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PREFACE

Avionics systems play a critical role in many aspects of aircraft flight control. As the com-

plexity of these systems increase, the chances of in-flight malfunctions are also likely to

increase. This drives the need for Integrated Vehicle Health Management (IVHM) tech-

nologies for flight-critical avionics. Studying and analyzing the performance degradation

of embedded electronics in the aircraft domain will help to increase aircraft reliability, as-

sure in-flight performance, and reduce maintenance costs. Further, an understanding of

how components degrade as well as the capability to anticipate failures and predict the

remaining useful life (RUL) can provide a framework for condition-based maintenance. To

support a condition-based maintenance and a safety-critical analysis framework, this the-

sis conducts a detailed study of the degradation mechanisms of electrolytic capacitors, an

important component of most electronic systems.

Electrolytic capacitors are known to have lower reliability than other electronic com-

ponents that are used in power supplies of avionics equipment and electrical drivers of

electro-mechanical actuators of control surfaces. Therefore, condition-based health assess-

ment that leverages the knowledge of the device physics to model the degradation process

can provide a generalized approach to predict remaining useful life as a function of current

state of health and anticipated future operational and environmental conditions.

We adopt a combined model and data-driven (experimental studies) approach to develop

physics-based degradation modeling schemes for electrolytic capacitors. This approach pro-

vides a framework for tracking degradation and developing dynamic models to estimate

the RUL of capacitors. The prognostics and RUL methodologies are based on a Bayesian

tracking framework using the Kalman filter and Unscented Kalman filter approaches.

The thesis makes contributions to physics-based modeling and a model-based prog-

nostics methodology for electrolytic capacitors. Results discuss prognostics performance

metrics like the median relative accuracy and the α-λ (alpha-lambda) accuracy. We have

also demonstrated the derived physics-based degradation model is general, and applied to

both accelerated and nominal degradation phenomena. Our overall results are accurate
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and robust, and, therefore, they can form the basis for condition-based maintenance and

performance-based evaluation of complex systems.
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CHAPTER I

INTRODUCTION

Most devices and systems today contain embedded electronic modules for monitoring, con-

trol and enhanced functionality. However, these modules may contain components that

have higher failure rates than the other electronic components [1,2] thus affecting the overall

operational functionality and reliability of the system. These component failures can be at-

tributed to adverse operating conditions, such as high temperatures, voltage surges and cur-

rent spikes [3,4]. Studying and analyzing the degradation of these systems (i.e.,degradation

in performance) will help us meet a number of safety critical goals that include :

1. advance failure warnings;

2. better detection of degradation, therefore, the ability to minimize unscheduled main-

tenance, and

3. extend regular maintenance cycles through tolerance and repair action;

4. better understanding of component behaviors under different operating conditions,

thus decreasing inspection costs, downtime, and inventory for replacement parts re-

sulting in reduced life cycle costs; and

5. improved incident and system qualification, leading to better logistical support of

fielded systems and better design of future systems.

In the rest of the chapter, we first describe the motivation for our work, followed by the

specific research objectives. We then describe the specific contributions of the dissertation,

and conclude with the organization of the thesis work.

Motivation

In safety critical domains, such as aircraft operations, flight and ground staff need to acquire

information regarding the current health state for all subsystems, such as the structures,
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propulsion, control, guidance and navigation systems of the aircraft on a regular basis to

maintain safe operation. This has given rise to research projects that focus on accurate

diagnosis of faults, developing precursors to failure, and predicting remaining component

life [5, 6]. Most avionics systems and subsystems in modern aircraft contain significant

electronic components, which perform a critical role in on-board, autonomous operations

for vehicle controls, communications, navigation and radar systems. Future aircraft systems

in an attempt to reduce weight and fly in a more autonomous manner, will rely on a great

number of electric and electronic components. This may also increase the likelihood of

electronics related faults in these systems, with perhaps higher unanticipated fault modes

that will be hard to detect and isolate. It is very important to develop methodologies

for system health awareness in aircraft systems, to improve aircraft reliability, assure in-

flight performance, and reduce maintenance costs. To achieve this, we need to develop an

understanding of how components degrade and use these methods to anticipate failures and

predict the remaining useful life of electronic components [5, 6].

In the past, reliability based methodologies have been implemented for making health

assessment of the systems. Reliability is the ability of a system to operate within specified

performance limits without failing for a pre-specified period of time. Traditional reliability

prediction methods have been applied to electronic systems [7–10]. These data driven meth-

ods rely on a collection of failure data, and the general assumption is that the components

in a system have specified failure rates (assumed to be constant) that can be modified to

take into account varying quality, operating, and environmental conditions. There are well-

documented concerns of this type of analysis [11–14]. The general consensus is that data

reported in handbooks should not be used for prognostics, because they represent average

conditions and it is not conditions based, hence are inaccurate when predicting actual field

failures [12, 15]. Therefore, alternate methods should be developed for making prognostics

predictions for electronics systems.

Some of earlier efforts in diagnostic health monitoring of electronic systems and subsys-

tems involved the use of a built-in test (BIT), defined as an on-board hardware-software

diagnostic tests to identify and locate faults. In addition to a test, a BIT can consist of cor-

rection circuits, self-checking circuits, and self-verification circuits [15]. Two types of BIT
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concepts are employed in electronic systems: interruptive BIT (I-BIT) and continuous BIT

(C-BIT). The concept behind I-BIT is that normal equipment operation is suspended dur-

ing BIT operation. The concept behind C-BIT is that equipment is monitored continuously

and automatically without affecting normal operation. But the use of this method also

has several limitations. Studies [16,17] conducted on the use of BIT methodology for fault

identification and diagnostics showed that they can be prone to false alarms and can result

in unnecessary costly replacement, re-qualification, delayed shipping, and loss of system

availability. BIT concepts are still being developed to reduce the occurrence of spurious

failure indications [18]. The persistence of such issues over the years is perhaps because

the use of BIT has been restricted to low-volume systems. In general, BIT methodologies

have not been designed to provide prognostics or remaining useful life due to accumulated

damage or progression of faults. Rather, it has served primarily as a diagnostic tool.

The term “diagnostics” relates to the ability to detect and isolate faults or failures in a

system. “Prognostics” on the other hand is the process of predicting health condition and

remaining useful life based on current state, previous conditions and future operating condi-

tions. Prognostics and health management (PHM) is a method that permits the assessment

of the health of a system under its actual application conditions. PHM methods combine

sensing, data collection, interpretation of environmental, operational, and performance re-

lated parameters to indicate systems health. PHM methodologies can be implemented

through the use of various techniques that study parameter value changes, which can be

considered to be indicators for:

• Performance degradation, such as the deviation of operating parameters from their

expected nominal values, causing the performance of the system to deteriorate grad-

ually.

• Changes operation profile, such as usage duration and frequency, ambient temperature

and humidity, vibration, and shock. In other words, the components or systems may

be operated beyond their specified operating regions, causing faster than expected

degradation.

3



Prognostics and Health Management methodologies have emerged as one of the key en-

ablers for achieving efficient system level maintenance as part of a busy operations schedule,

and lowering overall life cycle costs in military systems [5, 18]. PHM is also emerging as a

high-priority issue in space applications, where the focus is on conducting fundamental re-

search in the field of integrated systems health management (ISHM). This includes design of

health management systems, selection and optimization of sensors, in-situ monitoring, data

analysis, prognostics, and diagnostics to ensure safety and reliability of missions. Presently,

innovative work is carried out in the area of power semiconductor devices (investigation of

the effects of aging on power semiconductor components, identification of failure precursors

to build a physics based model [5, 19], and development of algorithms for end-of-life pre-

diction), batteries (algorithms for batteries prognosis) [20], flight actuators (modeling and

development of algorithms for estimation of remaining life) [6], solid rocket motor failure

prediction, rocket fueling pumps [21] and aircraft wiring health management [5, 22].

Prognostics and health management for electronic systems aims to detect, isolate, and

predict the onset and source of system degradation as well as the time to system failure.

The goal is to make intelligent decisions about the system health and to arrive at strategic

and business case decisions. As electronics become increasingly complex, performing PHM

efficiently and cost-effectively is becoming more demanding [18].

The development of prognostics methodologies for the electronics field has become more

important as more electrical systems are being used to replace traditional systems in sev-

eral applications in the aeronautics, maritime, and automotive fields. The development

of prognostics methods for electronics presents several challenges due to the great variety

of components used in a system, a continuous development of new electronics technologies,

and a general lack of understanding of how electronics fail. Traditional reliability techniques

in electronics tend to focus on understanding the time to failure for a batch of components

of the same type by running multiple experiments and making probabilistic estimates from

the accumulated data. Recently there has been a push to understand, in more depth, how

faults progress as a function of loading and environmental conditions. Furthermore, just

until recently, it was believed that there were no precursor to failure indications for elec-

tronics components and systems. That is now understood to be incorrect, since electronics
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systems, much like mechanical systems, undergo a measurable wear process from which one

can derive features that can be used to provide early warnings of failure. The indications

of degradation caused by the wear can be detected fairly early, and by modeling the pro-

cess, one can potentially predict the remaining useful life as a function of future use and

environmental conditions.

Avionics systems perform critical functions on aircraft greatly escalating the ramifica-

tion of an in-flight malfunction [23, 24]. These systems combine physical processes, com-

putational hardware and software; and present unique challenges for fault detection and

isolation. A systematic analysis of these conditions is very important for analysis of air-

craft safety and also to avoid catastrophic failures during flight. Power supplies are critical

components of modern avionics systems. Degradations and faults in the DC-DC converter

unit propagate to the GPS (global positioning system) and navigation subsystems affecting

the overall operations of the aircraft. Some of the more prevalent fault effects, such as a

ripple voltage surge at the power supply output can cause glitches in the GPS position and

velocity output, and this in turn, if not corrected can propagate and distort the navigation

solution.

Problem Statement

Prognosis methods have been widely used in medical practice to discover the probable cause

of a disease and predict its eventual consequences [25]. In engineering domains, a lot of work

in PHM has also been done in the area of mechanical and structural systems [18]. PHM

algorithms have also been implemented in economic markets and weather forecasting [22].

Safety critical mechanical systems and structures such as propulsion engines, aircraft struc-

tures, bridges, buildings, roads, pressure vessels, rotary equipment, and gears have benefited

from advanced sensor systems developed specifically for in-situ fault diagnosis (condition

monitoring), and health and usage monitoring [26–30]. As a result, a considerable body

of knowledge exists on prognostics and health management of mechanical and structural

systems, with research conducted in establishing failure precursors (such as changes in vi-
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bration signatures of roller bearings and variations in acoustic levels due to wear) and

developing reasoning algorithms to detect and compute the extent of degradations [1, 27].

Prognostics failure predictions have to be accurate, if they are to be used in taking

decisions in repair, replacement or some adaptive control scheme of components and sub-

systems. Detailed examinations of actual parameter variations and degradation process

should be understood and interpreted using physics-based degradation models so that the

results can be generalized and applied across systems. Pure data driven approaches have

the disadvantage of not generalizing to similar components made by different manufactur-

ers, or analyzing component degradation under different operating conditions. It is difficult

to quantify product degradation and the progression from degradation to complete failure

by pure data-driven methods [31].

The inability to accurately identify failure mechanisms in prediction models often re-

sults in inaccurate remaining useful life estimates, unnecessary complexity and lowered

cost effectiveness. Consequently, it can be difficult to implement diagnostic and prognostic

methodologies that can directly monitor the faults or conditions, which occur in electronic

systems, particularly at the component level. The major elements of the prognostic pre-

diction process involve envournmental conditions, various stressors, device manufacturing

standard, and similar considerations.

The problem addressed in this research applies effective PHM methodologies to elec-

tronic devices and systems, an area that has not been studied in as much detail as mechan-

ical systems and structures. Degradation in electronic components is difficult to detect and

characterize because of the complexities in developing degradation models of electrical and

electronic phenomena, and the complex interactions electronic components have with the

rest of the system. In many cases, degradation of a single component in a electronic system

may lead to failure or loss of designated electrical performance, and it may be difficult to

quantify product degradation based on the precursors to isolate the degrading component

and the progression from degradation to complete failure. Lack of accurate identification of

failure mechanisms in the prediction models often results in making inaccurate remaining

useful life predictions [31].
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Goals

The research work focuses on developing and implementing effective diagnostic and prognos-

tic methodologies, that includes the ability to detect degradation in electrical and electronic

components through failure precursors in the system. The main goals and problems that

we address in this thesis research include -

1. Developing models for fault detection and isolation methods;

2. Detailed physics-based component degradation dynamic models to track changes in

behavior and performance of the components projected at the system level;

3. Methodology to make accurate predictions of remaining useful life based on the derived

degradation models or time to failure of components to impact maintenance and cost

decisions.

This research work is directed towards studying and implementing PHM methodologies

to electronic components. Specifically as a case study we use DC-DC converters in avionics

systems of aircrafts as an motivating examples and case study. Capacitors and metalox-

idesemiconductor field-effect transistor(MOSFETs) are the two major components, which

cause degradation and failures in DC-DC converters [32]. Capacitors are used as filtering

elements on power electronics systems.

Low reliability and their criticality in avionics systems makes electrolytic capacitors im-

portant candidates for a health management solution. In addition to this, degradation at

component level could lead to cascading faults at sub-system and system level. In order to

mitigate the effects of capacitor failures in critical to safety systems, we introduce here, a

condition-based prognostics methodology. This methodology provides the ability to identify

degradation effects and to estimate the remaining useful life of the components periodically.

This method will further allow for prognostics-based decision making for optimal mainte-

nance scheduling of the system or for implementation of mitigation strategies in case of

contingencies during operation.
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Research Challenges

The modeling methodology in our work is based on the premise that degradation leading

to failures in components is a result of fundamental mechanical, chemical, electrical, and

thermal phenomena that can be represented by physics-based degradation models evolved

from the first principles of the component. The objective of physics-based degradation mod-

eling methodology in implementing a PHM process is to calculate the cumulative damage

due to various failure mechanisms for a system operating in typical environments, and be

able to make accurate predictions based on current state and previous operating conditions.

This approach to implementing the degradation models for PHM can be derived based on

different failure modes. A failure mode is defined as the effect by which a failure is observed

to occur [33]. It can also be defined as the way in which a component, subsystem, or system

could degrade over time and eventually fail to deliver the intended operational functionality.

All possible failure modes of interest for each identified element should be listed and mod-

eled independently [34]. Generally, potential failure modes can be identified using available

underlying structure, material physics, material properties, first principles of operation,

operational data, monitoring degradation in devices, running accelerated life testing and

collecting degradation data, and Failure mode and effect analysis (FEMA) methods [33].

Design capture is the process of collecting structural (dimensional) and material infor-

mation about a product to generate a model. This step involves characterizing the product

at all levels, that is, parts, systems, and physical interfaces [34]. The potential failure iden-

tification step involves using the geometry and material properties of the product, together

with the measured life-cycle loads acting on the system based on the experimental data,

to methodically identify the potential failure modes, mechanisms, and failure sites in the

system or a particular component [35]. A load-stress analysis is conducted using material

properties, operating conditions and the operating life-cycle loads. With the computed

stresses and the failure models, an analysis is conducted to determine the cycles to failure

and then the accumulated damage is estimated using a damage model. Studying the dy-

namics of the device is the key in developing the degradation models from first principles

of operation. Developing degradation models from the underlying first principles gives the
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most accurate behavior of the device under varying operating conditions and a good pre-

diction estimate of degradation parameters in the device. The physics-based degradation

modeling methodology could provide a systematic approach to reliability assessment early

in the design process [34].

Even though there are advances in certain areas related to prognostics, many challenges

still remain. The key issues with regard to implementing PHM methodologies for a com-

ponent/system includes decisions related to, system parameters to monitor, selection of

sensors to monitor parameters, power supply for sensors, on-board memory for storage of

sensed data, in-situ data acquisition, and feature extraction from the collected data. One

of the critical task of implementing PHM methodology is tracking the degradation based

on the developed models. Getting information and developing models from one component

/system and implementing it onto other could be hard, especially when the systems are

made by different vendors [18, 36] and hence condition based monitoring becomes very es-

sential for implementing PHM methods. It is further a challenging task of projecting the

developed physics-based degradation models to predict the RUL of a device and the overall

system performance. Accurate prognostics predictions are very important to demonstrate

economic effectiveness of PHM methods through condition based maintenance, losses due

to down time.

Organization

Chapter II presents a literature review and overview of the concept of prognostics and health

management. First, we introduce Prognostics and Health Management methodologies and

their general application in prognostics. Then, we discuss the model based, data driven

and probabilistic methodologies to PHM. Since our work is more focused on electrical and

electronic systems we further discuss in detail the application of PHM methodologies to

electronics. We implement a physics-based degradation approach to prognostics and the

rest of the chapter discusses the background, conceptual models implemented and the failure

mechanisms observed in electronics prognostics.
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Chapter III presents the case study for avionics systems. This research is conducted at

the system level, which includes avionics systems components like Global Positioning System

(GPS), Inertial Navigation (INAV) System and power supply. Models were developed for

each of the system and we implemented a fault detection and isolation methodology for the

overall system. The chapter discusses each of the model in detail with the fault simulation

and diagnosis work. Some interacting faults were studied between the DC-DC converters,

GPS and INAV the results of which are discussed in the chapter. Since our work was more

focused on DC-DC power converters we discuss the modeling of DC-DC converters using

bond-graph models and fault detection and isolation using model based methods.

Chapter IV presents the approach for building physics-based degradation models for

electrolytic capacitors. The models were verified using accelerated aging data as well as

nominal degradation data for capacitor components in the DC-DC converters. In particu-

lar we conducted three sets of experiments i.e., nominal, thermal and electrical overstress

experiments. These are introduced in this chapter while the details of the experiments and

results are discussed in the respective chapter later in the work. This chapter summarizes

the overview of the research work.

Chapter V discusses the detailed study for deriving the physics based degradation models

of electrolytic capacitors. We first, discuss the basic structure of an electrolytic capacitor

and the different degradation mechanisms. Each of the underlying phenomenon leading to

degradation is explained and its link to the degradation process. Based on the degradation

mechanisms the physics-based models are developed. A step by step method implemented

for deriving the degradation models for the failure precursors capacitance (C) and equivalent

series resistance (ESR) is explained. The chapter ends with deriving the time dependent

degradation models to be implemented in a Bayesian framework.

Chapter VI presents the work on electrical overstress experiments. We discuss the

degradation phenomenon under electrical overstress and link them to the precursors to

failure. An electrical experimental setup was developed for this experiment and we describe

this complete setup along with details of boards designed and instruments used. Based on

the degradation data our first approach was to implement an physics inspired empirical

model based on the experimental data. We present the derived model and the prognostic
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and validation results for the model. We further discuss the physics-based degradation

model derived and implemented in a Bayesian framework. The prognostics and validation

results are presented for the derived degradation model.

Chapter VII presents the work on thermal overstress experiments. First, we discuss the

degradation phenomenon under thermal overstress conditions. We then present the method-

ology for deriving the physics-based degradation models based on the discussion in Chapter

V along with the thermal overstress experiment setup. As initial part of the research work,

we derived a electrolyte degradation model which is discussed along with the development

of the model and results. The next step was to derive a physics-based degradation model

and since this was the first data set use for the model we first implemented a Kalman

Filter approach keeping most of the parameters constant. We discuss the approach taken,

steps involved in deriving the model and the results. The model was updated to estimate

some the critical degradation parameters to be estimated online based on the state. An

Unscented Kalman Filter was used for the updated model which gave better results. The

prognostics results and the validation tests are discussed in the concluding sections.

Chapter VIII presents the work related to nominal degradation experiments. Under

different conditions the underlying degradation phenomenon changes leading to different

parameters being degraded. First, we discuss the underlying degradation phenomenon for

nominal degradation. The later part of the chapter discusses the experimental setup, data

and the derived models. We also present our results for the work done based on the nominal

degradation data.

Chapter IX summarizes the contributions of this dissertation. We then point out the

current limitations of the approach, and describe directions in which this work may be

improved in the future.
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CHAPTER II

LITERATURE SURVEY

The term prognosis has been used widely in medical practice to imply the foretelling of

the probable course of a disease [25]. In the industrial and manufacturing areas, prognosis

is interpreted as the methodology to predict the remaining useful lifetime of a machine or

a component once an impending failure condition is detected, isolated, and identified [36].

If a fault can be detected early, before its effects propagate and affect other components,

then only the degraded components (e.g., a capacitor, or a transistor) needs to be replaced.

Higher severity levels of faults in components may require the entire subsystem(e.g., a Power

Supply to be replaced. Often, severe and complete failures in components may also cause

damage to adjoining components and subsystems(e.g., a capacitor failure may cause high

ripple currents that causes downstream subsystems, such as the GPS and INAV of the

avionics system to fail). It is clear that predictions about fault severity and impending fail-

ures are essential to maintaining reliability of system operations and the overall safety of the

system. Prognostics methods have been applied for forecasting the future states of a system

in a large number of disciplines from business and finance to weather predictions, among

many others. It has also attracted a lot of interest among researchers and practitioners

recently [18,36].

Introduction to Prognostics

Prognostics and health management methodologies evaluate remaining useful life of a sys-

tem under actual usage conditions [37]. In particular, ‘prognostics’ covers the process of

predicting future system states based on the past operations, current conditions and an-

ticipated future operation. Overall PHM is directed towards achieving multiple practical

goals, such as systems safety, reductions in operational and support costs, maintenance

costs, and the life cycle total ownership costs [18, 27]. For safety critical systems, which

require constant monitoring of the systems and its components, prognosis methods plays
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a very important role in early detection of component degradation, which in turn plays a

key role in predicting the evolving conditions of the components. This in turn helps make

important performance related decisions about the subsystem or system which can then

influence maintenance decisions by tracking components as they reach limits of their useful

life cycle. Diagnostic systems assist the predictive process by providing the initial detection

and isolation capabilities [27,37].

Prognostics is broadly defined as the detection of a failure precursor followed by the

prediction of remaining useful life (RUL). For end-of-life predictions of critical systems, it

becomes imperative to establish high confidence in the prognostic conclusions before incor-

porating their predictions into the decision-making process [18]. The aerospace industry,

one of the major users of PHM technologies, is leading significant research and development

activity in prognostics related to aircraft systems [6,22]. Health inspections and monitoring

spacecraft and aircraft systems are often difficult and costly, often because relevant sensors

cannot be installed at the right places [37–39]. However, in aircraft systems consequences

of a premature failure can be catastrophic. Therefore prognostics methods have been devel-

oped for monitoring the condition of aircraft structures, avionics systems, wiring, control

actuators, power supplies, and propulsion systems. Prognostic functionality is also being

incorporated into the health management systems of the latest military aircraft [40] and

civilian aircraft, in order to reduce the overall life-cycle cost and improve flight readiness.

However as discussed earlier, prognostics studies and applications to electronics compo-

nents and subsystems are currently less advanced than the work being done in prognostics

of mechanical systems [22,37,39].

Electronic components such as power amplifiers, power converters, electronic control

units, and avionics present substantial challenge to applying PHM methodologies [36, 39,

41, 42]. Normally system engineers use the failure rates of electronic systems from labora-

tory test data, which is used to define mean time between failures (MTBF) [36]. Empirical

analysis of electronic components has shown to exhibit typical failure behaviors that can

be represented as a bathtub curve [42, 43] which show a the apriori statistics over a large

population of components(and should not be confused with prognostics). The conventional

assumption is that the overall manufactured batch of the electronics components manufac-
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tured, have constant (and low) failure rates for most of their installed life, after they have

gone past the initial period of possible infant mortality.

Electronic systems are continually evolving, and the life cycle of some computer chips

and other components typically is only 3 to 5 years [1, 18, 36, 43]. It is possible that some

failure modes may occur only as a small fraction of the entire system and subsystem com-

ponent failures, making it very difficult to apply the typical data driven methodologies of

diagnostic and prognostic processes [1, 18, 31]. Therefore, design analysis at the beginning

of system design should examine these factors to ensure that the optimal balance of tech-

nology upgrades and prognosis is achieved [1, 18]. Next we discuss some of the prognostic

methods used for studying and analysis of system and subsystem degradation.

Prognostics Methods

A number of different methods have been applied to study prognosis of degraded compo-

nents. In general, prognostics approaches can be classified into three primary categories: (1)

model based techniques, (2) data driven and (3) Hybrid approaches, which combine both

data-driven approaches as well as model-based approaches. Fig. 1 summarizes the range of

prognosis approaches applied to different systems and their relative cost for implementation

and operation.

