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Chapter 1

Introduction

1.1 Motivation

The growing advances in information technologies have led to a new generation of sys-

tems known as cyber-physical systems (CPS). Cyber-physical systems are multi-discipline

engineering systems which integrate computational and physical processes [10]. Advances

in CPS change the way people interact with the physical systems through smart computa-

tion, communication and control algorithms such as self-driving urban vehicles and smart

buildings. Great opportunities and research challenges arise to enable the development of

new CPS technologies that can incorporate complex computational algorithms (e.g., learn-

ing and control) with complex physical systems [82]. Moreover, the developments in sensor

technologies enable the utilization of data to build robust models of complex physical sys-

tems. These robust models are needed to achieve intelligent CPS and to automate their

design and control processes.

Model-based design of CPS abstracts the system physical processes using dynamical

models. These dynamical models support the integration of the cyber and the physical

parts with model-based analysis and control methods. Typically, model-based design of

CPS includes a computing system, a physical system and the environment as shown in

Figure 1.1. The computing system observes sensory data from the physical system and

generates control signals through computational processes to drive the physical system

behavior. Additionally, the computing system uses the observed data to identify a system

model (i.e., model learning) that represents the system behavior. Thus, the identified model

can be used to generate, optimize or verify the control signals in effective and efficient

manner. The environment also affects the physical system behavior; however, its effect

cannot be controlled. Typically, this effect can be represented as a disturbance in order to
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consider the impact of the environment on the physical system. Identifying a model of this

disturbance is very useful in order to increase the model accuracy.

Figure 1.1: Model-based design and control

There are different types of modeling frameworks for representing CPS. One end of

the spectrum is white-box models, also known as parametric models. The other end is

black-box models which are also known as non-parametric models. White-box models are

mathematical models where the system behavior is described through formalisms such as

ordinary differential equations (ODEs). In this case, the model structure is often assumed

to be fully known and the modeling problem lies on identifying the model parameters.

There exist many identification algorithms and techniques for such models which are well-

established and mature especially for linear systems [92]. However, many modern systems

are very complex and their behavior is characterized by nonlinearity, time-variability, and

uncertainty. Identification of such systems is more challenging since their model struc-

ture is usually hard to obtain especially when a detailed model is required. As a result,

black-box models have drawn considerable attention as an alternative where the system

behavior is learned from observed data without the need of domain knowledge about the

system structure and parameters. Various methods based on machine learning exist for

modeling such complex systems [12]. Machine learning techniques offer attractive proper-

ties for learning stochastic models based on data and use them to control complex systems

autonomously. Furthermore, these techniques are data-driven, and therefore, they enable

us to automatically learn models of nonlinear systems in the present uncertainty from the
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observed data [46].

Stochastic hybrid systems (SHS) are models that include coupled continuous and dis-

crete dynamics and can be used to represent complex stochastic systems [41]. SHS have

several modes of operation such that the continuous dynamics behave differently in each

mode. This multi-modal behavior adds another level of complexity, especially when both

continuous and discrete dynamics exhibit stochastic behaviors. These complexities in-

crease the difficulty of identifying parametric models for such systems. Therefore, data-

driven methods based on machine learning techniques are a promising alternative that re-

quires investigation.

Modern smart buildings can be considered as an example of complex CPS where the

integration of data sensing and control systems is used to achieve user comfort and to pro-

mote energy efficiency. Model-based design of smart buildings requires accurate models

of the buildings thermal dynamics. However, buildings have complex stochastic nonlinear

thermal dynamics which are affected externally by the environment and internally by inter-

actions between buildings zones. Additionally, the thermal dynamics of buildings behave

differently based on the thermal load, e.g., occupancy in buildings. Buildings parameters

may change over time as the buildings age or may change abruptly due to events such as

opening/closing windows. Such challenges can be addressed using nonparametric mod-

eling approaches based on online model learning because accurate parametric models of

smart buildings are hard to obtain.

1.2 Research Challenges

Stochastic hybrid systems (SHS) can model many CPS with complex behaviors in order

to analyze and control them efficiently. Accurate modeling of these complex behaviors us-

ing parametric models is a major challenges and may not be feasible. Data availability can

potentially support the use of machine learning techniques to learn complex SHS. These

challenges necessitate the use of machine learning techniques because of their ability to
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extract information about systems and the environment from sensory data. However, there

are many research challenges that arise for using machine learning techniques to learn data-

driven SHS models. Additionally, different research opportunities and challenges exist to

utilize data-driven SHS models to develop efficient reachability analysis and control meth-

ods. In this work, we focus on mitigating various of these challenges which are related to

model learning, reachability analysis, and control of data-driven SHS.

Model Learning of SHS

Model learning of SHS aims to identify the continuous and the discrete dynamics from

sensory data. However, the sensory data in many CPS do not necessary include explicit

information about discrete states of the system (i.e., the discrete state are latent). In this

case, identifying the latent discrete dynamics from data becomes a major challenge that

needs to be addressed. Also, identifying the latent discrete dynamics is required in order

to segment the data for each corresponding discrete state, so that, each data segment can

be used to identify the corresponding continuous dynamics. Model learning of SHS faces

another challenge when the parameters change over time. The model learning algorithm

should adapt to this variability in the system while satisfying timing constraints.

As mentioned earlier, the physical processes of many CPS are usually affected by the

environment. Modeling the effects caused by the environment is essential to achieve better

accuracy of the system model. Therefore, an appropriate environment model should be

learned and integrated with the SHS modeling framework.

Reachability Analysis

The objective of reachability analysis is to predict the reachable states of SHS [15].

Reachability analysis can be used to compute the probability that the system states will stay

within a certain safe region. In SHS, such prediction presents a major challenge because of

the interleaved stochastic discrete/continuous dynamics, so that the prediction may result in

4



different trajectories with different likelihoods. Typical reachability analysis algorithms are

based on Monte Carlo simulation and can address this challenge by predicting the system

trajectories [15]. However, algorithms based on Monte Carlo simulation are not feasible for

many systems because they may require running large numbers of simulations. Therefore,

another reachability analysis methodology is required to predict the SHS reachable states

and to express their probability by a suitable distribution in an efficient online fashion.

Decision Making and Control of Stochastic Dynamical Systems

A controller of a stochastic system should deal with the system uncertainty in order to

achieve optimal and robust performance. Typically, the controller should optimize a cost

function subject to deterministic and stochastic constraints. Stochastic model predictive

control (SMPC) is a popular control methodology that can achieve desired performance

under constraints. SMPC is based on optimizing the cost function for a receding finite

horizon without violating the constraints [33]. In this work, we develop a stochastic model

predictive control (SMPC) methodology for data-driven SHS models. The stochasticity ex-

hibited in both discrete/continuous dynamics of SHS and the system constraints cause the

main technical challenges. The SMPC optimization problem is very difficult, and there-

fore, approximation algorithms are required. Many approximation algorithms have been

established for continuous stochastic systems modeled using parametric models, however,

new algorithms are needed to address systems with data-driven models and interleaved

stochastic discrete/continuous dynamics as the case in SHS.

1.3 Summary of Contributions

In view of these challenges, this dissertation presents the following contributions.

• Model Learning of SHS

1. We present a nonparametric SHS model based on Gaussian processes and pe-

5



riodic Markov chain. Gaussian processes capture the stochastic nonlinear con-

tinuous dynamics for different discrete states and the periodic Markov chain

captures the periodic transitions of the discrete states.

2. We present an online clustering-based learning methodology for SHS when the

discrete dynamics cannot be measured excitability. We use the clustering algo-

rithm (e.g., K-means) to identify the discrete states of the system and to label

the training data. Thus, we can learn the transition probabilities of the Markov

chain and segment the data for each corresponding discrete state. Each segment

is then used to learn the continuous dynamics using GPs.

3. We evaluate the efficiency of the online learning methodology, so the model

adapts to time-varying changes in the physical system parameters.

4. We utilize the data-driven modeling approach to learn efficiently an accurate

thermal model of multi-zone buildings when the buildings thermal load is latent

(e.g., occupancy) using data generated by Energy-Plus (high-fidelity building

simulator) and a stochastic occupancy simulator.

• Reachability Analysis of SHS

1. We present a finite-horizon reachability analysis algorithm to estimate statisti-

cally the probability distribution of the reachable states based on mixtures of

Gaussian processes.

2. We provide in depth study of the performance and the efficiency of the reacha-

bility analysis algorithm for smart buildings applications.

3. We also consider a special use case of SHS when the discrete dynamics of the

system are deterministic and known.

• Stochastic Model Predictive Control of SHS
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1. We present a scenario-based stochastic model predictive control algorithm to

provide an optimal control algorithm of complex systems modeled by data-

driven SHS. The presented algorithm is based on the analytic calculations of

the model gradients which enhance the accuracy and the efficiency of the opti-

mization routines.

2. We evaluate the performance and the efficiency of the proposed SMPC for smart

buildings. The proposed approach is used to control the HVAC unit to minimize

the energy consumption without violating user comfort.

1.4 Organization

The rest of this document is organized as follows:

• Chapter 2 summarizes the necessary background in model learning and prediction

using Gaussian processes and also illustrates related work in the research of stochas-

tic systems using GPs and SHS.

• Chapter 3 presents the data-driven SHS modeling paradigm. A case study of model-

ing the thermal models of buildings is presented to demonstrate the performance of

the proposed approach.

• Chapter 4 presents the proposed reachability analysis algorithm of stochastic hybrid

systems based on mixtures of Gaussian processes and demonstrates the performance

of its multi-step prediction algorithm in smart buildings application.

• Chapter 5 presents the scenario-based stochastic model predictive control of data-

driven SHS and illustrates the performance of the approach using smart buildings

application.

• Chapter 6 concludes this dissertation with a summary of the dissertation overall con-

tent and some suggestions of potential future work.
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Chapter 2

Background and Related Work

There are different technical areas related to data-driven SHS for modeling CPS. In

this chapter, we summarize the necessary theoretical background and related work that are

relevant to our research in developing model learning, reachability analysis and model pre-

dictive control of SHS using Gaussian processes. The organization of this chapter is as

follows. Section 2.1 summarizes the theory of Gaussian processes for machine learning

and Markov chain models. Afterward, Section 2.2 presents a review of model learning

approaches developed for stochastic systems using Gaussian processes. It also presents the

model learning approaches developed for SHS. Section 2.3 discusses reachability analy-

sis techniques developed for SHS and illustrates the related work for state prediction of

stochastic systems for a finite horizon. Section 2.4 provides an overview of existing meth-

ods used to solve stochastic model predictive control of systems with uncertainty. Finally,

Section 2.5 reviews related work for model-based design and control of smart buildings.

2.1 Background

2.1.1 Gaussian Processes

A Gaussian process (GP) is a nonparametric probabilistic model that requires only high-

level knowledge about the system behavior and uses the observed data to model the behav-

ior of the underlying system [84]. Generally, a GP builds a Gaussian distribution over

functions, by which it maps a function index variable to an infinite-dimensional function

space.

Definition 1. (Gaussian process). A Gaussian process is a collection of random variables,

any finite number of which have a consistent joint Gaussian distribution [84].

8



A GP is identified by its mean and covariance functions. The mean function rep-

resents the expected value before observing any data and the covariance function (also

called kernel) identifies the expected correlation between the observed data. For a function

y = f (x) : x ∈ RD, the mean function m(x) and the covariance function k(x,x′) are defined

as:
m(x) = E[ f (x)],

k(x,x′) = E[( f (x)−m(x))( f (x′)−m(x′))].
(2.1)

The function modeled by the GP can be written as:

f (x)∼ G P(m(x),k(x,x′)).

We typically use a zero mean function for simplicity and squared exponential (SE)

covariance kernel for its expressiveness combined with a noise kernel. Therefore, the mean

and covariance functions can be expressed as:

m(x) = 0,

k(x,x′) = σ
2
f exp[−1

2
(x−x′)T

Λ
−1(x−x′)]+δx,x′σ

2
ω

(2.2)

where σ f is the kernel signal variance, Λ := diag([l2
1 , · · · , l2

D]) is the characteristic length-

scales matrix, δ is the Kronecker delta, and σω is the noise variance. The above GP model

builds a probability distribution over the functions p( f (x)) by mapping n-samples X of a

continuous variable x to a vector of random variable f with a Gaussian joint distribution,

such that:

p(y)∼N (0,K(X,X)) (2.3)

where K is nD-by-nD covariance matrix generated by (2.2). Figure 2.1 shows an example

of the prior distribution of the GP in (2.3).

We are interested in the GP posterior distribution given some test inputs and observa-

tions (training data). We define the set of test inputs where we want to predict the function
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Figure 2.1: Gaussian process prior model of the underlying function before observing any
data (a) prior distribution which is constant along the function dimension (b) samples func-
tion drawn from the prior distribution

value as X∗. After observing data D , and according to (2.3), the joint distribution of the

known y and the unknown y∗ function values is:

 y

y∗

∼N

0,

 K(X,X) K(X,X∗)

K(X∗,X) K(X∗,X∗)


 .

Therefore, the posterior distribution p(y∗|X∗,X,y) is also a conditional Gaussian distribu-

tion with a mean and a covariance given by:

E[y∗|y,X,X∗] = KT
∗β

Var[y∗|y,X,X∗] = K∗∗−KT
∗ (K+σ

2
ωI)−1K∗

(2.4)

where K∗ := k(X,X∗), K∗∗ := k(X∗,X∗), K := k(X,X) and β := (K+σ2
ωI)−1y.

Figure 2.2 depicts an example of the GP posterior distribution in (2.4).
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Figure 2.2: Gaussian process posterior model of the underlying function after observing
data (a) posterior distribution along the function dimension (b) samples function drawn
from the posterior distribution

2.1.1.1 Model Learning

In previous section, we determine the GP prior/posterior distribution given the set of

hyperparameters defined as Θ := (σ f , l2
1 , · · · , l2

D,σω). However, the hyperparameters are

not usually known a prior. Figure 2.3 shows the effect of varying the hyperparameters on

the GP posterior distribution and its variance represented by the gray region. For instance,

the GP posterior becomes smoother as the lengthscale parameter in (2.2) increases. There-

fore, we need to learn the model hyperparameters that best represent the training data. To

that end, our objective is to learn the hyperparameters vector for a given set of observa-

tions D = {(xi,yi)|i = 1, ...,n} as the training data. The learning process can be seen as

an optimization problem, where the optimal hyperparameters (Θ̂) maximize the marginal

likelihood given by.

Θ̂ =argmax
Θ

log p(y|Θ,D)

log p(y|Θ,D) =− 1
2

yT Ky− 1
2

log(|K|)− n
2

log(2π).

(2.5)

An effective algorithm based-on conjugate gradients has been developed to optimize GPs

hyberparamters [84, 58]. This algorithm optimizes the hyperparameters by using conju-
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Figure 2.3: The effect of varying GP hyperparameters (a) a GP model with hyperparameters
Θ := (18.3,3.1,0.71) , (b) a GP model with hyperparameters Θ := (2.9,3.9,0.19)

gate gradients and approximating linesearches based on polynomial interpolation. Also,

the popular quasi-Newton optimization method has been used to learn the GPs hyperpa-

rameters effectively.

2.1.1.2 Prediction at Certain Input

The posterior distribution shown in (2.4) is a prediction model of the model output

y∗ ∈ R at a given certain test input(s) X∗ ∈ RD. For a system with multivariate targets

y∗ ∈ RE , we model each target yi
∗ ∈ R : i = [1, · · · ,E] with a GP independently from the

other targets given the test input. Thus, the system is modeled with E independent GPs.

2.1.1.3 Prediction at Uncertain Input

The posterior distribution shown in (2.4) is a prediction model for a given test input X∗.

However, this equation is not valid if X∗ is defined by a probability distribution. For in-

stance, if the test input is defined as a Gaussian joint distribution (i.e. p(X∗)∼N (µ∗,Σ∗)),
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the GP posterior distribution is calculated by:

p(y∗) =
∫ ∫

p((y∗|X∗)p(X∗)dy∗dX∗. (2.6)

The prediction distribution shown in (2.6) is analytically intractable [37] but it can ap-

proximated as Gaussian (i.e p(y∗) ∼N (µy,Σy) ) using several approximation method-

ologies based on the law of iterated expectations and conditional variance such as the lin-

earizion approximation introduced in [37] and moment matching approximation introduced

in [24] [19]. In this dissertation, we use the linearization approximation, which approxi-

mates the mean and variance of the predictive distribution as:

µy = E[y∗|µ∗]

Σy =Var[y∗|µ∗]+VΣ∗VT + cov[y∗,X∗]+ cov[X∗,y∗]
(2.7)

where E[y∗|µ∗] and var[y∗|µ∗] is the mean and covariance of the GP posterior calculated

at the mean µ∗ of the input distribution as in (2.4) and cov[X∗,y∗] is the cross-covariance

between the input and output and it is given by Σ∗V where V is defined by:

V =
∂µy

∂µ∗
= β

T ∂k(X,µ∗)

∂µ∗

2.1.2 Markov Chains

Markov chains is a random sequence with a set of discrete states, such that the prob-

ability of each state depends only in the previous state, (i.e., p(zk+1|zk,zk−1, · · · ,zk−n) =

p(zk+1|zk)) [94]. A state-transition diagram of a Markov chain model with two discrete

states is shown in Figure 2.4.

Typically, a Markov chain has a finite discrete state space, and therefore, the transition
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Figure 2.4: A State-transitions diagram of a 2-state Markov chain model with states
{S1,S2} and transition probabilities (α,1−α,β ,1−β )

probabilities can be represented with a matrix A = {ai j}:

ai j = P(zk+1 = Si|zk = S j)

For example, the transition matrix for the example depicted in Figure 2.4 is:

A =

1−α α

β 1−β


Markov chain model provides the probability of a sequence of the discrete states, such

that the probability of the nth element from p0 is:

p1 =p0A

p2 =p1A

=p0A2

(2.8)

Therefore,

pn = p0An

where pk denotes p(zk|zk−1). The objective of learning a Markov Chain is to infer the

value of the transition matrix entries (i.e., ai j) from a sequence of n observations (O =

O0,O1,O2, · · · ,On). In a typical case, the transition matrix entries can be learned according

14



to the following formula:

ai j =
total number of OiO j occurrence

total number of Oi occurrence
(2.9)

2.2 Model Learning

The objective of model learning is to identify a system from observed data. Typically,

model learning algorithms use experimental data-sets to build a function that maps the

system inputs to outputs. This function can be learned through a wide variety of regres-

sion algorithms such as Bayesian locally weighted regression [9] and time-dependent linear

models [56] [54]. However, the main drawback of using typical regression methods is the

lack of expressing the learned model quality and the uncertainty, especially when there are

only few training data available. Therefore, probabilistic regression techniques are used to

mitigate the limitation of typical regression methods. Probabilistic regression techniques

provide a probabilistic approximation over the learned function to express the model confi-

dence and uncertainty. Gaussian processes are a popular probabilistic regression technique

with attractive features and they have been used widely for systems identification [46]. In

this section, we provide a review of model learning methodologies for different types of

systems. First, we describe related work that has been done for continuous systems focus-

ing on Gaussian processes based techniques. Second, we present model learning related

methods that have been used for stochastic hybrid systems.

