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SUMMARY

The overall focus of this dissertation was the development and enhancement of computational methods
for the de novo prediction of protein structures and ensembles. Thedeveloped algorithmswere integrated
into the BioChemical Library (BCL),a which is a software suite for molecular modeling and drug design
developed in the Meiler Laboratory at Vanderbilt University. A major focus of my work was put on the
integration of limited experimental data from electron paramagnetic resonance (EPR) spectroscopy and
chemical cross-linking (XL) into the prediction algorithms to compensate for necessary simplifications
in the computational approaches.

Chapter I on page 1 provides a summary of the physical laws that govern protein ensemble formation,
the relevance of knowledge about a protein’s equilibrium constitution, and experimental approaches
to probe protein ensembles. An additional focus was put on computational approaches for protein
ensemble prediction — in particular in conjunction with limited experimental data. This chapter was
written for this dissertation.

Chapter II on page 12 details an evaluation of a modular protein structure prediction pipeline based
on the de novo prediction method BCL::Fold in the eleventh double-blind Critical Assessment of
Protein Structure Prediction (CASP) experiment in 2014 (CASP11). Over the course of the experiment,
the tertiary structures of twenty topologically dissimilar proteins were predicted either from their
primary structure alone or using additional experimental data from nuclear magnetic resonance (NMR)
spectroscopy, chemical XL in conjunction with mass spectrometry (MS), and contact prediction.
This chapter is based on a manuscript that was published as “CASP11 – An Evaluation of a Modular
BCL::Fold-Based Protein Structure Prediction Pipeline”.1

Chapter III on page 29 describes amodel for the integration of data fromEPRdistance and accessibility
measurements into computational protein structure prediction methods to predict the tertiary structure
of membrane proteins. A major goal of this study was the establishment of a protocol for membrane
protein structure prediction from EPR distance and accessibility data. The proposed protocol was
evaluated on twenty-nine membrane proteins. This chapter is based on a manuscript that was published
as “BCL::MP-Fold: Membrane protein structure prediction guided by EPR restraints”.2

Chapter IV on page 48 details a model and potential function to incorporate data from chemical XL
in conjunction with MS into computational protein structure prediction methods. A major focus of this
work was the evaluation of the influence of the cross-linker spacer length and cross-linker reactivity
on protein structure prediction accuracy. This chapter is based on a manuscript that was published as
“Protein structure prediction guided by crosslinking restraints – A systematic evaluation of the impact
of the crosslinking spacer length”.3

Chapter V on page 67 details an algorithm for efficient sampling of loop conformations. The algorithm
was developed with the goal of sampling structurally diverse ensembles of loop conformations while
minimizing the required amount of central processing unit (CPU) time. To facilitate this goal, the
algorithm uses a combination of conformational hashing and cyclic coordinate descent (CCD). This
chapter is based on a manuscript that was published as “Efficient sampling of loop conformations using
conformation hashing in conjunction with cyclic coordinate descent”.4

Chapter VI on page 83 describes the application of the protein structure prediction protocols devel-
oped in previous studies to predict the soluble monomeric and membrane-associated homodimeric
states of the Bcl-2-associated X protein (BAX). A major focus of this study was the evaluation if in-

ahttp://www.meilerlab.org/bclcommons
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trinsic limitations of computational protein structure prediction methods can be overcome through
integration of limited experimental data from EPR spectroscopy. This chapter is based on a manuscript
that was published as “Pushing the size limit of de novo structure ensemble prediction guided by sparse
SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of BAX”.5

Chapter VII on page 99 details the application of the protein structure prediction protocols developed
in previous studies to predict the structure and dynamics of the type III secretion effector protein
exotoxin U (ExoU). The predictions were performed in conjunction with EPR distance restraints and
provide evidence that the unbound structure of ExoU matches the topology observed in complex with
the specific Pseudomonas chaperone for ExoU (SpcU). This chapter is based on a manuscript that was
published as “Structure and Dynamics of Type III Secretion Effector Protein ExoU As determined by
SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding”.6

Chapter VIII on page 111 describes the determination of the protonation-dependent dynamics of the
efflux-multidrug resistance protein (EmrE). The focus of this work was employing a combined approach
of EPR distance and accessibility measurements in conjunction with computational methods to predict
the tertiary structures of EmrE in the protonated and tetraphenylphosphonium (TPP)-bound states
to derive a model of the protein’s transportation mechanism. This chapter is based on a manuscript
that was published as “Protonation-dependent conformational dynamics of the multidrug transporter
EmrE”.7

Chapter IX on page 126 discusses the studies presented in this dissertation. The main focus points of
the discussion are the evaluation of hierarchical protein structure and ensembles prediction pipelines
that were employed throughout most experiments, the influence of limited experimental data on the
prediction accuracy, and the general applicability of computational modeling to the field of structural
biology. Additionally, a discussion is provided that details future directions regarding method develop-
ment for in silico prediction of protein ensembles building on this work. This chapter was written for
this dissertation.

The appendices are structured according to the dissertation chapters, with one appendix per chapter
(with the exception of the chapters regarding introduction and discussion). They provide comprehensive
protocol captures for their respective dissertation chapters as well as supplementary data that was not
provided in the chapter.

Appendix A on page 155 provides supplementary information and a protocol capture for the study
detailed in chapter II on page 12. In particular, an evaluation of potential correlations between protein
properties on one hand and prediction accuracy and model discrimination is shown. All prediction
results from the CASP experiment are provided in tabulated form. Additionally, a protocol capture of
the computation procedured employed duing the CASP experiment is listed.

Appendix B on page 163 lists all prediction results for study detailed in chapter III on page 29 in
tabulated form. The prediction results are quantified to structure dissimilarity and model discrimation
metrics and listed for different combinations of EPR distance and accessibility data. Additional experi-
ments are shown that study the influence of the number of restraints on the prediction accuracy and
model discrimination. This appendix also lists the protocol captures for predicting membrane protein
structure from EPR data and for simulation of EPR distance restraints.

Appendix C on page 171 provides the tabulated prediction results for chapter IV on page 48. It lists
the cross-link yield per spacer length for the different benchmark proteins, prediction accuracies and
model discrimination for different cross-linker reactivities, and visualizations of the translation from
cross-linking data into structural restraints. This appendix also provides a protocol capture for protein
structure prediction from cross-linking data using the BCL.
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Appendix D on page 178 details the protocol capture for chapter V on page 67. It lists the compu-
tational procedures for generating a loop template library from a set of protein models and using the
generated templated library to sample loop conformations using the BCL. This appendix also provides
the configuration files to sample loop conformations using a combination of conformation hashing and
CCD.

Appendix E on page 183 lists the agreements of the X-ray- and NMR-derived models of monomoeric
and homodimeric BAX with the EPR distance data in tabulated form. This appendix also visualizes the
dependence of the -value, which was reported in chapter VI on page 83, on the number of models and
provides a detailed protocol capture of the computational procedures employed to predict the tertiary
structures of monomeric and homodimeric BAX from EPR distance data.

Appendix F on page 191 provides supplementary data and computational procedures for chapter VII
on page 99. This appendix provides the agreement of the X-ray-derived reference structure with the
glsepr data in tabulated form. Additionally, the distance distributions derived from the double electron-
electron resonance (DEER) experiment are shown and compared to explicitly simulated distance
distributions for the structure that was predicted from the EPR data. This appendix is concluded by
a protocol capture of the computational methods employed to predict the tertiary structure of ExoU
from EPR data.

Appendix G on page 198 lists supplementary data for chapter VIII on page 111. This appendix
provides descriptions of the ligand-dependent conformational dynamics of EmrE, the equilibrium of
EmrE, and the effect of protonation-mimeticmutations of acidic residues on the distance distributions inβ-dodecylmaltoside (DDM)micelles. This appendix is concluded by a comparison of the experimentally
obtained distances for the TPP-bound state with the distances simulated for the predicted models.
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CHAPTER I
CURRENTMETHODS FOR IN SILICO PREDICTION OF PROTEIN ENSEMBLES

Determination of a protein’s structural equilibrium constitution remains an unsolved problem.
In the equilibrium, proteins exist in multiple conformations with the population sizes defined
by the free energy differences between them. Although techniques like X-ray crystallography or
NMR spectroscopy can frequently determine a structural model of the protein’s conformation
at the Gibbs free energyminimum, alternative populations remain elusive. In thismanuscript,
we review the physical concepts that govern the formation of protein ensembles, we evaluate
the abilities of the different spectroscopic techniques in the context of protein ensemble
determination, and we summarize the current state of in silico protein ensemble prediction.
A particular focus of this manuscript was put on the combination of experimental and
computational techniques to compensate for information gaps in the experimental data as
well as for ambiguities arising from simplifications in the computational methods.

I.1. Introduction

Proteins are the main actors in biological processes. Examples of functions facilitated by proteins
include but are not limited to the transport and storage of other molecules,8–11 carrying out chemical
reactions,12–14 transduction of signals,15–18 and providing structural support for the cell.19–22 Typically,
carrying out its function requires a protein to react to specific stimuli by performing specific actions
that materialize as changes of its conformation. One example for this is provided by the small multidrug
resistance (SMR) transporter EmrE. EmrE is a homodimeric membrane protein from Escherichia coli
that extrudes cytotoxic molecules, which are predominately hydrophobic cations.23 This energetically
unfavorable extrusion, if seen as an isolated process, is facilitated by coupling the export of the cation to
the import of two protons alongside their electrochemical gradient.23–26 This coupled transport requires
complex conformational changes of the protein to enable the binding of protons and substrates as well
as the release of them on the opposite sides of the membrane.7 Consequently, a comprehensive charac-
terization of this protein requires substantiated knowledge of its multiple conformations. Additionally,
when attempting to structurally characterize a dynamic protein like this, it might seem tempting to
view it as existing within a certain state given a certain environment and changing into a different state
given a specific environmental change. However, this formulation as a triggered conformational change
does not comprehensively capture the underlying physical laws. A closer examination of the physical
foundations that determine a protein’s equilibrium constitution will provide a better understanding of
how to develop computational methods for the prediction of protein ensembles and how to interpret
and use structural information from spectroscopic experiments.

In the following sections of this introduction, we provide an overview about the physical laws that
govern the formation of protein ensembles in the equilibrium (section I.1.1 on the next page) and a
discussion of the importance of knowing alternative conformations for in silico drug design (section I.1.2
on page 3). The introduction is followed by a discussion of the experimental approaches to obtain
information about a protein’s equilibrium constitution (section I.2 on page 4) and a discussion of
computational methods to determine protein ensembles completely in silico or in conjunction with
experimental data, which is discussed in section I.3 on page 6 and in section I.3.3 on page 9. This
manuscript is concluded by a discussion of the provided material in section I.4 on page 10.
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I.1.1. The physical laws governing the formation of protein ensembles

Like all matter, proteins adhere to the laws of thermodynamics. Most relevant for the structural
characterization of a protein is the second law of thermodynamics, which states that for any spontaneous
process, the Gibbs free energy of the system will be at a minimum for the resulting equilibrium.27,28
Another conclusion from this statement was Anfinsen’s thermodynamics hypothesis of protein folding
that was postulated in 1973.29 Anfinsen states that the three-dimensional structure of a protein in its
native state is the conformation for which the Gibbs free energy of the system is at the minimum.28,29
Using Anfinsen’s definition, the native state of a protein is defined through one conformation. However,
this one conformation must not necessarily be the only conformation of the protein that exists with a
significant population size in the protein’s equilibrium.

The population sizes of the different conformations can be derived from their Gibbs free energy𝐺 = 𝐻 − 𝑇𝑆, where𝐻 is the enthalpy, 𝑇 is the temperature, and 𝑆 is the entropy of the system. For
determining the population sizes, theGibbs free energy𝐺does not need to be knownon an absolute scale,
but it is sufficient to know the Gibbs free energy differences, Δ𝐺, between the different conformations.
The ratios of the Gibbs free energy differences can then be translated into ratios of relative population
sizes. A starting point for the derivation of the formula defining the population sizes is the equilibrium
constant of the system. The equilibrium constant 𝐾AB , which is shown in equation (I.1), for a system
with the two possible states𝐴 and𝐵 is defined as the quotient of the respective probabilities for observing
either conformation in the equilibrium. 𝐾AB = [𝐴][𝐵] = 𝑃A𝑃B (I.1)

where:𝐾AB = equilibrium constant for the states 𝐴 and 𝐵[𝑋] = concentration of state𝑋 in the equilibrium𝑃X = unnormalized probability of observing state𝑋 in the protein’s equilibrium

The equilibrium constant — and therefore the ratio of the population sizes for the different con-
formations — is determined by the temperature 𝑇 of the system and the free energy differences Δ𝐺
between the different conformations of the system, which is formalized by the Boltzmann relation
(equation (I.2)). By combining the formula for the equilibrium constant (equation (I.1)) with the Boltz-
mann relation, we arrive at equation (I.3) that puts the free energy difference between two conformation
into relation with their equilibrium constant — hence, the relative probabilities of the protein assuming
each state in the equilibrium. For a system that consists of more than two states, the equation can
be extended and rearranged to compute the relative population size of a specific state of the protein
(equation (I.4) on the next page).

Δ𝐺AB = −𝑅𝑇 ln𝐾AB (I.2)𝐾AB = 𝑃A𝑃B = 𝑒−Δ𝐺AB/𝑅𝑇 (I.3)
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𝑃A,abs = 𝑃A∑𝑁𝑖 𝑃𝑖 = 𝑒−𝐺A/𝑅𝑇∑𝑁𝑖 𝑒−𝐺𝑖/𝑅𝑇= 1∑𝑁𝑖 𝑒(𝐺A−𝐺𝑖)/𝑅𝑇= 1∑𝑁𝑖 𝑒−Δ𝐺A𝑖/𝑅𝑇
(I.4)

where:Δ𝐺AB = 𝐺B − 𝐺A , free energy difference between the states 𝐴 and 𝐵𝑅 = gas constant𝑇 = temperature of the system𝐾AB = equilibrium constant for the states 𝐴 and 𝐵𝑃X = unnormalized probability of observing state𝑋 in the protein’s equilibrium𝑃X,abs = normalized probability of observing state𝑋 in the protein’s equilibrium

I.1.2. Knowledge about alternative conformations is important for drug design

The value of knowing a protein’s equilibrium constitution becomes immediately clear when designing
drugs in silico. A computational approach frequently used by drug design methods is the “key-lock”
approach. In this context, the protein’s conformation is the “lock” and the “key” — the drug — is
designed to fit into the lock.30 However, this approach will not account for the drug binding to al-
ternative conformations of the protein and therefore discards potentially effective drug candidates.
Alternative methods include the “induced fit”30 or “conformational selection”31,32 approaches. For
those approaches, the protein target is either treated with some conformational flexibility or an ensemble
of conformations is provided. For the induced fit approach, the tertiary structure of the protein target is
perturbed during the design process to simulate the existence of alternative conformations. Although
this improves the probability of designing an effectively docking drug by accounting for the flexibility of
the protein, this approach is also limited with regards to the conformational space that can be covered.
The conformational selection approach on the other hand designs the drug against an ensemble of
conformations, therefore also accounting for drugs binding to the protein in alternative conformations.
This approach is more comprehensive but also more difficult to perform since the conformations of
the protein’s major populations have to been known. In the following section we discuss the currently
available structural information about a protein’s major populations and how computational methods
can be able to provide additional information about alternative conformations.

The conformational selection method has been used successfully on multiple occasions for various
targets.32 The most prominent examples include the discovery of novel binding trenches in HIV inte-
grase33,34 and the in silico discovery of enzyme inhibitors.35 The method of choice in those studies were
molecular dynamics (MD) simulations that were employed to structurally diversify an initial structural
model obtained through an orthogonal structure determination technique. Although the diversification
approach using MD simulations provided promising results in those studies, the conformational space
that can be covered by MD simulations might still be a limiting factor.32
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Figure I.1.: Techniques used for protein structure determination. The pie chart shows the percentage of structure
deposits in the PDB categorized by technique. The bar graph lists the PDB deposits per technique over the last twenty
years. The years prior to 1997 were omitted in the bar graph due to low deposit numbers.

I.2. Experimental techniques can obtain information about a protein’s
equilibrium constitution

In this section, we provide a summary of the structural information that is obtainable by different
techniques to probe the structure and dynamics of proteins. The techniques discussed in detail are
X-ray crystallography, NMR spectroscopy, EPR spectroscopy in conjunction with site-directed spin
labeling (SDSL), electron microscopy (EM), and NMR spectroscopy. The Protein Data Bank (PDB)36,37
has seen a rapid increase in the number of deposited structural models of proteins, mainly derived from
X-ray crystallography, NMR spectroscopy, and EM. As of December 2017,a 125 799 structural models
of proteins have been deposited in the PDB. Of those, 113 609 were derived from X-ray crystallography,10 563 from NMR spectroscopy, 1322 from EM, and 305 were determined through other techniques or
hybrid approaches (see figure I.1). Especially EM has experienced an increasing usage over the recent
three years.

X-ray crystallography determines the molecular structure of a protein through an incident beam of
X-rays. The crystalline atoms diffract the X-rays and through measuring the intensities and angles of
the diffracted beams, the three-dimensional structure of the protein is computed. X-ray crystallography
is frequently able to achieve sub-angstrom resolutions, which has been show in the recent past when
structural models of the NADH-cytochrome 𝑏5 reductase and of a hydrogenase were determined at
resolutions of 0.78Å38 and 0.95Å,39 respectively. However, its major limitation is requirement of the
protein entities to crystallize into regular crystal lattices.40 Consequently, the studied protein frequently
needs to be subjected to stabilizing mutations, resulting in a structural model that may or may not
accurately represent one of the protein’s major populations under in vivo conditions. Any information
about alternative populations is lost due to the stabilization and crystallization process.

aThe statistics were obtained from https://www.rcsb.org/pdb/ on December 3, 2017.
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EMhas seen increasing use for the determination of structural models of proteins. In its newer variant
cryo-EM, a flash-frozen sample of the protein is subjected to electron rays and an electron detector
located behind the sample collects the passing through or moderately deflected electrons.41 The rapid
freezing of the specimen prevents the destruction of the sample through crystal formation and ensures
that the structural equilibrium constitution is preserved. The result of the electron detection is a two-
dimensional projection of the protein’s electron density. Due to the protein being present and observed
from multiple angles, a three-dimensional scalar field representing the electron densities of the protein
can be reconstructed using computational methods. For several years, it has only been possible to
obtain low- to medium-resolution density maps, e.g. ranging from 9Å to 20Å. Examples for this are the
density maps of an adenovirus, which was determined at a resolution of 9Å.42 However, recent progress
in the electron detectors and the computational methods enabled the determination of structural models
at higher resolutions. This has been shown for density maps of a glutamate dehydrogenase and of aβ-galactosidase that were determined at resolutions of 1.8Å43 and 2.2Å,44 respectively. Generally, EM
is able to capture multiple states of the protein but to recompute the three-dimensional electron density
map, the different states have to be identified and clustered. This is not always possible for states that
only contribute a smaller population to the equilibrium and can result in a low resolution of the density
map or discarding these states at general.

NMR spectroscopy can also provide information about the dynamics of the studied protein.45 In
NMR spectroscopy, the protein is subjected to a static magnetic field and the reaction of the nuclear
spins to an electromagnetic pulse is measured. The spectroscopic data yields atom distance and bond
angle restraints, which are used to derive either a single structural model or an ensemble of structural
models. One of the major problems is the refinement of the structural models for agreement with the
restraints derived from the spectroscopic data. The obtained restraints are observed on the equilibrium
of the protein, therefore representing multiple states. However, frequently each structural model in the
NMR ensemble is fitted against the whole set of restraints although it might not be possible for one
model to satisfy all restraints at the same time. Additional difficulties arise from the size limit of NMR
spectroscopy, which makes this technique frequently unsuitable for studying membrane proteins or
large soluble proteins.40

EPR spectroscopy in conjunction with SDSL is typically performed on a cys-less variant of the protein
by introducing two cysteine residues at the desired spin labeling sites. These are coupled with the spin
label MTSL that carries an unpaired electron. Through the DEER experiment,46 the dipolar interaction
of the two unpaired electrons is measured. Because the interaction intensity of the two unpaired
electrons is inversely proportional to their cubed distance, the Euclidean distance between the unpaired
electrons can be computed47,48 from the measured spectra. This measurement is typically performed
on a flash-frozen sample that captures the protein’s equilibrium constitution and therefore provides a
distribution of distances that represents all present conformations in the equilibrium. However, due
to the indirectness of the measurement — the experiment measures the distance between the free
electrons that are close to the tip of a flexible spin label — and the sparseness of the data, it is typically
not possible to unambiguously determine structural models for the protein’s major populations from
the SDSL-EPR data alone.5

In summary, X-ray crystallography, NMR spectroscopy, and EM account for more than 99.9% of the
structural models deposited in the PDB (figure I.1 on the previous page). However, all these techniques
have specific limitations when it comes to the prediction of protein dynamics and alternative populations
of the protein in question. SDSL-EPR spectroscopy on the other hand does not have any limits regarding
the protein’s size or dynamics but the yielded data is typically too sparse to unambiguously determine an
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ensemble of conformations. Pure computational approaches have their own limitations (see section I.3.1)
but a combination of computational and experimental methods could compensate for the weaknesses
in both approaches (see section I.3.2 on page 8).

I.3. Computational methods for the prediction of protein ensembles

In this section, we discuss the different computational approaches for the prediction of a protein’s
tertiary structure or an ensemble describing its structural constitution in the protein’s equilibrium. In
section I.3.1, we detail the general limitations of computational approaches in the context of structure
and ensemble prediction. This is followed by a discussion of the advantages gained by incorporating
limited experimental data into the computational prediction methods, which is provided in section I.3.2
on page 8. This section is concluded by a discussion of application examples for computational protein
ensemble prediction in section I.3.3 on page 9.

I.3.1. Limitations of computational approaches

The free energy of a conformation depends on interactions of the protein with itself and interaction
of protein with its environment. Interactions of the protein with itself include backbone hydrogen
bonds, disulfide bonds, and ionic interactions.49 However, in the crowded cell that is observed in vivo,
there is also a wide variety of potential interactions between the protein and other molecules. These
interactions among others include hydrogen bonding between the protein and cytosol, hydrophobic
interactions between the protein and a cell membrane, and also interactions between the protein and
other macromolecules in the cell.

Performing a full-atom simulation of the crowded cell is unfeasible due to the large number of
potential interactions. Consequently, the biological system has to be simplified. This is usually achieved
by discarding other macromolecules in the cell and only simulating the protein itself and its direct
interaction partners, which include the molecules in the cytosol as well as lipids in the case of a
membrane protein.

Many methods also simplify the representation of the solvent — cytosol and lipids. This is typically
achieved by representing the solvent implicitly as volume units with certain assigned physical properties.
Examples for this are the Rosetta software suite and BCL::Fold.50 Both methods represent membranes
implicitly as infinite plane. Accordingly, interactions between the protein and the lipids cannot be
evaluated explicitly but need to be approximated using statistics. For both methods, this is achieved
through the usage of knowledge-based potentials that quantify the likelihood of observing a certain
residue type a specific depth in the membrane. For quantifying the interaction strength, different
metrics are used. Most prevalent is the neighbor count that counts the number of residue neighbors
weighted by their Euclidean distance for each residue. Similar approaches are used for evaluating
interactions with the cytosol. A drawback of this approach is that the statistics used for generating
the knowledge-based potentials are not fully reliable. For example, the statistics encompass different
solutions or membrane compositions that differ from in vivo conditions. Additionally, the location
of the membrane is frequently uncertain and its in silico representation is idealized and inflexible.
In consequence, the interactions between the protein and its environment cannot be evaluated at
atomic detail but a more coarse-grained approach is needed, introducing further inaccuracy into the
approximation of a conformation’s free energy.
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High-resolution methods like MD simulations on the other hand attempt an approach with higher
resolution. In many cases the environment of the protein is simulated explicitly, with the solvent being
represented through actual atoms.51,52 However, even these approaches subject the system to certain
simplifications. Frequently the actual lipid composition of the membrane is not accurately simulated
but represented through a small number of lipid types.53,54 Alternative MD approaches completely
avoid explicit simulation of the solvent and choose to use an implicit representation,55,56 which can
introduce additional inaccuracy.57,58

Further simplifications of the system can also affect the protein representation itself. Each residue
of the protein contributes multiple degrees of freedom to the protein model. The backbone exhibits
two rotational degrees of freedom around the (ϕ, ψ) angles. Additional rotational degrees of freedom
are contributed by the side chain of the residue. Using a frequency-weighted average, each side chain
exhibits an additional two rotational degrees of freedom on average. Consequently, exhaustive sampling
of all possible conformations is frequently unfeasible and the number of sampled conformations needs
to be restricted. This can be directly achieved using a simplified representation of the protein, e.g.
where side chains are not modeled explicitly. Examples for these simplified model representations are
especially prevalent in de novo protein structure prediction methods.

For example, the Monte Carlo Metropolis (MCM) method BCL::Fold assembles the protein model
from idealized secondary structure elements (SSEs)59 with only allowing limited deviations from the
idealized dihedral angles. The side chains of the residues are also not modeled explicitly but represented
by a single “superatom”. The Rosetta software suite assembles the tertiary from fragments collected
from the PDB, avoiding exhaustive sampling of the torsion angles. The Rosetta algorithm consists of
multiple stages with the later stages sampling the side chain conformations using a rotamer library;
again avoiding exhaustive sampling of the torsion angles. These simplifications result in problems when
the conformations of the studied protein significantly differ from idealized structures or structures
found in the PDB.

Using those approaches makes it unlikely to sample an accurate conformation for proteins that
significantly deviate from structural models observed in the PDB. In consequence, computation of
interactions at an atomic level are futile because the energetically most stable conformation might not
even get sampled.

Aforementioned simplifications of system andmodel representation directly result in another problem
— evaluation of a conformation’s free energy. The system representations in conjunction with the non-
exhaustive sampling hinder an accurate computation of themodel’s free energy since there is uncertainty
about an atoms location or, due to the implicit system representation, the location of the atom is not
known at all. Accordingly, the approximations made to the free energy evaluation have to match
the resolution of the system representation. As an example, if the torsion angles of the system are
sampled at steps of 45°, a scoring function approximating the free energy of the system may not be
sensitive to torsion angle changes below the step size. Otherwise the system representation would not
allow comprehensive exploration of the energy landscape defined by the approximation. Consequently,
the resolution of the free energy evaluation needs to be reduced, which again results in additional
ambiguity. An example of free energy approximations enabling adaptive reduction of the resolution is
the knowledge-based potential. In this context, the inverse Boltzmann relation is used to derive the free
energy of a conformation from statistics collected from structural models deposited in the PDB.60 This
approach is used by a variety of protein structure prediction methods like BCL::Fold,60 Rosetta,61 and
I-TASSER.62,63

As a consequence of aforementioned simplifications made to the system representation, to the
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sampling of different conformations, and to the evaluation of a conformation’s free energy, it is frequently
not possible to distinguish low-energy conformations from high-energy conformations. This is best
demonstrated by examining the results of the CASP experiment. The CASP experiment is community-
wide double-blind protein structure prediction study. A variety of research groups participate with
their protein structure prediction methods and the summarized prediction results are available on the
CASP website.b The setup of the experiment as double-blind study ensures that the research group
not only publish prediction cases for which their method works. Briefly, the tertiary structures of
the benchmark proteins is determined by a group who does not know the groups participating in the
CASP experiment. The participating groups send their predictions to the CASP organizers, who do
not know the experimentally determined tertiary structures. The groups’ predictions are anonymized
and sent alongside the experimentally determined structures to another group that evaluates the
prediction quality. The results are subsequently sent back to the CASP organizers, who create a ranking
of the prediction groups based on the evaluation of the prediction qualities. The CASP experiment
encompasses two protein target classes — free modeling targets and template-assisted targets. Whereas
for template-assisted targets, a structural template with related primary structure is available, the free
modeling targets typically have to predicted purely de novo. At the two most recent CASP experiments
in 2014 and 2016,64,65 the template-based modeling category continued to experience remarkable
successes.66 However, the free-modeling category — protein targets for which no suitable structural
template was available — continued lagging behind.67 This was particularly pronounce for proteins with
a larger sequence length,67 which indicates that de novo prediction of protein structures and therefore
protein ensembles is still not feasible.

In summary, de novo protein structure predictionmethods are not able to routinely predict the tertiary
structure of a protein at itsGibbs free energyminimumwithin a reasonable accuracy limit. Consequently,
it is doubtful that these methods would be able to predict a protein’s equilibrium constitution because
they are not able to routinely distinguish low-energy from high-energy conformations. Consequently,
these methods need to be supplemented with additional data that simplifies model discrimination.

I.3.2. Combining experimental data with computational approaches

Structure and ensemble prediction for proteins is hindered by the necessary simplifications and ap-
proximations to the representation of the biological system and to the computation of a system’s free
energy (see section I.3.1 on page 6 for a detailed discussion). The currently available computational
resources don’t allow a comprehensive simulation of the biological system and, in consequence, an
accurate energy evaluation. Although the limitation of computational resources is unlikely to change
over the near future, the problems arising from the applied approximations can be mitigated through
the incorporation of limited experimental data. As detailed in section I.2 on page 4, methods like
EM or EPR can provide information about the structural constitution of a protein’s equilibrium. The
yielded data can be interpreted geometrically, therefore circumventing the need for a more accurate
computation of the system’s free energy. For the prediction of a singular tertiary structure, this has been
demonstrated for both, EM and EPR.

EM has been successfully combined with computational methods in the past. In particular, when no
high-resolution electron density maps are available, the computational methods can fill the information
gaps in the EM data. This has been shown for medium-resolution density in conjunction with the
BCL software suite and usage of the cross-correlation coefficient for quantifying the agreement of the

bhttp://www.predictioncenter.org
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structural model with the EM data.68–72 Alternative studies used the MultiFit method in conjunction
with template-based modeling and complex docking to predict the macromolecular assembly from
EM data.73,74 However, also in those approaches only one structural model was predicted from the EM
density maps.

EPR spectroscopy in conjunction with SDSL has been successfully combined with computational
methods for the prediction of protein structures. Typically, this combinations requires two components:
i) a method that explores the possible conformational space of the protein by sampling different
conformations, and ii) a method that quantifies the agreement of the conformation or the ensemble
of conformations with the measured SDSL-EPR data. A successful protocol published by Jeschke et
al.75 used the observed spin-spin distance as hard cut-off for the Cβ − Cβ distance in conjunction
with the MODELLER76,77 software suite. Alternative approaches used the motion-on-a-cone (CONE)
model78 to translate the Cβ −Cβ distance into a likelihood of an observed spin-spin distance.2 However,
those two examples only consisted of the prediction of a single conformation, which is presumably
representing the protein’s major population at the environmental conditions of the EPR experiment.
Both approaches try to satisfy restraints derived from multiple states with a single state. Although the
results of these studies demonstrate the suitability of this approach to improve the prediction accuracy
when using an X-ray- or NMR-derived model as reference, new methods are needed for the prediction
of protein ensembles.

In conclusion, experimental data from SDSL-EPR and EM experiments can successfully be combined
with computational methods to fill information gaps in the experimental data and to compensate for
the limitations intrinsic to the computational methods. However, the methods discussed so far have
only been used to predict one structural model from the experimental data. First, this does not provide
comprehensive information about the studied protein and, second, it might not even be feasible to fit
one structural model against experimental data representing an ensemble of conformations.

I.3.3. Computational methods for protein ensemble prediction

Depending on the available experimental data, different computational approaches for the prediction
of protein ensembles are viable. For many proteins it is possible to determine the tertiary structure of at
least one state through experimental techniques like X-ray crystallography, NMR spectroscopy, or EM.
This is demonstrated by the pace at which structural models get deposited in the PDB (see section I.2
on page 4 for details). For other proteins, it might be possible to determine a viable conformation
using template-based modeling in conjunction with a structural model of a homolog. This initial
conformation can then serve as starting point from where the conformational space is explored to
identify alternative conformations with significant population sizes. One computational method to
guide the exploration of the conformational space are MD simulations. This approach has been used in
the past to structurally diversify drug receptors in support of computer-aided drug design.

One example is the in silico docking of the first inhibitor to the HIV integrase that was marketed
as a drug.33 Schames et al. simulated a 2 nsMD trajectory of the integrase, starting from a structural
model derived from X-ray crystallography.79 The structural information provided by the X-ray-derived
model was deemed insufficient due to a flexible loop with uncertain conformation and location.33,80
Consequently, the tertiary structure of the X-ray-derived model had to be diversified to find alternative
conformations that might exist in the protein’s equilibrium. MD trajectories were simulated and
snapshots of the trajectories were taken as target for the ligand docking. Using this approach, Schames
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et al. found a novel binding trench in the HIV integrase that seemed inaccessible in the X-ray-derived
model.33

Another example is provided by Durrant et al., who identified an enzyme inhibitor using computa-
tional methods.35 Also in this case, MD simulations were employed to structurally diversify the receptor
and to gain a better understanding of the receptor dynamics. Unlike in the aforementioned example,
five independent 20 nsMD trajectories were simulated to increase the structural diversity as opposed
to one long simulation.35 Clustering was subsequently used to identify twenty-four states that served
as receptor ensemble for the ligand docking simulations. A conformational selection approach was
then used to identify potential ligands.31,35 Notably, none of these approaches used the Boltzmann
relation (see section I.1.1 on page 2) to relate the in silico simulations and free energy approximations
to population sizes. Instead, they performed dynamics simulations and clustering.

There are also cases when no suitable template is available. This happens when no conformation of
the protein could be determined experimentally through X-ray crystallography, NMR spectroscopy, or
EM and additionally there is no suitable homolog with known tertiary structure. This frequently is the
case for membrane proteins, which are either too flexible for X-ray crystallography or too large for NMR
spectroscopy.40 For those cases, two approaches are possible: a) de novo prediction of one conformation
and subsequent exploration of alternative conformations from this starting point using previously
described approaches or b) de novo prediction of all conformations with a significant population size.
If experimental data providing structural information about the protein’s equilibrium constitution is
available, the second approach seems more suitable because it allows the fitting of an ensemble against
the experimental data.

I.4. Discussion

In order to acquire a comprehensive understanding of a protein’s function and to effectively develop
molecules able to affect a protein’s function, its major populations in the equilibrium have to be
determined. Knowing the tertiary structures associatedwith these populations aswell as their population
sizes enables the effective design of drugs against their receptor using a conformational selection
approach. Most experimental techniques used to derive structural models of proteins are not able
to provides this information in most cases. Orthogonal techniques like SDSL-EPR spectroscopy
provide structural information about the protein’s different conformations but the data is too sparse to
unambiguously derive three-dimensional models (see section I.2 on page 4 for details).

Although structural models derived from X-ray crystallography or NMR spectroscopy have been
used successfully in ligand docking and in silico drug design studies, there are documented cases where
structural snapshots obtained from X-ray crystallography were insufficient for the development of
ligands. To diversify the structure of the receptor and explore alternative conformations, research
groups have successfully employed MD simulations using an X-ray-derived structural model as starting
point (see section I.3.3 on the preceding page for details). However, those approaches were purely
computational, which inevitably introduces additional uncertainty (see section I.3 on page 6 for details).
This approach has also not been demonstrated to work if either there is no structural model that can
be used as starting point or if there is a substantial structural dissimilarity between the starting model
and the conformation binding the ligand. In addition sometimes experimental data about a protein’s
structural equilibrium constitution is available in the form of SDSL-EPR measurements or other data.
This data could also be used to mitigate the limitations of computational methods.
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In this dissertation, we discuss the different aspects for the development of a protein ensemble
prediction pipeline. In order to achieve a computational ensemble prediction pipeline, several prob-
lems need to be overcome: i) A computationally efficient prediction pipeline for protein structures
needs to be developed and tested on a preferably unbiased data set. In particular, the limitations in
conformation sampling and in the approximation of the Gibbs free energy differences between the
sampled conformations need to be identified. ii) Methods for the integration of experimental data
for the purpose of model discrimination and structure validation have to be developed. In addition,
it needs to be evaluated to what extent sparse experimental data is able to overcome problems in the
approximation of the Gibbs free energy differences. iii) As opposed to the prediction of a singular
model, an ensemble prediction pipeline must be able to cover all conformations with a significant
population size within a limited number of CPU cycles. In consequence, methods need to be developed
to speed up the conformation sampling. iv) Protocols for the prediction of protein structures, protein
ensembles, and protein dynamics from limited experimental data need to be established and evaluated
on biologically relevant systems.

This work, depicted in the following chapters, provides a discussion ofmethods and protocols relevant
to evaluating aforementioned items. Chapter II on the following page presents and discusses a de novo
protein structure prediction pipeline that was evaluated in the CASP experiment. This is followed by a
description and evaluation of a protocol for using SDSL-EPR distance and accessibility measurements
for membrane protein structure prediction in chapter III on page 29. Chapter IV on page 48 details a
method to incorporate data from XL-MS experiments into protein structure prediction. Additionally,
this chapter discusses what spacer length is optimal for maximizing the obtainable structural infor-
mation. This is followed by a discussion and evaluation of a method for the rapid sampling of loop
conformations using conformation hashing in chapter V on page 67. The subsequent chapter VI on
page 83 evaluates to what extent limited experimental data from EPR experiments can overcome prob-
lems in the approximation of Gibbs free energy differences between the sampled conformations. This
is followed by two chapters detailing protocols and results for the structure, ensemble, and dynamics
predictions of the proteins ExoU (chapter VII on page 99) and EmrE (chapter VIII on page 111). The
body of this work is concluded by a discussion of the presented results and the future directions in
chapter IX on page 126.
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CHAPTER II
EVALUATIONOF BCL::FOLD INTHE CASP11 EXPERIMENT

This chapter is based on the publication “CASP11 – An Evaluation of a Modular BCL::Fold-Based
Protein Structure Prediction Pipeline”.1 Axel W. Fischer contributed to the development of the protein
structure prediction pipeline, performing the experiment, analyzing the data, and writing the article.

In silico prediction of a protein’s tertiary structure from its primary structure remains an
unsolved problem. The community-wide CASP experiment provides a double-blind study to
evaluate improvements in protein structure prediction algorithms. We developed a protein
structure prediction pipeline employing a three-stage approach, consisting of low-resolution
topology search, high-resolution refinement, and MD simulation to predict the tertiary struc-
ture of proteins from the primary structure alone or including distance restraints either from
predicted residue-residue contacts, NMR-nuclear overhauser effect (NOE) experiments, or
XL-MS data. The protein structure prediction pipeline was evaluated in the CASP experiment
2014 (CASP11) on twenty regular protein targets as well as thirty-three “assisted” protein
targets, which also had distance restraints available. Although the low-resolution topology
search module was able to sample models with a global distance test total score (GDT_TS)
greater than 30% for twelve out of twenty protein targets, it was frequently not possible to
select the most accurate models for refinement, resulting in a general decay of model quality
over the course of the prediction pipeline. In this study, we provide a detailed overall analysis,
study one target protein in more detail as it travels through the protein structure prediction
pipeline, and evaluate the influence of limited experimental data on the prediction accuracy.

II.1. Introduction

In silico prediction of a protein’s tertiary structure from its primary structure remains an unsolved
problem. The vast size of the conformational space that needs to be sampled with a limited number of
CPU cycles requires simplifications in sampling and scoring, often in conjunction with a simplified
representation of the protein. Consequently, the depth of the native energyminimum is reduced, making
it difficult to distinguish it from alternative energy minima.81–85 The limited sampling density results in
an intrinsic, minimal deviation of the conformations sampled from the lowest energy conformation
that exists in each region of the conformational space further adding to the uncertainty.81,83 In addition,
the environment of the protein — the cytoplasm or the membrane — is represented in an implicit and
static way, adding another layer of inaccuracy to free energy evaluation.

The de novo protein structure prediction algorithm BCL::Fold59 was developed as part of the BCL
to overcome aforementioned problems and efficiently predict the topology of larger proteins with up
to 400 residues. The necessary complexity reduction of the sampling space is achieved by assembling
predicted SSEs using a Monte Carlo (MC) algorithm and omitting more flexible loop regions. The
energy evaluation of the sampled models is performed using knowledge-based scoring functions,60
which provide a rapid way to approximate the free energy of the sampled conformations. In a previous
study, it was demonstrated that BCL::Fold is able to efficiently sample the topologies of larger proteins.86
Problems in model discrimination, which can arise from necessary simplifications made to sampling,
scoring, and system representation, could be compensated for through incorporation of limited experi-
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mental data from EM,68,70,87 NMR spectroscopy,50 EPR spectroscopy,2,7 XL-MS experiments,3 small
angle X-ray and neutron scattering,88 and predicted residue-residue contacts.

To evaluate the accuracy of the described protein structure prediction pipeline, we participated in
the community-wide CASP experiment in 2014 (CASP11), which takes place every two years.89 Due to
its setup as a double-blind study, the CASP experiment provides an impartial benchmark for protein
structure prediction algorithms. The experimentally determined tertiary structures of the benchmark
proteins are withheld from predictors, assessors, and organizers until conclusion of the experiment.
After conclusion of the experiment, the experimentally determined structures are released to predictors
and assessors and the predicted structures are released to the assessors, who determine the accuracy of
the predictions. At the CASP experiment, the amino acid sequences of fifty-five proteins were released
to human predictors as regular targets (T0), i.e., without additional experimental restraints. Several
regular targets were rereleased as “assisted” targets with additional structural information in terms of
predicted residue-residue contacts (TP), only correct residue-residue contacts (TC), NMR-NOE (TS),
and XL-MS restraints (TX). As of June 2015, experimentally determined structures have been released
for thirty regular protein targets. Of those, we predicted the tertiary structure of twenty targets during
the CASP experiment. Therefore, the analyses in this study are based on twenty T0, twelve TP, twelve
TC, eight TS, and one TX protein target (see table II.1 on the following page for a list of all benchmark
proteins).

In section II.2, we describe in detail the protein structure prediction pipeline employed in the CASP
experiment. In addition, we define the different quality metrics used in this study and we introduce the
subset of the CASP benchmark set analyzed in this study. Section II.3 on page 20 reports the accuracy
results for the different pipeline modules and describes the protein structure prediction pipeline on
hand for one regular target in detail. A major focus is put on the model selection problem and the
resulting model accuracy decay over the course of the prediction pipeline. Section II.4 on page 27
discusses the successes and failures of our pipeline.

II.2. Materials and methods

This section details the different modules of the employed protein structure prediction pipeline —
low-resolution topology search, high-resolution refinement and loop construction, and MD refinement.
This description is followed by a subsection describing how clustering was used to aggregate and transfer
models between the different pipeline modules. The subsequent subsections describe the quality metrics
used to quantify the prediction results in terms of sampling accuracy and model discrimination. This
section is concluded by a summary of the proteins used in this study.

II.2.1. Low-resolution topology search with BCL::Fold

BCL::Fold was specifically developed to predict the topologies of large proteins with a low-resolution
approach. The BCL::Fold method was also specifically designed to complement Rosetta94 by predicting
SSE-only models with likely topologies of the protein and feeding them into Rosetta for loop and side
chain construction as well as high-resolution refinement. The complexity of the conformational space
grows exponentially with the number of residues in the protein, rendering exhaustive sampling of the
conformational space impossible even for proteins with sequence lengths less than 100 residues. Protein
structure prediction groups have come up with different approaches to address this problem. For
example, Rosetta assembles the tertiary structure of proteins by assembling short fragments collected
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Target #aas #α #β CO PDB Res.
(Å)

Predicted
as

Baker
(%) Zhang

(%) Kihara
(%)

T0759 113 5 6 24 4Q28 2.6 — 38 40 32
T0761 252 5 13 55 4PW1 2.1 TP,TS,TC 14 15 16
T0763 134 3 11 52 4Q0Y 1.7 TP,TS,TC 15 19 18
T0765 98 3 4 59 4PWU 2.5 — 74 79 47
T0767 296 8 15 57 4QPV 1.8 TP,TS,TC,TX 13 16 15
T0769 112 2 4 44 2MQ8 4.3 — 75 81 74
T0771 186 3 10 56 4QE0 1.9 — 23 24 22
T0781 390 12 17 75 4QAN 2.1 — 17 17 11
T0783 411 14 20 52 4CVH 2.4 — 44 47 44
T0785 145 1 9 30 4D0V 1.7 TP,TS,TC 26 27 26
T0794 506 6 28 61 4CYF 2.3 TP,TS,TC 45 44 36
T0803 520 2 12 34 4OGM 2.2 — 52 40 38
T0814 403 3 38 78 4R7F 2.3 TP,TS,TC 11 15 15
T0818 138 4 12 34 4R1K 2.6 TP,TS,TC 35 42 43
T0831 420 15 2 116 4QN1 2.5 TP,TC 16 16 16
T0832 241 11 0 67 4RD8 1.7 TP,TS,TC 13 17 17
T0834 222 10 6 51 4R7Q 2.0 TP,TC 14 16 20
T0848 326 9 18 50 4R4G 2.6 TP,TC 30 29 28
T0853 152 3 10 38 2MQB 1.0 TP,TC 16 35 31
T0855 119 4 6 37 2MQD 1.3 — 40 45 45

Table II.1.: The proteins used in this study for the CASP benchmark. Twenty regular protein targets from the
CASP benchmark set were used in this study. The proteins covered a wide range of structural features, like the
sequence length (#aas), the number of α-helices and β-strands (#α and #β), as well as the complexity of their fold
quantified through the contact order (CO). Several regular targets were rereleased with limited experimental data in
terms of predicted residue-residue contacts (TP), only correct residue-residue contacts (TC), NMR-NOE restraints
(TS), and XL-MS restraints (TX). GDT_TS-values of the submitted models are shown for three other groups (Baker,90
Zhang,91,92 and Kihara93) for comparison.
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from experimentally determined structures deposited in the PDB. This approach substantially reduces
the complexity of the sampling space because the dihedral angles are not exhaustively sampled. Using
rotamer libraries provides a similar simplification for the side chain conformations. However, even with
mentioned simplifications the size of the conformational space remains too large for many proteins
with more than 100 residues. Additionally, previous studies found that de novo prediction using Rosetta
exhibits a bias towards structures with low CO.95

Unlike Rosetta, BCL::Fold assembles disconnected fragments with limited internal flexibility to
remove this bias. Secondary structure prediction methods are employed to assign the secondary
structure to the primary structure. For the resulting SSEs, initial conformations are created from
idealized dihedral angles (ϕ, ψ): (−60°, −40°) for α-helices and (−135°, 135°) for β-strands. BCL::Fold
assembles the SSEs in the three-dimensional space using an MCM algorithm. Unlike in Rosetta, loop
regions connecting the SSEs are not constructed explicitly, further reducing the complexity of the
sampling and allowing for changing the overall topology in a small number of MC steps. Instead,
the likelihood of the loop being able to close on the current conformation is predicted. Further
complexity reduction is achieved by representing the side chains as “superatoms”, avoiding explicit
sampling of side chain conformations. BCL::Fold has this approach in common with Rosetta and other
modeling approaches. Although these simplifications of the structural representation allow for an
efficient enumeration of different topologies, a high-resolution scoring of the sampled models is no
longer possible. Instead, BCL::Fold employs low-resolution scoring functions to evaluate geometrical
parameters of the sampled models. These scoring functions include the likelihood of closing a loop
given the number of amino acids and the Euclidean distance between two SSEs or if the twist angle
between SSEs allows for side chain interaction among others. Most scoring functions used in BCL::Fold
are knowledge-based, meaning they are derived from statistics over known protein structures deposited
in the PDB and based on the inverse Boltzmann relation that is described in equation (II.1).𝐸 = −𝑅𝑇 ⋅ ln 𝑃o𝑃b (II.1)

where:𝐸 = free energy of the protein structure𝑃o = probability of observing a specific feature𝑃b = probability of observing a specific feature by chance𝑅 = gas constant𝑇 = temperature

The normalization of 𝑃o by 𝑃b is conducted to ensure that favorable states are assigned a negative
score and unfavorable states are assigned a positive score. For example, the scoring function evaluating
the burial of residues quantifies the degree of burial using the neighbor count metric.96 For each amino
acid type, the occurrences of its neighbor count-values were collected from structures deposited in
the PDB. The values were binned and the probability of each bin was computed and used as 𝑃o . The
background probability, 𝑃b , was in this context the normalized sum of all normalized amino acid
exposure distributions.60 The BCL scoring function is the weighted sum of all scoring terms.

II.2.2. Protein structure prediction pipeline

The protein structure prediction pipeline consisted of three modules (figure II.1 on the next page).
The first module consisted of a low-resolution topology search, which applied large-scale structural
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Figure II.1.: Protein structure prediction pipeline used in the CASP experiment. The protein structure prediction
pipeline consisted of three modules — low-resolution topology search from predicted SSEs using BCL::Fold (A),
high-resolution refinement and loop construction using Rosetta (B), and MD refinement using the Amber package
(C).

perturbations to themodel in conjunctionwith a rapid low-resolution scoring function (see sectionA.2.1
on page 159). The second module consisted of a high-resolution structural refinement, which only
applied small-scale structural perturbations to the model in conjunction with a high-resolution scoring
function while also constructing loop regions and placing the side chains (see section A.2.3 on page 161).
The third module consisted of a MD simulation for further structural refinement and evaluation of
model stability. The three modules were connected through filtering and clustering steps to transfer
protein models from one module to the other (see section A.2.2 on page 160 for details).

The protocol for the first module was based on the previously published protein structure prediction
protocol of BCL::Fold for soluble proteins.59 In a first step, the secondary structure prediction methods
Jufo9D,97 PSI-blast based secondary structure PREDiction (PSIPRED),98 and MASP99 were employed
to predict the protein’s secondary structure. The protein’s tertiary structure was subsequently assembled
from the predicted SSEs through an MC sampling algorithm in conjunction with a Metropolis criterion.
After each MC step, the model was evaluated using the weighted sum of multiple knowledge-based
scoring functions including SSE packing, radius of gyration, residue exposure, residue-residue interac-
tions, loop closure geometry as well as residue-residue and SSE-SSE clashes.60 Depending on the score
difference to the previous MC step and the simulated temperature, the new model was either accepted
or rejected by the Metropolis criterion. The MCM optimization was broken down into six stages. The
first five stages consisted of large-scale structural perturbations to search the energy landscape for
minima. The employed perturbations included adding SSEs from the predicted SSE pool, removing
SSEs from the model, large-scale translations and rotations of SSEs as well as the flipping and swapping
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of SSEs and SSE domains. Over the course of the first five stages, the weights of the scores evaluating
clashes between residues and SSEs ramped up from 0 to 125, 250, 375 and 500. The five stages applying
large-scale structural perturbations were followed by one stage of small-scale structural perturbations
to transfer the model to the local energy minimum. If residue-residue contacts, NMR-NOE data, or
XL-MS data were available, the scoring function was extended by the appropriate scoring terms.3,50 For
each protein target, the first module sampled 20 000 SSE-only models without explicitly modeled side
chains or loop regions.

On conclusion of the first module, the models were ranked according to their completeness. The25% to 50% of the models with the lowest completeness were filtered out. The filtering threshold was
chosen in dependence of the maximum completeness achieved throughout the conformation sampling.
For the different targets, 10 000 to 15 000models remained. For the remaining models, clustering was
used to detect limit points in the sampling space, which indicate energy minima. The clustering was
performed using a k-means implementation100 in the Ra package. For the different targets, this resulted
in 10 to 50 clusters. The cluster medoids were subsequently selected as start models for the second
module.