Model Based Prognostic Approach

Model based prognostic techniques use analytic and/or physics-based models of the degra-

dation phenomenon to predict the dynamics and degradation in system behavior. These

approaches apply to situations where accurate mathematical models of system behavior can

be constructed from first principles [45,46]. Model-based methods assume that the system

is represented as a model. Adams [49] proposed to model damage accumulation in a struc-

tural dynamic system as first/second order nonlinear differential equations. Chelidze [50]

modeled degradation as a slow-time process, which is coupled with a fast-time, observable

subsystem. The model was used to track battery degradation (voltage) of a vibrating beam

system. The main advantage of model-based approach is the ability to incorporate physical
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Figure 1: Approaches to Implement Prognostic Methodologies

understanding of the system to monitoring. Another advantage is that, in many situations,

the changes in feature vector are closely related to model parameters [51]. Therefore, it

can also establish a functional mapping between the drifting parameters and the selected

prognostic features. Moreover, if understanding of the system degradation improves, the

model can be adapted to increase its accuracy and to address subtle performance problems.

Consequently, it can significantly outperform data-driven approaches. Work by [21,138] dis-

cusses prognostics methodologies implemented in valves, [20] discusses the implementation

of prognostics methodologies to lithium-ion batteries.

However, developing complete and accurate state space models of the degradation pro-

cess in a complex system may be practically infeasible. Statistical models of historical

operational profiles, represented as standard probability density functions (pdf), can com-

pliment physics based models for calculating future damage accumulation. The results

from such models can be used for real-time failure prognostic predictions with confidence

bounds [36]. Physics-based modeling methodologies provide mechanisms for calculating the

rate of degradation and resultant damage in critical components of the system as a function

of the operating conditions and the present state [45,52].
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Data Driven Approach

Data-driven techniques primarily rely on process health data to model a relationship be-

tween the data features and different fault and degradation phenomenon. Typically such

techniques drive probability distributions of the degradation process from available data [47].

The data is gathered using specific sensors that are tailored to capture faulty behavior in

the system requirements. In many applications, measured input/output data are often the

only source for studying and understanding system degradation behavior [53, 54]. Data-

driven approaches rely on the assumption that the statistical characteristics of data change

from nominal to degrading and this can be reliably detected by statistical hypothesis test-

ing [47,55].

Many data-driven approaches use statistical learning techniques derived from patten

recognition and machine learning methodologies. These include probabilistic neural net-

works [56], dynamic wavelet neural networks [57], graphical Bayesian network models [58,

59], hidden Markov models [60], self-organizing feature maps, signal analysis filters, auto-

regressive models, and fuzzy rule-based systems [47, 53]. Typically data driven approaches

have higher accuracy and computational cost as compared to the reliability based tech-

niques, but they may be more cost effective and less accurate as compared to model driven

approaches [61]. When additional sensors need to be added to gather more data, data

driven techniques can be become expensive, especially for legacy systems [28,36].

In the electronics industry, Health Monitoring (HM) and Electronics Prognostics (EP)

methods have been implemented to allow the identification of faults and failures in systems

during normal operating conditions [62]. HM and EP methods consist of the continuous

monitoring of a systems operating environment and performance to determine deviations

from expected normal operating conditions. The data collected through this monitoring

makes it possible to obtain estimates of the product reliability, execute proactive main-

tenance activities, increase product availability and prognostics. Some of the methods of

electronic prognostics were developed by Sun Microsystems for their enterprise servers [63].

These methods included Principles of Continuous System Telemetry Harness, Sequential
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Probability Ratio Test, and Multivariate State Estimation Technique as pertaining to EP

applications [64,65].

The practice of monitoring the health of a system entails understanding or learning

about health-versus-unhealthy system behavior. Predicting future behavior is tied to the

ability to learn from the past. In this regard, the field of machine learning is appropriate

for data driven approaches to PHM. Learning algorithms can be combined to increase the

efficiency and effectiveness of the estimated distributions. In combination with numerical

optimization, statistics and probability are used to make decisions about current and future

system health based on the data. Machine learning methods extract relevant data to explain

the trends and characteristics of system health in such a way as to make statistical and

probabilistic estimates more accurate. The major focus of machine learning research is

to extract information from data automatically by computational and statistical methods,

then apply supervised and unsupervised learning methodologies [18].

Combined statistical and data driven methods that rely on historical data of previous

failures in the given system is another approach that is often applied for prognostic anal-

ysis [36]. Starting with the assumption that the statistical distribution is known, the data

may be used to derive the parameters of the known pdf function. If no assumptions are made

about the degradation distribution, the data may be employed to derive an empirical distri-

bution. These combined methods are often more effective because they require less detailed

information than the differential equation models used in model-based techniques [36]. The

pdfs of the captured data typically are sufficient to predict required parameters of interest

for prognosis. Statistical methods also provide confidence limits, which are important for

confirming the accuracy and precision of the predictions.

Electronics Prognostics Methods

A method for Electronic Prognostics (EP) in computer systems was introduced in 2001 by

Gross [71] and his team of researchers at Sun Microsystems . This approach circumvents

many of the deficiencies of traditional HM and EP methods that were previously discussed,

providing the tools needed to capture relevant system data and identifying signal patterns,
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correlations between signals, and root causes of failures, effectively reducing no-trouble

found instances and increasing Reliability, Availability and Serviceability (RAS). The EP

approach consists of a Continuous System Telemetry Harness(CSTH) coupled with real-time

pattern recognition algorithms [71,72].

The CSTH enables the capture, conditioning, synchronizing, and storage of computer

system telemetry signals, which allows the subsequent statistical analysis of data [73]. The

CSTH categorizes the information provided by the server into three different kinds: soft

variables, canary variables, and physical variables. Soft variables (internal variables) are

values generated by the operating system which provide information on the performance

of the hardware [73]. Canary variables are values generated by software programs (other

than the operating system) which provide information on the quality of the service, such

as number of transactions per minute, service availability, user wait times, etc. Physical

variables are direct measurements made in the system by means of sensors, such as temper-

ature, voltage, current, vibration, fan speed, and relative humidity. All of these variables

originate from multiple locations, formats, time stamps, sampling frequencies, and signal

resolutions [72,73].

The analysis of signals obtained by the CSTH is done by means of pattern recognition

algorithms. The first of these is the Sequential Probability Ratio Test, and the second

is the Multivariate State Estimation Technique [72, 73]. Statistical analysis methods were

implemented with the CSTH for the monitoring of signals in computer systems. The work

by Gross [72, 73] discusses the the application of these algorithms to enable Electronic

Prognostics in enterprise servers.

Physics-Based Reliability Modeling

Physics-based modeling (PBM) approach to prognosis, attempts to model failure mecha-

nisms based on the first principles of operation,using principles of physics, as opposed to a

traditional approach of using models based on empirical data. Physics-based modeling tech-

niques can be very effective for estimating lifetimes due to specific failure mechanisms [74].

The fact that a degradation/failure rate can be predicted for a given part under a specific
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set of conditions does not imply that a failure rate is an inherent quality of a part [75, 76].

The failure rate depends of the present health of the device/system and the conditions un-

der which it will be operated and suppose to operate for which the prognostics predictions

are done [18]. Therefore to apply PBM techniques accurately, one must take into account

environmental variables and operating conditions.

In critical systems such as aircraft, manufacturing processes or any other complex sys-

tem, defect initiation and propagation must be estimated for effective fault prognosis. Dy-

namic models of fault propagation and failure can be derived by using principles of physics.

Recent studies in materials research have focused on microstructural characterization ma-

terials and modeling frameworks that describe robustly and reliably the anomaly initiation

and propagation as a function of time [77]. Such models addressing the constitutive material

properties down to the single particle level generally are not suitable for realtime treatment

owing to their immense computational complexity. Combined models, called lumped mod-

els, usually are derived from the microstructural characterizations so that they may be

used to estimate in almost real-time the failures in a system or subsystem. For example,

crack initiation and propagation models must account for variations in temperature, cycle

frequency, stress ratio, sustained load hold time, and interactions of damage mechanisms

such as fatigue, environment, and creep [66,78].

On the other hand PBM methodology is incorporated into the design process by es-

tablishing a scientific basis for evaluation new materials, structures, and electronics tech-

nologies. Information to plan tests, maintenance screening and to determine electrical and

thermal-mechanical stress margins are identified by the approach [74]. The PBM approach

encourages innovative, cost-effective design through the use of realistic reliability assess-

ment. It is equally important to understand how equipment works and fails in the environ-

ment for which it is expected to operate. Factors, such as temperature cycling, vibration,

humidity, and radiation cause stress, which leads to failure of the component in the sys-

tem [74]. PBM tools model the stress-failure relationship for the dominant environmentally-

induced failure mechanisms. Once these relationships are developed, the expected remaining

useful life of the system/subsystem can be computed. The prime focus with development
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in these types of models is to quantify the unknown and uncertain events and operating

conditions [79,80].

Physics-based Reliability Modeling under Accelerated Testing

Rapid advances in technology, coupled with the relentless drive to remain competitive in

world markets, are motivating the electronics industry to focus on effective reliability ver-

ification and enhancement techniques [76, 79]. The process begins with a thorough under-

standing of the failure mechanisms that can occur in electronic systems and sub-systems.

Effective measures can then be taken not only to prevent their manifestation under life-

cycle stresses, but also precipitate them in a controlled manner during accelerated stress

testing (AST) [80]. Accelerated stress testing has been recognized to be a valuable activity

to assess the reliability and quality of electronics in a timely manner. Accelerated stress

tests are often carried out under increased or exaggerated environmental conditions to en-

hance the damage accumulation rate due to any physical or environmental phenomena in

the product [81].

In traditional accelerated testing techniques , root-cause identification and analysis is

not adequately emphasized. In the physics-based modeling approach understanding of the

underlying failure mechanisms is essential for designing and conducting successful acceler-

ated tests [74, 81]. The amount of test-time compression achieved in an accelerated test

must be determined quantitatively. This can be achieved only through understanding the

underlying physics of the relevant failure mechanisms, and can lead to break-through in the

following:

• Reducing the product development cycle time

• Increasing confidence in products life-time reliability

• Controlling manufacturing variabilities

The electronics industry has not yet achieved the required maturity in adopting a

physics-based modeling methodologies using AST standards [76, 79]. Research is focused

more on conducting accelerated testing under combinations of multiple stresses, to enhance
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test time compression [80]. This has only served to increase the confusion in the literature,

in standards, and in industry, regarding the most cost-effective and scientific way to conduct

accelerated stress testing for electronic assemblies. Researchers agree that PBM principles

hold the greatest promise of providing a systematic approach to plan, conduct, implement

and evaluate accelerated life tests, especially under combined environments where synergis-

tic effects of different environmental loads could be of high significance [74,76,80].

The first step is to determine the sources of reliability risks under life-cycle loads by iden-

tifying the potential weak-links and dominant failure mechanisms associated with the ap-

plication. While general-purpose software, such as Ansys, Abaqus, FloTherm and IcePack,

are used to evaluate stress within electronic assemblies, time constraints tend to prevent

analysis of individual parts and components [76,79]. Further, stress simulations alone do not

reveal product reliability. Significant time savings can be realized when engineers develop

a flow-through process of life-cycle characterization, product modeling, load transforma-

tion, and failure assessment to qualify electronic systems. This process is termed virtual

qualification. The three main activities for deriving physics-based models include:

• Understanding the hardware configuration,

• Determining the product life-cycle loads for each potential failure site,

• Performing an initial assessment of the potential failure modes of the device. The

output of this step is ranking of the potential weak-links expected under life-cycle

load.

The key activity in implementing PBM methodology involves stress analysis tests to

determine how the applied life-cycle loads (electrical, thermal, mechanical and chemical)

are transmitted and distributed throughout the electronic assembly [80, 82]. In the next

step, the stress fields are used to identify where the failure might occur (failure site), the

failure mode, and what the underlying root cause might be (failure mechanism). After

the failure mechanisms have been identified, the relevant failure mechanism models are

employed to predict the remaining useful life of the system. If no theoretical models are

available, semi-empirical models are developed using statistically designed experiments [74].
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The designed experiments are used to identify critical design factors and stresses gov-

erning failure, and to identify mathematical relationships relating the dominant factors to

reliability measures. Variability in the factors is specified using statistical distribution func-

tions. Variations in material properties and geometry due to manufacturing variability and

defects are addressed at this juncture. The PBM approach can be used to qualify nominal

design and manufacturing processes and to conduct design trade-offs to ensure that the

product has adequate stress margins and meets or exceeds reliability targets. During the

products development cycle, PBM is often employed to establish robust controls as a means

of continuously monitoring and improving quality from early prototype fabrication through

final manufacture.

Conceptual Models of Failure

Hansen in his work on PBM [74, 80, 83] defines conceptual models for degradation and

failures. Failures are due to a complex set of interactions between stressors that act on

and within the system; and the materials that the system is comprised of. Three simple

conceptual models of failure are defined. The first two are due to irreversible material

damage while the third is caused by reversible changes in material properties.

1. Stress-Strength: A material fails when the stress exceeds the strength. Strength is

treated as a stochastic (random) variable and failure depends on the occurrence of

critical events rather than mere repetition of cycles, i.e., electrical overstress of a

transistor with a voltage applied across the emitter-collector; and thermal overstress

in a polymer beyond glass transition temperature.

2. Damage-endurance: Stress events cause damage that accumulates irreversibly and

failure results when and only when damage exceeds the endurance limit of the mate-

rial. Accumulated damage does not appear when the stresses are removed, although

sometimes annealing and healing of materials can occur i.e. electromigration.

3. Performance-tolerance: A system performance characteristic is satisfactory if it re-

mains within the specified tolerances i.e. excessive propagation delay in integrated
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circuits at high temperature, excessive thermal transients due to inadequate diffusiv-

ity.

Failure Mechanisms

Failure mechanisms are the fundamental thermodynamic processes by which stresses cause

damage to elements comprising the system, ultimately leading to failure that can be ex-

plained by by one or more of the conceptual models [80,83]. PBM design guidelines, which

emphasize the understanding of potential failure mechanisms, are more effective if quanti-

tative models can be developed to describe the relevant failure mechanisms. It is necessary

therefore to identify the failure mechanisms that could be activated by the applied stresses

during the life-cycle of the system [74, 82]. Failure mechanisms are mainly divided into

two major groups overstress mechanisms and wearout mechanisms. Overstress failure are

catastrophic sudden failures due to a single occurrence of a stress event that exceeds the in-

trinsic strength of a material. Examples of overstress failures include buckling of materials,

electrical failures resulting in electrical discharge.

Accumulation of incremental damage leads to failure when the accumulated damage

exceeds the material endurance limit, and is termed wearout failure. By definition, only

wearout failure can be accelerated during an AST. Verification of overstress failures, on the

other hand, is performed through proof-tests. Therefore, failure acceleration models used

in accelerated stress tests must focus on the relevant wearout failure mechanisms [80,83].

Summary

In this chapter we did a literature review of the current state of art techniques that have

been developed and implemented for prognostics in electronics components and systems.

We studied and discussed the model based approach, data driven methods that rely on

historical data of previous failures in the given system is another approach that is often

applied for prognostic analysis while the third approach discussed was the combined model

and data driven methods, where each of the methods discussed have their own advantages

and disadvantages. We further reviewed some of the accelerated aging methods used for
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implementing prognostics methodologies. The accelerated aging of components and systems

lead to earlier failure and by systematically capturing the failure mechanisms and degrada-

tion phenomenon, they can be used effectively for implementing prognostics methodologies

using either of the three approaches discussed. Most of the earlier work related to elec-

tronics has been done by implementing reliability based prognostics methodologies at the

sub-system and system level [84,85].

Our research work focuses on developing and implementing effective diagnostic and

prognostic technologies with the ability to detect degradation/failure in electronics at the

component level. Early detection and analysis may lead to better prediction and end of

life estimates by tracking and modeling the degradation process. The idea is to use these

estimates to make accurate and precise prediction of the remaining useful life (RUL) of

the components. Early detection also helps in avoiding catastrophic failures. We adopt a

physics-based degradation modeling approach at the component level to predict the dynamic

behavior of the component under nominal and degraded conditions. Faults and degradations

appear as parameter value changes in the model, and this provides the mechanisms for

tracking the component behavior under different operating conditions.
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CHAPTER III

CASE STUDY: AVIONICS SYSTEM

Avionics systems play a critical role in many aspects of aircraft flight. As the system

complexity and the flight criticality of functions performed by these systems increases, the

ramifications of in-flight malfunctions will increase. This drives the need for IVHM tech-

nologies for flight-critical avionics. Flight and ground crews require accurate health state

estimates of these critical avionics components, including accurate detection of faults and

prediction of time to the functional failure of the avionics system. The main focus/objectives

of this research work can be summarized as:

1. Increase the aircraft safety and reduce the aircraft maintenance by improving the

accuracy of the fault determination in critical avionics systems.

2. Develop technologies which will detect, model, and predict degradations, malfunctions

and failures in avionics.

3. Developed technologies are intended to be adaptable to running onboard an aircraft.

We propose a model based approach to study fault diagnosis for avionics systems.

This chapter discusses the hybrid model developed for the power supply system and the

Matlab/Simulink R© models that have been developed for the GPS and integrated naviga-

tion system (INAV) subsystems [87–90]. Additional modeling constructs to capture the

combined discrete-continuous interactions between the systems are also modeled.

The avionics system modeled contains both hardware (power supply, GPS receiver,

IMU) and software (GPS software, INAV - integrated navigation solution) components. A

topological energy based modeling scheme based on the bond graph (BG) modeling language

for building parametric models of multi-domain physical systems forms the core of the Fault

Adaptive Control technology (FACT) component-based visual modeling system that has

been used for developing the power supply system model. We have developed automated

methods for generating Simulink block diagram models from bond graph representations
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Figure 2: Avionics Simulated System

of physical models [41, 89]. The GPS and INAV modules are modeled directly as block

diagram models in Simulink. The three subsystem models form the testbed for running

our monitoring and diagnosis studies of the combined hardware/software avionics system.

Figure 2 shows the block diagram of the simulated system along with the sample fault

insertion subsystems. This section contains fault mode descriptions for potential system

faults identified for the Honeywell - NASA NRA NNA08BA45C project. The project was

done in collaboration with Honeywell Aerospace-Advance Technology and NASA Ames.

The details of the work are discussed in [41,91]. We summarize the leading fault conditions

from the literature and from select recent accident reports which have been reviewed in

[92,93].

GPS Model

An abstract GPS model is developed to compute the position of a GPS receiver’s Earth-

Centered, Earth-Fixed (ECEF) reference frame [94, 95] . The receiver has three main sub-

systems, namely the high frequency hardware, low frequency hardware, and the software

systems. The high frequency and medium frequency hardware together make up the sys-

tems that receive the GPS satellite signals decode the information and compute the pseudo

ranges. Our GPS model essentially includes the software part of the GPS receiver which
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takes the pseudo ranges and the satellite decoded information as input and computes the

receiver position. The module is implemented in SIMULINK and is based on the GPS Easy

Suite [94,95]. The main inputs of the model are the pseudo-range and the ephemerids data.

The output is the receiver position. The input data of the model is obtained from Receiver

Independent Exchange Format (RINEX) O and N files.

The purpose of the RINEX file format is to enable easy exchange of the GPS data

among different GPS receivers. The format consists of six ASCII file types and we use two

of them to extract data as the input to our GPS abstract model; 1) O file - Observation

Data File, and 2) N file - Navigation Message File [91]. The observation data file contains

the GPS measurements data and the navigation message file contains the ephemeris - the

orbit information. The RINEX files are parsed by a MATLAB script to extract the model

inputs, thus using a different input format that corresponds to modifying the initialization

script to fill the model inputs. This way we can avoid making modifications to the model

itself.

The RINEX O and N files to compute the receiver position using an iterative least

squares procedure. The detailed description on computing the receiver position is widely

known and available in the literature [96]. It should be noted that in the current form the

GPS model essentially simulates the GPS receiver low frequency hardware and software

functions. The high frequency portions of the GPS receiver such as the antenna are not

directly simulated. However, the faults in the high frequency components are modeled by

simulating the effect on the respective pseudo-ranges. Table 1 shows the different faults

which were selected for this study.

According to the satellite operators, the satellite vehicle data transmission failure is a

generic spacecraft problem. Command uplinks to Block II satellites occasionally cause a

conflict in the spacecraft computer. A conflict causes the spacecraft to emit a non-standard

PRN code during one navigation data sub-frame (six seconds). The receiver sees this event

as a loss of signal from that satellite and this causes temporal loss of receiver lock leading to

reduced number of satellites available for computing the receiver position. This can result

in degradation and loss of GPS solution, if less than 4 satellites are initially visible. If only

4 satellites were visible at the time of the error. This error will cause a temporary drift in
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Table 1: GPS Receiver Faults

Fault Type Reason Selected Description

Satellite Discrete, Cause of loss of lock in Generic spacecraft problem.
vehicle soft, all GPS receivers, caused Command uplinks to block II satellites
data intermittent. an approach abort during occasionally cause a conflict in the
transmission FMS testing [97]. spacecraft computer. A conflict causes the

spacecraft to emit a non-standard PRN code
during one navigation data sub-frame
(6 secs).The receiver sees this event
as a loss of signal from that satellite.

Satellite Continuous, PRN 23 on 1 January 2004 The errors and drifts of the
vehicle soft, experienced a clock drift satellites’ clock are calculated and
clock persistent. error that grew gradually included in the messages that are
drift to a few kilometers. transmitted by the satellites.

In computing distance to the satellites,
GPS receivers subtract the satellite
clock errors from the reported transmit
time to come up with the true signal time.
This type of clock misbehavior introduces
a slow ramp type error in transmitted signal.

GPS Discrete, This failure makes it The RF front-end of a GPS
receiver hard, difficult for typical receiver first filters the
RF filter intermittent. antennae to lock on unwanted signals and then amplifies
failures to signals. the filtered RF signal.

If the RF filter failure occurs,
side lobes in the antenna radiation
patter may be corrupted. There can be
sudden jumps or slow fluctuation
in signal frequencies [23]

GPS Continuous, Signal delays in the Receiver noise can introduce 2-3 ns
receiver soft, receiver are accounted of zero bias noise in the timing
delay intermittent. for in the receiver measurements of a GPS receiver. Delays
shift hardware and/or within a receiver can be calibrated

software. by the manufacturer, but if receiver
delays change with temperature or change
differently between channels of a
multi-channel receiver, timing bias errors
can result. Antenna cable delays must
be recomputed or calibrated for change in
length, material. They also vary with
temperature and signal strength [98].
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the INAV (navigation) solution as GPS updates are no longer usable. The modeled GPS

receiver checks the input data and computes the rank of the pseudo range observations. If

the computed rank is less than 4 it sets the flag to indicate the receiver position calculation

to be invalid. Figure 3 shows the simulation setup for simulating the satellite loss of lock [96].

Figure 3: Loss of satellite lock simulation

The satellite clock drift is simulated by changing the pseudorange (PR) to GPS block

(Figure 4), such that

PRmeasured = PRactual + clock drift ∗ speed of light (1)

where:

• PRmeasured is the PR computed by the GPS receiver,

• PRactual is true PR in absence of satellite clock drift clock drift is the cumulative

clock drift
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Figure 4: Satellite Drift

INAV Model

In the avionics system that we have modeled, the Inertial Navigation System (INS) is the

primary navigation system that calculates the navigation states at high rate and uses the

measurements from Inertial Measurement Unit (IMU) [99]. The IMU, which serves as the

INS input, is a set of three accelerometers and three gyroscopes that together measure

acceleration in 6-DOF. The basic function of an INS is to integrate accelerations to deter-

minate velocity and position of the vehicle in a desired coordinate frame. Considering the

possibility of relative angular motion between frames, gyroscopes are required to maintain

the sensor-to-navigation frame transformation.

In the INAV system, a loosely coupled integration was used for the INS/GPS integration,

expanded with additional sensors like the barometer, magnetometer and odometer. This

approach combines the strengths of both INS and GPS based NAV system by bounding the

drift of the INS using GPS position. The combined solution is robust to the temporary loss

of GPS signal. The INS operates at a higher frequency than the GPS (typically 100 Hz and

1 Hz), therefore, at each GPS update step the navigation filter estimates bias for all IMU

sensors by giving more weight to the GPS observations.

In an INS implemented in the complementary filter structure, the output of the INS

provides the navigation solution and an Extended Kalman Filter (EKF) estimates the INS
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errors [99]. The INS error vector is fed back to correct the INS internal states [100].