2.2.1 Model Learning of Continuous Systems using Gaussian Processes

Systems with continuous dynamics can be modeled in different ways based on the sys-

tem type and the required level of abstraction, for example, time-series models or state-

space models. This section presents related work for modeling continuous systems using

time-series models, state-space models and multi-modal models based on Gaussian pro-

cesses. Also, online model learning methodologies using Gaussian processes are discussed.
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2.2.1.1 Time-Series Models

Let’s define a time-series model for an observed time-dependent variable yt at time t as:

yt = f (xt)+ωt

where f is an unknown function, and ω ∼N (0,σω) is typically white noise. The structure

of the time-series input (xt) can be determined based on one of the following approaches:

function mapping or curve fitting [87]

The function mapping approach maps observed time-dependent quantities to the time-

series output y without reference to time explicitly. For example, the input of a time-series

model can be chosen as a previous observation of yt (e.g., xt = yt−1), thus the model can

be expressed as yt = f (yt−1)+ωt . This model structure is useful in many applications to

build a simple short-term forecasting model. For instance, one-step ahead and two-step

ahead short-term traffic volume forecasting models are proposed in [101], where Gaussian

processes are used to identify f . Both proposed models have the same inputs which are

the n previous traffic volume observations. Formally, the one-step and two-step forecast-

ing models can be expressed as vt+1 = f (vt ,vt−1, · · ·vt−n) and vt+2 = f (vt ,vt−1, · · ·vt−n)

respectively, (where vt is the observed traffic volume at time t). Time-series models based

on function mapping can also incorporate additional knowledge from different dependent

time-series variables by including the dependent variables in the model input x. For in-

stance, a short-term load forecasting model for power systems using Gaussian processes

is proposed in [64]. The load forecasting model inputs are chosen to include the current

observation of the power system load along with other dependent variables such as ambient

temperature.

Despite the simplicity of the function mapping approach, there are two main drawbacks

that limit its usage. First, the function mapping approach cannot model time-domain fea-

tures in the model (e.g., time-series variables with a periodic pattern over time) because of
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the implicit modeling of time dependency. Second, the function mapping approach requires

the data to be sampled at a fixed rate and it cannot model time-series variables with missing

samples or varying sampling rate.

As an alternative, the curve fitting approach assumes that y is ordered by x which typi-

cally represents time, (i.e., yt = f (t)). This approach has many applications such as filter-

ing, smoothing, and prediction because of the explicit representation of time dependency.

For example, a time-series model of tide height as a function of time is developed in [72]

using Gaussian processes with periodic and smoothing components represented by Matern

kernel [84]. This model is then used to predict and smooth the missing data along the time

axis successfully.

Multi-Output Time-Series Models

Another attractive feature of curve fitting is the ability to model multiple time-series

with weighted correlations between them. Multi-output Gaussian processes, proposed

in [72], are used to model multiple correlated time-series variables. This model represents

the cross-correlation between the time-series variables with additional hyperparameters in

the GP kernel function such that:

k([l, t], [l′, t ′]), kL(l, l′)kT (t, t ′)

where t is time index, kT is a typical GP kernel as illustrated in Equations (2.1) and

(2.2), and kL determines the cross-correlation weight between two different time-series

with label l and l′, such that it equals unity if both inputs from the same time series (i.e.,

l = l′) and α otherwise.

Multi-output Gaussian processes models are very useful in many applications where

there are correlated time-series data. For instance, multi-output Gaussian processes have

been used to model a wireless sensor network in order to predict the missing data for a
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failed sensor [72]. Also, the study in [87] shows that the model quality and performance of

multi-output Gaussian processes time-series models with missing data are similar to single

independent time-series models with complete data. Another application that uses multi-

output Gaussian processes to model a building ambient temperature has been proposed

in [88]. In this case, there are two correlated time series: The building ambient temperature,

and the weather forecast of the building’s city. The correlation between the two time-series

can also be approximated alternatively by modeling the difference between both series

using a single Gaussian process model only, (i.e., y = y′l− yl = f (t)).

2.2.1.2 State-Space Models

State-space models provide a useful modeling framework for many dynamical systems.

Typically, the successor system state xt+1 depends on the predecessor system state (xt)

and an applied control input (ut). A graphical representation of such systems is shown in

Figure 2.5.

Figure 2.5: A graphical representation of dynamical systems with control input

Formally, a state-space model of a stochastic system can be defined as:

xt+1 = f (xt ,ut)+ωt , ωt ∼N (0,Σω)

where x ∈RD is the continuous state, u ∈RE is the control input and ωk is the disturbance

modeled by an i.i.d Gaussian distribution. The system’s transition function f is an un-
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known nonlinear function which maps a tuple of system state and controller input (xt ,ut)

to a successor state (xt+1). Gaussian processes have been used successfully to identify f

from sensory data when a parametric model is very hard to obtain [98]. Also, Gaussian pro-

cesses have been used to identify f when the state x is not directly observed [31]. Another

advantages of nonparametric modeling based on Gaussian processes is the flexibility of

including other dependent variables to the state variables such as environmental states [51].

State-space models have been used widely to model continuous dynamics. We propose

to utilize these models to represent the continuous dynamics of SHS. This allows us to

integrate the state-space modeling techniques for stochastic continuous systems into the

proposed data-driven SHS modeling framework.

2.2.1.3 Model Learning of Large-Scale Systems

Despite the simplicity and the flexibility advantages of GP models, a typical GP model

suffers from scaling limitations. As the number of data and model dimension increase, the

required computation increases exponentially. In GPs, the major computation operation is

the inverse calculation of the n×n covariance matrix K. This inversion is computationally

expensive with a complexity of O(n3), (where n is the number of data points). Therefore,

many studies have been conducted to solve this problem with different approaches. Mainly,

there are three major approaches that have been developed: Sparse Gaussian processes,

local weighted models, and product of Gaussian processes. Sparse Gaussian processes are

based on approximating the inverse of the covariance matrix K with a low rank matrix

approximation of dimension m×m, (where m << n) [81] [93]. Local weighted models

partition the function space into smaller weighted models [67]. The partitioning process

can be achieved by clustering the training data [68]. Then, the mixtures of these weighted

local models are used to approximate the overall model output. The product of Gaussian

processes, also known as distributed Gaussian process, is an orthogonal approximation

where the data is partitioned into subsets, and each subset is partitioned into another group

19



of subsets until the desired level of approximation is reached [26]. Then, each subset is used

to calculate a separate GP in a distributed fashion, (i.e., separate covariance matrix and GP

mean function). Later, these separate GPs are combined to calculate the overall covariance

matrix and the mean function of the final GP model. This approximation also allows the

data partitions to share some data points in order to smooth out the approximation drawback

caused by partitioning [66].

2.2.1.4 Model Learning of Multi-Modal Systems

Many modern systems possess multi-modal behavior where they behave differently on

each mode. Therefore, inference using a typical GP model for such systems would behave

poorly because its covariance function is stationary and cannot represent multiple behaviors

with the same hyperparameters. Hence, an alternative GP-based model known as mixtures

of Gaussian processes (MGP) is developed to solve this problem [97]. MGP is inspired by

the well-known mixture of experts (ME) model [43] where the model experts are Gaus-

sian processes (GP) models. Thus, an MGP consists of a latent discrete variable, typically

called gating network, and a set of GP functions called the experts. The state of the dis-

crete variable specifies the GP function which is used to calculate the system output at a

given input. Therefore, identifying a system behavior using an MGP allows the model to

recognize different behaviors by selecting the appropriate GP function through the gating

network. Gating networks play a major role since it identifies the discrete mode of opera-

tion in a probabilistic manner. A typical choice of gating network is a GP classifier [97].

This typical choice is limited to systems where the discrete mode of operations are known a

priory. An alternative MGP model known as infinite mixture of Gaussian processes (iMGP)

is developed to mitigate this limitation [83]. The iMGP model assumes that the data can be

modeled by an infinite mixture of Gaussian processes and uses an input-dependent Dirich-

let process to sample the gating network.

Another approach that has been developed to model systems with multiple modes is
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changepoint detection models. Changepoint detection (CPD) models are very useful in

time-series modeling where there is a need to detect and locate a significant change in

data behavior (known as changepoints) in an online fashion. CPD models build a proba-

bilistic distribution for the run length of each mode and model the data within each mode.

Since a typical GP is stationary and cannot model such time-series models, a new Bayesian

framework based on GP is developed to build a CPD model that can update the posterior

distribution of the run length and allow GP to support this mode changes [32] [90].

2.2.1.5 Online Model Learning

Modern complex systems may possess a dynamical behavior in which the parameters

of the underline system changes either abruptly and/or slowly over time. The typical offline

model learning methodologies use the available data during the system design to learn the

system model. Therefore, the offline learned models usually fail to adapt to the dynamical

changes that happen in the runtime. In contrast to offline learning, online model learning

methodologies provide a platform which continuously learns the system model during the

system runtime. GPs have attractive features which make them good candidates to be used

in online learning. The main challenge in online learning is how to deal with the old and

the new data. Several methodologies have been developed to tackle this challenge by using

either windowing or sampling weighting techniques. Windowing techniques are based on

maintaining a fixed size of the training data [70]. Windowing techniques usually exclude

old data and include the new measurement to the training data set using either first-in-first-

out (FIFO) or by removing the data point with the highest error [5]. On the other hand,

sampling weighting techniques are based on giving the new measurement a higher weight

than the old data [69] [89].

Another problem which requires an online model learning framework is model-based

reinforcement learning for autonomous and optimal control. In robotics application for

example, the robot objective is to learn the system dynamics and its control policy effi-
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ciently while it interacts with the world through try and error. To achieve this objective,

GPs have been used to build a model-based data-efficient learning framework for control

policy search, known as PILCO [25] [27]. PILCO starts by applying random control sig-

nals and records their corresponding data to learn a probabilistic GP model of the system

dynamics given the available initial data. The system model is then used to learn an optimal

control policy by optimizing the control policy parameters that minimize a cost function

under constraints. Finally, a new control signal is generated using the learned control pol-

icy and applied to the system, which in turn will reveal a new data element. These steps are

executed iteratively after updating the model using the new revealed data until the system

achieves its control objective.

2.2.2 Model Learning of Stochastic Hybrid Systems

Stochastic hybrid systems (SHS) are dynamical systems that integrate continuous and

discrete dynamics. Moreover, the continuous and/or the discrete dynamics may exhibit

stochastic behavior. Several stochastic hybrid modeling paradigms have been proposed in

the literature. For instance, some models use deterministic discrete dynamics with stochas-

tic continuous dynamics while other models use probabilistic discrete dynamics. A typical

SHS model has been developed to extend a typical deterministic hybrid system (HS) by

modeling the continuous dynamics using stochastic differential equation (SDE) instead of

ordinary differential equations (ODEs) [41]. General stochastic hybrid systems (GSHS) ex-

tend the (SHS) model by introducing stochastic behaviors in the discrete transitions instead

of using deterministic transitions [17]. Both SHS and GSHS are continuous-time stochastic

hybrid systems (CTSHS) and they lack a control input. A discrete-time stochastic hybrid

system (DTSHS) model has been developed to represent the theoretical and computational

aspects of SHS from a discrete-time point of view [4]. In addition to the discrete-time

representation, DTSHS allows modeling systems influenced by control inputs.

System identification of hybrid systems (HS) has been investigated in the literature
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substantially to develop system identification methods for various classes of HS. Typically,

these methods aim to estimate the system model parameters for a given model complex-

ity [74]. For HS with unknown model complexity, a kernel-based approach is developed

to identify a popular class of HS, known as piecewise affine systems, where GPs are used

to model the impulse response of each submodel of the HS [76]. Model learning of SHS

has an additional level of complexity because of the presence of uncertainty in the model

behavior along with the coupled continuous/discrete dynamics. Many methods have been

developed to learn the model parameters (i.e., parameter identification) for a given model

structure [49]. The following subsection discusses two main model learning approaches:

simulation-based model learning approach and likelihood maximization model learning

approach.

2.2.2.1 Simulation-Based Model Learning

The simulation-based model learning approach uses simulated trajectories for parame-

ters identification based on randomized optimization techniques. The goal of this approach

is to find the best fit of candidate values of the model parameters. The fit of each candidate

solution is determined by evaluating the simulated model trajectories generated using the

candidate values against the measured data. Randomized optimization techniques such as

genetic algorithm (GA) and Markov chain Monte Carlo (MCMC) can be used to achieve

this gaol [49]. Genetic algorithms (GA) are an iterative algorithm inspired by natural evo-

lution and are used typically to solve optimization problems. The main steps of SHS model

learning algorithm based on GA are:

1. Initialization: Randomly, generate an initial population of candidate values (called

individuals) of the model parameters in a binary encoding form.

2. Evaluation: Compute the fitness for each individual by evaluating the simulation

trajectory generated using it.
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3. Selection: Select a set of individuals based on their selection probability (a proba-

bility proportional to their fitness).

4. Evolution: Generate offspring population by applying genetic operators (i.e., crossover

and mutation) to the selected individuals, then generate the next population by replac-

ing a fixed percentage of the worst fitting with the new offspring.

5. Repeat Evaluation, Selection and Evolution steps till obtaining a satisfactory solu-

tion.

2.2.2.2 Likelihood Maximization Model Learning

Learning SHS with likelihood maximization approach is based on learning a maximum-

likelihood (ML) model of the underlying system parameters using an expectation-maximization

(EM) algorithm [13] [91]. EM is an iterative algorithm which aims to find a local maximum

of a target function. Formally, EM aims to maximize the likelihood probability of observed

data Y given a vector of parameter θ , (e.g., g(θ) = log p(Y|θ)). EM is typically used when

the likelihood function p(Y|θ) cannot be easily evaluated. For instance, when the likeli-

hood function depends on a hidden random variable. In this case, the likelihood can be

evaluated through a marginalization over the hidden parameters variables. Calculating this

marginalization contains a logarithm operation over an integral (or a large summation in

discrete systems). This logarithm operation makes the calculation intractable. Therefore,

EM overcomes this problem by evaluating a tractable lower bound h(θ |θ k) of the likeli-

hood function g(θ) given the current parameters guess θ k. Then, it maximizes the bound

function to get the next guess until the algorithm converges. The typical EM algorithm

proceeds as follows:

1. Initialization: Initialize the first parameter guess θ k.

2. Expectation step: Calculate the bound function h(θ |θ k).
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3. Maximization step: Calculate θ k+1 that maximize the bound function h(θ |θ k).

4. Convergence check: Evaluate g(θ k+1), Repeat the Expectation and Maximization

steps until g(θ) converge.

Applying the typical EM algorithm in hybrid systems is not a straightforward task because

the latent variable consists of hybrid states (i.e., discrete and continuous) along with their

dependence (i.e., transition guards). Therefore, marginalization over this hybrid latent vari-

ables is another major challenge in SHS model learning. Since it requires the estimation of

the hybrid state for the given observation. The hybrid state estimation problem requires an

enumeration of every possible sequence of the discrete latent variable associated with the

continuous variable. This enumeration process is exponential in time, and therefore, the

marginalization process would be intractable. Thus, a proper assumption or approximation

is needed. An approximation based on a forward-backward Kalman filter recursion on a re-

stricted set of discrete state sequence instead of all possible sequence was proposed in [13].

The restricted set is computed using a heuristic algorithm for N-best enumeration, then the

probability of each sequence in the set is normalized by a factor so that their summation

is equal to one. This normalization process ensures a valid probability distribution of the

restricted set, such that any other sequence, not in the set, has a zero probability.

2.3 Reachability Analysis

Reachability analysis is a typical problem in hybrid systems where for given initial

states of a system, it is necessary to predict the reachable states for some finite time horizon

T (see Figure 2.6). In many systems, the motivation is to verify the system safety and

stability. Often, reachability analysis is used to predict the system behavior given a control

policy in order to optimize the control signal over a finite horizon.
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Figure 2.6: Reachability Analysis Problem

2.3.1 Prediction of Nonlinear Stochastic Systems

The major challenge with the prediction of nonlinear stochastic systems for a finite

horizon is the need of uncertainty propagation. The simple one-step prediction is a typical

regression problem where the system state (or model output) is tested at the current certain

input. In contrast, multi-step prediction is more challenging and requires the uncertainty of

the predicted state at each time step to be propagated. This problem is also known as multi-

step prediction or prediction at uncertain input represented by a probability distribution.

For a given Gaussian process model and an uncertain input X∗ represented by a Gaussian

distribution, the GP posterior (i.e., predicted state) can be calculated by marginalizing the

model output over the input distribution, such that:

p(y∗) =
∫ ∫

p((y∗|X∗)p(X∗)dy∗dX∗. (2.10)

The distribution shown in (2.10) is non-Gaussian and it is analytically intractable [37], and

therefore, analytic or numerical approximations are required to overcome this challenge.

To that end, there are two main approaches that have been developed to predict the

system behavior in the present of uncertainty in the input. The first approach is based
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on Monte-Carlo simulation where the predicted system trajectories are described through

a set of particle simulations (i.e., trajectory samples) [51]. Approaches based on Monte-

Carlo simulation are limited to particle-based control methodologies and optimization tech-

niques. Moreover, these approaches are computationally demanding, especially when a

large amount of particles are needed to obtain good accuracy.

2.3.1.1 Analytical Approximation

Analytical approximation approaches approximate the predicted non-Gaussian distri-

bution in (2.10) by a Gaussian distribution. There are two main Gaussian approximations

that have been introduced in the literature known as moment-matching and linearization

of the predictive distribution [19][36] [27]. Moment-matching approximation is based on

computing the first two moments of the predictive distribution by applying the law of it-

erated expectations. On the other hand, linearization approximation linearizes the GP pre-

dictive mean function. The linearization approximation is computationally advantageous

over moment-matching but has lower accuracy. These approximations are not applicable in

all cases because they depend on the GP kernel function. For example, moment-matching

cannot approximate a periodic GP kernel. In [34], moment-matching approximation has

been extended to allow long-term forecasting of periodic processes by re-parametrize the

periodic kernel.

Another drawback of these approximation is the poor Gaussian approximation of the

predictive distribution. Therefore, another algorithm, known as GP-aGMM, is developed to

mitigate the moment-matching limitations [40]. This algorithm is based on utilizing adap-

tive Gaussian mixture model (aGMM) to perform multi-step prediction. GP-aGMM starts

by approximating the output distribution by a single Gaussian distribution, then it evalu-

ates the quality of the Gaussian approximation of the output distribution using a kurtosis

metric. If the algorithm detects a poor Gaussian approximation, it splits the input distribu-

tion into three weighted Gaussian components (i.e., GMM), and then, it approximates the
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output at each Gaussian component with a Gaussian approximation. The evaluation and

splitting steps are then applied recursively for each of the three components until the de-

sired approximation quality is achieved (i.e., the kurtosis metric does not exceed a certain

threshold). This algorithm uses multiple Gaussian components to approximate the predic-

tive distribution of the model output, hence, the predictive distribution is approximated by

GMM.

2.3.2 Reachability Analysis of Stochastic Hybrid Systems

For hybrid systems, different approximation methods have been proposed to estimate

the reachable states such as polygonal flow-pipe approximation [21] and ellipsoidal ap-

proximation [52]. Optimization techniques such as face lifting [23] have been also used.

On the other hand, reachability analysis of stochastic hybrid systems is more complex since

the prediction of the reachable states along with the probability of reaching these states are

required. This problem has been investigated extensively in the literature through different

estimation methods. In this section, we provide an overview of estimation methods related

to our work.