The protocol for the second module was based on Rosetta,94,101 added loop regions and side chains
to the model, and conducted a high-resolution refinement. For each of the models resulting from
the previous clustering step, 1000models were sampled using Rosetta’s CCD algorithm101 followed
by model relaxation using Rosetta’s “relax” application.94 Per target, this module resulted in 10 000 to50 000models.

On conclusion of the second module, the models were ranked according to their Rosetta score and
the 80% of the models with the worst score were discarded. The remaining 2000 to 10 000 models
were clustered according to the same criteria as the first clustering step. After filtering out clusters
with a population of less than 0.5% of all models, this step resulted in 10 to 35 clusters. The cluster
medoids were subsequently selected for high-resolution refinement and stability evaluation through
MD simulations.

The third module consisted of MD simulations using the Amber package.102 Hierarchical clustering
was used to identify the sub-states for each model. Subsequently, a representative of each cluster was
relaxed and scored using Rosetta. Thismodule resulted in 10 to 35models, whichwere visually inspected.
The visual inspection was performed to filter out models with trivial implausibilities, like occlusion of
known binding sites or mechanic frustrations of knows flexible regions. From the remaining models,
five models were selected for submission to the CASP organizers. The selection criterion for this step
were the Rosetta scores of the models.

II.2.3. Using clustering for model selection

The protein-size-normalized root-mean-square-distance (RMSD100) metric103 was used to quantify
the distance between models. The metric can be computed from the Cα-root-mean-square-distance
(RMSD) and the protein’s sequence length 𝑙 as defined in equation (II.2).𝑅𝑀𝑆𝐷100 = 𝑅𝑀𝑆𝐷1 + log√𝑙/100 (II.2)

where:

ahttps://www.r-project.org
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𝑅𝑀𝑆𝐷100 = protein-size-normalized 𝑅𝑀𝑆𝐷𝑅𝑀𝑆𝐷 = root-mean-square distance of the Cα-coordinates𝑙 = number of residues in the protein

The set of all models was sorted by their score and divided into the disjoint sets high and low. The set
low contained the 20% of the models with the most favorable score, whereas the set high contained the
remaining models. Both sets were clustered independently. The number of clusters was optimized to
minimize the cluster radii and to maximize the separation between clusters, with an allowed maximum
radius of 5Å. Clusters that contained less than 0.5% of all models were also filtered out. The clustering
after loop construction and side chain placement was conducted the same way as the clustering after
the low-resolution topology search, but only the 20% of the models with the most favorable Rosetta
score were considered.

II.2.4. Molecular dynamics simulations

All simulations were prepared using Tleap102 and simulations were performed with the Amber pack-
age102 using the ffSB98ildn force field.104 Each refinement target was solvated in a 10Å TIP3P105 water
box with neutralizing Na+ or Cl– ions then equilibrated following a modified procedure.106 First, the
solvent was minimized for 500 steps using steepest descent, followed by 5000 steps of conjugate gradient
minimization. Next, the systems were heated from 100K to 300K over 20 ps with 500 kcalmol−1 Å−2
restraints on the protein followed by 30 ps of NPT at 300K and 1 atm pressure. This process was
repeated with restraints of 100, 50, 25, 12.5 and 1 kcalmol−1 Å−2 . After equilibration, each structure
consisted of a 50 ns NPT production run at 300K with periodic boundary conditions using Langevin
dynamics107 with a collision frequency of 5 ps−1 . The electrostatics were calculated using particle
mesh-ewald108 while a 10Å cut-off was used to calculate long-range interactions. The SHAKE109,110

algorithm constrained all covalent bonds with hydrogen atoms allowing a 2 fs time step. Each produc-
tion trajectory was analyzed using Cpptraj.111 Hierarchical clustering using complete-linkage was used
to identify all sub-states for each model. Subsequently, one representative from each cluster was scored
with the Rosetta94 application.

II.2.5. Evaluation of the prediction accuracy

The prediction results were evaluated in terms of aampling accuracy and model discrimination. The
sampling accuracy was quantified using the GDT_TS112 metric. The GDT_TS of a model is the average
percentage of Cα-coordinates in the model with a maximum deviation of 1Å, 2Å, 4Å and 8Å from the
experimentally determined structure. The GDT_TS is computed as 𝐺𝐷𝑇_𝑇𝑆 = (𝑃1 + 𝑃2 + 𝑃4 + 𝑃8)/4
with𝑃𝑖 being the percentage of residues in themodel that can be superimposedwithmaximumdeviation
of iÅ from the experimentally determined structure. The model discrimination is quantified through
the enrichment metric, which equates to the percentage of the most accurate models that can be selected
by the scoring function (see section II.2.6).

II.2.6. Computation of enrichments

The enrichment describes the correlation between model accuracy and score; thus, quantifying how
well the scoring function is able to distinguish accurate models from inaccurate models. To compute
the enrichment, the set of the sampled models 𝑆 is divided into the disjoint subsets 𝑃 (positive) and𝑁
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(negative). The positive set contains the 10% of the models in 𝑆, which have the lowest RMSD100-value.
The negative set contains the remaining models in 𝑆. In a second step, 𝑆 is divided again into the disjoint
subsets 𝑃𝑆 (positive score) and 𝑁𝑆 (negative score). The set 𝑃𝑆 contains the 10% of the models in𝑆, which have the best score, whereas the set𝑁𝑆 contains the remaining models. By computing the
intersection 𝑇𝑃 = 𝑃 ∩ 𝑃𝑆, the set of the models, which can be identified by the scoring function, can be
calculated. The enrichment is then calculated as described in equation (II.3).𝑒 = |𝑇𝑃||𝑃| ⋅ 10 (II.3)

where:𝑒 = enrichment𝑃 = 10%most accurate models according to their GDT_TS-value𝑇𝑃 = 10%most accurate models that are also among the 10% best scoring models

Thus, the enrichment metric describes, which fraction of the most accurate models can be identified
by the scoring function. Therefore, the enrichment can span a range from 0 to 10, with 1 indicating
random selection, enrichments greater than 1 indicating that the scoring function has the ability to
recognize native-like models, and an enrichment of less than 1 indicating that the scoring function is
selecting against accurate models

II.2.7. The CASP benchmark subset used in this study

The analyses in this study are based on twenty soluble proteins released as targets during the CASP
experiment. The twenty benchmark proteins covered a wide range of structural properties (table II.1
on page 14), making them an appropriate test case for protein structure prediction algorithms. The
sequence length ranged from 109 to 470 residues and the secondary structure content ranged from 6
to 41 SSEs. SSE definitions were obtained through the algorithm Dictionary of Secondary Structure
of Proteins (DSSP).113 The α-helical content ranged from 1 to 15 SSEs, whereas the β-strand content
ranged from 0 to 38 SSEs. The fold complexity quantified through the CO metric114 ranged from 34
to 116. Twelve of the twenty regular targets were also studied using additional structural data such as
residue-residue contacts, NMR-NOE restraints, or XL-MS restraints (table II.1 on page 14).

II.2.8. The available experimental data

For twelve protein targets, limited experimental data was provided by the CASP organizers. The
experimental data included predicted residue-residue contacts (TP and TC), NMR-NOE restraints
(TS), and XL-MS restraints (TX). The residue-residue contacts were predicted by research groups
participating in the CASP contact prediction experiment and included correct and incorrect residue-
residue contacts for the TP targets. After completion of the TP predictions, a subset of the contacts only
containing correct residue-residue contacts was released. The NMR-NOE restraints were simulated by
Gaetano Montelione’s group and incorrect restraints were added purposefully. The XL-MS restraints
were determined experimentally by Juri Rappsilber’s group.
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Figure II.2.: Sampling accuracy and model discrimination for the CASP protein targets. (A) GDT_TS-value of
the most accurate model for each regular target sampled by the low-resolution topology search in dependence of the
sequence length. (B) Model discrimination for each regular targets as quantified through the enrichment metric in
dependence of the proteins’ sequence lengths. The coloring is according to the proteins’ CO-values.

II.3. Results

This section is divided into subsections discussing the sampling accuracy and model discrimination of
the low-resolution topology search module, followed by a subsection discussing the general decay of
model accuracy over the course of the protein structure prediction pipeline. Subsequently, a case study
for target T0769 describes in detail the processing of the data through the protein structure prediction
pipeline. This section is concluded by a subsection describing the impact of different types of limited
experimental data on protein structure prediction accuracy.

II.3.1. BCL::Fold sampled models with a GDT_TS greater than 30% for twelve out of twenty regular
targets

To quantify the ability of BCL::Fold to sample the topology of the target proteins, the GDT_TS metric
was used. The GDT_TS metric computes the average percentage of Cα-coordinates in the model that
deviatemaximally 1Å, 2Å, 4Å and 8Å from the experimentally determined structure (see section II.2.5
on page 18 for details). For twelve out of twenty regular targets, BCL::Fold sampled models with a
GDT_TS-value greater than 30% (table A.1 on page 157 and figure II.2). The average GDT_TS-value
over all twenty regular targets was 36% (table A.1 on page 157). The success in sampling accurate
models strongly depended on the length of the protein’s sequence (R-value of −0.8, table A.1 on page 157
and figure II.2). Notably, there was no dependence of the sampling accuracy on the complexity of the
protein’s topology as quantified through the CO metric (R-value of 0.0).
II.3.2. The BCL::Fold scoring function was frequently unable to select accurate models

After conclusion of the first pipeline module — the low-resolution topology search — models were
selected for high-resolution refinement and loop construction with Rosetta. Although the model
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Figure II.3.: Model accuracy decay over the course of the CASP protein structure prediction pipeline. (A) The
model accuracy decayed over the course of the protein structure prediction pipeline. The black bars show the average
GDT_TS-value of the most accurate model over all twenty regular targets after each pipeline module. The lines show
the development of model accuracy for each target over the course of the pipeline. The coloring is according to the
number of residues in the protein target. (B) Same as in (A) for four selected targets with a GDT_TS-value of greater
than 40% after the first clustering step.

selection was conducted using a clustering approach, how well the BCL::Fold scoring function identifies
accuratemodels remains an interesting question. The ability of the scoring function to select the accurate
models among the sampled models was quantified using the enrichment metric. The enrichment metric
computes the percentage of the most accurate models that can be selected by the scoring function (see
section II.2 on page 13 for a definition).

Over all twenty regular targets the average enrichment was 1.4 (table A.1 on page 157), meaning that14% of the most accurate 10%models could be selected by the BCL::Fold scoring function, which is
only slightly better than random selection. There was no clear correlation between the enrichment and
the sequence length, the complexity of the protein’s fold, or the number of α-helices and β-strands in
the protein (figure A.1 on page 155). However, the model selection in our pipeline was not conducted
through direct usage of the BCL score, but through clustering to identify limit points, which indicate
score minima. To evaluate the success of this approach, we computed for each protein target the
percentage of models that had a GDT_TS-value greater or equals 40%, assuming with a high enough
percentage, those models can be detected through clustering. A density in this context could be seen as
significant if it surpassed the population cutoff of 0.5% during the first clustering step. For the regular
targets T0769, T0785, T0803, T0853, and T0855 significant densities accounting for 54%, 1%, 47%,4% and 1% of all models could be detected. For the remaining targets, the percentages of models with
a correct topology were below 0.5%. Notably, for four out of the five of the aforementioned protein
targets, models with a GDT_TS-value greater or equals 40% could be detected through clustering
(table A.1 on page 157).
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II.3.3. Model accuracy decayed over the course of the pipeline

The three differentmodules of our protein structure prediction pipeline were connected through filtering
and clustering. In an optimal scenario, the most accurate models would be detected through clustering
and transferred to the subsequent module. However, ambiguities in the employed scoring function and
the consequently biased sampling lead to difficulties in detecting themost accuratemodels. In clustering,
native-like conformations become detectable if a sufficiently high density of models exists around it.
For the four targets T0769, T0785, T0853, and T0855, models with a GDT_TS-value greater or equals40% could be detected through clustering after the low-resolution topology search and transferred
to the second module for loop construction and side chain placement (table A.1 on page 157 and
figure II.3 on the previous page). The average GDT_TS-value of the most accurate models for the four
regular targets developed from 56% to 47%, and to 39% over the course of the low-resolution topology
search, the first clustering, and the loop construction and side chain placement steps (figure II.3 on
the preceding page). At general, a decay of model accuracy was observable over the course of the
protein structure prediction pipeline (table A.1 on page 157 and figure II.3 on the preceding page). The
average GDT_TS-values over all twenty regular targets dropped from 36% (low-resolution topology
search) to 26% (first clustering), to 24% (loop construction and side chain placement), to 20% (second
clustering), and to 18% (MD refinement). Expectedly, the most significant loss in model accuracy
happened during the transition for the low-resolution topology search to loop construction and side
chain placement where the average GDT_TS-value over all twenty regular targets dropped from 36%
to 24%. A significant improvement through MD refinement could only be observed for regular target
T0769 for which the GDT_TS-value of the most accurate model improved from 66% to 77%. For
the other regular targets, the GDT_TS-value of the most accurate start model was 27% or less and
MD refinement consequently was not able to improve the accuracy of the model. For the previously
mentioned regular target T0765, the most accurate models sampled by the loop construction and side
chain placement module could not be detected through the clustering and filtering steps before the MD
refinement. Consequently, the accuracy of the starting model for the MD refinement was low and the
resulting models also exhibited low structural similarity to the experimentally determined reference
structure.

II.3.4. A case study of regular target T0769

The regular target T0769 was a 112-residue-long soluble protein consisting of two α-helices and fourβ-strands, resembling a ferredoxin fold. The first module of our protein structure prediction pipeline —
the low-resolution topology search — sampled models with GDT_TS-values of up to 74% (table A.1 on
page 157 and figure II.4 on the following page). An enrichment of 3.3was observed indicating that 33%
of the 10%most accurate models could be selected by the scoring function. About 69% of all models
had the correct topology. Through clustering, a model with a GDT_TS-value of 65% could be detected
(figure II.4 on the next page). In the second module of the pipeline, the loop regions were constructed
and the side chains were placed. The most accurate model resulting from this pipeline module arrived
at a GDT_TS-value of 69% (figure II.4 on the following page). The models resulting from the second
module were clustered again and the cluster medoids selected for MD refinement. The most accurate
medoid had a GDT_TS-value of 66%. Upon conclusion of the MD simulations, the refined models
were rescored using Rosetta and the model with the most favorable Rosetta score was designated as
final model. The final model arrived at a GDT_TS-value of 77% (figure II.4 on the next page).
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Figure II.4.: Case study of regular target T0769. (A) Results for the low-resolution topology search. Each black
dot represents one sampled model. The NMR structure is shown in red. The green dots are the cluster medoids
selected after the topology search. (B) Most accurate model after the topology search (rainbow) superimposed with
the NMR structure (grey). (C) Results for high-resolution refinement and loop construction. Each black dot stands
for one sampled model. The NMR structure is shown in red. The green dots are the cluster medoids selected after the
high-resolution refinement. (D) Most accurate model after the high-resolution refinement (rainbow) superimposed
with the NMR structure (grey). (E) Development of the GDT_TS of the most accurate model over the course of the
pipeline. (F) Most accurate model after the molecular dynamics refinement (rainbow) superimposed with the NMR
structure (grey).
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Figure II.5.: Sampling accuracy and model discrimination for “assisted” targets. (A,B) The average GDT_-
TS-values of the most accurate models (μ10) and the enrichments are compared for protein structure prediction
without restraints (T0), with predicted residue-residue contacts (TP), only correct residue-residue contacts (TC),
NMR-NOE restraints (TS), and XL-MS restraints (TX).

II.3.5. The impact of limited experimental data on protein structure prediction accuracy

If none of the participating groups in the CASP experiment was able to accurately predict the tertiary
structure of a regular target, this target was rereleased as “assisted” target and additional limited
experimental data was provided. Of the twenty regular targets analyzed in this study, twelve targets were
rereleased as “assisted” targets (table II.1 on page 14). Of those, predicted residue-residue contacts (TP)
and only correct residue-residue contacts (TC) were provided for all twelve assisted targets. NMR-NOE
data (TS) was provided for eight assisted targets, and XL-MS data was provided for one assisted target
(TX). To evaluate the impact of different kinds of experimental data on the sampling accuracy of the
low-resolution topology search module, we compared the average GDT_TS-value of the ten most
accurate models (μ10) for each restraint type and protein target. The comparison is based on ten models
instead of onemodel to account for the randomness of the sampling. The impact of limited experimental
data on model discrimination was evaluated by comparing the achieved enrichments (see section II.2
on page 13).

For the predicted residue-residue contacts (TP), a data set that also includes incorrect residue-
residue contacts, only minor improvements in sampling accuracy could be observed. Whereas the
average μ10-value over the twelve TP targets was 30%when predicting without residue-residue contacts,
incorporating residue-residue contacts improved the average μ10-value to 33% (table A.2 on page 158
and figure II.5). There was also no beneficial impact on model discrimination. Actually, the average
enrichment-value dropped from 1.3 to 1.2when using predicted residue-residue contacts. Incorporation
of only correct residue-residue contacts (TC), had a more significant impact on the sampling accuracy,
which is demonstrated by an improved average μ10-value of 38%. A similar beneficial impact could
be observed on model discrimination, which is demonstrated by an improved enrichment-value of
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1.7 (table A.2 on page 158 and figure II.5 on the previous page). NMR-NOE restraints (TS) were
only available for eight protein targets. For those eight protein targets, only minor improvements in
sampling accuracy and model discrimination could be observed. The average μ10- and enrichment-
values improved from 29% to 30% and from 1.2 to 1.4, when compared to the prediction results without
using additional structural information (see table A.2 on page 158 and figure II.5 on the previous page
for details). XL-MS restraints (TX) were only available for one regular target (T0767) analyzed in
this study. For this protein target, incorporation of XL-MS data also only had a minor impact on the
sampling accuracy and model discrimination. The μ10- and enrichment-values improved from 24% to26% and from 1.1 to 1.2 (see table A.2 on page 158 and figure II.5 on the previous page).

II.3.6. The low-resolution topology search fails in some instances to sample the correct topology

In an MCM algorithm, the sampling depends on the scoring because the probability with which an MC
step is accepted depends on the score difference to the previous MC step.59 To further investigate
limitations in sampling and scoring, we relaxed the experimentally determined structures in the
BCL::Fold force field. In this process, small structural perturbations are applied to the experimentally
determined structure in order to find a structurally similar conformation with a more favorable BCL
score. For sixteen out of the twenty benchmark proteins (80% of all targets), the relaxation resulted
in structurally similar conformations (GDT_TS greater than 70%), which had a favorable BCL score
(among the top 20% of the sampled models). We conclude that these topologies should therefore be
selectable through the BCL scoring function and within the sampling range of BCL::Fold (figure II.6
on the following page and figure A.2 on page 156). For T0781, conformations with a GDT_TS-value
greater than 80% exist that score as favorably as the best scoring de novo sampled conformations
during the CASP experiment (see figure II.6 on the following page). To further investigate, why none
of the well scoring conformations were sampled, we folded an additional 500 000 conformations for
T0781 with additional correct residue-residue contact restraints to further limit the size of the sampling
space. Despite that, it was not possible to sample a conformation with a GDT_TS greater than 25%,
which indicates that the sampling algorithm needs to be revisited. Visual inspection of a clustered
representation of the sampled models revealed that the SSEs in all cluster medoids exhibited a strong
bias towards Rossmann-like115,116 α-β-α-sandwich topologies (figure II.6 on the next page), whereas
the experimentally determined structure (PDB entry 4QAN) is categorized as α-β-roll, according to a
search of the CATH117 database. In a future step, the sampling of β-strand containing topologies needs
to be thoroughly revisited.

For four benchmark targets (T0759, T0771, T0818, and T0831, see figure A.2 on page 156), the
relaxation of the experimentally determined structure did not result in conformations with a score
as favorable as the score of the de novo folded models. Whereas this did not pose any problem for
target T0818 because conformations with favorable score and GDT_TS-value greater than 40% exist
(figure A.2 on page 156), this could have had detrimental effect on the structure prediction for the other
three targets. The remaining targets are outliers to the statistics the BCL::Fold scoring function is based
on (see section II.2 on page 13 for detail). The scores of the targets T0759 and T0831 (PDB entries 4Q28
and 4QN1) are heavily penalized for their large radius of gyration — the spatial extent of the proteins’
tertiary structures with respect to their sequence lengths.60 The radius of gyration score introduces a
bias towards globular folds and it will have to be evaluated on a large benchmark set if turning off this
scoring term will have a negative impact on structure prediction at general. For the remaining target
T0771 (PDB entry 4QE0), multiple properties of the experimentally determined structure — burial of
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Figure II.6.: Limitations in the conformational sampling hinder structure prediction for regular target T0781.
(A) Experimentally determined structure of T0781 (PDB entry 4QAN, grey) superimposed with the same structure
after relaxation with the BCL scoring function (rainbow). (B) Best scoring de novo model predicted by BCL::Fold.
(C) Shown are the BCL score of the models (y-axis) and the GDT_TS of the model relative to the experimentally
determined structure (x-axis). Relaxing the experimentally determined structures in the BCL::Fold scoring function
reveals native-like conformations with a favorable score (red dots). In comparison, the de novo folded conformations
observed during the CASP experiment (black dots) achieve comparable scores but don’t include conformations, which
are structurally similar to the experimentally determined structure.
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residues, residue-residue interactions, SSE packing — scored worse than the de novo predicted models
and the scoring function was not able to identify a native-like conformation. This target represents
an outlier to our statistics over protein structure properties and would have to be complemented with
experimental restraints.

II.4. Discussion

II.4.1. Necessary simplifications in the topology search hinder protein structure prediction

The vast size of the conformational space does not allow for exhaustive sampling of all possible con-
formations of a protein’s chain. BCL::Fold reduces the complexity of the search space by assembling
the protein’s tertiary structure from idealized SSEs and only allowing for limited deviations from the
idealized dihedral angles. Although this approach reportedly worked well for α-helical proteins59 and,
in particular, membrane proteins,50 the protein targets in the CASP benchmark set contained many
proteins with a large percentage of β-strand content (table II.1 on page 14). Many of those proteins
contained strongly bent β-strands, making it impossible for the low-resolution topology search module
to sample and select models having the correct topology (table A.1 on page 157 and figure II.2 on
page 20). Although BCL::Fold was able to sample models with a GDT_TS-value of at least 40% for
seven out of twenty regular targets, only four of those targets had accurate models in a sufficient density
to be detectable through clustering (see table A.1 on page 157 and figure II.3 on page 21). Consequently,
future work needs to be focused on the development of efficient algorithms to assemble the topologies
of β-sheet domains and domains significantly deviating from idealized dihedral angles at general.

II.4.2. The high-resolution refinement protocol requires additional optimization

Over the course of the protein structure prediction pipeline, a general decay of model accuracy was
observed (table A.1 on page 157 and figure II.3 on page 21). During the loop construction and side chain
placement step using Rosetta, the average GDT_TS-value of the most accurate models over all twenty
regular targets dropped from 27% to 24% (figure II.3 on page 21). Only for one regular target (T0765),
a significant improvement in model accuracy could be observed. Those findings are less surprising
since the Rosetta loop construction and refinement step, only applies small-scale perturbations to the
start model, and therefore did not further explore the conformational space to transform a topologically
incorrect model into an accurate conformation. Consequently, future work needs to be focused on the
development of more accurate scoring functions to increase the sampling density of accurate models. A
similar observation was made for the atomic-detail MD refinement step. The average GDT_TS-value
of the most accurate models over all twenty regular targets dropped from 20% to 18%. A significant
improvement in model accuracy was only observed for one regular target (T0769), for which the
GDT_TS-value of the most accurate model improved from 66% to 77% (figure II.3 on page 21 and
figure II.4 on page 23). However, we cannot necessarily conclude that MD refinement is unable to
recover from inaccurate starting models. Previous work by the groups of David E. Shaw, Chaok Seok,
and J. Andrew McCammon demonstrated that MD refinement is able to improve the accuracy of a
model.72,118–121 An evaluation of the CASP refinements through MD also reports some success.122
Whereas Shaw describes a successful approach using simulations at least 100 μs long, we employed50 ns simulations. In conjunction with the low accuracy of our start models, this could explain why
our MD refinement was in most cases unable to significantly improve the accuracy of the model. In
upcoming studies, we will therefore employ longer simulations to allow for sufficient coverage of the
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conformational space. Additional influence factors originate in the employed force field, which will
have to be investigated in future studies.

II.4.3. Sampling problems could not be overcome through limited experimental data

Incorporation correct residue-residue contacts (TC) into the scoring function improved the averageμ10-values for the twelve “assisted” targets from 32% to 40% (table A.2 on page 158 and figure II.5 on
page 24). Statistically significant improvements in sampling accuracy were only observed for the six
targets T0763, T0814, T0818, T0832, T0848, and T0853, for which an average improvement of 13%
was observed. For the remaining targets, only minor improvements in sampling accuracy were ob-
served, indicating that a conformation with high structural similarity to the experimentally determined
structure is not part of the sampling space. The remaining twelve targets, for which no significant
improvement could be observed, were either large or had contained a large number of β-strands. Ex-
pectedly, improvements in sampling accuracy and model discrimination by using NMR-NOE restraints
and predicted residue-residue contact restraints were less pronounced, because those restraint sets
also contained incorrect distance restraints. The NMR-NOE restraints were simulated and incorrect
restraints were added purposefully by the CASP organizers (see section II.2 on page 13). Exemplary
are the targets T0818 and T0832 for which incorporation of correct residue-residue contacts resulted
in an improvement of the μ10-values from 41% and 31% to 52% and 46%, whereas incorporation
of NMR-NOE and predicted residue-residue contact restraints did not result in any improvement
(table A.2 on page 158 and figure II.5 on page 24). Consequently, future work needs to be also focused
on developing methods to properly handle incorrect experimental data.
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CHAPTER III
MEMBRANE PROTEIN STRUCTURE PREDICTION FROM EPR DATA

This chapter is based on the publication “BCL::MP-Fold: Membrane protein structure prediction
guided by EPR restraints”.2 Axel W. Fischer contributed to the development of the prediction pipeline,
performing the experiment, analyzing the data, and writing the article.

For many membrane proteins, the determination of their topology remains a challenge for
methods like X-ray crystallography and NMR spectroscopy. EPR spectroscopy has evolved as
an alternative technique to study structure and dynamics of membrane proteins. The present
study demonstrates the feasibility of membrane protein topology determination using limited
EPR distance and accessibility measurements. The BCL::MP-Fold algorithm assembles
SSEs in the membrane using a MCM approach. Sampled models are evaluated using
knowledge-based potential functions and agreement with the EPR data and a knowledge-
based energy function. Twenty-nine membrane proteins of up to 696 residues are used to test
the algorithm. The RMSD100-value of the most accurate model is better than 8Å for twenty-
seven, better than 6Å for twenty-two, and better than 4Å for fifteen out of twenty-nine
proteins, demonstrating the algorithm’s ability to sample the native topology. The average
enrichment could be improved from 1.3 to 2.5, showing the improved discrimination power
by using EPR data.

III.1. Introduction

Membrane protein structure determination continues to be a challenge. About 22% of all proteins are
membrane proteins and an estimated 60% of pharmaceutical therapies target membrane proteins.125
However, only 2.5% of the proteins deposited in the PDB are classified as membrane proteins.36,126
Protein structures are typically determined to atomic detail using X-ray crystallography or NMR
spectroscopy. However, membrane proteins provide challenges for both techniques.40 It is difficult to
obtain quantities of purified membrane proteins sufficient for both X-ray crystallography and NMR
spectroscopy. The two-dimensional nature of the membrane complicates crystallization in a three-
dimensional crystal lattice. In order to obtain crystals, the target protein is often subjected to non-
native-like environments and/or modifications such as stabilizing sequence mutations.127,128 Additional
problemsmay evolve frompost-translationalmodification such as phosphorylation.129 Manymembrane
proteins continue to be too large for structure determination by NMR spectroscopy.130 Even if the
target itself is not too large, the membrane mimic adds significant additional mass to the system.131
Despite wonderful successes in determining the structure of high-profile targets, it is critical that the
structural features observed with one technique are confirmed with an orthogonal technique.132

EPR spectroscopy in conjunction with SDSL provides such an orthogonal technique for probing
structural aspects ofmembrane proteins.133–135 Advantages of EPR spectroscopy include that the protein
can be studied in a native-like environment and that only a relatively small sample amount is required.
In addition, EPR spectroscopy can be used to study large proteins. Although EPR is a versatile tool for
probing membrane protein structure, it has its own challenges: at least one unpaired electron (spin
label) needs to be introduced into the protein. Typically, this requires mutation of all cysteine residues
to either alanine or serine, introduction of one or two cysteines at the desired labeling sites, coupling to
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the thiol-specific nitroxide spin label S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl
methanesulfonothioate (MTSL), and functional characterization of the protein. As a result, data sets
from EPR spectroscopy are sparse containing only a fraction of measurements per residue in the target
protein. EPR is not a high-throughput technique.

EPR provides two categories of structural information important to membrane protein topology:
a) EPR can provide information about the local environment of the spin label.136–138 The accessibility
of the spin label to oxygen probe molecules indicates the degree of burial of the spin label within the
protein in the transmembrane region. Accessibility measurements are typically performed in a sequence
scanning fashion. This provides an accessibility profile over a large portion of the sequence.139,140 The
accessibility profile tracks the periodicity of SSEs as individual measurements rise and fall according
to the periodic exposure and burial of residues. The exposed face of an SSE can be determined,141
a task that is difficult within the hydrophobic environment of the membrane. b) When two spin
labels are introduced, EPR can measure inter-spin label distances, routinely of up to 60Å through
the DEER experiment.142,143 EPR distance measurements have been demonstrated on several large
membrane proteins including MsbA,144 rhodopsin,145 and LeuT.146 Given the sparseness of data, EPR
has been frequently used to probe different structural states of proteins.147,148 Changes in distances and
accessibilities track regions of the protein that move when converting from one state into another. Such
investigations rely upon an already determined experimental structure to define the protein topology
and provide a scaffold to map changes observed via EPR spectroscopy.

One critical limitation for de novo protein structure prediction from EPR data is that measurements
relate to the tip of the spin label side chain where the unpaired electron is located whereas information of
the placement of backbone atoms is needed to define the protein fold. For distance measurements, this
introduces an uncertainty in relating the distance measured between the two spin labels to a distance
between points in the backbone of the protein. This uncertainty, defined as the difference between
the distance between the spin labels and the distance between the corresponding Cβ-atoms is up to12Å.78,149 To address this uncertainty we previously introduced a CONE model, which provides a
knowledge-based probability distribution for the Cβ-atom distance given an EPR-measured spin label
distance.78,150 Using the CONE model, just twenty-five or even eight EPR measured distances for
T4-lysozyme, enabled Rosetta to provide models matching the experimentally determined structure to
atomic detail including backbone and side chain placement.78 Further success was reported by Yang et
al.,151 who successfully determined the tertiary structure of a homodimer by using inter-chain restraints
determined from NMR and EPR experiments. These studies demonstrate that de novo prediction
methods can supplement EPR data sufficiently to allow structure elucidation of a protein.

De novo membrane protein structure prediction was demonstrated with Rosetta using twelve proteins
with multiple transmembrane helices (TMHs).152 The method was generally successful in determining
the membrane topology of small proteins with up to 278 residues. However, the results of the study
suggest that sampling of large membrane topologies requires methods that directly sample structural
contacts between sequence-distant regions of the protein.153

For this purpose, we developed an algorithm as part of the BCLa that assembles protein topologies
from predicted SSEs termed BCL::Fold.59 The omission of loop regions in the initial protein folding
simulation allows sampling of structural contacts between regions distant in sequence and thereby
rapidly enumerates all likely protein topologies. A knowledge-based potential guides the algorithm
towards physically realistic topologies. The algorithm is particularly applicable for the determination of

ahttp://www.meilerlab.org/bclcommons
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membrane protein topologies as transmembrane spans are dominated by regularly ordered SSEs.50 Loop
regions and amino acid side chains can be added in later stages of modeling structure. The algorithm
was tested in conjunction with medium-resolution density maps69 achieving models accurate at atomic
detail in favorable cases.87 The algorithm was also evaluated in conjunction with sparse NMR data.154

Thepresent study combines EPR distance and accessibility restraints with the BCL::Fold SSE assembly
methodology for the prediction of membrane protein topologies. In the following sections we first
introduce scores specific to EPR distances and accessibilities and demonstrate their ability to enrich for
accurate models. Following that, we describe the approach and results for assembling twenty-three
monomeric and six multimeric membrane proteins guided by EPR distance and accessibility restraints.
The results demonstrate that the inclusion of protein specific structural information improves the
frequency with which accurate models are sampled and greatly improves the discrimination of incorrect
models.

III.2. Materials and methods

In this section, we first describe the set of proteins that was used to evaluate the performance of the
algorithm. This is followed by sections describing the simulation procedures for EPR distance and
accessibility restraints and how observed EPR was translated into structural restraints that could be
used by the BCL::Fold algorithm. This section is concluded by a detailed description of the BCL::Fold
algorithm and the conducted benchmark.

III.2.1. Compilation of the benchmark set

Twenty-ninemembrane proteins of known structure were used to demonstrate the ability of EPR specific
scores to improve sampling during protein structure prediction as well as selecting the most accurate
models. The proteins for the benchmark were chosen to cover a wide range of sequence length, number
of SSEs, and percentage of residues within SSEs (table III.1 on the following page). Twenty-three of the
proteins were monomers ranging in size from 91 to 568 residues. One protein (2L35) has two chains,
with the second chain being a single transmembrane span. The remaining five proteins were symmetric
multimeric proteins of two or three subunits containing up to 696 residues. 5000 independent structure
prediction trajectories were conducted for each protein without restraints, with distance restraints only,
with accessibility restraints only, and with distance and accessibility restraints. In order to achieve
results that are independent of one specific spin labelling pattern, ten different restraint sets were used
for each protein. Those trajectories were conducted with SSEs predicted from sequence and, to test the
influence of incorrectly predicted secondary structure, with the SSEs obtained from the experimentally
determined structure. In addition, rhodopsin (PDB entry 1GZM) was added to the benchmark set to
demonstrate the algorithm’s ability to work with experimentally determined restraints.

III.2.2. Simulation of EPR restraints

For 1GZM, experimentally determined EPR distance restraints were available,145 whereas for the
other proteins EPR distance and accessibility restraints were simulated to obtain data sets for each of
the twenty-nine proteins. Accessibility restraints were simulated by calculating the neighbor vector-
value96 for residues within SSEs of each protein. Unlike the neighbor count approximation of the
solvent accessible surface area (SASA), the neighbor vector approach takes the relative placement of the
neighbors with respect to the vector from the Cα-atom to the Cβ-atom into account. It thereby becomes
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Protein #aas #SSE resSSE(%) Source res.
(Å)

1IWG 68 5 90 X-ray 3.5
1GZM 349 7 62 X-ray 2.7
1J4N 116 4 80 X-ray 2.2
1KPL 203 8 76 X-ray 3.0
1OCC 191 5 74 X-ray 2.8
1OKC 297 9 71 X-ray 2.2
1PV6 189 8 87 X-ray 3.5
1PY6 227 9 75 X-ray 1.8
1RHZ 166 5 65 X-ray 3.5
1U19 278 7 66 X-ray 2.2
1XME 568 18 79 X-ray 2.3
2BG9 91 3 87 EM —
2BL2 145 4 88 X-ray 2.1
2BS2 217 8 80 X-ray 1.8
2IC8 182 7 68 X-ray 2.1
2K73 164 5 62 NMR —
2KSF 107 4 64 NMR —
2KSY 223 7 78 NMR —
2NR9 196 8 75 X-ray 2.2
2XUT 524 16 72 X-ray 3.6
3GIA 433 15 81 X-ray 2.2
3KCU 285 10 67 X-ray 2.2
3KJ6 366 8 47 X-ray 3.4
3P5N 189 6 70 X-ray 3.6
2BHW 669 12 45 X-ray 2.5
2H8A 363 12 79 EM 3.2
2HAC 66 2 79 NMR —
2L35 95 3 81 NMR —
2ZY9 344 16 90 X-ray 2.9
3CAP 696 18 68 NMR 2.9

Table III.1.: Proteins used for benchmarking the structure prediction algorithm. The twenty-nine proteins for
the benchmark were chosen to cover a wide range of sequence length, number of SSEs as well as number and
percentage of residues within SSEs while having a mutual sequence identity of less than 20%. The columns denote
the sequence length, the number of SSEs, the number of residues within SSEs, and the percentage of the residues is
within SSEs. The proteins above the separating line are monomeric proteins; below the separating line are multimeric
proteins. 2HAC, 2ZY9, and 3CAP are homodimers, 2BHW and 2H8A are homotrimers, and 2L35 is a heterodimer.
1GZM was additionally included to evaluate the protocol on experimentally determined data.
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a more accurate predictor of SASA.96 The resulting exposure-value for each residue was considered an
oxygen accessibility measurement. One restraint per two residues within the transmembrane segment
of each SSE was simulated.

Distance restraints were simulated using a restraint selection algorithm,155 which distributes mea-
surements across all SSEs (see section B.2.1 on page 169 for details). It also favors measurements
between residues that are far apart in sequence. One restraint was generated per five residues within
the transmembrane segment of an SSE, if not indicated otherwise. Distances are calculated between theCβ-atoms; for glycine, theHα2-atom is used. To simulate a likely distance observed in an actual EPR
experiment, the distance is adjusted by an amount selected randomly from the probability distribution of
observing a given difference between the spin-spin distance (DSL) and the back bone distance (DBB).149
In order to reduce the possibility of bias arising from restraint selection and spin labelling patterns,
ten independent restraint sets were generated. For the five symmetric multimeric proteins, the same
protocol was used, but only distance restraints between the same residues in the different subunits were
considered.

III.2.3. Translating EPR accessibilities into structural restraints

EPR accessibility measurements are typically made in a sequence scanning fashion over a portion of
the target protein. Although each individual accessibility measurement is difficult to interpret, the
pattern of accessibilities over a stretch of amino acids within an SSE indicates reliably, which phase
of the SSE is exposed to solvent/membrane versus buried in the protein core. We found accessibility
restraints to have a limited impact on structure prediction for soluble proteins.78 We concluded that this
is the case as knowledge-based potentials on their own can distinguish the polar phase of an SSE that
is exposed to an aqueous solvent from a hydrophobic phase buried in the protein core. However, we
also hypothesized that the situation will be different for membrane proteins where it would be harder
to distinguish the membrane-exposed from the buried phase of an α-helix as both of these tend to be
apolar.

Our approach for developing an EPR accessibility score takes advantage of the regular geometrywithin
the SSE: the exposure moment 𝐸w of a window of amino acids𝑁 is defined as shown in equation (III.1).𝐸w = ∑𝑁𝑛=1 𝑒𝑛 ⋅ 𝑠𝑛 (III.1)

where:𝐸w = exposure moment of the residue window𝑁 = number of residues in the window𝑒𝑛 = exposure-value of residue 𝑛𝑠𝑛 = normalized vector from the Cα-atom to the Cβ-atom of residue 𝑛
This equation was inspired by the hydrophobic moment as previously defined.156 Calculating the

exposure moment 𝐸w from the SASA has been previously demonstrated to approximate the exposure
moment calculated from SDSL-EPR accessibility measurements.141

However, during de novo protein structure prediction, the protein is represented only by its back-
bone atoms, which hampers calculation of the SASA. Furthermore, calculation of the SASA from an
atomic detail model would be computationally prohibitive for a rapid scoring function for usage in
de novo protein structure prediction. Therefore, the neighbor vector approximation for the SASA is
used.96 In this context, the exposure moment is calculated for overlapping windows of length seven for
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Figure III.1.: Translation from EPR data into structural restraints. EPR distance measurements measure dis-
tances between residues in a protein indirectly. Whereas the experiment determined the spin-spin distance (DSL),
a distance between the backbone atoms (DBB) is needed during the de novo protein structure prediction process.
Therefore a translation from DSL to DBB is necessary. BCL::Fold uses a knowledge-based potential to evaluate the
agreement of the distance between the Cβ-atoms in the model with the experimentally determined spin-spin distances
(B). EPR accessibility data is translated into structural restraints by summing up the hydrophobic moment vectors
(Cα-atom to Cβ-atom) of four consecutive residues (C). This is done twice: first the normalized 𝐶α − 𝐶β vectors are
multiplied with the accessibility determined in the EPR experiment, the second time they are multiplied with the
neighbor count of the residue in the model. The vectors are summed up for each approach and the projection angle
between the two resulting vectors is scored, with an angle of 0° being the best and 180° being the worst agreement
(D).
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α-helices and length four for β-strands. The pseudo-energy score is computed accordingly as shown in
equation (III.2). 𝑆orient = −0.5 ⋅ 𝑐𝑜𝑠(𝜃) (III.2)

where:𝑆orient = pseudo-energy score for the exposure moment𝜃 = torsion angle between exposure moments

This method evaluates to a pseudo-energy score of −1 if θ = 0° (the vectors parallel) and to a pseudo-
energy score of 0 if θ = 180° (the vectors are anti-parallel; see figure III.1 on the preceding page for a
plot of the scoring function).

It has previously been demonstrated that the burial of sequence segments relative to other sequence
segments can be determined from the average accessibility-values measured for that stretch of se-
quence.157 To capture this information, the magnitude of the exposure moment for overlapping residue
windows is determined from the model structure and from the measured accessibility. The Pearson
correlation is then calculated between the rank order magnitudes of the structural versus experimental
moments. This gives a value between −1, which indicates the structural and exposure magnitudes are
oppositely ordered, and 1, which means the structural and exposure magnitudes are ordered equiva-
lently. The score Smagn is obtained by negating the resulting Pearson correlation-value so that matching
ordering will get a negative score and be considered favorable.

III.2.4. Translating EPR distances into structural restraints

The CONE model78 yields a predicted distribution for the difference between DSL and DBB . This
distribution was converted into a knowledge-based potential function, which is used to score the
agreement of models with experimentally determined EPR distance restraints.149 This score spans a
range of𝐷SL − 𝐷BB between −12Å and 12Å. DSL is the EPR measured distance between the two spin
labels; DBB is the distance between the corresponding Cβ- or Hα2-atoms on the residues of interest;𝐷SL − 𝐷BB is the difference between these two distances (figure III.1 on the previous page).

In addition, we found it beneficial to add an attractive potential on either side of the range spanned
by the scoring function to provide an incentive for the MCM minimization to bring structures within
the defined range of the scoring function. These attractive potentials use a cosine function to transition
between a most unfavorable score of 0 and a most favorable score of −1. The attractive potential is
positive for 30Å ≥∣ 𝐷SL − 𝐷BB ∣≥ 12Å. It levels to 0 when the difference between DBB and DSL
approaches 12Å (figure III.1 on the preceding page).

III.2.5. Summary of the folding protocol

The protein structure prediction protocol (figure III.2 on the next page) is based on the protocol of
BCL::Fold for soluble proteins.59 The method assembles SSEs in the three-dimensional space, drawing
from a pool of predicted SSEs. A MC energy minimization with the Metropolis criteria is used to search
for models with favorable energies. Models are scored after each MC step using knowledge-based
potentials describing optimal SSE packing, radius of gyration, amino acid exposure, and amino acid
pairing, loop closure geometry, secondary structure length and content, and penalties for clashes.60
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Figure III.2.: Structure prediction protocol for using EPR data. (A) SSEs are predicted using machine learning.
(B) BCL::Fold arranges predicted glsplsse using an MC algorithm in conjunction with knowledge-based potentials
(C) and Metropolis criterion (D).

The algorithm was adapted for membrane protein folding by altering the amino acid exposure
potential according to an implicit membrane environment.50 Additional scores are used, which favor
orthogonal placement of SSEs relative to the membrane and penalizing models with loops going
through the membrane. All moves introduced for soluble proteins are used.59 In addition, we include
perturbations that optimize the placement of the protein in the membrane such as translation of
individual SSEs in the membrane as well as rigid body translation and rotation of the entire protein.

The assembly of the protein structure is broken down into five stages of sampling with large structural
perturbationmoves that can alter the topology of the protein. Each of the five stages lasts for amaximum
of 2000MC steps. If an energetically improved structure has not been generated within the previous400MC steps, the minimization for that stage will cease. Over the course of the five assembly stages,
the weight of clashing penalties in the total score is ramped as 0, 125, 250, 375 and 500.

Following the five stages of protein assembly, a structural refinement stage takes place. This stage lasts
for a maximum of 2000MC steps and will terminate sooner if an energetically improved model is not
sampled within the previous 400 steps. The refinement stage consists of small structural perturbations,
which will not drastically alter the topology of the protein model.

After 5000models have been generated for each protein, the models are filtered according to EPR
distance score. The top 10% or 500models resulting from the structure prediction protocol are selected
for a second round of energy minimization. The second round occurs as described above, the only
difference being that the minimization uses the SSE placements of a given protein as a starting point.
For each starting structure, ten models are sampled, resulting in 5000 models. This boot strapping
approach, which re-optimizes structures that are in good agreement with the EPR restraints and with
the knowledge-based potential was beneficial when combining BCL::MP-Fold with limited NMR data
and is not applied when no experimental data are used.154
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III.2.6. Summary of the benchmark setup

To test the influence of EPR restraints, each protein besides 1GZMwas folded in the absence of restraints,
with just distance restraints, with just accessibility restraints, andwith distance and accessibility restraints.
To test the influence of secondary structure prediction accuracy (see section III.2.7), the experiment
was repeated with optimal SSEs derived from the experimentally determined structure. 1GZM was only
folded without restraints and with the experimentally determined distance restraints. 5000models were
created for each of the benchmark proteins in independent MCM folding trajectories. EPR distance and
accessibility scores are used during the five assembly and one refinement stages of structure prediction
protocol. The EPR distance scores have a weight of 40 during all assembly and refinement stages using
either pool.

III.2.7. Structure prediction protocol

For each protein, two sets of SSE pools are generated for use during structure assembly. The first
SSE pool consists of the TMHs as predicted by obtainer of correct topologies for uncharacterized
sequences (OCTOPUS). The second SSE pool contains elements predicted by OCTOPUS as well as
SSEs predicted from sequence by Jufo9D (see section B.2.2 on page 169 for details). Using these two
SSE pools, the structure prediction protocol is independently conducted twice: a) once using the SSE
pool containing predictions from OCTOPUS and Jufo9D (“full pool”) and b) once emphasizing the
predictions by OCTOPUS (“OCTOPUS pool”). Emphasis is placed on OCTOPUS predictions by using
only the OCTOPUS generated SSE pool during the first two stages of assembly. During last three stages
of structure assembly, the SSEs predicted from Jufo9D are added to the pool. This allows for better
coverage of SSEs within the structure, since OCTOPUS only predicts transmembrane spanning helices.

EPR specific scores are used during the five assembly and one refinement stages of structure prediction
(see section B.2.2 on page 169 for details). The EPR distance scores have a weight of 40 over the course
of the assembly and refinement stages.

III.2.8. Calculating EPR score enrichments

The enrichment-value is used to evaluate how well a scoring function is able to select the most accurate
models from a given set of models. The models of a given set are sorted by their RMSD100-values. The10% of the models with the lowest RMSD100-values are put into the set 𝑃 (positive) the rest of the
models will be put into the set𝑁 (negative). The models of 𝑆 are then also sorted by their assigned
scoring-value and the 10% of the models with the lowest (most favorable) score are put into the set𝑇. The models, which are in 𝑃 and in 𝑇 are the models, which are correctly selected by the scoring
function and their number will be referred to as 𝑇𝑃 (true positives). The number of models, which
are in 𝑃 but not in 𝑇 are the models, which are not selected by scoring function despite being among
the most accurate ones. They will be referred to as 𝐹𝑁 (false negative). The enrichment will then be
calculated according to equation (III.3).𝑒 = #𝑇𝑃#𝑃 ⋅ #𝑃 + #𝑁#𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=10.0 (III.3)

where:
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𝑒 = enrichment𝑃 = 10%most accurate models𝑁 = remaining models𝑇𝑃 = 10%most accurate models that are also among the 10% best scoring models

The positive models are in this context the 10% of the models with the lowest RMSD100-values.
Therefore, (#𝑃+#𝑁)/#𝑃 evaluates to a constant of 10.0. Consequently, no enrichment would be result
in a value of 1.0 and an enrichment-value between 0.0 and 1.0 indicates that the score selects against
accurate models.

III.3. Results

In this section, we report the results of the benchmark. The results are analyzed under two aspects:
the RMSD100 metric, which quantifies the structural dissimilarity between the sampled models and
the experimentally determined reference structure and the enrichment metric (see section III.2.8 on
the preceding page for details), which quantifies how well the scoring function is able to distinguish
between accurate and inaccurate models.

III.3.1. Using EPR-specific scores during membrane protein structure prediction improves sampling
accuracy

For each protein, the ten models sampled with the best RMSD100-values103 are used to determine
ability to sample accurate models by taking their RMSD100-value average, μ10 . Using the best ten
models by RMSD100 provides a more consistent measure of sampling accuracy compared to looking
at the single best because of the random nature of the structure prediction protocol. Additionally,
the percentages of models with an RMSD100-value less than 4Å and less than 8Å, τ4 and τ8 , were
calculated.

By using EPR distance and accessibility scores, not only is the frequency increased with which higher
accuracy models are sampled, but the best models achieve an accuracy not sampled in the absence of
EPR data (table B.1 on page 165). Across all proteins, μ10 is, on average, 6.0Å when EPR distance and
accessibility scores are not used. When adding restraints for distances and then both distances and
accessibilities, the average μ10-value drops to 5.1Å and 5.0Å, respectively (table B.1 on page 165). By
only adding EPR accessibility restraints, the average μ10-value over all proteins improves only slightly to5.8Å. This demonstrates that the accuracy of the models is primarily improved by using EPR distance
restraints in the structure prediction process. With the exception of 1KPL and 2XUT, all proteins achieve
a μ10-value of less than 8.0Å. This indicates the placement of the transmembrane spanning regions
follow the experimentally determined structures and the correct fold could be predicted. figure III.3 on
the next page compares the RMSD100-values of the average of the 1%most accurate models with and
without the usage of EPR distance restraints — an average improvement of 0.8Å over the benchmark
set is observed. The shift to lower RMSD100-values in distributions for selected benchmark proteins is
shown in figure III.3 on the following page. The average τ4- and τ8-values improve from 3% and 13%,
when folding without EPR restraints, and to 6% and 19% when using EPR restraints, respectively.