This is illustrated in Figure 5. When the GPS measurements are within expected solution

bound the INAV treats the GPS measurements as the true values (with added measurement

noise), i.e. it believes GPS over other sensor measurements. INAV assigns (stochastically)

the navigation innovations to bias estimates of other aiding sensors (such as the altimeter,

accelerometers, and the gyro).

GNSS

Altimeter

Magnetometer

Odometer

IMU INS

EKFresidual 
creation

measurements residuals

states

states correction

Figure 5: Feedback implementation of the complementary extended Kalman filter

Table 2 shows the list of faults selected for this work. Accelerometer failed high is

a special case of the stuck accelerator. The failure of an accelerometer in an unexpected

high state corrupts the input to the INAV and eventually leads to a failure in the flight

control system. If the problem is not detected and corrected in a timely fashion it will lead

to divergence of the navigation solution. In a system fed by single set of accelerometers

the divergence in the solution is very rapid. To simulate this failure we inject the failure

accelerometer as a fault with a fixed bias in the failed axis of measurement. One source

of error in the measurement of the angular velocity from a gyroscope is an offset in the

measurement called bias. The bias is not necessarily constant but will typically cause the

calculation of the attitude to drift away from the actual heading. Because an error in the

heading is extrapolated over the linear distance traveled, a small error in the calculated

attitude leads to a large position error. A drift of 0.01 degree/hr can lead to a position

error of 1 nmi/hr [99].
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Table 2: INAV Faults

Fault Type Reason Selected

Accelerometer Fault Discrete Caused emergency situation on MAS 777 in 2005
/IMU measurement fault when the flight control system simultaneously

thought the aircraft was approaching stall and
overspeed due to the failure.

Gyroscope bias/drift Continuous Most common gyroscope error and leading
cause of position error.

Inclusion of a wrong measurement in the EKF can cause a severe degradation of the

navigation solution; the residuals test is performed prior to inclusion of measurement data

into the filter. Data from the aiding sensors are compared against the INS predicted values

using the a-priori sensor statistics. From the residuals and their statistical properties a

scalar test statistic chi-square distributed with n degrees of freedom is created, where n

is the number of measurements used for creating the test statistic. This statistic is later

compared with a predefined threshold to evaluate if a failure has occurred. Using the

chi-square distribution allows INAV to test together a group of measurements that are

correlated to each other improving the chances to successfully detect a failure. INAV also

estimates the bias for accelerometer and gyro measurements on-line. The Gauss-Markov

(GM) process is used to model a time varying bias.

Accelerometer bias estimation model is simplified by estimating the constant bias at

initialization. Then varying bias and the white noise are the remaining error sources of

the sensor. The accelerometer bias fault detection uses the bias estimate as computed by

the EKF along with the multiple of 1-σ confidence level generated using the a-priori sensor

noise variance. The fault detection routine alarms when the bias estimate exceeds multiple

of 1-σ bias estimate bound. Isolation is performed by attributing the persistent alarm on

the accelerometer bias estimates to the faulty accelerometer.

The gyro bias drift fault indicator is based on the gyro bias estimates calculated by

the EKF navigation filter. The fault detection routine the sets up alarms when the bias
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Figure 6: Gyro bias, injected faulty signal

estimate exceeds a chosen multiple of the 1-σ bias estimate bound. Isolation is performed

by confirming persistent alarm on the gyro bias estimates.

Power Supply Model

Switched-mode power supplies are widely used in DC-DC converters because of their high

efficiency and compact size. The buck-boost DC-DC converter converts from one voltage

level to another, by storing the input energy temporarily in inductors and then releasing that

energy to the output at a different voltage value through the fast switching sequence. The

efficiency of conversion ranges from 75% to 98%. This high efficiency is typically achieved

by using power MOSFET’s (metal oxide semiconductor field-effect transistor). MOSFET

can provide high frequency switching more efficiently than power bipolar transistors, which,

in addition to greater switching losses require more complex drive circuits. A buck boost

approach is used for conversion to the required DC voltage output. Our particular applica-

tion has an input of 28V DC from a battery source, and the required output voltage is 5V.

The schematic of the circuit used in this work is shown in Figure 7.

Background

Model-based identification methodologies require system models that accurately represent

system dynamics and are also capable of linking system measurements to damage in the
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Figure 7: Buck Boost Converter Circuit

components of the model. The bond graph (BG) modeling framework provides both

these features [101]. BGs provide a systematic framework for lumped parameter model-

ing across multiple domains that include the electrical, mechanical, hydraulic, and thermal

domains [84, 89]. They are an explicit topological modeling language for capturing the dy-

namic energy transfer among components of a systems based on the principles of continuity

of power and conservation of energy.

This energy distribution reflects the history of the system and, therefore, defines its

state at a point in time. Behavior of the system at future time points is determined by the

current state description and subsequent input to the system [89]. Changes in the state

of the physical system are related to energy exchange among its components, which can

be expressed in terms of power. The basic working principle of bond graphs is that power

transmitted between connected components can be expressed as a product of ‘effort’ and

‘flow’, irrespective of the application domain [84].

Bond graph elements are classified into one of five basic elements, (1) energy storage

elements, Capacitance (C), the Inertia (I), (2) the dissipative element, Resistor (R), (3)

two idealized energy transformation elements, the transformer (TF) and the Gyrator (GY),

(4) two source elements, Se, source of effort and Sf , source of flow, and (5) two junction

elements, 0 (for parallel connections) and 1 (for series connections). All these elements
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Table 3: Basic Bond graph elements

Symbol Type of element Name of element Electric Domain

C storage capacitance capacitor
L storage inductance inductor
R dissipator resistance resistor

TF transducer transformer transformer
GY transducer gyrator transformer
Se source effort source voltage source
Sf source flow source current source
1 junction 1-junction series connection
0 junction 0-junction parallel connection

exchange energy with other elements through ports or bonds. Bonds are energy transfer

pathways that connect elements and junctions and are represented as half arrows. Effort

and flow signals are the information transferred through these pathways. The two ideal

source elements model energy flow in and out of a system, and are active elements since

they introduce energy into the system. All the other elements are passive.

A passivity based approach discussed in [102] is used for deriving the BG model of the

buck boost converter and is shown in Figure 8. The representation of the switching devices

as MTFs is derived directly from the algebraic relations of the effort and flow variables. In

an average model of the buck-boost converter, the switching bond is replaced by a ‘duty-

ratio-modulated bond’. This ‘average’ bond can be effectively interpreted as an ideal lossless

transformer with turns ratio specified by the complementary duty ratio function associated

with the controlling scheme. The switching frequency of the MTFs depends upon the value

α. The value of α is calculated from the values of R2, C, L and the input/output voltage

requirements. Reference [94] provides the detailed equations used for deriving the value

of α. The regulation of the converter output at a desired output voltage vCd depends on

the steady state value of the average inductor current iL. This is determined by replacing

dynamic element L (inductor) of the average bond graph by a SS-element (source-sensor

element), represented as flow source Sf in the BG. The desired steady state value for the

current can then be obtained as iL = (1 + vCd/vs)vCd /R2. An input injection from the

external passivity controller to the modulated effort source is added to the bond graph

model of DC-DC converter in the form of a Se element [94].
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Figure 8: Buck Boost Converter Bond Graph Model

Figure 9: Buck Boost Converter Simulink Model

For conversion of the topological bond graph model to its equivalent SIMULINK model

we use the approach presented in [103]. An interpreter is used for converting the BG model

into an intermittent block diagram model from which the simulation model is derived [104].

A simulink model generated from the bond graph using the approach is shown in Figure 9

DC-DC Converter Fault/Degradation List

Fault 1: Electrolytic capacitor degradation in DC/DC converter

Type: Continuous, Degradation.
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Reason Selected: Of all components in DC-DC converters, capacitors have the highest

failure rates and the leading cause for breakdowns in these systems. Degradation in the

capacitors can be monitored over the period of time, and with this available data trending

and fault prediction for prognosis can be done.

Description: The performance of the electrolytic capacitor is significantly affected by

its operating conditions such as voltage, current, frequency, and working temperature. If

the electrolytic capacitor is used as a part of the power stage components of switching-

mode power converters, they are most affected by degradation and aging effects. The

electrolytic capacitor plays a very important role for the switching-mode converters quality

and reliability hence it is very important to diagnose the degradation and failures predict

the expected lifetime of the electrolytic capacitor.

The main factors that influence the reliability in electrolytic capacitors are oxide lay-

ers, impregnation layer, foil porosity, and paper. The wear out of aluminum electrolytic

capacitors is due to vaporization of electrolyte that leads to a drift of the main electrical pa-

rameters of the capacitor. It can be indirectly measured by the equivalent series resistance

(ESR), which is the sum of the resistance due to aluminum oxide, electrolyte, spacer, and

electrodes (foil, tabbing, leads, and ohmic contacts). The increase of ESR is interesting,

since at the switching frequency of the converters, the impedance of the electrolytic capac-

itors is approximately equal to ESR. In addition, this latter evolution is important since it

determines the self-heating and, therefore, indirectly, the capacitor lifetime.

Fault 2: Power transistor failure in DC/DC converter

Type: Typically discrete, Degradation, Continuous.

Reason Selected: Power transistor faults are the second most leading cause of DC/DC

converter failures. Previously fault detection and isolation work has been done on power

transistor failures, but less on failures related to transistor in DC-DC converters.

Description: In the past years, power MOSFET’s have become established in a wide

variety of control and conversion applications. Most of applications require that the MOS-

FET be switched a high frequency. The thermal and electrical changes the device undergoes

during switching can be particularly high during turn-off with an inductive load at the drain

terminal.
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It is commonly assumed that any mechanism that permits the “parasitic” bipolar tran-

sistor to become active will usually lead to failure of the power MOSFET, particularly if

the drain voltage is greater than the collector-emitter sustaining voltage of the bipolar tran-

sistor. It has also been that avalanche injection in the drain region of the MOSFET may

lead to failure without the parasitic bipolar transistor becoming active.

One of the known reasons of power MOSFET failing is when they are subjected to very

rapid turn off, i.e., very high dVDS/dt (rapid change in the drain to source voltage.). In the

early days of power MOSFET development, the turn-on of the parasitic bipolar transistors

(BJT) was the major cause of MOSFET failures. The new generation of MOSFETs is

almost immune to this problem, but still the parasitic turn-on of BJT still remains the

major root cause of power MOSFET failures. The other cause of failure in MOSFETS

is the Body Diode Reverse Recovery failure. When a MOSFET , that has some residual

charge stored in it body-diode, is turned off, this leads to the forward biasing of the parasitic

BJT emitter base junction turning on the BJT leading to the eventual destruction of the

MOSFET. Of all the faults the most frequent faults occuring in MOSFETs are due to the

package related failures and are very important [5]

Fault Simulation and FDI Results

In this section we will discuss one case study for fault injection in GPS and INAV systems.

We will discuss in more details fault injected in the power supply system and discuss the

results.

Fault Detection and Isolation: GPS

Figure 10 shows the data input frame and the output of the GPS receiver, rank < 4. built-in

test. An eleven channel GPS receiver was simulated. Figure 10 shows the satellites to which

the receiver has lock from 149th to 160th sec in the trajectory. At 150th sec the receiver

losses lock to 3 satellites and at 152nd sec it loses lock to 2 more satellites thereby resulting

in only 3 satellites being locked from 152nd to 155th sec. This fault event is detected by the

GPS Bit at 152nd sec as shown in Figure 11.
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Figure 10: Loss of lock to satellites Input data frame for GPS receiver showing satellites
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Figure 11: GPS receiver BIT indicating the loss of satellite making the GPS solution unus-
able from 152nd to 155th secs.
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Figure 12: IMU accelerometer bias detection in the z-axis

Fault Detection and Isolation: INAV

The IMU fault results for accelerometer bias change and gyro bias drift cases are shown

in Figure 12 and Figure 13, respectively, using the methodology explained earlier in the

section. Figure 12 shows the simulation results for z-axis accelerometer fault. The fault

adds a bias of 0.3 m/sec2 at the beginning of the run. The bias estimate shows a clear shift

when compared to the baseline no fault case. Figure 13 shows the results for the gyro bias

case with injected bias of 1.7 × 10−5 rad/sec/sec. The red portion of the curves indicates

the fault has been detected and the faulty accelerometer/gyro alarm is on.

DC-DC Converter System

The power supplies are a critical component of modern avionics systems. Degradations and

faults of the DC-DC converter unit propagate to the GPS and navigation subsystems and

affect the overall solution. Capacitors and MOSFETs are the two major components, which

cause degradations and failures in DC-DC converters [32]. Some of the more prevalent fault

effects, such as a ripple voltage surge at the power supply output can cause glitches in the

GPS position and velocity output, and this, in turn, if not corrected will propagate and

distort the navigation solution. Further, our models for the GPS and INAV units have

allowed us to study INAV input faults, such as faults in the GPS receiver and inertial

measurement (IMU) units. In this work [41,91] we have included case studies that consider
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Figure 13: Gyro bias drift detection

(1) faults in the DC-DC converter capacitor, (2) loss of receiver lock in the GPS satellites,

and (3) two IMU fault modes, namely increase in accelerometer bias and gyro bias drift.

To conduct our case studies, we have developed an integrated simulation model in

Matlab/Simulink R© for the navigation system, with the power supplies, the GPS, and the

INAV units. Our qualitative fault signature methods for detecting and isolating faults

in all three subsystems (modules) of the avionics system. Fault signature generation is

based on establishing causal relations between system parameters and measurements, and

estimating the effect of a parameter value change (representing a fault) on the measured

values [94, 95, 105]. This is followed by a characterization of the continuous and discrete

faults in the system as fault signatures. The fault signatures form the basis for design and

development of the model-based FDI algorithms for the combined system [95,101].

All performance degradation and fault diagnosis methods can be broadly classified into

two types, quantitative and qualitative [87,88]. The quantitative approach relies on advance

information processing techniques such as state and parameter estimation and adaptive

filtering. The qualitative approach makes use of causal analysis which links individual

component malfunctions expressed in qualitative form with deviations in measured values.
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This approach is usually employed when a precise numerical model for the system is not

available. For our work we will be implementing the qualitative approach for fault detection

and isolation.

Fault Detection

The fundamentals of fault diagnosis presented here are based on the work reported in

[87, 88, 90, 104]. We focus on small abrupt changes and degradation in components of the

system. A component fault manifests as a change in the value of a bond-graph element

parameter. These faults affect the coefficients of the system matrix in the state-space or

transfer function representation of the system, that is, they have multiplicative effects on

the system dynamics. The bond graph representation preserves a one-to-one correspon-

dence between the component parameters and the physical components of the system. As a

contrast, in state-space or transfer function representations the model coefficients are typ-

ically functions of more than one physical component parameter. For fault isolation this

implies that the bond graph representation creates a direct link between the changes in a

parameter value with a fault in a specific system component. We present a brief overview

of the methodology in this section.

The work describes an approach for model-based FDI of abrupt faults in component

parameters of a continuous dynamic system [87, 88]. Abrupt faults correspond to changes

that occur at time scales much faster than the nominal dynamics of the system. We model

abrupt faults as discrete and persistent changes in the value of component parameters [87].

An abrupt fault in a component parameter results in transients in the system variables.

Typically, the transient behavior vanishes after an interval, and for certain faults no evi-

dence of the fault is observable in the measurements after some time. Our approach, named

TRANSCEND, is based on the analysis of the fault transient. A model-based fault iso-

lation scheme for qualitative analysis of the fault transients developed by [88] has been

implemented.
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Fault Isolation

Qualitative reasoning using bond graphs is based on an analysis of the Temporal Causal

Graph (TCG) structure. TCGs capture causal and temporal relations among the system

variables that characterize dynamic system behavior. They are an extended form of Signal

Flow Graphs [88], with vertices representing the system variables (e.g., pressures, tem-

peratures, and flow rates) and labeled directed edges capturing the relations between the

variables. Labels on the edges further qualify the relations between the vertices. A label of

± 1 on an edge implies a direct (inverse) directional proportionality between the associated

variables, and ‘=’ implies an equality relation between the associated variables. Component

parameters, R’s, TF’s, GY’s, C’s and I’s appear on links, and play a role in establishing

the relations between the associated variables. R, TF, and GY impose algebraic relations,

whereas the energy-storage elements, C and I, impose integral, i.e., temporal delay relations

between the associated variables.

The algorithm to derive the TCG from a BG model utilizes the Sequential Causality

Assignment Procedure (SCAP). The SCAP algorithm, outlined in [106], sequentially assigns

causality to all of the bonds in the BG model. This causal structure is then unfolded into a

directed graph. We start from the source effort and flow values, and sequentially following

the algebraic (direct, inverse, and equality) as well as the temporal relations imposed by

the constituent elements till all of the bonds and nodes have been traversed.

The fault isolation engine follows the generate-and-test approach to residual evaluation

using the TCG structure. Qualitative transient behavior is expressed as a fault signature

that describes the expected fault transient immediately after fault occurrence. The signature

corresponds to a qualitative interpretation of the Taylor series expansion of the residual

around the time point of fault occurrence [87,90,104]. The order of the signature is defined

by the highest derivative computed (a design parameter). Symbolic values for the elements

of a signature are: ‘+’ for a positive or increasing value, ‘0’ for a zero or unchanged value,

and ‘ - ’ for a negative or decreasing value. An unknown value is represented by ‘∗’. The

description of a fault signature in terms of the behavior around the point of fault occurrence

is unique to the TRANSCEND [90,106] approach.
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Fault isolation is triggered by the first non-zero magnitude symbol that is output by the

signal-to-symbol generation module. This initial symbol reflects the magnitude deviation in

the residual at the onset of the fault transient. The hypotheses generation step produces a

set of fault hypotheses that can explain the observed deviation. A fault hypothesis consists

of a candidate parameter with a direction of change for the parameter value and a fault

signature for each of the measured variables. During hypothesis refinement, the signatures

are compared with symbolic values computed from the measurements using a scheme called

progressive monitoring. When a match fails, the candidate is dropped. Further details of

the qualitative fault isolation scheme are presented in [106].

Fault Simulation

It has been reported in the literature that electrolytic capacitors are the leading cause for

breakdowns in power supply system’s [99, 107]. The performance of the electrolytic ca-

pacitor is strongly affected by its operating conditions, which includes voltage, current,

frequency, and working temperature. A degraded electrolytic capacitor cannot provide a

low impedance path for the AC current in the output filter of these converters, thus intro-

ducing a ripple voltage on top of the desired DC voltage. Continued degradation of the

capacitor leads the converter output voltage to drop below specifications, and in some cases

it may even damage the converter itself.

Literature indicates that the fluctuation in power supply voltage and excessive ripple

currents could lead to various failures in the GPS receiver module. In this work we have

simulated the GPS reset events due to voltage fluctuations. The detailed analysis for fault

diagnosis and isolation is carried out in several steps. These are outlined in the next section.

Experiments

As discussed earlier we employ the method to derive fault signatures on measured variables

using our Temporal Causal Graph (TCG) scheme [88]. The TCG is automatically derived

from a bond graph model of a system [89]. Figure 14 shows the TCG for the DC-DC

converter which is derived from the Bond Graph(BG) model discussed in the earlier chapter.
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To diagnose and isolate the faults their fault signatures should be unique, i.e. no two faults

should have the same fault signatures for all measured values. At present, we are focusing

on capacitor faults in the DC-DC converters. We derive the fault signatures for the two

capacitor-related faults that can occur: (1) decrease in capacitance, and (2) increase in

equivalent series resistance (ESR).

Figure 14: TCG of the Power Supply Model from BG

The Fault Detection and Identification (FDI) method [88, 90] in this paper is imple-

mented using bond graphs as the underlying modeling language. Dynamic characteristics

of system behavior derived from the bond graph are represented as a temporal causal graph.

The algorithms [90] for monitoring, fault isolation, and prediction are based on this represen-

tation. The fault analysis and refinement process continues till fault transients are masked

by interactions or the system reaches a steady state. The goal is to uniquely identify the

true fault using a combination of transient and steady state analysis.

The fault detection mechanism was tested for an abrupt fault in the DC-DC converter

model. The steps below show the procedure for fault injection in the converter system and

implementation of the fault detection algorithm.

• Run the nominal DC-DC converter MATLAB/SIMULINK R© model and record the

sensor readings.

• Run the model with an abrupt fault case.
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• A fault was introduced in the system at 250th time step.

• In this case a fault is introduced in the capacitor which is shown in the the residual

plot of Figure 15. A glitch is observed in the output voltage of the DC-DC converter.

• The residuals are generated from the nominal and faulty data.

• This residual data is passed through the Fault detector algorithm.

• The fault detector detects the fault from the residual at 252nd time step.

The plot in Figure 15 shows the nominal behavior of the DC-DC converter where the

residuals are around zero. At the 250th time step there is an abrupt change in the residual

as seen in the plot where the fault is injected.

Figure 15: Residual Plot for the DC-DC converter

We implement the fault isolation algorithm discussed earlier for isolating the fault com-

ponent in the system. In this case this component is the capacitor in the DC-DC converter.

Fault signatures for isolation on measured variables are derived using our Temporal Causal

Graph (TCG) scheme [88]. To isolate the faults their fault signatures should be unique i.e.

each fault should have a unique signature. As can be seen from the TCG in Figure 14 any

degradation in the capacitor component is related either to the change in the capacitance
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Table 4: DC-DC Converter Fault Signatures

Components Fault Hypothesis Indicating Sensors Fault Signal Deviation
Signature from Nominal

Electrolytic ESR increase Voltage Sensor@ (0,-) A gradual increase in ESR
Capacitor (ESR+): abrupt converter output will cause a gradual

or incipient decrease in output
voltage of the converter.

Capacitance Voltage Sensor@ (+,-) Abrupt decrease in
decrease converter output capacitance will cause a
(C ): abrupt high voltage spike and

then a decrease in the
output voltage of
the converter.

Capacitance Voltage Sensor@ (0,+) A gradual (incipient)
decrease converter output decrease in the
(C ): incipient capacitance

will cause a gradual
increase in output voltage
of the converter

MOSFET’s Internal Voltage Current Sensor in (+,-) Voltage drop
drop series with internally in

MOSFET the MOSFET.

Internal Currents Current sensor in (-,∗) Increase/ Decrease
of series with in the current.
MOSFET MOSFET Leakage currents

in MOSFET

(-,∗) : the dot indicates either +/- change.

or change in the R i.e. the ESR value. The graph shows the node eb1 4 is affected by the

two node fb2 7 and fb1 5 which are the ESR and capacitance nodes respectively. These

two faults are marked in the TCG and the red arrows indicate how the faults affect the

measured output voltage at the converter. Each of the faults generates a different signature

which isolates the faults from each other. Table 4 lists the derived fault signatures for the

capacitor faults.

Results

Figure 16 below shows the PSM model. The two components marked are Capacitor and

MOSFET respectively in which the fault is introduced. The degradation equations de-

rived and discussed later in the chapter were implemented in the model to simulate the

degradation process.
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Figure 16: Fault Injection in the PSM model

The faults are introduced in the model through a GUI which allows the user to simulate

different faults. Figure 17 shows the GUI where the user can simulate a situation to intro-

duce faults in the PSM. This fault can either be introduced in the capacitor or MOSFET

devices. The faults can either be abrupt or incipient faults.

Figure 17: GUI for injecting fault

Abrupt Faults

Abrupt faults correspond to changes that occur at time scales much faster than the nominal

dynamics of the system. We model abrupt faults as discrete and persistent changes in
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the value of component parameters. An abrupt fault in a component parameter results

in transients in the system variables. Typically, the transient behavior vanishes after an

interval, and for certain faults no evidence of the fault is observable in the measurements

after some time. Next we demonstrate two examples of an abrupt capacitor and MOSFET

fault simulation.

Capacitor Fault Injection

Fault is injected in the capacitor of the PSM through the GUI as shown in Figure 18. The

injection time, fault magnitude and the type of fault to be injected is selected.

Figure 18: Fault Injection GUI for injecting Capacitor faults in PSM

Figure 19 shows an abrupt fault injected in the power supply. The first plot shows the

output voltage for both nominal mode operation and fault injected operation of the Power

Supply Module.

The second plot Figure 20 shows the fault detection for a fault injected in the capacitor.

Similarly when we study the plots for the MOSFET as seen below, we observe that the

MOSFET is healthy as no residue in the output current.

The fault detection uses the algorithm discussed earlier in the work. The output of the

algorithm is displayed in the command window. The fault simulation result for a capacitor

abrupt fault is shown below in the Figure 21.
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Figure 19: Capacitor Fault Injection and Output Voltage plots

Figure 20: MOSFET Fault Injection and Output Current plots
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Figure 21: Algorithm output results for the injected capacitor fault

MOSFET Fault Injection

Similar to the capacitor fault injection, the injection time, magnitude and fault type for the

MOSFET is selected for running the simulation. This is shown in the snapshot of the GUI

in Figure 22. The model was run for 900 steps and the data was collected.