2.3.2.1 Analytical Approximation

Methods based on analytical estimation have been used to solve the reachability prob-

lem [15]. For instance, the probabilistic reachability problem has been addressed in [16]

using a quadratic form. Methods based on numerical estimations are also used to solve the

reachability problem such as Markov chain approximations [53, 77] [3] and numerical so-

lutions of partial differential equation (PDF) [62]. A Markov chain approximation is used

to address the reachability problem by computing the probability of reaching some assigned

set, and then propagate this probability through the approximated Markov chain transition

kernel. Moreover, a numerical solution of Hamilton-Jacobi-Isaacs (HJI) PDE’s can be used

to tackle the reachability problem in a general game theoretical framework [63]. Typical

28



methods based on HJI equation result in a conservative bound of safely reachable states.

Therefore, combining a machine learning technique with HIJ equation is a useful approach

to reduce this conservativeness [6]. Another method approximates the reachability problem

for a discrete-time SHS with a control input as a stochastic optimal control problem and

solves it using dynamic programing [4] [7].

2.3.2.2 Simulation-Based Approximation

Despite the accuracy of the above methods, they may be limited to a certain class of

SHS (e.g., SHS with linear continuous dynamics) and more importantly their computa-

tional complexity typically explodes with the dimension of the state space. Therefore,

probabilistic estimation methods based on randomized algorithms such as Monte-Carlo

methods [50][100] [78], multilevel splitting (MLS) variance reduction [85], and simulation-

based methods [86] are considered for reachability analysis. Methods based on Monte-

Carlo simulation are promising because of their simplicity. Moreover, these methods can

be applied to multiple classes of SHS model and are not limited to a certain model rep-

resentation. These methods rely on simulating a large number of model trajectories to

approximate the reachable states by analyzing the simulated samples simultaneously. The

number of samples affects the accuracy of the model prediction which introduces a trade-off

between computation efficiency and approximation accuracy. This trade-off gives Monte-

Carlo methods more flexibility. For instance, a Monte-Carlo based method known as im-

portance sampling is used to increase the prediction accuracy in critical regions while using

fewer samples in uncritical regions.

Finally, statistical methods are an area of active research which aim to leverage avail-

able data to approximate the reachable state [15]. In this context, a data-driven Bayesian

framework is developed to learn and to verify complex physical systems via reachability

analysis [38].
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2.4 Stochastic Control of Stochastic Dynamical Systems

In model-based system design, decision and control algorithms utilize the system mod-

els to drive the system behavior in the desired way. The choice of these algorithms depends

on the nature of the modeled system and the desired response. Model predictive control

(MPC) is one of the important model-based control algorithms. MPC is very popular be-

cause of the ability to optimize the desired system variables subject to constraints on system

inputs and states. Additionally, MPC has a flexible formulation in the time domain. The

fundamental idea behind MPC is based on manipulating the control inputs of the underline

system to obtain an optimal future response of the physical system for a finite receding

horizon. This optimization process results in an optimal sequence of the control signals

for the desired finite receding horizon. Only the first control signal in this sequence is

applied to the physical system then the whole optimization process is repeated again itera-

tively after receiving new measurements. MPC for linear systems is well-established [80].

In contrast, nonlinear MPC (NMPC) is still an active research topic, especially when the

model of the system is hard to obtain. Several methods of NMPC based on data-driven

black-box models have been proposed such as NMPC for neural network [73] and NMPC

for fuzzy logic [45]. The main drawback of these approaches is the model bias problem.

In the model bias problem, MPC inherently considers that the learned model resembles the

system behavior accurately regardless of the quality of the learned models and/or the un-

certainty in the system dynamics. As an alternative, probabilistic models such as GPs have

the advantage of expressing the model confidence using predictive variance. This proba-

bilistic representation allows MPC to consider the quality of the learned models and to take

the system uncertainty into account. This section provides a review of MPC algorithms for

nonlinear systems modeled by GPs, and MPC algorithms for stochastic systems known as

stochastic model predictive control (SMPC).
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2.4.1 Gaussian Process Model Predictive Control

Model predictive control using GP models follows the same general principles as typ-

ical MPC. However, the process model used to represent the physical system behavior is

identified using GPs. Thus, a typical Gaussian process model predictive control problem

can be defined as follows.

min
U

T−1

∑
k=0

h(x̂(k+1),u(k)) (2.11)

subject to:

var x̂(k)≤ δv, k = {1, · · · ,T}

u(k) ∈U , k = {1, · · · ,T −1}

x̄(k) ∈X , k = {1, · · · ,T}

(2.12)

where h(.) is the cost function defined over the system state x and the control inputs u,

x̄ is the estimated system state, U is the sequence of control signals [u(1), · · · ,u(T − 1)],

δv represents the variance constraints limit, U represents the input constraints set, X

represents the state constraints set, and T is the finite receding horizon to optimize over.

The goal of Gaussian process MPC is to minimize a given cost function for a finite

receding horizon T . The optimization process is based on predicting the system state tra-

jectory for each time step k in the horizon [1 T ]. These prediction steps depend on the

sequence of control signals U. Therefore, the optimization process results in a control se-

quence U that minimizes the cost function of the predicted trajectory and does not violate

the constraints on input and state shown in Equation (2.12). Then, only the first element

in the control sequence U, i.e. u(1), is applied to the physical system and the entire al-

gorithm is repeated again when a new measurement is received. The optimization can be

done using several algorithms. The choice of these algorithms depends on the form of the

cost function. For nonlinear systems, the optimization process can be achieved by using

dynamic programming, or nonlinear programming.

Degradation in the performance and the stability is a major challenge in MPC because
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of mismatches between the predicted trajectories using the system model and the actual

system response. The reason of these mismatches is due to the unmodeled behaviors and/or

poor model quality due to incomplete training data. Luckily, GP MPC can overcome many

of these challenges because of its ability to capture nonlinear behaviors and to express the

model confidence by the predictive variance. As shown in Equation (2.12), incorporating

the model confidence represented by variance constraints δv results in an MPC controller

with a high level of robustness and stability [48] [47]. The feasibility and realization of

using GP MPC has been introduced recently in the literature for many application. For

example, GP MPC for nonlinear systems has been used to control unmanned quadrotors

in [20]. In industrial practice, GP MPC is used to control a gasliquid separation plant

in [55]. Moreover, a nonlinear adaptive control based on GP MPC is proposed in [65],

where the uncertainty of the GP models is propagated for the MPC receding horizon to

gain more accuracy on the prediction variance.

Despite the ability of GP MPC to handle model uncertainty and enable a robust control

scheme, its robustness is limited to system uncertainty that can be modeled by a Gaus-

sian distribution. This limitation restricts the efficacy of GP MPC. Therefore, a stochastic

system with non-Gaussian uncertainty represents another control problem that needs to be

addressed.

2.4.2 Stochastic Model Predictive Control

Formally, stochastic model predictive control (SMPC) is a stochastic optimization prob-

lem defined as:

min
U

T−1

∑
k=1

E[h(x̂(k+1),u(k))] (2.13)
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subject to:

p(x̂(k) 6∈ F)≤ δx, k = {1, · · · ,T}

u(k) ∈U , k = {1, · · · ,T −1}

E[x(k)] ∈X , k = {1, · · · ,T}

x(k+1)∼ f (x(k),u(k),θ(k))

(2.14)

where h(.) is the cost function defined over the system state x and the control inputs u, U

is the sequence of control signals [u(1),u(2), · · · ,u(T − 1)], F is the unsafe region for the

state trajectory, U represents the input constraints set, X represents the state constraints

set for the expected state trajectory, θ(k)∈Rnθ is a random variable representing the model

parameter and T is the finite receding horizon to optimize over. The goal of this stochastic

optimization problem is to determine an optimum finite sequence of the control signals U

that minimizes the system cost function h(.) without violating the constraints on the system

state and inputs. Therefore, the controller ensures that the system trajectory will not reach

an unsafe region F with probability at most δx and will be within a certain set X .

The above stochastic optimization problem is intractable, especially when there is no

assumption about the form of the probability distribution of the system uncertainty. Hence,

an approximation methodology is required in order to transform the probabilistic con-

straints into deterministic constraints. For instance, deterministic second-order cone con-

straints have been used to equivalently approximate stochastic constraints in SMPC to con-

trol buildings efficiently [71]. In the next subsection, we discuss a feasible approximation

known as scenario-based MPC.

2.4.2.1 Scenario-Based Model Predictive Control

Scenario-Based MPC is based on enumerating or sampling the uncertainty in the SMPC

problem in order to transform the stochastic optimization problem into a deterministic op-

timization problem. The enumerated scenarios construct a deterministic MPC problem and
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collectively approximate the original SMPC. Typically, scenario-based SMPC can be used

for systems with any form of uncertainty, however, the random variables representing the

uncertainty should be independent of the control signals. The scenario-based optimization

approach for SMPC can be represented graphically as an optimization tree (see Figure 2.7),

where its nodes represent a possible system state with a calculated weight. Each path in the

tree represents a possible system trajectory. The root node corresponds to the current sys-

tem state (i.e. x(1)). The node weight πi is calculated as the probability of reaching node i

from the root node given the probability distribution of the uncertainty in the system. Gen-

erating the optimization tree is based on sampling the random variable in the system (e.g.,

θ ) such that the probability of the sampled trajectories is higher than a desired threshold.

Figure 2.7: A graphical representation of a scenario-based optimization tree, where Ni is
the tree nodes, and S is the set of leaf nodes.

To that end, the SMPC problem defined in Equation (2.13) and (2.14) can be approxi-

mated with an optimization tree T = {N1,N2, · · ·Nn} with n nodes. This approximation

is based on a deterministic optimization problem and can be defined as the following:

min
U ∑

i∈T \{N1}
πih(xi,upre(i)) (2.15)

34



subject to:

ui ∈U , ∀i ∈T \{N1}

xi ∈X , ∀i ∈T \S

xi = f (xpre(i),upre(i),θi)

(2.16)

Solving the optimization problem in Equation (2.15) and (2.16) depends on the type of

the cost function h and the system model f . Scenario-based MPC approach for stochas-

tic constrained linear systems has been introduced in [11], such that, the scenario-based

approximation converts the stochastic optimization problem into quadratically constraint

quadratic problem (QCQP). The QCQP can be solved using linear programming. Another

form of sampling the uncertainty presented in the estimated system state, modeling error,

disturbance, and stochastic mode change is based on a particle-based approach [14]. In this

approach, the sampled particles approximate the probability distribution of every random

variable in the system. Mixed linear programming algorithm can be used to solve the ap-

proximated deterministic optimization problem. The scenario-based SMPC approach has

been applied to many systems. For instance, the performance of scenario-based SMPC is

evaluated for energy management of hybrid electric vehicles given a stochastic model of the

driver behaviors modeled by Markov chain model [28]. Also, scenario-based SMPC has

been used to control advanced HVAC systems in energy-efficient fashion while considering

the uncertainty in weather and occupancy patterns [75] [102].

2.5 Modeling and Control of Smart Buildings

In this section, we discuss the related work of smart buildings applications we use to

evaluate the proposed research approaches. Further, we discuss the challenges presented

in these applications and illustrate the contribution of our research to mitigate these chal-

lenges.

Heating, ventilation and air conditioning (HVAC) in buildings is a major source of en-

ergy consumption. Annual reports show that it is the highest cause of energy consumption
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in residential buildings. Moreover, HVAC along with miscellaneous electric loads accounts

for the highest two energy consumption sources in commercial buildings [2]. Therefore,

there is a high demand for developing advanced HVAC control methodologies that can re-

duce the energy consumption of HVAC unit without compromising users comfort. Many

of these advanced control methodologies are model-based and require accurate thermal

models. These models should represent the thermal dynamics of buildings accurately and

consider the effect of the thermal load in buildings such as occupancy.

Developing accurate thermal models is a challenging task because of the complex be-

havior of buildings. Thermal dynamics of buildings are a stochastic nonlinear process

which are affected externally by the environment (e.g., ambient temperature) and inter-

nally by the adjacent zones/rooms. Moreover, buildings dynamics typically differ from one

building to another since each building has different construction materials, size, layout,

and location. As a result, extensive research efforts have been made in this area to mitigate

these challenges.

There are two cases for modeling buildings: Single-zone and multi-zone cases. In the

single-zone case, buildings are modeled and approximated as a single thermal zone with

an average temperature to reduce model complexity [57] [39]. These models are helpful

to provide approximated behaviors of buildings. In the multi-zone case, building models

represent the thermal dynamics of each zone in the building to increase the model accu-

racy [42] [95] [96]. These models are amenable for a better control design to minimized

power consumption and therefore the system cost. For instance, an SMPC control method

that utilizes a multi-zone model is proposed in [71] in order to achieve energy efficient

building climate control.

Most of the above-mentioned work relies on parametric models to represent the thermal

behaviors of buildings. However, parametric models require the building detailed structure

and/or equations to be known a priori. Also, they might fall to represent the thermal be-

haviors accurately due to the linearity assumptions in many parametric models. Therefore,
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nonparametric models can be used to construct a detailed nonlinear model of buildings from

sensory data. A nonparametric thermal model based on recurrent neural network (RNN)

architecture has been developed to learn a compact thermal modeling of buildings from

sensory data [103] . Models based on RNNs architecture are very useful to represent the

nonlinearity of thermal dynamics, however, they typically do not consider the uncertainty

and time variability.

The thermal behavior of buildings depends on the thermal load such as occupancy.

Modeling the effect of the thermal load is another challenge because estimating the heat

gained from the thermal load cannot be measured in many cases. A gray box parametric

model is used to build a thermal model and combine it with a latent force model based on

Gaussian processes [35]. The latent force model is used to model the disturbance caused

by the variability in the thermal load. Another parametric model is developed to estimate

the heat gained from occupancy, equipment, and solar heating using temperature measure-

ments [8].

In this dissertation, we introduce a data-driven nonparametric modeling framework to

learn thermal models of multi-zone buildings. The proposed model can learn the thermal

behavior of buildings from sensory data in an online fashion. The nonparametric nature

of the proposed model supports creating a unified data-driven modeling framework for

buildings. Additionally, we don not assume the buildings thermal load to be measurable,

and therefore, we estimate them as a latent discrete variable. This estimation allows the

proposed model to capture the effects of the thermal load and to model and predict its

pattern (e.g., occupancy pattern).

2.6 Comparison with Proposed Work

In summary, we showed that many recent studies developed data-driven approaches

(e.g., Gaussian processes) for stochastic systems to learn nonparametric models. However,

these studies are limited to continuous stochastic systems and, they typically do not con-
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sider systems with coupled discrete/continuous dynamics (e.g., SHS). Thus, the goal of our

research is to address the research challenges and opportunities in developing data-driven

approaches for model learning, analysis, and control of SHS.

Model Learning

Most work in SHS assumes a parametric model where the model structure is known a

priori. However, it is not always feasible to build a parametric model for many complex

systems. Therefore, in our research, we present a non-parametric modeling framework

which utilizes sensory data to learn the system dynamics. Additionally, the proposed mod-

eling framework uses an online learning algorithm to adapt the model to variable changes

that occur during the system operation.

Existing nonparametric modeling approaches for buildings assume that the thermal load

can be measured and used as a model input. This assumption may limit the use of these

approaches in many systems, therefore we present nonparametric SHS model for multi-

zone buildings when the thermal load is latent. The proposed model estimate the level of

the thermal load and learn a distinct model for each level in order to improve the model

efficiency and accuracy.

Reachability Analysis

Reachability analysis has been investigated extensively using many approximation meth-

ods. However, these methods are based on parametric SHS modeled. Alternatively, many

approaches based on Monte-Carlo simulation have been developed to mitigate the limi-

tations of other approximation methods. However, these approaches are computationally

expensive. In this dissertation, we present an online data-driven approximation approach

which leverages data to approximate a statistical distribution of the reachable states of SHS.
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Control/Decision Making of Stochastic Dynamical Systems

Several methods based on stochastic model predictive control have been developed to

control systems with stochastic behavior. These methods are limited to systems whose

behavior can be represented using a parametric model. Alternatively, recent studies intro-

duced model predictive control methods based on nonparametric models such as Gaussian

processes, however, these studies consider systems with continuous dynamics only. In this

dissertation, we present a stochastic model predictive control approach based on scenario-

based approximation of SHS represented by Gaussian processes and Markov chains.
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Chapter 3

Online Model Learning of Stochastic Hybrid Systems

Stochastic hybrid systems (SHS) can model modern cyber-physical systems (CPS) with

coupled discrete/continuous stochastic dynamics. Many of these CPS exhibit complex be-

havior so it may not be feasible to develop accurate parametric models. Data-driven ap-

proaches based on machine learning provide alternative methods to identify nonparametric

models for analysis and control of CPS. However, model learning of nonparametric SHS

faces many research challenges because of the complexity of the coupled discrete/continu-

ous dynamics. In this chapter, we introduce a data-driven SHS modeling paradigm based

on Gaussian processes (GPs) and describe a novel clustering-based online learning method-

ology for the proposed model. Moreover, we demonstrate the feasibility of the proposed

approach to create thermal models for multi-zone buildings when the buildings thermal

load cannot be measured.

This chapter is organized as follows. Section 3.1 defines the proposed nonparametric

SHS based on Gaussian processes. Section 3.2 presents the model learning problem and

the challenges associated with it when the discrete dynamics are latent (i.e., the discrete

dynamics cannot be measured explicitly). Section 3.3 introduces the proposed data-driven

model learning of SHS. Finally, Section 3.4 demonstrates the advantages of the proposed

SHS model for smart buildings and evaluates the performance of the model learning ap-

proach.

3.1 Model Definition and Execution

We introduce in this chapter a novel nonparametric SHS based on Gaussian processes

(GPs). To formalize the SHS model, we define Q as the set of discrete states and denote the

continuous state space by RD for each discrete state q ∈Q with dimension D. The hybrid
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state space is defined as S := Q×RD. For each discrete mode q ∈Q, its corresponding

continuous dynamics evolves according to a stochastic process modeled by a GP model.

The discrete state may change based on a stochastic process too. Furthermore, we consider

systems with two types of inputs: (1) control input and (2) external uncontrolled input

(disturbance) from the environment. The control input usually affects the system dynamics

based on a control policy (π(S ) : S →U ) which maps the hybrid state space (S ) into the

control input space (U ). On the other hand, the external uncontrolled input (v ∈ V ) affects

the system dynamics and represents the interaction with the environment. Therefore, we

propose to model the external input as a time-series disturbance model (E : N→ V ). The

model is formalized by the following definition.

Definition 2. (Nonparametric SHS). A nonparametric SHS model is defined as a tuple

H = (Q,X , Init,U ,V ,A,δ ):

• Q := {q1,q2, · · · ,qm}, for some m ∈ N, represents the discrete state space.

• X is a set of continuous variables in the Euclidean space RD.

• Init: B(S )→ [0,1] is an initial probability measure on the Borel space B(S )

where S := Q×RD.

• U ⊂ RE , for some E ∈ N, represents the control input space.

• V ⊂ RF , for some F ∈ N, represents the external uncontrolled input space.

• A assigns to each discrete state q ∈Q a function (xk+1 = fq(xk,uk,vk)) modeled by

a GP which represents the evolution of the continuous state given the predecessor

continuous state xk ∈RD, a control input uk ∈U and an external uncontrolled input

vk ∈ V .

• δ : S ×Q→ [0,1] is a stochastic process which assigns a probability distribution

over the discrete state given S .