The six multimeric proteins achieve an average μ10-value of 5.0Å when the structure prediction was
conducted without using EPR restraints. By using EPR distance and accessibility restraints μ10 could
be improved to 2.9Å. The τ4- and τ8-values could be improved from 13% and 24% to 21% and 41%
when using EPR distance and accessibility restraints in the structure prediction process.
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Figure III.3.: Sampling accuracy, contact recovery, and enrichment results when using EPR data. By using EPR
distance and accessibility data in the structure prediction process the sampling accuracy can be improved significantly
for monomeric (circles) as well as oligomeric (squares) proteins (A). The sampling accuracy could be improved in
twenty-five out of twenty-nine cases by using EPR distance and accessibility data, which is demonstrated by comparing
the average RMSD100-values of the 1%most accurate models predicted without (x-axis) and with EPR data (y-axis)
in (A). Adding protein specific structural information in the form of EPR distance and accessibility restraints also
improves our ability to select the most accurate models among the sample ones. In each of the twenty-nine cases EPR
distance and accessibility restraints enable us to select more accurate models when compared to structure prediction
without EPR data available. Shown are the average (line) and best (dot/square) RMSD100-values of the best 1%
models by BCL score with (y-axis) and without (x-axis) EPR restraints (B). By using EPR accessibility data only
(y-axis) the contact recovery could be improved in twenty-two out of twenty-nine cases (C) when compared to
structure prediction without EPR accessibility restraints (x-axis). Improvements in SSE prediction methods would
also lead to improved sampling accuracies (D, see also table B.4 on page 168). In twenty-one out of twenty-nine
cases the average RMSD100 of the ten most accurate models could be improved by using SSE definitions obtained
from the experimentally determined structure (y-axis) compared to using predicted SSEs.
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III.3.2. EPR accessibility scores are important for improving contact recovery

Data from EPR accessibility measurements were previously used in conjunction with the Rosetta
protein structure prediction algorithm.78 The derived scores were applied in a benchmark to predict the
structures of the small soluble proteins T4-lysozyme and αA-crystallin. The improvement in sampling
models that are more accurate was compared between prediction trajectories using an EPR distance
score and trajectories using an EPR distance score coupled with an accessibility score. For T4-lysozyme
and αA-crystallin, using the accessibility score did not result in a significant improvement in the accuracy
of models sampled. This was attributed to the simple rule of exposure that is well captured by the
knowledge-based potentials: polar residues tend to be exposed to solvent; apolar residues tend to be
buried in the core of the protein.

Membrane proteins are subjected to a more complex set of possible environments. Any given residue
can reside buried in the core of the protein or exposed to different environments ranging from the
membrane center to a transition region to an aqueous solvent. If the protein fold contains a pore, a
residue can be solvent-exposed deep in the membrane.158 Such a complex interplay of environments
will not be as easily distinguished by knowledge-based potentials. Here it has been demonstrated that
using EPR accessibility information consistently improves the contact recovery for highest accurate
models.

Although improvements regarding sampling accuracy and selection of the most accurate models
by RMSD100 is mainly achieved by using EPR distance restraints, EPR accessibility restraints help
determining the correct rotation state of SSEs and therefore improves the number of recovered contacts
(figure III.3 on the previous page). A contact is defined as being between amino acids, which are
separated by at least six residues and have a maximum Euclidean distance of 8Å. We are measuring
the percentage of the contacts in the experimentally determined protein structure, which could be
recovered in the models. In order to be independent of huge deviations occurring when only looking at
the best model sampled, we quantify the average contact recovery of the ten models with the highest
contact recovery (ϕ10) and the percentage of models, which have more than 20% and 40% of the
contacts recovered (γ20 and γ40).

For folding without EPR restraints, the average ϕ10-value over all twenty-three monomeric proteins
was 23% whereas with accessibility restraints it was 31% (table B.2 on page 166). Using distance
restraints additionally to the accessibility restraints, ϕ10 remains at 31%. This is demonstrating that
improvements in contact recovery are mainly achieved by using EPR accessibility restraints in the
structure prediction process. The average γ20- and γ40-values over all twenty-nine proteins for structure
prediction without EPR restraints were 5% and 3%. By using EPR accessibility restraints, the values
could be improved to 12% and 16%, respectively.

For the six multimeric proteins, improvements in contact recovery by the usage of EPR accessibility
restraints are observed as ϕ10-, γ20-, and γ40-values could be increased to 46%, 25% and 16% from
the previous values of 38%, 17% and 14% when performing protein structure prediction without EPR
data. By complementing the accessibility with distance restraints, ϕ10-, γ20-, and γ40-values can be
improved to 50%, 30% and 16%.
III.3.3. EPR-specific scores select for accurate models of membrane proteins

The ability of EPR specific scores to select for accurate models is tested by calculating enrichment-
values for structure prediction trials of twenty-nine membrane proteins (table B.3 on page 167). The
enrichment of a scoring function indicates how well the score identifies a protein model that is accurate
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1/10 1/3 1/2

Protein μ10(Å)
τ4
(%) τ8(%) μ10

(Å)
τ4
(%) τ8(%) μ10

(Å)
τ4
(%) τ8(%)

1OCC 3.3 2.0 42.4 1.9 5.6 52.6 2.0 5.4 51.0
1PV6 5.3 0.0 8.3 4.3 0.0 35.9 4.2 0.0 34.6
1PY6 4.2 0.0 19.8 3.5 0.0 27.7 3.3 0.6 32.7
1RHZ 4.7 0.0 5.5 3.3 0.7 22.2 3.5 0.4 24.0

Table III.2.: Sampling accuracy is improving with an increasing number of EPR restraints. The percentages of
models sampled with RMSD100-values less than 4Å and 8Å (τ4 and τ8) are increasing with the number of restraints
increase from one distance restraint per ten residues within SSEs to one restraints per three residues within SSEs to
one restraint per two residues within SSEs. An upper limit is met at one restraint per three residues for 1OCC, 1PV6,
and 1RHZ since the further accuracy improvements would require a more effective sampling of possible dihedral
angle conformations.

by a good score. It computed as the cardinality of the intersection 𝐼 = 𝐻𝑆 ∩ 𝑃 with 𝑃 being the set of
the accurate models and𝐻𝑆 being the set of the 10% of the models with the most favorable score (see
section III.2.5 on page 35).60 Accurate is defined as the 10% of the models with the lowest RMSD100
when compared to the experimentally determined structure. Therefore, if a score correctly identifies all
accurate models as being accurate, a perfect enrichment would result in a value of 10.0.

Enrichment-values were computed for protein models sampled without experimental restraints.
For protein structure prediction without EPR data, the average enrichment-value for using just the
knowledge-based potentials over all twenty-nine proteins is 1.3. By using EPR distance and accessibility
data, the average enrichment is improved to 2.5. The enrichment for using EPR distance and accessibility
restraints ranges from 1.1 to 6.2. In seventeen out of twenty-nine cases, the enrichment is greater than2.0. In twenty-three out of twenty-nine cases the enrichment could be improved by at least 0.5 (table B.3
on page 167). By using EPR accessibility data only the average enrichment over all proteins is 1.6,
demonstrating that improvements regarding the selection of the most accurate models are mainly
caused by EPR distance restraints.

III.3.4. The number of restraints determines the significance of improvements in sampling accuracy

For four proteins, the influence of varying numbers of restraints was examined. In addition to the
one restraint per five residues within SSEs setup used for all benchmark cases, the tertiary structure of
1OCC, 1PV6, 1PY6, and 1RHZ was predicted using one restraint per ten residues, one restraint per
three residues, and one restraint per two residues within SSEs. For 1PY6, the sampling accuracy could
be steadily improved with an increasing number of restraints demonstrated by τ8-values increasing
from 15% to 20% to 24% to 28% to 33% and μ10-values improving from 4.4Å to 4.2Å to 3.6Å to3.5Å to 3.3Å for structure prediction without restraints, one restraint per ten residues, one restraint
per five residues, one restraint per three residues and one restraint per two residues (see table III.2 and
figure B.1 on page 164). For 1OCC, 1PV6, and 1RHZ, a significant improvement in sampling accuracy
is observed for using one restraint per three residues instead of one restraint per ten residues within
SSEs, which is demonstrated by improvements in τ8-values from 42% to 53%, from 8% to 36%, and
from 6% to 22% and by improvements in μ10-values from 3.2Å to 1.9Å, from 5.3Å to 4.3Å, and from4.7Å to 3.3Å, respectively. Increasing the number of restraints to one restraint per two residues within
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SSEs fails to further improve the sampling accuracy. We attribute this observation to significant bends
in some of the SSEs that are currently not sampled sufficiently dense by BCL::MP-Fold.

III.3.5. Using experimentally obtained EPR distance restraints for rhodopsin

The benchmark was extended to also contain rhodopsin (PDB entry 1GZM) for which EPR distance
measurements were available.145 Although only sixteen EPR distance restraints were available, which
amounts to less than one restraint per ten residues within SSEs, the sampling accuracy as well as the
enrichment improve significantly. The μ10-values improved from 4.9Å for folding without restraints to4.4Å when using restraints. The enrichment-values could be improved from 0.6 to 1.2 demonstrating
that even a small number of restraints improves discrimination of incorrect models.

III.4. Discussion

EPR distance and accessibility restraints can aid the prediction of membrane protein structure. For this
purpose, EPR-specific scores were combined with the protein structure prediction algorithm BCL::MP-
Fold. BCL::MP-Fold assembles predicted SSEs in space without explicitly modeling the SSE connecting
loop regions. This allows for rapid sampling of complex topology that is not easily achieved when an
intact protein backbone must be maintained. By adding EPR specific scores to the knowledge-based
scoring function, sampling of accurate structures is increased. Additionally the selection of the most
accurate models could be improved significantly.

However, it has to be clearly stated that — with the exception of bovine rhodopsin (PDB entry 1GZM)
— all EPR restraints used in this study were simulated using the CONE model. Therefore, the relevance
of our findings depends on how well the CONE model describes the nature of experimental DEER
measurements and in particular the mobility of the spin label.

III.4.1. EPR distance scores improve the accuracy of topologies predicted for membrane proteins

EPR distance measurements are associated with large uncertainties with regards to the translation of
the measured spin label – spin label distances into backbone distances. In spite of this, EPR distance
measurements provide important data on membrane protein structures.145,146,159 In the present study,
it has been demonstrated that EPR distance data can significantly increase the frequency with which the
correct topology of a membrane protein is sampled (figure III.3 on page 39 and figure III.4 on the next
page). This is important because as the correct topologies are sampled with higher accuracy, models
start to reach the point where they can be subjected to atomic detail refinement to further increase their
accuracy.160

It is crucial to distinguish between the two major challenges in de novo structure prediction —
sampling and scoring: The average improvement in sampling accuracy — i.e., the best model built
among 5000 independent folding trajectories — of 0.8Å is moderate but significant. However, inclusion
of the EPR data does not only allow folding of models that are more accurate, it greatly improves
discrimination of incorrect models with a scoring function that combines BCL knowledge-based
potentials and EPR restraints. Without using EPR restraints the average enrichment is 1.3, i.e., 13% of
the most accurate models are in a sample of the 10% best scoring models, which is close to chance. By
using EPR data in addition to the knowledge-based score enrichment increases to 2.5, i.e., one out of
four models in the 10% best scoring models also has the correct fold. This is important as it greatly
improves the chance to identify correctly folded models, e.g. through clustering of good-scoring models.
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Figure III.4.: Gallery of the structure prediction results when using EPR data. By using EPR distance and acces-
sibility restraints, the sampling accuracy is significantly improved as the selection ability regarding accurate models.
For selected proteins, a comparison of the RMSD100 (column A) and contact recovery (column B) distributions for
sampling with (red) and without (black) EPR restraints is shown. The y-axis of column A shows the cumulative
density of models with respect to the RMSD100. The y-axis of column B shows the cumulative density of models
with respect to their contact recovery. Column C shows the correlation between the BCL score and the RMSD100 for
the models sampled with EPR restraints (black dots) and the experimentally determined structure (red dot). The
y-axis is the pseudo-energy score the algorithm assigned to the structure; the x-axis is the RMSD100 relative to the
experimentally determined structure. The superimpositions show the best models by RMSD100 for folding with EPR
restraints (column D), the best model by pseudo-energy score for folding with EPR restraints (column E), and the best
model by pseudo-energy score for folding without EPR restraints (column F) superimposed with the experimentally
determined structure (grey).
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The combination of improved sampling and discrimination thereby significantly improves the reliability
with which were able to predict the tertiary structure of a protein.

The EPR distance data used for the present study is simulated from known experimental structures.
It will be interesting to repeat this benchmark once sufficiently dense experimental data sets for several
membrane proteins become available. For now, considerable effort was put forth to ensure that the
simulated data mimics what would be obtained from a true EPR experiment, so that any results are
unbiased by the simulated data. The previously published method for selecting distance restraints was
used to create ten different data sets per protein.155 This ensures results are not biased by a particularly
selected data set. Previously, the uncertainty in the difference between spin label distances and the
corresponding Cβ distance (𝐷SL − 𝐷BB) was accounted for in simulated distance restraints by adding
a random value between 12.5Å and −2.5Å.155 Here, the probability of observing a given𝐷SL − 𝐷BB
is used to determine the amount that should be added to the Cβ − Cβ distance measured from the
experimental structure.

Using a method developed for soluble proteins to select restraints for membrane proteins is not
necessarily ideal. The constraints already imposed uponmembrane proteins by themembrane geometry
suggest that optimized methods for selecting restraints for membrane proteins should be developed.
One such strategy could be to measure distances between transmembrane segments on the same side of
the membrane, with the assumption that TMHs are mostly rigid, parallel structures. Further, additional
work is needed to account for topologically important SSEs that do not span the membrane, as well
take into account the deviations of transmembrane segments from ideal geometries.

The improved sampling accuracy in the protein structure prediction process is primarily caused by
the distance restraints. Whereas by using EPR accessibility restraints the average μ10-value over all
twenty-nine proteins drops from 6.0Å to 5.8Å, by using EPR distance restraints the average μ10-value
could be improved to 5.1Å.

III.4.2. Why not use the membrane depth parameter as additional restraint?

Of note is that EPR-derived accessibility measurements have also previously been used to the deter-
mine membrane depth parameterΦ.161–163 For this purpose, the accessibility Π of a single residue to
two paramagnetic reagents are compared: the water-soluble (nickel-(II)-ethylenediaminediacetate —
NiEDDA) and the membrane-soluble (molecular oxygen — O2). The ratio of both values is used to
compute the membrane depth parameter according to equation (III.4).Φ𝑛 = ln ΠO2ΠNiEDDA (III.4)

where:Φ𝑛 = membrane depth parameterΠ𝑘 = accessibility to paramagnetic relaxation agent 𝑘
The present approach does not test effectiveness of a score that relies on the membrane depth

parameter for membrane protein structure prediction for several reasons: a) we hypothesize that
knowledge-based potentials will be capable of placing transmembrane SSEs at the right depth for
this placement should again be dominated by polarity which is well captured in such potentials (read
above), and b) the membrane depth parameter Φ𝑛 is affiliated with a larger error margin for NiEDDA
accessibilities become very small in the core of the membrane and they omit averaging over multiple
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residues. Nevertheless, testing if a membrane depth related score can improve BCL::MP-Fold could be
a goal in a future experiment.

III.4.3. Improved secondary structure predictions will improve the accuracy of predicted structures

The SSE pools are created in order to reduce the possibility of missing a SSE, which is generally a
successful approach as demonstrated previously for soluble proteins.59 The helical transmembrane span
prediction software OCTOPUS164 is used in conjunction with Jufo9D.97 Jufo9D provides predictions
for SSEs that do not necessarily span the membrane and therefore will not be predicted by OCTOPUS.
Improved secondary structure prediction methods will benefit membrane protein structure prediction.
In addition, it has been demonstrated that the pattern of accessibility-values for measurements along a
sequence follow the periodicity of the SSE on which they are measured.139,144,159 Measured accessibility
profiles could therefore be used to inform the pool of SSEs used for structure prediction.

The pool of SSEs used to assemble the membrane protein topologies is the most important deter-
minant in successfully predicting the membrane proteins’ structure. This is seen for 1U19 and 2BL2.
With predicted SSEs, the structure of the two proteins can be sampled to μ10-values of 5.9Å and 6.2Å,
respectively (table B.1 on page 165). By using SSE definitions extracted from the experimentally de-
termined structure, the proteins can be sampled at μ10-values of 4.4Å and 2.6Å, respectively. This is
caused by secondary structure prediction methods breaking up TMHs into several short helices making
it harder to assemble the tertiary structure that does not have loop going through the membrane. The
experiment was repeated with SSE definitions obtained from the experimentally determined structures
of the proteins. Whereas with predicted SSEs average μ10-, τ4-, and τ8-values of 5.0Å, 6%, and 19% are
achieved over all twenty-nine proteins, by using the SSE definitions from the experimentally determined
structure we could improve them to 4.5Å, 8%, and 25%. In twenty-one out of twenty-nine cases the
average accuracy of the ten best models by RMSD100 could be improved by using SSE definitions
obtained from the experimentally determined structure (figure III.3 on page 39). This demonstrates
that further improvements of the secondary structure prediction will also lead to an improved sampling
accuracy of BCL::Fold.

III.4.4. Limitations of the CONE model knowledge-based potential

The unknown label conformation is taken into account by the CONE model, which yields a𝐷SL − 𝐷BB
distribution. This wide probability distribution accounts for two inherently different aspects — a
structural and a dynamical aspect: the structural effect looks at the relative position of the unpaired
electron with respect to the backbone coordinates of the protein. This positioning is dependent on
the protein structure, specifically the direction in which the Cα − Cβ vector project into space with
respect to the Cα − Cα vector that links the two labeling site. As the CONE model is applied in a
model-independent fashion, it does not consider these geometric features but expresses the resulting
ambiguity as part of the probability distribution. Second, chemical environment and exposure cause
variable levels of spin label dynamics. These result in distance distributions of variable tightness in
EPR experiments. This information is currently not considered as parameter in the CONE model but
absorbed by using a very wide 𝐷SL − 𝐷BB probability distribution. This approach has the advantage
that it is very robust with respect to uncertainties within the EPR experimental parameters and very
fast to compute. At the same time, the CONE model knowledge-based potential neglects important
geometric parameters. Developing and testing approaches that take these parameters into account and
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Figure III.5.: Limitations of the CONE model. For 1U19, the most accurate model cannot be reliably selected (A).
One reason for that is, that the translation from the observed spin-spin distance to the backbone distance is inaccurate
resulting in models which deviate topologically from the experimentally determined structure achieving a better
agreement with the EPR distance restraints than the experimentally determined structure (B). This is demonstrated by
the plot showing the correlation between the agreement with the EPR distance restraints (y-axis) and the RMSD100
relative to the experimentally determined structure (x-axis). The EPR potential does not take the exposure of the spin
labeling site and the orientation of the Cα − Cβ vectors into account leading to inaccuracies when translating DSL
into DBB for the residues 7 and 170 of 1U19. Both spin labels are at the outside of the protein and on different sides
of the structure leading to greater difference between DSL and DBB .
lead to tighter distance distributions without losing the advantages of speed and robustness is an active
area of our research.

Not considering geometrical features hinders the selection of accurate models for 1U19. EPR distance
restraints improved the sampling accuracy, but it is still not possible to reliably select accurate models
(figure III.5). Although the distances observed in EPR experiments are typically long and therefore
allow a broad range of topologically different models to fulfill them, inaccuracies in the translation
from DSL to DBB also contribute to the selection problem. In the case of 1U19 the experimentally
determined structure, which served as the template for the simulation of the EPR distance restraints,
shows a worse agreement with the restraints than the best scoring models. The spin-spin distance
between residue 7 and residue 170 is 43.6Å, whereas the distance between the Cβ-atoms is 35.7Å
resulting in an agreement score of 0.3 on a scale from 0 to 1. Following the EPR potential, a Cβ − Cβ
distance of 41.1Å is favorable, which is accomplished by the sampled models with the best score leading
to the selection of models, which deviate significantly from the experimentally determined structure.
Both spin labeling sites are exposed, indicating they are at the outside of the protein. The projection
angle between the Cα − Cβ vectors is greater than 160°, making it more likely that the spin labels are
pointing away from each other. Those two properties allow the inference that we would expect a larger
difference between DSL and DBB than 2.5Å. By using a knowledge-based potential, which also takes
the exposure of the spin labeling sites and additional geometrical information into account a better
ranking of the sampled models would be possible.
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III.4.5. Ambiguities in the ranking of models remain

Although the usage of restraints obtained from EPR experiments significantly improves the discrimina-
tion of incorrect models, ambiguities in the ranking of the models remain for multiple proteins in the
benchmark set. This observation was especially pronounced for the proteins 1J4N, 1PV6, 1PY6, and
1U19 (figure III.4 on page 43). In those cases, the best 10% of the models by BCL score cover a wide
range of topologies. For 1PV6, the best 10% of themodels by BCL score cover an RMSD100 range of 8Å
when compared to the experimentally determined structure. Multiple factors are contributing to this
observation. First, the BCL::Fold scoring function is an inaccurate approximation of free energy, which
limits its discriminative power.60 Although adding a term that measures agreement with experimental
data will improve its discriminative power, it appears that sparse restraints from EPR data are sometimes
insufficient to remove all ambiguities. This is also because, second, the translation of spin label distance
distributions into a backbone structural restraint introduces a substantial uncertainty and therefore
allows sometimes multiple topologies to fulfill the restraint. One side effect of these approximations is
that — as shown in figure III.4 on page 43 — the native structure is not always in the global minimum of
the BCL scoring function. Relaxing the experimentally determined protein structures in the BCL force
field indicate that the closest minimum in the scoring function is between 1.5Å and 4.1Å in RMSD100
separate relative to the experimentally determined structures.

III.5. Conclusion

The determination of membrane protein folds from EPR distance and accessibility data is within reach if
these restraints aid protein folding protocols such as BCL::MP-Fold. The ability of EPR data to improve
the sampling of native-like topologies and the importance of EPR accessibility data for obtaining highest
contact recovery-values was demonstrated. Further, the EPR specific scores allow the selection of
close-to-native models, thereby overcoming a major obstacle in de novo protein structure prediction.
Refining EPR distance potentials to also take the exposure of the spin labeling sites as well as relative
orientation of the Cα − Cβ vector might provide a more accurate translation from spin-spin distance
into backbone distance, thereby further increasing model quality.
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CHAPTER IV
PROTEIN STRUCTURE PREDICTION FROM CROSS-LINKING DATA

This chapter is based on the publication “Protein structure prediction guided by crosslinking restraints –
A systematic evaluation of the impact of the crosslinking spacer length”.3 Axel W. Fischer contributed to
the development of the potential function, performing the experiment, analyzing the data, and writing
the article.

Recent development of high-resolution MS instruments enables chemical XL to become
a high-throughput method for obtaining structural information about proteins. Restraints
derived from XL-MS experiments have been used successfully for structure refinement and
protein-protein docking. However, one formidable question is under which circumstances
XL-MSdatamight be sufficient to determine a protein’s tertiary structure de novo? Answering
this question will not only include understanding the impact of XL-MS data on sampling
and scoring within a de novo protein structure prediction algorithm, it must also determine
an optimal cross-linker type and length for protein structure determination. Whereas a
longer cross-linker will yield more restraints, the value of each restraint for protein structure
prediction decreases as the restraint is consistent with a larger conformational space.

In this study, the number of cross-links and their discriminative power was systematically
analyzed in silico on a set of 2055 non-redundant protein folds considering Lys-Lys, Lys-Asp,
Lys-Glu, Cys-Cys, and Arg-Arg reactive cross-linkers between 1Å and 60Å. Depending on
the protein size a heuristic was developed that determines the optimal cross-linker length.
Next, simulated restraints of variable length were used to de novo predict the tertiary
structure of fifteen proteins using the BCL::Fold algorithm, which is part of the BCL.a The
results demonstrate that a distinct cross-linker length exists for which information content
for de novo protein structure prediction is maximized. The sampling accuracy improves on
average by 1.0Å and up to 2.2Å in the most prominent example. XL-MS restraints enable
consistently an improved selection of native-like models with an average enrichment of 2.1.

IV.1. Introduction

“Structural Genomics” — the determination of the structure of all human proteins — would have
profound impact on biochemical and biomedical research with direct implication to functional an-
notation, interpretation of mutations, development of small molecule binders, enzyme design, or
prediction of protein-protein interaction.165 Although significant progress towards this goal has been
made through X-ray crystallography and NMR spectroscopy, tertiary structure determination con-
tinues to be a challenge for many important human proteins. At present, high-resolution structures
exist for about 5% of all human proteins in the PDB.36 For many uncharacterized human proteins,
construction of a comparative model is possible starting from the experimental structure of a related
protein. Nevertheless, for about 60% (about 7800) of known protein families in the Pfam database166
not a single structure is deposited.167 Many of these proteins will continue to evade high-resolution
protein structure determination.

ahttp://www.meilerlab.org/bclcommons
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Accordingly, researchers strive to develop alternative approaches. The most extreme approach in-
cludes computational methods that predict the tertiary structure of proteins from their sequence alone.
Although computational methods are sometimes successful at the predicting the tertiary structure
of small proteins with up to one hundred residues,168 for larger proteins the size of the conforma-
tional space to be searched as well as the discrimination of incorrectly folded models hinder structure
prediction.95,169,170

However, recent studies demonstrate that combining de novo protein structure predictionwith limited
experimental data,2,68,70,78,149,154,171 i.e., experimental data that alone is insufficient to unambiguously
determine the fold of the protein, can yield accurate models for larger proteins. The structural restraints
in those studies were acquired using EPR spectroscopy,2,78,149 EM,68,70 or NMR spectroscopy.154

As an alternative technique, XL in combination with MS can be applied to obtain distance restraints,
which can be used to guide protein structure prediction.172–175 Using bifunctional reagents with a
defined length, functional groups within the protein can be covalently bridged in a native-like envi-
ronment. Thus, it is possible to determine an upper limit for the distance between those residues after
enzymatic proteolysis and identification of cross-linked peptides.

This method allows for a fast analysis of protein structures in a native-like environment at a low
concentration and can even be applied to high molecular weight proteins,176 membrane proteins,177 or
highly flexible proteins.178 If combined with affinity purification it becomes possible to study proteins
inside the cell.179 Currently, the XL-MS technology is rapidly gaining importance driven by the liquid
chromatography (LC)-MS instrument development, the generation of advanced analysis software,180
and the direct integration in protein structure prediction workflows.181–183 Furthermore, hundreds
of different cross-linking reagents with different spacer lengths, reactivities, and features for specific
enrichment and improved detectability are now commercially available.184

However, whereas the potential to combine XL-MS and computational modeling has been frequently
demonstrated and many technical problems of XL-MS have been solved, several central questions have
not yet been evaluated systematically.

(i) Cross-linking reagents are available with a spacer length ranging from 0Å to more than 35Å.
Whereas longer reagents are likely to provide more distance restraints, shorter cross-links have
higher information content in de novo structure prediction as the conformational search space is
more restricted. Thus, the question arises, which cross-linker spacer length supports structure
prediction best?

(ii) Cross-linking results are often used to confirm already existing structures. However, what is the
average gain in model accuracy and selection of correct models when using cross-linking data in
conjunction with de novo protein structure prediction?

(iii) Cross-linking reagents vary in reactivity towards different functional groups present in different
amino acids. For de novo protein structure prediction, what is the gain of using additionally
cross-linkers with different reactivities?

In this study, we simulated cross-linking experiments on more than 2000 non-redundant protein
structures to determine the number of possible and structurally relevant cross-links depending on the
size of the protein as well as on the length and reactivity of the applied cross-linking reagents. We then
tested the impact of cross-linking restraints on de novo protein structure prediction for fifteen selected
proteins.
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IV.2. Materials and methods

IV.2.1. Software and databases

A subset of the PDB containing 2055 non-redundant protein structures was downloaded from the
protein sequence culling server (PISCES) server (version 08.2012).185 This PDB subset was created
by filtering all available structures with a resolution of at least 1.6Å, a maximum sequence identity of20%, and an R-factor cutoff of 0.25. Euclidean distances and shortest solvent accessible surface (SAS)
path lengths between Cβ − Cβ , Nz − Nz (Lys-Lys), Nz − Cγ (Lys-Asp), and Nz − Cδ (Lys-Glu), as well
as NH2 − NH2 (Arg-Arg) and SG − SG (Cys-Cys) atom pairs with a maximum intramolecular distance
of 60Å were determined through the command line version of Xwalk.186

IV.2.2. Generation of sequence dependent distance functions

Tables containing the Euclidean distances and the sequence separation between cross-linking target
amino acids (i) Lys-Lys, (ii) Lys-Asp, (iii) Lys-Glu, (iv) Arg-Arg, and (v) Cys-Cys were generated. Amino
acid pair distances were sorted into 2.5Å bins. The total number of observed pairs for each sequence
and Euclidean distance was counted. Based on the result an approximation of the distance distribution
for every sequence distance was created. The median of the distribution was determined. A logarithmic
function, described in equation (IV.1), was calculated as a regression curve to correlate the sequence
separation 𝑆 to the median Euclidean distances 𝐸med .𝐸med = 𝑎 ⋅ ln(𝑆) + 𝑏 (IV.1)

where:𝐸med = median Euclidean distance between residues𝑆 = sequence separation between residues

IV.2.3. Calculation of the amino acid side chain length

Based on the structure of calmodulin (PDB entry 2KSZ) the averageCβ−Nz,Cβ−Cγ ,Cβ−Cδ ,Cβ−NH2 ,
and Cβ − SG distances of the side chains of lysine, aspartic acid, glutamic acid, arginine, and cysteine
were determined to be 4.5Å, 2.3Å, 3.6Å, 5.1Å, and 1.8Å, respectively.

IV.2.4. Distinguishing between impossible, possible and structurally valuable cross-links

Cross-linker spacer lengths between 1Å and 60Å distances were evaluated and classified in either
(i) impossible cross-links, meaning that the distance between the Cβ-atoms of the cross-linked amino
acids exceeds the sum of the spacer lengths and the side chain lengths, or (ii) possible cross-links,
meaning that the Cβ − Cβ distance is below the sum of the spacer lengths and side chain lengths. The
latter group was subdivided into cross-links potentially useful for structure determination (valuable
cross-links) and those that are unlikely to contribute much information (non-valuable cross-links).
We defined cross-links as valuable if the spacer length was shorter than the median distance expected
for the given sequence separation by the equations derived in section IV.2.2. For these calculations,
all proteins were grouped into 2.5 kDa bins. The calculations were performed for cross-linker lengths
from 1Å to 60Å with a step size of 1Å.
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Figure IV.1.: Residue pair distance distributions. (A) Distribution of the number of Lys-Lys pairs in respect to
their Euclidean distance and (B-D) functions representing the relationship between sequence and spatial distance
approximated by method of least squares to a logarithmic equation (see equation (IV.1) on the preceding page) for
(B) Lys-Lys, (C) Lys-Glu, and (D) Lys-Asp.
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Figure IV.2.: Cross-link yield depending on the spacer length. Behavior of valuable and possible cross-links in the
MW bin 25 kDa and localization of the optimal spacer length. Shown is the number of valuable cross-links for every
tested spacer length in red. These values are normalized to a dimension spanning 1. Blue points show the share
of valuable cross-links among the physical possible ones. The dotted line meets the intersection of both curves and
represents the optimal spacer length where the best ratio between valuable and possible cross-links is attained and
the number of valuable cross-links is maximized in respect to this ratio.

IV.2.5. Estimation of the optimal spacer lengths for a given protein molecular weight

Over all proteins in each of the molecular weight (MW) bin, the total number of possible distance pairs
(𝑃) as well as the number of distance pairs useful for structure determination (𝑉) were computed for
each cross-linker spacer length. Furthermore, the maximum number of valuable cross-links observed
for all spacer lengths (𝑉max) was determined. For each MW bin the ratios (𝑉/𝑃) and (𝑉/𝑉max) were
plotted as a function of the cross-linker spacer length. The optimal cross-linker length for each MW
bin was approximated as intersection points of the two functions using a local regression (figure IV.2).
The estimated values for the optimal cross-linker spacer length were plotted as a function of the
MW and were fitted using a cubic regression curve. The script used for the calculation is available at
http://www.ufz.de/index.php?en=19910.

IV.2.6. Simulation of cross-linking restraints

Seventeen proteins with known tertiary structure determined via X-ray crystallography (resolution
of less than 1.9Å) were selected from the data set of structures as test cases to evaluate the influence
of cross-linking restraints on de novo protein structure prediction. To thoroughly benchmark the
algorithm, the benchmark set covers a wide range of protein topologies and structural features. The
sequence lengths of the proteins range from 105 to 303 residues, the number of SSEs ranges from 5 to19 with varying α-helical and β-strand content (see table IV.1 on the next page). For these proteins,
all solvent accessible surface Cβ − Cβ distances between target amino acids in the structure which
were within the range of either homobifunctional Lys-reactive cross-linkers or heterobifunctional Lys-
Asp/Glu reactive cross-linkers were determined through Xwalk. For the predicted optimal cross-linker
length (read above) and spacer lengths of 2.5Å, 7.5Å, 17.5Å and 30.0Å lists of structurally possible
cross-links were generated.

For the two proteins horse heart cytochrome c (PDB entry 1HRC) and oxymyoglobin (PDB entry
1MBO) restraints were also derived from published cross-linking MS experiments deposited in the XL
database.181 Experimental cross-linking data of FGF2 (PDB entry 1FGA) and P11 (PDB entry 4HRE)
were derived from Young et al.175 and Schulz et al.,187 respectively.
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Protein Uniprot resolution
(Å)

weight
(Da) length Lysine

(%) α-helix
(%) β-strand

(%)
1HRC P00004 1.9 12 368 105 18 40 1
3IV4 Q7A6S3 1.5 13 235 112 6 49 25
1BGF P42228 1.5 14 504 124 5 79 1
1T3Y Q14019 1.2 15 835 141 9 35 29
3M1X C4LXT9 1.2 15 882 138 7 25 28
1X91 Q9LNF2 1.5 16 419 153 7 76 0
1JL1 P0A7Y4 1.3 17 483 155 7 34 30
1MBO P02185 1.6 17 980 153 12 77 0
2QNL Q11XA0 1.5 19 218 162 5 70 2
2AP3 Q8NX77 1.6 23 190 199 23 81 0
1J77 Q9RGD9 1.5 24 226 209 8 62 1
1ES9 Q29460 1.3 25 876 232 3 41 11
3B5O D0VWS1 1.4 27 506 244 3 71 0
1QX0 P0A2Y6 2.3 32 821 293 7 38 20
2IXM Q15257 1.5 34 798 303 7 60 3
FGF2 P09038 1.5 17 859 145 10 9 34
P11 P60903 2.0 11 071 95 13 63 3

Table IV.1.: Proteins used for the cross-link spacer length benchmark. The fifteen proteins for the benchmark set
were selected from high-resolution structures deposited in the PDB with varying content of lysines. The structures
were selected to cover a wide range of the structural features sequence length as well as the percentage of residues
within α-helices and β-strands.
IV.2.7. Translating cross-linking data into structural restraints

Explicitly rebuilding coordinates for a cross-link is comparable to solving the loop closure problem.101
During de novo, protein structure prediction the cross-link would have to be reconstructed each time
the conformation of the protein changes. In a typical MC simulation with a maximum of 12 000MC
steps per model and 5000models for each protein this would result in a maximum number of 60million
attempts to build the cross-link, which is too resource demanding for usage in de novo protein structure
prediction. Therefore, we developed a fast approach to estimate the chance that a particular model
fulfills a XL-MS restraint. The surface path of a cross-link is approximated by laying a sphere around
the protein structure and computing the arc length between the cross-linked residues (figure C.1 on
page 173). The geometrical center of the protein structure is used as the center of the sphere. If takeoff
and landing point have different distances to the center of the sphere, the longer distance is used as
the radius. During the protein structure prediction process, the side chains of the residues are not
modeled explicitly but represented on a simplified way through a ’super atom’. While this simplification
vastly reduces the computational demand of the algorithm, it also adds additional uncertainty due
to the unknown side chain conformations. The agreement of the model with the cross-linking data
is quantified by comparing the distance between the cross-linker lengths (𝑙XS + 𝑙SS1 + 𝑙SS2) with the
computed arc lengths (𝑑arc), with −1 being the best agreement and 0 being the worst agreement. To
account for the uncertainty of side chain conformations a cosine-transition region of 7Åwas introduced
(figure C.1 on page 173).

53



IV.2.8. Structure prediction protocol for the benchmark set

The protein structure prediction protocol was based on the previously published BCL::Fold protocol
for soluble proteins.59 In a preparatory step, the SSEs are predicted using the SSE prediction methods
PSIPRED98 and Jufo9D97 and an SSE pool is created (see section C.2.1 on page 176). Subsequently a
MCM energy minimization algorithm draws random glsplsse from the predicted SSE pool and places
them in the three-dimensional space (figure IV.3 on the next page; see section C.2.2 on page 176 for
details). Random transformations like translation, rotation or shuffling of glsplsse are applied. After
each MC step the energy of the resulting model is evaluated using knowledge-based potentials which,
among others, evaluate the packing of glsplsse, exposure of residues, radius of gyration, pairwise amino
acid interactions, loop closure geometry and amino acid clashes.60 Based on the energy difference to
the previous step and the simulated temperature a Metropolis criterion decides whether to accept or
reject the most recent change.

The protein structure prediction protocol is broken into multiple stages, which differ regarding the
granularity of the transformations applied, and the emphasis of different scoring terms. The first five
stages apply large structural perturbations, which can alter the topology of the protein. Each of the
five stages lasts for a maximum of 2000MC steps. If an energetically improved structure has not been
generated within the previous 400MC steps, the stage terminates. Over the course of the five assembly
stages, the weight of clashing penalties in the total score is ramped up as 0, 125, 250, 375 and 500.

The five protein assembly stages are followed by a stage of structural refinement. This stage lasts for a
maximum number of 2000MC steps and terminates if no energetically improved model is sampled for400MC steps in a row. Unlike the assembly stages, the refinement stage only consists of small structural
perturbations, which will not drastically alter the topology of the protein model.

Through multiple prediction runs with different score weights, the optimal contribution of the cross-
linking score to the total score was determined to be 40% to 50%. Consequently, the weight for the
scoring term evaluating the agreement of the model with the cross-linking data was set to 300 over all
six stages, which ensures that the cross-linking score contributes between 40% and 50% to the total
score.

IV.2.9. De novo folding simulations without and with cross-linking restraints

To evaluate the influence of cross-linking restraints on protein structure prediction accuracy, each
protein was folded in the absence and in the presence of Lys-Lys, Lys-Glu, and Lys-Asp cross-linking
restraints. Independent structure prediction experiments were performed for the predicted optimal as
well as two shorter and two longer cross-linker spacer lengths each of the five spacer lengths (table C.1
on page 171). Additionally, predictions were performed using combination of all spacer lengths as well
as using restraints obtained by the optimal spacer length of all three cross-linker reactivities. For the
two proteins of which experimentally determined cross-linking data were available, protein structure
prediction was additionally performed for the experimentally determined restraints. For each protein
and cross-linker length used, 5000models were sampled in independent MCM trajectories. Due to the
randomness of the employed MC algorithm, ten sets of 5000models were sampled for each protein
without restraints. Improvements in prediction accuracy can be compared to the standard deviations
to identify statistically significant improvements (see table C.2 on page 172 for details).
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Figure IV.3.: Spacer length and protein structure predictionworkflow. Workflow for (A) the prediction of optimal
cross-linker spacer length and (B) for de novo protein structure prediction using BCL::Fold. (A) Workflow for the
prediction of the optimal spacer length depending on the MW of the protein of interest. (B) Workflow for de novo
protein structure prediction using BCL::Fold. The SSEs are predicted using the SSE prediction methods PSIPRED
and Jufo9D. Subsequently, an MCM algorithm is employed to search the conformational space for the conformation
with most favorable score.
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IV.2.10. Metrics for comparing calculating model accuracy and enrichment

The quality of the prediction results was quantified using the RMSD100103 and enrichment2,60 metrics.
The RMSD100 metric was used to quantify the sampling accuracy by computing the normalized root-
mean-square-deviation between the backbone atoms of the superimposed model and native structure.
The enrichment metric was used to quantify the discrimination power of the scoring function by
computing which percentage of the most accurate models can be selected by the scoring function.
The enrichment metric is used to assess the influence of the cross-linking restraints to discriminate
among the sampled models. First, the models of a given set 𝑆 are sorted by their RMSD100 relative
to the native structure. The 10% of the models in 𝑆 with the lowest RMSD100 are assigned to subset𝑃 (positives) and the remaining 90% of the models are assigned to subset𝑁 (negatives). Second, the
models in 𝑆 are sorted by their BCL score. The 10% of the models in 𝑆 with the best score are assigned
to subset 𝐹𝑆 (favorable score). The intersection 𝑇𝑃 = 𝐹𝑆 ∩ 𝑃 contains the most accurate models which
the scoring function can select (true positives). The enrichment 𝑒 = #𝑇𝑃#𝑃 ⋅ #𝑃+#𝑁#𝑃 of the most accurate
models the scoring function can select. In order to reduce the influence of the sampling accuracy
on the enrichment-values, the positive models are considered the 10% of the models with the lowest
RMSD100 and #𝑃+#𝑁#𝑃 is fixed at a value of 10.0. Therefore, the enrichment ranges from 0.0 to 10.0, with
a score of 1.0 indicating random selection and a value above 1.0 indicating that the scoring function
enriches for native-like models.

IV.3. Results

IV.3.1. Creation of an in silico cross-linking database

We performed in silico cross-linking experiments on 2055 non-redundant proteins. Covering an MW
range from 1.4 kDa to 139 kDa, 59% of the proteins have an MW below 25 kDa. For each of those
proteins all Lys-Lys, Lys-Asp, and Lys-Glu sequence and Euclidean distances as well as the SAS distance
between theCβ-atoms were determined. Thus, the resulting database contained information on 391 902
Lys-Lys, 395 815 Lys-Glu, and 360 101 Lys-Asp pairs which built the basis for the determination of the
number of possible cross-links, cross-links useful for structure prediction, and finally for the prediction
of the optimal cross-linker length for studying a selected protein (figure IV.3 on the previous page).

IV.3.2. Estimation of the possible cross-links per protein

Next we estimated how many and which of the distances could be cross-linked with a cross-linker of a
given length and specificity. We considered cross-links possible if the sum of the spacer length and
the length of the two connected side chains (Cβ − Cβ , Nz − Nz for Lys-Lys, Nz − Cγ for Lys-Asp, orNz − Cδ for Lys-Glu) is longer than the Cβ − Cβ-SAS-distance between the amino acids. As the lengths
of the side chains of Lys (Cβ −Nz), Asp (Cβ −Oz), and Glu (Cβ −Oz) 4.5Å, 2.4Å, and 3.6Å were used,
which were determined as average values from the crystal structure of calmodulin (PDB entry 1CLL).
In silico cross-linking experiments were conducted for all of the 2055 proteins using homobifunctional
Lys-Lys-reactive, as well as heterobifunctional (Lys-Asp- and Lys-Glu-reactive) cross-linking reagents
with lengths from 1Å to 60Å (step size 1Å).

To draw conclusions from the correlation of this in silico cross-linking experiments to the MW of
the studied proteins the proteins were grouped into 45 bins with a step size of 2.5 kDa. For example, a
protein with a MW in the range of 25 kDa to 27.5 kDa contains on average 15.1 Lys, 14.4 Asp, and 16.7
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Glu. On average, 182 Lys-Lys, 173 Lys-Glu, and 144 Lys-Asp cross-links exist per protein within this
specific MW bin. Theoretically, all of those could be cross-linked with a cross-linker of 60Å. In contrast
by utilization of cross-linkers of 13Å (as e.g. BS3) only about 33% of the cross-links are formed in silico.
When going to a cross-linker of length of 1Å (e.g. close to EDC), only 10% of all possible amino acid
pairs are linked.

IV.3.3. Estimation of structurally relevant cross-links

In protein structure prediction approaches, the enrichment of low RMSD structures among the thou-
sands of generated models is crucial. Therefore, we hypothesized that the restraints, which are valuable
for structure prediction will reduce the conformational search space substantially. For the present study,
we classify a cross-linking restraint as useful for structure prediction if it discriminate at least 50% of all
possible conformations. Thus, in a second step each of the possible cross-links was evaluated in terms
of its potential to discriminate at least 50% of incorrect structures (useful for structure determination)
or whether the cross-linked amino acids are so close in sequence that it can be derived from sequence
separation that the distance can be bridged by the cross-linker independently of the protein’s structure
(not useful for structure determination).

In order to develop a stringent measure for usefulness we did not simply assume the maximum
distance that can be bridged by an amino acid chain of a certain length. Instead, the Euclidean distance
distributions for Lys-Lys, Lys-Glu, and Lys-Asp were computed for the sequence separations ranging
from 1 to 60 amino acids within our database of protein structures. For example, in the more than2000 analyzed structures there are 3132 Lys-Lys pairs, which are separated by ten amino acids. For this
sequence distance Euclidean distances bins of 2.5Å were defined in which the occurrences of residue
pairs were counted. The pairs were present in bins ranging from 2.5Å to 35.0Å. As the median distance,
we found 15.5Å. For the same sequence distance the distribution of Lys-Glu (3336 pairs) and Lys-Asp
(3010 pairs) are quite similar and the median values were 15.6Å and 15.3Å.

Similarly, for sequence separations of 15 amino acids, we observed 3024 Lys-Lys pairs, 3200 Lys-Glu
pairs, and 2835 Lys-Asp pairs. The median values were 20.8Å, 20.9Å, and 20.7Å, respectively. For
sequence separations of 60 amino acids, we observed 2167 Lys-Lys pairs, 2212 Lys-Glu pairs, and 2167
Lys-Asp pairs. The median values are 23.0Å, 23.0Å, and 23.0Å, respectively (see figure IV.1 on page 51
for details).

Approximating the proteins structures as spheres, we applied a logarithmic model to fit the relation-
ship between the sequence separation 𝑆 and the median Euclidean distance 𝐸med . We find

𝐸med = {{{{{
5.46 ⋅ ln(𝑆Lys−Lys) + 2.2 for Lys-Lys,5.37 ⋅ ln(𝑆Lys−Glu) + 2.36 for Lys-Glu,5.19 ⋅ ln(𝑆Lys−Asp) + 2.36 for Lys-Asp.

(IV.2)

for Lys-Lys, Lys-Glu, and Lys-Asp distances, respectively.
Secondly, using our derived functions constituting the 𝑆/𝐸 relationships, we considered every cross-

link as of reasonable discriminative power, i.e., which fulfills the criterion that the sum of the cross-linker
spacer length and the average length of both contributing side chains is shorter than the median of the
sequence/Euclidean-distance distribution. If we examine the 25 kDaMW bins of Lys-Lys targets with a1Å spacer cross-link 1167 of the possible 22 398 target pairs fulfilled this criterion and were considered
as of sufficient discriminative power (figure C.2 on page 174). These cross-links, which represent 4%
of all Lys-Lys distances we defined therefore as useful for protein structure prediction. Application of
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a 13Å spacer length results in 2935 valuable target pairs (12% of all Lys-Lys distances, see figure C.2
on page 174). In contrast, a cross-linker with a spacer length of 60Å would allow to cross-link all
distances. However, none of the cross-links would have discriminative power for native-like models
(figure C.2 on page 174). For the proteins of the 25 kDaMW bins the number of valuable cross-links as
a function of the cross-linker length has a log-normal character never exceeding a roughly 25Å spacer.
The intermediate length of 13Å resulted in an almost equal contribution of valuable and structurally
invaluable cross-linking pairs. Whereas 29% of all possible reactive amino acid pairs are linked, 12%
are considered valuable for structure prediction.

IV.3.4. Prediction of molecular weight dependent optimal cross-linker spacer lengths

Whereas usage of a short cross-linker will result in only a few but mostly structurally valuable restraints,
a longer cross-linker will yield more restraints but a lower ratio of valuable restraints. Furthermore, the
ratio of valuable restraints as well as the number of possible restraints depends on the size of the protein.
In agreement with prior studies regarding structural modeling driven by sparse distance restraints,188
we hypothesize that a compromise between maximizing the portion of valuable cross-links compared to
all cross-links which can be formed with a given cross-linker length (𝑉/𝑃) and maximizing the relative
number of achievable cross-links with any spacer length (𝑉/𝑉max) might yield the best results.

Following our hypothesis, for each MW bin we derived the optimal spacer length as the intersection
point of the two functions as it is shown exemplarily for an MW of 25 kDa in figure IV.2 on page 52.

The derived optimal spacer lengths for Lys-Lys, Lys-Asp, and Lys-Glu were plotted as function of
the MW (figure IV.4 on the next page). The relationship was fitted using a cube root function. For our
observable MW sample space for Lys-Lys cross-links, all spacer lengths reached dimensions between5.0Å and 18.6Å. No optimal spacer length was further than 2.5Å separated from the regression curve.
The average distance from the modeled spacer lengths was 0.7Å. The MW term as well as the side
chain term has been modeled as an exponential fraction with respect to the relation between volume
and distances in spherical objects.

Additionally, the optimal spacer lengths were also predicted for homobifunctional arginine and for
homobifunctional cysteine cross-linking reagents analogously to the procedure being described for the
homo- and heterobifunctional lysine-containing cross-links. Consistently, the optimal spacer lengths
depend on the MW as well as the lengths of the cross-linked side chains 𝑆𝑆1 and 𝑆𝑆2 and could be
calculated by 𝑙opt[Å] = 𝑘 ⋅ 3√𝑀𝑊 + 3√𝑆𝑆1 + 𝑆𝑆2. The factor 𝑘 was determined to be 0.32, 0.31, 0.34,0.34 and 0.35 for Lys-Lys, Lys-Asp, Lys-Glu, Arg-Arg, and Cys-Cys pairs, respectively.

IV.3.5. Generation of in silico and experimental cross-linking data for testing the effect of different spacer
length for de novo modeling

To evaluate the effect of cross-linking data derived from experiments with different spacer length we
folded seventeen proteins de novo with BCL::Fold (figure IV.3 on page 55). Thirteen proteins were part
of our data set while for four proteins experimental cross-linking data were available (1MBO, 1HRC,
1FGA, and 4HRE) (table IV.1 on page 53). All proteins have a MW in the range from 13 kDa to 27 kDa.
Most structures were mainly α-helical with fewer β-strand SSEs. The β-strand content ranged from 0%
to 51%. The α-helical content ranges from 2% to 81%. The highest β-strand content showed 1LMI with
also the fewest α-helices. The portion of lysines was between 3% and 23%, which resulted in minimal4 and maximal 46 lysine residues per structure. For the two structures 1MBO and 1HRC, which were
studied experimentally, we used the published experimental data, which were obtained using DSG,
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Figure IV.4.: Relationship between sequence distance and Euclidean distance. Functions representing the rela-
tionship between sequence (S) and spatial distance (E). The equations approximated by method of least squares to a
logarithmic equation for (A) Lys-Lys, (B) Lys-Glu, and (C) Lys-Asp.
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DSS/BS3, and DEST.181 For 1MBO, there were 8 cross-links in total with the 11.4Å reagent BS3 four
of them confirmed with the 7.7Å reagent DSG. For 1HRC, 48 cross-links were reported. 9 DSS, 31
BS3, 6 DSG, and 9 with DEST (11Å). Six cross-links had been identified with different cross-linking
reagents. 18 BS3 cross-links were published for 1FGA,175 whereas 3 intramolecular BS3 cross-links
were available for 1HRE.187 For the thirteen proteins as well as for 1MBO and 1HRC, we predicted
all cross-links, which are possible with the predicted optimal cross-linker length as well as with two
shorter and two longer cross-linking reagents (table C.1 on page 171) and used these data as restraints
during modeling (figure C.1 on page 173).