Figure 22: Fault Injection GUI for injecting MOSFET faults in PSM

From the plots it is observed that the output voltage does not change due to a fault

injected in the MOSFET as seen in Figure 23.

An abrupt fault injected changes the current abruptly in the system which is detected

shown in plot of Figure 24 by the current sensor.

The results of the simulation run are displayed in the command line window as shown

in Figure 25.

51



Figure 23: Capacitor Fault Injection and Output Voltage plots

Figure 24: MOSFET Fault Injection and Output Current plots
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Figure 25: Algorithm output results for the injected MOSFET fault

Incipient Faults

Incipient faults occur slowly over time, and are linked to the wear and tear of components

and drift parameter values. These faults are usually related to aging of the component due

to long period of operation due to which the component degrades. In our work the capacitor

degradation process is linked to increase in the ESR and decrease in the capacitance under

normal operating conditions. The plots in Figure 26 below shows decrease in the output

voltage over the period of time when an incipient fault is injected in the capacitor of PSM

system.

Figure 26: Incipient Fault Injection

53



Experiment Results

Figure 27: Fault Isolation Results

The table in Figure 27 below shows the different faults injected in PSM system. These

include faults injected in the capacitor and MOSFET components respectively. The table

gives details relating to the type of fault injected, fault magnitude, the time when fault was

injected in the component and detection time for the algorithm to detect the fault. The

final column gives the fault isolation result if the algorithm detected the fault.

Summary

Our methodology provides a framework for developing efficient qualitative fault signature

methods for fault detection and fault isolation. The future work include conducting more

detailed analysis of degradation effects, discussed later in the chapters and their propagation

to the different components of the system. We will also develop methods to quantify the

effects of degradation on overall system performance. This is step towards one of the goals

stated earlier to study system performance.

Overall, this research work demonstrated the use of fault signature techniques that can

be applied to online diagnosis of faults in important components of aircraft systems. In

this case, the task was especially challenging because the system was embedded in that

it contained a significant number of software (computational) as well as hardware compo-

nents. Therefore, our fault modeling, detection, and isolation schemes had to apply to very

different kinds of subsystems, and also to handle interactions between these subsystems.
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We developed a fault signature framework, where the fault signatures were derived by sys-

tematic analysis of either a physical system model (e.g., bond graph models for the power

supply systems) or computational models (e.g., the Simulink models used for the GPS and

INAV systems). In all of these cases, the challenge was to build these models at the right

level of abstraction, so as not to be overwhelmed by computational complexity, at the same

time, include sufficient detail to model capture the fault effects. The accomplishments of

this work can be summarized as below.

1. Integrated Avionics Simulator : Simulink-based simulator includes: model for the

GPS receiver, model for integrated navigation solution software, and Hybrid Bond

Graph-based model for DC-DC power converter

2. Fault Injection: Identified ten critical HW and SW faults. Developed mechanism for

simulating these faults within the avionics simulator.

3. Fault Indicators and Reasoner: Developed fault indicators for detecting all ten faults.

Developed a reasoner to demonstrate the disambiguation and failure isolation

4. Degradation Data and Model: Ran experiments to generate the capacitor aging data

under electrical and thermal stresses. Incorporated experimental data on capacitor

aging under electrical within the avionics simulator.
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CHAPTER IV

RESEARCH APPROACH

As mentioned earlier, prognostics approaches play an important role in improving system

safety, reliability, and availability. Prognostics deals with determining the health state of

components, and projecting this state into the future to make end of life (EOL) and RUL

estimations. Our approach performs these tasks employing dynamic physics-based degra-

dation models that capture knowledge about the system, its components, and their degra-

dation mechanisms [21,108]. Faults and degradations appear as parameter value changes in

the model, and this provides the mechanism for tracking system behavior under degraded

conditions [109,110].

Approach Steps

We implement the prognostics modeling process illustrated in Figure 28. The main activity

in implementing PHM methodology involves: a) identify the basic working principle and de-

riving the operating model of the device/system; b) identifying the degradation mechanisms

(electrical, thermal, mechanical and chemical), and that govern the aging of components

under various environmental conditions [80, 82]; c) derive relevant degradation models to

predict the remaining useful life of the system and d) run experimental studies to com-

pare the accuracy and validity of empirical models and models derived using physics-based

principles [74]. We discuss each step involved in the approach in details.

Electrolytic Capacitors

Since we are implementing a physics-based modeling methodology for our approach, un-

derstanding the structure and behavior of the device under test is essential. Depending

upon the granularity of the model implemented the necessary device parameters need to be

known. In this case

1. the structural geometry i.e., details of the capacitors;
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Figure 28: Research Approach Methodology

2. materials used;

3. thermal and electrical properties of the material;

4. manufacturer details.

These details are used for deriving the physics-based degradation models of the capac-

itor. First principles physics-based models are derived to study and analyze degradation

through the aging cycle, rather then just observing abrupt failures. These models give a

more better understanding of how the devices operate under different conditions.

Accelerated Aging Experiments

This research work focuses on developing physics-based degradation models of components

that include descriptions of how fault parameters evolve in time, governed by their operating

conditions. Under normal operating conditions the device operates for several years and

systematic studies of condition based monitoring of these components and systems becomes

difficult. So to study the systematic degradation of the component in shorter period of time,

57



we apply increased stress levels on the component to accelerate lifetime. The advantage

of accelerated stressors is that we can run the component to failure. The disadvantages

of accelerated experiments is that the process of testing and test control are tedious and

complex in nature. Specific testbeds need to be developed depending upon the nature of the

stress applied and monitoring degradation in the device/system frequently. In this work,

we are particularly interested in studying electrical and thermal stressors. The challenge

then is to consider intervals of accelerated degradation and extrapolate those to nominal

degradation conditions.

Under normal operating conditions usually a device/subsystem does not degrade rapidly,

since all the operating parameters are within threshold limits. In such cases it takes a

longer time to study and observe the underlying failure modes. Accelerated stress tests

(AST) have been recognized to be a valuable activity to assess the reliability and quality

of electronics in a timely manner [80]. Accelerated stress tests are often carried out under

extreme environmental conditions to enhance the damage accumulation rate due to any

physical or environmental phenomena in the component [81]. In the PBM approach it

is necessary to understand the underlying failure mechanisms essential for designing and

conducting successful accelerated aging tests [74,81].

The electronics industry is yet to adopt PBM methodologies based on AST standards

[76,79]. Research is focused more on conducting accelerated testing under combinations of

multiple stresses, to enhance test time compression [80]. This has only served to increase the

confusion in literature, in standards, and in industry, regarding the most cost-effective and

scientific way to conduct accelerated stress testing for electronic assemblies. Researchers

[74,76,80] agree that implementing PBM methodologies hold a greater promise of providing

a systematic approach plan, conduct, implement and evaluate accelerated life tests, under

combined environmental loads.

Thermodynamic processes can produce stresses that cause damage to basic elements of

the system, ultimately leading to system failure that can be explained by a corresponding

physics based model [80, 83]. PBM design guidelines, which emphasize the understanding

of potential failure mechanisms, are more effective if first principles based models can be

derived to describe the relevant failure mechanisms. Therefore it is very important to

58



identify the different failure mechanism modes, which occur due to the applied stresses

during the life-cycle of the system [74,82].

These mechanisms are mainly divided into two major groups overstress mechanisms and

wearout mechanisms. Overstress failures are catastrophic failures observed due to a single

occurrence of a stress event that exceeds the intrinsic strength of the material, i.e. failure due

to high voltage or current pulses. Under normal operating conditions the device is constantly

degrading, damages are also observed under overstress operating conditions. Accumulation

of incremental damage leads to failure when the accumulated damage exceeds the material

endurance threshold, and is termed wearout failure. By definition, only wearout failure

can be accelerated during an AST. Verification of overstress failures, on the other hand,

is performed through laboratory experimental tests. Therefore, failure acceleration models

used in accelerated stress tests must focus on the relevant wearout failure mechanisms

[80,83].

As summarized in the flow diagram of Figure 28, we combine experimental studies on the

device and combines the electrical and mechanical configuration information with physics

based modeling of behavior phenomena.

System Identification

Under normal operations an ideal capacitor model is assumed. A lumped-parameter model

of the non-ideal capacitor impedance is assumed in this work. This model is then further ex-

pressed at higher granularity depending upon the type of operational stress conditions. This

impedance model includes a capacitance element and an equivalent series resistance (ESR)

parasitic element. The Electrochemical-impedance spectroscopy (EIS) measurements along

with the impedance model structure are used in a systems identification setting to estimate

the model parameters available throughout the aging test. This results in time-dependent

capacitance and ESR measurements trajectories reflecting capacitor degradation.

ESR and capacitance values are estimated by using a system identification using a

lumped parameter model consistent of the capacitance and the ESR in series as shown in

Figure 29. The frequency response of the capacitor impedance (measured with electro-

impedance spectroscopy) is used for the parameter estimation. It should be noted that the
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lumped-parameter model used to estimate ESR and capacitance, is not the model to be

used in the prognostics algorithm; it only allows us to estimate parameters which provide

indications of the degradation process through time.
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Figure 29: Lumped parameter model (M1) for a real capacitor.

The non-ideal capacitor modelM1 can be used as part of electronics circuits that make

use of capacitors. An example is the low-pass filter implementation in Figure 30. In this

circuit, input voltage Vi is considered as the voltage to be filtered and the voltage across

the capacitor (this includes ESR as well) is the output voltage Vo which is filtered. Let

v(t) = Vo(t) and u(t) = Vi(t) in the low-pass system circuit with non-ideal capacitor shown

in Figure 30. A state-space realization of the dynamic system is given by

ż(t) =
−1

C(R+ ESR)
z +

1

C(R+ ESR)
u(t), (2)

v(t) =

[
1− ESR

R+ ESR

]
z +

ESR

R+ ESR
u(t),

where z(t) = VC(t) is the state variable representing the capacitor voltage, C, ESR

and R are system parameters. Furthermore, C and ESR are parameters that will change

through time as the capacitor degrades.

C

ESR

R

Figure 30: Low pass filter model

ModelM1 describes the nominal dynamics of a low-pass filter with a non-ideal capacitor.

While this model may be useful for fault detection and isolation, it does not provide the

information we need to perform model-based prognostics. We extend this model to describe

the degradation process as time-varying functions of the changes in the model parameters.
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This model by itself is not sufficient to implement a model-based prognostics algorithm

since the degradation process as reflected on model parameters is not modeled. Degradation

models describing the time evolution of ESR or C are needed in order to enhance M1 for

model-based prognostics.

Degradation Modeling

Identifying the failure precursors and developing accurate models of degradation/failure

from an understanding of the physics-based model is an important challenge that we address

in this research work. Early detection and analysis may lead to more accurate estimation

of parameter changes, and therefore, better prediction and end of life estimates of the

capacitor.

Our primary focus is to derive and validate physics-based degradation models for both

capacitance and ESR values of degraded capacitors. Our hypothesis is that the physics-

based models will be more accurate and more general, and we demonstrate this by comparing

the accuracy of these models against the date-driven models.

Parameter Estimation for Degradation Models

For the empirical derived model parameters are estimated using nonlinear least-squares

regression. Unknown and time varying parameters in the degradation model are estimated

online. The derived state space models are then implemented in a Bayesian framework for

prognostics.

Prognostics

A Bayesian framework is employed to estimate (track) the state of health of the capaci-

tor based on measurement updates of key capacitor parameters. The Kalman filter and

Unscented Kalman Filter algorithms are implemented to track the state of health and the

degradation model is used to make predictions of remaining useful life once no further

measurements are available.

61



Summary

This chapter gives an overview of the research methodology we have implemented in our

work. Figure 28 summarizes the steps and approach of the research work. We discussed

each step in brief and will be studying them in detail for each of the implemented stress

conditions in the respective chapters.
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CHAPTER V

CAPACITOR DEGRADATION MODELS

In this chapter we develop physics-based models of capacitor degradation phenomena that

can be attributed to adverse operating conditions. Operating conditions and environmental

effects that differ from the rated nominal conditions specified by the manufacturer are la-

beled as stressors. In this research, we study the effects of two primary stressors on capacitor

performance: electrical and thermal. The study of stressor effects are derived by analyzing

the internal physical structure and material properties of the electrolytic capacitors. The

models of the degradation process, derived from the structure and material properties, de-

fine how the capacitance and internal series resistance of the capacitor change over aging

time.

Electrolytic Capacitors

The configuration of an aluminum electrolytic capacitor, exposing its internal structure

is shown in Figure 31. Figure 32 provides an illustration of the internal components of

the capacitor wrapped in the shape of a layered cylinder. The primary components of an

electrolytic capacitor are: (1) cathode aluminum foil, (2) electrolytic paper, (3) electrolyte,

and (4) an aluminum oxide layer on the anode foil surface. The paper strip is impregnated

with liquid electrolyte. When in contact with the electrolyte, the oxide layer provides an

excellent forward direction insulation property [111]. A magnified effective surface area is

attained by etching the foil, provides for high capacitance values in a small volume [112].

Since the oxide layer has rectifying properties, a capacitor has polarity. If both the anode

and cathode foils are coated with an oxide layer, the capacitors are bipolar [113].

Figure 33 illustrates the unfolded separator paper into which the electrolyte is embedded

by soaking. The paper height, hc is the height of the capacitor capsule and lc indicates the

length of the combined roll of paper separator, anode, and cathode. The paper separator

1http://en.wikipedia.org/wiki/file:Electrolyticcapacitordisassembled.jpg
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Figure 31: Capacitor Physical Structure1

is sandwiched between the anode and the cathode. Each has a thickness dS , dA and dC ,

respectively, and in general dS ≈ dA ≈ dC .

Anode Foil

Cathode Foil

Connecting Lead 

Aluminum Tab

Separator Paper

Figure 32: Physical Model of Electrolytic Capacitor

Figure 34 presents a detailed view of the cross section of the electrolytic capacitor

structure. The anode and cathode foils are are anodized by coating them with a thin

aluminum oxide layer on the surface of the foil. This layer of aluminum oxide acts as

the dielectric (insulator) and serves to block the flow of direct current between the anode

and cathode foil surfaces [112]. When a DC voltage is applied to a discharged capacitor

there is an initial surge of current observed because of charge accumulation on the anode

and cathode foils. This causes a corresponding voltage increase across the terminals of the
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Figure 33: Capacitor Open Structure

capacitors, and correspondingly, the current flow drops exponentially towards zero as the

capacitor terminal voltage increases to equal the applied voltage [114].
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Figure 34: Cross sectional Details of Internal Capacitor Structure

Degradation Mechanisms

There are several factors that cause degradation in electrolytic capacitors. Failures in a

capacitor can be one of two types: (1) catastrophic failures, where there is complete loss

of functionality due to an internal short between the anode and cathode or an open circuit

caused by a break in the leads, and (2) degradation failures, where there is gradual deterio-

ration of the capacitor due to accumulated damage to its internal structures. From an elec-

trical circuit viewpoint, degradation in the capacitor manifests an increase in the equivalent

series resistance (ESR) and decrease in capacitance (C). The degradation in these health

parameters can be attributed primarily to decreases in electrolyte volume caused by evap-

oration, weakening of the oxide insulation layer leading to oxide layer breakdown [47, 115]

along with deterioration in electrolyte quality, and increase in internal pressure.
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The primary causes of degradation during nominal operation of a capacitor can be linked

to thermal and electrical processes. The flow of current during the charge/ discharge cycle

of the capacitor causes the internal temperature to rise. The heat generated is transmitted

from the core to the surface of the capacitor body, but not all of the heat generated can

escape. The excess heat causes an increase in the internal temperature of the capacitor,

which in turn increases the electrolyte evaporation rate. Similarly, in situations where the

capacitor operates or is stored under high temperature conditions, the capacitor body is at

a higher temperature than its core, and heat travels from the body surface to the core of the

capacitor thus increasing the internal temperature and causing the electrolyte evaporation

rate to increase [116]. The phenomenon of increase in internal temperature is modeled using

a physics-based thermal model of heat conduction that we discuss later in this chapter.
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Figure 35: Ishikawa Diagram of Failure Mechanisms in Aluminum Electrolytic Capacitor

We first study the degradation phenomena qualitatively, and then discuss the steps

to derive the physics-based analytic degradation models for different operating conditions.

The fishbone diagram (also called the Ishikawa diagram shown in Figure 35) summarizes

the comprehensive list of failure modes that occur in electrolytic capacitors [114, 117–121]

along with their primary causes. The major degradation phenomena shown in the figure

are:
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1. Aging of the dielectric material,

2. Electrolyte Evaporation,

3. Degradation of Anode Foil,

4. Degradation of Cathode Foil, and

5. Degradation of oxide film.

Elaboration of the main causes, represented as minor bones linking to the degradation

and failure phenomena are:

1. Prolonged Use,

2. Increase in internal temperature,

3. Over voltage stress, and

4. Charging/discharging cycles.

These are then linked to the finer bones, which explain the root causes for the different

failure mechanisms in the capacitor. These root causes can occur individually or in groups

depending upon the operating conditions for the capacitor. In this thesis research, we

primarily focus on the electrical and thermal stressors that govern capacitor degradation.

Specifically, we study conditions where the capacitors are subjected to high voltage and

high temperature conditions. For example, over voltage stress, which results in an increase

in the capacitor internal temperature can cause loss of electrolyte and also degradation in

the oxide film leading to increased leakage currents along with increase in internal pressure.

Electrolyte evaporation can be attributed to internal heat generation or high ambient ex-

ternal temperature both which cause increased internal core temperatures. In all of these

situations, the capacitor degradation results in simultaneous changes in its capacitance and

internal resistance values.

Defined industry standards [122,123] specify a capacitor to be degraded (i.e., unhealthy),

if under thermal stress the capacitance value decreases by 10% and the ESR value increases

67



by 250% or more from its pristene rated value. Similary, a capacitor is considered unhealthy

if, under electrical stress operations, its ESR increases by 280%-300% over and capacitance

decreases by 20% below its pristine condition values. The ratings are different for electrical

and thermal stress conditions, because thermal stress conditions are considered for situations

when the capacitor is in storage, and not in operation. Hence the threshold standards are

defined seperately for different conditions. Phenomena associated with the root causes

include:

1. Studying the increase in internal temperature due to excessive ripple current and

frequent charging/discharging cycles, or high ambient temperatures which lead to

decrease in the electrolyte volume.

2. Estimating the decrease in capacitance (C) due to electrolyte evaporation and degra-

dation in contact with the oxide layer.

3. Estimating the increase in ESR due to electrolyte evaporation and oxide layer degra-

dation.

4. Determining how short circuits occur due to insulation breakdown of the electrolytic

film and insufficient electrolyte volume.

We first discuss the equivalent internal electric circuit model of the capacitor and then

discuss each of the underlying degradation phenomenon in the sections that follows.

Equivalent Internal Circuit Model

In this section, we first discuss the derived equivalent electrical circuit model of an elec-

trolytic capacitor. We then discuss the link between the equivalent circuit parameters to the

the physical variables of the capacitor, especially those that are impacted by the degradation

process.

A detailed lumped parameter equivalent circuit model of electrolytic capacitors pre-

sented in [124] is shown in Figure 36. Inductive parameters are not considered in the model

since the capacitors under study are operated in the DC mode. The mapping between the

electrical circuit components and internal capacitor components are listed below:
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1. The resistances Ral and Rcl are attributed to the lugs connecting the terminals to the

anode and cathode foils, respectively.

2. The elements associated with the anode foil are the resistance of the foil, Raf , the

capacitance of oxide layer deposit on the foil, Caf , and parallel resistance, Rafp rep-

resenting the resistive losses caused by the oxide layer.

3. The circuit elements introduced by the electrolyte include the resistance due to the

electrolyte in the etched tunnels in the anode and cathode foils, Raot and Rcot, respec-

tively. An additional resistance is due to the electrolyte in the paper separator, RE .

A parallel capacitance CE represents the electrolyte dispersion of the paper, which is

impregnated with the electrolyte.

4. Similar to the components present in the anode foil, circuit elements associated with

the cathode include oxide capacitance on the cathode foil, Ccf , the parallel resistance,

Rcfp, representing the losses due to the dielectric on the cathode, and finally resistance

of the cathode foil, Rco.

The cathode capacitance, Ccf , is typically at least ten times larger in value than the

anode capacitance, Caf . This is because the dielectric of the capacitor is present on the

anode foil, which is a thin layer of aluminum oxide, Al2O3 chemically grown on the anode

foil using a process know as “formation”. During the process of formation the effective

anode foil surface area is reduced since the microscopic tunnels are partially obstructed by

the Al2O3 deposits, thus reducing the number of tunnels and hence anode capacitance, Caf ,

whereas the formation has no effect on the cathode foil and hence Ccf is comparatively very

much higher than Caf .
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Figure 36: Equivalent Electrical Model of Electrolytic Capacitor (M1)
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This anodization also determines the anode and cathode parallel resistances, Rafp and

Rcfp, respectively. The electrolyte impregnation affects the resistance due to the electrolyte

on the separator paper, RE and the parallel capacitance, CE due to dispersion. The set of

parameters and their expected nominal values for a typical 2200 µF capacitor are listed in

Table 5.

Table 5: Approximate lumped parameter values associated with Capacitor

Parameter Approximate Value (Ω)
Anode oxide resistance (Rafp) ≥ 1× 104

Cathode oxide resistance (Rcfp) ≥ 1× 104

Series cathode foil capacitance (Caf ) 2400µF
Parallel electrolyte Capacitance (CE) � Caf

Series anode foil capacitance (Ccf ) � Caf

Resistance of electrolyte in paper (RE) 5× 10−2

Resistance of electrolyte in etched 6× 10−3

tunnels of anode foil (Raot)
Resistance of electrolyte in etched 13× 10−3

tunnels of cathode foil (Rcot)
Resistance of anode foil (Raf ) 1× 10−3

Resistance of cathode foil (Rcf ) 1× 10−3

Lug resistance on anode (Ral) 1× 10−4

Lug resistance on cathode (Rcl) 1× 10−4

In this work, our goal is to derive an analytic degradation model of the capacitor, based

on the internal capacitor structure and the associated physical processes. The parameter

values of the model will be derived from experimental data. Our current experimental setup

is better suited to directly derive the parameters corresponding to the internal circuit, with a

simpler, abstract form of the model,M2 as shown in Figure 37. As an approximation, series

resistance components Ral, Rcl, Raf , Rcf , Raot and Rcot are combined into an equivalent

single resistance Rc. The parallel resistance, Rafp and Rcfp, each ≥ 1× 104Ω in magnitude

can be ignored compared to the series resistances that are of the order of 1 × 10−3Ω. The

cathode foil capacitance Ccf is usually very much greater than the anode foil capacitance,

Caf ,(Ccf � Caf ) hence Ccf can be ignored. The parallel capacitance CE and anode foil

capacitance can be combined to form a series capacitance, Cc.

As explained from equivalent circuit lumped parameter model (M2) ESR is approxi-

mated as the sum of two component resistances :
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Figure 37: Simplified lumped parameter electrical Model (M2)

ESR = Rc +RE . (3)

Rc, as discussed is the combined series resistance of the lugs, cathode and anode foils

respectively, which remains almost constant since its a combination of the resistances at-

tributed to mechanical aspects of the capacitor that do not change much over the life of the

capacitor. However, as discussed earlier (also, see Table 5) RE is orders of magnitude higher

than Rs, therefore, changes in ESR are primarily influenced by changes in RE . In [125] it is

discussed that Rc remain relatively constant and electrolyte resistance, RE increases as the

capacitor degrades, which can be attributed to the evaporation (i.e.,decrease) and degrada-

tion (chemical breakdown caused by ion exchange) of the electrolyte during operation. Rc

and RE are combined to define the overall degradation resistance combined together to form

the equivalent internal series resistance (ESR) as summarized in model M3, Figure 38.
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Figure 38: Lumped parameter electrical Model (M3)

Degradation Phenomenons Under Study

In earlier sections, we discussed the internal structure of the capacitor, the associated degra-

dation mechanisms, and an equivalent lumped parameter electrical circuit that captures the

internal structure and degradation mechanisms of the capacitor. Before we take the next

step to derive the physics-based degradation models we recap the three major phenomenons

leading to degradation in electrolytic capacitors:

1. Electrolyte Evaporation that can be attributed to electrical and thermal stress condi-

tions. This is the dominant degradation phenomenon,
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2. Oxide Breakdown, which is mainly observed under electrical overstress conditions;

under thermal overstress condition the phenomenon is less dominant.