A graphical representation of the model is shown in Figure 3.1.
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Figure 3.1: Nonparametric SHS components and interconnections

Model Execution

For a finite time horizon [0,N], a system trajectory is denoted by {sk = (qk,xk),k ∈

[0,N]}, and it is an execution of H with a given control policy π(S ) and a time-series

disturbance model E(k). The system trajectory can be obtained using the discrete-time

algorithm described below.

For example, Figure 3.2 depicts a sampled trajectory of a given SHS model with a finite

time horizon [0,100]. The executed SHS model has two discrete modes and the transition

between these modes are obtained based on the following probabilistic kernel.

qk+1← δ (sk) =

 σ(x), qk+1 = 0

1−σ(x), qk+1 = 1
(3.1)
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Algorithm 1 Discrete-time SHS execution algorithm

State Initialization: s0 = (q0,x0) ∈ Init
k← 0
while k < N do

. Calculate the control input uk:
uk← π(sk)
. Forecast the external input vk:
vk← Ek
. Update the discrete mode qk+1:
qk+1← δ (sk)
. Update the continuous state xk+1:
xk+1← fqk+1(xk,uk,vk)∼ G Pqk+1

k← k +1
end while

Figure 3.2: Sampled trajectory of a given SHS for the finite time horizon [0,100]
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where x is the continuous state, and σ : R→ [0,1] is a sigmoidal function given by

σ(x) =
xd

αd + xd

α and d are the control policy parameters which determine the transition threshold and

steepness respectively. In this example, the value of these parameters are as the follows:

α = 20 and d = 100.

3.2 Model Learning of Stochastic Hybrid Systems with Latent Discrete State

The goal of model learning is to identify the discrete state space (i.e., Q := {q1,q2, · · · ,qm}

and the number of the discrete states m), the discrete transition function δ , and the contin-

uous dynamics (i.e., G Pq(.) for all q ∈ Q ) from a given dataset (D). In this chapter,

we focus in learning the discrete state space and the continuous dynamics only. However,

we extend the learning methodology in the next chapter to include learning the discrete

transition function δ as well.

The training data consists of the continuous state, the control input, and the external

uncontrolled input. Formally, we can define the training data as:

D := {(x̂k,yk) : k = Ts, · · · ,Te}

where yk is the successor continuous state (i.e., yk = xk+1), x̂k is defined as (xk,uk,vk), and

[Ts,Te] is the time period at which the data have been collected. For many complex systems

such as buildings, achieving the model learning objective is a challenging task, because the

sensory data do not necessary include information about the discrete state explicitly. For

instance, learning the level of the thermal load in buildings is a major challenge because the

thermal load cannot be measured in many real scenarios. Moreover, the system dynamics

vary over time due to the variability of the system parameters.

In summary, model learning of SHS encompasses the following challenges:
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1. Identifying the discrete state space from data causes a major challenge, because the

training data may not have explicit information about the discrete state.

2. The hybrid dynamics add a level of complexity to the learning algorithm because

identifying the continuous dynamics requires segmenting the data for each corre-

sponding discrete state, so that, a distinct GP model can be learned using each data

segment.

3. As mentioned earlier, the system dynamics depend on an external uncontrolled input

v. Therefore, an appropriate time-series model E(k) should be learned and integrated

into the SHS modeling framework.

4. Because of the variability of the system parameters, the learning algorithm must

adapt the model to these changes, and therefore, the model learning needs to be

performed in an online fashion.

3.3 Online Clustering-Based Model Learning of Stochastic Hybrid Systems

In this section, we present a novel online learning approach which can be used to learn

a nonparametric SHS model of complex systems with latent discrete dynamics. Moreover,

the approach is used for online learning in order to adapt to system changes. The proposed

learning approach consists of two phases: Offline phase and online phase as depicted in

Figure 3.3. In the offline phase, we initialize the SHS model by identifying its discrete

space first. We determine the number of the discrete states heuristically using Silhouette

analysis method, and then, we identify the discrete state of each data point by clustering the

data. The clustering is also used to label and segment the training data to the corresponding

discrete states. This allows us to learn the continuous dynamics for each discrete state

using a distinct GP model. In the online phase, we estimate the discrete state in order to

determine the GP model used to predict the continuous dynamics. Then, we update the
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model accordingly. This section provides a detailed discussion of the major steps in the

proposed approach.

Figure 3.3: Clustering-based online model learning of SHS

3.3.1 Initialization (Offline Phase)

Feature Extraction

Feature extraction is a technique used to transform the training data into a set of fea-

tures. A set of features (usually referred to as a feature vector) contains the useful data

needed for the clustering stage where the irrelevant information is discarded. Feature ex-

traction is needed to distinctively filter the training data. Generally, the feature vector can

be computed based on time domain features (e.g., mean, root-mean-square) or frequency

domain analysis (e.g., transfer function, Fourier transforms). In this work, the feature vec-

tor is computed based on time-domain features, such as mean and rate of change, because

of the simplicity and the efficiency of these features.
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Data Clustering for Discrete Space Identification

Data clustering is used to estimate the discrete state of each data point. Various cluster-

ing algorithms can be used to learn the discrete state such as K-means, Gaussian Mixture

Model (GMM), and Hierarchical clustering algorithms. The choice of the appropriate al-

gorithm depends on the nature of the application and the collected data . In this section, we

describe the K-means clustering algorithm which calculates the optimal centroids (Ĉ ) for

K clusters, so that Ĉ minimizes the following potential function:

Ĉ = argmin
C

∑
g(x)∈χ

min
c∈C
‖ g(x̂)− c ‖2

(3.2)

where χ ∈ Rn×d is the feature matrix extracted from the training data (D) with size n

and feature dimension d, g(x̂) ∈ Rd is the feature vector for the data point x̂ ∈ D , and

Ĉ ∈ RK×d represents the optimal K-centroids. In the evaluation section, we consider the

study of additional clustering algorithms such as Gaussian Mixture Model (GMM) and

Hierarchical clustering.

The clustering-based learning approach considers the data that lie close to each other

to probably belong to the same discrete state. However, it requires the number of clusters

(i.e., the number of discrete states m ∈ N) to be known a priori. We identify the number

of discrete states m using a heuristic algorithm known as Silhouette analysis method [44].

The Silhouette analysis method determines the best number of clusters (K̂) which results in

the best clustering consistency. Silhouette analysis evaluates the clustering consistency for

a given K by calculating a scoring coefficient for each clustered data point. The Silhouette

scoring coefficient has a range of [-1,1] where scores near +1 are assigned to data points

that lie far from the neighboring clusters. On the other hand, scores near 0 are assigned to

data points that lie very close to the boundary between their cluster and a neighboring one.

Negative Silhouette scores are assigned to data points which might have been allocated to

the wrong cluster. Therefore, clusters with a higher average Silhouette score have a better
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consistency than clusters with a lower average Silhouette score. Formally, the Silhouette

score s(i) for a given data point i can be obtained using the following formula:

s(i) =
b(i)−a(i)

max{a(i),b(i)} (3.3)

where a(i) is the average distance from the data point i and the other points in its cluster,

and b(i) is the minimum, minimized over clusters, average distance between the data point

i and other points in a different cluster.

We use Silhouette analysis method to identify the number of discrete states, such that

the average Silhouette score is maximized:

m = K̂ = argmax
K

s̄(i), K ∈ G (3.4)

where G is a finite set of potential value of m.

Data Segmentation and Learning GP Models for the Continuous Dynamics

As shown in the previous subsection, data clustering enables us to identify the discrete

states ({q1,q2, · · · ,qm}) and to label each data point in D with the corresponding discrete

state. The labeled data is used to segment the training data into m datasets:

∀q ∈Q,Dq :=

{(x̂,y)i : q = argmin
q′∈Q

‖ g(x̂k)− cq′ ‖2,∀(x̂,y)i ∈D}
(3.5)

where cq′ is the cluster centroid of the discrete mode q′ and g(x̂) is the feature vector of the

data point x̂. We use each data segment Dq to learn a distinct GP model in order to learn

the continuous dynamics for the discrete state q ∈Q. As discussed in Section 2.1, learning

a GP model is an optimization process that calculates the optimal hyperparameters Θ̂q of

the GP in order to maximize the log likelihood function:
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Θ̂q = argmax
Θq

log p(y|Θq,Dq) (3.6)

The offline phase learns the SHS model using the initial training dataset, then the model

online is updated online whenever new measurement is received in order to improve the

model quality and to adapt to the variation in the underline system.

3.3.2 Prediction and Model Update (Online Phase)

Classification for State Estimation/Prediction

During the system operation at each time step k, we classify the new measured data

point (x̂k) to estimate the current discrete state qk. The new data point is classified using a

nearest centroid classifier. This classifier assigns to the new data point the label of the class

with the nearest centroid. Hence, the discrete state can be estimated as:

qk = argmin
l
‖ g(x̂k)− cl ‖2

where cl is the centroid of class l.

Online Learning of SHS with Windowing

Online learning is very useful in order to adapt the model to the variability of the sys-

tem parameters; however, it requires a proper data selection method to update the training

dataset. We use a moving window method to update the model dataset (i.e., Dq for all

q ∈Q) based on first-in-first-out (FIFO) policy where the new data point is inserted and

the earliest one is dequeued. The dataset (Dq) for each discrete state q is updated inde-

pendently, and then it is used to update its corresponding (G Pq) model and to re-optimize

its hyperparameters (Θ̂q). We also use the moving window method to update the training

dataset for the clustering (i.e., D), and then we update the classifier centroids accordingly.
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Both the classifier centroids and the GP associated with the current discrete mode are up-

dated by repeating the learning process of those models using the updated datasets.

We maintain a fixed window size for all the m datasets of the GP models and use a

different window size of the training dataset for the clustering algorithm. The sizes of the

training datasets affect the model learning running complexity and determine the forget-

ting weight of the model. Typically, there is a trade-off between selecting large and small

dataset size. Online algorithms with large dataset size suffer from high running complexity

and they adapt the updated models to the system variability in a slow pace (i.e., low for-

getting weight of old information). However, these algorithms can learn models with high

quality. On the other hand, online algorithms with small dataset size have efficient running

complexity and the updated models adapt to the system variability faster. However, these

algorithms may miss useful information from the discarded old data especially in models

with large input space. Therefore, we consider the datasets sizes as configuration param-

eters because they depend on the nature of the modeled system and the requirements and

the constraints of the system application. The updated models adapt to the variation in the

systems, so that the model accuracy is improved and reflects the behavior of the underline

system.

Predict the System Response

We predict the continuous state of the underline system using the GP model correspond-

ing to the estimated discrete state (i.e., G Pqk). Hence, The predictive distribution of the

continuous state can be formalized as:

p(xk+1|x̂k) = fqk(x̂k)∼ G Pqk(m(x̂),k(x̂, x̂)) (3.7)

where x̂k is the tuples (xk,uk,vk). The prediction and the learning steps in the online phase

are repeated iteratively each time when new data measurements arrive.
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The quality of the learned model is evaluated by measuring the prediction performance.

The prediction performance represents the agreement between the model and the physical

process output. This comparison can be measured quantitatively using the root mean square

error (RMSE) and the mean relative square error (MRSE) metrics. The RMSE and MRSE

are defined as.

RMSE =

√√√√ 1
N

N

∑
k=1

e2
k , MRSE =

√
∑

N
k=1 e2

k

∑
N
k=1 y2

k

(3.8)

where yk is the process output and ek = ŷk− yk is the prediction error of the kth time-step.

Multi-Step Prediction within a Discrete Mode

Multi-step prediction of the system response is required in many verification and opti-

mization algorithms. For the proposed SHS model, multi-step prediction can be achieved

by propagating the predictive distribution in (3.7) using the GP model of the current es-

timated mode (i.e., G Pq) . However, this propagation faces a major challenge where it

requires to predict the system response at an uncertain input defined by a Gaussian dis-

tribution (i.e., p(X∗) ∼ N (µ∗,Σ∗)). The GP posterior of this predictive distribution is

analytically intractable and can be approximated with Gaussian distribution as discussed in

section 2.1.1.3.

3.3.3 Online Learning of Time-Series Disturbance Model

As mentioned earlier, the proposed approach identifies a time-series model E(k) for

the uncontrolled input v using single Gaussian processes model. The time-series model is

learned online and independent from the SHS model learning algorithm. Therefore, the

time-series model E(k) of an observed time-dependent variable vk is modeled as:

vk = f (k)∼ G P(m(k),K(k,k′))
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We also use the moving window method to learn the above time-series model online. The

above model is very generic and simple, however other complex time-series models can be

used based on the modeled system and the available data, (please refer to section 2.2.1.1

for a detailed discussion).

3.4 Modeling Thermal Dynamics of Buildings with Latent Thermal Load

Thermal models are essential for model-based control methodologies which allow build-

ings to be operated autonomously in energy and cost efficient manner [79]. However, build-

ings have complex stochastic nonlinear thermal dynamics which are affected externally by

the environment. Moreover, the thermal dynamics of buildings depend on internal thermal

loads such as occupancy. In this section, we evaluate the performance of the proposed

framework and its efficacy to learn thermal models for buildings when the applied thermal

load (e.g., occupancy) cannot be measured. In this case, the zone air temperature represents

the model continuous state, the HVAC heating/cooling rate represents the control input, the

ambient temperature represents the uncontolled input, and the thermal load represents the

latent discrete state.

We evaluate the thermal model learning for: (1) A two-zones data center building and

(2) a five-zones office building. The actual behaviors for both buildings are generated

using simulations based on the EnergyPlus software [22]. EnergyPlus is an open-source

cross-platform building energy simulator engine funded by the U.S. Department of Energys

(DOE), and Building Technologies Office (BTO), and managed by the National Renewable

Energy Laboratory (NREL). EnergyPlus is used by engineers, architects, and researchers

for high fidelity simulation of buildings. EnergyPlus requires two inputs: (1) The ambi-

ent temperature and the environment data and (2) The building description. The building

description defines its structure and layout, the construction materials, the thermal zones

with their dimensions and area, the HVAC system, the control strategies and more. It also

defines the building thermal loads with their schedules such as occupancy, lights, and elec-
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trical equipment. These detailed descriptions are used to construct several models (e.g.,

airflow network model, pollution model, on-site power model) by which EnergyPlus simu-

lates the building behavior.

The main purpose of this experiment is to learn the thermal dynamics of buildings

when their thermal load cannot be measured. We use EnergyPlus to represent the system

response, and use the data collected from EnergyPlus simulation (the building state and

the control input values) to learn and to evaluate the proposed model learning framework.

We also use the weather data used by EnergyPlus to learn a time-series model in order to

forecast the uncontrolled input. At each time step k, we collect the system state (the zone

air temperatures) and the control input (the applied heating/cooling rate from the HVAC

unit). The collected data are then used to learn/update the model online as described early.

Moreover, we compare the model prediction against the system response (i.e., zone air tem-

peratures for the next time step k+1) in order to evaluate the model learning performance.

A general block diagram of the experiment setup is shown in Figure 3.4.

The proposed framework has been implemented using MATLAB® and statistics and

machine Learning Toolbox Release 2016a [59]. Gaussian processes models are learned

using quasi-Newton optimization algorithm in order to optimize the model hyperparame-

ters. The following subsections discuss the experiment results for a two-zones data center

building and a five-zones office building.

3.4.1 Two-Zones Data Center Building

In this experiment, we use a dataset of a two-zones data center building to learn and to

evaluate the building thermal model using the proposed SHS modeling framework. This

dataset is a synthetic data generated by EnergypPlus and used to evaluate buildings mod-

eling in [103]. The data center building consists of two zones: The west zone and the east

zone as shown in Figure 3.5. The dataset contains hourly data for one-year simulation.

Each data point consists of zone air temperature, ambient temperature, thermal load heat-
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Figure 3.4: Block diagram of the experiment setup

ing rate from IT equipment, lights, and electrical equipment, and HVAC unit cooling rate.

The heat rate from the building thermal load depends on the building activities (e.g., how

utilized or idle is the IT equipment). Many models in the literature assume that the thermal

load can be measured and therefore can be used as a model input (e.g., [103]), however,

this is very expensive in real data centers. Therefore, we consider the thermal load as a

latent discrete state of the system and we use our proposed approach to estimate it from the

measurable thermal data (i.e., zone temperature and HVAC unit cooling rate).

To formalize the model, we define the SHS model as follows: The continuous state

(x ∈ R2) represents the air temperature for both zones, the discrete state q represents the

thermal load level, the uncontrolled input (v ∈ R) represents the ambient temperature, and

the control input (u ∈ R) represents the HVAC cooling rate. Therefore, the predictive
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Figure 3.5: Two-zone data center building

distribution of the zone air temperature can be represented as

xk+1 ∼ fqk(xk,uk,vk) : qk ∈Q

In the offline phase of the model learning approach, we used the first four weeks of data

(i.e., 672 data points) to initialize the model and to learn its discrete states using the K-

means clustering algorithm. Data clustering starts by extracting the time-domain features

from the data. In this experiment, the features are the average cooling rate (i.e., u(k))

and the zone air temperature difference (i.e., ∆x = xk − xk−1)(note, the values of these

features are normalized in order to unify their scale). Then, the number of discrete states is

estimated using the Silhouette analysis method. The calculated average Silhouette scores of

this experiment are shown in Table 3.1. Based on this analysis, the number of the discrete

states is three ( i.e., m = 3). Since the discrete state represents the thermal load level, we

identified four discrete states of the thermal loads which are corresponding to low, medium

and high heat gained from the thermal loads. Figure 3.6 depicts the three clusters of the

training data for each zone. Finally, we segment the data into three datasets and use them

to learn three distinct GP models for each zone.

As explained earlier, the ambient temperature is considered as an uncontrolled input,

thus a time-series GP model is used to forecast its value for the next hour. We also update
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Table 3.1: The average Silhouette scores for different number of clusters

m Average Silhouette Score
West Zone East Zone

2 0.70 0.55
3 0.71 0.65
4 0.62 0.60
5 0.65 0.65

Figure 3.6: Clustering of the training data using K-means algorithm
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the forecast model every hour when we receive a new measurement. Figure 3.7 shows the

forecasting results of the ambient temperature for three days.
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Figure 3.7: Prediction of ambient temperature using a time-series GP model

In the online phase, we predict the zone temperature for the next hour using the learned

SHS model and the predicted ambient temperature. Further, we update the training datasets

every hour when we receive new data point using the moving window method with a size

of one week data (i.e., 168 points). The updated datasets are then used to relearn the cor-

responding models. We run the prediction/learning steps iteratively for almost 11 months

and use the results to evaluate the proposed SHS model learning approach. The results

for the first three days of the discrete mode estimation (i.e., thermal load level) and the

west zone temperature prediction are shown in Figure 3.8 and Figure 3.9; respectively. The

depicted results present the performance of the online model learning approach to predict

the continuous state accurately and to estimate the discrete state successfully. As shown

in Figure 3.9, we compare the model prediction with a full GP model. The full GP model

assumes that the thermal load can be measured and the thermal model is defined as:

xk+1 = f (xk,uk,vk, lk)

where lk is the total heat rate from the thermal load. As shown in the results, the proposed

SHS model and the full GP model have a similar performance. However, the learning of the
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full GP is computationally expensive because of the large dimension of the input data. On

the other hand, SHS model segment the data into smaller distinct models for each estimated

level of the thermal load.
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Figure 3.8: Discrete state estimation of the west zone versus the actual total the thermal
load

We evaluated the prediction performance of the continuous state using the root mean

square error (RMSE) and the mean relative square error (MRSE) error metrics, defined in

Equation (3.8). The error metrics statistics for the SHS model and the full GP model are

shown in Table 3.2. The results show that our SHS model predicted the zones temperature

with a good performance. Also, the performance of the SHS model is similar to the full GP

model which assumes that the thermal load is known and can be measured.