IV.3.6. Cross-linking restraints improve the sampling accuracy of de novo protein structure prediction

XL-MS data provides structural restraints that reduce the sampling space in de novo structure deter-
mination. Thereby a fraction of incorrect conformations is excluded and the sampling density in all
other areas of the conformational space is increased. To evaluate the power of cross-linking restraints
to guide de novo protein structure determination we computed the RMSD100-values103 of the most
accurate models for each protein for structure prediction with and without cross-linking restraints.
Using cross-linking restraints not only increases the frequency with which accurate models are sampled,
but the best models achieve an accuracy not sampled in the absence of cross-linking data (table C.2 on
page 172). Across all benchmark proteins, the accuracy of the best models was, on average, 6.6Å when
no cross-linking data was used. By using cross-linking, data for the spacer length deemed optimal the
average RMSD100-value was improved to 5.6Å, which corresponds to two standard deviations. By
using restraints obtained for all five spacer lengths, the average accuracy of the best model improved
to 5.2Å. For the proteins 1XQ0, 2IXM, and 3B50, even with cross-linking data, it was not possible to
sample a native-like conformation. We attribute this to limitations in the sampling algorithm result-
ing in the native conformation not being part of the sampling space. For other proteins, significant
improvements could be observed. While the accuracy of the best models for 1ES9 and 1J77 was 7.3Å
and 6.8Å, cross-linking restraints improved the accuracy to 5.7Å and 4.5Å, respectively. For 1MBO,
the accuracy could be improved from 7.1Å to 4.2Å by using a combination of Lys-Glu/Asp reactive
cross-linkers (figure C.3 on page 175).

IV.3.7. Cross-linking restraints improve the discriminative power of the scoring function

The ability of the scoring function to identify the most accurate models among the sampled ones was
quantified using the enrichment metric (see section IV.2 on page 50). Enrichments were computed
for proteins predicted without cross-linking data, for each spacer length and for all spacer lengths
combined. For protein structure prediction without cross-linking restraints an average enrichment of1.1 was measured, which is barely better than random selection. The scoring function has almost no
discriminative power. Using cross-linking restraints yielded by the optimal spacer length improved the
enrichment to 2.1 (table C.2 on page 172), which corresponds to three standard deviations. Using all
five spacer lengths to obtain additional restraints, further improves the enrichment to 2.4. The most
significant improvement could be observed for the Gram-negative bacterial oxygenase (PDB entry
1J77), for which the enrichment could be improved from 0.5 to 2.4.

60



Figure IV.5.: Protein structure prediction results for various spacer lengths. Cross-linking data improve the
prediction accuracy and discrimination power. Using geometrical restraints derived from cross-linking experiments
reduces the size of the conformational space, which needs to be searched for the conformation with the lowest free
energy. This results in a higher likelihood of sampling accurate models and an improved discrimination power of
the scoring function. Panel A compares the RMSD100-values of the most accurate model for structure prediction
from different spacer lengths to the results for the optimal spacer length (horizontal line). Panel B compares the
enrichments for different spacer lengths likewise.

IV.3.8. The cross-linker length determines improvements in sampling accuracy and discrimination power

The length of the cross-linker determines the number of obtainable restraints as well as their information
content.78 Whereas a longer cross-linker is able to form more cross-links and therefore yields a larger
number of restraints, the longer cross-linker length can be fulfilled by a larger number of conformations,
reducing the discriminative power of the restraint. In order to assess the influence of the cross-linker
length, and therefore the number of restraints and restraint distances, on the sampling accuracy and
discrimination power, the protein structure prediction protocol was conducted with restraints derived
from different cross-linker lengths.

The cross-linker lengths were separated into five groups: optimal, which is the predicted optimal
cross-linker length, short1 and short2, which are shorter cross-linker lengths, and long1 and long2,
which are longer cross-linker lengths. The cross-linker length predicted to be optimal yielded the most
useful restraints for protein structure prediction in terms of sampling accuracy and discriminative
power. Across all proteins the average RMSD100-values of the most accurate models for the optimal
cross-linker length were 5.6Å — an improvement by 15%— while they were 6.3Å, 6.2Å, 5.9Å and6.1Å — improvements by 5%, 6%, 11% and 8%— for the shorter and longer cross-linker lengths,
respectively (figure IV.5). The longest cross-linkers have a less significant impact on the sampling
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accuracy due to their ambiguity, whereas the shortest cross-linkers failed to yield a sufficient number of
distance restraints to impact prediction accuracy. The method’s discriminative power, as quantified
through the enrichment metric, for the optimal cross-linker length was 2.1, whereas it was 1.4, 1.5, 1.9
and 1.7 for the shorter and longer cross-linkers, respectively (see figure IV.5 on the previous page for
details). For the proteins 1X91 and 3M1X, the optimal cross-linker length did not yield any cross-links
with a sequence separation of at least ten and therefore did not provide relevant structural information.
In those cases protein structure prediction with longer cross-linker lengths provided better results. By
combining restraints obtained for all five cross-linker lengths, the average enrichment-value could be
improved to 2.4.
IV.3.9. Combination of cross-linkers with different reactivities results in improvements larger than seen

when varying the spacer lengths

In order to obtain valuable restraints for de novo protein structure prediction a maximum number of
SSE pairs needs to be cross-linked. The availability of Lys-Asp/Glu reactive cross-linkers allows for a
better sequence coverage and therefore a wider coverage of SSE pairs. Cross-links with different spacer
lengths were simulated for the proteins in the benchmark set using Xwalk. To assess the influence of
Lys-Asp/Glu reactive cross-linkers on protein structure prediction the same protocol was applied as for
the Lys-Lys reactive cross-linkers. For the Lys-Glu reactive cross-linkers a prediction accuracy of 5.7Å
and enrichment of 2.2 on average could be achieved, which is comparable to the results for the Lys-Lys
reactive cross-linkers.

While Lys-Asp reactive cross-linkers also achieve improvements in prediction accuracy and enrich-
ment when compared to protein structure prediction without restraints, the results are slightly worse
than for Lys-Lys reactive cross-linkers with an average prediction accuracy of 6.0Å versus 5.6Å and an
average enrichment of 1.7 versus 2.1 (table C.2 on page 172). To a large part, the difference in the overall
results is caused by the results for the proteins 1ES9, 1T3Y, and 3M1X for which Lys-Asp reactive cross-
linkers failed to yield restraints between SSE pairs and therefore failed to reduce the conformational
space significantly. Besides deviations regarding the average improvements over all proteins, the spacer
length deemed optimal also provides the best results for Lys-Asp/Glu reactive cross-linking. Combining
the restraints yielded for the optimal spacer lengths with Lys-Lys/Asp/Glu reactive cross-links improves
the sampling average sampling accuracy to 5.1Å and the average enrichment to 2.6. Combining the
restraints yielded by all spacer lengths and cross-linker reactivities failed to further improve prediction
results.

IV.4. Discussion

IV.4.1. Prediction of the optimal cross-linker spacer length

It has been demonstrated frequently that chemical cross-linking data can be used to guide de novo
structure prediction and selection of native-likemodels. Certainly, the sensitivity, the broad applicability
to almost all proteins, the almost physiological experimental condition during the chemical cross-linking
reaction, and the potential of automation are the main advantages for using XL-MS to generate such
restraints. However, the small number and high uncertainty of restraints from chemical cross-links
limit impact on de novo proteins structure prediction, in particular when compared to more data rich
methods such as NMR spectroscopy.154
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One major limitation arises from the fact that distances between the functional groups in long
and flexible amino acid side chains are measured. Therefore, a significant uncertainty is added to
the cross-linker length when converting XL-MS data into Cβ − Cβ restraints. A second challenge of
chemical cross-links is that only the maximum distance is restricted, but no information is obtained on
the minimum distance or the favored distance distribution. In result, even a “zero length” cross-linker
restricts the Cβ −Cβ distance to the sum of the lengths of the two connected side chains (e.g. for Lys-Lys
cross-links 9.1Å).

In most of the cross-linking experiments, lysine residues are targeted. Lysines are excellent targets
because of their overrepresentation on protein surfaces and the clean chemistry of amine modification.
Nevertheless, their frequency is on average only about 7%. As a consequence the number of cross-links,
which can be formed for example in a 25 kDa protein with a standard homobifunctional Lys-Lys-reactive
cross-linking reagents with a spacer length of 6.4Å (length of DST) are in the range of about 20. Only a
small fraction of these restraints will substantially limit the conformational space for the protein. This
number is usually too small to restrict the conformational space to an unambiguous single protein fold.
To increase the number of restrains it is possible to use cross-linkers with longer spacer length or target
amino acids such as Asp, Glu, Tyr, Ser, Thr, Arg, or Cys.

Restraints obtained with longer cross-linking reagents are less restrictive to the conformational space.
To evaluate the value of cross-links for protein structure prediction we determined for each sequence
distance (0 to 60 amino acids) how long a cross-linker has to be to link the target amino acids. For
example two lysines, which are separated by eight amino acids in sequence were found to be linkable in
all 3488 cases by a homobifunctional cross-linker with a length greater than 30Å (as it is in BS(PEG)9).
In our study, we stated the hypothesis that it would be desirable if two target amino acids can only be
linked in 50% of all models created meaning that 50% of all structures could be discarded based on
a single cross-link. For example, for two lysines separated by 10 amino acids this would be the case
for cross-linker lengths of 14.8Å (distance distributions for other amino acids distances are shown in
figure IV.1 on page 51). Cross-links, which could only be formed in less than 50% for the corresponding
sequence distance, were considered as being valuable. Based on this definition for all 2055 structures of
the applied non-redundant protein structure database the optimal spacer length was calculated. With
this optimal spacer length, the number of structural valuable cross-links has been maximized taking
into account that in general for modeling approaches few distance restraints of highly discriminative
character are less favorable than a higher number with a smaller discriminative power.183,188

Since the optimal cross-linker length should depend on the protein size in a cubic root fashion to
convert volume into distance, it is not unexpected that this was also observed for the dependency on the
MW (figure IV.4 on page 59). However, one has to keep inmind that the formulamight not be applicable
to non-globular proteins and multi-domain proteins. However, in case of multidomain proteins this
formula should be applicable to the separated domains. Remarkably, based on our simulation for
proteins with a MWs of 10 kDa, 25 kDa, 50 kDa and 100 kDa the recommended spacer lengths are9.0Å, 11.5Å, 13.9Å and 17.0Å, respectively, which is quite close to the homobifunctional amine-
reactive commercially available cross-linkers DSG (7.7Å), BS3 (11.4Å), and EGS (16.1Å), which are
currently the preferred choice to study small (less than 20 kDa), medium (20 kDa to 50 kDa), and large
proteins (greater than 50 kDa), respectively.

Addressing different functional groups is a second approach to increase the total number of distance
restraints. The consequence is that the cross-linking reaction is either less effective or specific (Asp, Glu,
Tyr, Ser, Thr) creating challenges in data interpretation or the target amino acids are less frequent (Arg
and Cys) limiting the number of restraints observed. However, using the same theoretical approach
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revealed that optimal spacer length for heterobifunctional Lys-Asp and Lys-Glu cross-linker (figure C.3
on page 175) as well as homobifunctional Cys-Cys and Arg-Arg cross-linker can be predicted with
the same equation: 𝑙opt[Å] = 𝑘 ⋅ 3√𝑀𝑊 + 3√𝑆𝑆1 + 𝑆𝑆2 with 𝑘 ≈ 13 where 𝑆𝑆1 and 𝑆𝑆2 are the average
lengths of the cross-linked side chains.

When comparing the two approaches to increase the number of valuable cross-links, it should be
pointed out that using several cross-linking reagents with different reactivities results in significantly
higher improvement of the model quality than using only lysine reactive cross-linking reagent but with
different spacer length.

IV.4.2. Challenges in using cross-linking data to guide de novo modeling

To test whether the cross-linker with the predicted optimal spacer length indeed perform best in
modeling we have chosen a de novo structure prediction approach BCL::Fold for testing. Even though
comparative modeling using known protein structures as a template usually performs better then de
novo modeling, our goal was to maximize impact of XL-MS restraints.

A major limiting factor for de novo protein structure prediction methods is the vast size of the
conformational space. Cross-linking restraints can aid the computational prediction of a protein’s
tertiary structure by drastically reducing the size of the sampling space. Cross-linking experiments
yield a maximum Euclidean distance between the cross-linked residues, which increases the sampling
density in the relevant part of the conformational space.

A major limitation of using cross-linking restraints to guide protein structure prediction when
compared to restraints obtained from EPR and NMR spectroscopy is that the cross-linker length cannot
be directly translated into a Euclidean distance between the cross-linked residues. While cross-link
prediction and evaluation methods like Xwalk178 are successful at predicting if a certain cross-link can
be formed in a given structure, explicit modeling approaches are computationally too expensive for
usage in a rapid scoring function required for protein structure prediction. Approximations, such as the
great circle on a sphere presented here, are fast to compute but associated with increased uncertainties.
Most of the cross-linkers used can cover a long Euclidean distance and therefore the yielded restraints
can be fulfilled by a wide variety of conformations. In spite of this, cross-linking restraints display some
potential in limiting the size of the sampling space, resulting in a higher density of accurate models.
Further, the geometrical restraints derived from XL-MS allow for the discrimination of a significant
fraction of models representing incorrect topologies and therefore improve the discriminative power of
the scoring function.

IV.4.3. Abilities and limitations of protein structure prediction from limited experimental data

We showed that incorporation of cross-linking data into a de novo protein structure prediction method
improves the accuracy of the structure prediction. The two major challenges of de novo predictions
are the sampling of structures as well as the discrimination of inaccurate structures. In this study
reduction of the conformational space was achieved through the assembly of predicted SSEs with
limited flexibility and the incorporation of geometrical restraints derived from cross-linking data. The
discrimination of inaccurate models is performed through a scoring function which approximates the
free energy. Assuming that the native structure is in the global energy minimum, complete sampling
and an accurate methods to measure free energy would lead to the correct identification of the native
conformation. However, the conformational space is too large to be extensively sampled and the free
energy needs to be approximated, which results in ambiguity regarding the model which is most similar
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to the native structure. Incorporating cross-linking data provides geometrical restraints, which can
be used as additional criteria to discriminate inaccurate models. While an average sampling accuracy
of 5.1Å, when using restraints yielded by XL-MS, is a significant improvement over the 6.6Å, when
not using cross-linking data at all, only for four proteins it was possible to sample models with an
RMSD100 of less than 4Å when compared to the crystal structure. Cross-linking data yields an upper
boundary for the Euclidean distance of the cross-linked residues, which allows for the placement of the
second residue within a sphere of volume 43𝜋r3 around the first residue. Depending on the cross-link
distribution, topologically different models can fulfill the same restraint set. Discrimination among
those models is impossible with XL-MS restraints.

IV.4.4. Comparison of experimental and in silico cross-links

In order to draw general conclusion based on the analysis of hundreds of different structures this study
relies mainly on virtual cross-linking experiments. Unfortunately, although extensive XL-MS data sets
have been published for several proteins, it proved difficult to obtain suitable experimental data sets
for the present benchmark due to additional requirements: (i) the protein must be monomeric and
small enough for de novo protein folding with BCL::Fold, (ii) an experimental atomic detail structure
for comparison, and (iii) a large data set of intramolecular cross-links must be available. Results for the
four cases P11, FGF2, cytochrome c, and oxymyoglobin that came closest are reported to demonstrate
our efforts to work not only with simulated data. However, for P11 and FGF2 using experimentally
determined restraints did not improve the prediction results in a statistically significant way. For P11,
only three restraints were available with a maximum sequence separation of nine residues. Because
of the small sequence separation, these restraints contain very limited structural information and
no improvement in de novo folding can be expected. The tertiary structure of FGF2 contains twelveβ-strands with several β-strands that are strongly bent. This protein is too large for de novo structure
determination with BCL::Fold. As BCL::Fold is unable to sample the conformation of the protein in
the first place, no significant improvement was expected or observed when XL-MS data were added.
Nevertheless, the value of the predicted cross-links in comparison to experimental cross-links could be
validated with the two proteins cytochrome c and oxymyoglobin for which experimental cross-links had
been published in the XL database.172 For cytochrome c (PDB entry 1HRC), we indeed found that the
cross-linker with predicted optimal spacer length of 10.2Å performed best. However, for oxymyoglobin
(PDB entry 1MBO) the longer spacers improved the accuracy slightly more than the cross-linker with
the optimal spacer length. Interestingly, on the one hand for both proteins several cross-links, which
should be possible, could not be detected, which might be due to experimental or analytical reasons. On
the other hand, also several cross-links, which were experimentally, identified which were not predicted.
An examination of these data revealed that most of these cross-links are not present in the virtual data
set because their Cβ − Cβ distances exceed the expected maximum length. This finding is in agreement
with Merkley et al.,189 who evaluated protein structures by molecular dynamics and reported that
usually a high number of experimental approved cross-links exceed the theoretical maximal spatial
distance due to structure flexibility. It was concluded for the investigation of Lys-Lys distances using a
BS3/DSS cross-linking reagent an upper bound of 26Å to 30Å for Cα-atoms.189

On the other hand, spacer conformations usually adapt lengths that are somehow distributed between
their minimal and maximal lengths. In line it was also reported that many spacers in commercially
available cross-link agents preferable adopt conformations, which are significantly below the cited max-
imal spacer length.190 Thus, ideally cross-linking results should be evaluated based on experimentally
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derived or simulated ensembles of in-solution structures instead of using X-ray structures as reference.
However, to address all degrees of flexibility during the de novo structure prediction is currently too
resource intensive. Furthermore, there are many additional practical challenges, which may prevent
the formation or identification of cross-links, and thus may result in more meaningful results using a
cross-linker with a non-optimal length. Nevertheless, for both structures the sampling accuracies could
also be improved by 0.7Å based on the experimentally determined restraints, which is only slightly
worse than the improvement of 1.0Å observed based on in silico cross-links.

IV.5. Conclusion

Recent development of high-resolution MS instruments enables the analysis of proteins not accessible to
NMR spectroscopy and X-ray crystallography. Data obtained from those experiments can be translated
into structural restraints to guide protein structure prediction. The information content of a geometrical
restraint obtained from XL-MS experiments is directly dependent on the used spacer length. Thus, the
choice of the spacer length is an important step.

Firstly, for amino acids pairs close in sequence only minimum structural information is obtained
if the spacer is too long. Here we determine the optimal spacer length to gain structural information
on lysines with a sequence separation of 𝑆, we estimated a length as 𝐸 = 5.5 ⋅ ln(𝑆) + 2.2. Secondly, we
demonstrate that for de novo protein structure prediction the optimal spacer length depends on the
MW of the protein of interest and the length of the cross-linked side chains (𝑆𝑆1 and 𝑆𝑆2) and can be
predicted as 𝑙opt = 𝑘 ⋅ 3√𝑀𝑊+ 3√𝑆𝑆1 + 𝑆𝑆2, with 𝑘 ≈ 13 .

We also demonstrate that restraints obtained from cross-linking experiments contributemoderately to
solving themajor challenges of de novo protein structure prediction— the vast size of the conformational
space and discrimination of inaccurate models. Using restraints from cross-linking experiments
significantly increases the sampling density of native-like models and contribute to the discrimination
of incorrect models. By combining cross-linking restraints with knowledge-based scoring functions, the
average accuracy of the sampled models could be improved by up to 2.2Å and the average enrichment
of accurate models could be improved from 11% to 24%.

Conclusively, we believe this study can help in the planing of XL-MS experiments as well as to evaluate
how much information can be gained by XL-MS experiments and the ambiguity that remains.
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CHAPTERV
EFFICIENT SAMPLING OF LOOP CONFORMATIONS

This chapter is based on the publication “Efficient sampling of loop conformations using conformation
hashing in conjunction with cyclic coordinate descent”.4 AxelW. Fischer contributed to the development
of the loop construction algorithm, performing the experiment, analyzing the data, and writing the
article.

De novo construction of loop regions is a critical and resource-consuming task. In the
absence of periodic backbone hydrogen bonds that define secondary structure, loop regions
are more likely to exhibit significant conformational flexibility. Accordingly, an ensemble
of physically realistic conformations could provide a more relevant representation of the
protein in its native state. We developed a loop construction algorithm using conformational
hashing complemented with cyclic coordinate descent. It achieves a closure rate of 100%
on a benchmark set consisting of twenty-nine proteins with 296 non-terminal loops, while
requiring only 161ms on average to close one loop. The efficiency of the algorithm enables it
to be used for protein ensemble prediction and simulation of spectroscopic data observed on
the equilibrium constitutions of proteins. In this manuscript, we investigate the bottlenecks
and limitations of conformational hashing and provide a detailed technical description of
the algorithm to enable implementation by other researchers.

V.1. Introduction

The construction of loop regions in proteins remains a challenge. The absence of periodic backbone
hydrogen bonds that define regular secondary structure allows for a large conformational space that
needs to be searched. Often, multiple conformations with low differences in their free energy might
exist, making it difficult to identify the single conformation in the absolute free energy minimum or to
determine an ensemble of conformations that accuratelymimics the loop flexibility at room temperature.
Benchmarking of loop construction algorithms is complicated, as loop conformations can be perturbed
in experimental structures from the global free energy minimum, for example through contacts in the
crystal lattice.

Multiple research groups have developed loop modeling approaches for usage within their respective
software suites. Rohl et al. developed a method based on Rosetta94 to predict the conformations of
structurally diverse regions in comparative models.191 Their approach constructs the initial conforma-
tions of short variable segments from structural templates selected from the PDB. The conformations
for the longer segments are constructed through the Rosetta software suite from fragments with a
sequence length of three and nine residues. The resulting conformations are refined using gradient
minimization, MC minimization, and rapid repacking of the side chains. Their method was evaluated
in the CASP experiment and compared favorably to alternative approaches.

Canutescu et al. developed the CCD algorithm,101 which was inspired by the random tweak algorithm
used in robotics. The CCD algorithm starts from an extended loop conformation and employs random
rotations around the loop’s rotatable bonds to optimize the superimposition of the loop’s virtual terminus
and the loop’s anchor point. This approach was shown to achieve a high closure rate even for longer
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loops.101 However, limitations of this approach are its time complexity that depends on the sequence
length of the loop and potential distortions in the loop’s dihedral angles.

Tyka et al. published an orthogonal approach using conformational hashing.192 In their approach,
a template library of known loop conformations is generated from protein models deposited in the
PDB. To construct a missing loop region, their algorithm performs a look-up in the template library
and fits the loop’s sequence against the selected template. This approach has the advantage of being
fast even for long loops while using dihedral angles that have been experimentally observed before.192
However, a severe limitation is the underrepresentation of long loops in the PDB, which results in a
lack of templates for longer loops. Consequently, this approach is only suitable for shorter loops.

Mandell et al. detailed the method “kinematic closure (KIC)” that was inspired by robotics and
achieved sub-angstrom accuracy.193 For the reconstruction of a loop region of sequence length𝑁, KIC
designates three of the loop’s Cα-atoms as pivot points, whereas the remaining 𝑁 − 3 Cα-atoms are
non-pivot. The method samples the non-pivot torsion angles using a Ramachandran map and the
torsion angles of the pivot points are subsequently sampled to close the loop. This method was evaluated
on a benchmark set consisting of twenty-five loops and improved the median accuracy from 2.0Å to0.8Å.193

An optimal loop construction algorithm will find middle ground between low time complexity, high
closure rate, and physically realistic dihedral angles of the sampled loop conformations. To achieve this
goal, we developed a conformational hashing algorithm that was extended to include functionality for
fragment recombination to counteract the lack of templates for long loops. In this approach, long loops
can be constructed from shorter fragments within a MCM framework. The algorithm was developed
to work in conjunction with a CCD implementation, which is only applied to loops that even with
fragment recombination cannot be closed. The resulting compound algorithm combines the advantages
of conformational hashing and CCD while mitigating their limitations.

In this study, we describe the implementation details of the conformational hashing algorithm with
fragment combination and its performance with and without its CCD complement. This algorithm
was implemented as part of the BCL.a The materials and methods section starts with a description of
the general methodology — how conformational hashing and CCD are combined within an MCM
framework. This is followed by an analysis of the generated loop template library and a mathematical
description how loop conformations can be parameterized. The subsequent sections provide a mathe-
matical description how templates and fragments can be combined into longer templates to compensate
for the lack of long loops in the PDB, a technical description of the employed CCD algorithm, and
a summary of the benchmark used to quantify the performance of the algorithm. The materials and
methods section is concluded by a description how the performance of our algorithm was compared to
Rosetta’s “loophash” algorithm. In the results section, we evaluate the performance of the approach in
terms of loop closure rate and CPU time consumption in dependence of the algorithmic parameters as
well as discussing the effective loop length limit of the conformational hashing algorithm. The reported
results are also compared to Rosetta’s conformational hashing algorithm.

V.2. Materials and methods

In this section, we provide a detailed technical description of the algorithm to enable other researchers to
readily implement and enhance this algorithm. The following subsections describe the implementation

ahttp://www.meilerlab.org/bclcommons
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Figure V.1.: Algorithmic approach for loop construction using conformational hashing in conjunction with
CCD. (A) Loops are parameterized through a hash key that is computed from the sequence length of the loop and
the relative orientation of its anchor points. The selection of suitable templates is performed through a hash look-up
of suitable conformations. (B) The loop construction algorithm consists of a conformational hashing and a CCD
stage. Both stages are embedded into MCM frameworks featuring mutates for adding, replacing, and removing loops
as well as bending the termini of the anchor SSEs. (C) The initial template library consisted of about 3.7 million
loop conformations with different sequence lengths that were collected from a set of about 87 000 protein structures
deposited in the PDB.

of the conformational hashing and CCD algorithms as well as how they are embedded into an MCM
algorithm to facilitate efficient construction of missing loop regions. This is followed by a subsection
describing the benchmark set used to evaluate the performance of the algorithm and a subsection
describing how additional loop templates can be constructed in silico from already known loop templates.
This section is concluded by a description of the comparison to Rosetta’s algorithm.

V.2.1. General methodology and obtaining the loop template library

The loop construction method described in this manuscript uses a sampling approach consisting of two
stages, which is followed by a post-processing step. In the first stage, the loop regions are constructed
from precomputed templates in a sequence-independent manner using conformational hashing. Since
suitable templates are not available for all loop regions, the second stage uses a CCD algorithm to close
the loops that could not be closed by the first stage. The two stages are followed by a post-processing
step to construct the terminal loop regions.

The general methodology of the first stage, the conformational hashing, can be broken down into
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two steps: i) creation of a library containing loop templates and ii) construction of missing loop
regions in protein models using the gathered templates (figure V.1 on the preceding page). In the
first step, the initial template library was compiled from experimentally determined protein structures
deposited in the PDB.194 The Dunbrack lab’s PISCES185,195 serverb was used to select a subset from
the PDB consisting of structures with a minimum resolution of 3.0Å while excluding structures that
completely or partially consisted of Cα-traces. Those selection criteria resulted in a set of about 87 000
protein structures. The loop regions in the protein structures were determined using the SSE definition
program DSSP.113 The SSE definitions provided in the PDB files were ignored to ensure that the same
definition criteria were applied to all structures and our results are reproducible. After filtering out loops
containing unresolved backbone coordinates, a set consisting of about 3.7million loop conformations
was collected (figure V.1 on the previous page). Subsequently, each of the loop conformations was
parametrized according to geometrical aspects and stored alongside the loop’s conformation in the
template library (see the following sections for details). In the second step, the parametrization of the
templates was translated into a hash key and the loop conformations associated with this key were stored
in a hash table. For the construction of loop regions, an MCM algorithm was employed (figure V.1 on
the preceding page), which used mutates to add and replace loops for given protein models (see the
following sections for details). To add a loop, the mutate computes the parameterization of the missing
loop, computes the hash key for the parametrization, and randomly selects a suitable template from the
hash table. After selection of a suitable template, the loop’s sequence is fitted against the template and
inserted into the protein model. The advantage of this approach is that the template look-up can be
performed in 𝑂(1) and generally requires CPU time in the order of microseconds. To counteract the
lack of templates for long loops, an additional mutate constructs missing loop regions from shorter
fragments (see the following sections for details).

The general methodology of the second stage, the CCD algorithm, was previously described by
Canutescu et al.101 and functions by calculating the rotation that must occur around a given axis (ϕ, ψ)
in order to minimize the distance between a moving (loop end) and target (anchor) set of coordinates
over many iterations in order to close a chain break. In order to prevent getting stuck in a non-closable
conformation based on the starting loop conformation, in this implementation, the residue and ϕ orψ
are randomly chosen at every step. In addition, only a random fraction of the rotation is applied. This
protocol can be performed in the presence or absence of scoring functions. If used in the presence
of scoring potentials, rotations that lead to severe clashes between amino acids or SSEs for example
would be rejected. The original protocol was extended to allow for bending of the terminal regions of
the preceding and succeeding SSEs (figure V.1 on the previous page).

Following the second stage, the terminal loop regions were constructed starting from an extended
conformation exhibiting backbone dihedral angles that were randomly drawn from a (ϕ, ψ) distribution
derived from experimentally determined protein structures (see the following sections for details).
The CCD algorithm in conjunction with knowledge-based potentials was subsequently applied to
the constructed terminal loop regions to resolve steric interferences and optimize other energetically
unfavorable or forbidden conformations.

V.2.2. Parametrization of loop conformations and selection of suitable conformations

Loop construction finds a peptide conformation that is able to bridge a gap between the C-terminal
residue of the N-terminal SSE and the N-terminal residue of the C-terminal SSE—henceforth called the

bhttp://dunbrack.fccc.edu/PISCES.php
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two anchor points of the loop. Consequently, each loop can be defined through the relative translational
and rotational orientation of the anchor points and the sequence length of the loop. To formalize the
relative translational and rotational orientation of the anchor points, we defined local orthonormal
coordinate systems for the anchor points of each loop as (𝑒x , 𝑒y , 𝑒z) based on the backbone coordinates
of the anchor points (figure V.1 on page 69), with 𝑒x being the normalized Cα − C vector, 𝑒y being
the normalized component of the Cα − O vector that is orthogonal to 𝑒x , and 𝑒z being computed
from 𝑒x and 𝑒y as 𝑒z = 𝑒x × 𝑒y . The origins of the coordinate systems reside in the Cα-atoms of the
anchor points and the translation vector between the coordinate systems is defined accordingly as𝑡 = (𝑡x , 𝑡y , 𝑡z) = (𝛼𝑐,𝑥 − 𝛼𝑛,𝑥 , 𝛼𝑐,𝑦 − 𝛼𝑛,𝑦 , 𝛼𝑐,𝑧 − 𝛼𝑛,𝑧), with 𝛼𝑛,𝑥 being the x-coordinate of the Cα-atom
of the N-terminal anchor and 𝛼𝑐,𝑥 being the x-coordinate of the Cα-atom of the C-terminal anchor.
The relative rotational orientation of the two anchor points was quantified using Euler angles (𝛼, 𝛽, 𝛾)
following the extrinsic x-y-z convention.196 The Euler angles can be readily extracted from the matrix𝑀r197 describing the rotation between both coordinate systems that can be computed as𝑀r =𝑀−1n ⋅𝑀c ,
with𝑀n and𝑀c being the transformation matrices of the local coordinate systems at the N- and C-
terminal anchor points.

The resulting parameterization of each loop consists of seven parameters: the sequence length 𝑑 of
the loop, the three components of the translation vector (𝑡x , 𝑡y , 𝑡z), and the three Euler angles (𝛼, 𝛽, 𝛾).
Those seven parameters are discretized through binning and translated into a one-dimensional hash
key 𝑘 using the hash function 𝑓 defined in equation (V.1).𝑓∶ 𝑑 × (𝑡x , 𝑡y , 𝑡z) × (𝛼, 𝛽, 𝛾) → 𝑘 (V.1)

where:𝑑 = sequence length of the loop(𝑡x , 𝑡y , 𝑡z) = translation vector between the anchor points(𝛼, 𝛽, 𝛾) = Euler angles between the anchor points

The discretization aims at grouping structurally similar loops and is necessary to prevent sparse
population of the hash map. For the discretization, we evaluated different bin sizes in this study (see
the results section for details) and found bin sizes of 1Å for the components of the translation vector
and 60° for the Euler angles to provide the best closure rates while maintaining reasonable accuracy for
the given use case. Additionally, for each loop, the conformation 𝑐 is stored as a sequence of dihedral
angles (ϕ, ψ), resulting in a sequence of length 2𝑑 + 2: 𝑐 = (𝜓n , 𝜙1 , 𝜓1 ,… , 𝜙d , 𝜓d , 𝜙c) , where 𝜓n is the𝜓-angle of the N-terminal anchor point, (ϕi , ψi) are the dihedral angles of the 𝑖-th residue of the loop,
and 𝜙c is the ϕ-angle of the C-terminal anchor point. Consequently, each loop results in a key-value
pair (𝑘, 𝑐) that, can be stored in a hash map.

The look-up of suitable conformations for a given loop is performed accordingly. For each missing
loop, the local coordinate systems of its anchor points are computed and the resulting hash key (see
equation (V.1)) is determined. Suitable conformations that would close this loop can subsequently be
looked up in the hash map within constant time complexity. The sequence of the loop is then fitted
against the dihedral angles of the selected template and inserted into the protein model. It needs to
be noted that although the look-up happens in 𝑂(1) and therefore is independent of the length of the
loop, the fitting can only be performed in 𝑂(𝑛), which results in linear time complexity for the overall
algorithm.
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V.2.3. Construction of loop regions using conformational hashing within a Monte Carlo Metropolis
framework

Insertion of different loop conformations can be mutually exclusive. For example, in a protein model
containing multiple loop regions, closing a certain loop with a certain conformation might prevent the
other loops from being closed. Consequently, an algorithm is needed that can efficiently sample different
combinations of loop conformations while scaling well with the available computational resources.
Previous studies have demonstrated the successful application of MCM algorithms on protein structure
prediction problems,1,59,94 which convinced us to embed the loop construction algorithm into an MCM
framework. Effectively, the loop construction algorithm consists of two MCM algorithms executed in
sequence. The first MCM algorithm embeds the conformational hashing algorithm and the second
MCM algorithm embeds the CCD algorithm, with the latter only being applied to the loops that could
not be constructed by the conformational hashing algorithm.

In the MCM implementation of the conformational hashing algorithm (figure V.1 on page 69), a
mutate is randomly selected and applied to the proteinmodel; the resulting proteinmodel is subsequently
evaluated using a scoring function, and, depending of the score difference to the previous protein model,
the new model is either accepted or rejected.59 Our implementation consists of four mutates for entire
loops — Add, Remove, Replace, and AddResize — and three mutates for the fragment-based loop
construction — FragAdd, FragDel, and FragReplace (figure V.1 on page 69). The mutate Add randomly
selects a missing loop in the protein model, looks up the set of suitable conformations in the hash
map, and inserts a randomly selected suitable conformation. The mutate Remove removes a randomly
selected existing loop from the protein model. The mutate Replace replaces a randomly selected existing
loop in the protein model with another randomly selected suitable conformation. The mutate AddResize
cuts back one or both anchor SSEs by one to three residues before applying the mutate Add to the
resized loop. The result of each mutate is evaluated through the weighted sum of previously published
knowledge-based scoring terms evaluating steric interference between residues, agreement of the
dihedral angles with Ramachandran’s distribution, and residue-residue interactions.60 To counteract
uncontrolled cutting back of SSEs by the AddResize mutate, scoring terms were added to evaluate
the agreement of the protein model with the secondary structure prediction methods PSIPRED,98,198
Jufo9D,97 and MASP.99 To support loop closure, an additional scoring term penalizing protein models
with missing loops was also introduced. This scoring term adds a penalty score that is linearly based on
the number of missing loop residues and is weighted to contribute about 30% to the total score. The
fragment-based construction of loops is detailed in the following sections.

In each MCM cycle, one randomly selected mutate is applied to the protein model, the result is
scored, and the changed protein model is either accepted or rejected. We evaluated different cycle
lengths to find the optimal balance between closure rate and time requirement and found that the
following termination criteria provided the best results (see the results section for details): for the
conformational hashing algorithm, the maximum number of iterations per protein model was set to500 and the algorithm terminated early if no score improvement was found for 50 iterations in a row.
For the CCD algorithm, setting the maximum number of iterations per protein to 2000 and the early
termination criterion to 500 iterations provided the best results.

V.2.4. Construction of missing loop regions using cyclic coordinate descent

The CCD algorithm was used to construct loop regions or parts of loop regions that could not be
constructed using the conformational hashing algorithm— i.e., if the conformational hashing algorithm
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only constructed part of loop, the CCD algorithm was employed to close the remaining gap. Its
implementation was inspired by an algorithm published previously by Canutescu et al.,101 which is
based on the random tweak algorithm.199,200 The CCD implementation employed in this study used a
pre-stage and a main-stage approach for the conformation sampling.

During the pre-stage, an algorithm dynamically adds missing residues and samples the (ϕ, ψ) back-
bone angles. Residues are added with initial (ϕ, ψ) values that are derived from a probability distribution
of experimentally observed backbone dihedral angles. The (ϕ, ψ) angles are subsequently perturbed
and evaluated using a knowledge-based potential. The residues are added to both the C-terminus of the
N-terminal anchor SSE and the N-terminus of the C-terminal anchor SSE. To account for potential
inaccuracies in the secondary structure prediction, residues can be added or removed from the anchor
SSEs. The sampling of this pre-stage is guided by scoring terms evaluating the completeness of the
amino acid sequence, steric interference between residues, residue-residue interactions, and the loop
trajectory towards its anchor point. This module was also employed to construct the terminal loop
regions of the protein models.

The main-stage is based on the previously published CCD algorithm by Canutescu et al..101 CCD
calculates the rotation that must occur around a given axis (ϕ or ψ) to minimize the distance between a
moving (loop end) and target set of coordinates over many iterations to close a chain break. In order to
help prevent getting stuck in a non-closable conformation based on the starting loop conformation,
the algorithm was extended to select the residue and rotation axis (ϕ or ψ) randomly at every step.
In addition, only a random fraction of the rotation is applied. This protocol can be performed in the
presence or absence of scoring functions. We used this approach in conjunction with scoring functions
to evaluate residue-residue interactions and steric interferences between residues.

V.2.5. The benchmark set used to evaluate the algorithm

To evaluate the performance of the algorithm, we selected a benchmark set consisting of twenty-
nine soluble and membrane proteins (table V.1 on the next page). This benchmark set consisted of
a set of soluble proteins used previously by Tyka et al. to benchmark the Rosetta conformational
hashing algorithm192 and was extended by eleven membrane proteins that were used to benchmark the
protein structure prediction algorithm BCL::MP-Fold.2 The proteins in the benchmark set ranged in
size from 57 to 1560 residues with varying α-helical and β-strand secondary structure content. The
proteins contained 296 non-terminal loop regions with lengths up to 41 residues. For the benchmark
proteins, secondary structure definitions were obtained using DSSP113 and loop regions were removed
accordingly from the experimentally determined structures collected from the PDB. Almost two thirds
of the proteins in the benchmark set either had missing coordinates in terminal loop regions or very
short terminal loop regions. Due to the lack of reference points for those loops, we opted to exclude
them from the evaluation except for checking whether an energetically unforbidden conformation has
been constructed.

The benchmark was not performed using the original template library; instead all proteins with
a sequence identity greater or equals 25% to any protein in the benchmark set were removed and a
new template library was generated. For heterooligomers, only the chains fulfilling this criterion were
removed from the initial template set. Using this criterion, about 3000 protein structureswere completely
or partially removed from the initial set consisting of about 87 000 protein structures. Subsequently,
a new template library was created from the remaining proteins and used in the benchmark that is
detailed in the following sections.

73



Soluble proteins

Protein Length #Loops

1A32 88 3
1ACF 125 10
1BK2 57 4
1BKR 109 4
1ELW 252 12
1OPD 85 6
1PGX 83 4
1R69 69 4
1TTZ 87 6
1UBI 76 5
1VCC 77 5
1VKK 154 11
1WDV 304 24
2ACY 98 6
2CHF 128 9
2H28 260 12
2HE4 90 7
2ICP 94 4

Membrane proteins

Protein Length #Loops

1J4N 271 8
1OKC 297 10
1PY6 498 20
2BL2 1560 56
2IC8 182 8
2K73 183 7
2KSF 107 3
2KSY 247 10
2NR9 196 7
3GIA 444 17
3P5N 378 14

Table V.1.: The protein structures used to benchmark the loop construction algorithm. Twenty-nine protein
structures with different sequence lengths and a total number of 296 non-terminal loops were used to evaluate the
performance of the algorithm.

V.2.6. Compensating for the lack of templates for long loops through fragment combination

From the initial set of about 87 000 protein structures about 3.7million loop templates were collected.
Of those, about 2.2million loop templates had a sequence length of at least four residues (figure V.1
on page 69) and therefore their conformation was not overdetermined. However, only 12% of the
templates had a sequence length of ten or more residues, which posed a substantial problem, since
longer loops can cover a larger conformational space and are therefore less likely to be closed by
the conformational hashing algorithm using a template library that only has a limited number of
conformations for such loops. To compensate for the lack of templates that are suitable for long loops,
we developed a two-pronged approach.

First, we developed an algorithm to combine short loop templates to longer loop templates. This is per-
formed by superimposing the backbone coordinates of the C-terminal anchor point of the first template
with the backbone coordinates of the N-terminal anchor point of the second template. Accordingly, the
resulting template has a sequence length of 𝑑 = 𝑑1 +𝑑2 +1, with 𝑑1 and 𝑑2 being the sequence lengths of
the original templates. The remaining parameters, the translation vector 𝑡 and the Euler angles (𝛼, 𝛽, 𝛾)
could be computed by transforming the local coordinate system of the N-terminal anchor point of the
second template into the local coordinate system of the N-terminal anchor point of the first template,
which can be achieved by multiplying the rotation matrix of the first coordinate system with the inverse
rotation matrix of the second coordinate system𝑀 =𝑀−12 ⋅𝑀1 . Multiplying the translation vector 𝑡2
of the second template with this matrix will allow for simple vector addition to compute the resulting
translation vector 𝑡 = 𝑡1 + (𝑡2 ⋅𝑀). Although this approach works in theory, we experienced numerical
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inaccuracies that became significant when constructed templates were used to construct additional
templates. Instead, we opted for a slower but more accurate approach. In this approach, we combined
the stored dihedral angles for both templates into a sequence consisting of 2 ⋅ (𝑑1 + 𝑑2 + 2) dihedral
angles: (𝜓𝑛,1 , 𝜙1,1 , 𝜓1,1 ,… , 𝜙1,𝑑 , 𝜓1,𝑑 , 𝜙1,𝑐 , 𝜓𝑛,2 , 𝜙2,1 , 𝜓2,1 ,… , 𝜙2,𝑑 , 𝜓2,𝑑 , 𝜙2,𝑐). An artificial amino acid
sequence of length 𝑑 + 2 was generated within the algorithm and fitted against the combined sequence
of dihedral angles, which allowed for accurate computation of the parameterization for this sequence.

Second, we added mutates to enable a step-wise construction of loops within the MCM framework. If
a suitable loop with sequence length 𝑑 is missing in the template library, the AddFrag mutate randomly
selects a loop conformation with a sequence length less than 𝑑 − 2 from the template library and fits the
terminal part of the loop against the selected template. This approach required additional scoring terms
to prevent the algorithm from sampling incomplete loop conformations that cannot possibly be closed.
To address this problem, we added two previously described scoring terms, loop and loop_closure.60
Briefly, the scoring term loop quantifies the likelihood of closing a gap with a certain Euclidean distance
given a certain sequence distance and the scoring term loop_closure evaluates if a fully extended loop
with the given sequence length would be able to bridge the gap. To achieve a sufficient coverage of
the conformational space, we also added mutates that are inverse to the mutate AddFrag. The mutate
DelFrag removes a randomly chosen loop fragment from themodel and themutate ReplaceFrag replaces
a randomly selected fragment in the proteinmodel with a randomly selected fragment from the template
library.

V.2.7. Comparison with Rosetta Loophash

The loophash protocol of Tyka et al.192 was employed as a comparison method, though slight changes
to the protocol were needed due to the change in focus from loop diversification to loop construction.
Most notably, the “relax” stage of the procedure was omitted, and only the loop resampling plus
minimization-based closure stages were performed. As loophash assumes “ideal” bond length and
angles, all input structures were passed through the idealize application of Rosetta prior to use. The
same set of 85 808 homology-culled PISCES structures were used to create a database for loophash,
though all portions of the protein were included in the loophash database, not just the DSSP-defined
loops. The 296 non-terminal loops present in the benchmark set were each tested individually, in
the context of the full experimentally determined structure of the remaining loops, with parameters
set to skip RMSD-based filtering. A total of 100 output structures were sampled for each loop in the
benchmark set, and each output structure represents the result of 100 randomly selected database loops
which match the required geometry. Loophash was always able to produce samples, but due to the
substitution and minimization approach used, loophash may significantly perturb the protein structure,
even in regions outside the loop. For this reason, we counted as “closure failure” those loops for which
none of the 100 output structures were within 1Å whole structure Cα-RMSD from the input structure.
Runtimes for loophash are reported as an average for a single output structure, and include only the
time spent actively sampling the loop.

V.3. Results

In this section, we present the distribution of templates collected from structures in the PDB and
rationalize the need for template recombination. Following this, we report the performance of the
conformational hashing algorithm in terms of closure rate and time requirement. Additionally, the
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Figure V.2.: Performance of the conformation hashing and CCD algorithms for loop construction. (A) The
closure rate of the conformational hashing algorithm depended on the rotation angle bin width and the length of the
loops. High closure rates were achieved for short loops. Combining conformational hashing with CCD improved the
closure rate to 100% for the given benchmark set. (B) Evaluation of steric interferences dominated the CPU time
requirement per loop. A combination of conformational hashing and CCD maintained the high closure rate of CCD
while improving CPU time efficiency.

performance in dependence of different optimization parameters are reported. This section is concluded
by the results for combining conformational hashing with CCD. Where applicable, a comparison to
Rosetta’s loophash is provided.

V.3.1. The closure rate of conformational hashing strongly depends on the bin size for the
parameterization and the loop length

Before computing the hash key for a loop template, the loop’s parametrization needs to be discretized,
which is achieved through binning (see section V.2.2 on page 70 details). The bin width directly
determines how the hash map is populated and therefore is expected to have significant influence on
the closure rate and the physical reasonability of the constructed loop regions. Whereas larger bin
widths result in a denser population of the hash map, the constructed loop regions can be physically
unreasonable due to unstable bond lengths or bond angles. Smaller bin widths on the other hand result
in a sparser population of the hash map leading to physically stable bond lengths and bond angles
at the expense of a lower closure rate. To evaluate the influence of the bin width on the closure rate,
we repeated the loop construction for the benchmark set with different bin widths. The rotation bin
width was increased in 30° steps from 30° to 120°. The translation bin width was kept at 1Å because
larger translation bin widths would require post-processing of the fitted loop to avoid overextension of
the peptide bonds. Although the post-processing could be achieved using gradient minimization or
similar structure optimization methods, we opted for exclusion of post-processing to avoid additional
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computational burden on the algorithm.
Overall, for all four angle bin widths, the closure rate decreased approximately linearly with the

length of the loop. For the selected bin width of 60° and the extended loop library, the closure rate for
loops up to five residues was 94%, for loops with a length between six and ten residues, it was 61%,
and for loops with a length of more than ten residues, the closure rate dropped to 33%, resulting in a
total closure rate of 70% (figure V.2 on the preceding page). A similar, almost linear relation between
closure rate and loop length was also observed for the other three evaluated angle bin widths.

The total closure rate was strongly dependent on the angle bin width. For the evaluated angle bin
widths of 30°, 60°, 90° and 120°, the total closure rate of the conformational hashing algorithm arrived
at 58%, 70%, 78% and 89% (figure V.2 on the previous page). Although these results might suggest
using a larger angle bin width, this approach would also be prone to producing unnatural angles of
the peptide bonds connecting the anchor SSEs and the loop. This problem could again be mitigated
by applying gradient minimization or similar structure optimization methods as post-processing, but
would increase the required computation time. Instead, we opted to use an angle bin width of 60°,
which provided a compromise between closure rate and reasonable bond angles.

V.3.2. Conformational hashing achieves a high closure rate for short loops but CCD is required for long
loops

To evaluate the closure rate of the algorithm — what percentage of the missing loop regions can be
successfully constructed — we removed the non-terminal loop regions from each protein structure
in the benchmark set (see table V.1 on page 74 for a list of the benchmark proteins). The resulting
structural models were used as input for the described algorithm (see materials and methods for details).
For each input protein structure, the algorithm constructed the missing loop regions and the closure
rate per benchmark protein was computed. We performed the experiment twice: once with the pruned
template library collected from the about 84 000 PDB structures and once with the template library
that was extended using template recombination and fragment-based loop construction (see materials
and methods for details).

Using the original template library with an angle bin width of 60° and without additional templates
through fragment combination, the algorithm achieved a closure rate of 54% over all twenty-nine
benchmark proteins. The closure rate strongly depended on the sequence length of the loops, which
was demonstrated by a closure rate of 87% for loops with a maximum sequence length of five residues
and a closure rate of 21% for loops with a sequence length greater than ten residues. Using the extended
template library in conjunction with fragment-based loop construction, the overall closure rate could
be improved to 70% (figure V.2 on the previous page). Further increase of the template library through
fragment combination or increasing the number of MC steps did not improve the closure rate in any
significant manner. However, by combining the conformational hashing algorithm with CCD, as
described in figure V.1 on page 69, the closure rate could be improved to 100% on the given benchmark
set (figure V.2 on the previous page). While Rosetta loophash is able to achieve a 99% closure rate
on the loops of length ten residues or less, it is only able to successfully close 39% of the loops eleven
residues or longer. The high closure rate of Rosetta for loops up to a length of ten residues is achieved in
part by using a wider bin width of the translation vector as compared to the implementation described
in this manuscript, 2Å versus 1Å, which consequently results in the need of structure optimization
and refinement following the fitting. This additional computational effort is reflected in a substantially
higher CPU time requirement as described in section V.3.3 on the following page.
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V.3.3. CPU time requirement is dominated by the evaluation of steric interferences

The time complexity of the template look-up is within 𝑂(1), whereas the fitting of the target sequence
against the template is within𝑂(𝑛), resulting in linear time complexity for the overall loop construction
algorithm. The absolute time requirement to construct loop regions was evaluated by measuring the
time between entering the MCM algorithm and leaving the MCM algorithm (see figure V.1 on page 69
for details) divided by the number of successfully constructed loop regions. To evaluate the contribution
of the scoring term evaluating steric interference between residues relative to the overall CPU time
requirement, the computation time needed by this term was evaluated separately. This experiment was
repeated for the CCD algorithm and the combination of conformational hashing and CCD.