Secondary causes of degradation are linked to:

1. Increase in internal Pressure that is mainly observed only under electrical overstress

conditions,

2. Electrolyte degradation, due to chemical reactions between the electrolyte and the

anode & cathode foils.

We first discuss the primary degradation phenomenon in detail and then derive physics-

based degradation models linking the phenomena to the operation conditions. We do not

build explicit degradation models for the secondary degradation phenomena in this thesis.

Electrolyte Evaporation

In this section, we derive the degradation model for changes in electrolyte volume over time

caused by evaporation due to stress effects. This is one of the primary contributors to the

degradation of electrolytic capacitors.

Heat Transfer in Capacitor Capsule

It has been observed that the temperature of the cartridge remains almost constant across

the diameter and along the length of the capacitor [116]. This is also true for the casing.

Therefore, it is reasonable to assume that cartridge and casing are isothermal bodies. As

as result, the capacitor can be treated as two concentric isothermal cylinders as shown in

Figure 39, which are at temperature values T1 and T2, respectively. Further heat flow

can be considered to be radial. These assumptions hold for capacitors having cylindrical

surface area much greater than the end areas i.e., top and bottom surface areas of the rolled

unit [111].

Electrical Stress

Heat generation in the capacitor takes place at the core, from where it travels radially

outwards towards the surface as explained earlier. The heat generation can be attributed
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Figure 39: Comparative Radial Heat Flow in Electrolytic Capacitor

to the ripple current passing through the ESR of the capacitor. Figure 40 describes the

heat flow when the capacitor is charged, the flow direction is considered to be unidirectional

from the core to the outer surface. The capacitor structure is made up of different layers

as discussed earlier in the section, through which the heat flow occurs before it is radiated

out to the surrounding atmosphere. In the thermal model these layers represent successive

thermal capacitances and thermal resistances. In the capacitor, the anode and electrolyte

layers along with the ambient surroundings are represented as the thermal capacitances,

labeled as C1, C2 and C3, respectively. Similarly the dielectric and body (cathode) layers

are modeled as thermal resistances R1 and R2, respectively.

Figure 40: Heat flow Model of Electrolytic Capacitor under electrical Stress
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Operation of the capacitors under Vapplied > Vrated results in rise of the internal core

temperature of the capacitor. The current flow through the capacitor during the charge/dis-

charge cycle has an exponential temporal relation with the applied voltage [114]. When the

applied voltage is within the range of Vrated the amount of heat generated because of the

current and internal resistance of the capacitor is relatively low. For Vapplied > Vrated

I ∝ exp(Vapplied) (4)

The current flow is due to the transport of ions under the action of applied voltage. Some of

the heat generated is conducted or radiated out through the capacitor body and leads, and

the rest leads to the increase in the internal temperature. When the applied voltage, Vapplied

is above Vrated the rate of current flow increases at a much faster rate, thus increasing the

amount of heat generated. Lesser amounts of this heat gets dissipated to the outside, since

most of the heat gets trapped in the multiple layers of the rolled unit of capacitor capsule,

which leads to a rise in the core temperature. The increase in temperature accelerates the

electrolyte evaporation, thus increasing the ESR of the capacitor [32].

Heat Generation

Referring to discussion regarding heat transfer in section V the amount of heat generated

is calculated as :

P = V × I (5)

where:

V : Vapplied, applied voltage in Volts.

I: current through the capacitor which is calculated from the current density in Amperes.

When the applied voltage is within the range of Vrated the amount of heat generated

because of the current and internal resistance of the capacitor is relatively low. Under

normal operating conditions i.e Vapplied ≤ Vrated the conduction through the anodic oxide

obeys the Poole - Frenkel mechanism [114] which is given by:
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j = QE3/2 exp(βE1/2)

with

β = 2e3/2/ε
1/2
i KT

(6)

where:

j: current density.

Q: space charge → charge on the capacitor.

E: electric field intensity in dielectric.

εi: dielectric constant.

e: electron charge.

K: Boltzmann constant.

T: absolute temperature.

From Eqn. 6 we can calculate the total current flowing in the capacitor.

This generated heat increases the internal core temperature of the device. Under normal

operating conditions the amount generated is low hence the internal temperature does not

rise much above the nominal value (i.e., room temperature). Under high electrical stress

operating conditions the amount is generated is high as compared to normal operation and

this will increase the internal core temperature considerably.

Thermal Stress

Similar to accelerated degradation under electrical stress we study capacitor degradation

for the thermal overstress condition. Under this operating condition when the surrounding

temperature gets high, the temperature of the can body of the capacitor also increases.

Heat travels from the surface of the body to the core of the temperature, this phenomenon

is described through the thermal model as shown in Figure 41. In the thermal over stress

(TOS) condition we study the effect of high temperatures on capacitors i.e., Tapplied >

Trated, where Tapplied is the applied overstress temperature in storage (i.e., not during actual

operation when the capacitor may charge and discharge) and Trated is the rated temperature
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at which the capacitor can be stored. A study of the literature [126] indicated that the

degradation could be primarily attributed to evaporation of the electrolyte due to high

temperatures.

When the ambient temperature (controlled chamber temperature) is increased, the core

temperature of the capacitor also increases. The raised temperature in the capacitor core

causes the electrolyte to start evaporating at faster than normal rates [122]. It has been

observed that the temperature of the cartridge and casing remain almost constant across

the diameter and along the length of the capacitor. Therefore, it is reasonable to assume

that cartridge and casing are isothermal bodies. As a result, the capacitor can be treated as

two concentric isothermal cylinders as shown in Figure 41(a) with temperature values T1

and T2 respectively. Further heat flow can be considered to be radial. These assumptions

hold for capacitors having cylindrical surface area much greater than the end areas [116].

High temperature on the surface causes heat flow radially towards the core of the ca-

pacitor (Fig. 41(b)) [111, 122]. The heat flow is considered only in one direction from the

outer surface to the core. The capacitor structure is made up of different layers through

which the heat flows as shown in the Fig. 41. In the thermal model these layers represent

successive thermal capacitances and thermal resistances. In the capacitor, the anode and

electrolyte layers are represented as the thermal capacitances, labeled as C1, C2 respec-

tively (Figure 41(b)). Similarly the dielectric and cathode layers are modeled as thermal

resistances R1 and R2, respectively.

The models for heat transfer under electrical and thermal stress that lead to increase in

the temperature are the cause of electrolyte evaporation which is discussed next.

Electrolyte Evaporation Model

The evaporation rate, jeo is directly linked with change in the core temperature. The rela-

tionship between electrolyte evaporation rate and temperature for a particular electrolyte

can be found in [125]. In this work the electrolyte under study is ethylene glycol. When the

surrounding temperature of the capacitor capsule is high, heat transfer from the capsule to

the capacitor core causes the internal temperature of the capacitor to increase, and as a

result the electrolyte evaporates at a faster rate. Under prolonged high temperate exposure
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Figure 41: Heat flow Model of Electrolytic Capacitor under thermal Stress

the electrolyte evaporation accelerates, which in turn decreases effective oxide surface area

As, leading to decreases in capacitance, (C) [125,127,128]. The change in electrolyte volume

as a function of the evaporation rate and time elapsed is given by:

Ve(t) = Ve0 − (Asjeowe × t), (7)

where:

Ve(t): dispersion volume at time t

Ve0: initial electrolyte volume

As: effective oxide surface area

we: volume of ethyl glycol molecules

jeo: evaporation rate (mg min−1 area−1)

t: aging time in hours.

From Eqn.(7) we derive the effective oxide surface areas As in terms of the decrease in

electrolyte volume over time:

As =
Ve0 − Ve(t)
jeo t e

(8)

In the next section we derive the equations for computing the initial electrolyte volume in

a capacitor, Ve0, based on its structure and internal manufacturing geometry and standards.
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Computing Initial Electrolyte Volume

Earlier we discussed that under high stress conditions, the electrolyte evaporates at faster

rates due to the increase in internal core temperature. The exact amount of electrolyte in

the capacitor is unknown, but we can compute the initial volume of the electrolyte from

the dimensions and type of the capacitor. The equation for computing the approximate

electrolyte volume is derived from total capacitor capsule volume,Vc given by:

Vc = πr2chc (9)

where:

rc: radius of capacitor

hc: height of capacitor

From the structural geometry and data in Figure 33, the total internal volume (Vi) can

be computed as:

Vi = As(dA + dS + dC) (10)

where:

dA: anode oxide layer thickness,

dC : cathode oxide layer thickness

dS : spacer paper thickness

The total volume:

Vc = Vi + Vcan (11)

where:

Vc: total capacitor volume

Vcan: volume of can material

Vi: internal volume of can

Referring to the open structure diagram of capacitor shown in Figure 33 we can assume

that the can thickness is very small, so Vcan ≈ 0, and dA, dS and dC are known from
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capacitor geometry. Therefore,

πr2chc = As(dA + dS + dC) (12)

Correspondingly, the paper spacer volume is given by:

Vs = AsdS ,

The electrolyte is completely soaked in the paper spacer. Hence the total spacer volume

can be expressed as combination of actual paper volume, Vpaper and the electrolyte volume,

Ve0,

Vs = Vpaper + Ve0

Since the capacitor paper is completely soaked under pristine conditions, the initial

electrolyte volume, Ve is given by:

Ve0 = Vs − Vpaper

The amount of electrolyte present depends on the type of paper used and number of

pores present in the paper. Typically, a highly porous paper type is used in the construction

of the capacitor so that the maximum amount of electrolyte can be soaked in the paper.

Hence the electrolyte volume can be approximated as:

Ve0 ≈ Vpaper (13)

from Eq. (11) and Eq. (12), Eq. ( 10) can be expressed as:

Vi = As(dA + dC) +AsdS

AsdS = Vs

Vi = As(dA + dC) + Vs
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From Eq. (13) we have:

Vs ≈ Ve0

hence we get:

Vi = As(dA + dC) + Ve0

Based on the geometric structure the approximate volume of electrolyte, (Ve0) in a

capacitor can be expressed as follows:

Ve0 = Vi −As(dA + dC) (14)

Referring to Eq. (11) and assumption Vcan ≈ 0 we have,

Vi = Vc

hence:

Ve0 = Vc −As(dA + dC)

From Eq. (12) and Eq. (14) the approximate pristine condition volume of electrolyte,

Ve0 based on geometry of the capacitor is expressed in terms of following equation:

Ve0 = πr2chc −As(dA + dC) (15)

Note that Eq.(15) gives us the initial electrolyte volume, Ve0, for a particular type of

capacitor based on its geometry and manufacturing parameters. In the later section of this

chapter we will discuss how the effective oxide surface area is linked with degradation in

the capacitance and ESR values.
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Oxide Layer Breakdown

Degradation in the oxide layer can be attributed to defects that appear on the oxide surface.

High electrical stress is known to accentuate the degradation of the oxide layer due to

localized dielectric breakdowns on the oxide layer [118, 119]. Changes in the electrical

parameters due to degradation in the oxide layer causes changes in the leakage current of

the capacitor leading to high voltage charges that travel over the surface of the oxide and

lead to increased crystallization and deposits on the surface [130]. When this crystalline

oxide layer breaks away, some of the insulating oxide layer also peels off, causing formation

of pits and loss of insulation on the oxide surface [129], the electrical conductivity between

the anode and cathode surfaces increases, thus decreasing the ability of the capacitor etched

surface to hold charge because of the impregnation of these defects by electrolytes. As the

peeling off continues and the leakage current continues to increase, the resulting impact

ionization eventually leads to an avalanche of electron flow [129, 130]. Therefore, the high

electrical current due to applied voltage leads to irreversible changes in the oxide layer

structure and correspondingly the electrical properties of the capacitor. This degradation

in the insulation resistance, Ri and capacitance, Ci, further accelerates the degradation

process toward the end of capacitor life, i.e., a complete breakdown of the capacitance

function [119].

Similarly, during thermal cycling the phenomenon of electrolyte evaporation leads to

cracks, fissures, chemical segregation, and lamellar tearing of oxide layer in addition to in-

crease in the insulation resistance and decrease in insulation capacitance caused by degra-

dation and breakdown in the oxide layer. The eventual breakdown phenomenon is similar to

an avalanche breakdown explained theoretically by a equivalent circuit shown in Figure 42.

In Figure 42, Ci and Ri are insulator capacitance and resistance, respectively and RE

is the electrolyte series resistance (major element of ESR and explained in detail in the

later part of the chapter). Rf is the resistance of breakdown filament, Ref is the electrolyte

resistance in series with the filament, and Rc is the resistance of the of the ionic charge layer

at the oxide interface for cylindrical current flow into the filament. Rc is calculated as:
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Rc =
dc

2πεRε0µVapplied
ln
Ve
Ve0

(16)

where:

Vapplied: applied voltage,

Ve: Current electrolyte volume,

Ve0: initial electrolyte volume under pristine conditions.

The resistance Ref is calculated as:

Ref =
ρe

2π Ve
(17)

where:

ρe: resistivity of electrolyte.

In the conventional technology, an insulator capacitance component, Ci is generated at

the portion where void is created in-between the oxide layers of the anode and cathode as

the electrolyte evaporates. The insulator resistance, Ri is also directly related to the void

formation phenomenon. In addition, under electrical stress when a high voltage is applied

to the oxide layer, a partial discharge (corona discharge) occurs in the vacant layer where

the insulator capacitance component forms. Since the partial discharge during operation of
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the module causes deterioration in the oxide layer, this has a corresponding effect on the

insulation between the foils, leading to degradation [129,131]. Hence the capacitor degrades

faster under electrical overstress conditions than if subjected to just thermal overstress(no

charge). Oxide breakdown is a similar phenomenon to an avalanche breakdown, and, there-

fore, deterioration of the insulation is also an avalanche effect and hence both the insulation

resistance, Ri and insulation capacitance, Ci degrade exponentially.

Under charged operation, a local breakdown is represented by closing of the switch as

shown in Figure 42. On closing, the capacitors Cp and Ci discharge through the the filament

resistance Rf . When the switch closes at breakdown an additional resistance network is

added to the initial circuit hence the overall equivalent series resistance (ESR) which is

combination of all the series and parallel resistive components, does not increase exponen-

tially since a parallel network of resistance dampens the exponential rise and instead causes

more of a linear change in the slope of ESR. While the total capacitance, computed from

the parallel capacitance network of Cp and Ci, decreases exponentially since Cp decreases

linearly due to electrolyte evaporation which is dominant in the early aging life cycle and

Ci decreases exponentially due to the avalanche breakdown phenomenon which becomes

dominant in the later stages of aging cycle as the avalanche effect kicks in.

As discussed earlier evaporation of the electrolyte creates voids in the oxide layers, which

over the period of thermal cycling due to high temperature fissures and crack develop on the

oxide surface which leads to degradation. The insulation capacitance, Ci is indirectly related

to the electrolyte evaporation and more directly to the oxide layer breakdown, which results

in the avalanche effect phenomenon, causing Ci to decrease exponentially. And since Cp and

Ci are in parallel the overall capacitance starts to decreases in an exponential way, once the

degradation in Ci starts dominating in the later stages of the aging cycle. Under thermal

stress conditions since no charge is applied to the device, the Rc value is remains constant,

while resistance values of Ref , Rf and Ri increase. At breakdown when the switch is closed

due to the parallel and series combination of the resistances the degradation observed due to

change in overall resistance is relatively less dominant as compared to degradation observed

in the capacitance value.

83



The breakdown phenomenon is represented by a capacitance dependence factor, cb and

resistance breakdown dependence factor, eb which are directly proportional to the elec-

trolyte evaporation and operating conditions, hence any changes in these factors have a

direct impact on the capacitance and ESR parameters respectively. Under normal oper-

ating conditions, degradation due to breakdown is minimal since the devices operate well

within the bounds of operational limits, and hence these factors are not seen as a contribut-

ing elements to the overall degradation phenomenon. But during the aging cycle under

overstress conditions breakdown phenomenon is more prominent and observed in the mea-

surement data hence these dependence factors are included as a parameter of the underlying

first principle equation. As explained cb has an exponential effect while eb has a linear ef-

fect, as the breakdown phenomenon starts dominating in the aging cycle. The relationship

between capacitance dependent breakdown factor and electrolyte volume decrease is given

as:

cb(t) = exp(f(Ve0 − Ve(t)) (18)

Similarly the relationship between ESR dependent breakdown factor and electrolyte

volume decrease is given as:

eb(t) = f(Ve0 − Ve(t)) (19)

Physics-Based Degradation Models

The fishbone diagram in Figure 35 discussed a fairly complete set of underlying phenomena

that cause capacitor degradation and eventual breakdown. Given our approximate inter-

nal lumped parameter electrical circuit model of the capacitor, we have determined that

the capacitance value, C and the resistance value, ESR are the primary determinants of

capacitor health. We will use a physics-based modeling approach that links degradation of

C and ESR parameters of the capacitor to physical phenomena associated with electrolyte

evaporation and oxide layer deterioration.
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Capacitance Degradation Model

The input impedance of the capacitor network is defined in terms of the total lumped

series and parallel impedance of the simplified circuit model [133] shown in Figure 38.

Capacitance represents the ability of a body to store electrical charge. It can be calculated

from knowledge of the configuration and the geometry of the conductors and dielectric

properties of the insulator between the conductors. Based on the cylindrical geometry the

total lumped capacitance for a foil type electrolytic capacitor [133] is given by:

C =
2εRε0As
dC

(20)

where:

εR: relative dielectric constant,

εO: permitivity of free space,

dC : oxide layer thickness,

As: effective oxide surface area,

cb: capacitance dependence breakdown factor.

Under overstress conditions, as discussed earlier, capacitance dependence factor cb, also

affects the capacitance value, and Eqn (20) can be re-written as:

C =
2εRε0Ascb

dC
(21)

where:

cb: capacitance dependence breakdown factor.

Studies reported in the literature [129, 131] and our own experiments show that this

parameter in the initial life aging cycle of the device remains less dominant based on the

operating conditions and is directly proportional to decrease in electrolyte as discussed

earlier. In Eq. (20) and Eq. (21) the parameters εR, ε0, and dC remain more or less constant

through the capacitance aging time.
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ESR Degradation Model

The ESR dissipates some of the stored energy in the capacitor. An ideal capacitor would

offer no resistance to the flow of current at its leads. Based on the first principles parameters

the series electrolyte resistance, RE is computed as a function of the effective oxide surface

area, As [133] as:

RE =
1

2

(
ρEdCPE
As

)
(22)

where:

ρE : electrolyte resistivity

PE : correlation factor related to electrolyte spacer porosity and average liquid pathway.

These two parameters are also relatively constant through the aging life of the capacitor.

Since RE ≈ ESR, increase in RE due to evaporation of electrolyte, which decreases As,

will lead to increase in ESR, given by:

ESR =
1

2

(
ρEdCPE
As

)
(23)

Under overstress conditions, as discussed earlier the resistance dependence factor eb is

factored into Eqn (23), to define the updated model as:

ESR =
1

2

(
ρEdCPEeb

As

)
(24)

Under normal circumstances when the capacitors are stored at room temperature or be-

low rated temperatures, no singnificant damage or decrease in the life expectancy is observed

for long periods of time. But in cases where the capacitors are stored under temperature

conditions higher than their rated value, the capacitors show irreversible degradation over

time. For both the capacitance and degradation models, we employ derived relation be-

tween, oxide surface area, As and elctrolyte volume, Ve(t) to define temporal degradation

in the C and ESR values when stress is applied. Under thermal overstress conditions no

charge is applied to the device, therefore no exchange of ions in the electrolyte takes place
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hence one observes a very minor degradation in in the ek factor. The change in ESR is

mainly affected by the change in electrolyte volume.

Time Dependent Degradation Models

Using the physics-based model of electrolyte evaporation, we derive the time dependent

degradation models for capacitance (C) and ESR. Using Eq. (20) and Eq. (8) we derive

the capacitance degradation model as:

D1 : C(t) =

(
2εRε0cb
dC

)(
Ve0 − Ve(t)
jeo t we

)
. (25)

Ve0 Eq. 8 in is computed from the capacitor geometery in Eq. (15), and the other

parameters are specific to capacitor depending upon its structure and manufacturing spec-

ifications. Evaporation rate, jeo is a temperature dependent parameter, electrolyte volume

changes with time and evaporation rate and cb is the breakdown capacitance dependence

factor directly dependent on the change in electrolyte volume. Similarly increase in ESR,

is computed from Eq. (15) as:

D2 : ESR(t) =
1

2
(ρE dC PE)

(
jeo t weeb
Ve0 − Ve(t)

)
(26)

In model, D2 the parameters which are temperature dependent are the rate of evapo-

ration jeo and the correlation factor, PE related to electrolyte spacer porosity and average

liquid pathway and eb, breakdown resistance dependence factor directly dependent on the

change in electrolyte volume, operating conditions.

Increase in Capsule Internal Pressure

Internal pressure increases due to increase in the core temperature and chemical reactions

taking place during the charge/ discharge cycle. Gas generation in capacitors [132] is

principally controlled by two processes outlined below:

The first process is based on Faraday’s first law of electrolysis. The law states that

‘‘Mass of any substance deposited or liberated at any electrode is directly proportional to the

quantity of electricity (charge) passed”. The quantity of charge passed is the product of
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current (A) and time (sec) which is the polarization time. The mass (W) of ions liberated,

is directly proportional to the amount of charge passed through the electrolyte (Q) [120].

During the charging cycle, a charge q, equal to CA × Vapplied is built up on the anode,

where CA is the anode capacitance and Vapplied the applied voltage. This applied charge

leads to oxidation at the anode and will cause a reduction reaction at the cathode resulting

in the generation of hydrogen. As studied from the first law the number of moles of gas

generated is linearly dependent on the polarization time. Similarly during the discharge

cycle, on discharge of the anode, electron transfer from the solution to the aluminum cathode

takes place which causes discharge of hydrogen to produce either molecular oxygen or anodic

aluminum oxide. These observations suggest that, under any condition, we would observe

gas evolution and damage on the oxide layer due to oxidation [120].

The simultaneous aging process during the operation is the absorption of the generated

gas. The continuous evolution of the gas during the operation is diminished by the ab-

sorption of hydrogen by the depolarizer. Hydrogen absorption takes place at a constant

rate through the reduction reaction of the quinone and picric acid (components in the elec-

trolyte) [120,132]. The reduction reaction follows the first order of kinetics where, the rule

states that in a chemical reaction in which the rate of decrease in the number of molecules

of a substrate is proportional to the concentration of substrate molecules remaining. The

reduction reaction is given by:

n(t) = nd [1− exp(−kt)] (27)

where:

n: number of reacting moles with hydrogen.

nd: total number of depolarizer moles.

k: absorption constant.

t: time
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The anodic reaction during this phenomenon is given by:

6OH− + 2Al −→ Al2O3 + 3H2O + 6e− (28)

OH− +HAdsorbed −→ H2O + e− (29)

The phenomenon described in Eqn. (29) is more likely than the phenomenon attributed

to Eqn. (28) since Eqn. 28 requires that aluminum (Al) atoms overcome the barrier effects

at the interface in order to react where as in Eqn. 29 the H+ atoms are already on the

surface of the metal and available for combination with OH− [32, 120,125].

Under normal operating conditions, Vapplied ≤ Vrated the amount of gas generated is

small and all of it is absorbed by the depolarizer. At high temperatures caused by the

over stress voltage, Vapplied > Vrated, rate of reaction accelerates leading to increase in the

generation of hydrogen gas. With increase in internal temperature the electrolyte depletes

and thus the amount of depolarizer present reduces. This leads to decrease in the rate at

which hydrogen gas is absorbed causing some of the hydrogen to be left unused and results

increase in the internal pressure. Though this is a slow process and is secondary to the

previous two phenomena described, the end result causes the capacitor cap to “pop” and

complete failure of the device. Evaporation also leads to increase in the internal pressure of

the capacitor but this has a smaller effect than the increase in the pressure due to generation

of gases, which also decreases electrolyte evaporation rate .

Summary

In this chapter, we first discussed discussed the structure of an electrolyte capacitor and

its equivalent electrical models. Literature survey revealed a variety of underlying degra-

dation mechanisms that change with operating conditions. For example the phenomenon

of electrolyte evaporation occurs for nominal, electrical overstress, and thermal overstress

conditions, but the mechanisms which lead to these failure vary as the operating conditions

change. Nominal operation provides a baseline on how the capacitor degrades under normal
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operating conditions. We then derived from the structure and manufacturing details, the

initial electrolyte amount in each capacitor.