To evaluate the improvement of the online learning approach, we compared the RMSE

metric for the proposed onlined learned model against another offline model, which is

learned one time offline only. In this experiment, we consider the changing of the building

climate due to seasons changing as an example to represent the variability in the system.
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Figure 3.9: The predicted temperature of the west zone using: (a) the proposed SHS model
(b) the full GP model

Table 3.2: Performance metrics for the prediction of the zone air temperature, with a com-
parison between the SHS model and the full GP model

West Zone East Zone
Full GP SHS Full GP SHS

RMSE 0.05 0.06 0.07 0.06
MRSE 0.008 0.009 0.01 0.009
Max 0.6 1.03 0.6 0.8
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Figure 3.10 shows the RMSE statistics for both models calculated for each week of the

year. The results indicate that online learning allows our model to adapt to the variation in

the system with a good performance. On the other hand, the offline model fail to adapt to

these variation.

Figure 3.10: Performance metric (RMSE) of the zone air temperature prediction for both
the online and the offline learned SHS model

Evaluating Different Clustering Algorithms

There are many clustering algorithms which can be used to estimate the mode of the sys-

tem. The choice of such algorithm depends on the nature of the data and the application. In

this experiment, we studied three different clustering algorithms which are K-means, Gaus-

sian Mixture Model (GMM), and Hierarchical clustering algorithms. Figure 3.11 shows the

clustering of the training data using each algorithm. Both K-means and GMM algorithms

require the number of the clusters to be given a priori, where we used Silhouette analysis

method to estimate it. Hierarchical algorithm, on the other hand, has the advantage of deter-

mining the number of the clusters based on its stopping criteria (e.g., cluster inconsistency),

but it has many design parameters and suffers from run time complexity O(n2 log(n)) for
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large-scale data as indicated in Figure 3.12.

Figure 3.11: Clustering of the training data for the West zone using: (a) K-means algorithm,
(b) GMM algorithm, (c) Hierarchical algorithm

Figure 3.13 shows the boxplot of the heat rate caused by the thermal load (i.e., light,

occupancy and equipment) for each estimated discrete mode (i.e., cluster). Despite the

differences between these algorithms, the results show that they identify the discrete state

with distinctive levels of the thermal load. GMM estimated the thermal load levels with

the lowest accuracy (i.e., Low, High). Hierarchical algorithm has the highest accuracy (i.e.,

low, medium-low, medium-high, high) of the thermal load levels.

Mutli-step prediction within the same mode

As described earlier, multi-step prediction requires propagating the uncertainty of the

predictive distribution for each time step. In addition, the control policy of the HVAC is
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Figure 3.12: Clustering time for different data size of K-means algorithm, GMM , and
Hierarchical clustering algorithms

Figure 3.13: Average heating rate caused by west zone’s thermal load for each discrete
mode (in Watt) estimated by: (a) K-means algorithm, (b) GMM algorithm, (c) Hierarchical
algorithm
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Table 3.3: Performance metrics for multi-step prediction of both SHS model and unimodal
GP model

SHS model Unimodal GP
West East West East

RMSE 0.23 0.3 0.56 0.3
MRSE 0.009 0.013 0.023 0.013
LD 51 6 27 257

required to predict the control sequence of the HVAC unit (i.e., cooling rate). To do so, we

used GP to learn the control policy of the HVAC as a function of the hybrid system state

(i.e., zone air temperature and discrete mode) and the ambient temperature, i.e.,:

uk+1 ∼ f (sk,vk) : sk = (qk,xk)

Furthermore, we use the RMSE and MRSE metrics as a performance measure in order

to evaluate the predicted mean. We also use another performance metric known as log

predictive density (LD) to evaluate the prediction performance of the predicted mean and

the predicted variance as well [46]. LD is defined as:

LD =
1
2

log(2π)+
1

2N

N

∑
i=1

log(σ2
i )+

e2
i

σ2
i

where σi is the prediction variance in ith step and ei is the error between the system output

and the predicted mean. Figure 3.14 shows the multi-step prediction of the zone air temper-

ature for both west and east zones using the proposed SHS model. We also implemented

the multi-step using a typical single GP model which does not estimate the discrete mode

of the buildings (i.e., thermal load level). Figure 3.15 shows the multi-step prediction of

the zone air temperature for both west and east zones using a typical unimodal GP model.

Table 3.3 shows the performance metrics statistics for the multi-step prediction within the

same mode (i.e., [1 10]) for both the SHS and the unimodal GP.

The performance metric shows that, the SHS model provide more accurate prediction
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Figure 3.14: Multi-step prediction of zone air temperature for both zones using the pro-
posed SHS model

than the unimodal GP as far as the system does not change its discrete mode. Moreover, the

variance of the unimodal GP model is falsely optimistic. The multi-step prediction, shown

in this section, is limited to the continuous state in the same discrete mode. In the next

chapter, we present a reachability analysis approach of SHS, which provides a multi-step

prediction for both the continuous and the discrete states.

3.4.2 Five-Zones Office Building

In this experiment, we evaluate the scalability of the framework using a five-zones

office building dataset. The dataset is a synthetic dataset generated by EnergyPlus for a

single story office building. The office building is a rectangular building with five zones. It

has four windows in each facade, and there are two interior glazed doors between the west

and the core zone, and between the east and the core zone, as shown in Figure 3.16.

The main thermal sources for all the five zones are the HVAC unit heating and cooling
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Figure 3.15: Multi-step prediction of zone air temperature for both zones using a typical
unimodal GP model

Figure 3.16: Five-zones office building layout
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supply air, the office lights and equipment, and the office occupancy. The dataset mea-

sures the building thermal behavior hourly for one year. The measurements consist of the

ambient temperature, zone air temperatures, cooling/heating rate from the HVAC unit, and

heating rate from the thermal load (lights, occupancy, and office equipment) aggregated

and averaged for every hour.

The thermal model of the building is represented by the following SHS model: The con-

tinuous state (x ∈ R5) represents the zone air temperatures. The discrete state q represents

the latent thermal load. The uncontrolled input (v ∈R) represents the ambient temperature.

Lastly, the control input (u ∈ R) represents the HVAC heating/cooling rate. Therefore, the

predictive distribution of the zone air temperatures is given by

xk+1 ∼ fqk(xk,uk,vk) : qk ∈Q

Like the two-zones building, we also use the first four weeks of data (i.e., 672 data

points) to initialize the model and learn its discrete space (i.e., m) and use the heating/-

cooling rate (i.e., u(k)) and the zone air temperature difference (i.e., ∆x = xk− xk−1) as

time-domain features for the K-mean clustering algorithm. We use the extracted feature to

cluster the training data and to identify the discrete states based on the Silhouette analysis.

The estimated number of the discrete states of the south, the east, the west and the core

zones is two and for the north zone is three. Figure 3.17 shows the clustering of the train-

ing dataset for the south and the north zones and Figure 3.18 shows the clustering results

of the west, the core, and the east zones.

In the online phase, we use the learned model to predict the zone air temperatures

for the next hour. Also, we update the training data and its corresponding models every

hour when we receive new data points. We run the prediction/learning steps iteratively

for the rest of the data (about 11 months). The results for the discrete mode estimation

(i.e., thermal load level) and zone air temperature prediction of the north zone are shown in
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Figure 3.17: K-means clustering of the South and the North zones

Figure 3.18: K-means clustering of the (a) West zone , (b) East zone, and (c) Core zone.
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Figure 3.19 and Figure 3.20 respectively. Typically, office environments have two modes:

busy and idle, because people tend to go to their offices during the business hours and

then the building becomes almost idle during the nights and holidays. The model learning

approach estimated this office behavior successfully as shown in the results.
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Figure 3.19: North zone discrete state estimation vs the actual total thermal load

To evaluate the prediction performance, we use the root mean square error (RMSE)

and the mean relative square error (MRSE) error metrics defined in Equation (3.8). The

prediction error evaluation statistics are shown in Table 3.4. These results show that our

SHS model predicted the zone air temperatures with a good performance where the average

prediction error is less than or equal 6%. Further, the proposed model shows a similar

performance to the full GP model which assumes that the thermal load is known and can

be measured.
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Figure 3.20: The predicted zone air temperature of the North zone

Table 3.4: Prediction error statistics per zone

South Zone East Zone North Zone West Zone Core Zone
Full GP SHS Full GP SHS Full GP SHS Full GP SHS Full GP SHS

RMSE 0.32 0.28 0.25 0.36 0.28 0.29 0.28 0.27 0.22 0.11
MRSE 0.11 0.05 0.08 0.06 0.10 0.05 0.1 0.05 0.6 0.02
Max 3.5 6.3 5.5 10.1 12.1 4.5 6.7 4.5 2.5 3.2

3.4.3 Efficiency and Scalability of Online Learning

Despite the attractive features and properties of GPs, the running time becomes a major

factor in the GP performance when the dimension of the training data is large. Learning a

GP model requires the inversion of the n× n covariance matrix where n is the size of the

data. The matrix inversion has a complexity of O(n3). Therefore, GP learning becomes

more computationally expensive when the dimension of the model (i.e., number of regres-

sors) and/or the training dataset increase. To address this limitation, a typical solution is

to divide or distribute the computation. We mitigate this limitation by approximating the

thermal load as a discrete state. Therefore, we divide the training data to learn a distinct

GP model independently for each mode. Further, in the context of buildings modeling,

the model dimension can be decreased by using the adjacent zones only in the regressors

regardless the total number of zones in the buildings, (i.e., xi
k+1 = fqk(x̄

i
k,uk,vk) : qk ∈Q
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where x̄i
k is the zone air temperature of the adjacent zones of zone i). This approximation

is acceptable because the zone air temperature is conditionally independent for other zones

given the adjacent zones air temperature.

To evaluate the model scalability, we used EnergyPlus to generate data for five different

buildings with a different number of zones. For each building, we use the vector of zone

air temperatures as the continuous state variable, therefore, the model dimension increases

as the number of zone increases. We use a fixed training data size for all the buildings to

learn a GP model of the thermal dynamics. Figure 3.21 shows the variation of the learning

time of the GP model versus the number of zones in the building.

We also evaluated the performance and the efficiency of the model learning with respect

to the training data size. To do so, we learn both the SHS and the full GP model for the north

zone, in the five-zones building, online every hour for one week using different dataset

sizes. Figure 3.22 compares the model learning time and the prediction error between the

full GP model and the proposed SHS model. The results show that both models have a

similar prediction performance, however, the proposed SHS model is faster than the full

GP model. The SHS is faster because the training data are segmented into two smaller

dataset for each level of the thermal load and then used to learn two distinct GP models.

This segmentation distributes the computation of the GPs in the SHS model. In contrary,

the full GP uses a single GP with all data at once. Further, the SHS model approximates

the thermal load as a discrete state instead of an input which reduce the model dimension.

Despite these approximations, the SHS prediction performance is almost similar to the full

GP performance.

3.5 Conclusions

In this chapter, we propose a nonparametric SHS modeling framework with a clustering-

based online learning approach. The proposed model can be used to build thermal model

for buildings when the thermal load is latent (i.e., the thermal load can not be measured).
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Figure 3.21: Average learning time of one GP model for different buildings with different
number of zones

We evaluate the performance of our model by learning thermal models for buildings. On-

line learning is useful to adapt our model to time-variability behavior and to improve the

model efficiency because the training data in the offline phase is not necessarily complete.

Despite these advantages, online learning dictates real time constraints. Experimental re-

sults demonstrate the efficiency of the proposed model learning approach. The learning

process runs online with an adequate computation time. The average learning time for one

GP model is 140 ms and 368 ms for the two-zones building and the five-zones building;

respectively. Further, the average prediction time is 1 ms for both buildings.
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Figure 3.22: Evaluating model learning efficiency and performance of the North zone in
the five-zones building using different training dataset sizes, with a comparison between the
full GP model and the SHS model. (a) Average learning time (b) Prediction error statistics
using RMSE
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Chapter 4

Reachability Analysis of Stochastic Hybrid Systems

Robust and efficient modeling and reachability analysis of stochastic hybrid systems

for control and decision is very demanding and challenging task. Reachability analysis

is a typical problem in SHS to verify system safety and stability. Typically, reachability

analysis is based on predicting the reachable states for a finite time horizon. Prediction of

the system behavior of SHS is a difficult task because SHS have coupled continuous and

discrete dynamics with uncertain behaviors. In this chapter, we present our novel method-

ology for reachability analysis of SHS using a data-driven approach based on mixtures of

Gaussian processes (MGP). The proposed method uses the observed data to learn/update

the SHS model in an online fashion. Consequently, the updated model is used to approxi-

mate the reachable states for a finite horizon by a mixture of Gaussian processes. Moreover,

we demonstrate the proposed approach using prediction of the thermal behavior of smart

buildings. The simulation results show that our model can adapt to system uncertainty and

variability and predict its reachable states efficiently.

In contrast to the previous chapter, we learn nonparametric SHS based on coupled Gaus-

sian processes and periodic Markov chains. These coupled models are used to capture

the coupled continuous and discrete dynamics of SHS. In particular, Gaussian processes

capture the stochastic nonlinear continuous dynamics for different discrete states and the

periodic Markov chain captures the periodic transitions of the discrete states. Further, we

solve the reachability analysis problem to estimate the reachable states for both the discrete

and the continuous states instead of multi-step prediction of SHS within the same discrete

mode.

This chapter is organized as follows: Section 4.1 formalizes the proposed nonparamet-

ric SHS. Section 4.2 discusses the model learning and the reachability analysis problem
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of SHS. Section 4.3 illustrates the proposed data-driven online learning and reachability

analysis approach to approximate the reachable states for a finite horizon using an MGP.

Section 4.4 illustrates the implementation and the evaluation of the proposed method in

smart buildings application. Finally, Section 4.5 shows a use case of the reachability anal-

ysis problem of SHS when the discrete dynamics is deterministic and known.

4.1 Nonparametric Stochastic Hybrid Systems

Let’s denote Q the set of discrete states and RD the continuous state space. The system

hybrid state space is defined as S = Q×RD. The continuous dynamics evolves accord-

ing to a stochastic process modeled by a GP which depends on the current discrete mode

(q ∈Q). The discrete state also evolves based on a stochastic process δ : Q×Q→ [0,1]

represented by a periodic Markov chain (MC). Periodic MCs represent periodic system

behavior (e.g., based on hour-of-day, day-of-week, or seasonal effects in buildings appli-

cations). We consider systems with two inputs: Control inputs and external uncontrolled

inputs (disturbances) from the environment. The control inputs are typically determined by

a control policy (π(S ) : S →U ) which maps the hybrid state space (S ) into the control

input space (U ). The external inputs (v ∈ V ) affect the system dynamics and are modeled

as a time-series disturbance model (E : N→ V ). The SHS model is formalized as follows:

Definition 3. (Nonparametric SHS). A nonparametric SHS model is defined as a tuple

H = (Q,X , Init,U ,V ,A,δ ):

• Q := {q1,q2, · · · ,qm}, for some m ∈ N, represents the discrete state space.

• X is a set of continuous variables in the Euclidean space RD.

• Init: B(S )→ [0,1] is an initial probability measure on the Borel space B(S )

where S := Q×RD.

• U ⊂ RE , for some E ∈ N, represents the control input space.
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• V ⊂ RF , for some F ∈ N, represents the external uncontrolled input space.

• A assigns to each discrete state q ∈Q a function (xk+1 = fq(xk,uk,vk)) modeled by

a GP which represents the evolution of the continuous state given the predecessor

continuous state xk ∈RD, a control input uk ∈U and an external uncontrolled input

vk ∈ V .

• δ is a stochastic process of the discrete state {qk : k ≥ 0,qk ∈Q} represented by a

periodic MC such that p(qk|qk−1,qk−2, · · ·q0) = p(qk = i|qk−1 = j) = pi j(k),∀i, j ∈

Q.

Model Execution

For a finite time horizon [0,N], a system trajectory is denoted by {s(k)= (q(k),x(k)),k∈

[0,N]} which is an execution of H , with a control policy π(S ) and a time-series dis-

turbance model E(k). A trajectory can be easily obtained by simulating the model (i.e.,

calculate the control input, forecast the external input, and evaluate the continuous/discrete

states) for the required horizon. A discrete-time execution algorithm of H is shown in

Algorithm 1.

Algorithm 2 Discrete-time SHS execution algorithm

State Initialization: s0 = (q0,x0) ∈ Init
k← 0
while k < N do

. Evaluate the control input uk:
uk← π(sk)
. Forecast the external input vk:
vk← Ek
. Update the discrete mode qk+1:
qk+1← δ (qk)
. Update the continuous state xk+1:
xk+1← fqk+1(xk,uk,vk)∼ G Pqk+1

k← k +1
end while
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4.2 Problem Formulation

Online learning and reachability analysis require updating the system model H and

predicting the system states iteratively and efficiently after receiving new measurements as

shown in Figure 4.1.

Figure 4.1: Online learning and reachability analysis of SHS

Learning the SHS model H requires identifying the discrete dynamics (i.e., the discrete

state space Q := {q1,q2, · · · ,qm} and the discrete transition function δ ), and the continu-

ous dynamics (i.e., G Pq(.) for all q ∈Q) from the observed data (D) collected from the

physical system and the environment. At each time step k, the observed data include mea-

surements of the continuous state xk, the control inputs uk, and the external disturbances

vk. Thus, the training dataset is defined as:

D := {(x̂k,yk) : k = Ts, · · · ,Te}

where yk is the successor continuous state (i.e., yk = xk+1), x̂k is the tuple (xk,uk,vk), and

[Ts,Te] is the time period at which the data are collected. In general, learning H using D is

a challenging task because the sensory data do not necessary include explicit measurements
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of the discrete state (e.g., thermal load in smart buildings applications). Moreover, the

model must capture the uncertainty and the variability of the system and the environmental

disturbances.

Reachability analysis aims at predicting the probabilities of the reachable states for a

finite time horizon given an initial state s(0). This multi-step prediction is useful in many

applications to evaluate the design (e.g., control policy) and/or to develop advanced control

methodology. For instance, prediction the zone air temperature in buildings is important to

ensure the user comfort for a given control policy. Therefore, our objective is to calculate

P(s(k)|s(0)),∀k ∈ [1,T ] for the finite receding horizon [1,T ], given a SHS model H , a

control policy π(S ) and a time-series disturbance model E(k). Prediction of reachable

states can be performed as an iterative process since s(k) depends on s(k− 1). However,

this is a challenging task because: (1) Predicting the continuous state x(k) distribution

requires prediction at an uncertain input since it depends on the distribution of x(k− 1),

and also, the continuous state x(k) evolves differently for each discrete state q(k); (2) the

discrete mode q(k) is a discrete random distribution given the probability distribution of

q(k−1); and (3) the system trajectory depends on the switching times between the discrete

states.

4.3 Online Learning and Reachability Analysis

To overcome these challenges, we propose a novel approach, which consists of three

steps: (1) Collect data from the system and update the training data; (2) learn both the

system model H and the time-series disturbance model E(k); and (3) predict the reachable

hybrid states of the system for a receding finite horizon. These steps are repeated iteratively

in an online fashion as depicted in Figure 4.2.