Excluding the time required to evaluate steric interferences, conformational hashing required on
average (27 ± 4)msCPU time per loop, whereas CCD required (159 ± 11)ms and a combination of con-
formational hashing and CCD required (68 ± 7)ms (figure V.2 on page 76). Including the time required
to evaluate steric interferences, the requiredglscpu time increased to (59 ± 5)ms for conformational
hashing, (468 ± 41)ms for CCD, and (161 ± 13)ms for the combination of conformational hashing
and CCD (figure V.2 on page 76). For the given benchmark set and the three different algorithmic
approaches, the evaluation of steric interferences dominated the computational burden by accounting
for 54%, 66% and 58% of the total CPU time requirement, respectively.

In contrast, the Rosetta loophash procedure requires on average a CPU time of 160 s to sample
each loop. This runtime is highly correlated with total protein size (𝑅2 = 0.8). The longer runtime of
loophash is driven primarily by the minimization-based approach used, with 95% of the runtime being
devoted to minimization.

V.3.4. The algorithm samples the conformation of a protein’s major population in most cases

The algorithm was developed to achieve efficient sampling of a protein’s major and minor populations
in the equilibrium. Whereas we cannot validate minor populations, in this study we assume that
the experimentally determined structures deposited in the PDB correctly and accurately represent
one of the proteins’ major populations. To test whether the proposed loop construction algorithm
correctly samples those conformations, we used the protocol described in the materials and methods
section to sample 100models with constructed loop regions for each protein in the benchmark set. The
loop conformations of the sampled models were subsequently compared to the conformations of the
experimentally determined structures using the RMSD of the Cα-atoms. For the membrane protein
structure 3P5N, two non-terminal loops were not resolved in the X-ray-derivedmodel and consequently
excluded from this comparison. Of the remaining 294 non-terminal loops in the benchmark set, 94%
could be sampled with a Cα-RMSD less than 2Å relative to the experimentally determined reference
structure (examples and distribution shown in figure V.3 on the following page). The remaining eleven
loops all had a sequence length greater than ten residues (example shown in figure V.3 on the next
page). In contrast, Rosetta loophash was only able to sample a native-like loop conformation in 76% of
the cases, with forty failures in loops of sequence length ten or less, and thirty-two failures (89%) in
loops greater than ten residues.

V.4. Discussion

In this section, we discuss the applicability of conformation hashing to the loop construction problem
and why this approach needs to be complemented with a template-independent approach (for details,
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Figure V.3.: Examples for structural similarity of constructed loops to experimentally determined major pop-
ulations. For more than 96% of all non-terminal loops, a conformation structurally similar to the major population
could be sampled (the example shown in panel A depicts parts of 1A32). For some long loops, the major population
could not be sampled (the example shown in panel B depicts parts of 3GIA). The sampled models are rainbow-colored,
whereas the experimentally determined structures are shown in transparent gray). The violin plot (C) details the
accuracy distribution of the most accurate models depending on the loop length.
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see section V.4.1). Additionally, we discuss extensions to the algorithm to compensate for the lack of
templates for long loops (section V.4.2).

V.4.1. Conformational hashing needs to be complemented with a template-independent algorithm

Employing conformational hashing to construct loop regions faces the major problem that most loop
regions in structures deposited in the PDB have a sequence lengths less than ten residues. In our initial
template library set gathered from about 87 000 protein structures, 88% of all loops lay below the ten-
residue threshold (figure V.1 on page 69). Additionally, longer loops can cover a larger conformational
space, furtherly impeding construction of long loops using conformational hashing. The problem is
demonstrated by substantial discrepancies between the closure rates for different loop lengths: whereas
for loops with up to five residues a closure rate of 96% could be achieved, the closure rate dropped to61% for loops with a sequence length between six and ten residues, and finally to 33% for loops with
more than ten residues (figure V.2 on page 76). This problem could only be mitigated but not solved
by using template combination and fragment-based loop construction (see materials and methods for
details), which was demonstrated by an improvement of the total closure rate from 54% to 70%. These
results suggest that conformational hashing needs to be complemented with a template-independent
loop construction algorithm. In this study, we applied a CCD implementation to the loop regions or
parts of loop regions that could not be constructed by the conformational hashing algorithm, which
compensated for the latter’s inability to close long loops and was demonstrated by an improvement
of the closure rate to 100%. Consequently, a stand-alone conformational hashing approach can be
sufficient to construct very short loop regions but for an average protein, it needs to be complemented
with template-independent loop construction algorithms that are more suitable for long loops.

V.4.2. Combining conformational hashing with CCD provides an efficient way to sample structurally
diverse loop ensembles

Prediction of structural ensembles for proteins requires algorithms to facilitate efficient sampling of
diverse conformations to capture major and minor populations of the protein in the equilibrium.
Although CCD achieves a high closure rate, its relatively high demand for CPU time requires a more
efficient approach. The limited closure rate of the conformational hashing algorithm for long loops
demonstrated that CCD and other template-independent loop construction programs cannot be entirely
replaced by the more CPU-efficient conformational hashing approaches. However, constructing as
many loops as possible using conformational hashing and only construct the remaining, missing loops
or parts of the loops with CCD resulted in a significant reduction of the required CPU time. This was
demonstrated by a drop of required CPU time from 468ms, when using CCD only, to 161ms, when
using a combination of conformational hashing and CCD (figure V.2 on page 76). This demonstrates
that a combination of conformational hashing and CCD can result in a reasonable consensus between
the efficiency of conformational hashing and the high closure rate of CCD.The reduction of the required
CPU timewill allow for samplingmore conformations with the same amount of computational resources
available, therefore allowing to sample a wider range of possible loop conformations (see figure V.4
on the next page for examples). However, it needs to be noted that for about 6% of the loops in the
benchmark set, the conformation of the experimentally determined structure was not sampled (see
figure V.3 on the preceding page for an example). All these loops had a sequence length greater than ten
residues resulting in a larger conformational space. This problemmight be solved through incorporation
of limited experimental data from technique like electron paramagnetic resonance spectroscopy or
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Figure V.4.: Examples for predicted loop ensembles using conformational hashing in conjunction with CCD.
Loop ensembles for the protein structures 1A32 (left) and 1ACF (right) were predicted using a combination of
conformational hashing and CCD.

other sources that can be used to limit the size of the allowed conformational space and should be
evaluated in future studies.

V.5. Conclusion

The proposed loop construction algorithm consisting of conformational hashing complemented by a
template-independent approach like CCD provides an efficient way to sample a structurally diverse
ensemble of loop conformations that is significantly faster than using the template-independent ap-
proach alone. Under the assumption that the loop conformations in the experimentally determined
structures deposited in the PDB represent a major population in the respective protein’s equilibrium,
we conclude that the proposed algorithm is able to sample the major populations in the vast majority of
all cases. These results indicate, that the algorithmic approach described in this study could be used
for the prediction of protein ensembles, for which a structurally diverse set of conformations will be
fitted against experimental data to determine a weighted ensemble that represents the equilibrium
constitution of the protein in question.

As additional benefit, the constructed loop regions largely exhibit naturally occurring dihedral angles
due to the construction from conformations observed in the PDB. Due to a smaller number of elucidated
conformations for long loops in the PDB, the conformational hashing approach cannot be used on its
own for the construction of long loops but needs to be complemented with a template-independent
approach.
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CHAPTERVI
PREDICTINGTHEMONOMERIC ANDHOMODIMERIC FORMSOF BAX

This chapter is based on the publication “Pushing the size limit of de novo structure ensemble prediction
guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric forms of
BAX”.5 Axel W. Fischer contributed to the development of the prediction pipeline, performing the
experiment, analyzing the data, and writing the article.

Structure determination remains a challenge for many biologically important proteins.
In particular, proteins that adopt multiple conformations often evade crystallization in all
biologically relevant states. Although computational de novo protein folding approaches
often sample biologically relevant conformations, the selection of the most accurate model
for different functional states remains a formidable challenge, in particular, for proteins with
more than about 150 residues. EPR spectroscopy can obtain limited structural information for
proteins in well-defined biological states and thereby assist in selecting biologically relevant
conformations. The present study demonstrates that de novo folding methods are able
to accurately sample the folds of 192-residue long soluble monomeric BAX. The tertiary
structures of the monomeric and homodimeric forms of BAX were predicted using the
primary structure as well as twenty-five and eleven EPR distance restraints, respectively.
The predicted models were subsequently compared to respective NMR/X-ray structures of
BAX. EPR restraints improve the RMSD100 of the most accurate models with respect to the
NMR/crystal structure from 5.9Å to 3.9Å and from 5.7Å to 3.3Å, respectively. Additionally,
the model discrimination is improved, which is demonstrated by an improvement of the
enrichment from 5% to 15% and from 13% to 21%, respectively.

VI.1. Introduction

Proteins undergo conformational changes while performing their biological function. Although X-ray
crystallography provides snapshots of important conformations, often not all biologically relevant
conformations can be crystallized. NMR spectroscopy, the premier method to study protein dynam-
ics at atomic detail, suffers from a size limit that complicates a detailed analysis of larger proteins.
EPR spectroscopy in conjunction with SDSL offers an alternative approach to study protein structure
and dynamics. Briefly, typically two cysteine residues are introduced into a cys-less variant of the
protein and coupled with S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-3-yl)methyl methane-
sulfonothioate (MTSL), which carries an unpaired electron. The dipolar interaction of the two unpaired
electrons is inversely proportional to the cubed distance and can be measured with high sensitivity
with a pulsed dipolar spectroscopy technique called DEER or pulsed electron paramagnetic resonance
(PELDOR).75,150 As for every distance measurement a dedicated protein double-mutant needs to be
created and tested for functional viability, data obtained from SDSL-EPRmeasurements are sparse. Thus,
such data typically fail to unambiguously determine the structure of a protein at atomic detail. However,
it has been demonstrated that in conjunction with de novo protein structure prediction algorithms
determination of a protein’s foldmight be within reach.2,78,149 Whereas previous studies were performed
on smaller proteins78 or mainly based on simulated SDSL-EPR restraints,2 this study evaluates the
impact of experimental SDSL-EPR distance restraints on de novo protein structure prediction for larger
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proteins that adopt multiple biologically relevant conformations.
The major challenges of de novo protein structure prediction are the vast size of the conformational

space that needs to be sampled as well as the discrimination of inaccurate models, i.e., the identification
of low-energy, biologically relevant states of a protein with a simplified energy function. The simplified
macromolecule representations used in de novo folding simulations prohibit computation of accurate
free energy differences between different conformations. Instead, the approach employed in this study
uses knowledge-based energy functions to determine the likelihood of proposed protein models.60
In parallel, SDSL-EPR distance restraints restrict the sampling space to conformations that are in
agreement with the SDSL-EPR data,202 thus increasing the frequency with which models in agreement
with the SDSL-EPR data are sampled. Through incorporation into the scoring function, SDSL-EPR
distance restraints also improve the discrimination of inaccurate models. Studying soluble monomeric
and homodimeric BAX in this context is especially intriguing due to the large size of the protein and
the availability of high-quality experimental SDSL-EPR data sets.

BAX plays a central role in the apoptotic cell death, which is fundamental to the survival of mam-
mals and related to various diseases. Whereas unwanted apoptosis is seen as cause for ischemia and
Alzheimer’s disease,203 failure of apoptosis is a key step in developing tumors and autoimmune dis-
eases.204–207 As many different signals for cell death converge on mitochondrial outer membrane
(MOM) permeabilization, a better understanding of this mechanism is pivotal for the treatment of
diseases related to the apoptotic process.208 MOM permeabilization is controlled by members of the
Bcl-2 family, and the pro-apoptotic protein BAX is described to execute it.209 In a healthy cell, BAX
is a monomeric, cytosolic protein, whose structure was determined by NMR spectroscopy.210 Upon
pro-apoptotic stimuli, BAX inserts into the MOM, oligomerizes, and creates pores.208,209 Through
the pores, cytochrome c and other pro-apoptotic proteins are released into the cytosol, initiating a
proteolytic cascade leading to cell death. The structure of the membrane-embedded active BAX remains
elusive. However, three recent publications have provided valuable new structural insights.202,211,212

Here we apply the BCL::Fold59 algorithm, which is part of the BCL, to predict the tertiary structure
of soluble monomeric BAX and of the dimerization domain of membrane-embedded BAX oligomers.
For the solution structure of BAX (PDB entry 1F16) and the BAX BH3-in-groove dimer (PDB entry
4BDU), high-resolution structures are published210,211 and a number of SDSL-EPR measurements
exist.202 Therefore, this study represents a benchmark test if SDSL-EPR data are sufficient to determine
the structure of biologically important states of large, membrane-associated proteins. BCL::Fold is
tailored towards assembly of large protein structures from predicted SSEs.59,86 In a first step, the tertiary
structure of soluble monomeric BAX was predicted from twenty-five SDSL-EPR distance restraints,202
demonstrating the feasibility of the protocol as well as the influence of the limited SDSL-EPR data on de
novo protein structure prediction. In a second step, the tertiary structure of the dimerization domain
of homodimeric BAX (α-helices 2 to 5) was predicted from eleven SDSL-EPR distance restraints,202
demonstrating the applicability of the protocol to oligomeric proteins. In both cases, usage of SDSL-EPR
distance restraints significantly improved the accuracy of the sampled models as well as the accuracy
with which the models in best agreement with the NMR- and X-ray-derived models could be selected.
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VI.2. Materials and methods

The tertiary structures of solublemonomeric and homodimeric BAXwere predicted using the previously
published BCL::Fold59 algorithm, which is part of the BCL.a A summary of the structure prediction
protocol is given in the following section, followed by a section describing how SDSL-EPR distances
were translated into structural restraints. The accuracy of the predictions was evaluated by computing
a protein-size normalized root-mean-square-deviation of the backbone coordinates.103 Further, we
compute the enrichment metric,2 which quantifies how well the employed scoring function is able to
distinguish accurate models from inaccurate models.

VI.2.1. Structure prediction protocol

The protocol used to predict the tertiary structure of soluble monomeric BAX and homodimeric
BAX is based on the BCL::Fold protocol for soluble proteins.59 As in the original protocol, a pool
containing the SSEs was predicted from the primary structure using the secondary structure prediction
algorithms PSIPRED98 and Jufo9D97 (see section E.2.3 on page 188). BCL::Fold subsequently uses a
MC sampling algorithm to assemble the predicted SSEs in the three-dimensional space. BCL::Fold uses
the MC sampling algorithm in conjunction with the Metropolis criterion for energy minimization to
search the conformational space for models with a likely overall fold (see section E.2.4 on page 189).59
After each MC step, models are scored using knowledge-based potentials evaluating different scoring
terms like SSE packing, radius of gyration, amino acid exposure, amino acid interactions, loop closure
geometry, secondary structure length and content, as well as penalizing potentials for SSE and amino
acid clashes.60 The potential functions for each scoring term were derived from statistics over protein
structures deposited in the PDB using the inverse Boltzmann relation60 as described in equation (VI.1).𝐸 = −𝑅𝑇 ⋅ ln 𝑃o𝑃b (VI.1)

where:𝐸 = free energy of the protein structure𝑃o = probability of observing a specific feature𝑃b = probability of observing a specific feature by chance𝑅 = gas constant𝑇 = temperature

For each scoring term, the probability of observing a specific feature (𝑃o) was computed from statistics
derived from structures deposited in the PDB. This probability is normalized by the probability of
observing this feature by chance (𝑃b). This normalization ensures that favorable features are assigned
negative scores. The term 𝑅𝑇 is set to 1 for convenience.60 For example, one scoring term (SNC)
evaluates the burial of residues. The degree of burial was quantified using the neighbor count metric,96
which assigns a non-negative number — the neighbor count value — to each residue. For each amino
acid type, statistics over the neighbor count distributions were collected from structures deposited in
the PDB. The distributions were binned and the probability of each bin (𝑃o) was computed.60 After
normalization by 𝑃b , the inverse Boltzmann relation can be used to compute SNC for each residue in
the sampled models. The total score of a protein model — the BCL score — is the weighted sum of
ahttp://www.meilerlab.org/bclcommons
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the different scoring terms.60 Additional scoring terms based on the CONE model78,149 were used to
quantify the agreement of the sampled models with the available SDSL-EPR data.

The folding simulation is broken down into five assembly stages. Each stage lasts for a maximum of2000MC steps but is terminated early if a maximum of 400MC steps without score improvement in
a row is reached. The assembly stages consist of large-scale sampling moves like adding or removing
SSEs, flipping and swapping SSEs, as well as large-scale translations and rotations. Over the course of
the five assembly stages, the weights for the potentials penalizing SSE and amino acid clashes ramp up
to 0, 125, 250, 375 and 500. The weight for scoring the agreement of the model with the SDSL-EPR
data remains constant at 50 over all stages. As a result, agreement with SDSL-EPR distance restraints
contributes about 45% to the total score, if provided. For previous benchmark studies, various weights
for the SDSL-EPR agreement score were evaluated and a weight of 50, which equates to a contribution
of 40% to 50% to the total score, provided the best prediction results.2

After the assembly stages the model is refined. This process is encapsulated in one stage that consists
of small structural perturbations like low-amplitude translations and rotations of SSEs. This stage does
not change the overall topology drastically. This stage lasts for a maximum of 2000MC steps but is
terminated early if a maximum of 400 MC steps without score improvement in a row are reached.
During the refinement stage, the weight for the SDSL-EPR score remains at 50. For homodimeric
BAX, the protein structure prediction protocol was slightly altered to assemble and refine the models in
C2-symmetry mode.50

VI.2.2. Translating SDSL-EPR distances into structural restraints

Through the DEER/PELDOR experiment, SDSL-EPR spectroscopy measures the distance between two
unpaired electrons located in theN Ogroup of spin labels (DSL) that are covalently attached to cysteines
in the protein. The DEER experiment consists of microwave pulses at two different frequencies used to
measure the dipolar coupling between two electron spins. The pulse sequence at the observer frequency
produces an echo. The pulse at the pump frequency flips the coupled spin, thus changing the local field at
the observer spin by the dipole-dipole coupling. Variation of the pump pulse delay leads to modulation
of the intensity of the refocused echo. The periodicity is a function of the distance-dependent coupling
between the spin labels.213

For effective usage of the SDSL-EPR data in a de novo structure prediction algorithm that relies on a
backbone-only protein model, those distances need to be translated into possible distance restraints for
the closest atoms represented in the model, which in our case are the distances between the Cβ-atoms
of the spin labeling sites (DBB). In the case of glycine, which lacks a Cβ-atom, the Hα2-atom is used
instead. The side chain flexibility of the spin label prevents an unambiguous translation from DSL
into DBB due to its unknown conformation on the protein. Additionally, the SDSL-EPR experiment is
conducted on a double-cysteine mutant protein to which spin labels have been covalently bounded — a
species that is distinct from the wild type protein and might have a different structure and dynamics.
Lastly, the SDSL-EPR experiment itself and the fitting procedures used to translate the primary DEER
data into a distance distribution are accompanied by uncertainties. To quantify the agreement of DSL
with DBB a knowledge-based potential based on the CONE model was introduced.78,149 The scoring
function scores 𝐷SL − 𝐷BB ranges of −12.5Å to 12.5Å, which covers the minimum and maximum
difference between DSL and DBB .78,149 It assigns a score ranging from 0 (no agreement) to −1 (optimal
agreement) to each 𝐷SL − 𝐷BB pair in a protein model. An additional scoring function is used to
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penalize conformations with𝐷SL − 𝐷BB differences less than −12.5Å or greater than 12.5Å with the
purpose of drawing restraints into the −12.5Å to 12.5Å range.2

VI.2.3. Benchmark setup

To evaluate the influence of SDSL-EPR-derived structural restraints on de novo protein structure
prediction, multiple folding simulations were performed. In a first experiment, the conformational space
of soluble monomeric BAX was sampled in the absence of SDSL-EPR restraints. Therefore, the above-
mentioned structure prediction protocol was altered so that the SDSL-EPR potential was turned off.
Additional folding simulations with the experimentally determined SDSL-EPR distance restraints were
performed for soluble monomeric BAX as well as with multiple sets of simulated SDSL-EPR restraints.
For each setup, 7500models were sampled in independent folding trajectories. The sampling accuracy
was quantified by computing the RMSD100103 with respect to the soluble monomeric BAX structure
determined by NMR spectroscopy (PDB entry 1F16, model 8). The discrimination power of the scoring
functions was computed using the enrichment metric (see section VI.2.5).60 For homodimeric BAX,
the same approach was used for the dimerization domain (α-helices 2 to 5). RMSD100 computation
(see section VI.2.5) was performed with respect to the crystal structure (PDB entry 4BDU).

VI.2.4. Simulation of additional SDSL-EPR distance restraints for soluble monomeric BAX

It seems reasonable to assume that a larger number of SDSL-EPR distance restraints would result
in improvements regarding the accuracy of the sampled models as well as the reliability with which
accurate models can be selected. To evaluate the influence of the number of restraints on sampling
accuracy and model selection, we simulated additional SDSL-EPR distance restraints based on the NMR
structure for soluble monomeric BAX (PDB entry 1F16, model 8). The simulation of the additional
SDSL-EPR distance restraints consisted of two steps: the selection of pairs of spin labeling sites and the
simulation of the spin-spin distance between the two spin labeling sites (see section E.2.5 on page 189).
The selection of suitable spin labeling sites was performed using a location selection algorithm that relies
on the protein’s sequence and predicted secondary structure.155 The algorithm employs MC sampling
to distribute spin labeling pairs over all SSEs. To avoid buried spin labeling sites, only residues that
are predicted to be solvent-exposed were considered. For the resulting set of spin labeling pairs, the
spin-spin distance was simulated using the CONE model.78,149 Briefly, the CONE model implicitly
models the structure and dynamics of MTSL as a motion-on-a-cone. It yields a probability distribution
for the difference between the spin-spin distance (DSL) and the Cβ − Cβ distance (DBB) of the spin
labeling sites. This model has been successfully evaluated on experimentally determined SDSL-EPR
distances for T4-lysozyme and αA-crystallin.78,149 By adding the predicted distribution to DBB in the
NMR structure of soluble monomeric BAX, the spin-spin distance for a pair of spin labeling sites can
be simulated. Using this protocol, three additional sets consisting of 30, 40 and 50 SDSL-EPR distance
restraints were simulated for soluble monomeric BAX.

VI.2.5. Calculating SDSL-EPR score enrichments

The RMSD100 metric103 was used to quantify the structural dissimilarity between different models.
The RMSD100 is the protein-size normalized root-mean-square-deviation of the backbone coordinates

87



computed as shown in equation (VI.2).𝑅𝑀𝑆𝐷100 = 𝑅𝑀𝑆𝐷1 + log√𝐿/100 (VI.2)

where:𝑅𝑀𝑆𝐷100 = protein-size-normalized 𝑅𝑀𝑆𝐷𝑅𝑀𝑆𝐷 = root-mean-square distance of the Cα-coordinates𝐿 = length of the protein chain

The enrichment is used to evaluate how well a scoring function is able to select the most accurate
models from a given set of models. The models of a given set 𝑆 are sorted by their RMSD100-values
and the 10% of the models with the lowest RMSD100-values put into the set 𝑃 (positive) the rest of
the models will be put into the set𝑁 (negative). The models of 𝑆 are then also sorted by their assigned
scoring-value and the 10% of the models with the lowest (most favorable) score are put into the set𝑇. The models, which are in 𝑃 and in 𝑇, are the models, which are correctly selected by the scoring
function, and their number will be referred to as 𝑇𝑃 (true positive). The number of models, which
are in 𝑃 but not in 𝑇, are the models, which are not selected by the scoring function despite being
among the most accurate ones. They will be referred to as 𝐹𝑁 (false negative). The enrichment is then
calculated as shown in equation (VI.3). 𝑒 = #𝑇𝑃#𝑃 ⋅ #𝑃 + #𝑁#𝑃⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟=10.0 (VI.3)

where:𝑒 = enrichment𝑃 = 10%most accurate models𝑁 = remaining models𝑇𝑃 = 10%most accurate models that are also among the 10% best scoring models

The positive models are in this context the 10% of the models with the lowest RMSD100-values.
Therefore, #𝑃+#𝑁#𝑃 is fixed at a value of 10.0. Consequently, the enrichment can range from 0.0 to10.0. An enrichment-value of 1.0 indicates that the scoring function is unable to discriminate between
accurate and inaccurate models and the probability of selecting and accurate model corresponds to
random chance. Enrichment-values greater than 1.0 indicate that the scoring function is able to select
accurate models with a probability that is greater than random chance. Enrichment-values smaller than1.0 indicate that the scoring function selects against accurate models and the probability of selecting
accurate models is less than random chance.

VI.2.6. Using clustering for model selection

Clustering of the backbone coordinates by RMSD was used for additional model selection trials. A
partitioning-based clustering approach was used, which is based on k-means and implemented in the
cluster package100 in R. Clustering was performed using a maximum average dissimilarity between
cluster members of 3Å. Clusters were only considered if their population size was at least 1% of all
models sampled. The reported RMSD100-values are between the cluster centers (medoids) and the
experimentally determined structure.
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VI.3. Results

In this section, the effect of SDSL-EPR distance restraints on de novo protein structure prediction is
evaluated under the aspects of sampling accuracy and discrimination power. The features of BAX that
complicate de novo protein structure prediction in the absence of experimental data are discussed. Sub-
sequently, the effect of SDSL-EPR distance restraints on sampling accuracy and discrimination power
are evaluated. Reported results are the accuracies of themodels with the lowest RMSD100-values (hence-
forth labeled as most accurate models) as well as the percentage of models with an RMSD100-value
(see section VI.2.5 on page 87) of less than 8Å with respect to the corresponding NMR or X-ray crystal
structure available. Additionally, the enrichment is reported, which is the percentage of the accurate
models that can be selected by the scoring function (see section VI.2.5 on page 87).

VI.3.1. Summary of the available SDSL-EPR data for soluble monomeric and homodimeric BAX

The benchmark was performed on the soluble monomeric and the homodimeric states of BAX. Here,
we give a summary about the SDSL-EPR data available for both states and how well the respective
experimentally determined reference structures (PDB entry 1F16 for soluble monomeric BAX and
PDB entry 4BDU for homodimeric BAX) agree with SDSL-EPR data. The latter is important because
we evaluate the accuracy of the predicted models based on their structural similarity to the respective
experimentally determined structure.

Data was taken from the literature where Bleicken et al. measured twenty-five distances for soluble
monomeric BAX by Q-band DEER (table E.1 on page 184).202 In their study, the spin labeling sites
were selected based on several criteria: While the spin labels should reveal relevant information about
the protein structure, their introduction should not change the protein’s fold or affect the stability or
function of the protein. The spin labeled proteins used in Bleicken’s study were shown to retain their fold
and the ability to permeabilize large unilamellar vesicles with a composition mimicking the MOM.202
The structure of soluble monomeric BAX was determined by Suzuki et al. through NMR spectroscopy
(PDB entry 1F16)210 and was used here as a baseline for comparison. To evaluate the suitability of the
available SDSL-EPR distance data for protein structure prediction, all models from the NMR ensemble
were scored for agreement with the SDSL-EPR restraints using the CONE model.78,149 The average
difference between the observed DSL and DBB was 6.3Å with an average score of −0.84 (table E.1 on
page 184, perfect agreement score is −1.00 whereas the worst possible agreement score is 0.00).

Data was taken from the literature where SDSL-EPR distance measurements were performed on
membrane embedded, active and homooligomeric BAX by Bleicken et al..202 Of the forty-one measured
distances, seventeen are within the dimerization domain whereas the remaining twenty-four are within
the piercing domain or between dimerization and piercing domain.202 A crystal structure of a truncated
BAX variant covering only the dimerization domain was published by Czabotar et al. (PDB entry
4BDU).211 In order to benchmark our algorithm, we consequently opted for predicting the dimerization
domain only, for which a reference structure was available. Although the reference structure (PDB
entry 4BDU) was crystalized in the absence of the membrane, Bleicken et al.202 showed that 4BDU well
represents the fold of the dimerization domain as its present in the full length active protein embedded
in liposomes and consequently is suitable as a baseline for comparison. This is in agreement with our
evaluation, in which we used the CONE model78,149 to evaluate the agreement of the X-ray crystal
structure with the SDSL-EPR data measured by Bleicken et al.: the average difference between DSL andDBB was 3.1Å with an SDSL-EPR agreement score of −0.94 (table E.2 on page 185), indicating that
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the crystal structure is in good agreement with the SDSL-EPR data. In this study, we folded residues54 to 122, which is identical to the region determined in the crystal structure (PDB entry 4BDU). Of
the seventeen published SDSL-EPR distance restraints within the dimerization domain, we only used
eleven restraints. The six discarded restraints are between the dimerization domain and residue 126,
which is not included in 4BDU.

Additional analysis was conducted to evaluate if bendings of SSEs are required to satisfy the SDSL-EPR
restraints. This is important because the complexity of structural sampling does not allow for exhaustive
sampling of all possible conformations. On these grounds, BCL::Fold reduces the complexity of the
sampling space by assembling the tertiary structure from idealized, straight SSEs, only allowing small
deviations from idealized parameters. Therefore, in a second test, α-helices in the NMR models and the
X-ray crystal structure were straightened before scoring in order to quantify the influence of bent SSEs
on the agreement with the SDSL-EPR distance restraints. In this context, idealization means setting
the dihedral angles (ϕ, ψ) to (−60°, −40°) for α-helices and to (−135°, 135°) for β-strands. To evaluate
the influence of deviations from idealized dihedral angles (bendings or kinks) on the agreement with
the SDSL-EPR distance restraints, the experimentally determined structures for soluble monomeric
BAX (PDB entry 1F16, model 8) and homodimeric BAX (PDB entry 4BDU) were idealized using
the BCL software suite (see section E.2.6 on page 190), which sets the dihedral angles of the SSEs to
aforementioned idealized values. The agreement of the idealized structures with the SDSL-EPR data
was subsequently quantified, showing an average agreement score of −0.88 for soluble monomeric BAX.
The resulting agreement is no diminishment from the agreement score for the non-idealized structure
of −0.88. This indicates that a structure with idealized SSEs can achieve agreement with the SDSL-EPR
distance data and focusing the sampling on SSEswith idealized dihedral angles won’t negatively influence
the prediction of the protein’s tertiary structure. Based on this analysis, the eighth model of the NMR
ensemble for soluble monomeric BAX was selected as reference structure for the benchmark because
it had the best agreement with the SDSL-EPR data. Notably, the same model was selected based
on the RMSD by Bleicken et al.202 between the experimental time domain DEER traces and those
simulated with the software Multiscale Modeling of Macromolecular systems (MMM) 2013.2,214 based
on a rotamer library approach. For homodimeric BAX and straightened SSEs, the average difference
between DSL and DBB was 3.8Å with an SDSL-EPR agreement score of −0.90 (table E.2 on page 185),
which again does not constitute a significant diminishment of the SDSL-EPR agreement score for
idealized SSEs; indicating that structure assembly from idealized SSEs won’t hinder the prediction for
homodimeric BAX.

VI.3.2. The properties of BAX complicate de novo protein structure prediction in the absence of
experimental data

BCL::Fold scores protein structures using knowledge-based potentials derived from statistics over
properties of protein structures deposited in the PDB (see section VI.2.1 on page 85 for details).
Therefore, if a protein structure significantly deviates from the statistics, an unfavorable score is assigned
as compared to alternative conformations, hindering prediction of the protein’s tertiary structure with
BCL::Fold.

BAX monomers consist of 192 residues, forming nine α-helices. Due to its ability to interact with
membranes, some portions of the soluble monomeric BAX structure are outliers to statistics collected
from experimentally determined structures of soluble proteins. Specifically, the exposure of the residues
in α-helix 9 as well as the relative orientation of α-helix 9 with respect to other α-helices feature poor
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Figure VI.1.: The properties of soluble monomeric BAX and homodimeric BAX hinder de novo protein struc-
ture prediction. (A,B) Due to their properties, parts of homodimeric BAX (A) and soluble monomeric BAX (B)
score poorly when evaluated in the BCL::Fold knowledge-based scoring function, hindering prediction of the tertiary
structure. Color code: white-red scale with white being good score and red being poor score. (C,D) Relaxing the NMR
and X-ray crystal structures in the BCL::Fold force field shows score minima for alternative conformations. Black
dots represent alternative conformations with their BCL score (y-axis) and the RMSD100 relative to the NMR/X-ray
crystal structure (x-axis). The NMR/crystal structure is shown as red dot. Green dots are the best scoring structures,
which are shown in (E,F). (E) Relaxing the X-ray crystal structure of homodimeric BAX (PDB entry 4BDU) in the
BCL::Fold force field results in tighter packing of α-helices 3 and 5 and a slightly reduced radius of gyration. The
relaxed model is shown on a blue-red scale, with blue being structural similarity to the crystal structure (grey) and
red being structural dissimilarity. (F) Relaxing the NMR structure of soluble monomeric BAX (PDB entry 1F16,
model 8) in the BCL::Fold force field results in α-helix 9moving closer into a pocket formed by α-helices 2 to 5. The
relaxed model is shown on a blue-red scale, with blue being structural similarity to the NMR structure (grey) and
red being structural dissimilarity.
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agreement with statistics (see section VI.2.1 on page 85) collected from experimentally determined
structures in the PDB (figure VI.1 on the preceding page). Notably, α-helix 9 is proposedly trans-
membrane after membrane insertion.202,212 In consequence, a knowledge-based potential function, as
used by many de novo folding algorithms, ranks the experimentally determined structure of soluble
monomeric BAX poorly compared to alternative arrangements (see figure VI.1 on the previous page
for details). BCL::Fold,59 which uses knowledge-based potentials to evaluate the accuracy of a model,60
is no exception.

This can be demonstrated though relaxing the experimentally determined structure of soluble
monomeric BAX (PDB entry 1F16) in the BCL::Fold force field. During the relaxation, small structural
perturbations are applied to the NMR structure. After each perturbation, the resulting structure is
scored using the BCL score. This results in a set of models, which structurally deviate from the NMR
structure but have a more favorable BCL score. The structures with the lowest score are most likely to be
predicted by BCL::Fold as the native structure of soluble monomeric BAX. Figure VI.1 on the preceding
page shows the BCL scores and dissimilarities to the NMR structure for a set of relaxed models. Soluble
monomeric BAX has a local score minimum for conformations with an RMSD100-value of 3Å to 4Å
(figure VI.1 on the previous page). The model with the most favorable score shows α-helix 9moving
closer into a pocket formed by α-helices 2 to 5 (figure VI.1 on the preceding page), which reduces the
exposure of the residues in α-helix 9 and results in a more favorable score.

These difficulties in scoring/ranking the sampled models make soluble monomeric BAX an appropri-
ate test case to evaluate if scoring problems can be overcome by incorporating limited structural data
from SDSL-EPR experiments. Further, as SDSL-EPR data recently became available for the dimerization
domain of homooligomeric BAX, BAX is also a test case for determining a protein’s structure in different,
biologically relevant conformations. For homooligomeric BAX, similar challenges in the ranking of
models in the absence of experimental data can be observed. The radius of gyration of the crystal
structure of the dimerization domain (PDB entry 4BDU) significantly deviates from statistics collected
from known structures in the PDB. Additional SSE- and residue-based deviations are observed for
the exposure of residues and SSE orientations. These deviations are particularly pronounced for theα-helices 3 and 5 (figure VI.1 on the previous page). Repeating the relaxation experiment as described
above for homodimeric BAX, shows a local score minimum for structures with an RMSD100-value
between 2Å and 3Å relative to the crystal structure (figure VI.1 on the preceding page). Themodel with
the most favorable BCL score shows a change in the packing of α-helices 2 to 5 and a slight reduction of
the radius of gyration (figure VI.1 on the previous page). Comparably to soluble monomeric BAX, these
scoring problems make the tertiary structure of homodimeric BAX hard to predict with BCL::Fold
because the scoring function does not detect the crystal structure as native-like.

VI.3.3. SDSL-EPR distance restraints can overcome de novo sampling and scoring problems

By using SDSL-EPR distance restraints, it is possible to overcome scoring and sampling problems,
which hinder de novo protein structure prediction. As demonstrated in the previous section, the NMR
ensemble of soluble monomeric BAX and the X-ray crystal structure of homodimeric BAX score poorly
in the BCL::Fold knowledge-based scoring function, which hinders prediction of a model that is in
good agreement with the NMR- or X-ray-derived models.

The usage of SDSL-EPR distance restraints for soluble monomeric BAX results in a shift of the
RMSD100 distributions by around 1.5Å to models in better agreement with the NMR-derived model
(figure VI.2 on the following page). Whereas without SDSL-EPR data, the most accurate model sampled
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Figure VI.2.: Structure prediction results for soluble monomeric BAX. (A) Protein structure prediction without
SDSL-EPR distance restraints results in a poor correlation between the score of the de novo predicted models
(black dots) and their accuracy (quantified as RMSD100 relative to the experimentally determined structure). The
experimentally determined structure (red dot) and the experimentally determined structure relaxed in the BCL::Fold
force field (blue dots) score worse than the de novo predicted models. (B) By using SDSL-EPR distance restraints,
the score gap between the experimentally determined structure (red dot) and the de novo sampled models (black
dots) could be reduced. The experimentally determined structure relaxed in the BCL::Fold force field (blue dots)
scores better than the de novo sampled models. The BCL score of the experimentally determined structure and the
relaxed structures includes the EPR agreement score, resulting in lower scores than in (A). (C,D) Using SDSL-EPR
distance restraints increased the sampling density of models in agreement with the NMR-derived model (red — with
SDSL-EPR distance restraints, black — without). (E,F) In the most accurate model sampled with SDSL-EPR distance
restraints (F, blue-red scale, RMSD100 = 3.9Å), the placement of the SSEs is more similar to the experimentally
determined structure (PDB entry 1F16, model 8, grey), than for sampling without SDSL-EPR distance restraints
(E, blue-red scale, RMSD100 = 5.9Å). Color coding: blue-red scale with blue being structural similarity to the
experimentally determined structure and red being dissimilarity.
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Protein Restraints best
(Å)
μ10
(Å)
τ8
(%) e

Monomer Without 5.9 7.0 0.2 0.4
Monomer 25 experimental 3.9 5.0 2.5 1.5
Monomer 30 simulated 4.2 4.9 7.5 4.1
Monomer 40 simulated 4.1 4.4 11.4 4.2
Monomer 50 simulated 3.9 4.2 11.5 4.5
Dimer Without 5.7 6.8 0.1 1.3
Dimer 11 experimental 3.3 3.4 13.7 2.1

Table VI.1.: Sampling accuracy and enrichment are improved by SDSL-EPR distance restraints. By using
SDSL-EPR distance restraints in protein structure prediction the sampling accuracy can be improved as it is seen for
the RMSD100-values of the most accurate (by RMSD100) model sampled (best), the average of the ten best models
sampled (μ10) and the percentage of the models with an RMSD100-value less than 8Å (τ8). A larger number of
SDSL-EPR restraints leads to more substantial improvements, which was demonstrated by simulating additional
SDSL-EPR restraint sets consisting of 30, 40 and 50 restraints. More restraints constantly result in more pronounced
improvements in the sampling accuracy. SDSL-EPR distance restraints also improve the ability to select the accurate
models among the sampled models, which is shown by improved enrichment-values (e).

had an RMSD100-value of 5.9Å; by using SDSL-EPR data, the RMSD100-value of the most accurate
model could be improved to 3.9Å (see figure VI.2 on the previous page for details). For further
evaluation of the sampling accuracy, the ten best models by RMSD100 were selected and their average
RMSD100-value, μ10 , was calculated (the average RMSD100-values for different numbers of models
are shown in figure E.1 on page 183). In the absence of SDSL-EPR data, the μ10-value was 7.0Å,
whereas with SDSL-EPR data the μ10-value improved to 5.0Å. Additionally, the percentage of models
with an RMSD100-value of less than 8Å, τ8 , was calculated. For folding without SDSL-EPR data, theτ8-value was 0.3%, whereas when folding with SDSL-EPR distance restraints the τ8-value improved
to 1.9%. Using SDSL-EPR restraints for the dimerization domain of homooligomeric BAX improved
the RMSD100-value of the most accurate model from 5.7Å to 3.3Å. The μ10- and τ8-values improved
from 6.8Å to 3.4Å and from 0.1% to 16.7%, respectively (table VI.1 and figure VI.3 on the following
page). Additional model selection trials were performed using clustering. For soluble monomeric and
homooligomeric BAX — in the absence of SDSL-EPR distance restraints, the clusters closest to the
experimentally determined structure had an RMSD100 value of 9.2Å and 11.4Å, respectively. By using
SDSL-EPR distance restraints, clusters with an RMSD100 of 7.1Å and 4.8Å relative to the respective
NMR/X-ray-derived model could be detected for soluble monomeric and homooligomeric BAX.

Besides the sampling of conformations, a protein structure prediction method must be able to select
the most accurate models among the sampled models. To evaluate the ability of the scoring function to
select the most accurate models sampled during de novo folding, score enrichments were calculated.
The enrichment indicates how well the scoring function is able to distinguish between accurate and
inaccurate models (see section VI.2.5 on page 87 for details). The term accurate is hereby defined as
being among the 10% of the models with the lowest RMSD100-value relative to the experimentally
determined structure. For the models generated in the absence of SDSL-EPR data, the enrichment
for soluble monomeric BAX was 0.4 (table VI.1). The enrichment of less than 1.0 for the BCL::Fold
energy function indicates that it actually selects against topologies in agreement with the X-ray-derived
model, presumably due to the poor score of the α-helix 9 as discussed in section VI.3.2 on page 90.
With SDSL-EPR distance restraints, the enrichment improved to 1.5. The improvement in enrichment
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Figure VI.3.: Structure prediction results for homodimeric BAX. (A) Protein structure prediction without
SDSL-EPR distance restraints results in a poor correlation between the score of the de novo sampled models
(black dots) and their accuracy (quantified as RMSD100 relative to the experimentally determined structure). The
experimentally determined structure (red dot) and the experimentally determined structure relaxed in the BCL::Fold
force field (blue dots) score significantly worse than the de novo sampled models. (B) Protein structure prediction
with SDSL-EPR distance restraints results in an improved correlation between the score of the sampled models (black
dots) and their accuracy. Whereas the experimentally determined structure (red dot) scores worse than the sampled
models, the relaxed experimentally determined structure (blue dots) scores better than the sampled models. The
BCL score of the experimentally determined structure and the relaxed structures includes the EPR agreement score,
resulting in lower scores than in (A). (C,D) Using SDSL-EPR distance restraints significantly improves the sampling
density of models in agreement with the NMR- and X-ray-derived models, result in a shift of the distribution of
about 6Å (red — with SDSL-EPR distance restraints, black — without). (E) Without SDSL-EPR distance restraints
the placement of the SSEs of the most accurate model sampled (blue-red scale, RMSD100 = 5.7Å) is dissimilar to the
experimentally determined structure (grey). (F) By using SDSL-EPR distance restraints the SSE placement of the
most accurate mode sampled (blue-red scale, RMSD100 = 3.3Å) resembles the experimentally determined structure
(grey). Color coding: blue-red scale with blue being structurally similar to the experimentally determined structure
and red being dissimilarity.
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demonstrates that by using SDSL-EPR distance restraints, protein structure prediction methods can
overcome model discrimination challenges. For homooligomeric BAX, usage of SDSL-EPR restraints
improved the enrichment from 1.3 to 2.1 (table VI.1 on page 94).

VI.3.4. A larger number of restraints improves sampling accuracy and selection of accurate models

To evaluate the influence of the number of restraints on the sampling accuracy as well as the algorithm’s
ability to select accurate models, three additional restraint sets with different numbers of restraints were
simulated based on the NMR-derived model of BAX (PDB entry 1F16, model 8). The spin labeling
sites were chosen in order to distribute measurements across all SSEs (see section E.2.5 on page 189 for
details). The experimentally determined restraint set consisted of twenty-five restraints, whereas the
simulated restraint sets for the NMR structure of soluble, monomeric BAX (PDB entry 1F16, model8) consisted of thirty, forty, and fifty restraints, respectively. To fold soluble BAX with the simulated
restraints the same protocol was used as for the experimentally determined restraint set. The number of
restraints had a significant effect on the sampling accuracy as well as on the algorithm’s ability to select
accurate models (table VI.1 on page 94). Whereas the μ10-value for the twenty-five experimentally
determined restraints was 5.0Å, it was 4.9Å for thirty restraints, 4.4Å for forty restraints, and 4.2Å
for fifty restraints. For folding with twenty-five restraints, the τ8-value was 1.9%, with thirty restraints7.5%, with forty restraints 11.4%, and with fifty restraints 11.5%. The enrichment of 1.5 for folding
with twenty-five restraints improves to 4.1 for thirty restraints, 4.2 for forty restraints, and 4.5 for fifty
restraints (table VI.1 on page 94).

VI.4. Discussion

VI.4.1. Interpretation of the reported sampling accuracies and enrichments

It should be noted that comparison to 1F16 and 4BDU is somewhat limited: The RMSD100-values
between the twenty individual models in 1F16 ranges from 1.7Å to 4.7Å with an average of 3.0Å.
The relatively low precision of the NMR-derived models represents an upper limit for the accuracy
of 1F16. In result, any model that approaches this accuracy limit is in agreement with 1F16 within
its accuracy limits. Additionally, in the case of the homodimeric structure, deviations may be caused
by 4BDU being derived from a protein crystal with a reported resolution of 3.0Å and in absence of
membranes or membranemimics, whereas the SDSL-EPRmeasurements were completed on full-length
BAX variants inserted into large unilamellar vesicles mimicking the mitochondrial outer membrane
lipid composition (MOM-LUVs), i.e., in a more native-like environment.202 Arguably, a comparison to
the SDSL-EPR relaxed version of 4BDU and 1F16 could provide a more accurate measure of success of
the folding simulation. As such models are however biased by the BCL::Fold scoring function we opted
for comparison with the original PDB entries.

VI.4.2. Energy function and sampling limitations hinder in silico protein structure prediction

The major obstacle and challenge of in silico determination of a protein’s tertiary structure is the vast
conformational search space combined with the complicated models needed to compute an accurate
estimate of a proteins free energy. These obstacles are overcome by simplifications in the scoring
function and sampling space that are often coupled to a simplified representation of the protein. In
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concrete terms, simultaneous and exhaustive sampling of the ϕ- and ψ-angles in the protein backbone
and -angles in the protein side chains is prohibitive.

BCL::Fold drastically reduced the search space by eliminating all χ-angles — side chains are repre-
sented as “superatoms”, eliminating ϕ- and ψ-angles in flexible loop regions by not explicitly modeling
loop regions, and assembling predicted SSEs starting from idealized ϕ- and ψ-angles allowing only for
limited deviations. Additionally, explicit simulation of the protein’s environment, like the membrane or
the solvation water molecules, is circumvented by implicit models. Still, enumeration of all possible
folds within an acceptable time frame remains prohibitive for larger proteins. As shown in figure VI.2
on page 93 and figure VI.3 on page 95, in the absence of any experimental data neither are models in
agreement with the NMR- and X-ray-derived models sampled in a frequent manner, nor is it possible
to distinguish more accurate models from less accurate models. For soluble monomeric BAX and the
dimerization domain of membrane-embedded homooligomeric BAX, the experimentally determined
structures both score poorly in the BCL scoring function. Even after relaxing the experimentally
determined structures in the BCL::Fold force field to find a conformation in agreement with the NMR-
and X-ray-derived models in a score minimum, the relaxed structures score worse than models that are
not in agreement with the NMR- and X-ray-derived models (figure VI.2 on page 93 and figure VI.3 on
page 95).

VI.4.3. SDSL-EPR measurements can overcome the limitations of de novo protein structure

SDSL-EPR distance measurements can be performed in a native-like environment and provide ex-
perimental data that can be interpreted as structural restraints, thus compensating for the algorithm’s
limitation in sampling the large conformational space and estimating the free energy of these confor-
mations accurately. Direct incorporation of the SDSL-EPR distance data into the BCL::Fold scoring
function reduces the complexity of the energy function by removing local minima in the scoring
function that are inconsistent with the experimental SDSL-EPR distance data, reinforcing conforma-
tions that are. Therefore, incorporation of SDSL-EPR distance restraints can overcome limitations in
sampling and scoring. This was demonstrated by relaxing the experimentally determined structures in
the BCL::Fold force field using SDSL-EPR restraints (figure VI.2 on page 93 and figure VI.3 on page 95).
The relaxed structures are similar to the NMR- and X-ray-derived models and have a more favorable
score than most of the sampled models. As a direct result of the improved pseudo-energy landscape,
the MCM algorithm favors conformations that are in agreement with the SDSL-EPR data, leading to the
sampling of models that are in better agreement with the NMR- and X-ray-derived models. Significant
shifts of the accuracy distributions are observed for soluble monomeric BAX as well as the dimerization
domain of homooligomeric BAX (see figure VI.2 on page 93 and figure VI.3 on page 95). For soluble
monomeric BAX, the accuracy distribution improves by about 1.5Å, whereas for homooligomeric BAX
the improvement is about 4Å. Additionally, usage of SDSL-EPR distance data mitigates the previously
described problem of distinguishing accurate models from inaccurate models (figure VI.2 on page 93,
figure VI.3 on page 95, and table VI.1 on page 94). This effect is more pronounced for homooligomeric
BAX, for which the enrichment improves from 1.3 to 2.1. The score-accuracy plots in figure VI.3 on
page 95 show an improved correlation between score and RMSD100. Although the best scoringmodel is
still not in perfect agreement with the X-ray-derived model, a high model density exists in the 3Å to 5Å
range, which could be detected through clustering. The results of this study demonstrate that SDSL-EPR
distance restraints can mitigate the limitations of de novo protein structure prediction algorithms, by
increasing the sampling frequency of the models that are in agreement with the SDSL-EPR data and by
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complementing the energy evaluation with structural restraints.

VI.5. Conclusion

This study demonstrates that even a limited number of SDSL-EPR distance restraints are able to
introduce score minima for conformations, which have better agreement with the structural models
derived from NMR or X-ray crystallography. Therefore, challenges in conformational sampling and
model discrimination in de novo protein structure prediction can be overcome through incorporation
of sparse SDSL-EPR distance restraints. This was demonstrated by the improved accuracy of the models
as well as the improved enrichment of accurate models. In conclusion, a combined approach of de novo
protein structure predictions methods and SDSL-EPR distance restraints is able to predict the fold of
larger proteins that adopt multiple conformations.
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CHAPTERVII
STRUCTURE ANDDYNAMICS OFTYPE III SECRETION EFFECTOR PROTEIN EXOU

This chapter is based on the publication “Structure and Dynamics of Type III Secretion Effector Protein
ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding”.6
Axel W. Fischer contributed to the development of the prediction pipeline, performing the experiment,
analyzing the data, and writing the article.

ExoU is a 74-kDa cytotoxin that undergoes substantial conformational changes as part of
its function, i.e., it has multiple thermodynamically stable conformations that interchange
depending on its environment. Such flexible proteins pose unique challenges to structural
biology: not only is it i) often difficult to determine structures by X-ray crystallography for
all biologically relevant conformations, because of the flat energy landscape ii) experimental
conditions can also easily perturb the biologically relevant conformation. The first challenge
can be overcome by applying orthogonal structural biology techniques that are capable of
observing alternative, biologically relevant conformations. The second challenge can be
addressed by determining the structure in the same biological state with two independent
techniques under different experimental conditions. If both techniques converge to the same
structural model, the confidence that an unperturbed biologically relevant conformation is
observed increases. To this end, we determine the structure of the C-terminal domain of the
effector protein ExoU from data obtained by electron paramagnetic resonance spectroscopy
in conjunction with site-directed spin labeling and in silico de novo structure determination.
Our protocol encompasses a multi-module approach, consisting of low-resolution topology
sampling, clustering, and high-resolution refinement. The resulting model was compared
with an ExoU model in complex with its chaperone SpcU obtained previously by X-ray
crystallography. The two models converged to a minimal RMSD100 of 3.2Å, providing
evidence that the unbound structure of ExoU matches the fold observed in complex with
SpcU.