The most common stressors leading to degradation in capacitors are electrical and ther-

mal overstress conditions, respectively. We further studied these operating conditions and

their effects leading to degradation phenomenon on the internal parameters. We studied

each of the degradation mechanism in detail and derived formulae for how the capacitance

and ESR of a degraded capacitor changed with time.

We then derived the physics-based degradation models for the capacitor. For our further

research work we conducted laboratory experiments where we developed specific hardware

and setups for simulating the operating conditions for the capacitors to degrade. Under

these conditions the capacitors were regularly monitored and characterized to study the

degradation phenomenon. Data from these experiments is then used to test and validate

each of the derived models. The experiments, derived degradation models, implementation

and results are discussed in the next chapters.
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CHAPTER VI

ELECTRICAL OVERSTRESS

In this chapter, we study capacitor degradation under electrical over stress (EOS) condi-

tions. In these situations, the applied voltage on the capacitor exceeds its rated voltage,

i.e., Vapplied > Vrated. A study of the literature [122, 126] indicates that the degradation in

electrolytic capacitors under EOS can be primarily attributed to three related phenomena:

1. Electrolyte evaporation,

2. Oxide Breakdown and leakage current, and

3. Increase in internal Pressure.

The heat generated internally when current passes through the capacitor during its

charge and discharge cycle, leads to evaporation of the electrolyte [116]. In addition to

this, as the capacitor continues to degrade overtime, other phenomena, such as oxide layer

breakdown, leads to further deterioration causing the capacitance to decrease significantly.

The physics-based degradation models associated with electrolyte evaporation and oxide

layer breakdown were discussed in Chapter V.

In this chapter we first we discuss the electrical equivalent model and setup for the

electrical overstress experiments. Our first approach uses the experimental degradation

data to implement an empirical model for capacitance degradation. We derive the empirical

capacitance degradation model , validate it using a leave-one-out methodology, and then

use the model to make RUL calculations. Next we present the methodology for deriving

generalized physics-based degradation models for capacitance and ESR, respectively. We

validate the dynamic physics-based model by comparing its predictions against additional

data generated from the experimental study.

Table 6 describes the datasets for the experiments that have been conducted to study

capacitor degradation under different operating conditions. The first column describes the

type of experiment conducted, the second column in the table gives details of the capacitors
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used for the experiment while the third column gives the details of the experimental setup

for stressing the capacitors. The last column indicates the number of capacitor devices used

in each experiment.

Table 6: Electrical Overstress Degradation Experiments

Experiment Capacitors Setup Units

Electrical Overstress 2200µF, 10V, 85◦C 10V, 25◦C 8
Electrical Overstress 2200µF, 10V, 85◦C 12V, 25◦C 6

Electrical Stress Degradation

In this section we present an approach for deriving physics-based degradation models for

capacitors under electrical overstress conditions. To derive the degradation model we first

discuss the equivalent electrical circuit model to link the degradation phenomenons sum-

marized in the fishbone diagram in Figure 35.

Equivalent Electrical Circuits

A simplified electrical circuit equivalent lumped parameter model of impedance,M1, defined

for an electrolytic capacitor is shown in Figure 44. An ideal capacitor offers no resistance

to the flow of current at its leads. However, the electrolyte, aluminum oxide, space between

the plates and the electrodes combined produces a small equivalent internal series resistance

(ESR), which dissipates some of the stored energy in the capacitor. Under the overstress

conditions, electrolyte evaporates at a faster rate causing the ESR to increase, and the

overall ability to store charge, i.e., the capacitance to decrease. The degradation models

derived in Chapter V indicate that these changes in the two parameter values are mostly

linear.

However, as the amount of electrolyte decreases significantly, the increased temperatures

and the charging and discharging cycles of the capacitor lead to additional degradation in

the oxide insulation layer of the capacitor. The degradation due to the crystallization de-

posits on the oxide layer caused by voltage sparking on the surface of the oxide [129]. In an

equivalent circuit damage model, this behavior can be reproduced as a small capacitance
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Figure 43: Electrical Overtress Degradation Electrical Equivalent Model( M4 )

with resistance in parallel along with the existing ESR and capacitance parameters linked

to electrolyte evaporation as shown in Figure 43. The equivalent electrical model,M4 in

Figure 43 shows the simplified electrical equivalent of the breakdown model. This degra-

dation model is generated into a simpler approximation, shown as a capacitance, C and

dissipation resistance, ESR in series. This equivalent circuit is illustrated in Figure 44. We

derive the parameter values for this simplified model from our experimental data.
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Figure 44: Lumped Parameter Model ( M1 )

Electrical Overstress Experiments

In this setup, the capacitors are subjected to high voltage stress through an external supply

source using a specifically developed hardware described by the block diagram in Figure 45.

Square wave amplified 

signal

V0 VL

RL

C

Power Supply

Agilent Signal 

Generator

Signal Amplifier 

hardware

Input Square wave

Figure 45: Block diagram of the experimental setup.
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Power Supply

The power supply used for the experiment is a BK Precession 1761 triple output DC power

supply. A constant DC voltage of ±15V is required by the amplification hardware, which

is provided by this power supply.

Function Generator

In this experiment, we charged/discharged the capacitors at a fixed frequency using a square

wave input. This input square wave was generated using a Agilent 33220A 20 MHz Func-

tion/Arbitrary Waveform Generator. This is a 14-bit, 50 MSa/s, 64 k-point arbitrary

waveforms generator and can be controlled over USB, GPIB and LAN ports.

The function generator is programmed for a 1V square wave output at 100mHz. This

frequency is calculated from the RC time constant, where R is the load connected for the

capacitor to discharge and C the capacitance values of the capacitor. At this frequency the

capacitors are charged completely, stabilized at the charged value for a few seconds and

then discharged completely.

Amplification Stage

The manufacturer rates the capacitor at maximum 10V operating voltage. To observe

the degradation due to electrical charge/discharge stress on the capacitor we stress the

capacitors are different voltage levels specifically 12V and 10V.

To generate these different voltage levels from the function generator for a same square

wave input we have developed a specific hardware as shown in Figure 46. Opamp 714

IC’s are used in the inverting amplification mode with varying gains to obtain the required

square wave voltages.

Load Resistor

To discharge the capacitor completely before the next charging cycle, a resistive load was

connected. The load selected is calculated such that the capacitor is completely discharged

before the next charge cycle at 100 mHz and the load should be able to sink sufficient
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Figure 46: Custom Module PCB developed for EOS Experiment

amount of current to dissipate enough power. From these calculation a 1W 100Ω resistor

was selected as a load.

Measurements

Due to the charging/ discharging cycle the internal temperature of the capacitor increases.

To monitor the rise in the temperature, a temperature sensor was connected to the bare

aluminum part on the top of the can. Along with this measurement we also monitored the

ambient room temperature in which the experiment was conducted. The schematic shown

in Figure 45 shows the measurements made on each capacitor. Figure 47 shows the current

EOS experimental setup.

Impedance measurement

The SP-150 Biologic SAS impedance measuring instrument uses Electrochemical Impedance

spectroscopy (EIS), and finds applications in corrosion, battery, fuel cell development, sen-

sors, and physical electrochemistry. Impedance measurements can be made in a poten-
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Figure 47: EOS experimental setup.
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tiostatic mode (PEIS) or in a galvanostatic mode (GEIS). The PEIS mode is used for

characterizing all the capacitors under test.

An ideal capacitor has complex impedance ZI = 1/sCI where CI is the ideal capacitance

value. The complex impedance of model M1 is given by

Z = RE +
1

sCR
(30)

where

RE : the equivalent series resistance (ESR),

CR : real capacitance (C).

It should be noted that the lumped-parameter model used to estimate ESR and capaci-

tance, is not the model to be used in the prognostics algorithm; it only allows us to estimate

parameters which provide indications of the degradation process through time. PEIS mode

experiments perform impedance measurements by adding a small sinusoidal voltage to a

DC potential that can be set to a fixed value, or relative to the cell equilibrium potential.

The equation of the working electrode versus time is:

EWE(t) = EWE + Vasin(2πft), (31)

where Va is the applied potential amplitude and f the frequency.

Experiment I - 12V EOS

For this experiment six capacitors of 2200µF capacitance, with a maximum rated voltage of

10V , maximum current rating of 1A and maximum operating temperature of 85◦C were used

for the study. The ESR and capacitance values were estimated from the capacitor impedance

frequency response measured using the EIS instrument. Using the lumped parameter model,

M1 the ESR and capacitance (C) values given by Eqns. (25) and (26) in Chapter V, were

estimated at each measurement. The average pristine condition ESR value was measured

to be 0.121 Ω and average capacitance of 2029 µF for the set of capacitors under test. The
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ambient temperature for the experiment was controlled and kept at 25◦C. During each

measurement the voltage source was shut down, the capacitors were discharged completely,

and then the characterization procedure was carried out. Figure 47 shows the experimental

setup for the 12V EOS experiment.

Electrochemical impedance spectroscopy measurements are available to observe electri-

cal performance of the capacitor. Figure 48 shows Nyquist plots of the impedance measure-

ments for capacitor #1 at pristine condition, and after accelerated electrical overstress aging

at intervals of 71, 161 and 194 hours. The degradation can be observed as the Nyquist plot

shifts to the right as a function of aging time due to increase in RE . These measurements

are then used to estimate the parameters of the impedance model M1 from Eqn. (30).

The parameter estimation for computing the values of capacitance and ESR are performed

using the EIS instrument software (EC lab). This is basically and optimization problem

using an aggregate of mean squared error as an objective function. The error is aggregated

at different frequencies for which measurements are available. The optimization is set up to

minimize the objective function by finding optimal values for CR
∗ and RE

∗. This parameter

estimation is performed every time an EIS measurement is taken resulting on values of CR

and RE at different points in time through the aging of the components.
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Figure 48: Electro-impedance measurements at different aging times.

Figure 49 shows increase in the ESR value for all the six capacitors under test over the

period of time. Similarly, Figure 50 shows the decrease in the value of the capacitance as
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the capacitor degrades over the aging period. From the plots in Figure 49 we observe that

for the time for which the experiments were conducted the average ESR value increased by

54%− 55% while over the same period of time, the average capacitance decreased by more

than 20% (threshold mark for a healthy capacitor). We used the collected data from the

experiments to build dynamic degradation models of capacitors.
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Figure 49: Degradation of capacitor performance, ESR increase as a function of aging time.

Prognostics Problem Formulation

In prognostics studies, it is important know when the performance of the device or system

is going to lie outside an acceptable region of operation. When the capacitor parameters

exceed specified thresholds, we consider the degrading device or system to have failed. For

the device/system to be within the bounds of acceptable performance, we express a set of

constraints, cn, C = {Ci}cni=1, where Ci is a function

Ci : Rnx × Rnθ → B

that maps a given point in the joint state-parameter space,(x(t), θ(t)), to the Boolean do-

main B = [0, 1], where Ci(x(t), θ(t)) , 1 indicates the constraint is satisfied or 0 (failed)
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Figure 50: Degradation of capacitor performance, capacitance loss as a function of aging
time.

if the constrained is not satisfied. Each individual constraint can be combined to form a

single constraint output threshold function TEOL, where

TEOL : Rnx × Rnθ → B

which is defined as :

TEOL(x(t), θ(t)) =

 1, 0 ∈ {Ci(x(t), θ(t))}ci=1

0, otherwise.
(32)

Indicating the healthy state of a device/system TEOL evaluates to 1, if any of the con-

straints are violated. At some instance in the aging cycle at time, tp , the system is at

(x(tP ); θ(tP )) and we are interested in predicting the time point t at which this state will

evolve to (x(t); θ(t)) such that TEOL(x(t), θ(t)) = 1. Using TEOL, we formally define end of

life (EOL) of a device/system as:

EOLtp , inf {t ∈ R : t ≥ tp ∧ TEOL(x(t), θ(t)) = 1} , (33)
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i.e., EOL is the earliest instance in the aging cycle at which at which TEOL is valid for

a healthy system. RUL is expressed using EOL as

RUL(tp) , EOL(tp)− tp.

Empirical Model for Capacitance Degradation

This section discusses a procedure we have employed for deriving an empirical capacitor

degradation model. The model is derived from the empirical data (Figure 50) collected

from the experiments described above.

Degradation Model

The percentage loss in capacitance is used as a precursor of failure variable and it is used to

build a model of the degradation process. This model relates aging time to the percentage

loss in capacitance. Let Cl be the percentage loss of capacitance due to degradation as

shown by Figure 50. The following equation represents an empirical degradation model

E1 of the change in capacitor parameter over time. This empirical model represents an

approximation of by model M1.

E1 : Cl(t) = eαt + β, (34)

where α and β are degradation model parameters that will be estimated from the experi-

mental data gathered from the accelerated aging experiments.

We employ the leave one out method to verify the derived model. Data from five of

the six capacitors are used to estimate the model parameters, alpha and beta, and data

from the sixth capacitor is used to validate the model. A nonlinear least-squares regression

algorithm is used to estimate the model parameters. Table 7 presents definition of the test

cases and the parameter estimation results. The mean estimate and 95% confidence interval

was derived for parameters, α and β. In addition, the error variance is included as a way

to assess the quality of model fit.
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Validation Test Training α β
σ2vtest capacitor capacitor (95% CI) (95% CI)

T2 #2 #1, #3–#6
0.0162 -0.8398

1.8778
(0.0160, 0.0164) (-1.1373, -0.5423)

T3 #3 #1, #2, #4–#6
0.0162 -0.8287

1.9654
(0.0160, 0.0164) (-1.1211, -0.5363)

T4 #4 #1–#3, #5, #6
0.0161 -0.8217

1.8860
(0.0159, 0.0162) (-1.1125, -0.5308)

T5 #5 #1–#4, #6
0.0162 -0.7847

2.1041
(0.0161, 0.0164) (-1.1134, -0.4560)

T6 #6 #1–#5
0.0169 -1.0049

2.9812
(0.0167, 0.0170) (-1.2646, -0.7453)

Table 7: Degradation model parameter estimation results.

Figure 51 plots the estimation results for test case T6. The experimental data are

presented together with results from the exponential fit function. It can be observed from

the residuals that the estimation error increases with time. This is expected since the last

data point measured for all the capacitors fall slightly off the exponential model. This seems

to be the case that later in the aging cycle, additional degradation phenomena kick in, and

a simple exponential (i.e., first-order) model may not be sufficient to represent the overall

degradation process.
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Figure 51: Estimation results for the empirical degradation model.
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State-Space Model for Degradation Estimation

The estimated degradation model is used as part of a Bayesian tracking framework and

implemented using a Kalman filter approach. This requires that the dynamic degradation

model be represented as a discrete-time equation, with the state variable, Capacitance(C),

the degradation state at time tk being represented as a function of the state at tk−1. The

exponential behavior described in the model is represented as a first order differential equa-

tion which can represent the time evolution of capacitance value, Cl(t). Then, the model is

discretized in time in order to obtain a discrete-time state-space model E2.

From equation (34) we have that Cl(t) = eαt + β 1, taking the first derivative with

respect to time and substituting eαt = Cl(t)− β from Eq. (34) we have

Ċl =
dCl(t)

dt
= αCl(t)− αβ. (35)

Making the finite difference approximation for Ċl with time interval ∆t we have

Cl(t)− Cl(t−∆t)

∆t
= αCl(t−∆t)− αβ, and

Cl(t) = (1 + α∆t)Cl(t−∆t)− αβ∆t.

Letting tk = t and tk−1 = t−∆t we get the state-space model

E2 : Cl(tk) = (1 + α∆k)Cl(tk−1)− αβ∆k. (36)

This model can be used in a Bayesian tracking framework in order to continuously

estimate the value of the loss in capacitance through time as measurement become available.

Prediction of Remaining Useful Life Results

State estimation and RUL prediction results are discussed for test case T6. Figure 52

shows the result of the filter tracking the complete degradation signal. The residuals show

1The α and β variables used in model E2 are not used further in other references
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an increased error with aging. This is to be expected given the results observed from the

model estimation process.
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Figure 52: Tracking results for the Kalman filter implementation applied to test capacitor
(capacitor #6).

Figure 53 presents the capacitance loss estimation and EOL prediction as the aging

progresses. Predictions are made after each point in which measurements are available.

It can be observed that the predictions become better as the prediction is made closer

to the actual EOL. This is possible because the estimation process has more information

to update the estimates as it nears EOL. Since EOL won’t be known before hand, as

some of the devices have not actually failed, CBM decisions are made based on the 20%

capacitance decrease threshold. End of life (EOL) is defined as the time at which the

forecasted percentage capacity loss trajectory crosses the EOL threshold. Therefore, RUL

is EOL minus prediction hours.

Validation Tests

As discussed earlier we employ a leave one out method to verify the derived model. As sum-

marized in Table 7, one capacitor is left out and parameter estimation is based on the data

of remaining 5 capacitors. The derived model is then verified against the left out capacitor,

this is carried out for all the remaining capacitors. An Alpha-Lambda(α-λ)2 prognostics

performance metric is presented in Figure 54 for validation test T6. The blue line represents

ground truth and the shaded region corresponds to a 30% (α = 0.3) error bound in the
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RUL prediction. This metric specifies that the prediction is within the error bound halfway

between first prediction and EOL (λ = 0.5).
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Figure 54: Performance based on Alpha-Lambda performance metric.

We use the relative accuracy measure, defined in Eqn (37) as a metric for validating the

state space degradation model of the capacitance value.

RA = 100

(
1− |RUL

∗ −RUL′ |
RUL∗

)
(37)

The relative accuracy, computed as a percentage, represents a comparison against

ground truth, as derived from the experimental results. RUL∗ is the ground truth from

the experimental data while RUL
′

is the predicted RUL. Table 8 lists the RA values for

all capacitors at different time points of the aging process. The last column of the Table 8

represents the median RA of all the test cases for a particular prediction time.

It is observed that the RA values decrease considerably at aging time point tp = 171

hours. This is consistent with previous observations indicating that the algorithm with a

fixed-parameter model is not able to cope with the sudden drop in the capacitance value

during that time interval on. This is a limitation that could be overcome by modeling

additional phenomena that cause the enhanced degradation or more sophisticated online

estimation degradation model.

2The α in the Alpha-Lambda performance metric is different from the α used in model E2
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Table 8: Summary of validation results based on RA for model E2

Aging C2 C3 C4 C5 C6 RAa
Time

24 94.8 95.5 91.9 96.9 99.7 95.5
47 97.4 99.3 96.4 96.7 91.7 96.7
71 87.5 91.9 84.5 94.1 97.1 91.9
94 85.6 90 78.9 94.8 94.2 90
116 86 99.1 76.5 98 96.2 96.2
139 77.8 95.8 53.1 96.7 81.1 81.1
149 82.1 98.4 46.9 94.8 86.6 86.6
161 77.2 87.3 16.6 87.5 89.8 87.3
171 26.6 26.4 N/A 34.8 63.7 30.7

RAb 79.4 87.1 68.1 88.3 88.9

RAa is the mean relative accuracy of all capacitors at each prediction time (tp)
RAb is the mean relative accuracy of each capacitor at all prediction times

Physics Based Modeling Framework using Unscented Kalman Filter

A model-based prognostics methodology based on Unscented Kalman Filter is presented.

The prognostic methodology implemented in this work consists two parts. The first part

consists of a estimation step where the state based on the current conditions of the device

and inputs. In second part the algorithm is able to predict remaining useful life of the

capacitor till the health threshold of the device is crossed. In this section we will discuss the

dynamic models for both capacitance and ESR degradation models. We first discuss the

theory of UKF and then each of the degradation models with results will be summarized.

Unscented Kalman Filter

In model-based prognostics, degradation estimation reduces to joint state-parameter esti-

mation i.e., computation of p(xt, θt|y0:t). A simple solution to this is to implement a filter,

where the unknown parameters augment the state vector [21]. Treating parameters as states

in most cases makes the system nonlinear, even if it is a linear system. Most of the degrada-

tion models for prognostics are nonlinear since as discussed earlier degradation in a device

is due to several underlying phenomenons which are present during the aging cycle. Since

some of these are linear while some are non-linear in nature the overall degradation model

becomes non-linear.
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Estimation in nonlinear system is very important because many practical systems involve

nonlinearities in their operation through one form or another. Estimation of the state

accurately of such non-linear system is very important to diagnostics and implementing

it further to prognostic applications is extremely difficult. The Extended Kalman Filter

(EKF) which applies the KF to nonlinear system by linearizing all nonlinear models, has

become a most widely used method for estimation of nonlinear system. Although the

EKF maintains its computationally efficient recursive update form of the KF for non-linear

systems, it suffers a number of serious limitations [134,135].

1. It is only reliable if the error propagation to the future states can be approximated

by a linear function.

2. Linearization can be applied only if the Jacobian matrix exists i.e, cannot be imple-

mented if the system has discontinuities.

3. Calculating Jacobian matrices can be a very difficult and error-prone process.

The Unscented Kalman Filter (UKF) was proposed by [134,135] to overcome these problems

in non-linear systems. The UKF, instead of approximating the nonlinearity, approximates

the state distribution [134,135]. This procedure maintains the nonlinear functions exactly,

eliminating the need to calculate Jacobians, and thereby providing an easier implemen-

tation framework. In this section we will discuss the framework of UKF which has been

implemented for prognostics in this work. A nonlinear system, described by the difference

equation and the observation model with additive noise is given as :

xk = F[xk−1, uk−1, k] + wk−1

zk = H[xk, k] + vk

(38)

where x(k) is the n-dimensional state of the system at time step k, u(k) is the input vector,

w(k) is the process noise, Q, z(k) is the observation vector and vk is the measurement

noise, R.

The Unscented transform (UT), takes a random variable x , with mean x̄ and covariance

Pxx, which is related to a second random variable y by a nonlinear function y = f(x). A
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small set of points (sigma points) with mean ȳ and covariance Pxx are selected [134], which

are deterministically selected and weighted to exhibit properties to match the mean and

covariance of the original distribution. A non-linear transformation is applied to each point

to get the transformed points, statistics of the transformed points are then calculated to

estimate the mean and covariance of the transformed points. The sigma point weights do

not directly represent probabilities of the sigma points, and hence do not have to lie in the

interval [0, 1]. The weights wi can be positive or negative, but need to obey the following

condition to provide an unbiased estimate.

∑
i

wi = 1 (39)

Each sigma point is instantiated through the function (f) to obtain new set of sigma

points Y.

Yi = f(Xi) (40)

The mean of the transformed points is given by:

ȳ =
∑
i

wiYi (41)

The covariance of the transformed points is given by:

Pyy =
∑
i

wi(xo − µ0)(x0 − µ0)T (42)

The basic idea of the unscented transform is that it is easier to approximate a probability

distribution x than it is to approximate an arbitrary nonlinear function f or transforma-

tion [135]. This basic principle is implemented in the unscented Kalman filter where the

unscented transform is exploited for nonlinear state estimation [134,135]. At each step, the

unscented transform is applied to the state estimate and is used for a single step predic-

tion. There are several methods which exists for selecting the sigma points out of which we

implement the symmetric unscented transform for the prognosis problem [135,136].
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Symmetric Unscented Transform

In the symmetric unscented transform, 2nx + 1 sigma points are selected symmetrically

about the mean as follows [135]:

X0 = x̄

w0 =
k

n+ k

Xi = x̄ +
(√

(n+ k)Pxx

)
i
, i = 1, .., 2nx

wi =
k

2(n+ k)
, i = 1, ..2nx

Xi+n = x̄−
(√

(n+ k)Pxx

)
i
, i = nx + 1, .., 2nx

wi+n =
k

2(n+ k)
, i = nx + 1, .., 2nx

(43)

where
√

((n+ k)Pxx)i refers to the ith column of the matrix square root of (n + k)Pxx,

computed using the Cholesky decomposition since it is numerically efficient and stable.

Parameter κ is used to tune the higher moments of distribution and suggested to have

a smaller values as possible to bring the sigma points closer together. If x is assumed

Gaussian, then selecting k = 3− n is recommended [134].