Initially, we collect training dataset (D) which consists of measurements of the contin-

uous state, the control input, and the external disturbance. This dataset is used to initialize

the system model. As new measurements are collected, we update the training dataset us-
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Figure 4.2: Overview of the proposed approach
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ing a moving window technique based on first-in-first-out (FIFO) policy. The FIFO policy

maintains a fixed size of the training dataset which is then used to learn/update the system

model in an online fashion as described in the next subsections.

4.3.1 Model Learning

In the model learning steps, we first identify the discrete modes of the SHS model using

a clustering algorithm. Then, we segment and label the training data based on the identified

modes. This allows us to learn the continuous dynamics for each discrete state using a

distinct GP model. Moreover, we use the labeled data to learn the discrete dynamics using

a periodic MC model. In comparison with the model learning algorithm in Chapter 3,

we additionally learn the discrete dynamics using a periodic MC to facilitate multi-step

prediction of the hybrid discrete/continuous states. In this section, we describe learning

the discrete dynamics step only, the remaining learning steps (i.e., feature extraction, data

clustering, data segmentation and learning GP models) are illustrated in Section 3.3.

Learning Discrete Dynamics

We illustrate the learning method of the discrete dynamics (i.e., δ (.)), which represents

the stochastic transitions between discrete modes. We represent δ (.) using a periodic MC

and we consider SHS whose discrete state transitions are independent of the control sig-

nals and the continuous state. A typical MC has a stationary matrix that does not capture

any periodic or time-dependent behaviors explicitly. However, the discrete dynamics of

SHS models of buildings exhibit periodic behavior (e.g., occupancy patterns depend on the

time of the day). Therefore, we represent the discrete dynamics using a periodic MC with

non-stationary transition probabilities. The transition matrix can be used to calculate the

probability of the discrete modes as follows:

p(qk+1) = δ (qk) = p(qk)Ah(k)
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where h(k) : k→{1,2, · · · ,H}maps the time-step k to the time of the day (e.g., hour of the

day {1,2, · · · ,24}), and Ah(k) is its associated transition matrix. A graphical representation

of the periodic MC with 24 transition matrices (i.e., H = 24) and two states is depicted in

Figure 4.3.

Figure 4.3: State-transitions diagram of a 2-state periodic MC model

We learn the periodic MC by identifying the parameters of the transition matrices (i.e.,

transition probabilities). We use the sequence of labels of the training dataset Dq from the

previous step (clustering):

Dq := {qk : qk = argmin
q′∈Q

‖ g(x̂k)− cq′ ‖2,

∀(x̂,y)i ∈D ,k = {0,1, · · · ,M}}

where cq′ is the cluster centroid of the discrete mode q′, g(x̂) is the feature vector of the

data point x̂ and M is the size of the training dataset. Dq is used to learn/update the model

parameters (i.e., the transition probabilities) for each transition matrix Ai, i ∈ {1,2, · · ·H}.

Each transition matrix Ai is identified independently by counting all the distinct sequences

(qk,qk+1) ∈Dq such that h(k) = i. So, its transition probabilities can be computed by:

aab =
total number of q(a)q(b) occurrence

total number of q(a) occurrence
(4.1)
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4.3.2 Mixtures of Gaussian Processes for Reachability Analysis

We represent the reachable states of H using mixtures of Gaussian processes (MGP) [97].

An MGP consists of a latent discrete variable, typically called gating network, and a set of

GP functions, called the experts. The state of the discrete variable specifies the GP function

used to calculate the system output at a given input. The MGP model is expressed as:

P(y|x) =
Z

∑
i=1

P(z = i|x)G P i(mi(x),ki(x,x)) (4.2)

where y is the output, x is the input, z is the discrete latent variable with Z states and

G P i is the GP function corresponding to the discrete state z = i. Our goal is to predict

the probability of the continuous state x(k + 1) given the probability of the hybrid state

s(k) = (x(k),q(k)). Thus, the one-step state prediction of SHS can be defined as:

P(x(k+1)|s(k)) =
m

∑
i=1

P(q(k+1) = i|q(k)) fi(x̂(k)) (4.3)

where fi(x̂(k))∼G P i(mi(x̂),ki(x̂, x̂)) with x̂ defined as the tuple (x,u,v) and P(q(k+1) =

i|q(k)) ∼ δ (q(k)) is the probability distribution of the discrete state at time-step k+ 1. In

order to predict the probability distribution of s(k),∀k ∈ [1,T ] for the finite-horizon T , we

can apply (4.3) iteratively. However, this equation depends on p(x(k)) which is represented

by a Gaussian mixture model from the previous iteration (i.e., p(x(k)|s(k−1))). Formally,

let’s define p(x(k)) as:

p(x(k)) =
C

∑
j=1

w jN (µ j,Σ j) (4.4)

where C is the number of Gaussian distribution components in the mixture, wi is the weight

of ith Gaussian component with ∑
C
i=1 wi = 1, and µi, and Σi are the mean and the vari-

ance of ith Gaussian component; respectively. Calculating P(x(k+1)|s(k)) iteratively from

Equation (4.3) and (4.4) is analytically intractable because the input of the MGP model

in (4.3) is uncertain (represented by a mixture of Gaussian probability distributions as il-
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lustrated in Equation (4.4)). To overcome this limitation, we approximate the predictive

distribution by propagating every Gaussian component in (4.4) independently as illustrated

in Equation (2.7). Hence, the predictive distribution can be obtained as:

P(x(k+1)) =
Q

∑
i=1

C

∑
j=1

w jP(q(k+1) = i|q j(k)) f̃i(x j(k),u j(k),v(k)) (4.5)

where x j is the jth Gaussian component of p(x(k)) with weight w j, mean µ j and variance

Σ j, q j(k) is the discrete mode of the jth Gaussian component and f̃ (.) is the approximation

of GP posterior fi defined in Equation (2.7). Algorithm 3 illustrates the prediction of the

reachable states of SHS iteratively based on Equation (4.5).

Algorithm 3 Discrete-time SHS state prediction

Input: s(0), N
Output: p(s(k)) for k ∈ [1,N]

Load GP function fq(0) ∼ G Pq(0)
k = 0
while k < N do

. Forecast the external input at time k
v(k)← E(k)
for each sc(k) ∈ s(k) do

for each q ∈Q do
. Calculate the probability of the discrete state
p(qc(k+1) = q|qc(k))← δ (qc(k))
. Calculate the new weight
wc(k+1)← p(q(k+1) = qc(k+1)|qc(k))×wc(k)
. Ignore component with very small probability
if wc(k+1) > δw then

. Calculate the control input
uc(k)← π(xc(k),qc(k+1))
. Predict the continuous state
xc(k+1)← f̃qc(k+1)(xc(k),uc(k),v(k))
sc(k+1)← [xc(k+1), wc(k+1), qc(k+1)]
add sc(k+1) to s(k+1)

end if
end for

end for
end while

The prediction algorithm approximates the probability distribution of the discrete state

82



by ignoring the discrete transitions which have probabilities less than δw. Moreover, it

approximates the prediction of the continuous state by linearizing the posterior GP mean

function. The accuracy of the prediction algorithm can be increased by tuning the threshold

δw and/or by approximating the GP posterior using the exact moments [27]. The prediction

algorithm is efficient and can run in an online fashion. The most expensive part is com-

puting the inverse covariance matrix which requires O(n3) time where n is the size of the

data. Many studies have been conducted to improve GP complexity using different approx-

imation algorithms. For instance, sparse Gaussian processes are developed to approximate

the inverse of the covariance matrix K with a low rank matrix approximation of dimension

m×m, (where m << n) [81].

4.4 Evaluation

In this section, we demonstrate the efficiency of the proposed method on multi-zones

buildings. We have implemented the approach using MATLAB® and the Statistics and

Machine Learning Toolbox Release 2017a [60]. We evaluate the reachability analysis al-

gorithm for: (1) A two-zones data center building and (2) a five-zones office building. We

represent the physical behaviors of the system using EnergyPlus software [22]. Energy-

Plus is an open-source cross-platform building energy simulator engine funded by the U.S.

Department of Energys (DOE), and Building Technologies Office (BTO), and managed

by the National Renewable Energy Laboratory (NREL). EnergyPlus is used by engineers,

architects, and researchers for high fidelity simulation of buildings. EnergyPlus requires

two inputs: (1) The ambient temperature and the environment data and (2) The building

description. The building description defines its structure and layout, the construction ma-

terials, the thermal zones with their dimensions and area, the HVAC system, the control

strategies and more. It also defines the building thermal loads with their schedules such as

occupancy, lights, and electrical equipment. These detailed descriptions are used to con-

struct several models (e.g., airflow network model, pollution model, on-site power model)
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by which EnergyPlus simulates the building behavior. Although such models can be used

for high-fidelity simulation, multi-step prediction is only possible using Monte Carlo tech-

niques.

In the following experiments, we initially generate data with a time-step of 1-hour and

set the window size of the training data to four Weeks (i.e., M = 672). In addition to

the initial 1-hour sampling period, we consider evaluating the presented approach using

different sampling period in the five-zones building case study. The experiment goal is to

predict the system behavior for the next day (i.e., the reachability receding horizon N =

24). Initially, we train the model using the first 4 weeks of EnergyPlus simulation data,

then apply the proposed online approach to predict the system behavior for the next day.

Afterward, we collect new data of the system response for the predicted day and update the

training dataset to re-learn/update the model. We repeat this periodic 1-day predict/learn

steps for rest of the simulated year. The following subsections discuss the experiment

results for the two-zones data center building and the five-zones office building.

4.4.1 Two-Zones Data Center Building

The data center building consists of two zones: The West zone and the East-zone. The

data center building was simulated for one-year using EnergyPlus to generate its dataset

with one-hour sampling rate. Each data point consists of zone air temperature, ambient

temperature, thermal load heating rate from IT equipment, lights, and electrical equipment,

and HVAC unit cooling rate. The heat rate from the building thermal load depends on the

building activities (e.g., how utilized or idle is the IT equipment). We consider the thermal

load as a latent discrete state of the system and we use our proposed approach to estimate

it from the measurable thermal data (i.e., zone temperature and HVAC unit cooling rate).

In the model learning step, we identify the model discrete states using the K-means

clustering algorithm. Data clustering starts by extracting the time-domain features from the

data. In this experiment, the used features are the average cooling rate (i.e., u(k)) and the
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zone air temperature difference (i.e., ∆x = xk− xk−1)(note, the values of these features are

normalized in order to unify their scale). Then, the number of the discrete states is estimated

using the Silhouette analysis method. Based on this analysis, we identified the number of

the discrete states as three for the West zone and five for the East-zone. Furthermore, we

clustered the data to associate each point with its corresponding discrete mode and used it

to learn the periodic Markov chain model for the discrete dynamic. Finally, we segment

the data for each discrete mode and use them to learn distinct GP models for mode.

In the reachability analysis step, we use the proposed algorithm to generate a statistical

distribution of the reachable state. The prediction distribution for both the discrete mode

(i.e., estimated thermal load level), and the continuous state (i.e., zone air temperature) of

three days are shown in Figure 4.4 and Figure 4.5 for the West-zone and the East-zone;

respectively.

We compare the prediction distribution of the SHS model against a unimodal GP model.

The unimodal GP model does not represent the system modes (i.e., thermal load level) and

can be defined as:

xk+1 = f (xk,uk,vk)

where xk is the zone air temperature, uk is the heating/cooling rate from the HVAC unit, and

vk is the ambient temperature. The reachability analysis of the unimodal model is simpler

than the SHS model. In this case, the reachable state can be calculated and approximated

by propagating the prediction at each time step as illustrated in (2.7). Figure 4.6 and 4.7

show the prediction distribution of the zone air temperature using a single GP for both the

West zone and the East zone, respectively.

We evaluated the performance of the reachability analysis using the root mean square
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Figure 4.4: Prediction distribution of the hybrid states for the West-zone using the proposed
approach
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Figure 4.5: Prediction distribution of the hybrid states for the East-zone using the proposed
approach
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Figure 4.6: Prediction distribution of the West-zone air temperature using a unimodal single
GP model

Figure 4.7: Prediction distribution of the East-zone air temperature using a unimodal single
GP model
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Table 4.1: Performance statistics of the reachability analysis with a comparison against a
unimodal GP model

West Zone East Zone
SHS GP SHS GP

RMSE 0.2810 0.7444 0.2034 0.4034
MRSE 0.0123 0.0322 0.0092 0.0180

error (RMSE) and the mean relative square error (MRSE) error metrics, defined as:

RMSE =

√√√√ 1
N

N

∑
k=1

e(k)2

MRSE =

√
∑

N
k=1 e(k)2

∑
N
k=1 y(k)2

(4.6)

where y(k) is the system output and e(k) = ∑c wc(k)(ŷc(k)− y(k)) is the weighted predic-

tion error of the ith time step, evaluated for each Gaussian components using the component

mean ŷc and the component weight wc . The performance statistics for the SHS model com-

pared against the unimodal GP model are shown in Table 4.1. The results show that the

proposed reachability analysis approach has better performance and provides more con-

fidence distribution of the system state because it considers explicitly the effects of the

thermal load level and its periodic behaviors.

4.4.2 Five-Zones Office Building

In this experiment, we generate a dataset for a single-story office building with five

zones. We simulate the office building based on a realistic occupant schedule for office

spaces to evaluate the ability of our model to capture the stochastic discrete dynamics. The

occupancy schedule is generated using the occupancy simulator developed at Lawrence

Berkeley National Laboratory [30] [1]. This stochastic occupancy schedule is then used

by EnergyPlus to simulate the thermal behavior of the office building and generate data for

training. The major thermal sources for all the five zones are the HVAC unit heating and
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cooling supply air, the office lights and equipment, and the office occupancy. The dataset

measures the building thermal behavior hourly for one year. The measurements consist of

the ambient temperature, zone air temperatures, cooling/heating rate from the HVAC unit,

and heating rate from the thermal load (lights, occupancy, and office equipment) aggregated

and averaged for every hour.

We set the window size of the training data to four Weeks (i.e., 672 datapoint). The goal

is to predict the system behavior for the next day (i.e., horizon T = 24). Initially, we train

the model using the first four weeks of the simulation data, then we apply the proposed

online approach to predict the system behavior for the next day. We collect new data for

the predicted day and update the training dataset to re-learn/update the model and we repeat

these predict/learn steps iteratively for the whole experiment.

For learning the SHS model, we identify the model discrete states using the K-mean

clustering algorithm. Data clustering starts by extracting the time-domain features which

are the average heating/cooling rate (i.e., u(k)) and the zone air temperature difference (i.e.,

∆x= xk−xk−1). The number of the discrete states is estimated using the Silhouette analysis

method such that, the number of the discrete states for the Core-zone, South-zone, and

East-zone is three, for the North-zone is two, and for the West-zone is five. Furthermore,

we clustered the data to associate each point with its corresponding discrete mode and used

it to learn the periodic MC for the discrete dynamics. Finally, we segment the data for each

discrete mode and use them to learn distinct GP models for each mode. For reachability

analysis, we use the proposed algorithm to generate a distribution of the reachable states.

The prediction distribution for both the discrete mode (i.e., estimated thermal load level)

and the continuous state (i.e., zone air temperature) of three days are shown in Figure 4.8

for the West zone.
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Figure 4.8: Prediction distribution of the hybrid states for the West-zone using the proposed
approach
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4.4.2.1 Performance

We evaluate the performance of the reachability analysis using weighted root mean

square error (RMSE) and mean relative square error (MRSE) error metrics, defined in (4.6).

Additionally, we compare the prediction of our approach against the prediction obtained

using a unimodal single GP model and a full GP model. The unimodal GP model does

not have discrete states associated with the thermal load level and it is defined by: xk+1 =

f (xk,uk,vk) where xk is the zone air temperature, uk is the heating/cooling rate from the

HVAC unit, and vk is the ambient temperature. The full GP model assumes that thermal

load is measured and it is defined by: xk+1 = f (xk,uk, lk,vk) where lk is the thermal load.

Reachability analysis using the unimodal model is a straightforward multi-step predic-

tion as illustrated in (2.7). The same approach can be used also for the full GP model,

however a time-series model should be learned to predict the thermal load for the finite-

receding horizon. In our case, we use a time-series GP such that: lk ∼ G P(m(k),K(k,k′).

A one day prediction for the West-zone using the unimodal GP and the full GP model are

shown in Figure 4.9 and Figure 4.10; respectively.

Figure 4.9: Prediction distribution of the West-zone air temperature using a unimodal GP
model

The performance statistics for the SHS model compared against the unimodal GP and

the full GP models are shown in Table 4.2. These results indicate that the proposed ap-
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Figure 4.10: Prediction distribution of the West-zone air temperature using the full GP
model

Table 4.2: Performance statistics of the reachability analysis prediction with a comparison
against the full GP and the unimodal GP models

RMSE (MRSE)
Full GP SHS Unimodal GP

Core Zone 1.10 (0.05) 0.92 (0.04) 2.28 (0.10)
South Zone 1.93 (0.09) 1.09 (0.07) 2.35 (0.10)
East Zone 4.08 (0.18) 1.17 (0.05) 3.82 (0.16)

North Zone 1.46 (0.07) 1.02 (0.04) 3.00 (0.13)
West Zone 1.95 (0.09) 1.28 (0.05) 2.15 (0.09)

proach outperforms both typical GP models since it takes into consideration the prediction

of the thermal load level and its periodic patterns. In comparison to the SHS prediction, the

unimodal GP lacks the prediction of the thermal load pattern, and therefore, the prediction

distribution averages over the thermal load levels with high uncertainty.

Further, we compare the proposed online-learned model against an offline model, which

is learned one time offline only, in order to evaluate the improvement of the online learning

approach. In this experiment, we consider changes due to seasons as an example to repre-

sent the variability in the system and the uncertainty in the occupancy schedule. Figure 4.11

shows the RMSE statistics for both models calculated for each day of the year. The results

indicate that online learning allows our model to adapt to the variation in the system with a

good performance. On the other hand, the offline model fails to adapt to these variations.
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Figure 4.11: Error metric (RMSE) of the air temperature prediction for both the online and
the offline learned SHS model, averaged over all zones

4.4.2.2 Efficiency

Despite the computation demand of machine learning algorithms, more specifically

GPs, the proposed methodology is computationally efficient and can run in an online fash-

ion with accepted performance. The most expensive part is computing the inverse covari-

ance matrix of GPs which requires O(n3) time where n is the size of the training data for

each GP model. GP learning becomes more computationally expensive when the dimen-

sion of the model and/or the training dataset increases. The computation time because of

the GP is evaluated using different experiments of the proposed approach with different

sizes of the training dataset (i.e., M). Figure 4.12 shows the variation of the model learning

and the reachability analysis average running time for five-zone and two-zone buildings

with different dataset sizes. As indicated from these results, the running time becomes

a major factor in the GP performance as we increase the training dataset size. However,

the performance of the model prediction is still adequate for the relativety small dataset
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sizes since we segment this data and distrubite the computation for each discrete mode

independently.