VII.1. Introduction

ExoU is a cytotoxin with a molecular weight of 74 kDa that is encoded by the Gram-negative bacterium
Pseudomonas aeruginosa.215–218 Using the type III secretion system, ExoU is injected directly into
eukaryotic cells, significantly increasing the severity of the infection.219–221 Because of its function,
ExoU needs to undergo substantial conformational changes; i.e., depending on interaction partners
and environment, different conformations of the protein will be thermodynamically most stable. One
conformation of ExoU, in complex with its chaperone SpcU, has previously been elucidated through
X-ray crystallography (PDB entry 3TU3).216 This X-ray-derived model depicts ExoU as consisting of
four domains. The C-terminal domain is of particular interest because it mediates association of ExoU
with the membrane,216,222,223 i.e., is expected to undergo major conformational changes. However, all
three structural models obtained through X-ray crystallography (PDB entries 3TU3,216 4AKX,215 and
4QMK222) depict ExoU’s C-terminal domain as exhibiting the same conformation — a four-helical
bundle. Experiments performed by Gendrin et al. showed that even the presence of the chaperone
SpcU does not occlude the residues involved in lipid binding.215 Through EPR spectroscopy, Benson
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et al. provided evidence that the presence of the substrate induces conformational changes in ExoU’s
C-terminal domain.224 Given the expected intrinsic flexibility of this domain, we set out to confirm
a) that the conformation of the C-terminal domain observed in the X-ray crystallography-derivedmodel
in complex with its chaperone SpcU is consistent with structural data observed for ExoU in solution,
and b) probe the structural dynamics of this domain. We chose EPR spectroscopy in conjunction with
SDSL in combination with computational de novo protein folding to approach these questions.

EPR spectroscopy in conjunction with SDSL provides an alternative approach to probe the structure
and dynamics of a protein. Briefly, SDSL-EPR is typically employed to measure the distance between
two residues. To facilitate that, two cysteine residues are introduced at the sites of interest into a
cys-less variant of the protein and coupled with S-(1-oxyl-2,2,5,5-tetramethyl-2,5-dihydro-1H-pyrrol-
3-yl)methyl methanesulfonothioate (MTSL), which carries an unpaired electron. Through the DEER
experiment,75,150 the distance-dependent dipolar interaction of the two unpaired electrons can be me
asured and translated into a distance distribution. Since every measurement requires a distinct protein
double-mutant, the structural information gained from SDSL-EPR experiments is typically too sparse
to unambiguously determine the protein’s tertiary structure. However, in conjunction with de novo
protein structure prediction methods, SDSL-EPR data could focus the sampling on conformations that
are in agreement with the experimental data.

The computational protein structure prediction pipeline employed in this manuscript is based on
the de novo method BCL::Fold59 in the BCL,a which was specifically developed to predict the tertiary
structure of large proteins. To facilitate this objective, the SSEs of the protein are predicted using
machine learning methods. Conformations of the predicted SSEs exhibiting idealized dihedral angles
are subsequently arranged in the three-dimensional space by a MCM algorithm. The intermediary and
final models are evaluated using knowledge-based potentials that assign a pseudo-energy score to each
model.60 Although this method has been successful at de novo sampling the tertiary structure of large
proteins, distinguishing between accurate and inaccurate models based on their pseudo-energy score
alone remains a challenge.1 However, it was demonstrated that incorporation of limited experimental
data significantly mitigates problems in model discrimination.2,3,5,88 The Rosetta method94,149 was
used to add atomic detail and energy-optimize the final models.

In this manuscript, we discuss the structure and dynamics of ExoU as determined by SDSL-EPR
spectroscopy in conjunction with de novo protein structure prediction and provide a benchmark
evaluating the influence of SDSL-EPR data on de novo protein structure prediction. In section VII.2, we
detail the computational protein structure prediction pipeline, describe the available SDSL-EPR data,
and compare the prediction results to the X-ray-derived model of ExoU and evaluate the influence of
SDSL-EPR data on de novo protein structure prediction. In section VII.4 on page 109, we describe the
experimental approach used to obtain the SDSL-EPR data.

VII.2. Results and discussion

Here, we report the results of the de novo protein structure prediction with and without the inclusion of
SDSL-EPR data. The results were evaluated in the terms of sampling accuracy and discrimination of
inaccurate models as described above. We begin with an analysis of improvements in sampling accuracy
when SDSL-EPR data is incorporated into the protein structure prediction algorithm. The influence of
SDSL-EPR data on the discrimination of inaccurate models is then considered. This section starts with

ahttp://www.meilerlab.org/bclcommons

100

http://www.meilerlab.org/bclcommons


SSE
Prediction

Topology
Sampling

Clustering

Refinement

Sequence

Model

Iteration

α23

α22

α24

α25

 

A B

Figure VII.1.: Protein structure prediction pipeline and SDSL-EPR data for the C-terminal domain of ExoU.
(A) The de novo protein structure prediction pipeline for the C-terminal domain of ExoU employed a hierarchical
approach consisting of modules for secondary structure prediction, low-resolution topology sampling, and high-
resolution refinement. (B) Seven intra-domain SDSL-EPR measurements were available (shown as dashed lines) for
the C-terminal domain of ExoU.

an outline of the benchmarking procedure that was used to evaluate the influence of SDSL-EPR data on
de novo protein structure prediction accuracy. This outline is followed by sections providing a detailed
description of the protein structure prediction protocol, an analysis of the available SDSL-EPR data for
the C-terminal domain of ExoU, and a description of the algorithm used to translate the SDSL-EPR
data into structural restraints that are usable by the prediction algorithm. This section is concluded by
an evaluation of the predicted tertiary structure — its agreement with the X-ray-derived model and a
discussion of its consistency with the SDSL-EPR data.

VII.2.1. Summary of the available SDSL-EPR data for the C-terminal domain of ExoU

For the C-terminal domain of ExoU, seven intra-domain SDSL-EPR distance measurements were
available (see the agreement with the SDSL-EPR data in table F.1 on page 191, the simulated distance
distributions in figure F.1 on page 192, and the summary of the approach in figure VII.1 for details). The
X-ray-derivedmodel is in good agreementwith the restraints derived from the SDSL-EPRmeasurements,
as indicated by an average agreement score of−0.88 (table F.1 on page 191, see sectionVII.2.4 on page 104
for details regarding quantifying the agreement of models with the SDSL-EPR data). Of the seven
restraints, four are between α-helices 23 and 24, one is between α-helices 22 and 23, one is betweenα-helix 23 and the loop region connecting α-helices 24 and 25, and one is between α-helix 24 and the
loop connecting α-helices 24 and 25. As shown in figure VII.1, the SDSL-EPR restraints well describe
the relative positions of α-helices 23 and 24.
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VII.2.2. Summary of the benchmark setup to evaluate the influence of SDSL-EPR data on de novo
structure prediction

The influence of SDSL-EPR data on de novo protein structure prediction was evaluated by performing
two independent structure predictions runs, one with incorporated SDSL-EPR data and one in the
absence of SDSL-EPR data, for the C-terminal domain of the effector protein ExoU. The protocols
for both prediction runs were predominately identical, only differing in the scoring function that
was extended by a scoring term quantifying the agreement of the model with the SDSL-EPR data
for one prediction run (see section VII.2.4 on page 104 for details). For each prediction run, about100 000 low-resolution models and about 50 000 high-resolution full-atom models were sampled and
subsequently analyzed under the aspects of sampling accuracy and discrimination of inaccurate models
(see the following sections for details). A previously published X-ray-derivedmodel of ExoU (PDB entry
3TU3)216 was used as reference structure for evaluating sampling accuracy and model discrimination
— the reported RMSD-values are between the sampled models and the X-ray-derived model of ExoU.
However, no information about the X-ray-derived model was used in the protein structure prediction
protocol.

VII.2.3. Protein structure prediction protocol

The protein structure prediction protocol (see figure VII.1 on the previous page) consisted of two
modules: a module for low-resolution sampling of possible topologies and amodule for the construction
of loop regions and high-resolution refinement of the resultingmodel. The twomodules were connected
through a data aggregation step using filtering and clustering. The low-resolution topology sampling was
performed iteratively: upon conclusion of the first iteration of the low-resolution topology sampling, the
most favorable models by pseudo-energy score and agreement with the SDSL-EPR data (if applicable)
were selected as start models for a second round of optimization using the topology sampling module.

In the first module (see section F.2.1 on page 194 and section F.2.2 on page 194), low-resolution
topology sampling, the secondary structure of the protein was predicted using PSIPRED98,225 and
Jufo9D.97 The resulting SSEs were subsequently arranged in the three-dimensional space using the de
novo protein structure prediction algorithm BCL::Fold.59 BCL::Fold employs an MCM algorithm to
sample possible topologies arising from the predicted SSEs. The BCL::Fold prediction consists of six
stages: five assembly stages and one refinement stage. In each MC step, a randomly chosen perturbation
(mutate) is applied to the current protein model. The assembly and refinement stages differed in the
mutates applied by theMCMalgorithm. Whereas themutates during the assemble stages apply topology
changing perturbations like large-scale translations of SSEs or swapping of SSEs, the mutates during
the refinement stage only apply small-scale perturbations like rotating helices around their main axes.
After each application of a mutate, the resulting protein model𝑚 is evaluated using a scoring function𝐸(𝑚).60 The scoring function 𝐸(𝑚) is the weighted sum of various knowledge-based scoring terms 𝐸𝑖
and assigns a pseudo-energy score 𝐸m to a protein model𝑚 by computing equation (VII.1).𝐸m = 𝐸(𝑚) = ∑𝑖 𝑤𝑖 ⋅ 𝐸𝑖(𝑚) (VII.1)

where:
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𝐸m = pseudo-energy score of protein model𝑚𝑚 = protein model𝐸𝑖 = scoring term evaluating a specific property 𝑖 of protein model𝑚𝑤𝑖 = weighting factor of scoring term 𝑖
The scoring terms 𝐸𝑖 each evaluate different properties of the protein model like steric interferences,

residue-residue interactions, SSE-SSE packing, or residue exposure.60 Depending on the score difference
between the current model and last accepted model, a Metropolis criterion either accepts or rejects the
new model.59,60 The Metropolis criterion in conjunction with simulated annealing is used to prevent
sampling trajectories from getting trapped in local pseudo-energy minima. Subsequently, the MCM
algorithm resumes with the latest accepted model. The MCM optimization of each assembly and
refinement stages lasted for a maximum of 4000MC steps with the optimization terminating early if
no improvement in the pseudo-energy score were achieved for 800MC steps in a row. In total, this
module resulted in 50 000models.

Upon conclusion of the first topology sampling module, the models were ranked according to their
pseudo-energy score. The best 10% of the sampled models (about 10 000models) were selected for clus-
tering using a k-means implementation in R,100 with the RMSD between the backbone Cα-coordinates
being the metric for quantifying the dissimilarity between models (see section F.2.3 on page 195 for de-
tails). The number of clusters was dynamically adjusted to maximize the average Silhouette width,226,227
which quantifies how tight the grouping of the data points in each cluster is. Briefly, the Silhouette 𝑠(𝑛)
of a data point 𝑛 is computed according to equation (VII.2).𝑠(𝑛) = 𝑏(𝑛) − 𝑎(𝑛)max{𝑎(𝑛), 𝑏(𝑛)} (VII.2)

where:𝑠(𝑛) = silhouette of data point 𝑛𝑎(𝑛) = average dissimilarity between 𝑛 and all other data points in the same cluster𝑏(𝑛) = lowest average dissimilarity between 𝑛 and a data point in any other cluster

The average Silhouette width of the clustering is computed accordingly as ∑𝑘𝑛=1 𝑠(𝑛)/𝑘, where 𝑘 is
the number of data points. The Silhouette width ranges from −1 to 1 with a higher value indicating a
good matching of the data elements to their respective clusters and poor matching to other clusters
— therefore indicating that clustering represents the underlying data well. For structure prediction
with and without SDSL-EPR data, the clustering resulted in four and seven clusters, respectively. The
cluster medoids and the most favorable model by pseudo-energy score were chosen for another round
of optimization using the topology sampling module. The protocol of this optimization matched the
protocol described above but used the selected models as start models. Upon conclusion of the second
round of optimization, the same clustering protocol was applied and resulted in three and seven clusters,
respectively. The cluster medoids and the most favorable model by pseudo-energy score were selected as
start models for the second module — the construction of loop regions and high-resolution refinement
of the models using Rosetta.

In the second module (see section F.2.4 on page 195 for details), the Rosetta software suite94,228 was
used to construct loop regions, add side chain coordinates, and perform a high-resolution refinement of
the provided protein models. The CCD algorithm101 was employed for construction of loop regions and
SDSL-EPR data was incorporated into CCD and the subsequent refinement using the CONE model2,78
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(see the following sections for details) following previously published protocols.149 The weight of the
score quantifying the agreement of the model with the SDSL-EPR data was set to 40 to ensure that the
score accounts for approximately 40% of the total pseudo-energy score. For each of the provided start
models, 500 full-atom models were sampled using this protocol, resulting in about 20 000models.

VII.2.4. Incorporating SDSL-EPR data into computational protein structure prediction

To use SDSL-EPR spectroscopy for distance measurements in a protein, a spin label carrying a free
electron needs to be introduced at the two sites of interest. The distance between the two spin labeling
sites is then determined indirectly by measuring the dipolar interaction between the two free electrons,
which is inversely proportional to their cubed distance.75,150 The indirect nature of this measurement
poses challenges for using the observed data in a protein structure prediction algorithm. First, even if
the backbone of the protein is inflexible, the proteins in the sample for the measurement will exhibit
different conformations of the spin label resulting in a distribution of distances rather than one observed
distance. Second, depending on the type of spin label and its conformation, the distance between the
free electron and the backbone of the spin labeled residue can be rather large adding uncertainty to the
measurement. For example, for the spin label MTSL, the Euclidean distance between the Cβ-atom of
the spin labeled residue and the spin label’s free electron can be up to 8.5Å.78

To use the distances measured in the SDSL-EPR experiment within a protein structure prediction
algorithm, a function to quantify the agreement between the experimental data and a protein model
needs to be defined. This function needs to capture both aforementioned properties of the SDSL-EPR
measurement — the flexibility of the spin label and the indirectness of the measurement. Previously,
different approaches to define such a function have been published. The CONE model,2,78,149 uses a
knowledge-based approach to account for these factors. This implicit approach provides a rapid way
to estimate the probability of observing a certain Cβ − Cβ distance (DBB) given a measured spin-spin
distance (DSL). The agreement score based on the CONE model is defined based on the difference
between DBB and DSL , which can range from −12Å to 12Å. The value of the scoring function ranges
from 0.0 which means no agreement, to −1.0, which means best possible agreement. This approach has
been successfully used for de novo prediction of membrane proteins2 and soluble proteins that exist in
multiple relevant states.5

Due to its significantly faster computation time, we employed the CONE model78 to translate the
measured spin-spin distances into structural restraints for the de novo protein structure prediction
algorithm. For the structure prediction algorithm, the weight of the CONE-based score quantifying
the agreement of the protein model with the SDSL-EPR data was set to 40, which ensured that this
score accounted for about 40% of the total score — a contribution percentage for limited experimental
data that provided the best prediction results in previous studies.1 Additionally, we added a quadratic
potential function to penalize models with𝐷SL − 𝐷BB values outside of the range of the CONE model.

VII.2.5. De novo prediction results confirm the correctness of the X-ray-derived model

The X-ray-derived model of the ExoU/SpcU (PDB entry 3TU3)216 structure is of high quality (Resol. =1.9Å, Rfree = 0.225, Rwork = 0.191). The C-terminal domain makes few crystal lattice contacts that
are overall unlikely to perturb its confirmation: V57, L55, G82 of SpcU appear to form a hydrophobic
pocket for α-helix 23 and SpcU S51 and R83 potentially hydrogen bond to ExoU residues N657 and
E636, respectively. Otherwise, SpcU does not appear to influence the structure of the C-terminal four-
helix-bundle. Hence, we started with the hypothesis that de novo structure prediction in conjunction
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Figure VII.2.: Prediction results for the C-terminal domain of ExoU. (A) Comparison of the sampling densities
between prediction with (red) and without (black) SDSL-EPR data. Results are shown for the first (solid line) and
second (dashed line) iterations of the low-resolution topology sampling. (B) Sampled models are shown as black dots
with their pseudo-energy score and RMSD100 relative to the X-ray-derived model. (C) The most accurate model
predicted (blue) superimposed with the X-ray-derived model (purple, PDB entry 3TU3) from top and side views. (D)
Alternative model (beige) predicted by the prediction pipeline superimposed with the X-ray-derived model (purple,
PDB entry 3TU3).
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Low-resolution I Low-resolution II High-resolution

Setup μ10
(Å)
τ5
(%) e μ10

(Å)
τ5
(%) e μ10

(Å)
τ5
(%) e

No data 6.0 0.0 0.6 4.9 <0.1 0.1 4.6 <0.1 0.1
SDSL-EPR data 5.1 <0.1 2.8 3.9 1.2 2.5 3.2 0.7 1.2

Table VII.1.: Prediction results for the C-terminal domain of ExoU with and without SDSL-EPR data. In-
corporation of SDSL-EPR data results in improved sampling accuracy and model discrimination, as shown by
improvements in the average RMSD100 over the ten most accurate models sampled (μ10), in the percentage of models
with an RMSD100 less than 5Å relative to the X-ray-derived model (τ5), an in the enrichment (e).

with SDSL-EPR data will ultimately be consistent with this conformation. The de novo prediction of the
C-terminal domain of ExoU resulted in two dissimilar topologies (see figure VII.2 on the preceding page
for details). Whereas one topology is represented by models exhibiting a structural dissimilarity to the
X-ray-derivedmodel as low as 3.2Å, the other topology is structurally very dissimilar with an RMSD100
of about 12Å relative to the X-ray-derivedmodel. Notably, both topologies have comparable agreements
with the SDSL-EPR data. The approach described in this study is orthogonal to the procedures used for
obtaining the X-ray-derivedmodel. Although there is not enough experimental data to rule out either of
the two topologies, the partial convergence of the de novo method on the topology of the X-ray-derived
model reassures its correctness. The topology that is structurally dissimilar to the X-ray-derived model
arrives at a more favorable pseudo-energy score than the structurally similar topology (figure VII.2 on
the previous page). However, this does not necessarily mean that the alternative topology is energetically
more stable but could also be an artifact caused by inaccuracies of the free energy approximations.
Artifacts like this have been observed in previous studies andmight be eliminated by obtaining additional
distance measurements.2,5

We were also interested in examining the experimental bimodal distance distributions observed
for A629-A645 and Q649-S672 (see figure F.1 on page 192 for details). To evaluate the agreement of
the X-ray-derived model of ExoU with the determined distance distributions, we performed explicit
simulation of the distance distribution for the double-mutant A629C-A645C, as described in materials
and methods. The double-mutant Q649C-S672C was not evaluated because the residue S672 was not
resolved in the X-ray-derived model and modeling the missing coordinates would introduce additional
bias. For the double-mutant A629-A645, explicit simulation of the spin labels did not result in a
bimodal distribution but in a distinct peak around 25.5Å (figure F.2 on page 193). For comparison, EPR
spectroscopy determined two peaks: (19.3 ± 1.6)Å and (24.1 ± 1.9)Å (figure F.1 on page 192). Taking
the accuracy limit of the X-ray-derivedmodel and the fixed backbone during the explicit simulation into
account, we conclude that the X-ray-derived model is in agreement with the measured mean distance
of 24.1Å. Additional simulations were performed for the remaining double mutants that had both spin
labeling sites resolved in the X-ray-derived model. The simulated peaks matched the experimentally
determined peaks well (figure F.2 on page 193) given the accuracy limit of the X-ray-derived model
and the fixed backbone during the simulation. For one double mutant, E636-N657, the simulation
resulted in two peaks: one peak around 18.5Å, which agrees with the experimentally determined peak
at (20.0 ± 3.6)Å and one peak around 13.5Å, which would be too short to detect through the DEER
experiment.
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VII.2.6. Incorporating SDSL-EPR data increases the probability of sampling accurate models

De novo sampling of conformations through an MCM algorithm is a statistical process. The similarity
of the sampled models to the X-ray-derived model corresponds to a normal distribution. To evaluate
if incorporation of SDSL-EPR data increases the probability of sampling accurate models, the shift
between the distributions resulting from de novo sampling with and without SDSL-EPR data can be
compared. However, the more important aspect is the accuracy of the most accurate models alongside
the percentage of accurate models. To quantify improvements in sampling accuracy, we compared
the average RMSD100-values of the ten most accurate models, μ10 , for the two prediction runs. We
chose to compare the RMSD100 averages over ten models instead of one to mitigate the effect of
statistical outliers. Moreover, the percentage of models with an RMSD100 of less than 5Å relative to
the X-ray-derived model, τ5 , was compared. In addition, we also investigated whether incorporation
of SDSL-EPR data results in increased clustering of the sampled models, as would be expected since
the incorporated restraints should exclude conformations that significantly violate the EPR-derived
restraints.

The results of the iterative protocol clearly demonstrate that incorporation of even a small number
of SDSL-EPR distance restraints significantly increases the probability of sampling accurate models.
Additionally, the most accurate models sampled arrive at an accuracy not observed for de novo protein
structure prediction in the absence of SDSL-EPR data. This is demonstrated by changes of the μ10-values,
that improve from 6.0Å to 5.1Å with inclusion of SDSL-EPR restraints for the first iteration of the
low-resolution topology sampling (figure VII.2 on page 105 and table VII.1 on the previous page). Theτ5-values for the first iteration were too low to be compared in a meaningful way. Another notable effect
of incorporating SDSL-EPR data was an increased clustering of the sampled models, which is likely
caused by the exclusion of models that are not in agreement with the experimental data. The improved
clustering is demonstrated by improvements of the average Silhouette width (see section VII.2.3 on
page 102 for details), which was 0.21 for the first iteration of low-resolution topology sampling without
SDSL-EPR data and improved to 0.57 when experimental data was included. Due to the improved
clustering, a more accurate set of models could be selected for the second iteration of the low-resolution
topology when including SDSL-EPR data. This is demonstrated by more favorable μ10- and τ5-values
after the second iteration, 3.9Åand 1.2% as compared to 4.9Åand less than 0.1%whenno experimental
data was used. This pattern propagated to the high-resolution refinement step. For prediction with
SDSL-EPR data, the μ10- and τ5-values arrived at 3.2Å and 0.7% whereas they were 4.6Å and less than0.1% for the prediction without using experimental data (table VII.1 on the previous page).

In conclusion, incorporation of limited experimental data from SDSL-EPR spectroscopy into de
novo protein structure prediction results in excluding models that violate the restraints. Although the
experimental data in this test case are too sparse to unambiguously determine the tertiary structure of
the C-terminal domain of ExoU, the probability of sampling accurate models is significantly improved.
This was demonstrated by improvements of μ10- and τ5-values, as well as improvements of the average
Silhouette width of the clusters, which indicates an increased clustering of the sampled models.

VII.2.7. Incorporation of EPR data improves the discrimination of inaccurate models

Distinguishing between accurate and inaccurate models resulting from de novo protein structure
prediction is typically hindered by the reduced resolution of the sampled conformations that result
from the relatively coarse-grained approaches used to approximate a model’s free energy. This was
demonstrated by the prediction results in the absence of SDSL-EPR data. Although moderately accurate
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models with an RMSD100 of 4.7Å relative to the X-ray-derived model could be sampled during the first
iteration of the low-resolution topology search, the employed scoring function was unable to correctly
distinguish between accurate and inaccurate models, which is indicted by an enrichment-value of 0.6
(see table VII.1 on page 106 for a tabulation of the prediction results). Accurate models were sampled
with low probability resulting in an accordingly low density. As a consequence, accurate models could
not be detected through clustering. This was demonstrated by the Silhouette scores that were 0.21
when SDSL-EPR data were used and 0.57 otherwise, indicating a broader range of conformations
considered favorable in the absence of SDSL-EPR data. In general, incorporation of SDSL-EPR data
significantly improved the scoring function’s ability to distinguish between accurate and inaccurate
models, which can be shown by comparing the enrichment-values that arrived at 0.6, 0.1 and 0.1 for the
two iterations of the low-resolution topology search and the high-resolution refinement in the absence
of experimental data, respectively, but upon incorporation of the SDSL-EPR data improved to 2.8, 2.5
and 1.2 (table VII.1 on page 106).

VII.2.8. Limitations in the sampling of conformations and the model discrimination remain

The most accurate full-atom model sampled by the presented pipeline arrives at an RMSD100 of 3.2Å
(figure VII.2 on page 105 and table VII.1 on page 106) relative to the X-ray-derived model (PDB entry
3TU3), which was reported at a resolution of 1.9Å. Therefore, the most accurate model sampled is not
within the accuracy limit of the experimentally determined reference structure. Assuming that the X-
ray-derived model correctly and accurately represents the protein’s major population in the equilibrium,
the most accurate model does not capture the protein’s tertiary structure at atomic detail. This may be
attributed in part to necessary simplifications when sampling conformations. Neither the low-resolution
topology sampling nor the high-resolution refinement exhaustively search the conformational space,
and the most accurate model sampled could indeed be the most accurate model possible when using
these methods in a de novo approach. For future studies, it will be worth investigating if this pipeline
should be augmented with MD simulations.

Although the discrimination of inaccurate models could be improved substantially through the
incorporation of SDSL-EPR data, as it was demonstrated through the improvements of the enrichment-
values (table VII.1 on page 106), it is still not possible to reliably select the most accurate models.
The models with the most favorable score cluster around RMSD100-values between 7Å and 13Å
(figure VII.2 on page 105). However, the difference in pseudo-energy between the models with the most
favorable pseudo-energy and themodels with themost favorable RMSD100 relative to the X-ray-derived
model accounts for less than 15% of the most favor able score. This indicates that the discrimination
problem could be resolved through additional SDSL-EPR distance measurements. In this initial study,
the C-terminal domain of ExoU was predicted using only seven EPR-derived restraints, which in
conjunction with the low-resolution translation of experimental distances into structural restraints
is not sufficient to remove ambiguity from the prediction. Nonetheless, significant improvements
were made even with this modest set of distance measurements, providing a valuable benchmark for
further studies evaluating the impact of a more comprehensive set of constraints on de novo structure
prediction.
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VII.3. Conclusions

Using EPR spectroscopy in conjunction with de novo protein structure prediction provided an orthog-
onal approach to probe the structure of ExoU. The prediction converged on a conformation that is
topologically identical and st ructurally similar (RMSD100 of 3.2Å) to the X-ray-derived model in
complex with its chaperone SpcU (PDB entry 3TU3). This result confirms that the fold of the ExoU
C-terminal domain in solution matches the fold when in complex with its chaperon SpcU. From a
different perspective, we established a protocol to predict a model of a soluble protein from limited
SDSL-EPR data using a combined approach consisting of BCL::Fold, R, and Rosetta. This approach can
be applied to all soluble proteins.

VII.4. Materials and methods

In this section, we detail the experimental methods used to obtain the SDSL-EPR data and the com-
putational methods to explicitly simulate EPR-derived distance distributions in silico. This section
is concluded by a description of the quality metrics used to evaluate the protein structure prediction
results.

VII.4.1. DEER spectroscopy and determination of distance distributions

Four-pulse DEER data were collected on a Bruker E4580 pulse EPR spectrometer (Bruker Biospin)
operating at Q-band (34GHz), equipped with an EN5107D2 resonator and a 10Wmicrowave amplifier.
Selected MTSL-labeled double-cysteine mutants of ExoU were prepared in 20mmol dm−3 MOPS
(34[N-morpholino]propanesulfonic acid), 145mmol dm−3 NaCl, pH 7.2 using perdeuterated water
and containing 25% (v/v) perdeuterated glycerol as cryoprotectant. Samples containing a final protein
concentration of approximately 0.1mmol dm−3 in a volume of 12 μL were flash frozen in liquid N2
and immediately placed in the resonator where sample temperature was maintained at 80K using an
Oxford cryostat. Data were background corrected and analyzed by model-free Tikhonov regularization
using DeerAnalysis2011.229

VII.4.2. Explicit simulation of EPR-derived distance distributions

To further evaluate the agreement of the X-ray-derived model with the SDSL-EPR data, explicit sim-
ulation of the spin label distance distribution was performed for double-mutants that had both spin
labeling sites resolved in the X-ray-derived model. For the explicit simulation, the endogenous residues
at the spin labeling sites were replaced with R1A, which is a cysteine residue spin labeled with MTSL,
using Rosetta’s application for fixed backbone design — “fixbb”. The resulting model was subsequently
energy-optimized using Rosetta’s “relax” application. The relaxation was constrained to the start coordi-
nates to avoid introducing bias through Rosetta’s scoring function. Constraining to start coordinates
limited backbone perturbations to less than 0.1Å. Per double-mutant, 1000 independent trajectories
were simulated and the spin-spin distances observed in each trajectory were extracted to determine the
spin-spin distance distribution.
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VII.4.3. Quantitative evaluation of the protein structure prediction results

The accuracy of the structure prediction results was evaluated under two aspects: the sampling accuracy,
which is the structural similarity between the sampled models and the experimentally determined
reference structure, and the discrimination of inaccuratemodels, which is howwell the employed scoring
function could distinguish between accurate and inaccurate models. For quantifying the sampling
accuracy, the RMSD100 metric103 was used, which can be computed according to equation (VII.3).𝑅𝑀𝑆𝐷100 = 𝑅𝑀𝑆𝐷1 + log√𝑙/100 (VII.3)

where:𝑅𝑀𝑆𝐷100 = protein-size-normalized 𝑅𝑀𝑆𝐷𝑅𝑀𝑆𝐷 = root-mean-square distance of the Cα-coordinates𝑙 = number of residues in the superimposition

To quantify the model discrimination, the enrichment metric2 was used, which can be computed
as 𝑒 = #𝑇𝑃#𝑃 . The sets 𝑇𝑃 and 𝑃 are both subsets of the set of all sampled models. The set 𝑃 contains
the 10% of the models with the lowest RMSD100 relative to the experimentally determined reference
structure. The set 𝑇𝑃 is computed from the sets 𝑃 and 𝑃𝑆, which contains the 10% of the models with
the most favorable pseudo-energy score, as 𝑇𝑃 = 𝑃 ∩ 𝑃𝑆. Therefore, the set 𝑇𝑃 contains the 10%
most accurate models that are at the same time among the 10% of the models with the most favorable
pseudo-energy score. Accordingly, the enrichment ranges from 0 to 10 and an enrichment-value of 1.0
indicates that the selection by the employed scoring function is purely random and discrimination of
inaccurate models does not take place. Enrichment-values greater than 1.0 indicate that the scoring
function is able to distinguish between accurate and inaccurate models, whereas enrichment-values less
than 1.0 indicate that the scoring function is selecting against accurate models. An enrichment-value
of 1.0 indicates that 10% of the most accurate models can be identified by the scoring function.
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CHAPTERVIII
PROTONATION-DEPENDENT CONFORMATIONAL DYNAMICS OF EMRE

This chapter is based on the publication “Protonation-dependent conformational dynamics of the
multidrug transporter EmrE”.7 Axel W. Fischer contributed to the development of the prediction
pipeline for the TPP-bound conformation of EmrE and its prediction.

The SMR transporter from Escherichia coli, EmrE, couples the energetically uphill ex-
trusion of hydrophobic cations out of the cell to the transport of two protons down their
electrochemical gradient. While principal mechanistic elements of proton/substrate antiport
have been described, the structural record is limited to the conformation of the substrate-
bound state, which has been shown to undergo isoenergetic alternating access. A central but
missing link in the structure/mechanism relationship is a description of the proton-bound
state, which is an obligatory intermediate in the transport cycle. Here we report a systematic
spin labeling and DEER study that uncovers the conformational changes of EmrE subsequent
to protonation of critical acidic residues in the context of a global description of ligand-
induced structural rearrangements. We find that protonation of E14 leads to extensive
rotation and tilt of TMHs 1 to 3 in conjunction with repacking of loops, conformational
changes, which alter the coordination of the bound substrate and modulate its access to the
binding site from the lipid bilayer. The transport model that emerges from our data posits
a proton-bound, but occluded, resting state. Substrate binding from the inner leaflet of the
bilayer releases the protons and triggers alternating access between inward- and outward-
facing conformations of the substrate-loaded transporter thus enabling antiport without
dissipation of the proton gradient.

VIII.1. Introduction

Powered by the proton electrochemical gradient across the inner membrane of prokaryotes, SMR
transporters extrude a spectrum of cytotoxic molecules that are primarily hydrophobic cations.24 The
functional unit is typically a homodimer wherein each protomer consists of four hydrophobic TMHs.
TMHs 1 to 3 cradle a substrate binding pocket while TMH4 is involved in the contacts that stabilize
the dimer. EmrE, the SMR transporter from Escherichia coli, has been a focal point of structural,
spectroscopic and mechanistic investigations.230–235 Seminal work from the Schuldiner lab over the last
two decades has unlocked mechanistic principles of substrate-ion-antiport.23–26 EmrE binds hydropho-
bic substrates in a membrane-embedded chamber coordinated by glutamate 14 (E14), an absolutely
conserved, membrane-embedded, acidic residue in the middle of TMH1. Coupling between substrate
and proton arises from the principle of mutual exclusion between the two ligands at the binding site.23,26

In contrast to the elaborate understanding of EmrE antiport mechanism, the conformational changes
that enable binding and release of ligands have not been elucidated. While the general framework of
antiport is presumed to follow the principles of alternating access, the only structure available is of EmrE
bound to the substrate TPP.231 EM analysis of two dimensional crystals established an antiparallel
orientation of the protomers in the dimer.230 This was later confirmed by the corrected crystal structure
of TPP-bound EmrE trapped in an asymmetric state with an opening on one side of the transporter.231
This asymmetry arises from distinct conformations of each protomer in the dimer. Fleishman et al.236
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independently modeled EmrE on the basis of the EM structure and postulated the elegant notion that
isomerization of the two protomers between the two conformations drives alternating access of the
substrate-loaded transporter. Indeed solution NMR studies confirmed the isomerization of TPP-bound
EmrE in bicelles and enabled the measurement of the time scale of the exchange between inward and
outward facing states.234 Structurally, the inward- and outward-facing states of the dimer are related by
a 180° rotation around an axis parallel to the plane of the membrane, i.e., they are identical except for
their orientations in the membrane.

In addition to alternating access of the substrate-bound EmrE, transport requires the protonation/de-
protonation of E14 in the context of proton translocation from the extracellular milieu.23 It is typically
assumed that the protonated intermediate has a similar structure to substrate-bound EmrE and under-
goes isomerization by the isoenergetic exchange of the two protomers between two conformations.237
However, this model has not been challenged experimentally and the structures of the protonated and
apo states have not been determined. Thus critical steps in the transport cycle remain structurally and
dynamically unexplored.

To illuminate the structural and dynamic aspects of protonation in the transport mechanism, we
present a global perspective on the ligand-induced conformational changes of EmrE. A systematic
analysis of distances and distance changes between spin labels, site-specifically introduced across the
dimer, reveals distinct structural rearrangements associated with protonation and substrate binding.
These rearrangements reconfigure the backbone and side chain orientations in the substrate binding
chamber as well as modulate access to the bilayer. Protonation-induced movements are primarily
dependent onE14 although residues E25 andD84 appear to influence the local conformation particularly
in TMH3 suggesting a departure from rigid body movement of the protomer. When integrated into the
current biochemical and structural framework, these results provide a novel model of coupled transport
by EmrE.

VIII.2. Materials and methods

VIII.2.1. Mutagenesis, expression, purification, labeling, and reconstitution of EmrE

This study utilizes the previously generated constructs of single-cysteine mutants of EmrE.233 Specific
functional regions of EmrE including residues in GG7 dimerization motif, located in TMH4 were
excluded from the analysis. Further functional mutants (E14Q, E25Q, D84N, E25Q/D84N) were
introduced on the same constructs using site-directed mutagenesis. EmrE mutants were expressed,
purified in 1.5% β-DDM and spin labeled using the same protocol as previously described.233 Purified
EmrE were concentrated with Amicon Ultra-10 kDa centrifugal filter units (Millipore). Samples for
DEER spectroscopy were prepared in the 100mmol dm−3 to 200mmol dm−3 protein concentration
range. A final concentration of glycerol of 30% (wt/vol) was used in all samples as a cryoprotectant. The
TPP-bound state was obtained by addition of six fold molar excess of the substrate TPP. For pH 5 and
apo pH 8 states, respectively, a calibrated volume of 1NHCl or 1NNaOHwas added to samples in EmrE
size exclusion chromatography buffer (50mmol dm−3 sodium phosphate monobasic, 50mmol dm−3
NaCl, 0.02% β-DDM, and 0.02% NaN3, pH 7.2). For pH titration experiments, an Orion 9810BN
micro pH electrode (Thermo Scientific) was used to adjust the pH-values. See section VIII.2.2 on the
next page for reconstitution of EmrE in nanodiscs.238
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VIII.2.2. Reconstitution of EmrE in nanodiscs

Escherichia coli polar lipid extract (Avanti Polar Lipids) was dissolved in chloroform, evaporated to
dryness on a rotary evaporator and desiccated overnight under vacuum. Membrane scaffold protein
(MSP1D1) was expressed and purified as described earlier.238 The lipids were hydrated in MSP buffer
(50mmol dm−3 Tris, 0.1mol dm−3 NaCl, pH 7.5) containing 0.5% (w/v) β-DDM, filtered through 0.2μm polycarbonate membrane (Whatman, Florham Park, N J) and stored in small aliquots at −80 ∘C.
For reconstitution into nanodiscs, purified spin labeled proteins in β-DDM micelles were mixed with
lipid, MSP1D1, and β-DDM in the following molar ratios: lipid:MSP1D1, 60:1; MSP1D1:EmrE, 8:1;β-DDM:lipid, 5:1. Mixtures were rocked at room temperature for two hours. Biobeads (0.8 g/mL)
were then added to the solution and incubated overnight at 4 ∘C with rocking. The nanodiscs assembly
solution was filtered using 0.4 5mm filter to remove biobeads. Full nanodiscs were separated from
empty nanodiscs by size-exclusion chromatography (50mmol dm−3 sodium phosphate monobasic,50mmol dm−3 NaCl, 0.02% NaN3, and 5% glycerol, pH 7.2). Nanodiscs were concentrated using
Amicon Ultra-50 kDa centrifugal filters (Millipore). Proteo-nanodiscs were then characterized using
sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE) to verify reconstitution.
Concentration of spin labeled mutants in nanodiscs was determined by comparing the intensity of the
integrated continuous wave (CW)-EPR spectrum to that of the same mutant in detergent Michelle’s.

VIII.2.3. CW-EPR and DEER spectroscopy

For CW-EPR, spin labeled EmrE samples were loaded in capillaries and spectra were collected on
a Bruker EMX spectrometer using 10mW microwave power level and a modulation amplitude of1.6G. DEER spectroscopy was performed on an Elexsys E580 EPR spectrometer (Super QFT bridge
with ELDOR; Bruker) operating at Q-band frequency (33.9GHz) with the dead-time free four-pulse
sequence at 83K.75 Primary DEER decays were analyzed using a home-written software operating in
the Matlab environment.238 Briefly, the software carries out global analysis of the DEER decays obtained
under different conditions for the same spin labeled position. The distance distribution is assumed to
consist of a sum of Gaussians, the number of which is determined based on a statistical criterion.

VIII.2.4. Refinement of the X-ray structure and modeling the EmrE structure at pH 5
The X-ray structure of EmrE in TPP-bound state (PDB entry 3B5D) was refined in several iterations
using MODELLER version 9.10.239 A previously built complete atomistic model of dimeric EmrE was
used.233 In silico spin labeling of the protein structure using rotamer library approach was performed
using MMM 2013.2 software package.214 See section VIII.2.5 on the following page for more details
on refinement using MODELLER. The stereochemical quality of the generated models was evaluated
using PROCHECK (table VIII.1 on the next page).240

The initial model of the EmrE structure at pH 5 was predicted by a two-step approach using
BCL::Fold,2 which is part of the BCL,a to assemble the SSEs in the three-dimensional space and
subsequently Rosetta94,149 to construct loop regions and predict side chain conformations. See sec-
tion VIII.2.6 on the following page for more details on BCL/Rosetta modeling. The generated models
using this approach were further refined in MODELLER.

ahttp://www.meilerlab.org/bclcommons
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Model GA341
scoreA

Ramachandran
statistics
favoredB

Ramachandran
statistics
allowedC

Main-chain
parametersD

Cα-RMSDE

(Å)

pH 5 (H+-bound) 0.84 73.1% 94.0% −0.1 0.7
Refined X-ray

(+TPP) 0.99 72.0% 95.6% −0.2 4.7
X-ray — — — — 4.1

Table VIII.1.: Quality assessment of the generated models of EmrE. (A) A model is predicted as reliable when the
GA341 score is higher than a pre-specified cutoff (0.7). A reliable model has a probability of the correct fold that
is larger than 95%. (B) Percentage of residues in favored regions. (C) Percentage of residues in allowed regions.
(D) Overall G-factor. The stereochemical quality of the generated models was evaluated using PROCHECK.240
G-factor-values below −0.5 are considered unusual. (E) Cα-RMSD between the two chains.

VIII.2.5. Refinement of the X-ray structure based on DEER distance constraints

The X-ray structure of EmrE in TPP-bound state (PDB entry 3B5D) was refined in several iterations
using MODELLER version 9.10.239 A previously built complete atomistic model of dimeric EmrE was
used.233 In silico spin labeling of the protein structure using rotamer library approach was performed
using MMM 2013.2 software package.214 In each iteration, the rotamer ensemble was first calculated
at 298K on the spin labeled positions. A rotamer, which best fits the mean N-O midpoint position
of the whole ensemble was attached to the template structure that was supplied to MODELLER. The
X-ray structure was refined using the center of the Gaussian components corresponding to TPP-bound
state. Secondary structure assignments deduced from our previous study were also considered as
constraints.233 Onlymodels with a GA341 score of 0.75 or higher were included in the ensemble. GA341
specifies a threshold, below which models should be rejected (table VIII.1). After importing models
into the MMM software package, rotamer ensembles were recalculated on them. The stereochemical
quality of the generated models was evaluated using PROCHECK (table VIII.1).240

VIII.2.6. Modeling the EmrE structure at pH 5
Theprotein structure prediction protocol consisted of a two-step approach using BCL::Fold,2 to assemble
the SSEs in the three-dimensional space and subsequently Rosetta94,149 to construct loop regions and
predict side chain conformations. In one of the models, a two-fold symmetry was imposed such
that both protomers have similar conformations. In another model, the symmetry was relaxed to
obtain an asymmetric dimer. Over the course of the optimization, transformations are applied to
the SSEs to sample different conformations and the free energy of the sampled conformations was
approximated using knowledge-based potentials, evaluating properties like the burial of residues,
residue-residue interactions, and steric interference between residues. The knowledge-based potentials
were supplemented with a scoring function based on the CONE model to quantify the agreement of the
conformation with the EPR distance data.2 To achieve sufficient coverage of the conformational space,100 000models were sampled for the pH 5 state using this protocol. The resulting models were sorted by
their pseudo-energy score encompassing the scores from the knowledge-based potentials and the EPR
agreement. The model with the most favorable score was selected for loop construction and refinement
with Rosetta. The resulting model was refined using Rosetta relax94 to improve agreement with the
EPR data and a CONE model-based scoring function was used to quantify the agreement. Upon
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construction of all loop regions, the model with the most favorable score was selected. The generated
models using this approach were further refined in MODELLER as described in section VIII.2.5 on the
previous page.

VIII.2.7. General methodology

To investigate the EmrE structure under ligand conditions that are expected to promote transition
between transport intermediates, we used our library of cysteine mutants,233 spanning almost the entire
sequence of EmrE, to introduce single spin labels into the monomer leading to a doubly-labeled dimer.
Spin labeled mutants, which didn’t show significant structural and functional perturbation in previous
assays,233 were analyzed by Q-band (33.9GHz) DEER; also called PELDOR spectroscopy.75,241,242
Distance distributions were determined in n-dodecyl-β-D-maltopyranoside (β-DDM) detergent mi-
celles, which maintain the structural and functional integrity of EmrE.243 The simplest model of EmrE
transport satisfying energetics and coupling considerations entails at least three distinct intermediates:
substrate-bound, proton-bound, and ligand-free or apo. It is likely that the apo state is only transiently
populated considering the high concentration of protons on the extracellular side and the obligatory
exchange between protons and substrate. Therefore, DEER measurements were carried out at pH 5 to
mimic the acidic environment of the periplasm and protonate acidic residues, at pH 8 to mimic the
relatively higher pH of the cytoplasm and promote deprotonation, and at pH 8 in the presence of excess
TPP to trap the substrate-bound conformation. For a limited number of mutants, we confirmed our
interpretation in lipid bilayers through reconstitution of EmrE into nanodiscs.

VIII.3. Results

VIII.3.1. Substrate binding and protonation induce distinct conformations of EmrE

The DEER data set (figure VIII.1 on the following page and figure G.1 on page 198) was transformed
into distance distributions characterizing the spatial relationships between pairs of TMHs in the dimer
as described in the methods section. Overall, the distributions reveal a number of trends consis-
tent with three distinct conformations corresponding to the proton-bound, substrate-bound and apo
EmrE intermediates. First, we observed changes in the average distances as well as the width of the
distributions between the three conditions unequivocally demonstrating extensive conformational
rearrangements (figure VIII.1 on the following page). Second, the shape of these distributions suggests
that the TPP-bound state is ordered in stark contrast with the highly dynamic apo state. Specifically, we
observed broad distributions in TMHs 1 to 3 at pH 8. At a number of sites, the shape of the distributions
and the changes induced by different ligand conditions suggested equilibrium between multiple states.
Finally, there are extensive, ligand-dependent, rearrangements in the structure of the loops (L1 to
L4; figure G.1 on page 198), particularly L1 and L3 connecting TMHs 1 and 2 and TMHs 3 and 4
respectively, suggesting an important role for these segments in the mechanism of transport.244 Notably,
binding of substrate increases order in these loops whereas protonation/deprotonation typically leads
to broad distance distributions (figure G.1 on page 198).

To provide a global perspective on the structural rearrangements, we plotted the change in the
distance as a function of residue number (figure VIII.2 on the next page and figure VIII.4 on page 120).
This is necessarily an oversimplification as many distributions particularly for the apo conformation
are broad and can’t be rigorously characterized by a unique distance. Nevertheless, this representation
allows the qualitative visualization of the regions of conformational changes thereby identifying a
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Figure VIII.1.: Ligand-dependent conformational changes of EmrE in the transmembrane regions (TMHs 1 to4. Distance distributions depicting the probability of a distance 𝑃(𝑟) versus distance (𝑟) between identical positions
in the doubly-labeled dimer. Distance distributions for each pair were obtained in the ligand-free (blue; apo pH 8),
proton-bound (black; pH 5) and TPP-bound (red; TPP) intermediates.

Figure VIII.2.: Ligand-dependent changes in the distance as a function of residue number for TPP to proton-
bound intermediates (dTPP − dpH5). The absolute value of the change in the distance between the two states is
displayed by the ribbon thickness on the TPP-bound crystal structure. Residues with positive and negative distance
change are colored blue and red, respectively. Unchanged residues and those where no data was obtained are colored
white. See figure VIII.4 on page 120 for more detail.
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Figure VIII.3.: Comparison of the obtained experimental distances for the TPP-bound state of EmrE with
distances predicted from the crystal structure. The average distances (colored circles) predicted by the X-ray
structure were calculated using the MMM 2013.2 software package.214 The color code indicates whether distances are
matched (green, within the standard deviation of the specified experimental distance), poorly matched (yellow, within
twice the standard deviation), or not matched (red, deviating by more than twice the standard deviation). Only
experimental distances between residues 6 and 100 are compared since the rest are not resolved for both monomers
in the structure.

complex web of structural rearrangements focused on TMHs 1 to 3 and the loops as highlighted by the
width of the ribbon representation of EmrE in figure VIII.2 on the previous page.

VIII.3.2. The TPP-bound conformation

Because the current structural data is exclusively for the TPP-bound state, we will consider it as a
reference for the purpose of interpreting the distance distributions in a structural context. Previous
work from our laboratory provided a complete view of the accessibility and mobility profile of spin
labels in this state.233 The data pointed to extensive disagreement between the crystal structure and the
conformation in liposomes. The nature of these disagreements and the low resolution of the structure
lead to the conclusion that there are substantial issues with the orientation of helices in the crystal
structure.233

The isomerization between inward- and outward-facing conformations detected by NMR is not
expected to lead to changes in the distance distributions since the packing of the two protomers in the
asymmetric dimer is identical.234 Therefore, we compared the experimental distances to those predicted
from the crystal structure and found discrepancies that extend across the entire structure (figure VIII.3)
further confirming the conclusion deduced from the accessibility and mobility analysis regarding the
accuracy of the structure. Nevertheless, the crystal structure (PDB entry 3B5D) will be presented in
the figures to provide a general reference for the location of the labels. A model of the TPP-bound
conformation, refined to agree with the experimental distances, will be presented in the discussion
section.
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VIII.3.3. Conformational changes induced by protonation

Comparison of the pH 5 and TPP-bound distance distributions reveal extensive structural changes upon
protonation. These are primarily observed at residues in TMHs 1 and 3, which are directly involved
in substrate binding, and TMH2, which borders the bilayer. In contrast, minor rearrangements along
the interface of TMH4 are reported by the spin labels. Large changes in the average distances and the
width of the distance distributions are observed along the N-terminal part of TMH1 (residues 8 to 15)
with the largest changes occurring at sites with restricted mobility previously assigned to helix/helix
interfaces (i.e., residues 11 and 15). Therefore, we interpret these distance changes as reflecting a degree
of rotation rather than a simple tilt of the helices. Rotation is expected to alter spin label mobility at
helical interfaces and consequently lead to large distance changes due to the repacking of spin label side
chains. In contrast, helix tilt would be expected to yield smaller amplitude distance changes and to be
observed concurrently at lipid-facing sites.

Conformational changes at pH 5 include the C-terminal end of TMH 1 predominantly in the form
of helix tilt. The different nature of rearrangements along the two segments of TMH 1 presumably
necessitates a hinge point or an unwinding in the helix. Consistent with this conclusion, the distance
distributions at 12 and 13 are broad suggesting flexibility of the backbone.

