when sharing data in a de-identified manner.

At the same time, there are several limitations of this work. First, the policy lattice

is constructed under the assumption that the set of quasi-identifying attributes is known

to the data publisher as a priori. We believe, however, there are several possible ways

by which our method could be extended to address this problem. One potential strategy

is to construct a policy lattice of the superset of all the possible quasi-identifier sets of

attributes and measure re-identification risk as a weighted sum of the risk associated with

each potential quasi-identifier. The weight of each quasi-identifier could be dependent on

the availability of the corresponding external data resources. An alternative strategy is to

construct a policy lattice for every subset with a size no greater than a threshold of the

set of all the possible quasi-identifying attributes and search for a policy frontier in each

space. Applying the latter would require a strategy to reconcile the de-identification policy

associated with attributes that are in the overlapping part of multiple policy spaces (e.g.,

age, if [Age, Zip, Gender] and [Age, Gender, Race] are both possible quasi-identifiers).

Second, our search strategy does not cover the entire policy space. As such, the frontier

is not guaranteed to be optimal. SHS is based on several heuristics and it is possible that

more effective approaches could be developed. It may also be possible to develop methods

to more systematically and efficiently navigate the space of policies using advanced pruning

strategies, such as cost bounding. Moreover, the lattice search process should be amenable

to parallel computing techniques as has recently been achieved for k-anonymization [136]

provided an appropriate master program that minimizes reassessment of sections of the

lattice can be designed.

Third, our investigation is based upon specific measures of risk and utility. In partic-

ular, we rely on the marketer risk model, which amortizes the risk over all records in a

published dataset. Yet, this is only one way to define risk. The amortization model itself,

for instance, can be refined to allow for a discounting function that applies greater weight to
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individuals in smaller groups. Beyond the risk model, one could also consider worst-case

re-identification scenarios, such as prosecutor or journalist attacks (which state that the risk

of a dataset is equal to that of the most risky record) [137]. From the perspective of utility,

it is important to recognize that we adopted a generic information loss measure, which was

based on the assumption that the specific usage of the dataset is unknown a priori. The data

utility function is not necessarily consistent with the usage of the dataset in certain clinical

data mining or statistical analysis applications. Nonetheless, if it is known that the dataset

will be used in a certain study, then the frontier policy search framework can be customized

with an alternative utility function defined by domain experts, provided that the function

satisfies the monotonicity requirements of our framework.

Finally, while SHS builds a better frontier than other methods, it can yield a very large

number of policies. A data manager would still need to determine which policy is best and

it is clear that they could not review every policy on the frontier. As such, a strategy to

present the most interesting policy options should be devised.
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Chapter 6

Conclusion

This dissertation investigated privacy risk assessment and management theories and

technologies for publishing de-identified person-specific information in a manner that bal-

ances the tradeoff between data utility and data privacy.

This dissertation developed a principled approach to model the re-identification risk for

records in a de-identified dataset of personal information. Most significantly, it developed a

generic re-identification process risk model that captures an adversary’s behavioral pattern

in an environment with limited available resources where we use Markov decision process

to represent the adversary’s decision making process. The model obtains the adversary’s

action by solving the optimal decision at each state of the Markov decision process, as ap-

posed to existing methods which make arbitrary assumptions about the adversary’s action.

This dissertation also developed efficient algorithms to find a solution in a timely fashion.

To operationalize such a re-identification process model to evaluate the re-identification

risk in practice, we tackled the problem of assessing the penalty that an adversary would

anticipate to be imposed if the privacy attack is caught by the authorities. A novel study

of the temporal penalty adopted by a popular data sharing platform was reported in this

dissertation. The temporal penalty suspends an user from accessing the dbGaP data for a

period of time under the assumption that time diminishes the value of the data. This dis-

sertation investigated this assumption of data value using the impact factors of publications

associated with genomic datasets over time, the results suggest there is no evidence of such

a dependency.

Finally, provided there is a way to evaluate privacy disclosure risk and an utility func-

tion, we defined the de-identification policy frontier discovery (DPFD) problem and devel-

oped several heuristic based algorithms to efficiently navigate the solution space to con-
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struct a set of solutions with desirable R-U tradeoff rapidly. This part of the dissertation

added to the technologies that assist automatically making optimal tradeoff between risk

and utility in sharing de-identified personal data.

At this point, we take a moment to highlight several directions for future work.

First, as mentioned in Chapter 3, the re-identification process model is a highly abstract

and simplified representation of the actual process. Among the limitations of this process

model, we would like to emphasize that it only accounts for one external resource to mount

an attack, while in practice several resources are usually leveraged by an adversary to make

an intelligent guess and further confirm that guess with a certain level of confidence. A

future direction would be to extend the re-identification process model to allow users to ex-

plore different external resources. The cost, population covered, attributes covered of these

resources may affect the adversary’s actions on the orders in which these resources will

be exploited. Moreover, the way to access these external resources might also change the

attacker’s decision making process. For instance, imagine that the entire external dataset

is available for downloading after the adversary purchased it. Then the adversary would

need to make the decision on whether or not to purchase the dataset based on its meta-

information. On the other hand, if the external resource only allows for queries and has

different pricing strategies (e.g., unlimited access account or pay for each record), the ad-

versaries will need to decide on the way in which they want to pay for the resource and

the queries they want to issue. Accounting for these considerations will bring the process

model a step closer to what is happening in practice, even though the cost is that it may

cause a state space explosion for the Markov decision process model. More intelligent

solvers will need to be developed to efficiently solve the model in a reasonable amount of

time.

Second, beyond the limitations of the regression analysis on the temporal penalty of

the NCBI dbGaP and the future studies on how to overcome these limitations as presented

in Chapter 4, we recognize that being suspended from accessing a database resource has
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a different level of impact on different data users (i.e., the potential adversaries) under

different circumstances. In other words, the value the data users can obtain from not being

suspended from accessing a database resource can be determined by a set of factors, such

as the type of study that will be conducted on the data, the investigators’ former experience

and expertise. This observation inspires a future study on the factors that influence the

value of a dataset for secondary use. We anticipate the existing dataset will need to be

enriched with new features to conduct this study. The regression analysis based approach

can still play an important role given that generalized linear regression models, such as

hierarchical linear regression are used. Another phenomenon that caught our attention in

particular when conducting the analysis on the temporal penalty of dbGaP is that over half

of the publications aggregate multiple datasets to form a large cohort to conduct study. As

we mentioned Chapter 4, the approach described in this work is insufficient to model the

value of each dataset when it is a subset of the big cohort, from which the publication is

generated. Thus, new models need to be defined and developed to answer questions related

to the value of a dataset when aggregated with other datasets for analysis.

Third, Risk-Utility solution space for data publishing considered in this dissertation is

limited to searching for frontier de-identification policies in the lattice space as described

in Chapter 5. The de-identification policy only uses data perturbation to minimize the

re-identification risk. However, as our privacy risk process model demonstrated, the data

publisher can also force the data users to sign a data use certificate and penalize users, who

violate the terms in the data use certificate. Thus, the data publisher’s solution space needs

to account for additional options, such as a data use certificate, penalization strategies and

different levels of penalty in addition to different ways to manipulate the personal data.

These extended solutions might not be representable using the lattice structure. New struc-

tures can be developed to represent the extended space, but new optimization algorithms

will need to be developed to accommodate the extended solution space.
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