Figure 4.12: Average running time of the proposed framework using different sizes of the
training dataset sizes for two buildings examples

Furthermore, we evaluated the proposed methodology performance for different sam-

pling periods of 15, 30, 45, and 60 minutes. For all cases, we fixed the duration of the

window size for the training data. However, the dataset sizes increase as the sampling peri-

ods decreases. In addition, the prediction horizon is fixed as one day ahead for all sampling

periods. Figure 4.13 shows the running times of the model learning and the reachability

analysis, respectively, using different sampling periods and training dataset sizes (i.e., 1-

week and 2-weeks). The results show an exponential increase of the running time as the

sampling period is decreased. The proposed approach runs efficiently with an accepted

performance for sampling periods between 30 to 60 minutes. The RMSE, averaged over

all zones, performance metrics depicted in Figure 4.14 show that, the reachability analysis

performance increases as we increase the sample rate. This is expected since the predic-

tion time-steps increases as we decrease the sampling rate, and therefore, the prediction

uncertainty increases.
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Figure 4.13: Average running times using different sampling periods and training dataset
sizes for model learning (ML) and reachability analysis (RA)

Figure 4.14: The RMSE statistics of the reachability analysis for the five-zones office build-
ing using different sampling periods
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We conducted the above experiments in intel core i5 PC with 8 GB memory. The

results indicate that the proposed approach is applicable for smart buildings applications in

real time.

4.5 Reachability Analysis of Stochastic Hybrid Systems with Deterministic Discrete Dy-

namics

This section illustrates the implementation of the proposed reachability analysis

methodology for SHS with deterministic discrete dynamics using a multi-room heating

system that has been proposed as a benchmark for SHS in [29]. The multi-room heating

system comprises h rooms where each room has its own heater and user setting. Addition-

ally, each room is affected by its adjacent rooms and the ambient temperature. The discrete

state represents the heater mode qi = {ON,OFF} for each room and the continuous state rep-

resents the room air temperature. The continuous state xi for each room evolves according

to the following stochastic difference equation [4]:

xi(k+1) = xi(k)+bi(xa(k)− xi(k))+∑
i6= j

ai j(x j(k)− xi(k))+ ciIQi(qi(k))+ωi(k)

(4.7)

where xa(k) is the ambient temperature at time k, IQi(·) is the indicator function of set Qi =

{(q1, · · · ,qh) ∈ Q : qi = ON}, bi is non-negative constants representing the average heat

transfer rate from room i and the ambient xa, ai j is non-negative constants representing the

average heat transfer rate from room i and room j, ci is non-negative constants representing

the heat rate supplied to room i by the heater, and ωi is a Gaussian noise disturbance in room

i.

The discrete transition function represents the heater operation using a typical controller

and each room is controlled independently from the other rooms. The controller switches

the heater on if the temperature is below a certain threshold xl, and switches the heater off
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if the temperature exceeds xu. Formally, the control policy can be described by:

π(s(k)) =

 0 i f q(k) = ON & x(k)>= xu

1 i f q(k) = OFF & x(k)<= xl
(4.8)

The parameters in the multi-room heating system are hard to model for several reasons.

The parameters differ from building to building (e.g., different geometry and materials)

and they may change during the system operation either abruptly (e.g., opening window or

door) or slowly because of aging. As a result, it is very hard to identify a parametric model

of the system.

We consider the ambient temperature as the external uncontrolled input of the system

(v(k) = xa(k) ∈R), the controller as the control policy (u(k) = π(s(k)) ∈ {0,1}), the room

temperature vector as the continuous variable (x(k) ∈ Rh), and the heater state as the dis-

crete state (Q = {q1,q2, · · · ,qh}= {ON,OFF}h).

In this experiment, we implemented a system with two rooms (i.e. h= 2), and therefore,

four discrete states. For each discrete state q ∈Q, the continuous state evolves according

to
x(k+1) = x(k)+∆x(k)

∆x(k) = fq(x(k),xa(k))
(4.9)

where fq(.) ∼ G Pq is the the continuous dynamics of each mode modeled by a GP. The

control input (u(k) = π(s(k))) defines the guards for the discrete transitions. The uncon-

trolled external input is defined as v(k) = xa(k) = E(k), where E(k) is a time-series model

of the ambient temperature. We use the GP introduced in [88] to model E(k) which build

a time-series model for the difference between the building ambient and the city weather

data.

We have implemented the approach using Matlab and used the model shown in

Equation (5.7) to represent the physical system response with the following parameters:

b1 = 0.4,b2 = 0.45,a12 = a21 = 0.5,c1 = 25,c2 = 27, and ωi ∼ N (0,5). We generate
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data with a time-step of one minute and we use data for six hours to learn out model (i.e.,

M = 360). Our goal is to predict the system behavior every hour for the next one hour

(i.e., N = 60). We train the model using the first six hours simulation data, then apply the

online approach to predict the system behavior for the next hour. Next, we collect the data

of the system response for the predicted hour and re-learn the model. We repeat the peri-

odic 1-hour predict/learn steps for ten hours. To emulate changes in the system parameters,

we increase the heat transfer rate with the ambient (i.e., bi parameters) in the second hour,

such that b1 = 0.8 and b2 = 0.6. In order to evaluate the advantages of online learning

and reachability analysis, we also implement the prediction without updating the models

online. In another word, we learn the model once offline using the initial training data of

six hours only.

To evaluate the prediction accuracy, we use the following weighted mean absolute error

(WMAE) as the metric:

WMAE =
1
N ∑

k

(
1

C(k)

C(k)

∑
c=1

(|xm(k)−µc(k)|×wc(k))

)

where C(k) is the number of Gaussian components at time k, xm(k) is the real system

measurement at time k, andµc(k) and wc(k) is the mean and weight of Gaussian component

c at time k respectively.

The proposed approach can generate a statistical distribution of the reachable SHS

states. Figure 4.15 shows the prediction distribution of the discrete mode, room 1 temper-

ature, and room 2 temperature for the fourth hour of the system operation. To evaluate the

improvement, Figure 4.16 shows also the prediction distribution using the model learned

offline only. The results also indicate that the online algorithm tracks the system changes

when the supplied heat rate increased, such that the algorithm predicts the first discrete

transition around t = 15min. On the other hand, the offline approach did not adapt and

it still predicts the temperature using the higher heating rate, such that the first discrete
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transition is predicted to occur around t = 10min.

Figure 4.15: Prediction distribution of the hybrid states of the fourth hour using online
learned model

The WMAE error for both online and offline models is shown in Figure 4.17 for the

ten hours of system operation. The results show that the error is decreasing as the model

aggregates more data. The average execution time of the learning and the reachability anal-

ysis algorithms are 7.1 and 4.7 sec; respectively. Figure 4.18 illustrates the accuracy of the

proposed reachability analysis algorithm by comparing its results with sampled trajectories

generated by Monte Carlo simulation from the parametric model in Equation (5.7).
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Figure 4.16: Prediction distribution of the hybrid state of the fourth hour using offline
learned model

Figure 4.17: WMAE error of the 10-hours prediction for both the online and the offline
learned model
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Figure 4.18: Prediction distribution of the reachable states vs ground truth

4.6 Conclusions

In this chapter, we present an online data-driven approach for learning and reachability

analysis of SHS model. The novel reachability analysis approach infers a statistical dis-

tribution of the reachable state for a finite-horizon using mixtures of Gaussian processes.

Further, it runs in online fashion to adapt to time-variability behavior in the system. The

presented approach can be applied to many modern CPS with a multimodal behavior when

a parametric model is hard to obtain. As a practical example, we evaluate the efficiency

of the approach on smart buildings application. The experiment results indicate that our

approach runs efficiently in an online fashion and provides a statistical distribution of the

reachable state with a good performance and accuracy.
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Chapter 5

Decision Making and Control of Stochastic Hybrid Systems

While precise modeling and analysis techniques play a major role in improving model-

based design of CPS, the primary element which drives these systems autonomously to

their desired behaviors is the control algorithm. Hence, design control methodologies and

decision-making strategies for such systems are very important. However, developing such

control methodologies and decision-making strategies for SHS is very challenging due

to the nonlinearity and the stochasticity in the coupled continuous/discrete dynamics. In

this chapter, we illustrate the application of a control approach known as stochastic model

predictive control (SMPC) using a nonparametric SHS model. The proposed approach is

based on approximating the SMPC problem by a deterministic scenario-based MPC. The

scenario-based approximation is obtained by enumerating the uncertainty in the discrete

dynamics which yields to a deterministic nonlinear optimization problem. Gradient-based

nonlinear programming methods are then used to solve the optimization problem. We

evaluate the performance and the efficiency of the proposed approach in smart buildings

applications.

This chapter is organized as follows: Section 5.1 discusses the problem of SMPC for

SHS with its challenges. Section 5.2 presents the proposed scenario-based MPC approx-

imation of the SMPC problem, the approximated optimization problem, and its gradient

analytic evaluation. Finally, Section 5.3 presents the implementation and the evaluation of

the proposed method using buildings applications.

5.1 Stochastic Model Predictive Control of Stochastic Hybrid Systems

Stochastic model predictive control (SMPC) is based on optimizing a desired system

variable (typically, the system state) for a receding horizon subject to constraints on the
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control inputs and/or the system states. The controlled system has stochastic nonlinear dy-

namics and can be described by a stochastic model. In this chapter, we consider dynamical

systems with coupled discrete and continuous stochastic dynamics which are modeled us-

ing nonparametric SHS as defined in Section 4.1. Thus, the predictive distribution of the

continuous state trajectory (i.e., the system state which we want to control) is described

using a mixture of Gaussian processes:

p(xk+1|x̂k) = ∑
i

p(qk+1 = i|xk,qk)G P i(mi(x̂k),ki(x̂k, x̂k)

where x̂k := [xT
k uT

k vT
k ]

T is a tuple of the continuous state xk, the control input uk and the

uncontrolled input vk, and p(qk+1 = i|xk,qk) represents the probabilistic discrete transition

using a periodic Markov chain as described in the previous chapter.

The SMPC problem for SHS aims to calculate the control inputs that minimize the

expectation of a given cost function h over the predicted continuous state trajectory and

the control inputs for a receding finite horizon N. Formally, the SMPC problem can be

described as the following optimization problem:

min
u0:N−1

E[h(x1:N ,u0:N−1)]

subject to

u0:N−1 ∈U

p(xk+1|x̂k) = ∑
i

p(qk+1 = i|xk,qk)G P i(mi(x̂k),ki(x̂k, x̂k)

(5.1)

where h(.) is a cost function defined over the system state and the control inputs, and U

defines the feasible regions of the control input.

The SMPC problem defined in Equation (5.1) should be solved at every time step. The

optimized control input at the current step time only (i.e., u0) is applied to the physical

system. Then, the initial state (i.e., x0) is updated after receiving new measurements from

the physical system. Solving the above SMPC problem for SHS is very challenging be-
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cause of the stochasticity in both the continuous and the discrete dynamics in addition to

the nonlinearity of the continuous dynamics (represented by Gaussian processes). These

challenges yield to a complex nonlinear stochastic optimization problem. Thus, an approx-

imation solution is needed to mitigate these challenges. In the next section, we illustrate a

scenario-based MPC approximation to solve the SMPC problem for nonparametric SHS.

5.2 Scenario-Based Model Predictive Control of Stochastic Hybrid Systems

The key idea behind scenario-based MPC is to enumerate deterministic realizations,

known as scenarios, of the uncertainty in the system dynamics. These scenarios approxi-

mate the SMPC problem by a deterministic MPC. Thus, scenario-based MPC can be used

to optimize the control input over these scenarios while ensuring that the constraints are

satisfied for all of them. In our case, there are two sources of stochasticity in SHS. First,

the stochastic behavior exhibited in the continuous dynamics which is modeled by Gaus-

sian processes. Second, the stochastic behavior exhibited in the discrete dynamics which is

modeled by a periodic Markov chain model. We can calculate analytically the uncertainty

in the continuous state since it is represented by Gaussian processes. On the other hand, the

estimation of the discrete state cannot be calculated analytically, and therefore, we need to

enumerate the uncertainty of the discrete state.

We propose a scenario-based MPC approach for non-parametric SHS. A scenario repre-

sents a predicted hybrid state with a probability of reaching this scenario from the measured

initial state of the controlled system. These scenarios construct an optimization tree with

its root node as the current measured state of the controlled system and the tree height as

the MPC receding finite horizon N. Formally, let’s define the scenario tree as a set of nodes

T = {S0,S1, · · ·Sm} such that each node (or scenario) of the tree consists of the pre-

dicted discrete state qi, the probability of reaching this discrete state from the initial state

πi, its associated control input ui (optimization variable), the predicted uncontrolled input

vi and the predictive distribution (i.e., mean and variance) of the continuous state expressed
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using its corresponding Gaussian process G Pqi . We construct an optimization tree for the

control horizon to include the scenarios with probabilities higher than a given threshold

while ignoring scenarios with very small probabilities (i.e., below a certain threshold). The

optimization tree is constructed as shown in Algorithm 4.

Algorithm 4 Design the Scenario-Based Optimization Tree
Input: x0,q0, N,thq
Output: T
. Initialize the root node using the current system state:
S0← [x0,q0,π0 = 1,u0]
T ←T ∪{S0}
Tpar←{S0} . a temporary parent set
m← 1,k← 1
while k ≤ N do

vk← E(k) . Forecast the external input vk
. Create the child nodes for each scenario in the parent set:
for each Sp ∈Tpar do

. Calculate the discrete probabilities of each discrete state from Sp:
p(q)← δ (Sp.q,k−1)
for each q ∈Q do

. Calculate the probability of the new scenario
pinew← p(qk = q)×Sp.pi
if pinew > thq then

. Add Sm to the optimization tree:
Sm← [xm ∼ G Pq,qm = q,πm = pinew,um,vk]
T ←T ∪{Sm}
. and the next time-step parent set:
Tpar2←Tpar2∪{Sm}
m← m+1

end if
end for

end for
Tpar←Tpar2 . Update the parent set
Tpar2←{}
k← k+1

end while

The developed scenario-based MPC approximates the stochastic optimization problem

defined in Equation (5.1) by a deterministic optimization problem. For simplicity, we de-

sign the controller objective function as a quadratic function over the continuous state and
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the control inputs1. In the SHS model, the system state is expressed by a Gaussian distri-

bution (i.e., x ∼N (µx,Σx) ), hence, the estimation of quadratic objective function over

the state and the control inputs can be calculated analytically as follows:

E[h(x1:N ,u0:N−1))] =

∑
k
E[(xk− rk)

′Qx(xk− rk)+u
′
k−1Quuk−1)]

= ∑
k
(µxi− ri)

′Qx(µxi− ri)+Tr{QxΣxk}

+u′k−1Quuk−1)

(5.2)

where rk is the desired state trajectory at time step k. The SMPC defined in Equation (5.1)

for a quadratic objective function can be reformulated based on the scenario-based opti-

mization tree as:

min
u ∑

i∈T \{S0}
πi((µxi− ri)

′Qx(µxi− ri)

+Tr{QxΣxi}+u′par(i)Quupar(i))

subject to

upar(i) ∈U , ∀i ∈T \{S0}

(µxi,Σxi)∼ G Pqi(mqi(x̂i),kqi(x̂i, x̂i))

(5.3)

where par(i) indicates the index of the parent node of node i and x̂i := [x′par(i)u
′
par(i)v

′
i]
′.

Problem (5.3) is a deterministic nonlinear constrained optimization problem which can be

solved using nonlinear programming methods such as interior-point algorithms [18] [99].

Typically, nonlinear programming methods use numerical gradients calculated by

finite-difference approximation. Numerical approximations are computationally demand-

ing and are not very accurate. Alternatively, analytical expressions of the gradients can be

used, if possible, to solve the optimization problem more accurately and efficiently.

1This is an arbitrary choice but the proposed approach can accept other types of objective functions if the
gradients and statistical estimation can be obtained analytically.
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5.2.1 Gradient Calculation

The gradient of the objective function in problem (5.3) can be obtained as follows:

dE[h(.)]
du

= ∑
i∈T \{S0}

πi
dEi

du (5.4)

with Ei = (µxi− ri)
′Qx(µxi− ri)+Tr{QxΣxi}+u′par(i)Quupar(i).

Therefore, the gradient of each scenario dEi
du can be derived using the chain rule:

dEi

du
=

∂Ei

∂µxi

dµxi

du
+

∂Ei

∂Σxi

dΣxi

du
+

∂Ei

∂u
(5.5)

where
dµxi

du
=

∂µxi

∂µxpar(i)

∂µxpar(i)

∂u
+

∂µxi

∂u

dΣxi

du
=

∂Σxi

∂Σxpar(i)

∂Σxpar(i)

∂u
+

∂Σxi

∂u

(5.6)

The partial derivatives ∂Ei
∂µxi

, ∂Ei
∂Σxi

and ∂Ei
∂u depend on the choice of the objective function.

For the quadratic objective function, these derivatives can be calculated as:

∂Ei

∂µxi

= 2(µxi− ri)
′Qx,

∂Ei

∂Σxi

= Q′x,
∂Ei

∂u
= 2u′Qu

The derivatives
∂µxi

∂µxpar(i)
,

∂µxi
∂u ,

∂Σxi
∂Σxpar(i)

and
∂Σxi
∂u depend on the GP kernel and mean func-

tions2. They also depend on the approximation function used to calculate the GP predictive

distribution at uncertain inputs. We use an approximation method known as exact moment

matching to propagate the uncertainty of the continuous state for each scenario and the un-

certainty in the foretasted uncontrolled input vi. Details about prediction using the moment

matching approximation method along with its derivatives can be found in [25].

With the analytic expression of the gradient, the scenario-based MPC is solved at every

2The derivatives
∂µxpar(i)

∂u
and

∂Σxpar(i)
∂u

are known from the previous gradients calculation of the parent
scenario
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time-step to calculate the optimal control inputs for all possible scenarios efficiently. Only

the optimal control input of the root scenario (i.e., u0) is applied to the physical system.

Then, the initial scenario (i.e., S0) is updated again with the new measurement from the

physical system and a new scenario-based optimization tree is constructed.

Algorithm 5 summarizes the major steps of SMPC for SHS with scenario-based ap-

proximation and online learning.

Algorithm 5 SMPC for SHS with online learning
while TRUE do

Get measurements at time t;
Update the SHS model;
Update the forecast model E(t);
Design the Scenario-Based Optimization Tree by Algorithm 4;
Solve the optimization problem defined in 5.3;
Apply u0 ;

end while

5.3 Evaluation

In this section, we illustrate the implementation of the proposed scenario-based MPC

method to control an HVAC system in smart buildings.

5.3.1 Two-Zones Building

In this section, we consider controlling a heating system in buildings where the discrete

state represents the buildings activities level (e.g., open/close windows by occupancy). The

discrete state (the activity level) affects the heat transfer rates between the buildings zones

internally and with the ambient externally. For instance, in the high activities mode, these

heat transfer rates are increased due to the frequent building activities such as open/close

windows.
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Simulation Setup

We represent the physical system using a parametric model based on a multi-zone

heating system benchmark [29]. The multi-zone heating system comprises h rooms/zones

where each zone has its own heater and user setting. Additionally, each zone is affected

by its adjacent zones and the ambient temperature. The continuous state xi for each zone

evolves according to the following stochastic difference equation [4]:

xi(k+1) = xi(k)+bq
i (xa(k)− xi(k))+∑

i6= j
aq

i j(x j(k)− xi(k))+ ciui(k))+ω
q
i (k) (5.7)

where xa(k) is the ambient temperature at time k, bq
i is non-negative constants representing

the average heat transfer rate from zone i and the ambient in the discrete mode q, aq
i j is

non-negative constants representing the average heat transfer rate from zone i and zone j in

the discrete mode q, ui is the control input that represents the supplied heating rate to zone

i, ci is non-negative coefficient of the supplied heat to zone i and ω
q
i is a Gaussian noise

disturbance in zone i. The building model in (5.7) is used only to represent the physical

system behavior and to generate the training data.