Large amplitude distance changes are observed in loop 1 (figure G.1 on page 198 and figure VIII.2 on
page 116) indicating extensive ligand-dependent repacking. While the exact nature of the underlying
structural rearrangements is difficult to infer from the data, they suggest that the loop plays a central
role in the occlusion/exposure of the substrate binding site. Notable is residue 27, where a short distance
component is observed in the apo and in the TPP-bound state whereas the pH 5 distribution suggests a
highly disordered conformation. The penetration of this residue towards the binding site, implied by
the short distance component, presumably stabilizes the bound substrate.

The N-terminal segment of TMH 2, consisting of residues 31 to 35 to, undergoes a closing motion
upon protonation evidenced by the shift in the average distance. A residue by residue analysis of
the 37 to 44 stretch is hindered by the close proximity of spin labels (less than 20Å).75 However, the
distributions at sites 41 and 42, where DEER decays can be analyzed, show the persistence of the
closing trend. This movement is attenuated near the end of the helix although changes in the distance
distributions are detected at residues 48 and 49 (figure VIII.1 on page 116). As TMH 2merges into
loop 2, we observed evidence of ligand-induced changes in order manifested by large changes in the
width of the distributions at residues 50 and 51.

Except for residues 52 and 53, most residues in loop 2 were characterized by broad distributions
indicating a highly dynamic backbone (figure G.1 on page 198 and figure VIII.2 on page 116). The
distributions consist of a well-defined component and a broad underlying component, which we
interpret as reflecting the existence of one conformation wherein the loop backbone is rigid. This
conformation is stabilized by ligand binding and is reduced in the apo intermediate.

The N-terminus of TMH 3 is in direct contact with the bound substrate in the crystal structure.
Moreover, previous mutagenesis studies implicated residues in this helix in substrate binding.245
Distributions at residues 62 and 68 andCW-EPR spectrum at residue 64 suggest that theN-terminal part
of TMH 3 undergoes repacking between proton- and TPP-bound states but a quantitative interpretation
is hindered by the broad distributions and the close distances (figure VIII.1 on page 116). Beginning
at residue 71, protonation invariably leads to a distinct short distance component not observed in the
TPP-bound state suggesting a closing movement in this region of the transporter (figure VIII.1 on
page 116). This movement is likely facilitated by the GVG motif in TMH 3, which displays changes in
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its dynamics in the absence of substrate.233,246
The conformational changes at the C-terminal half of TMH 3 propagates to the loop linking it to

TMH 4 (figure G.1 on page 198 and figure VIII.2 on page 116). Remarkably, we observed distinct
evidence of short components in the pH 5 state (e.g. W76, Q81, R82, and D84) that imply a large scale
closing movement of the loop indicative of an occlusion of the substrate binding cavity in the absence
of substrate.

Although noticeable ligand-induced changes in the distributions are observed at several sites in
TMH 4 (figure VIII.1 on page 116), they are generally smaller in magnitude and no discernable pattern
was evident from comparison of changes at successive sites. Given that this TMH is involved in dimer
formation, it is not unexpected that the rearrangements at TMHs 1 and 3 necessitate repacking at the
dimer interface.

VIII.3.4. The apo state

The profile of the apo state that emerges from the distributions at pH 8 is that of a highly dynamic con-
formation (figure VIII.4 on the next page). Broad distributions indicative of conformational sampling
are observed along the N-terminal parts of TMHs 1 and 3 as well as in the loops (figure G.1 on page 198).
However, there are notable exceptions that occur at functionally important residues. Specifically, the
apo state distributions at residues 14 and 18 are narrower than in the ligand-bound state suggesting
that the substrate binding site may become occluded in the absence of ligands.

Unexpected short distance components at residues in loop 3 (figure G.1 on page 198) are indicative
of a large amplitude excursion for this segment, which would be at either side of the membrane in an
antiparallel structure. Such movement may be associated with an occlusion of the substrate binding
region near TMH 3 similar to what is observed at pH 5. These results rationalize previous accessibility
data that revealed simultaneous large exposure of spin labels in loop 3 to NiEDDA and molecular
oxygen.233

VIII.3.5. Conformational dynamics in lipid bilayers

To investigate ligand-induced conformational changes in lipid bilayers, we carried out DEER measure-
ments on representative spin labeled EmrE mutants, which have been reconstituted in lipid nanodiscs
(figure VIII.5 on page 121). Comparison of the distance distributions demonstrates pH- and substrate-
dependent rearrangements along the same structural elements as in detergents. More importantly the
sign of the distance changes is identical in detergent micelles and lipid bilayers suggesting that similar
conformations are stabilized by protonation and substrate binding in the two environments. However,
we found that, for the majority of the residues investigated, the width of the distributions was narrower
in lipid bilayers indicating a more ordered/less dynamic structure. These were particularly notable for
residues in the center of TMHs 1 and 2 and the C-terminal part of TMH 3 (e.g. residue 12 in TMH 1;
figure VIII.5 on page 121). In contrast, reconstitution in lipid bilayers either didn’t affect the disorder of
the loops or, more notably, promoted fluctuations by loop 3 as evident by the increase in the population
of the short component at residue 76 (as seen in figure VIII.5 on page 121).

VIII.3.6. The proton sensor of EmrE

We determined the p𝐾a of the conformational transition of ligand-free EmrE using G26 as a reporter
(figure G.2 on page 199 and figure G.3 on page 200). A titration curve was constructed by determination
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FigureVIII.4.: Ligand-dependent changes of EmrE in the distance as a function of residue number. Theabsolute
value of the change in the distance between the two states is displayed by the ribbon thickness on the TPP-bound crystal
structure. Residues with positive and negative distance change are colored blue and red, respectively. Unchanged
residues and those where no data was obtained are colored white. (A) TPP- to proton-bound (dTPP −dpH5). Residues14, 87, 88 and 107 (red asterisk): for protonated (pH 5) state, weighted average distance of the distribution is used
and for TPP-bound state the center of the Gaussian component corresponding to this state is used. Residues 91, 95,99, 100, 103 to 106, and 108 (black asterisk): for both states weighted average distance of the distribution is used.(B)
TPP-bound to apo (dTPP − dpH8). Residues 7, 9, 11 to 17, 19, 20, 24, 27 to 29, 32 to 36, 38, 39, 48 to 54, 56, 61, 62,66, 72, 77, 78, 86, 87, and 107 (black asterisk ): for apo (pH 8) state, weighted average distance of the distribution
and for TPP-bound state, the center of the Gaussian component corresponding to this state are used. Residue 108
(purple asterisk): for TPP-bound state, weighted average distance of the distribution and for apo state, the center of
the Gaussian component corresponding to this state is used. Residues 95, 99, 100, and 103 to 106 (red asterisk): for
both states, weighted average distance of the distribution is used. (C) apo to proton-bound (dpH8 − dpH5). Residues7, 9, 11 to 13, 15 to 17, 19, 20, 24, 27 to 29, 32 to 36, 38, 39, 48 to 54, 56, 61, 62, 66, 72, 77, 78, and 86 (black
asterisk): for apo (pH 8) state, weighted average distance of the distribution and for protonated (pH 5) state the
center of the Gaussian component corresponding to this state is used. Residues 88 and 108 (yellow asterisk): for
protonated (pH 5) state, weighted average distance of the distribution and for apo state the center of the Gaussian
component corresponding to this state is used. Residues 14, 87, 95, 99, 100, and 103 to 107 (red asterisk): for both
states the weighted average distance of the distribution is used.
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Figure VIII.5.: Ligand-dependent conformational changes of EmrE in nanodiscs composed of Escherichia coli
polar lipids. The distributions in DDM micelles are shown for reference. Apo (blue), proton-bound (black; pH 5 forβ-DDM, pH 6 for nanodiscs), and TPP-bound (red). The CW-EPR spectra are shown in the insets.

of the amplitudes of the distance components in the pH 5 to pH 10 range. p𝐾a-values of approximately7.7 and 7.4 were obtained in detergent micelles and lipid bilayers, respectively, indicating that the
environment of E14 was not substantially altered in lipids. Previous kinetic analysis yielded a p𝐾a-value
for E14 of about 7.3 although a wider range was reported from steady state analysis.25 The similar
values of the p𝐾a suggest that the conformational changes detected by EPR are involved in the antiport
mechanism of EmrE.

Consistent with this conclusion, we found that the pH-induced distances changes in TMH 1 are
primarily associated with the protonation of E14 (figure G.3 on page 200). Substitution of E14 with
glutamine designed to mimic protonation abrogates the distance changes due to the shift from pH 8 to
pH 5 in TMH 1 (e.g. residues 11, 15 and 20; figure G.2 on page 199 and figure G.4 on page 201). More
importantly, the distributions at pH 8 in the E14Q background are similar to those at pH 5 in the wild
type (WT), suggesting that the E14Q mimics protonation of E14.

In TMH 2, the E14Q substitution also attenuates the pH-dependent distance changes but unlike TMH1 the shape of the distribution at pH 5 is noticeably broader than in the WT background (figure G.4 on
page 201). To identify the residues involved in modifying the effects of E14 protonation, we introduced
the D84N/E25Q substitutions while monitoring selected sites (figure G.2 on page 199 and figure G.4 on
page 201). We observed an increase in disorder primarily for the pH 8 conformation and to a lesser
extent the pH 5 conformation in this background. Consistent with a role for the protonation of these
residues in the transport mechanism, we found that while E14Q substitution attenuated the distance
changes in TMH 3, it also introduced a large degree of disorder reflected in the width of the distance
distributions (e.g. I62; figure G.2 on page 199 and figure G.4 on page 201). We interpret this result as
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FigureVIII.6.:Model of EmrE transport derived fromEPRdata. (A) Conformational changes between protonated
(pH 5) and TPP-bound intermediates. Overall alignment between respective TMH pairs is shown; for TMH 3,
alignment was based on residues 58 to 64. (B) The resting state is a protonated but water-occluded conformation of
EmrE,represented here with the symmetric model generated by BCL::Fold/Rosetta and refined in MODELLER by
pH 5 distance restraints (a). Subsequent binding of the substrate from inner membrane leaflet promotes release of
the protons yielding the refined TPP-bound crystal structure (b). Conformational exchange of the monomers enables
alternating access to the extracellular milieu and exchange of substrate with protons resumes the cycle (c).

reflecting the change in protonation state of D84 and E25. Importantly, conformational changes in
loop 3 are primarily determined by the protonation of D84 rather than E14 (figure G.4 on page 201)
consistent with previous reports.244 Together the data reveal that pH-induced structural changes, while
primarily mediated by E14, are affected by other acidic residues such as D84.

VIII.4. Discussion

The results presented above reveal extensive, functionally relevant, conformational changes as a con-
sequence of protonation/deprotonation of glutamate 14. Rotation and tilting of TMHs 1 to 3, which
together form the substrate/proton binding site, not only reconfigure access to the cavity but presumably
modulate substrate affinity through reorientation of side chains. The inter-helical loops emerge as cen-
tral elements in this protonation switch undergoing extensive repacking. The large, ligand-dependent
distance changes cannot arise from the isoenergetic alternating access through simple conformational
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exchange of each protomer because the two resulting dimer structures are identical except for their
orientation relative to the bilayer. Rather the distance changes reflect the population of novel confor-
mations that are primarily stabilized by the binding/dissociation and protonation/deprotonation of
E14. In addition, the data uncovered a contribution of E25 and/or D84 to the conformational switch
primarily through extensive repacking of loop 3. Finally, deprotonation and substrate release appears to
induce a high level of disorder suggesting large amplitude equilibrium fluctuations in multiple structural
elements notably TMH 3. However, structural interpretation of the distance distributions in this apo
state is hindered by the breadth of these distributions.

To highlight the conformational changes induced by protonation in a structural context, we carried
out detailed de novo modeling of the pH 5 conformation using BCL::Fold and Rosetta.2,94,149 The
conformational search was restrained by the experimental distances at pH 5.2 A two-fold symmetry was
imposed such that both protomers have similar conformations in contrast to the crystal structure where
the two protomers have distinct conformations and form an asymmetric dimer. However despite the
extensive nature of the distance restraints and their coverage along the protein sequence, compatibility
of the DEER data with an asymmetric dimer cannot be excluded; primarily due to the uncertainty
in translation of measured distances between the spin labels into backbone structural restraints.2,149
However, as discussed below, we consider the asymmetric dimer to be less mechanistically plausible for
the protonated state. The TPP-bound crystal structure was refined using MODELLER239 restrained by
the distances obtained in the TPP-bound conformation following a protocol introduced by Jeschke
et al. (figure VIII.6 on the preceding page).214 To ensure that the spin label side chains were treated
similarly in both models, the de novo pH 5models were further refined using the MODELLER protocol
(figure VIII.6 on the previous page, figure G.5 on page 202, and figure VIII.7 on the next page).

The conformational changes gleaned from comparing these models suggest plausible and previously
unappreciated mechanistic elements of EmrE transport (figure VIII.6 on the preceding page, figure G.5
on page 202, and figure VIII.7 on the following page). The flexibility of TMH 1, presumably a conse-
quence of the two consecutive glycines at positions 8 and 9, enables large scale reconfiguration upon
concurrent substrate dissociation and protonation of E14. Not only does the distance between the two
TMHs 1 increases (figure VIII.6 on the previous page), but extensive rotation of the N-terminal part
alters the side chains orientations in the substrate binding site (figure VIII.6 on the preceding page).
The rearrangements of the backbone and side chains of TMHs 1 and 3may provide the mechanism
to lower the affinity to substrate in conjunction with the competition by protons for binding to E14
(figure G.5 on page 202).

Although substrate access to the binding site is typically represented as occurring from the cytoplasm,
a competing model posits that for hydrophobic substrates, such as those of EmrE, partitioning is
likely to occur from the inner leaflet of the bilayer.247 Consistent with this model, we observed that
rotation/tilting of TMH 2 (figure VIII.6 on the preceding page) swings open a gate consisting of Tyr 40
and Phe 44 thereby enabling direct access to and from the bilayer to the binding site.

Substrate dissociation and protonation induces repacking of the N-terminus of TMH 3, which
participates in the coordination of the substrate as shown in figure VIII.6 on the previous page, and
figure VIII.7 on the following page). In concordance with the conclusion from the EPR accessibility
data,233 the C-terminal part of TMH 3 undergoes large amplitude movement coupled to extensive
repacking of loop 3 (figure VIII.6 on the previous page). This movement is controlled by the protonation
state of E25 and/or D84 suggesting a degree of decoupling of this loop from the protonation state of
E14.

How may these conformational changes enable coupled transport? Because of the high concentration
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Figure VIII.7.: Structural comparison of the generated models of EmrE and the X-ray structure. (A) Overall
structural alignments between X-ray structure and the refined model (right), refined X-ray structure and the
symmetric protonated model (middle and left) are shown. (B) Conformational changes in the loop regions (L1 to L3)
between TPP-bound and protonated models.
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of protons on the extracellular side, we envision that in the absence of substrate, E14 is protonated
and the transporter is in the protonated conformation (corresponding to pH 5 here; figure VIII.6 on
page 122). Measured values of E14’s p𝐾a would imply proton leakage unless the structure is proton-
occluded, which for EmrE would require a symmetric conformation wherein E14 is not exposed to the
pH of the cytoplasm. Therefore, we propose that the protonated conformation does not undergo the
isoenergetic alternating access and thus is symmetric as shown in figure VIII.6 on page 122. Substrate
binding to this conformation, which occurs from the inner leaflet of the bilayer through the TMH 2
fenestration, releases the two protons by stabilizing the asymmetric TPP-bound conformation. Through
its isoenergetic alternating access,234,236 this state exposes the substrate to the extracellular milieu at
which point protons displace the substrate enabling a new cycle of transport (figure VIII.6 on page 122).
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CHAPTER IX
DISCUSSION AND FUTURE DIRECTIONS

The body of the work presented in this dissertation details the development and application of methods
to predict protein structures and ensemebles either purely de novo or in conjunction with limited
experimental data from EPR and XL-MS experiments. Some limited evaluation was also performed in
conjunction with spectroscopic data from NMR-NOE experiments.

This chapter is focused on the discussion of this work and the future directions suggested by the
presented results. The specific findings include the architecture of the employed prediction pipelines,
which is discussed in section IX.1, the influence of limited experimental data on the prediction accuracy,
which is discussed in section IX.2 on page 128, and the general importance of computational modeling
for structural biology, which is discussed in section IX.3 on page 130. The conclusions are followed by a
discussion of the future directions for protein ensemble prediction in section IX.4 on page 131, which
focuses on the potential of in silico simulation of spectroscopic data from EPR experiments to estimate
a conformation’s population size in the protein’s equilibrium.

IX.1. Hierarchical structure prediction pipelines provide an efficient approach
for structure and ensemble prediction

One of the main challenges of protein structure and protein ensemble prediction is the vast size of
the conformational space. With the exception of proline, the backbone of each canonical amino acid
exhibits two rotational degrees of freedom. If the side chains are also considered, two additional
rotatable have to be modeled for each amino acid on average. In consequence, four rotatable bonds have
to be modeled per amino acid on average, what would consume an unfeasible amount of computational
resources.

In this work, different approaches to design a protein structure or ensemble prediction pipeline
were evaluated. The study detailed in chapter II on page 12 was conducted in the context of the CASP
experiment and demonstrated that exhaustive sampling of all possible conformations is not necessary
for achieving sufficient coverage of the conformational space. Instead, the developed pipeline relies
on the assumption that it is possible to predict inflexible dihedral angles with sufficient accuracy. In
particular, it is possible to reliably predict the SSE type of a specific sequence span and its environment—
if it is membrane-spanning or located in the cytosol. Using these assumptions, the size of the sampling
space can be significantly reduced by allowing only limited deviations from idealized dihedral angles for
sequence spans predicted to be α-helices or β-strands. Using such a rather coarse-grained representation
of the protein’s tertiary structure also allows further simplifications like an implicit representation of
the residues’ side chains through “superatoms”, which eliminates exhaustive sampling of the side chain
conformations. Although this approach is not able to account for substantial deviations from idealized
dihedral angles and therefore sample a protein’s tertiary structure at atomic detail, it enables the creation
of a hierarchical prediction pipeline.

A general hierarchical protein structure and ensemble prediction pipeline employs different sampling
and scoring module going from low-resolution to high-resolution. The pipeline detailed in this work
consists of threemodules: 1.) a low-resolution topology samplingmodule, 2.) a high-resolution sampling
and refinement module, and 3.) an MD module for further refinement and stability evaluation of the
sampled protein structures.
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The low-resolution topology sampling module consists of the BCL::Fold algorithm59 that assembles
predicted SSEs in the three-dimensional space using an MCM algorithm. By only allowing limited
deviations from idealized dihedral angles, this module is capable of samplingmore topologies within the
same number of CPU cycles. A low-resolution scoring function relying on knowledge-based potentials
is employed to correspond with the coarse-grained sampling..60 This module produces a low-resolution
model only, without side chains or pronounced deviations from idealized dihedral angles.

The high-resolution sampling and refinement module consists of the Rosetta software suite94 for
molecular modeling. This module also does not employ exhaustive sampling of the dihedral angles, but
uses structure fragments collected from the PDB to explore the conformational space. In this context,
sequence spans in the protein model are replaced with the collected fragments to sample different
conformations while favoring conformations that have been observed in experimentally determined
structures before. The scoring functions employed by this module perform a high-resolution approach,
evaluating atomic details like Van der Waals interactions that are evaluated using the Lennard-Jones
potential. The conformations of side chains are sampled using a rotamer library.

The MD module used the Amber package102 in conjunction with the ffSB98ildn force field.104
For each sampled protein structure, a 50 ns NPT production run using Langevin dynamics was per-
formed. Subsequently, hierarchical clustering with complete-linkage was used to identify all sub-states.
From each cluster, one representative was selected and reevaluated using the Rosetta scoring function.
Subsequent selection of the final models was based on their Rosetta pseudo-energy score.

These three predictionmodules were connected through a clusteringmodule that employed a k-means
approach100 using the RMSD as dissimilarity metric. From each cluster, the medoid was selected for
further processing. Using this approach, the number of models subjected to high-resolution refinement
and MD simulations could be substantially reduced without losing representations of the topological
space. Topological duplicates were only present at the low-cost first prediction module. The second and
thirdmodules that require significantlymore computational resources were only applied to topologically
distinct protein models.

Employing this pipeline enabled the de novo prediction of more than 55 proteins — the majority
of them in two to five setups with different sets of experimental data from predicted contacts, from
XL-MS experiments, and fromNMR-NOE experiments— in a period of less than three months. For the
majority of the proteins, the pipeline was able to sample the correct topology of the protein and therefore
providing a starting point for the computationally more expensive refinement methods. However, for
several targets it was not possible to select the most accurate models. This was especially pronounced
in cases when no additional structural information in form of experimental data was available for the
prediction.

In conclusion, development of a protein structure and ensemble prediction pipeline that can deal with
large proteinsmakes it necessary to account for the limited computational resources available. Full-atom
prediction and simulation of protein structures can take days or even months, depending on the size of
the protein, when done de novo. A hierarchical prediction pipeline reduces the required number of
CPU cycles by applying high-cost algorithms only to a small and distinct subset of the conformational
space. However, additional improvements are needed for model selection, which currently cannot
be performed reliably. Improvements in the incorporation of experimental data might mitigate this
problem. This is further discussed in section IX.2 on the following page and section IX.4 on page 131
suggests a new approach through in silico simulation of the experimental data.
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IX.2. Incorporation of limited experimental data improves the accuracy of
structure prediction

The free energy of a conformation is determined by a complex set of interactions that happen within the
protein itself or between the protein and its environment — e.g. hydrogen bonding between the protein’s
residues and the cytosol or hydrophobic interactions between the protein’s residues and a cell membrane.
An accurate computation of a conformation’s free energy would require a comprehensive simulation of
the crowded cell and a representation of the cell’s molecules at an atomic level. Additional simulations
would have to be performed to obtain an estimate of the system’s conformational entropy. For the
resulting atomic system, a quantum mechanical evaluation would have to be performed. Since these
calculations are not feasible within an acceptable time span, approximations to the system representation
have to be applied. Typical approximations to the system are implicit representations of the protein’s
environment like the cytosol and membrane or even representation of a residue’s side chains through
a single “superatom”. These simplifications require an adaptation of the approach to compute the
conformation’s free energy since not all information is present to perform a full-atom evaluation.
Typically, these adaptations result in ambiguities making it difficult to distinguish thermodynamically
stable from unstable conformations. Examples of this were observed in chapter II on page 12, chapter IV
on page 48, chapter VI on page 83, and chapter VII on page 99. For those studies, pure de novo prediction
frequently resulted in ambiguous results and uncertainty about the most stable conformations.

Besides techniques like X-ray crystallography or NMR spectroscopy there are other spectroscopic
techniques that can provide insight into the structure of a protein. Two examples are EPR spectroscopy
and XL experiments in conjunction with MS. EPR spectroscopy can yield two types of information: the
distance between the two spin-labeled residues in form of a distance distribution and the accessibility
of the spin-labeling site to a paramagnetic relaxation agent. XL experiments in conjunction with MS
yield the maximum distance between the two cross-linked residues. Although providing important
structural information about the protein, both techniques are typically not able to unambiguously
determine its structure.

However, incorporating the limited experimental data from these techniques into computational
structure and ensemble prediction methods solves two problems. The computational approach can fill
the information gaps in the experimental data and the geometric interpretation of the experimental data
resolves ambiguities in the free energy approximation of the computational approach. The resulting
questions concern the way how to incorporate the experimental data since neither the in vitro nor the
in vivo system can be simulated comprehensively

For experimental data from EPR experiments, I developed and evaluated pipelines incorporating
distance and accessibility measurements. The distance data was incorporated through a knowledge-
based scoring function that quantifies the agreement of a protein model with the EPR data. The scoring
function was based on the CONE model78 that translates the difference between the observed spin-spin
distance (DSL) and the distance of the Cβ-atoms at the spin-labeling site (DBB) into an agreement
score. The agreement score is defined on the 𝐷SL − 𝐷BB range −12.5Å to 12.5Å. Data from EPR
accessibility measurements was incorporated using an approach that is similar to the neighbor vector
approximation of the SASA. For the spin-labeled residue, the exposure moment 𝐸w is determined
from its neighbor count 𝑒 and its normalized Cβ − Cα vector 𝑠 by computing 𝐸w = ∑𝑁𝑛=1 𝑒𝑛 ⋅ 𝑠𝑛 over
overlapping windows of length 𝑛. The overlapping windows became necessary because of the simplified
representation of the protein’s side chains. The agreement 𝑆orient with the experimentally observed
accessibility was subsequently computed from the torsion angle 𝜃 between the exposure moments as
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𝑆orient = −0.5 ⋅ 𝑐𝑜𝑠(𝜃). Accordingly, a torsion angle of π corresponds to no agreement and a torsion
angle of 0 corresponds to full agreement.

In this work, the influence of distance and accessibility restraints derived from EPR experiments on de
novoprotein structure predictionwas evaluated in different studies (chapter III on page 29 and chapterVI
on page 83). In each case, inclusion of experimental data fromEPRmeasurements significantly improved
the sampling accuracy as well as the discrimination of inaccurate models. In the most extensive study
(chapter III on page 29), EPR-derived distance and accessibility restraints were used to predict the
tertiary structure of twenty-nine monomeric and oligomeric membrane proteins. Inclusion of both
types of restraints improved the sampling accuracy by 1.0Å on average. Additionally, the discrimination
of inaccurate models was improved, which was demonstrated by an improvement of the enrichment
from 1.3 to 2.5. An additional finding was that incorporation of EPR accessibility restraints did not
have a significant influence on the sampling accuracy. However, accessibility restraints proved useful
for determining the rotation states of α-helices, which was demonstrated by an improvement of the
contact recovery from 30% to 39% on average. In the other study that concerned the prediction of the
soluble monomeric and membrane-associated homodimeric states of BAX (chapter VI on page 83),
incorporation of EPR distance restraints enabled the prediction algorithm to overcome scoring problems
resulting from α-helix 9 of BAX. The sampling accuracy and enrichment improved from 5.9Å and 0.4
to 3.9Å and 1.5 for soluble monomeric BAX and from 5.7Å and 1.3 to 3.3Å and 2.1 for membrane-
associated homodimeric BAX.

XL-MS experiments yield the maximum distance between the two cross-linked residues. The maxi-
mum distance is defined by the used cross-linking reagent and the length of its spacer. A naïve approach
for exploiting this information would be to just use it as a hard cutoff for the Euclidean distance between
the two cross-linked residues in the protein model. However, this approach discards useful information.
The cross-linking reagent is typically added to the protein in its folded state, making a fully extended
conformation of the cross-link unlikely. Instead, the cross-link is more likely to follow a path along the
surface of the protein. The shortest surface path between two residues can be computed but the necessary
calculations are computationally too expensive for usage within a de novo protein structure prediction
method. Instead, the geometrical center of the protein was used as the center of a sphere and the surface
path was approximated using the arc length 𝑑arc between the cross-linked residues (chapter IV on
page 48). The agreement of a protein model with the experimental from XL-MS experiments was then
quantified through summation of 𝑑arc and distances of the cross-linked residues from the surface of
the sphere, 𝑙SS1 and 𝑙SS2 , and subsequent comparison with the spacer length 𝑙XS . An additional cosine
transition region was introduced to account for the inaccuracies of this approximation.

Despite the rather coarse-grained approximation, using this method significantly improved the pre-
diction accuracy and the ability of the scoring function to distinguish between accurate and inaccurate
models. Cross-linkers with different spacer lengths were tested on a benchmark set consisting of fifteen
soluble proteins. Inclusion of distance restraints derived from XL-MS improved the prediction accuracy
by about 1.0Å on average and up to 2.2Å for some test cases. This corresponds to an improvement
by two standard deviations, making the improvement statistically significant. The discrimination of
inaccurate models could also be improved to an enrichment of 2.1.

The second focus of the cross-linking study was evaluating the influence of the spacer length on
the prediction accuracy (chapter IV on page 48). Choosing a cross-linker with a longer spacer results
in a larger number of cross-linked residues and therefore in a larger number of distance restraints.
However, these distance restraints can be satisfied by a larger number of possible conformations;
therefore reducing the discrimination power of the restraint. To determine the optimal spacer length,
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the number of potential cross-links was simulated on a set of 2055 non-redundant protein folds and
fitted against a regression model. Cross-linkers with a spacer length estimated to be optimal were then
compared to cross-linkers with shorter and longer spacers by carrying out protein structure prediction
runs and comparison of the prediction accuracies. The results demonstrated the existence on an optimal
spacer length 𝑙opt in dependence on the lengths of the cross-linked side chains (𝑆𝑆1 and 𝑆𝑆2) and the
MW of the protein that can be predicted as 𝑙opt = 𝑘 ⋅ 3√𝑀𝑊+ 3√𝑆𝑆1 + 𝑆𝑆2, with 𝑘 ≈ 13 .

In conclusion, limited experimental data from EPR or XL-MS experiments increases the likelihood
of sampling models that are structurally similar to the major population in the protein’s equilibrium. It
was demonstrated that distance restraints derived from EPR or XL-MS experiments focus the sampling
on native-like conformations, with EPR accessibility restraints being useful for determining the rotation
states of helices. Additionally, an optimal cross-linker spacer length for maximizing the contained struc-
tural information was found. However, the results also demonstrate that incorporation of experimental
restraints does not completely solve the problems in de novo protein structure prediction. For six of
the twenty-nine membrane proteins predicted from EPR distance and accessibility data, it was not
possible to sample models with an RMSD100 less than 6Å relative to the experimentally determined
reference structure. Although these results were achieved with low-resolution prediction only, the
sampled models are probably too inaccurate for high-resolution refinement using Rosetta and MD
simulations.

IX.3. Computational modeling provides an orthogonal approach for structure
determination and validation

Thevastmajority of protein structures deposited in the PDBwas determined using X-ray crystallography
or NMR spectroscopy — although recently there has been an increasing number of protein structures
determined using EM. However, those techniques are not applicable to all proteins. In particular,
membrane proteins pose challenges to both X-ray crystallography and NMR spectroscopy. This is
reflected by the constitution of the PDB—only 2.5% of the deposited structures are membrane proteins.
Different reasons contribute to this. Besides the difficulty of obtaining a sufficient amount of protein for
X-ray crystallography or NMR spectroscopy, the two-dimensional nature of the membrane also hinders
crystallization in the three-dimensional crystal lattice. For X-ray crystallography, stabilizing mutations
might be necessary if the protein exhibits a substantial amount of flexibility. NMR spectroscopy on the
other hand is typically hindered by the size of membrane proteins to which the membrane mimic also
needs to be added.

Per se computational protein structure prediction methods are not hindered by any of these limita-
tions. In reality, however, the biological system is too complex to be simulated comprehensively on
currently available computer hardware (see section IX.1 on page 126 for a detailed discussion). Through
complementation with limited experimental data, intrinsic limitations of the computational method
can be compensated for and the computational method can fill information gaps in the experimental
data. In this work, that was demonstrated for data from EPR and XL-MS experiments. In the context of
membrane proteins, especially EPR data is very valuable since EPR measurements neither require an
inflexible protein nor have a size limit. This makes EPR spectroscopy a suitable tool for studying the
structure and dynamics of membrane proteins. Especially in conjunction with computational modeling,
comprehensive mechanistic models describing the function and dynamics of membrane proteins can
be developed.
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In chapter VIII on page 111, a combined approach of EPR distance and accessibility measurements
and computational modeling was employed to determine the protonation-dependent conformational
dynamics of the SMR transporter protein EmrE. EPR measurements were conducted separately at pH
5 and with the ligand TPP bound to the protein. For the computational modeling, a two-pronged
approach was performed. The tertiary structure of EmrE at pH 5 was predicted de novo from the EPR
distance and accessibility data. The tertiary structure of TPP-bound EmrE was predicted using an
X-ray-derived model of EmrE as starting point for the simulation. The de novo prediction started
from predicted SSEs using a prediction pipeline consisting of BCL::Fold2 and Rosetta.94 The EPR
distance and accessibility data was incorporated into the pipeline using the CONE model78 and the
approach derived from the neighbor vector method. The agreement of the final model with the EPR
data was further evaluated using MMM software.214 The prediction of the TPP-bound structure refined
the X-ray-derived model of EmrE for improved agreement with the EPR data using the MODELLER
software. By using this approach, two models could be generated that explained the EPR data and
provided a mechanical model describing the conformational changes required for substrate binding
and release.

Besides the structure prediction of membrane proteins, computational modeling can also be used
for soluble proteins. Although soluble proteins are more readily accessible for techniques like X-ray
crystallography or NMR spectroscopy, there are still cases where the protein is either too flexible for
X-ray crystallography or too large for NMR spectroscopy. Other use cases include the validation
of already determined structures through an orthogonal technique. In chapter VII on page 99, the
tertiary structure of the C-terminal domain of ExoU was determined using a combined approach
of computational modeling and EPR spectroscopy. The prediction of the tertiary structure of the
C-terminal domain was performed using an iterative pipeline consisting of BCL::Fold59 and k-means
clustering.100 The agreement of the final structure with the EPR data was performed through explicit
simulation of the MTSL spin-labels. The endogenous residues at the spin-labeling sites were replaced
with a rotamer library of MTSL and their dynamics were simulated using Rosetta.94 Subsequently, the
simulated distance distributions were compared to the experimentally determined distance distributions.
Using this approach, the tertiary structure of the C-terminal domain of ExoU could be predicted in the
absence of its chaperone SpcU. This enabled the validation of the X-ray-derived model of ExoU and the
comparison of the structures in the presence and in the absence of their chaperone.

In conclusion, computational modeling provides an orthogonal approach for structure determination
and validation, especially in conjunction with limited experimental data. Proteins that are too dynamic
or too large for X-ray crystallography or NMR spectroscopy can be investigated using a combined
approach of EPR spectroscopy and computational modeling to determine conformational dynamics
or to validate existing structures. The additional advantage of computational modeling is the ability
to readily explore alternative conformations that are not accessible to X-ray crystallography or NMR
spectroscopy. Especially in conjunction with EPR spectroscopy, this could provide a way to determine a
protein’s equilibrium constitution— the conformations with relevant populations along with an estimate
of their relative population size. This potential future direction is discussed in detail in section IX.4.

IX.4. Using in silico simulation of spectroscopic data should be the next step for
ensemble prediction

In order to obtain a comprehensive understanding of a protein, it is not sufficient to know the con-
formation at the free energy minimum. In the equilibrium the protein exists is multiple different
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conformations where the probability of each conformation is determined by its free energy relative
to alternative conformations. Ideally, a protein modeling method would be able to determine each
conformation that accounts for a significant population size and give and estimate of the latter. However,
exhaustive sampling of all possible conformations and accurate computation of their free energies is
unfeasible (see section IX.1 on page 126 for a detailed discussion of this). Consequently, an alternative
approach with reduced computational demand is needed. As discussed in section IX.2 on page 128,
EPR spectroscopy is able to determine the distance distribution between two spin-labeled residues that
is observed on the protein’s equilibrium. If it would be possible to extend the size of the sampling space
and recompute the EPR data in silico, the predicted ensemble could be fitted against the experimentally
observed spectra and the population sizes could be extracted from the fitting parameters.

To achieve this goal, several problems need to be overcome: i) The sampling of conformations needs
to be accelerated. Especially flexible regions of the protein have to be sampled comprehensively to
ensure that all conformation that account for significant population sizes are contained in the predicted
ensemble. ii)The simulation of the spin-label dynamics has to be accelerated. Although there are existing
approaches like MMM214 that can reliably simulate spin-label dynamics and therefore recompute the
EPR-derived distance distributions, these approaches are too slow for usage within a de novo prediction.
iii) An approach is needed to fit the simulated distance distributions of the ensemble representatives
against the experimentally determined spectra and derive a population size for each representative
from the fitting parameters.

Acceleration of the conformation sampling could be achieved through orthogonal approaches.
Whereas the application of structural perturbations to the intermediate protein model could be further
parallelized and accelerated by performing the calculations on a graphics processing unit (GPU),
as orthogonal approach the protein model could also be assembled from structural fragments in a
sequence-independent manner. Chapter V on page 67 details a study of the latter that focused on the
rapid sampling of loop conformations using structural fragments. This study was focused on loop
regions, because in the absence of periodic hydrogen bonds, these regions are more likely to exhibit
substantial conformational flexibility and comprehensive sampling of them consequently is crucial for
protein ensemble prediction. For this study, a template library of loop conformations was collected
from about 87 000 protein structures deposited in the PDB. The loop templates were parameterized
according to their geometric properties that consisted of the sequence length 𝑑, the translation vector 𝑡
between the two anchor points of the loop, and the Euler angles 𝐸 between the tow anchor points of the
loop. A hash function 𝑓∶ 𝑑× 𝑡×𝐸→ 𝑘 was subsequently used to compute a one-dimensional hash key𝑘 for each loop template. The loop sampling algorithm then computes for each loop in the intermediate
protein model the hash key 𝑘 and selects a matching template from the library within constant time
complexity. The loop’s sequence was then fitted against the conformation of the selected template and
inserted into the protein model. The algorithm was complemented with a CCD101 implementation to
ensure that loops can also be sampled correctly if no complete matching template was available. The
benchmarking of the algorithmwas performed on a set consisting of eighteen soluble proteins and eleven
membrane proteins that contained 296 non-terminal loop regions. The algorithm achieved a closure
rate of 100%, while only requiring a CPU time of (161 ± 13)ms per loop on average. On contrast,
the Rosetta “loophash” algorithm,192 which was used as reference point for the benchmark, required
about 160 s per loop on average. For 94% of all benchmark loops, the experimentally determined
conformation could be sampled within an accuracy limit of 2Å. These results demonstrate that the
rapid loop sampling algorithm is suitable for being used within an ensemble prediction pipeline.

The simulation of the spin-label dynamics needs to be able to estimate the likelihood of different
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spin-label conformations, given a specific conformation of the protein. Hence, the interactions of
the spin-label with the side chains of the protein need to be evaluated and an approximation of the
free energy needs to be derived for each spin-label conformation. In a previous study, Alexander et
al. created a rotamer library of the spin-label MTSL from high-resolution structures deposited in the
PDB. This rotamer library could be used in conjunction with rotamer libraries for the canonical amino
acids to sample different rotamer combinations. Exhaustive sampling of all combinations will likely
be unfeasible but integration into an MCM algorithm could identify the most stable combinations.
Additional porting to a GPU could further reduce the time required for the computations. Using
this approach enables two approaches: i) computation of the distance distribution derived from the
distances between the free electrons or ii) recomputation of the primary EPR data using the formula∑𝑘𝑛=1 cos(𝑡 ⋅ (1 − 3 ⋅ √0.005 ⋅ 𝑛 ⋅ 𝜅/𝑟3)), where 𝑟 is the distance between the free electrons, 𝜅 is the EPR
constant, and 𝑘 is the number of integration points. Either approach provides a simulated spectrum
that can be compared to the experimentally determined spectrum.

Estimation of the population sizes for the sampled conformations could be achieved by comparison
of the simulated spectra of the sampled conformations to the experimentally determined spectra. For
this purpose, the simulated spectra 𝑠𝑖 could be fitted against the experimentally determined spectrum 𝑠e
using multiple linear regression to determine the weighting factors 𝑤𝑖 for the simulated spectra so that
the distance 𝑑, between the weighted simulated spectra and the experimentally determined spectrum,𝑑 = ∑𝑖 𝑤𝑖 ⋅ 𝑠𝑖 − 𝑠e , becomes minimal. Consequently, the weighting factors 𝑤𝑖 could be interpreted as
relative population size of the corresponding conformation. However, additional thought needs to be
put in approaches with very low weighting factors. It is conceivable that not all sampled conformations
of the protein are thermodynamically stable and therefore contribute with any significance to the fitting.
Those conformations should be filtered out in this step.

In conclusion, experimental data from techniques like EPR spectroscopy provides information about
the structural constitution of a protein’s equilibrium. Current approaches like the CONE model78 do
not use this information to its full potential. Besides throwing away information about alternative
conformations, this also results in the problem that one protein might not be able to explain the
experimental data. Hence, I suggest an ensemble approach, where the experimental data is simulated
for the whole ensemble and then fitted against the experimentally determined data. This approach will
provide information about the contribution of each ensemble element and therefore provide insight
into alternative conformations.
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APPENDIX A
EVALUATIONOF BCL::FOLD INTHE CASP11 EXPERIMENT

This appendix is based on the publication “CASP11 – An Evaluation of a Modular BCL::Fold-Based
Protein Structure Prediction Pipeline”.1 It provides supplementary data and procedures for chapter II
on page 12. The supplementary data in section A.1 contains additional analysis of potential correlations
between structural features the benchmark proteins and their respective prediction accuracy using the
protein structure prediction pipeline detailed in chapter II on page 12. The procedures described in
section A.2 on page 159 detail the protocol employed during the CASP experiment.

A.1. Supplementary data

This section provides plots regarding possible correlations between model discrimination, as quantified
through the enrichment metric, the proteins CO and secondary structure content. Additionally, plots
regarding the score-accuracy correlation in BCL::Fold are shown for all proteins in the CASP benchmark
set that was evaluated over the course of the experiment. The provided tables list the sampling accuracy-
and enrichment-values for all benchmark proteins and pipeline modules in the presence and in the
absence of limited experimental data.

Figure A.1.: No dependence of the enrichment on secondary structure content or CO. No correlation between
the enrichment and the percentage of α-helices (A), β-strands (B), or fold complexity as quantified through the CO
metric (C) could be observed. In each case, the absolute value of the R-value was less than 0.1.
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Figure A.2.: Score-accuracy correlations of de novo folded models and relaxed experimentally determined
structures. Shown are the BCL-score of the models (y-axis) and the GDT_TS of the models relative to the exper-
imentally determined structure (x-axis). De novo folded models are depicted as black dots and models sampled
through relaxation of the experimentally determined structure are shows as red dots.
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Fold Cluster Loop Cluster MD

Target GDT_TS
(%) e GDT_TS

(%) GDT_TS
(%) GDT_TS

(%) GDT_TS
(%)

T0759 36 1.0 29 26 21 22
T0761 32 0.8 29 19 15 17
T0763 28 1.3 20 24 19 19
T0765 46 0.4 32 50 26 26
T0767 25 1.1 20 15 13 13
T0769 74 3.3 66 69 66 77
T0771 36 1.5 27 22 18 18
T0781 20 1.3 15 12 9 9
T0783 16 1.6 10 13 10 9
T0785 46 1.0 40 26 22 22
T0794 24 1.1 14 11 10 8
T0803 64 2.7 13 26 21 16
T0814 15 1.2 10 9 7 8
T0818 42 2.0 37 34 24 18
T0831 30 2.0 21 17 14 12
T0832 35 1.1 25 22 19 19
T0834 26 1.3 19 15 12 10
T0848 26 1.6 20 12 11 11
T0853 53 0.8 42 27 23 17
T0855 49 1.1 40 33 28 18
mean 36 1.4 26 24 20 18

Table A.1.: Model accuracy decay over the course of the pipeline. The quality of the most accurate models decayed
over the course of the protein structure prediction pipeline. For each pipeline module, the GDT_TS-value of the most
accurate model is shown. For the low-resolution topology search, also the enrichment (e) is shown.
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T0 TP TC TS TX

Target μ10(%) e μ10
(%) e μ10

(%) e μ10
(%) e μ10

(%) e

T0761 30 0.8 32 0.8 37 0.8 30 1.0 — —
T0763 26 1.3 29 1.1 42 1.0 36 0.9 — —
T0767 24 1.1 27 0.9 29 1.0 25 1.3 26 1.2
T0785 44 1.0 43 1.4 46 0.6 36 1.2 — —
T0794 22 1.1 24 1.5 21 1.5 22 1.1 — —
T0814 10 1.2 19 1.1 23 1.3 17 1.0 — —
T0818 41 2.0 42 1.9 52 2.0 43 1.9 — —
T0831 29 2.0 37 1.8 35 3.5 — — — —
T0832 31 1.1 29 0.4 46 3.0 29 2.7 — —
T0834 24 1.3 24 1.5 25 2.1 — — — —
T0848 24 1.6 35 1.2 36 1.3 — — — —
T0853 50 0.8 49 0.7 60 1.9 — — — —
mean 30 1.3 33 1.2 38 1.7 30 1.4 26 1.2

Table A.2.: Protein structure prediction results from limited experimental data. The average GDT_TS-values
of the ten most accurate models (μ10) and the enrichment (e) are shown for prediction from the primary structure
alone (T0), from predicted residue-residue contacts (TP), only correct residue-residue contacts (TC), NMR-NOE
restraints (TS), and XL-MS restraints (TX).
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A.2. Protein structure prediction protocol for the CASP11 experiment

The following protocol requires an installation of the BCL, Rosetta,94 and Ra with the cluster package100
installed. The BCL license can be obtained for academic and business purposes on the website of the
Meiler Laboratory.b The Rosetta license can be obtained at http://www.rosettacommons.org.

The protocol for protein structure prediction in this study encompassed three modules that were
connected through clustering. The following sections detail the protocols for the low-resolution topology
search (section A.2.1), clustering (section A.2.2 on the following page), and high-resolution refinement
and loop construction (section A.2.3 on page 161). The protocol for clustering was performed twice
— first, between the low-resolution topology search and the high-resolution refinement and second,
between the high-resolution refinement and the MD refinement.

A.2.1. Low-resolution topology search

The low-resolution topology search was performed using BCL::Fold, which is part of the BCL. The
BCL::Fold algorithm assembles SSEs in the three-dimensional space using an MCM algorithm. Conse-
quently, an SSE pool needs to be defined of predicted from which the MCM algorithm can draw the
SSE. The SSE prediction were performed using the algorithms PSIPRED,98 Jufo9D,97 and MASP.99 In a
first step, the BCL was used to create an SSE pool from the SSE predictions. The directory <seq_dir> has
to contain the SSE prediction files generated by PSIPRED, Jufo9D, and MASP.

bcl.exe CreateSSEPool -prefix <seq_dir> -pool_min_sse_length 5 3 -ssmethods JUFO9D PSIPRED MASP

-sse_threshold 0.4 0.4 0.4 -factory SSPredThreshold↪
The SSEs in the SSE pool are subsequently arranged in the three-dimensional space using the

BCL::Fold algorithm.59 The command line below uses the previously generated SSEs pool in conjunction
with an MCM algorithm to sample twenty models. Required input files are the SSE pool that was
generated with the previous command line, the secondary structure predictions, and the stage file,
which configures the MCM algorithm.

bcl.exe Fold -fasta <protein>.fasta -sequence_data <seq_dir> <protein> -sspred JUFO9D PSIPRED

-pool <protein>.pool -pool_separate -stages_read stages.txt -protein_storage <output_dir>

-nmodels 20 -opencl Disable

↪↪
The flag -opencl Disable disables the initialization of OpenCL, which is not used by this algorithm

and can lead to problems on some systems if left enabled. The stage file configures the MCM algorithm
— it sets what number of MC steps to perform, which transformations to apply, and which scoring
terms to use. Its format is shown in the following example:

STAGE Stage_assembly_1

TYPE MCM

ahttps://www.r-project.org
bhttp://www.meilerlab.org/bclcommons
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SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_01.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_2

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_02.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_3

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_03.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_4

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_04.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_5

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_05.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_refinement_1

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE refinement_01.scoreweights

MUTATE_PROTOCOLS Default Refinement

NUMBER_ITERATIONS 2000 400

STAGE_END

A.2.2. Clustering for model selection

The clustering was performed using the R package with cluster.100 As a preparatory step, the pairwise
dissimilarities between the models have to be quantified by computing the pairwise RMSD100 distances
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between the sampled models have to be computed. For the following command, the file pdbs.ls contains
the file paths to the protein structure files in the PDB format. The following command will create
an upper triangle-matrix that contains the pairwise RMSD100-values. This application is capable
of multi-threading, which can be enabled by setting the flag -scheduler PThread <num_threads> to the
desired value, which should correspond to the number of available CPU cores in the system.

bcl PDBCompare -pdb_list pdbs.ls -quality RMSD -norm100

The command line above results in a distance matrix with each row and column corresponding to
one model. Accordingly, each element of the matrix corresponds to one model-model distance. The flag
-quality defines, which dissimilarity metric to use. In the command live above, the RMSD100 is used,
as indicated by the -norm100 flag. The models from the low-resolution topology search are subsequently
clustered based on their pairwise distances using R in conjunction with the cluster package:

# Load the cluster library.

library(cluster)

# Load the dissimilarity matrix that was created created with the BCL.

data_mat <- as.matrix(read.table(”distance_matrix.tbl”, header = T))

# Create a full matrix from the triangle matrix.

data_mat <- data_mat + t(data_mat)

# Convert into a dissimilarity matrix.

data_mat <- as.dist(data_mat)

# Perform clustering with k cluster centers.

clusters <- pam(data_mat, k)

# Display information about the clustering.

clusters$clusinfo

# Display cluster medoids.

clusters$medoids

The medoids were subsequently selected for further refinement. The command cluster$clusinfo

outputs information about the clustering like the average cohesion of the clusters and their minimum
separations. Depending on those values, number of cluster centers should be adjusted and the clustering
repeated.

A.2.3. Addition of loop and side chain coordinates

The construction of loop regions and side chains as well as the high-resolution refinement were per-
formed using Rosetta. A prerequisite is the creation of the fragment files, which can be obtained from

161



the Robetta server.c Subsequently the loop regions are constructed. The command line below will
sample ten models:

loopmodel -database database/ -in:file:fasta <protein>.fasta -in:file:s <protein>.pdb

-loops:loop_file <protein>.loops -out:prefix <output_path> -nstruct 10 -loops:fa_input

-loops:frag_sizes 9 3 1 -loops:frag_files 9.bin 3.bin none -loops:build_initial true

-loops:remodel quick_ccd -loops:refine refine_ccd -loops:extended true -loops:relax relax

-ex1 -ex2 -out:output true -out:pdb true

↪↪↪↪
The options file used is given below. The files 9.bin and 3.bin are the fragment files for the respective

fragment lengths of 9 and 3 residues. This configuration file uses the CCD algorithm for loop construc-
tion and loop refinement. The resulting protein model is subsequently subjected to “relaxation” and
optimization using the Rosetta application.

-loops:fa_input

-loops:frag_sizes 9 3 1

-loops:frag_files 9.bin 3.bin none

-loops:build_initial true

-loops:remodel quick_ccd

-loops:refine refine_ccd

-loops:extended true

-loops:relax relax

-ex1

-ex2

-out:output true

-out:pdb true

chttp://robetta.bakerlab.org
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APPENDIX B
MEMBRANE PROTEIN STRUCTURE PREDICTION FROM EPR DATA

This appendix is based on the publication “BCL::MP-Fold: Membrane protein structure prediction
guided by EPR restraints”.2 It provides supplementary data and procedures for chapter III on page 29.
The supplementary data in section B.1 contains tables listing the prediction results in terms of model
accuracy, as quantified through the RMSD100 metric, and model discrimination, as quantified through
the enrichment metric, for combinations of SDSL-EPR distance and accessibility data. Additional data
evaluates dependencies of model accuracy and model discrimination on the number of SDSL-EPR
distance restraints.The procedures described in section B.2 on page 169 detail the protocol employed
for the study.