Update Step

The UKF assumes a generalized nonlinear form of the state and output equations, with

additive Gaussian noise, and follows the same basic form as the Kalman and extended

Kalman filters, modified to use the sigma points. First, ns sigma points X̂k−1|k−1 are

derived from the current mean x̂k−1|k−1 and covariance estimates Pk−1|k−1 using the sigma

point selection algorithm of choice. The prediction step is:
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X̂ ik|k−1 = f(X̂ ik−1|k−1, uk−1), i = 1, ..., ns

Ŷ ik|k−1 = h(X̂ ik|k−1), i = 1, ..., ns

x̂k|k−1 =

ns∑
i

wiX ik|k−1

ŷk|k−1 =

ns∑
i

wiY ik|k−1,

(44)

Pk|k−1 = Q+
ns∑
i

wi(X ik|k−1 − x̂k|k−1)(X ik|k−1 − x̂k|k−1)
T , (45)

where Q is the process noise covariance matrix. The update step is :

Pyy = R+

ns∑
i

wi(Y ik|k−1 − ŷk|k−1)(Y ik|k−1 − ŷk|k − 1)T (46)

Pxy =

ns∑
i

wi(X ik|k−1 − x̂k|k−1)(Y ik|k−1 − ŷk|k−1)
−1 (47)

Kk = PxyP
T
yy

x̂k|k = x̂k|k−1 +Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkPyyK
T
k ,

(48)

where R is the sensor noise covariance matrix.

Prediction Step

The RUL prediction is initiated at any given aging time tp, using the current joint state-

parameter estimate, p(xtp, θtp|y0:tp), which is the most updated information of the system

at time tp. The goal here is to compute p(EOLtp|y0:tp) and p(RULtp|y0:tp). In contrast,

to the UKF update step here, we apply the transform to the state parameter distribution

at given single aging time point tp , and use this for multi-step predictions to EOL. The
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representation of p(xtp, θtp|y0:tp) distribution is represented by a finite set of weighted sam-

ples since we implement an UKF filter. An unscented transform is used to deterministically

select a small number of samples to reduce the computations [137].

Given the finite set of N samples,
{

(xitp , θ
i
tp)w

i
tp

}N
i=1

each sample i is propagated out to

EOL and use the original sample weight for the weight of that EOL prediction. Each sample

is simulated forward to EOL to obtain the complete EOL distribution. The pseudocode for

the prediction procedure is same as in [138] and given by Algorithm 1. Each sample, i from

the distribution is propagated forward until TEOL(x
tp
i , θ

tp
i ) evaluates to 1; at this time in

the aging cycle the EOL of the device/system is considered to have reached. In this work

we assume future inputs, ûk are known, since we have the collected experimental data.

Algorithm 1 EOL Prediction

INPUTS :
{

(xitp , θ
i
tp)w

i
tp

}N
i=1

OUTPUTS:
{
EOLitp , w

i
tp

}N
i=1

for i = 1→ N do
t← tp
xit ← xitp
θit ← θitp
while TEOL(xit, θ

i
t) = 0 do

Predict ût
θit+1 ∼ p(θt+1|θit)
xit+1 ∼ p(xt+1|xit, θit, ût)
t← t+ 1
xit ← xit+1

θik ← θit+1

EOLitp ← t

Capacitance Degradation Dynamic Model

From Eqn.(25) and other derivations in Chapter V, we have the time dependent degradation

models, D1 for capacitance (C) given by :

D1 : C(t) =

(
2 εR ε0 cb

dC

)(
Ve0 − Ve(t)
jeo t we

)
,
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The degradation in capacitance is directly proportional to the damage variables V and cb,

respectively. As discussed earlier, increase in the core temperature evaporates the electrolyte

thus decreasing the electrolyte volume leading to a gradual decrease in the capacitance. The

resultant decrease in the capacitance can be computed using Eq. (25). In addition to the

decrease in electrolyte volume, the oxide layer also degrades causing a breakdown in the

oxide layer, which further leads to degradation in capacitance (C) and ESR.

The dynamic capacitor degradation model can be enhanced to include the effects of the

oxide layer degradation, which is given by :

Ck =

(
2εRε0cb
dC

)(
Ve(k)

dC

)
(49)

From the electrolyte evaporation discussion and Eq. (7), the first order discrete approx-

imation for change in electrolyte volume can be expressed as:

dVe
dt

= −(weAsjeo),

Ve(k+1) = Ve(k) +
dVe
dt

∆t,

Ve(k+1) = Ve(k) − (weAsjeo)∆t.

(50)

From Eq. (49) we have,

Ve(k) =
Ck

2εRε0
d2C ,

Ve(k) = (Ck)η.

(51)

where:

η =
d2C

2εRε0 cb

We can express Eq. (51) as :

Ck+1η = Ckη +
dVe
dt

∆t,

Ck+1η = Ckη − (weAsjeo)∆t, hence

Ck+1 = Ck −
(weAsjeo)

η
∆t.

(52)
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In model, D1 the parameters which are temperature dependent are the rate of evapo-

ration jeo and oxide breakdown factor, cb. Electrolyte evaporation and oxide breakdown

under electrical stress is described by a thermal and oxide breakdown model in section V.

Rate of evaporation, jeo and resistance dependence oxide breakdown factor, cb are the two

parameters in the model which are estimated online based on the state variable value, C.

Though the applied stress conditions are similar, there may be variation in each ca-

pacitor and hence each capacitor may have slightly different evaporation rate. Hence the

evaporation rate parameter, jeo is estimated based on the first two reading in the experi-

mental data for each capacitors when predictions are done. The exact formulation of the

parameter is incorporated as modeling error/process noise in form of a stochastic process.

Since there could be a variation in the temperature the corresponding evaporation rate

value estimated had a mean and variance of the variation values.

While the capacitance dependence breakdown factor, cb is a state parameter and esti-

mated at each time step and the updated value is used in estimating the state. As discussed

in Chapter V, this factor is related to the electrolyte evaporation and is expressed in the

state space form as:

cb = −eξ,

where:

ξ = (Ve0 − Ve(t)),

cb(k+1) − cb(k) = −ξeξ.

(53)

The complete discrete time dynamic model for capacitance degradation can be summa-

rized as:

D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t,

cb(k+1) = cb(k) − ξeξ.
(54)

The model D4, is implemented in a Bayesian estimation framework. In this work, we

implement the dynamic tracking function as an Unscented Kalman Filter (UKF) since

the degradation in capacitance (state) due to decrease in electrolyte is considered to be a
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dynamic non-linear model since evaporation rate (jeo) and capacitance oxide breakdown

factor (cb) are estimated online based on the state values.

The following steps are implemented for model D4:

1. State Estimation: The current measured capacitance (C) is defined as the state vari-

able to be estimated respectively for each of the model and the degradation model is

expressed as a discrete time dynamic model in order to estimate current capacitance

(C) due to decrease in electrolyte volume at the next available measurement. Direct

measurements of the capacitance (C) is assumed for the filter.

2. Health state forecasting: It is necessary to forecast the state variable once there are

no more measurements available at the end of step 1. This is done by evaluating the

degradation model through time using the state estimate at time tp as initial value.

3. Remaining useful life computation: RUL is computed as the time between time of

prediction tp and the time at which the forecasted state crosses a certain failure

threshold value or EOL.

These steps are repeated for different aging time (tp) through the life of the capacitor

device under test.

There is an uncertainty both in the estimation step as well as in the prediction step.

To include uncertainty, the effective way is to have probability distribution to be estimated

since (i) the system state may not be directly measured and, (ii) addition to this is the

sensor noise, (iii) the initial state of the system exactly exactly known, (iv) there could

be uncertainty due to the derived system model, and (v) the process noise. In addition

to this even if the system state is known, uncertainty is introduced in the prediction steps

as, (i) the derived model may not be exactly depicting the degradation process, (ii) exact

value of the process noise not known, and (iii) exact trajectory of the future inputs for the

state space may not be known. Due to these additional sources of uncertainty inherent to

the prognostics algorithm, the uncertainty in the predicted EOL/RUL will nominally be

larger than the true variability in EOL/RUL [138]. In this work we only consider the model

noise and the noise variance as discussed earlier. But for the prediction step we present the
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means for all the EOL/RUL predictions in our results since the focus of this work is more

on deriving the physics-based degradation, implementing it in a Bayesian framework and

for prognostics predictions. Next we discuss the implementation of the Bayesian framework

methodology for prognostics [108,136,139] .

UKF for Capacitance State Estimation

The state variable xk (Capacitance) at time tk is defined as the current measured capaci-

tance Ck. Since the system measurements are capacitance (C) as well, the output equation

is given by yk = Hk xk, where H is the identity matrix. The following system structure is

implemented for filtering and prediction using a Unscented Kalman Filter.

xk = Akxk−1 +Bku+ v,

yk = Hkxk + w.

(55)

where,

A = 1,

B = −(2εRε0weAsjeocb)

d2C
∆t,

H = 1,

u = jeo, cb.

(56)

In this work and application of UKF, the time increment between measurements ∆t is

not constant since measurements were taken at nonuniform time intervals i.e., the capacitors

were characterized at different time intervals. This implies that some of the parameters of

the model in Eqn. (72) will change as time progresses. Furthermore, v and w are normal

random variables with zero mean and Q and R variance respectively. The model noise

(process noise) variance Q was estimated from the model regression residuals and was used

for the model noise in the Kalman filter implementation. The measurement noise variance

R, was computed from the direct measurements of the capacitance with the EIS equipment,
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the observed variance is 4.99×10−7. A detailed description of the algorithm implemented in

this work can be found in [140] , a description of how the algorithm is used for forecasting

can be found in [141] and an example of its usage for prognostics can be found in [108,136].

ESR Degradation Dynamic Model

From Eqn. (26) the dynamic ESR degradation model can be represented as :

ESRk =
1

2
(ρE dC PE eb)

(
dC
Ve(k)

)
,

Ve(k) =
1

ESRk

(
1

2

)(
ρE dC

2 PE eb
)

,

Ve(k) =
1

ESRk
(γ).

(57)

where:

γ =
1

2

(
ρE dC

2 PEeb
)

From Eqn. (50) and Eqn. (57) we have :

γ

ESRk+1
=

γ

ESRk
+
dVe
dt

∆t,

γ

ESRk+1
=

γ

ESRk
− (weAsjeo)∆t, hence

1

ESRk+1
=

1

ESRk
− (weAsjeo)

γ
∆t.

(58)

The complete discrete time dynamic model for ESR degradation can be summarized as

:

D5 :
1

ESRk+1
=

1

ESRk
− 2weAsjeo
ρE PE d2C eb

∆t,

eb(k+1) = eb(k) − ξ.
(59)

In model D5 the rate of evaporation jeo and the correlation factor, PE related to elec-

trolyte spacer porosity and average liquid pathway are the two time-varying parameters.

Electrolyte evaporation and oxide breakdown under electrical stress is described by a ther-

mal and oxide breakdown model in Chapter V. Rate of evaporation, jeo and resistance
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dependence oxide breakdown factor, eb are the two parameters in the model which are

estimated online based on the state variable value, ESR.

The following steps are implemented for model D5:

1. State Estimation: The current measured ESR is defined as the state variable to be

estimated respectively for each of the model and the degradation model is expressed

as a discrete time dynamic model in order to estimate current ESR due to decrease

in electrolyte volume at the next available measurement. Direct measurements of the

ESR is assumed for the filter.

2. Health state forecasting: It is necessary to forecast the state variable once there are

no more measurements available at the end of step 1. This is done by evaluating the

degradation model through time using the state estimate at time tp as initial value.

3. Remaining useful life computation: RUL is computed as the time between time of

prediction tp and the time at which the forecasted state crosses a certain failure

threshold value or EOL.

The uncertainty conditions for the model are same as discussed for the capacitance

degradation model.

UKF for ESR State Estimation

The state variable xk (ESR) at time tk is defined as the current measured capacitance ESRk.

Since the system measurements are ESR measured values as well, the output equation is

given by yk = Pk xk, where P is the identity matrix. The following system structure is

implemented for filtering and prediction using a Unscented Kalman Filter.

xk = Akxk−1 +Bku+ v,

yk = Pkxk + w.

(60)
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where,

A = 1,

B = − 2weAsjeo
ρE PE d2C eb

∆t,

P = 1,

u = jeo, eb.

(61)

Table 9 summarizes the details the parameters that are used in the degradation models.

Most of the parameters remain constant since similar type of capacitors are used. The

initial value of evaporation rate, jeo are referred from [125].

Table 9: Parameter values used for degradation models capacitance(D4) and ESR(D5) at
12V EOS

Parameter Description Value

εR relative dielectric constant 10
εR permitivity of free space 8.8542× 10−9F − cm−1
hc height of Capacitor Capsule 2 cm
d diameter of capacitor capsule 0.7 cm
lC length of the spacer paper roll. 118 cm
Trated rated temperature 85◦C
jeo evaporation rate 0.1054× 10−3 mg/hr − cm2

dc thickness of oxide layer 2.22× 10−5 cm
we volume of ethyl glycol molecule. 5.66× 10−9 cm3

ρE electrolyte resistivity value 8× 102 Ω− cm
PE correlation factor of capacitor ≈ 2− 3.5

Experiment II - 10V EOS Experiment

In Chapter V we discussed about deriving a generalized phyiscs-based degradation model

and in the earlier section of this chapter we compared the results of a phyiscs-derived

empirical model and derived phyiscs-based degradation model. In this section we implement

the same models, the capacitance degradation model, D4 and ESR degradation model, D5.

These we the same type of capacitors with similar ratings used in the experiment.

For this experiment eight capacitors of 2200µF capacitance, with a maximum rated volt-

age of 10V , maximum current rating of 1A and maximum operating temperature of 85◦C
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were used for the study. The ESR and capacitance values were estimated from the capac-

itor impedance frequency response measured using the EIS instrument. Using the lumped

parameter model,M1 the ESR and capacitance (C) values given by Eqn. (25) and (26) at

the beginning of the chapter, were estimated at each measurement. The average pristine

condition ESR value was measured to be 0.155 Ω and average capacitance of 1958 µF for

the set of capacitors under test. The ambient temperature for the experiment was con-

trolled and kept at 25◦C. During each measurement the voltage source was shut down, the

capacitors were discharged completely, and then the characterization procedure was carried

out. Figure 47 shows the experimental setup for the 10V EOS experiment which the same

setup as the earlier experiment. The boards were configured such that the amplifer output

gave 10V with the rest of the system and experimental procedure remaining constant.

Figure 55 shows increase in the ESR value for all the six capacitors under test over the

period of time. Similarly, Figure 56 shows the decrease in the value of the capacitance as

the capacitor degrades over the aging period. From the plots in Figure 55 we observe that

for the time for which the experiments were conducted the average ESR value increased

on a average by 98% − 115% while over the same period of time, the average capacitance

decreased by more than 15%. We used the collected data from the experiments to buid

dynamic degradation models of capacitors.
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Figure 55: Degradation of capacitor performance, ESR increase as a function of aging time.
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Figure 56: Degradation of capacitor performance, capacitance loss as a function of aging
time.

The complete discrete time dynamic model for capacitance degradation as derived earlier

is given as :

D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t

And the discrete time dynamic model for ESR degradation as derived earlier is given as

:

D5 :
1

ESRk+1
=

1

ESRk
− 2weAsjeo
ρE PE d2C eb

∆t

Similar steps are followed as the earlier approach. Table 10 summarizes the details the

parameters that are used in degradation models. Most of the parameters remain constant

since similar type of capacitors are used. The initial value of evaporation rate, jeo are

referred from [125].

Prediction of Remaining Useful Life Results and Validation Tests

This section discusses the remaining useful life predictions and validation results using the

Alpha-Lambda prognostics metric for the derived degradation models D4, capacitance and

D5, ESR respectively. These models were used for making RUL predictions for two different

experimental data sets using similar type of capacitors. The discussions in the results and
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Table 10: Parameter values used for degradation models capacitance(D4) and ESR(D5) at
10V EOS

Parameter Description Value

εR relative dielectric constant 10
εR permitivity of free space 8.8542× 10−9F − cm−1
hc height of capacitor capsule 2 cm
d diameter of capacitor capsule 0.7 cm
lC length of the spacer paper roll. 118 cm
Trated rated temperature 85◦C
jeo evaporation rate 0.0491× 10−3 mg/hr − cm2

dc thickness of oxide layer 2.22× 10−5 cm
we volume of ethyl glycol molecule 5.66× 10−9 cm3

ρE electrolyte resistivity 8× 102 Ω− cm
PE correlation factor of capacitor ≈ 2− 3.5

later complete one of our major goals to derive and validate generalized degradation models

for electrolytic capacitors.

RUL can be estimated based on the derived physics-based degradation model till the

EOL threshold of the device has reached. In the experiments conducted, all the capaci-

tors under test did not reach EOL. The latest characterization reading for degradation in

capacitance and ESR parameters was considered as the EOL for calculating the relative

accuracy.

Results for Capacitor Degradation Model (D4) for Experiment I

In this section we discuss the RUL prediction and Validation tests for the capacitance

degradation model in the 12V EOS experiment. State estimation and RUL prediction

results are discussed for capacitor Cap # 2 out of a batch of 6 available capacitors under

test.

Figure 57 shows the result of the filter tracking for completed degradation in capacitance

computed upto 200 hours of aging time. The tolerance for the type of electrolytic capacitor

under test is approx 15% and hence from the output errors it can be observed that the

tracking of the model with respect to the data is acceptable.

Figure 58 shows the estimation plot for the capacitance degradation factor,cb.
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Figure 57: Tracking filter output against measurement data for Cap # 2
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Figure 58: Estimation of capacitance dependance oxide layer breakdown factor (cb)

RUL

Figure 59 presents results from the remaining useful life prediction algorithm at different

aging times tp = 24, 47, 94, 149, 171 (hrs), at which the capacitors are characterized and

their ESR value is calculated. The experiments were run till almost 200 hours and hence

the predictions are done till the end of experiments. End of life (EOL) is defined as the time

at which the forecasted capacitance value trajectory crosses the EOL threshold. Therefore,

RUL is EOL minus aging times calculated at tp = 24, 47, 47, 94, 149, 171 (hrs).

Validation Tests

An Alpha - Lambda prognostics performance metric [22, 142] is presented in Figure 60 for

test case of Cap #2. Performance metric identifies whether the algorithm performs within

desired error margins (specified by the parameter α) of the actual RUL at any given time

instant (specified by the parameter λ) [142]. The central dashed line represents ground

truth and the shaded region corresponds to a 30% (α = 0.3) error bound in the RUL
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Figure 59: Capacitance decrease prediction at different Aging Time for Cap # 2
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Figure 60: Performance based on Alpha-Lambda metric for Cap#2

prediction. From the metric plot in Figure 60 we note that the relative accuracy remains

high till the end of the RUL prediction period. As mentioned earlier this can be attributed

to the accuracy of the model, and the state-based tracking approach, where the state is

updated as new data points become available.

Table 11: Summary of validation results based on RA for Capacitance degradation model
D4 - 12V EOS Experiment

Aging C1 C2 C3 C4 C5 C6 RAa
Time

24 98.85 98.27 98.85 97.67 98.27 96.47 98.06
47 98.68 98.00 98.68 97.32 98.00 95.92 97.76
71 98.43 97.62 98.43 96.80 97.62 95.12 97.34
94 98.08 97.09 98.08 96.08 97.09 94.00 96.73
116 97.56 96.30 97.56 95.00 96.30 92.31 95.84
139 96.61 94.83 96.61 92.98 94.83 89.09 94.16
149 95.92 93.75 95.92 91.49 93.75 86.67 92.92
161 94.59 91.67 94.59 88.57 91.67 81.82 90.49
171 92.59 88.46 92.59 84.00 88.46 73.91 86.67

RAb 96.81 95.11 96.81 93.32 95.11 89.48

RAa is the mean relative accuracy of all capacitors at each prediction time (tp)
RAb is the mean relative accuracy of each capacitor at all prediction times
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Discussion

When comparing the results generated by the empirical model in table 8, the physics-based

degradation model in table 11, we note that the accuracy of the two models are comparable

initially, but the empirical model results degrade toward the end of capacitor life. This is

primarily because a simple linear first-order model with static parameter values is employed

for tracking the capacitor degradation.

Physics-based model more accurately represents the actual degradation phenomena, and

the use of the UKF allows for more accurate tracking, especially when the behaviors are

nonlinear in the later stages of the aging cycle. The tuning and estimation of parameters in

the empirical model using KF is relatively simpler and also computationally less expensive.

On the other-hand, in UKF the parameters are tuned online as updated data is received

and hence computationally expensive.

Overall both the models have their own pros and cons, the comparison of the two models

and prediction results can help us decide which models to implement based on the require-

ments. If the model needs to be simpler and computationally less expensive then the empir-

ical model can be implemented where the model prediction accuracy will be compromised

while if accuracy is more important then a complex model and computationally expensive

methodology can be implemented. We next discuss the physics-based ESR degradation

model and the results for the same data set for the ESR measurements.

Results for Capacitor Degradation Model (D4) for Experiment II

In this section we discuss the RUL prediction and Validation tests for the capacitance

degradation model in the 10V EOS experiment. State estimation and RUL prediction

results are discussed for capacitor Cap # 5 out of a batch of 6 available capacitors under test.

Figure 61 shows the result of the filter tracking for completed degradation in capacitance

upto 200 hours of aging time and as can be observed from the residuals the tracking of

the model with respect to the data is acceptable. The model tracks well since it includes

the electrolyte evaporation (jeo) parameter as well as the oxide layer breakdown parameter,

(cb).
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Figure 61: Tracking filter output against measurement data for Cap # 5

RUL

Figure 62 presents results from the remaining useful life prediction algorithm at different

aging times tp = 20, 85, 128, 174, 246 (hrs), at which the capacitors are characterized and

their capacitance value is calculated. The experiments were run till almost 300 hours and

hence the predictions are done till the end of experiments. End of life (EOL) is defined as

the time at which the forecasted capacitance value trajectory crosses the EOL threshold.

Therefore, RUL is EOL minus aging times tp = 20, 85, 128, 94, 174, 246 (hrs).

Validation Tests

An α-λ prognostics performance metric is presented in Figure 63 for test case of Cap #5.

Performance metric identifies whether the algorithm performs within desired error margins

(specified by the parameter α) of the actual RUL at any given time instant (specified by

the parameter λ) [142]. The central dashed line represents ground truth and the shaded

region is corresponding to a 30% (α = 0.3) error bound in the RUL prediction. From the

α-λ metric plot in Fig. 63 it can be observed that the relative accuracy is good till the

end of the experiment time and the accuracy is good enough under acceptable limits. As

mentioned earlier this is due to inclusion of the degradation parameters and estimating

them as the capacitance changes with degradation.
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Figure 62: Capacitance decrease prediction at different Aging Time for Cap # 5
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Figure 63: Performance based on Alpha-Lambda metric for Cap#5

Table 12: Summary of validation results based on RA for Capacitance degradation model
D4 - 10V EOS Experiment

Aging C1 C2 C3 C4 C5 C6 C7 C8 RAa
Time

20 98.37 98.18 98.55 97.81 97.81 98.18 98.18 98.18 98.16
85 97.86 97.62 74.41 97.13 73.21 73.81 73.81 97.62 85.68
107 97.61 97.34 97.88 96.79 96.79 97.34 97.34 97.34 97.31
128 67.46 67.07 67.86 66.27 66.27 67.07 67.07 67.07 67.01
151 96.89 96.53 97.24 95.80 95.80 96.53 96.53 96.53 96.48
174 96.30 95.87 96.72 95.00 95.00 95.87 95.87 95.87 95.81
223 93.79 93.06 94.52 91.55 91.55 93.06 93.06 93.06 92.95
246 90.91 89.80 92.00 87.50 87.50 89.80 89.80 89.80 89.64
269 83.02 80.77 85.19 76.00 76.00 80.77 80.77 80.77 80.41

RAb 91.36 90.69 89.37 89.32 86.66 88.05 88.05 90.69

RAa is the mean relative accuracy of all capacitors at each prediction time
RAb is the mean relative accuracy of each capacitor at all prediction times
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Table 12 summarizes the results for all the capacitors and their percentage relative ac-

curacy of capacitance degradation model D4 for all the capacitors under test. As mentioned

earlier model D4 is used for making predictions for all the capacitors with same parameters,

and though it is observed that in the later stages the model performance reduces by some

margin the overall accuracy of the model is acceptable.