We implement this system using MATLAB® to simulate the physical system re-

sponse with the following parameters: b1
1 = 0.0375,b2

1 = 0.06,b1
2 = 0.025,b2

2 = 0.05,a1
12 =

a1
21 = 0.0625,a2

12 = a2
21 = 0.09,c1 = 0.0163,c2 = 0.015,ω1

i ∼ N (0,0.15), and ω2
i ∼

N (0,0.25). Further, we generate 295 data samples with 1-hour time-step to learn a SHS

of the above system as follows. In this model, we consider the zone temperature vector

as the continuous state (x(k) ∈ Rh) and the building activities levels as the discrete state

Q = {q1,q2, · · ·qm} with m modes, the heat supplied rate as the control input u(k) ∈ Rh

and the ambient temperature as the external uncontrolled input (v(k) = xa(k) ∈ R). In this

experiment, we consider a building case study with two zones and two discrete states (low

and high building activities levels). We also model the discrete dynamics using a periodic

Markov chain with transition probabilities that reflect commercial buildings environments
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(i.e., the building has high probability to be in high mode between 8 am to 5 pm). The

uncontrolled external input is defined as v(k) = xa(k) = E(k), where E(k) is a time-series

model of the ambient temperature. We also use a time-series GP model to represent E(k).

The experiment goal is to optimize the control inputs for each hour using the proposed

SMPC method, in order to achieve user comfort while optimizing energy consumption.

The SMPC controller is designed with the following parameters: receding horizon N = 3,

objective weight matrices Qx =
(

100 0
0 100

)
and Qu =

(
0.01 0

0 0.01

)
, and thq = 0.01. The desired

state trajectory is to maintain both zones temperature at 16 (C) when the building in the

Low activity level and at 18.5 (C), and 19.5 (C) for zone x1 and x2; respectively when

the building in the high activity level. The bounding constraint of the control inputs is

−10≤ ui ≤ 150.

Performance Evaluation

We run the simulation for three days, collect data, and evaluate the performance of the

proposed approach (i.e., SMPC controller) by comparing against two typical MPC con-

troller strategies: Reactive-based MPC, and Scheduled-based MPC.

Reactive-based MPC optimizes the system objective function based on the current

discrete-mode only. In other words, this controller optimizes the objective function based

on the GP model of the current discrete-mode only. In this case, the MPC control problem

is a typical GP MPC problem defined as follows:

min
u0:N−1

E[h(x1:N ,u0:N−1)]

subject to

u0:N−1 ∈U

p(xk+1|x̂k) = G Pq0(mi(x̂k),ki(x̂k, x̂k)

(5.8)

Scheduled-based MPC is a common MPC control strategy where it predicts the sys-
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tem behavior based on a fixed schedule of the discrete modes (e.g., occupancy) [61]. The

discrete mode schedule is set be in high mode during the typical business hours (i.e., be-

tween 8 am to 5 pm). In this case, the MPC problem ignores the uncertainty in the discrete

dynamics and defines a typical GP MPC problem with deterministic discrete dynamics:

min
u0:N−1

E[h(x1:N ,u0:N−1)]

subject to

u0:N−1 ∈U

p(xk+1|x̂k) = G Pqh(k+1)(mi(x̂k),ki(x̂k, x̂k)

(5.9)

where qh is the scheduled discrete mode of the hour of the day h.

Simulation Results

The simulation results for the zone air temperatures and the HVAC heating/cooling

rate using the reactive-based MPC, scheduled-based MPC and the proposed scenario-based

SMPC are shown in Figure 5.1, Figure 5.2 and Figure 5.3 respectively. These results indi-

cate that the reactive-based MPC manage to maintain the temperature to the desired level

as soon as the system stays within one discrete mode. However, it takes time to react to the

systems changes when the system switches its discrete mode. The scheduled-based MPC

controls the temperature based on a predefined schedule (8 am to 5 pm) as high activity

mode regardless the current measurement of the discrete mode. On the other hand, the

proposed scenario-based SMPC controls the temperature based on the probability of the

discrete mode given the current measurement. This provides a predictive behavior which

takes into consideration the current state and the probabilities of the next time steps.

We also calculated the actual cost values for all control strategies. The total cost reflects

both the cost due to energy usage and the deviation from the desired system trajectory. The

scenario-based SMPC approach results on the lowest total cost (33782). As comparing to
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Figure 5.1: Simulation results for both zones temperatures and heater rate using reactive-
based MPC. The dotted lines represent the desired trajectories for each zone
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Figure 5.2: Simulation results for both zones temperatures and heater rate using scheduled-
based MPC. The dotted lines represent the desired trajectories for each zone
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Figure 5.3: Simulation results for both zones temperatures and heater rate using the pro-
posed SMPC. The dotted lines represent the desired trajectories for each zone
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the scheduled-based MPC and the reactive-based MPC which result on total cost: (47572)

and (45746); respectively. The proposed SMPC approach adapts to the variation in the

discrete dynamics. On the other hand, scheduled-based MPC uses a fixed schedule which

might be different than the actual behavior. This leads to degradation to the control perfor-

mance. For instance, we run a scheduled-based MPC example with a scheduled set to be

from 7 am to 4 pm. In this case, the total cost increased to 46040. The simulation results

for this example is depicted in Figure 5.4.

Figure 5.4: Simulation results for both zones temperatures using scheduled-based MPC
(the high discrete mode is set from 7 am to 4 pm). The dotted lines represent the desired
trajectories for each zone

5.3.2 Five-Zones Building

In this section, we evaluate the control approach for an office building with five zones.

We simulate the office building response based on a stochastic occupant schedule for office

spaces. The occupancy schedule is generated using the occupancy simulator developed at

Lawrence Berkeley National Laboratory [30] [1]. We use the occupancy schedule, weather

data of San Francisco, and a parametric model to simulate the physical system response.

Our objective is to control this building using the proposed approach. Further, we assume

that the sensor measurements do not include occupancy. Therefore, we learn a SHS model
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of this system with a latent discrete state as discussed in Chapter 3 and 4. The discrete state

represents the thermal load level due to occupancy.

Simulation Setup

We represent the physical system using the occupancy schedule, weather data of San

Francisco, and the following multi-zone parametric model:

xi(k+1) = xi(k)+bi(xa(k)− xi(k))

+∑
i6= j

ai j(x j(k)− xi(k))

+ciui(k))+diq(k)+ω
q
i (k)

(5.10)

where xi(k) is the ith zone air temperature of zone at time k, xa(k) is the ambient tempera-

ture at time k, bi is non-negative constant representing the average heat transfer rate from

zone i and the ambient, ai j is non-negative constant representing the average heat transfer

rate between zone i and zone j, ui is the control input that represents the supplied heating/-

cooling rate to zone i, ci is non-negative coefficient of the supplied heat to zone i, qi is the

number of occupant in zone i at time k, ci is non-negative coefficient of the occupancy input

for zone i,and ωi is a Gaussian noise disturbance for zone i. The building model in (5.10)

is used to generate the training data and to represent the physical system response only. We

implement this system using MATLAB® to simulate the physical system response with the

following parameters: bi = 0.01, ai j = 0.00625 for i = 1 and 0.005 otherwise, ci = 0.07 for

i = 1 and 0.065 otherwise, di = 0.05, and ωi ∼N (0,0.05).

Further, we initially use a typical PID controller to generate a training dataset of three

days with 30-minute time-step. The PID controller is developed with the following pa-

rameters (kp = 2,ki = 1,kd = 1) and we used it to maintain the zones temperature at fixed

setting (e.g., 17 (C)) in order to generate initial dataset of the system. This training dataset

is then used to learn a SHS model that we use in the proposed SMPC control approach. In
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this model, we consider the zone temperature vector as the continuous state (x(k) ∈ R5)

and the thermal load levels as the discrete state Q = {q1,q2, · · ·qm} with m modes, the heat

supplied rate as the control input u(k) ∈ R5 and the ambient temperature as the external

uncontrolled input (v(k) = xa(k) ∈ R). Moreover, we learn a time-series model for the

ambient temperature v(k) = xa(k) = E(k) using a GP. The occupancy schedule is gener-

ated based on a typical office-building occupancy patterns (i.e., the estimated arriving time

is 08:00 am ±60 min and the estimated leaving time is 05:00 pm ±60 min). Also, the

occupancy behavior is simulated for four office rooms and one conference room.

The objective is to optimize the control inputs for each time step using the proposed

SMPC method. The SMPC controller is designed with the following parameters: receding

horizon N = 3, objective weight matrices Qx = 100I5 and Qu = 0.01I5, and thq = 0.01.

The desired state trajectory is to maintain the temperature of the zones at 18.5 (C) between

08:00 am and 05:00 pm, 17 (C) during the lunch break (i.e., noon), and 16 (C) otherwise.

The bounding constraint of the control inputs is −10≤ ui ≤ 100.

Performance Evaluation

We run the experiment for one day of simulation and evaluate the performance of the

proposed approach (i.e., SMPC controller) by comparing against two typical MPC con-

troller strategies: Reactive-based MPC and Scheduled-based MPC as defined in (5.8)

and (5.9); respectively. The simulation results for one zone using the reactive-based MPC,

scheduled-based MPC and the proposed scenario-based SMPC are shown in Figure 5.5,

Figure 5.6 and Figure 5.7; respectively. The results for the other zones have similar perfor-

mance to the depicted one.

The results indicate that the proposed approach provides more accurate control than

the reactive-based MPC approach. The scheduled-based MPC has the worst performance

since its model is based on a fixed schedule rather than estimation of the thermal load level

from the data. The controller performance is low at the beginning of the simulation but
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Figure 5.5: Simulation results of zone temperatures of one zone using reactive-based MPC.
The dotted lines represent the desired trajectories for each zone

Figure 5.6: Simulation results of zone temperatures of one zone using scheduled-based
MPC. The dotted lines represent the desired trajectories for each zone
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Figure 5.7: Simulation results of zone temperatures of one zone using the proposed SMPC.
The dotted lines represent the desired trajectories for each zone

improves as the SHS model learns the system dynamics. We also calculate the actual total

cost for all controllers based on the objective function. The total cost reflects both the cost

due to energy usage and the deviation from the desired system trajectory for all zones. The

scenario-based SMPC approach results on the lowest total cost (12e+03). As comparing to

the scheduled-based MPC and the reactive-based MPC which result on total cost: (28e+03)

and (26e+03); respectively. The scheduled-based MPC is based on a fixed schedule. How-

ever, in reality, the occupancy behavior is dynamic and can change over time. Thus, this

variation leads to degradation of the scheduled-based MPC performance. For instance, we

run another scheduled-based MPC experiment with an occupancy scheduled set to be from

7 am to 4 pm instead of 8 am to 4 pm. The cost of the new schedule is (106e+03) as

compared to (28e+03) of the 8 am to 5 pm schedule case. The simulation results for this

example are shown in Figure 5.8.
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Figure 5.8: Simulation results of zone temperatures of one zone using scheduled-based
MPC (the occupancy mode is scheduled from 7 am to 4 pm). The dotted lines represent the
desired trajectories for each zone

Computational Efficiency

To study the efficiency of the proposed approach, we run several experiments with

different training dataset sizes (i.e., number of simulated days) and with different prediction

horizon of the control process. The running times for both the online learning step and

the control optimization steps are shown in Figure 5.9 for different training dataset sizes.

Figure 5.10 shows the running times of the control optimization process as we increase

its prediction horizon. These results show that the running time increases exponentially as

we increase the training dataset size and it increases linearly as we increase the prediction

horizon. However, the proposed method runs relatively efficient with small and medium

training dataset sizes with acceptable performance.

5.4 Conclusions

In this chapter, we present a scenario-based SMPC approach of non-parametric SHS

which can be used to model complex systems with coupled stochastic continuous/discrete

dynamics. We describe a scenario-based approximation of SMPC to provide a robust MPC.
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Figure 5.9: Running time of the model learning step and the control step using different
training dataset sizes

Figure 5.10: Running times of the control approach using different prediction horizon N
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Moreover, we illustrate the analytic calculation of the objective function gradients to en-

hance the accuracy and the efficiency of the optimization routines. The approach is used

for a smart building control application. The simulation results show the capability of this

approach to control the efficiently while taking into consideration the uncertainty in the

system behavior.
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Chapter 6

Conclusions

Modern CPS impose complex behaviors with uncertainty. Model-based design of such

complex CPS arises many great opportunities and research challenges. This dissertation

provides a data-driven model-based design approach to mitigate various research chal-

lenges in model learning, reachability analysis and control for CPS modeled by nonpara-

metric SHS. An online clustering-based model learning approach is illustrated to learn

nonparametric SHS when the discrete dynamics is latent (i.e., the discrete state can not be

measured explicitly). This modeling approach can be used in many modern CPS when a

parametric model is hard to obtain. Further, online learning is useful to adapt the system

models to time-variability behavior and to improve the model efficiency because the train-

ing data in the offline phase is not necessarily complete. Experimental results demonstrate

the efficiency of the model learning approach, and, show that the learning process runs on-

line with an adequate computation time. A novel reachability analysis approach is proposed

to infer a statistical distribution of the reachable state for a finite-horizon using mixtures

of Gaussian processes. The reachability analysis approach provides an efficient multi-step

prediction of the reachable continuous and discrete states to provide predictive analysis for

CPS modeled by nonparametric SHS. Moreover, a scenario-based SMPC approach is de-

veloped to provide a robust MPC for CPS modeled by nonparametric SHS. The gradients

for the MPC optimization problem is estimated analytically to enhance the accuracy and

the efficiency of the optimization routines. Experimental results show the capability of this

approach to control the underline system to the desired behaviors efficiently while taking

into consideration the uncertainty in the system behavior. Empirical results indicates that

the developed approaches are applicable for many CPS systems. As a practical example,

the efficacy of the developed approaches for smart buildings applications is shown using
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high-fidelity building simulator.

This dissertation provides a foundation of developing data-driven approaches for CPS

modeled by SHS. Therefore, various research opportunities can be considered for future

work. In particular, this dissertation provides a cluster-based learning approach to learn

SHS with periodic and latent discrete state. Cluster-based approaches assume the data that

lie close to each other to probably belong to the same discrete state. Thus, other learn-

ing approaches such as Bayesian procedure approaches should be studied to support other

types of SHS where the clustering-based approaches are not applicable. We also recom-

mend future work to extended the SMPC illustrated in chapter 5 to support SMPC with

stochastic nonlinear constraints. In this case, the main challenge arises in approximating

the optimization problem to avoid local minimum. These future work will facilitate the

efficacy of data-driven SHS approaches for wide range of CPS applications.
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[46] Juš Kocijan. Gaussian process models for systems identification. In Proc. 9th Int.

PhD Workshop on Sys. and Cont, pages 8–15, 2008.
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[55] Bojan Likar and Juš Kocijan. Predictive control of a gas–liquid separation plant

based on a gaussian process model. Computers & chemical engineering, 31(3):142–

152, 2007.

[56] Rudolf Lioutikov, Alexandros Paraschos, Jochen Peters, and Gerhard Neumann.

Sample-based informationl-theoretic stochastic optimal control. In Robotics and Au-

tomation (ICRA), 2014 IEEE International Conference on, pages 3896–3902. IEEE,

2014.

134



[57] Yudong Ma, Francesco Borrelli, Brandon Hencey, Brian Coffey, Sorin Bengea, and

Philip Haves. Model predictive control for the operation of building cooling systems.

Control Systems Technology, IEEE Transactions on, 20(3):796–803, 2012.

[58] David JC MacKay. Information theory, inference and learning algorithms. Cam-

bridge university press, 2003.

[59] MATLAB and Statistics Toolbox Release 2016a, 2016.

[60] MATLAB and Statistics Toolbox Release 2017a, 2017.

[61] Amin Mirakhorli and Bing Dong. Occupancy behavior based model predictive con-

trol for building indoor climatea critical review. Energy and Buildings, 129:499–513,

2016.

[62] I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent hamilton-jacobi

formulation of reachable sets for continuous dynamic games. IEEE Transactions on

Automatic Control, 50(7):947–957, July 2005.

[63] Ian M Mitchell, Alexandre M Bayen, and Claire J Tomlin. A time-dependent

hamilton-jacobi formulation of reachable sets for continuous dynamic games. Auto-

matic Control, IEEE Transactions on, 50(7):947–957, 2005.

[64] Hiroyuki Mori and Masatarou Ohmi. Probabilistic short-term load forecasting with

gaussian processes. In Proceedings of the 13th International Conference on, Intelli-

gent Systems Application to Power Systems, pages 6–pp. IEEE, 2005.

[65] Roderick Murray-Smith, Daniel Sbarbaro, Carl Edward Rasmussen, and Agathe Gi-

rard. Adaptive, cautious, predictive control with gaussian process priors. 2003.

[66] Jun Wei Ng and Marc Peter Deisenroth. Hierarchical mixture-of-experts model for

large-scale gaussian process regression. arXiv preprint arXiv:1412.3078, 2014.

135



[67] Duy Nguyen-Tuong, Jan R Peters, and Matthias Seeger. Local gaussian process

regression for real time online model learning. In Advances in Neural Information

Processing Systems, pages 1193–1200, 2009.

[68] Duy Nguyen-Tuong, Matthias Seeger, and Jan Peters. Real-time local gp model

learning. In From Motor Learning to Interaction Learning in Robots, pages 193–

207. Springer, 2010.

[69] Wangdong Ni, Soon Keat Tan, and Wun Jern Ng. Recursive gpr for nonlinear dy-

namic process modeling. Chemical engineering journal, 173(2):636–643, 2011.

[70] Wangdong Ni, Soon Keat Tan, Wun Jern Ng, and Steven D Brown. Moving-window

gpr for nonlinear dynamic system modeling with dual updating and dual preprocess-

ing. Industrial & Engineering Chemistry Research, 51(18):6416–6428, 2012.

[71] Frauke Oldewurtel, Alessandra Parisio, Colin Jones, Manfred Morari, Dimitrios

Gyalistras, Markus Gwerder, Vanessa Stauch, Beat Lehmann, and Katharina Wirth.

Energy efficient building climate control using stochastic model predictive control

and weather predictions. In Proceedings of the 2010 American control conference,

number EPFL-CONF-169733, pages 5100–5105. Ieee Service Center, 445 Hoes

Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa, 2010.

[72] Michael A Osborne, Stephen J Roberts, Alex Rogers, Sarvapali D Ramchurn, and

Nicholas R Jennings. Towards real-time information processing of sensor network

data using computationally efficient multi-output gaussian processes. In Proceedings

of the 7th international conference on Information processing in sensor networks,

pages 109–120. IEEE Computer Society, 2008.

[73] Yunpeng Pan and Jun Wang. Model predictive control of unknown nonlinear dynam-

ical systems based on recurrent neural networks. IEEE Transactions on Industrial

Electronics, 59(8):3089–3101, 2012.

136



[74] Simone Paoletti, Aleksandar Lj Juloski, Giancarlo Ferrari-Trecate, and René Vidal.
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