B.1. Supplementary data

This section contains additional data evaluating the influence of limited experimental data from EPR
distance and accessibility measurements on sampling accuracy and model discrimination. For four
membrane proteins, the influence of the number of distance restraints on the sampling accuracy was
evaluated and is shown in a plot. The tables contain the sampling accuracy- and enrichment-values for
all benchmark proteins and benchmark setups.
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Figure B.1.: Influence of the number of EPR restraints on the prediction accuracy.The tertiary structure of four
proteins was predicted with varying numbers of EPR distance restraints. Without restraints (dashed black), one
restraint per ten residues with SSEs (green), one restraint per five residues (solid black), one restraint per three residues
(blue), and one restraint per two residues (red). Shown is the cumulative density (y-axis) of models with respect to
their RMSD100-values (x-axis).
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Predicted Pool Native Pool

Protein ENone EAcc EDist σDist EEPR σEPR ENone EAcc EDist σDist EEPR σEPR
1IWG 1.1 1.5 2.2 0.2 2.3 0.2 0.4 0.9 1.2 0.4 2.2 0.3
1J4N 0.4 0.3 1.7 0.2 1.8 0.2 0.5 0.6 0.9 0.2 1.7 0.3
1KPL 2.2 2.4 2.4 0.1 2.4 0.3 0.3 0.3 2.4 0.4 2.4 0.2
1OCC 1.5 1.5 4.0 1.0 5.1 1.0 1.8 1.8 3.9 1.0 5.0 1.0
1OKC 1.3 1.4 1.7 0.2 1.7 0.2 1.3 1.4 1.5 0.1 1.7 0.2
1PV6 1.2 1.3 1.9 0.2 1.9 0.3 0.5 1.0 1.7 0.4 2.0 0.3
1PY6 2.1 2.0 3.2 0.3 3.3 0.3 2.3 2.3 3.2 0.3 3.3 0.3
1RHZ 1.1 1.3 1.8 0.4 2.1 0.6 1.3 1.4 1.6 0.4 1.4 0.7
1U19 1.6 2.2 2.6 0.2 2.6 0.2 2.0 1.7 2.0 0.3 2.9 0.7
1XME 1.4 1.3 1.7 0.3 1.7 0.3 1.1 1.0 1.7 0.3 3.6 0.5
2BG9 0.9 1.8 2.5 0.5 2.5 0.4 1.6 2.7 1.6 0.6 1.9 0.8
2BL2 0.5 0.5 1.4 0.3 1.4 0.3 1.1 0.7 3.1 0.5 4.9 1.0
2BS2 2.0 2.0 2.6 0.2 2.6 0.1 1.9 2.3 2.4 0.3 2.8 0.3
2IC8 1.0 1.2 1.6 0.3 1.7 0.2 1.2 1.2 1.7 0.3 2.8 0.7
2K73 2.1 1.5 1.6 0.6 2.1 0.2 2.2 2.4 2.8 0.6 7.8 0.7
2KSF 2.6 2.5 2.4 0.8 2.6 0.7 3.8 3.2 2.1 0.7 2.3 0.7
2KSY 1.7 2.2 2.6 0.7 3.0 0.6 2.3 2.0 3.3 0.6 3.8 1.1
2NR9 0.8 0.9 1.0 0.2 1.1 0.2 1.6 1.2 1.5 0.3 1.9 0.2
2XUT 1.2 1.3 1.6 0.2 1.6 0.2 0.5 0.5 1.3 0.2 2.1 0.3
3GIA 0.7 0.7 1.2 0.2 1.2 0.2 0.5 0.6 0.8 0.2 0.5 0.1
3KCU 0.8 1.5 1.6 0.2 1.7 0.2 1.3 1.1 1.6 0.2 1.8 0.5
3KJ6 1.6 2.0 2.3 0.2 2.2 0.2 1.4 1.7 2.0 0.3 4.2 0.8
3P5N 0.8 1.3 1.5 0.3 1.6 0.3 1.3 1.1 1.7 0.3 2.3 0.8
2BHW 0.8 0.9 2.1 0.6 2.3 0.5 1.2 1.7 3.9 1.2 4.4 1.7
2H8A 2.1 2.4 6.3 0.4 6.2 0.7 1.6 2.1 5.8 0.9 7.2 0.9
2HAC 0.8 2.8 3.4 0.6 4.0 0.9 0.5 2.4 1.2 0.2 2.5 0.7
2L35 0.8 1.7 1.9 0.7 1.9 0.7 0.8 1.0 2.3 0.9 2.6 1.2
2ZY9 0.7 2.3 2.4 0.2 2.9 0.3 1.0 1.4 2.0 0.4 3.1 0.4
3CAP 1.3 1.8 3.3 0.4 3.7 0.4 1.7 2.2 3.1 0.8 3.8 0.2
mean 1.3 1.6 2.3 0.3 2.5 0.4 1.4 1.5 2.2 0.5 3.1 0.6

Table B.3.: Enrichments achieved for folding with and without EPR restraints. EPR restraints significantly
improve our ability to select the most accurate models among the sampled ones. When using EPR distance and
accessibility restraints, the enrichment (EEPR) could be improved in each case compared to structure predictionwithout
EPR data (ENone). To be independent from specific spin labeling patterns ten different EPR distance restraint sets
were used and the standard deviation regarding enrichment computed (σEPR). The experiment was also conducted
using accessibility (EAcc) and distance restraints (EDist and σDist) only. In addition to using predicted SSEs (predicted
pool), the experiment was repeated using SSEs obtained from the experimentally determined structure (native pool).
The proteins above the separating line are monomeric proteins; below the separating line are multimeric proteins.
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B.2. Protein structure prediction protocol for membrane proteins from EPR data

This protocol requires an installation of the BCL, which is available on the website of the Meiler
Laboratory.a The tertiary structure of the membrane proteins discussed in this work was predicted from
their primary structure and experimentally determined and simulated SDSL-EPR distance restraints.
This protocol describes the steps necessary to simulate SDSL-EPR distance restraints based on the
CONE model and usage of SDSL-EPR distance restraints to predict the tertiary structure of membrane
proteins using the de novo protein structure prediction algorithm BCL::Fold, which is part of the BCL.

B.2.1. Simulation of SDSL-EPR distance restraints

The protocol for the simulation of SDSL-EPR distance restraints consists of two steps: 1. selection of
the spin labeling sites and 2. simulation of the experimental uncertainty. Both steps are described in
this section.

The following command line selects spin labeling sites for SDSL-EPR distance measurements. The
algorithm optimizes the distributions of the measurements using an MCM algorithm.155

bcl.exe OptimizeDataSetPairwise -fasta 1IWGA.fasta -pool_min_sse_lengths 0 0 -pool 1IWG.pool

-distance_min_max 15 50 -nc_limit 10 -ensembles 1IWG_ensembles.ls -mc_number_iterations

100000 100000 -prefix 1IWG_ -nmodels 500 -read_scores_optimization opt_score_weights.wts

-read_mutates_optimization mutate_weights.wts -data_set_size_fraction_of_sse_resis 0.2

-random_seed

↪↪↪↪
The following command line adds a CONE model-based uncertainty related to the translation from

backbone distance into spin-spin distance78 to simulate the uncertainty accompanying SDSL-EPR
distance measurements.

bcl.exe SimulateDistanceRestraints -pdb 1IWGA.pdb -simulate_distance_restraints -output_file

1IWG.epr_cst_bcl -min_sse_size 0 0 0 -add_distance_uncertainty sl_cb.histograms

-restraint_list 1IWG.epr 0 1 5 6 -random_seed

↪↪
B.2.2. Prediction of the tertiary structure of membrane proteins from SDSL-EPR data

Tertiary structure prediction with BCL::Fold is a two-stage process. The SSEs of the protein are predicted
using machine learning methods and the predicted SSEs are subsequently arranged in the three-
dimensional space using an MCM algorithm.

The following command line will predict transmembrane SSEs of the protein 1IWG using the
prediction method OCTOPUS.164 The “input” folder must contain the fasta and OCTOPUS prediction
files for 1IWG.

bcl.exe CreateSSEPool -ssmethods OCTOPUS -pool_min_sse_lengths 5 3 -sse_threshold 0.5 0.5 0.5

-prefix 1IWG -join_separate -factory SSPredThreshold↪
ahttp://www.meilerlab.org/bclcommons
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The predicted SSEs are subsequently arranged in the three-dimensional space using an MCM algo-
rithm. The following command line will sample 40models for the protein 1IWG from predicted SSEs
using BCL::Fold. The SSE pool created with the previous command is used as input data.

bcl.exe protein:Fold -native 1IWGA.pdb -function_cache -pool_separate -min_sse_size 5 3 -quality

RMSD GDT_TS -superimpose RMSD -sspred OCTOPUS JUFO9D -pool

1IWGA.SSPredHighest_JUFO9D_OCTOPUS.pool -stages_read stages.txt -pool_prefix 1IWGA -nmodels

40 -prefix 1IWG_dist_acc_pred_ -membrane -protein_storage pdbs/ -tm_helices

1IWGA.SSPredHighest_OCTOPUS.pool -sequence_data sspred/ 1IWG -opencl Disable

-restraint_types DistanceEPR AccessibilityEPR -restraint_prefix restraints/1 -random_seed

↪↪↪↪↪
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APPENDIX C
PROTEIN STRUCTURE PREDICTION FROM CROSS-LINKING DATA

This appendix is based on the publication “Protein structure prediction guided by crosslinking restraints
– A systematic evaluation of the impact of the crosslinking spacer length”.3 It provides supplementary
data and procedures for chapter IV on page 48. The supplementary data in section C.1 contains
tables listing the prediction results in terms of model accuracy and model discrimination for different
XL spacer lengths and reactivities. The procedures described in section C.2 on page 176 detail the
computational procedures employed in this study.

C.1. Supplementary data

This section contains additional data detailing the determination of the optimal cross-linker spacer
length, translation of experimental data from XL-MS experiments into structural restraints, and eval-
uation of the cross-linker spacer length on the sampling accuracy and model discrimination. The
cross-link yield per spacer length is listed for each of the benchmark proteins and the sampling accuracy,
as quantified through the RMSD100 metric, and the model discrimination, as quantified through the
enrichment metric, are listed in dependence on the cross-linker spacer length. Additional figures depict
the translation from the experimental data into structural restraints and show the distance distributions
for Lys-Lys pairs.

optimal short1 short2 long1 long2

Protein 𝑙
(Å) #rest 𝑙

(Å) #rest 𝑙
(Å) #rest 𝑙

(Å) #rest 𝑙
(Å) #rest

1HRC 10.2 13 2.5 0 7.5 7 17.5 27 30 107
3IV4 10.4 5 2.5 2 7.5 2 17.5 7 30 13
1BGF 10.7 6 2.5 3 7.5 4 17.5 10 30 13
1T3Y 10.9 35 2.5 9 7.5 20 17.5 42 30 63
3M1X 10.9 1 2.5 0 7.5 0 17.5 5 30 19
1X91 11.0 2 2.5 0 7.5 1 17.5 8 30 27
1JL1 11.2 7 2.5 0 7.5 3 17.5 11 30 24
1MBO 11.3 9 2.5 0 7.5 3 17.5 23 30 77
2QNL 11.5 6 2.5 4 7.5 4 17.5 8 30 15
2AP3 12.1 53 2.5 0 7.5 19 17.5 136 30 427
1J77 12.2 29 2.5 7 7.5 16 17.5 36 30 70
1ES9 12.5 8 7.5 0 17.5 1 37.5 17 45 20
3B5O 12.7 15 7.5 2 17.5 8 37.5 21 45 25
1XQ0 13.3 9 7.5 0 17.5 4 37.5 14 45 44
2IXM 13.5 41 7.5 20 17.5 41 37.5 49 45 57

Table C.1.: Lys-Lys cross-links yielded by different spacer lengths. Cross-links obtained for the benchmark proteins.
Simulated and experimentally determined cross-links were obtained for the fifteen benchmark proteins. For each
protein, an optimal spacer length 𝑙 was determined (optimal). Additional cross-links were simulated for two shorter
(short1 and short2) and two longer (long1 and long2) spacer lengths. The number of yielded cross-links (#rest) is
shown for each spacer length. For the two proteins 1HRC and 1MBO, experimentally determined cross-links were
published.
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Without
restraints

Optimal
Lys/Lys

All
Lys/Lys

All
reactivities

Protein best
(Å)
σbest
(Å) e σe best

(Å) e best
(Å) e best

(Å) e

1HRC 4.5 0.3 0.8 0.1 3.8 2.0 3.8 2.0 3.7 5.9
3IV4 6.7 0.2 1.2 0.3 5.7 2.5 5.3 2.5 5.2 1.9
1BGF 6.6 0.4 1.0 0.2 5.7 2.1 4.9 2.4 6.2 1.6
1T3Y 7.0 0.7 1.7 0.4 6.4 2.9 5.7 3.0 6.2 2.3
3M1X 3.8 0.1 0.7 0.2 3.8 0.7 3.6 1.5 3.6 1.7
1X91 4.8 0.2 2.0 0.5 4.8 2.0 2.0 3.2 2.1 3.5
1JL1 6.4 0.4 1.2 0.1 5.6 2.1 5.3 2.8 5.1 2.7
1MBO 7.1 0.6 0.8 0.3 6.4 2.0 6.5 1.6 4.2 2.5
2QNL 7.0 0.6 1.0 0.3 4.8 1.9 4.1 2.1 6.1 2.1
2AP3 2.5 0.1 1.6 0.5 2.0 3.0 1.6 3.1 2.2 2.0
1J77 6.8 0.3 0.5 0.2 5.0 2.0 4.0 2.4 3.8 3.2
1ES9 7.3 0.8 1.1 0.6 5.7 2.1 5.6 2.8 6.3 2.9
3B5O 9.2 0.9 1.4 0.2 8.6 1.9 9.0 2.6 7.1 1.9
1XQ0 9.9 1.0 1.1 0.3 8.3 1.9 8.5 2.4 7.4 2.1
2IXM 9.4 0.9 1.1 0.4 7.9 1.7 8.5 1.7 7.0 1.9
mean 6.6 0.5 1.1 0.3 5.6 2.1 5.2 2.4 5.1 2.6

Table C.2.: Protein structure prediction results for different cross-linker reactivities. Comparison between struc-
ture prediction results with and without cross-linking restraints. By using geometrical restraints obtained from
cross-linking experiments, the size of the sampling space can be reduced resulting in an improved sampling accuracy.
This is shown by significant improvements in the RMSD100-value of the most accurate model (best). Furthermore,
cross-linking restraints provide geometrical information, which improves the discrimination power of the scoring
function, leading to an improvement in the enrichment (e). Without restraints, ten independent prediction trajectories
were conducted and the standard deviation of the accuracy of the best model (σbest) and the enrichment (σe) are
reported.
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Figure C.1.: Implicit translation from cross-linking data into structural restraints. Explicit simulation of the
cross-linker conformation is computationally expensive and prohibitive for use in a rapid scoring function required
for protein structure prediction. Instead, the cross-linker conformation and the path crossed by the cross-linker were
approximated through computing the arc length connecting the two cross-linked residues (A). The agreement of
a model with cross-linking data was evaluated by computing the difference between the arc length (darc) and the
cross-linker length (dxl). The agreement of the model with the cross-linking data is quantified with a score between−1 and 0, with −1 being the best agreement and 0 being the worst agreement (B).

173



Figure C.2.: Lys-Lys pair distributions. Distribution of all possible and valuable Lys-Lys pairs for a 25 kDa to27.5 kDa weight bin. Gray bars show all theoretical pairs in their specific distance cluster of ± 2.5Å. Red bars show
pairs that could be connected with respect to their surface distance by a specific cross-link (here 1Å, 13Å and 60Å)
always including the side chain contribution to the overall length. Green bars show pairs that are considered valuable
by our proposed scoring function. The pie charts show the accumulated number of cross-links for every spacer length.
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Figure C.3.: Selected prediction results from cross-linking data. Most accurate models sampled with and without
using cross-linking restraints. The RMSD100-values of the most accurate models sampled for 1X91, 1J77, and 1MBO
were 4.8Å, 6.8Å and 7.1Å. By using restraints yielded by Lys-Lys/Asp/Glu reactive cross-linkers, the accuracy could
be improved to 2.7Å, 5.0Å and 4.2Å. Shown are the native structures of 1X91, 1J77, and 1MBO (A, D, G), the
most accurate models sampled without cross-linking restraints (B, E, H), and the most accurate models sampled with
cross-linking restraints (C, F, I). Selected restraints are shown that are not fulfilled in the model predicted without
cross-linking data (red bars), but that are fulfilled in the model predicted with cross-linking data (black bars).
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C.2. Protein structure prediction protocol from cross-links of various lengths

The following protocol capture requires an installation of the BCL, which can be obtained from the
website of the Meiler Laboratory.a The protein structure prediction protocol from cross-linking data
consisted of a three-stage approach:

1. Prediction of the secondary structure from the primary structure (section C.2.1).

2. Prediction of the tertiary structure from the secondary structure and cross-linking data (sec-
tion C.2.2).

3. Analysis of the results (section C.2.3).

C.2.1. Prediction of the secondary structure

The secondary structure of the benchmark proteins was predicted using the methods PSIPRED98 and
Jufo9D.97 The prediction files generated by those two methods were subsequently used to create an SSE
pool using the following command line:

bcl.exe CreateSSEPool -ssmethods PSIPRED JUFO9D -sse_threshold 0.4 0.4 0.4 -pool_min_sse_lengths 5

3 -prefix <data_folder> -factory SSPredHighest -output_prefix <output_folder>↪
C.2.2. Prediction of the tertiary structure

The SSEs from the SSE pool are subsequently arranged in the three-dimensional space using the
BCL::Fold algorithm, which is part of the BCL. The required input files are a file containing the protein’s
primary structure in the fasta format, the secondary structure prediction files from PSIPRED and
Jufo9D, and the SSE pool generated in section C.2.1. The number of protein models to be sampled can
be adjusted by setting the argument of the flag -nmodels <num_models> to the desired value.

bcl.exe protein:Fold -fasta <target.fasta> -sequence_data <sequence_data_folder> <target> -sspred

JUFO9D PSIPRED -pool <sse_pool> -pool_separate -stages_read <stages_file> -protein_storage

<output_folder> -prefix <seed> -nmodels <num_models> -random_seed <seed> -histogram_path

<path_to_histogram_folder>

↪↪↪
For predicting the tertiary structure from cross-linking restraints, the following flags have to be added:

-restraint_types Xlink and -restraint_prefix <path_to_restraint_file>. The command line above will
result in the desired number of protein models to be sampled and written out in the PDB format.

C.2.3. Analysis of the results

The resulting protein models were analyzed and ranked using the application BCL::Score,60 which is
part of the BCL. The following command line requires the model paths to be listed in an input file and
creates a table with one row per protein model, detailing the value of each scoring term, the agreement
with the XL-MS restraints, and the RMSD100 relative to the specified reference structure.
ahttp://www.meilerlab.org/bclcommons
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bcl.exe protein:Score -pdblist <list_of_pdbs> -native <native_structure> -quality RMSD GDT_TS

-weight_set <score_weigths> -sspred PSIPRED JUFO9D -sequence_data <sequence_data> <target>

-pool <sse_pool> -score_table_write <output_file>

↪↪
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APPENDIX D
EFFICIENT SAMPLING OF LOOP CONFORMATIONS

This appendix is based on the publication “Efficient sampling of loop conformations using conformation
hashing in conjunction with cyclic coordinate descent”.4 It provides supplementary data and procedures
for chapter V on page 67. The computational procedures described in section D.1 detail the necessary
steps to sample loop conformations using a combination of conformation hashing and CCD.

D.1. Computational procedures for sampling loop conformations using
conformation hashing in conjunction with CCD

This section lists the computational procedures to sample an ensemble of loop conformations using
conformation hashing in conjunction with CCD. The employed algorithms were implemented as part of
the BCL. The following protocol capture detailing the procedures employed in the manuscript consists
of multiple steps:

1. Selection of a set of protein structures in the PDB format to generate the library from.

2. Generation of the loop template library using the BCL.

3. Definition of the configuration files for the loop sampling algorithm to achieve a workflow
consisting of conformation hashing and CCD.

The following sections describe each of the steps in detail. They require an installation of the BCL,a
and, if needed, DSSP.b The selection and preparation of protein structures to generate the template
library is discussed in section D.1.1. The necessary steps to generate the template library from the
selected protein structures is detailed in section D.1.2 on the next page. The computational procedures
to sample ensembles of loop conformations from the generated templated library is described in
section D.1.3 on the following page.

D.1.1. Selection of set of protein structure to generate the template library

The initial set of protein models serves as seed for the loop template library; therefore determines the
initial population of the library. The set of protein structures has to be chosen in a way to maximize
the number of structurally dissimilar conformations while avoiding near-duplicates. A near-duplicate
in this context is a structurally very similar loop conformation. Not excluding them will increase the
size of the template library and therefore increase the time required for reading it in the algorithm. As
of October 2017, the PDB contains about 124 000 protein structures. Of those, we only selected the
ones within a resolution limit of 3Å. Additionally, protein models consisting completely or partially ofCα-traces were excluded, since they do not contain a sufficient number of atom coordinates per residue
to define a coordinate system for the anchor points. The exclusion of protein models below the chosen
resolution limit and protein models containing Cα-traces can easily be achieved using the Dunbrack
lab’s PISCES server (available at http://dunbrack.fccc.edu/PISCES.php).185,195

ahttp://www.meilerlab.org/bclcommons
bhttp://swift.cmbi.ru.nl/gv/dssp
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The remaining protein structures (about 85 000) were downloaded from the PDB and for structure
groups with a common sequence identity above 25%, only one representative remained in the set. The
pairwise sequence identities were computed with Clustal Omega201 using the following command:

clustalo –profile1 <seq_a> –profile2 <seq_b>

This command will result in an alignment of the two given sequences <seq_a> and <seq_b> in the
FASTA-format. Subsequently, the sequence identity or similarity can readily be determined using a
simple script.

D.1.2. Generation of the template library

From the remaining set of protein structures that was selected in section D.1.1 on the previous page,
the loop template library was generated using the BCL. The BCL does not perform an analysis of the
dihedral angles to distiguish between loop regions and helices or strands, but exclusively relies on the
SSE definition provided in the PDB file. Although most protein structure deposited in the PDB contain
SSE definitions, we chose to ignore those definitions and use the DSSP program113 instead to define the
specific secondary structure regions. This approach ensures that the same definition criteria are applied
to all protein structures. The definitions can be obtained from DSSP using the following command,
where <input.pdb> is the path to the PDB file:

dssp -i <input.pdb> -o <output.dssp>

The resulting definitions from the DSSP file at location <output.dssp> can then be inserted into the
PDB file using the script dssp2pdb from James Stroud (available at http://www.jamesstroud.com/software/
dssp2pdb) using the following command:

dssp2pdb -5 <input.dssp> <input.pdb> > <output.pdb>

The arguments <input.dssp>, <input.pdb>, and <output.pdb> specify the locations of the input DSSP
and PDB files as well as to which location the resulting PDB file shall be written. The flag -5 specifies
that only -helices shall result in PDB-entries. To also consider 3(10)-helices, the flag -3 needs to be set.

The resulting set of protein structures in the PDB format was then used to generate the loop template
library. This step requires an installation of the BCL, which provides the bcl executable. The template
library can be generated using the following command:

D.1.3. Sampling of loop conformations using conformation hashing complemented with CCD

The BCL protein modeling application is based on prediction pipelines, which can be defined and
configured using text files. Each pipeline consists of a sequence of optimization modules that can
be chained together to achieve the desired output. Each of the optimization modules in turn can be
configured using a module-specific set of options. For the loop sampling using conformation hashing
in conjunction with CCD, the pipeline consists of two modules — one for the conformation hashing
and one for the CCD algorithm. An example pipeline is provided and discussed below.
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EnsembleNode(

number trajectories=100,

optimizer=MCMOptimizer(

score function=ProteinModelScoreSum(

offset=0,

terms(

(

weight=500,

ProteinModelSSEPairs(

score function=AASequencePair(

scoring function=AAPairClash(

sigmoid width=1,

histogram file name=aa_distances_0.05.histograms

),

normalize=0

),

normalize=0

)

),

(

weight=500,

ProteinModelSSEPairs(

score function=SSEPairsFragments(

packer=SSEClash_NoCache,

score function=SSEPairClash(min interface length=0,sigmoid width=1),

normalize=0

),

normalize=0

)

),

(

weight=0,

ProteinModelSSEPairs(

score function=Loop(histogram filename=loop.histograms,max loop length=25),

normalize=0

)

),

(

weight=50000,

ProteinModelSSEPairs(

score function=LoopClosure(

number excluded residues=1,

sigmoid width=20,

fraction allowed distance=1,
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exclude coil=1

),

normalize=0

)

),

(weight=1000,ProteinModelCompleteness(ignore term loops=0)),

(weight=1,ProteinModelGap)

)

),

mutates=MutateDecisionNode(

(probability=0.5,MutateLoopAdd(loop library=<lib_path>)),

(probability=0.1,MutateLoopRemove),

(probability=0.2,MutateLoopReplace(loop library=<lib_path>)),

(probability=0.3,MutateLoopAddResize(loop library=<lib_path>)),

(probability=0.5,MutateLoopFragmentAdd(loop library=<lib_path>)),

(probability=0.3,MutateLoopFragmentReplace(loop library=<lib_path>))

),

termination criterion=Any(Iterations(10000),ConsecutiveUnimprovedSteps(1000)),

metropolis=Metropolis(

keep history=0,

minimum change=0.0001,

temperature control=DefaultTemperatureControl(temperature=300)

)

)

)

The definition of the pipeline follows an attribute=value scheme. The configuration file provided
above defines anMCMprediction pipeline performing conformational hashing formissing loop regions.
Additional scoring terms and their corresponding weights can be added with the score_function block
— the example includes scoring terms for evaluating steric interference between residues (AAPairClash),
SSE-SSE interactions (SSEPairsFragments), and loop evaluation (Loop and LoopClosure). Additional mu-
tates, functors that perturbate the protein model, can be added within the mutates block. The example in-
cludes the mutates for adding, removing, and replacing loops as well as mutates for fragment-based loop
construction. Termination criteria for the MCM prediction can be added in the termination criterion

block. The example defines termination after either a total of 10 000MC steps or 1000MC step without
score improvement in a row.

After defining the pipeline in the configuration file pipeline.conf, it can be applied to a set of protein
structures using the BCL “Optimize” application. This application accepts the pipeline configuration
file and a text file models.ls as arguments. The file models.ls lists the paths to all input protein models
in PDB format. The pipeline can then be applied to the input protein models using the following
command:

bcl Optimize -pdb_list models.ls -output_prefix <out_dir> -optimizer pipeline.conf
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This command result in sampling the specified number of protein models using the provided pre-
diction pipeline and write the sampled models to the location specified by the flag -output_prefix. By
using the flag -help, a complete list of all command line options can be obtained.
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APPENDIX E
PREDICTINGTHEMONOMERIC ANDHOMODIMERIC FORMSOF BAX

This appendix is based on the publication “Pushing the size limit of de novo structure ensemble
prediction guided by sparse SDSL-EPR restraints to 200 residues: The monomeric and homodimeric
forms of BAX”.5 It provides supplementary data and procedures for chapter VI on page 83. The
supplementary data in section E.1 lists the agreement of the X-ray-derived model of soluble monomeric
BAX and membrane-associated homooligomeric BAX with the SDSL-EPR data. The procedures
described in section E.2 on page 186 detail the computational procedures employed in this study.

E.1. Supplementary data

This section contains a plot depicting the dependence of the μ-value in dependence of the number of
models taken into consideration. Additionally, tables are provided that quantify the agreement of the
soluble monomeric and membrane-associated homodimeric BAX structures with the SDSL-EPR data.
The agreement is shown according to geometrical aspects as well as in terms of the CONE model.

Figure E.1.: Dependence of the μ-value on the model numbers.(A,B) The average RMSD100-values, μi , of the i
most accurate models (y-axis) are shown in dependence of the number of considered models (x-axis) for soluble
monomeric (solid lines) and homodimeric (dashed lines) BAX without (black) and with (red) using SDSL-EPR
restraints.
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NMR-derived model Idealized
NMR-derived model

Restraint DSL(Å)
DBB
(Å)
ΔSL
(Å) Score DBB

(Å)
ΔSL
(Å) Score

16:62 32.1 22.4 9.7 −0.68 21.9 10.2 −0.60
62:101 33.7 26.3 7.4 −0.88 26.7 7.0 −0.90
62:87 42.1 31.8 10.3 −0.59 32.1 10.0 −0.64
72:126 23.0 21.5 1.5 −1.00 18.4 4.6 −0.97
55:126 38.9 31.5 7.4 −0.87 32.7 6.2 −0.93
87:126 26.0 20.0 6.0 −0.94 17.6 8.4 −0.81
62:149 31.7 20.6 11.1 −0.40 21.3 10.4 −0.57
101:149 25.9 19.3 6.6 −0.91 19.4 6.5 −0.92
87:149 31.9 25.9 6.0 −0.94 28.0 3.9 −0.98
101:169 25.6 26.2 −0.6 −0.95 26.0 −0.4 −0.97
62:186 32.4 26.2 6.2 −0.93 28.0 4.4 −0.97
62:126 32.0 25.6 6.4 −0.92 24.9 7.1 −0.89
55:87 43.5 37.4 6.1 −0.93 40.0 3.5 −0.99
55:101 36.8 32.9 3.9 −0.98 34.2 2.6 −1.00
72:87 36.2 30.3 5.9 −0.94 26.1 10.1 −0.63

101:126 33.3 32.2 1.1 −1.00 30.5 2.8 −0.99
72:101 32.9 27.9 5.0 −0.96 24.6 8.3 −0.82
55:149 26.2 19.4 6.8 −0.91 22.7 3.5 −0.99
62:169 17.6 14.9 2.7 −1.00 13.8 3.8 −0.98
126:169 39.1 34.3 4.8 −0.97 33.7 5.4 −0.95
72:169 25.5 15.3 10.2 −0.60 17.3 8.2 −0.83
126:149 30.6 31.8 −1.2 −0.90 32.0 −1.4 −0.89
87:169 42.0 37.7 4.3 −0.98 37.9 4.1 −0.98
72:186 25.8 19.3 6.5 −0.92 17.8 8.0 −0.84
87:186 25.1 19.3 5.8 −0.94 19.6 5.5 −0.95
mean — — 5.6 −0.88 — 5.7 −0.88

Table E.1.: Agreement of the soluble monomeric BAX NMR-derived model with the SDSL-EPR data. To study
the suitability of the SDSL-EPR distance restraints in conjunction with the translation model for structure prediction,
the agreement of the experimentally determined structure with the SDSL-EPR distance restraints was calculated with
the best agreement having a score of −1 and the worst agreement having a value of 0. Some agreements might only
be achievable through distinct bendings of the SSEs, which complicate structure prediction. Therefore, the agreement
analysis is also shown for the NMR-derived model as well as the idealized structure. Also shown are the backbone
(DBB) and observed spin-pin (DSL).
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X-ray-derived model Idealized
X-ray-derived model

Restraint DSL(Å)
DBB
(Å)
ΔSL
(Å) Score DBB

(Å)
ΔSL
(Å) Score

55A:55B 48.0 44.6 3.4 −0.99 42.6 5.4 −0.95
62A:62B 23.2 21.6 1.6 −1.00 22.8 0.4 −1.00
72A:72B 29.2 20.7 8.5 −0.81 17.9 11.3 −0.36
87A:87B 53.1 47.7 5.4 −0.95 46.6 6.5 −0.92

101A:101B 42.6 41.3 1.3 −1.00 41.0 1.6 −1.00
62A:87A 41.6 38.2 3.4 −0.99 37.8 3.8 −0.98
55A:87A 49.3 48.3 1.0 −1.00 46.6 2.7 −1.00
55A:101A 35.4 40.3 −4.9 −0.60 39.0 −3.6 −0.70
72A:87A 29.8 29.4 0.4 −1.00 28.1 1.7 −1.00
62A:101A 32.7 30.7 2.0 −1.00 31.3 1.4 −1.00
72A:101A 31.1 28.7 2.4 −1.00 27.2 3.9 −0.98

mean — — 3.1 −0.94 — 3.8 −0.90
Table E.2.: Agreement of the homodimeric BAX X-ray-derived model with the SDSL-EPR data. To study the
suitability of the SDSL-EPR distance restraints in conjunction with the translation model for structure prediction, the
agreement of the experimentally determined structure with the SDSL-EPR distance restraints was calculated with
the best agreement having a score of −1 and the worst agreement having a value of 0. Some agreements might only
be achievable through distinct bendings of the SSEs, which complicate structure prediction. Therefore, the agreement
analysis is also shown for the X-ray-derived model as well as the idealized structure. Also shown are the backbone
(DBB) and observed spin-pin (DSL) distances.
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E.2. Procedures for the structure prediction of BAX

This protocol capture requires an installation of the BCL, which is available on the website of the Meiler
Laboratory.a The following procedures describe all necessary steps to reproduce the data shown in the
manuscript or to apply the protocol to predict the tertiary structure of other proteins from SDSL-EPR
distance restraints. The described protocol requires the following files and applications, which are
referenced in the following protocol capture:

• target.fasta — A file describing the primary structure of the protein in the fasta-format. For
homooligomeric proteins, only one chain should be included.

• target.ss — A file containing secondary structure predictions from PSIPRED, which can be
computed at http://bioinf.cs.ucl.ac.uk/psipred.

• target.jufo — A file containing secondary structure predictions from Jufo9D, which can be
computed at http://www.meilerlab.org/index.php/servers/show?s_id=5.

• stages.txt — A file defining the setup of BCL::Fold. The file used for the EPR-guided prediction
of BAX is provided in section E.2.1.

• target.epr_cst_bcl—Afile containing the SDSL-EPR distance restraints. An example is provided
in section E.2.2 on page 188.

• bcl — The BCL executable, which can be obtained free of charge for academic purposes at
http://www.meilerlab.org/bclcommons.

The prediction of the tertiary structure from the input files listed above consists of multiple steps
described in detail in the following sections:

1. Preparation of the input files target.fasta, stages.txt, and target.epr_cst_bcl (see the following
section for details) and obtaining the BCL executable.

2. Obtaining the PSIPRED and Jufo9D secondary structure predictions (target.ss and target.jufo)
from the respective online servers.

3. Prediction of the secondary structure of the protein, which is described in section E.2.3 on page 188.

4. Prediction of the tertiary structure of the protein, which is described in section E.2.4 on page 189.

E.2.1. Preparation of input files: the stage file

The stage file defines the setup of the BCL::Fold algorithm. Specifically, it defines how many MC steps
to perform, which transformations to apply, and which scoring terms to use. The BCL::Fold algorithm
is modular allows composition from multiple stages that form the resulting prediction pipeline. The
stage file used in this study for soluble monomeric BAX was:

ahttp://www.meilerlab.org/bclcommons
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STAGE Stage_assembly_1

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_01.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_2

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_02.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_3

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_03.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_4

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_04.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_5

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_05.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_refinement_1

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE refinement_01.scoreweights

MUTATE_PROTOCOLS Default Refinement

NUMBER_ITERATIONS 2000 400

STAGE_END

The listed stage file defines the configuration of the protein structure prediction pipeline. The pipeline

187



consists of six modules, which are all MCM optimization algorithms. Using the options SCORE_PROTOCOLS
and MUTATE_PROTOCOLS, the user can define which scoring terms to use and which transformations to
apply during each module. The option NUMBER_ITERATIONS allows setting the maximum number of MC
steps per module and the maximum number of consecutive MC steps without score improvement.

For homooligomeric proteins, the stage file has to be adjusted and the protocol Multimer has to be
added to all SCORE_PROTOCOLS and MUTATE_PROTOCOLS to enable assembly and refinement in multimer mode.
As of now, the BCL only supports assembly of monomeric proteins or symmetric multimeric proteins
exhibiting cyclic or dihedral symmetry. The weights for the different scoring terms were kept constant
over all stages besides the weights for the SSE clash (sseclash) and amino acid clash (aaclash) scores.
They were 0 during assembly_1, 125 during assembly_2, 250 during assembly_3, 375 during assembly_4,
and 500 during assembly_5 and refinement_1.

E.2.2. Preparation of input files: the restraint file

TheBCL can use intra-protomer and inter-protomer distance restraints by specifying restraint endpoints
using their respective chain and sequence identities. An example file defining SDSL-EPR distance
restraints would have the following format:

Atom Distance Assigned

A 55 CB B 55 CB 48.0 100 1

A 62 CB A 102 CB 23.2 100 1

The list of residue-residue distances is preceded by the identifier Atom Distance Assigned and is fol-
lowed by lines defining one restraint each. Each restraint line has to have the format <chain_id_1>
<seq_id_1> CB <chain_id_2> <seq_id_2> CB distance 100 1. The chain and sequence identifiers refer to
the spin labeling sites and distance refers to the experimentally observed spin-spin distance. The first
line in the example above therefore defines an SDSL-EPR distance restraint with a spin-spin distance of48.0Å between residue 55 of chain A and residue 55 of chain B and an SDSL-EPR distance restraint
with a spin-spin distance of 23.2Å between residues 62 and 102 of chain A. The value CB refers to theCβ-atom that is used for calculating the residue-residue distance in the protein models. For glycine that
does not have a Cβ-atom, the value should still be set to CB, which will result in the Hα2-atom being
used instead.

E.2.3. Prediction of the secondary structure

The BCL::Fold algorithm, which is part of the BCL, was used to generate SSE pools from the PSIPRED
and Jufo9D secondary structure predictions. To generate the SSE pool for BAX, the following command
line was used:

bcl.exe CreateSSEPool -ssmethods JUFO9D PSIPRED -pool_min_sse_lengths 5 3 -sse_threshold 0.5 0.5

0.5 -prefix target -join_separate -factory SSPredThreshold↪
The command line listed above creates an SSE pool for the target protein. The working directory

must contain the fasta and PSIPRED/Jufo9D prediction files for the target protein.
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E.2.4. Prediction of the tertiary structure

Protein structure prediction was distributed onto the Advanced Computing Center for Research and
Education at Vanderbilt University and the Titan cluster at Oak Ridge National Laboratory. The
command line for predicting a number of structures for a monomeric protein using an SSE pool
containing all predictions using EPR distance restraints is:

bcl.exe protein:Fold -fasta target.fasta -function_cache -pool_separate -min_sse_size 5 3 -sspred

PSIPRED JUFO9D -pool target.pool -stages_read stages.txt -pool_prefix target -nmodels 40

-prefix target -protein_storage pdbs/ -sequence_data . target -opencl Disable

-restraint_types DistanceEPR -restraint_prefix target -random_seed

↪↪↪
This command line assumes that the input files described in the previous sections are in the working

directory. The command line for predicting the tertiary structure of homodimeric BAXhas an additional
flag for C2-symmetry: -symmetry C2. The BCL supports cyclic and dihedral symmetries with user-
defined multiplicities that can be set using this flag with the corresponding argument (Dn for dihedral
symmetry and Cn for cyclic symmetry, with n being the number of protomers in the protein).

E.2.5. Obtaining simulated EPR distance restraints

The BCL can also be used to simulate additional SDSL-EPR distance restraints as used in this study.
The spin labeling sites were chosen using an algorithm attempting to distribute the spin labels over all
SSEs.155 The algorithm employs MCM sampling to find the optimal distribution of spin labeling sites
and can be executed using the following command line:

bcl.exe OptimizeDataSetPairwise -fasta target.fasta -pool_min_sse_lengths 0 0 -pool target.pool

-distance_min_max 15 50 -nc_limit 10 -ensembles target_ensembles.ls -mc_number_iterations

100000 100000 -prefix target_ -nmodels 500 -read_scores_optimization opt_score_weights.wts

-read_mutates_optimization mutate_weights.wts -data_set_size_fraction_of_sse_resis 0.2

-random_seed

↪↪↪↪
This command line creates 500 restraint sets for the target protein. Alternatively, simulated restraints

can also be obtained from the Meiler Lab server.b The output of the previous algorithm will be pairs of
spin labeling sites deemed optimal by the algorithm. In a second step, an uncertainty has to be added
to simulate the uncertainty of the SDSL-EPR experiment:

bcl.exe SimulateDistanceRestraints -pdb target.pdb -simulate_distance_restraints -output_file

target.epr_cst_bcl -min_sse_size 0 0 0 -add_distance_uncertainty sl_cb.histograms

-restraint_list target.epr 0 1 5 6 -random_seed

↪↪

bhttp://www.meilerlab.org/index.php/servers/show?s_id=16
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E.2.6. Idealization of protein structures

The BCL can be used to idealize protein structures by setting the dihedral angles (ϕ, ψ) of SSEs to
the idealized values of (−60°, −40°) for α-helices and to (−135°, 135°) for β-strands. The following
command line will idealize the input PDB file and write out the idealized structure as PDB file:

bcl PDBConvert <input.pdb> -idealize -bcl_pdb
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APPENDIX F
STRUCTURE ANDDYNAMICS OFTYPE III SECRETION EFFECTOR PROTEIN EXOU

This appendix is based on the publication “Structure andDynamics of Type III Secretion Effector Protein
ExoU As determined by SDSL-EPR Spectroscopy in Conjunction with De Novo Protein Folding”.6
It provides supplementary data and procedures for chapter VII on page 99. The supplementary data
in section F.1 lists the agreement of the X-ray-derived model of ExoU with the SDSL-EPR data and
compares explicitly simulated EPR distance distributions to the experimentally determined distance
distributions. The procedures described in section F.2 on page 194 detail the computational procedures
employed in this study.

F.1. Supplementary data for ExoU

This section contains an analysis of the agreement of the X-ray-derived model of ExoU with the
SDSL-EPR data under geometrical aspects and in the terms of the CONE model. The distance distri-
butions derived from the DEER experiments are shown and compared to the distance distributions
obtained from explicit spin label simulation on the X-ray-derived model.

Restraint DSL(Å)
DBB
(Å) Score

629-645 19.4 23.3 −0.67
636-592 26.4 26.4 −0.99
636-645 20.6 16.1 −0.97
636-649 19.8 11.7 −0.83
636-657 20.0 14.2 −0.94
636-672 28.2 — —
649-672 28.3 — —

Table F.1.: Available SDSL-EPR data for the C-terminal domain of ExoU. Seven SDSL-EPR measurements were
available. Shown are the observed mean spin-spin distance (DSL), the Cβ − Cβ distance of the spin labeling sites in
the X-ray-derived model (DBB , PDB entry 3TU3), and the agreement score of the X-ray-derived model with the
SDSL-EPR data according to the CONE model-based scoring function. Restraints without DBB and score referred to
spin labeling sites not resolved in the X-ray-derived model.
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Figure F.1.: Residue-residue distance distributions derived from the DEER experiment for the C-terminal do-
main of ExoU.

192



Figure F.2.: Explicit simulation of the spin labeling pairs used on ExoU. The distance distributions arising from
four spin labeling pairs were simulated explicitly (red) and compared to the experimentally determined distance
distribution (black).
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F.2. Procedures for the EPR-guided structure and dynamics predictions of ExoU

This protocol capture requires an installation of the BCL, which is available on the website of the Meiler
Laboratory.a The de novo protein structure prediction protocol for ExoU consisted of four modules:
1. secondary structure prediction (section F.2.1), 2. topology sampling (section F.2.2), 3. clustering
(section F.2.3 on the following page), and 4. loop construction in conjunction with high-resolution
refinement (section F.2.4 on the next page). The following sections provide a detailed protocol capture
to reproduce the data reported in this manuscript.

F.2.1. Prediction of the secondary structure

The secondary structure of ExoU was predicted using PSIPRED and Jufo9D. Both approaches are
accessible through their respective webservers at http://bioinf.cs.ucl.ac.uk/psipred (PSIPRED) and
http://www.meilerlab.org/index.php/servers/show?s_id=5 (Jufo9D). The webservers require the primary
structure of the protein in question and the predictions’ output files for the topology search module.
From the output files, an SSE pool can be created using the BCL with the following command line:

bcl CreateSSEPool -ssmethods JUFO9D PSIPRED -pool_min_sse_lengths 5 3 -sse_threshold 0.5 0.5 0.5

-prefix <prefix> -join_separate -factory↪
The created SSE pool is a plain text file containing the start and end points (defined through their

sequence and chain identifiers) of predicted SSEs. Because the three secondary structure prediction
methods can produce conflicting results, the SSEs in the pool can be overlapping. The BCL::Fold
algorithm ensures, that overlapping predictions are not inserted at the same time.

F.2.2. Topology sampling

In a preparation step, The EPR-derived distance restraints have to be formalized in a BCL-readable
format like the following example, which defines two EPR-derived distance restraints:

Atom Distance Assigned

A 20 CB A 40 CB 26.4 100 1

A 56 CB B 61 CB 20.6 100 1

The list of restraints has to be preceded by the line Atom Distance Assigned. Following this line,
each line defines one residue-residue restraint. The residues affected by this restraint are identified
by their respective chain and sequence identifiers. The example above defines two restraints — one
intra-protomer restraint and one inter-protomer restraint.

After preparation of the restraint file and the SSE pool, the BCL can be used to predict the topology
of the protein. The algorithm BCL::Fold is part of the BCL and employs an MCM algorithm to sample
possible topologies. Knowledge-based potentials are used to approximate a topology’s free energy. For
the prediction of ExoU’s topology, the following command line was used:

ahttp://www.meilerlab.org/bclcommons
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bcl -stages_read stages.txt -restraint_types DistanceEPR -restraint_prefix <cst_prefix>

-protein_storage <output_folder> -prefix <output_prefix> -sequence_data <input_prefix> 3tu3

-sspred PSIPRED -opencl Disable -nmodels <num_models> -start_model <start_model>

↪↪
The flag for providing a start model, -start_model, was only set for the second iteration of the topology

sampling. The start models were the models selected through clustering (see section F.2.3) after the
first round of topology sampling. The stage file provided through the flag -stage_file configures the
MCM algorithm — it defines the number of MC steps to performs, which transformations to apply,
and which scoring terms to use. The format is shown in section F.2.5 on the next page.

F.2.3. Clustering of the sampled models

Clustering was performed using a k-means implementation in R100 in conjunction with using the
RMSD as dissimilarity metric. Once a matrix containing the pairwise dissimilarities between models
has been obtained, the clustering can be performed in R using the following sequence of commands:

# load libraries

library(cluster)

# load the dissimilarity matrix created with the BCL

data_mat <- as.matrix(read.table(”distance_matrix.tbl”, header = T))

# create a full matrix

data_mat <- data_mat + t(data_mat)

# convert into a dissimilarity matrix

data_mat <- as.dist(data_mat)

# cluster for k cluster centers

clusters <- pam(data_mat, k)

# display information about the clustering

clusters$clusinfo

# display cluster medoids

clusters$medoids

The silhouette score can be directly computed from the clusters object created above using the
command silhouette(clusters).

F.2.4. Loop construction and high-resolution refinement

The high-resolution refinement and loop construction using the CCD algorithm101 was performed
using the Rosetta software suite and can be repeated using the following command line:
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loopmodel -loops:frag_sizes 9 3 1 -loops:frag_files <fragments_9> <fragments_3> none

-loops:remodel quick_ccd -loops:refine refine_ccd -loops:extended -loops:relax fastrelax -ex1

-ex2 -database <database> -nstruct <num_models> -in:file:s <start_model> -loops:loop_file

<loops_file> -out:prefix <output_prefix> -constraints:cst_file <restraint_file>

-constraints:epr_distance -score:weights

↪↪↪↪
F.2.5. Configuration file for BCL::Fold

STAGE Stage_assembly_1

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_01.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_2

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_02.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_3

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_03.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_4

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_04.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END

STAGE Stage_assembly_5

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE assembly_05.scoreweights

MUTATE_PROTOCOLS Default Assembly

NUMBER_ITERATIONS 2000 400

STAGE_END
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STAGE Stage_refinement_1

TYPE MCM

SCORE_PROTOCOLS Default Restraint

SCORE_WEIGHTSET_FILE refinement_01.scoreweights

MUTATE_PROTOCOLS Default Refinement

NUMBER_ITERATIONS 2000 400

STAGE_END
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APPENDIX G
PROTONATION-DEPENDENT CONFORMATIONAL DYNAMICS OF EMRE

This appendix is based on the publication “Protonation-dependent conformational dynamics of the mul-
tidrug transporter EmrE”.7 It provides supplementary data and procedures for chapter VIII on page 111,
describing the conformational dynamics of EmrE as determined through SDSL-EPR spectroscopy.

G.1. Supplementary data

This section contains additional data describing the conformational dynamics of EmrE. Distance
distributions obtained through theDEER experiment detail the conformational dynamics in dependence
on the pH-value and substrate-binding.

Figure G.1.: Ligand-dependent conformational changes of EmrE in the loop regions (L1 to L4). Residue 107 is
not resolved in the X-ray structure.
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Figure G.2.: Equilibrium of EmrE. (A) pH-dependent conformational equilibrium of EmrE in nanodiscs andβ-DDM micelles. Distance distributions of the G26C pair were obtained at different pH-values ranging from 5.5
to 10.0 in β-DDM and 5.7 to 9.5 in nanodiscs (figure G.3 on the next page). The variation in population of rising
(𝑃1 + 𝑃2 + 𝑃4) or equally decreasing (𝑃3) distance peaks (middle panel) as a function of pH was used to estimate the
p𝐾a-value for conformational changes in EmrE. (B) Effect of protonation-mimetic mutation of acidic residues on
conformational states in equilibrium (β-DDM micelles). The single (E14Q) or double (E25Q/D84N) mutations were
combined with the single-cysteine mutations (see figure G.4 on page 201).
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Figure G.3.: pH-dependent conformational equilibrium of EmrE in nanodiscs and β-DDMmicelles. Distance
distributions of the G26C pair were obtained at different pH-values ranging from 5.5 to 10.0 and 5.7 to 9.5 in β-DDM
and nanodiscs respectively. In addition, distance distributions were obtained for the protonation-mimetic mutant
G26C E14Q in β-DDM at pH-values ranging from 5.5 to 9.0. The variation in population of rising (𝑃1 + 𝑃2 + 𝑃4) or
equally decreasing (𝑃3) distance peaks as a function of pH was used to estimate the p𝐾a-value for conformational
changes in EmrE. From bottom to top, primary DEER traces with the corresponding fits, baseline-corrected and
normalizedDEER traces alongwith the fits, distance distributions and the CW-EPR spectra as insets, and pH-titration
curves are shown. The E14Q mutation abrogates the pH-dependent changes in the amplitude of the distance
components.
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Figure G.4.: Effect of protonation-mimetic mutation of acidic residues on distance distributions in β-DDM
micelles. The single (E14Q, E25Q, D84N) or double (E25Q/D84N) mutations were combined with the single-cysteine
mutations.
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FigureG.5.: Comparison of the obtained experimental distances for the TPP-bound and protonated states with
distances predicted on the generated models. (A) Refined X-ray structure. (B) The symmetric protonated (pH 5)
model. The average distances (colored circles) were predicted at 298K using MMM 2013.2 software package.214
The color code is described in figure VIII.3 on page 117. (C) Ligand-dependent changes (TPP-bound to protonated)
in the experimental distances (red) vs. predicted ones on the TPP-bound and protonated models (royal blue). (D)Cα-RMSD between the refined TPP-bound X-ray structure and the symmetric protonated model is displayed by the
ribbon thickness on the refined X-ray structure.
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