Results for ESR Degradation Model (D5) for Experiment I

State estimation and RUL prediction results are discussed for capacitor Cap #2. Figure 64

shows the result of the filter tracking for completed degradation in capacitance upto 200

hours of aging time. As can be observed from the residuals the tracking of the model with

respect to the data in acceptable.
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Figure 64: Tracking filter output against measurement data for Cap # 2

RUL

Figure 65 presents results from the remaining useful life prediction algorithm at different

aging times tp = 24, 47, 94, 149, 171 (hrs), at which the capacitors are characterized and

their ESR value is calculated. Model D5 is implemented for predicting the increase in

ESR while the measured values are the ESR measurements done at respective aging time

intervals. The experiments were run till almost 200 hours and hence the predictions are done

till the end of experiments. End of life (EOL) is defined as the time at which the forecasted
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capacitance value trajectory crosses the EOL threshold at end of 200 hrs. Therefore, RUL

is EOL minus aging times tp = 24, 47, 47, 94, 149, 171 (hrs).
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Figure 65: ESR prediction at different Aging Time for Cap # 2 by Model D5

Validation Tests

An Alpha-Lambda (α-λ) prognostics performance metric [22,142] is presented in Figure 66

for test case of Cap #2. The central dashed line represents ground truth and the shaded

region is corresponding to a 30% (α = 0.3) error bound in the RUL prediction. From the

α-λ metric plot in Figure 66 it can be observed that the relative accuracy is good till the

end of the experiment time and the accuracy is good enough under acceptable limits. As

mentioned earlier this is due to inclusion of the degradation parameters and estimating

them as the ESR increases with degradation.
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Figure 66: Performance based on Alpha-Lambda metric for Cap#2

Table 13: Summary of validation results based on RA for ESR degradation model D5 - 12V
EOS Experiment

Aging C1 C2 C3 C4 C5 C6 RAa
Time

24 96.47 96.47 96.47 96.47 96.47 96.47 96.47
47 95.92 95.92 95.92 95.92 95.92 95.92 95.92
71 95.12 95.12 95.12 95.12 95.12 95.12 95.12
94 94.00 94.00 94.00 94.00 94.00 94.00 94.00
116 92.31 92.31 92.31 92.31 92.31 92.31 92.31
139 89.09 89.09 89.09 89.09 89.09 89.09 89.09
149 86.67 86.67 86.67 86.67 86.67 86.67 86.67
161 81.82 81.82 81.82 81.82 81.82 81.82 81.82
171 73.91 73.91 73.91 73.91 73.91 73.91 73.91

RAb 89.48 89.48 89.48 89.48 89.48 89.48

RAa is the mean relative accuracy of all capacitors at each prediction time (tp)
RAb is the mean relative accuracy of each capacitor at all prediction times
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Figure 67: Tracking filter output against measurement data for Cap # 5

Results for ESR Degradation Model (D5) for Experiment II

State estimation and RUL prediction results are discussed for capacitor Cap #5. Figure 67

shows the result of the filter tracking for completed degradation in capacitance upto 200

hours of aging time. As can be observed from the residuals the tracking of the model with

respect to the data in acceptable.

RUL

Figure 68 presents results from the remaining useful life prediction algorithm at different

aging times tp = 20, 85, 128, 174, 246 (hrs), at which the capacitors are characterized

and their ESR value is calculated. Model D5 is implemented for predicting the increase

in ESR while the measured values are the ESR measurements done at respective aging

time intervals. The experiments were run till almost 300 hours and hence the predictions

are done till the end of experiments. End of life (EOL) is defined as the time at which

the forecasted capacitance value trajectory crosses the EOL threshold at end of 200 hrs.

Therefore, RUL is EOL minus aging times tp = 20, 85, 128, 94, 174, 246 (hrs).
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Figure 68: ESR prediction at different Aging Time for Cap # 5 by Model D5
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Validation Tests

An α-λ prognostics performance metric is presented in Figure 69 for test case of Cap #5.

The central dashed line represents ground truth and the shaded region is corresponding to

a 30% (α = 0.3) error bound in the RUL prediction. From the α-λ metric plot in Figure 69

it can be observed that the relative accuracy is good till the end of the experiment time

and the accuracy is good enough under acceptable limits. As mentioned earlier this is due

to inclusion of the degradation parameters and estimating them as the ESR increases with

degradation.

Table 14: Summary of validation results based on RA for ESR degradation model D5 - 10V
EOS Experiment

Aging C1 C2 C3 C4 C5 C6 C7 C8 RAa
Time

20 98.22 97.81 98.22 98.14 97.92 98.14 98.14 98.14 98.09
85 97.67 97.13 73.87 73.75 97.28 97.57 97.57 73.75 88.57
107 97.40 96.79 97.40 97.29 96.96 97.29 97.29 97.29 97.21
128 97.07 96.39 67.15 66.99 96.57 96.94 66.99 66.99 81.88
151 96.60 95.80 96.60 96.46 96.02 96.46 96.46 96.46 96.36
174 62.76 63.33 95.95 95.78 63.18 62.86 95.78 95.78 79.43
223 37.45 38.03 93.20 92.91 37.87 37.55 92.91 92.91 65.35
246 90.02 87.50 90.02 89.57 88.20 89.57 89.57 89.57 89.25
269 81.23 76.00 81.23 80.31 77.47 80.31 80.31 80.31 79.64

RAa 84.27 83.20 88.18 87.91 83.50 84.08 90.56 87.91

RAa is the mean relative accuracy of all capacitors at each prediction time
RAb is the mean relative accuracy of each capacitor at all prediction times

Table 14 summarizes the results for all the capacitors and their percentage relative

accuracy of ESR degradation model D5 for all the capacitors under test. As mentioned

earlier model D5 is used for making predictions for all the capacitors with same parameters,

and though it is observed that in the later stages the model performance reduces by some

margin the overall accuracy of the model is with acceptable limits.

Discussion and Summary

An important goal achieved through the experiments I and II, was implementing same ca-

pacitance degradation model D4 and ESR degradation model D5 over a different set of

135



operating conditions and achieving results for both the models which are within accept-

able limits. The only parameters which changed in the models for the experiment were

the operating parameters while rest of the structural and geometrical parameters were kept

constant for model validation. Early in the thesis work mentioned to implement a general-

ized physics-based degradation model based on underlying operating phenomenons which

is shown through these experimental case studies.

Another interesting observation from the two data sets of the experimental cases were :

1. In Experiment-I under 12V electrical overstress operating at the end of 200 hours the

overall degradation observed in the capacitance was more than 22% and ESR increase

by over 54%.

2. In Experiment II under 10V electrical overstress operating at the end of 300 hours the

overall degradation observed in the capacitance was more than 15% and ESR increase

by over 105%.

Thus it was observed that under higher electrical stress the rate of capacitance degradation

was higher as compared to ESR degradation while under relatively lower stress level ESR

degradation was comparatively higher. This phenomenon could be hypothesized due to the

variation in the internal core temperature under the two different operating conditions. At

higher voltage more heat will be generated leading to increase in the core temperature and

thus degrading the capacitance at a faster rate. While in the case of lower electrical stress,

the heat generated internally is lower with lower evaporation rate causing the capacitance

to degrade at a lower rate while the ESR increases predominantly.

The major contributions of the work presented in this chapter are:

1. Identification of the lumped-parameter model, M1 and M4, based on the equivalent

electrical circuit of a real capacitor as a viable reduced-order model for prognostics-

algorithm development;

2. Developing the electrical capacitance experiments based on the failure modes observed

and collecting and analyzing data at regular intervals.
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3. Identification of C and ESR as a failure precursor in the lumped parameter model,

M1 as shown in Figure 70;

4. Implementing a empirical degradation model, E2 based on the 12V electrical overtress

data and validating the model.

5. Development of the first principles based degradation models, D4 and D5 for capaci-

tance and ESR degradation respectively, based on accelerated life test aging data as

a function of time, evaporation rate and oxide breakdown;

6. Implementing the Unscented Kalman Filter framework for models D4 and D5 for

predicting degradation.

7. Discussion of the validation results from physics-based empirical degradation model,

E2 and degradation model, D4

8. The performance of degradation models, D4 and D5 implemented for predicting degra-

dation in capacitance and ESR respectively under cases I and II, for similar type of

capacitors operating under different operating conditions was within acceptable limits.

The derived degradation models can be updated and developed at a more finer gran-

ularity to be implemented for detailed prognostic implementation. The results presented

here are based on electrical accelerated aging experimental data and on a accelerated life

timescale.
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CHAPTER VII

THERMAL OVERSTRESS

Introduction

In this chapter we discuss in detail the studies and related work of capacitor degradation

under thermal overstress conditions. Exposure of the capacitors to temperatures that are

greater than the rated operating temperatures (Trated) for the capacitor results in acceler-

ated aging of the devices [109, 123]. Higher ambient storage temperature accelerates the

rate of electrolyte evaporation leading to degradation of the capacitance [128]. Refering

to the fishbone diagram in Figure 35 thermal stress conditions have a prominent effect on

degradation in capacitors.

In this chapter we discuss the degradation phenomenon under thermal overstress condi-

tions. We then present the methodology for deriving the physics-based degradation models

based on the discussion in Chapter V along with the thermal overstress experiment setup.

As initial part of the research work, we derived a electrolyte degradation model which is

discussed along with the development of the model and results. The next step was to derive

a physics-based degradation model and since this was the first data set use for the model

we first implemented a Kalman Filter approach keeping most of the parameters constant.

We discuss the approach taken, steps involved in deriving the model and the results. The

model was updated to estimate some the critical degradation parameters i.e., evaporation

rate, jeo and oxide breakdown factor, cb to be estimated online based on the state. An

Unscented KF was used for the updated model which gave better results. The prognostics

results and the validation tests are discussed in the concluding sections.

Table 15 describes the datasets for the experiments that have been conducted to study

and collect data for different type of capacitors subjected to simillar operating conditions.

The first column describes the type of experiment conducted, the second column in the

table gives details of the capacitors used for the experiment while the third column gives
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the details of the experimental setup under which the capacitors were stressed. The last

column indicates the number of capacitor devices used in each experiment.

Table 15: Thermal Overstress Degradation Experiments

Experiment Capacitors Setup Units

Thermal Overstress 2200µF, 10V, 85◦C 0V, 105◦C 15
Thermal Overstress 10000µF, 10V, 85◦C 0V, 105◦C 15

Physics Based Modeling of Capacitor Degradation

In this section we present an approach for deriving physics-based degradation models for

capacitors under thermal overstress conditions. Under thermal overstress conditions, since

the device was subjected to only high temperature with no charge applied (i.e, the capacitors

were in storage mode) the primary degradation phenomenon is electrolyte evaporation. The

derived degradtion models are then validated using experimental data.

Equivalent Electrical Circuits

The structural details of the capacitor are discussed in Chapter V. Based on the earlier

discussions, a simplified electrical lumped parameter model of impedance, M1, defined for

a electrolytic capacitor is shown in Figure 70.
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Figure 70: Lumped Parameter Model ( M1 )

Exposure of the capacitors to temperatures Tapplied > Trated results in accelerated aging

of the devices [123, 143, 144]. Higher ambient storage temperature accelerates the rate of

electrolyte evaporation leading to degradation of the capacitance [128, 143]. The depletion

in the volume as discussed in Chapter V earlier is given by:

V (t) = Ve0 − (As jeo we)× t
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From [121, 125, 128] and experiments conducted [144] under thermal overstress, it has

been observed that the capacitance and ESR value depends of the electrolyte resistance

RE . A more detailed lumped parameter model derived for an electrolytic capacitor under

thermal overstress condition,M2 can be modified fromM1, as shown in Figure 71. R1 is the

combined series and parallel resistances in the model, RE is the electrolyte resistance. The

combined resistance of R1 and RE is the equivalent series resistance of the capacitor (ESR),

while C is the total capacitance of the capacitor as discussed earlier.

R1 RE C

ESR

Figure 71: Lumped Parameter Model ( M2 )

Capacitance Degradation Model

The input impedance of the capacitor network is defined in terms of the total lumped series

and parallel impedance of the simplified network. The total lumped capacitance of the

structure is given by

C = (2εRε0As)/dC (62)

From Eqn.(25) and other derivations in Chapter V, using the physics-based model of

electrolyte evaporation, we have the time dependent degradation models, D1 for capacitance

(C) given by :

D1 : C(t) =

(
2εRε0cb
dC

)(
Ve0 − Ve(t)
jeo t we

)
,

The degradation in capacitance is directly proportional to the damage variable, Ve,

electrolyte evaporation. As discussed earlier, increase in the core temperature evaporates

the electrolyte thus decreasing the electrolyte volume leading to degradation in capacitance.

The resultant decrease in the capacitance can be computed using Eqn. (25).
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Experimental Setup

We setup an experimental chamber where we emulated conditions of high temperature

storage conditions. Capacitors were placed in a controlled chamber whose temperature was

maintained above their rated specification [123]. Pristine capacitors rated at 2200 µF, 10V

and maximum storage temperature of 85◦C, from the same manufacturing lot were used for

the experiment. The chamber temperature was gradually increased in steps of 25◦C till the

pre-determined temperature limit was reached. The capacitors were allowed to settle at a

set temperature for 15 min and then the next step increase was applied and was continued

till the required temperature was attained. The above procedure was followed to decrease

any possibility of shocks due to sudden change in the temperature variations.

Figure 72: Capacitors in Thermal Chamber

For this experiment all the capacitors were subjected to a constant temperature of 105◦C

and the humidity factor is set at 3.4%. At the end of specific time interval the tempera-

ture was lowered in steps of 25◦C till the required room temperature was reached. Before

measurements were made on the capacitors were kept at room temperature for 30 min to

stabilize the temperature of the capacitor capsule. The ESR value is the real impedance

measured through the terminal software of the instrument. Similarly the capacitance value

is computed from the imaginary impedance using Electrochemical Impedance Spectroscopy

141



(EIS). An SP-150 Biologic impedance measurement instrument was used making the mea-

surements [145].

Experimental Data Analysis

Figure 73 shows the Nyquist plots for a capacitor characterized under different stages of

degradation during accelerated thermal aging. As the capacitors degrade, we observe a

considerable tilt away from the axis which indicates decrease in the capacitance. In contrast

the point of origin has a smaller deflection away from the axis indicating that there is a

considerably smaller change in the measured ESR value. Similarly the plots in Figure 74

shows the Bode plots for same capacitors when characterized at different time intervals in

the aging cycle. From the magnitude plot we can observe the change in total impedance

(Z) of the capacitor with the frequency sweep as the device degrades. As the capacitors

degrade the magnitude plot shifts upwards indicating an increase in the total impedance

of the capacitance, which in this case, is the increase in C and ESR values. From the

phase plot, it is seen that as the device degrades there is shift in phase indicating change

in capacitance, which can also be observed clearly from the Nyquist plot in Figure 73.

In the thermal overstress experiments, the capacitors were characterized periodically

upto 3400 hours of operation. It was observed that the average capacitance value decreased

by more than 15 - 18% while decrease in the ESR value was observed around 8 - 10%.

Therefore, the capacitance value crossed the threshold limit (≥ 10% degradation) whereas

the ESR change observed was very low and hence not considered as a failure precursor.

Since the capacitance degradation is clearly observed and is more significant, the C parame-

ter was selected as a precursor to failure parameter to estimate the current health condition

of the device.

Decrease in C is plotted as a function of aging time. The gradual decrease in the

capacitance can be related to the physics of failure model derived earlier. As the temperature

increases, the electrolyte soaked in the capacitors evaporates. From the thermal model

discussed, decrease in the capacitance is directly linked to the decrease in the effective
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Figure 73: Nyquist Plot of a typical capacitor under Thermal Stress

oxide area (As) of the capacitor. This decrease in the oxide area is in turn directly related

to the rate of evaporation [127] of the electrolyte given by Eqn. (8)

Figure 75 shows the plot for decrease in capacitance values for all the 15 capacitors

(labeled capacitors #1 through #15) in the thermal overstress experiment. Till about 2400

hours of storage we observe a linear decrease in capacitance. This could be related to

the electrolyte evaporation at a constant rate because the capacitor was stored at a fixed

high temperature. As we continued the thermal aging cycle beyond this time period, from

around 2450 hours onwards we observed a higher order effect that resulted in non-linear

degradation. This non-linear phenomenon is related to degradation in the oxide layer of

the capacitor. In the early stages of aging, the linear degradation phenomena linked to

electrolyte evaporation dominates, where as the non-linear degradation phenomenon due to

oxide layer becomes dominant in the later part of the aging cycle.

Electrolyte Volume Degradation Model

In this section we discuss our work where we have studied only the linear degradation

due to electrolyte evaporation. The time dependent model, D3 derived for estimating the

electrolyte volume, Ve implemented as a second order polynomial model for estimating the
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decrease in electrolyte volume over time. In this section we will discuss the parameter

estimation for this model and study how well the developed degradation model, D1 behaves

based on the estimated parameters.

The relationship between capacitance and electrolyte volume is given by model D1 in

Eq. (25), can be rewritten to express the change in electrolyte volume, Ve over time given

by :

D3 : Ve(t) = Ve0 − C(t)

(
jeo t we dC

2εRε0

)
(63)

Parameter Estimation Approach

Decrease in parameter, C is used as a precursor of failure, from the experimental data and

literature studies [123, 125]. Based on the experiments, capacitance parameter values are

computed by characterizing the capacitors at regular time intervals as shown in Figure 75.

From the degradation model, D1 given a certain type of capacitor all the values in Eqn. (25)

can be computed except the dispersion in electrolyte volume, Ve, which is computed based

on the available data and used degradation model, D3. Initial electrolyte volume Ve0 at

pristine conditions is approximately computed from the structural details of the capacitor

as discussed in Chapter V. From the experimental data the estimated volume computed

decreases almost linearly through the initial phase of degradation. Hence for this work

we propose a linear model, which relates aging time to the decrease in loss of electrolyte

volume. The loss in electrolyte is linked to decrease in capacitance through Eqn. (25) and

has the following form,

(V )e(k) = θ̂1 − θ̂2 tk + θ̂3 tk
2 (64)

where θ̂1, θ̂2 and θ̂3 are model constants for decrease in electrolyte volume Ve, estimated

from the experimental data of accelerated thermal aging experiments. In order to estimate

the model parameters, 14 capacitors out of the 15 used for the experiment, are used for

estimation, and the remaining capacitor is used to validate the model against experimen-

tal data. This Leave-one-out cross-validation, methodology is implemented for validating
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the model against the computed capacitance degradation data. A nonlinear least-squares

regression algorithm is used to estimate the model parameters.

Parameter Estimation Results

The goal of leave-one-out cross-validation is to estimate the expected level of fit of the

derived physics-based model as discussed in Eqn. (25). The errors from the results of the

predicted model and actual data are the summarized in Tables (16) and (17), and compared

using the mean (X̄), median absolute deviation (X̃), root mean squared error (RMSE), root

mean squared percentage error (RMSPE), standard deviation (SD), and confidence interval

(CI) to study the overall predicted model behavior.

To demonstrate the approach we selected capacitors #4 and #5 from the set of 15

capacitors to show the detailed plots for volume and capacitance estimation. In Figure 76

based on the measurement data from capacitors #1 - #3 and #5 through #15, volume

parameters, θ̂1, θ̂2 and θ̂3 were estimated. Degradation model, D3 was validated against

the computed change in volume of capacitor #4, and model, D1 was validated for decrease

in capacitance. Similarly for capacitor #5 parameters were estimated based on data from

capacitors #1 - #4 and #6 through #15. The estimated and computed values degradation

in volume and capacitance respectively for capacitor #5 are shown in plots of Figure 77.
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Figure 76: Volume and Capacitance Estimation (Cap # 4)

It can be observed from the residuals of Figure 79 that the estimation error increases

with time. This is to be expected since capacitance decrease is mostly linear till 2500 hrs,
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Figure 77: Volume and Capacitance Estimation ( Cap # 5)

and then becomes non-linear, causing the residuals to increase. This indicates that there is a

secondary phenomenon occurring in addition to the linear decrease due to loss in electrolyte

volume, Ve. This is the oxide layer breakdown phenomenon which simultaneously degrades

the capacitor and is non-linear in nature. The phenomenon kicks-in prominently in the

later stages of aging as seen from the data.

0 500 1000 1500 2000 2500 3000 3500
470

480

490

500

510

520

530

Time ( Hours )

V
o

lu
m

e 
(m

m
3 )

 

 

Volume Decrease ( Cap. #1 −15)
Estimated volume (fit)

Figure 78: Estimation results for the degradation model

Table (16) summarizes the estimated parameters results for degradation in electrolyte

volume in all the 15 capacitors under test. Root mean squared error (RMSE) is calculated

for the difference between the computed electrolyte volume, Ve and predicted electrolyte

volume, V̂e by degradation model, D3 while root mean square percentage error, RMSPE is

computed from the average percentage error at different aging times for each capacitor.
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Figure 79: Electrolyte volume (Ve) estimation residuals

The overall model parameters for the set of capacitors is summarized in Table (17). X̄

and X̃ give the mean and median values for θ̂1, θ̂2 and θ̂3 respectively along with RMSE and

RMSPE error parameters for each capacitor. Standard deviation and confidence interval

for the overall model are also summarized in the table.

Table 16: Parameter Estimation for Degradation Model, D3

Case θ̂1(mm3) θ̂2(mm2/t) θ̂3(mm/t2) RMSE RMSPE

1 523.6123 0.01613 3.7100× 10−7 26.1851 0.8577
2 523.6122 0.01613 3.7099× 10−7 26.1741 0.8573
3 523.6159 0.01614 3.9403× 10−7 26.1602 0.8568
4 523.6109 0.01609 3.8072× 10−7 26.2178 0.8587
5 523.6128 0.01614 3.8428× 10−7 26.2370 0.8594
6 523.6100 0.01613 3.7867× 10−7 26.2795 0.8608
7 523.6081 0.01614 3.7269× 10−7 26.2317 0.8592
8 523.6089 0.01613 3.7988× 10−7 26.3005 0.8614
9 523.6111 0.01616 3.7447× 10−7 26.1931 0.8579
10 523.6122 0.01613 3.8470× 10−7 26.2277 0.8591
11 523.6076 0.01611 3.7350× 10−7 26.2786 0.8607
12 523.6065 0.01614 3.7313× 10−7 26.1356 0.8560
13 523.6147 0.01609 3.8906× 10−7 26.2006 0.8592
14 523.6120 0.01612 3.8276× 10−7 26.2608 0.8601
15 523.6113 0.01616 3.8317× 10−7 26.2658 0.8603

The parameters in Table (17) were used in degradation model, D1 to estimate the (C)

values. Figure 80 summarizes the plot showing residuals for difference between measured ca-

pacitance, (C) and estimated capacitance, (Ĉ) from the model, D1 for all the 15 capacitors.

From the residuals it is observed that initially the residuals are high, as the capacitance
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Table 17: Error Summary for Degradation Model, D3

Parameter X̄ X̃ S.D C.I

θ̂1(mm3) 523.6112 523.6113 0.0026 [523.6098, 523.6127]

θ̂2(mm2/t) 0.0161 0.0161 1.8748× 10−5 [0.01614, 0.01611]

θ̂3(mm/t2) 3.8077× 10−7 3.8072× 10−7 6.9373× 10−9 [0.3769× 10−6, 0.3846× 10−6]
RMSE 26.2232 26.2277 0.0483 [26.1965, 26.2500]
RMSPE 0.8589 0.8591 0.0016 [0.8580, 0.8598]

calculated from the initial average estimated electrolyte volume value is higher. In the later

stages of the aging cycle we observe increase in residual error due to the phenomenon of

oxide breakdown discussed earlier in the section.
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Figure 80: Capacitance (C) measured and estimation residuals

Physics-Based Degradation Models using Kalman Filter

In this section we present extension of our previous work [109,146] . A model-based prognos-

tics algorithm based on Kalman filter and a physics inspired empirical degradation model

is presented. The prognostic methodology implemented in this work consists of two parts.

The first part consists of a estimation framework where the algorithm estimates the state

based on the current conditions of the device and inputs. In second part the algorithm

predicts RUL which is defined as the time until health threshold crossed.
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In this work we implement a Kalman Filter (KF) since the degradation in capacitance

(state) due to decrease in electrolyte is considered to be a dynamic linear model due to the

assumption of constant evaporation rate (jeo) under constant thermal stress conditions and

the model does not include the capacitance dependence breakdown factor (cb).

Dynamic Models

From Chapter V and the structure of capacitor we have the electrolyte volume(Ve) expressed

in the form of oxide surface area (As) as :

Ve = As.dC ,

As =
Ve
dC

.
(65)

substituting from the Eq. (65) the capacitance for foil type capacitor as discussed earlier

is given as:

C =
2εRε0As
dC

where:

εR : relative dielectric constant,

εO : permitivity of free space,

dC : oxide layer thickness,

As : effective oxide surface area.

From Eq. (20) and Eq. (65), dynamic capacitor degradation model can be updated as :

Ck =

(
2εRε0
dC

)(
Ve(k)

dC

)
(66)
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From Eq. (20) the first order discrete approximation for change in electrolyte volume

can be expressed as:

dVe
dt

= −(weAsjeo),

Ve(k+1) = Ve(k) +
dVe
dt

∆t,

Ve(k+1) = Ve(k) − (weAsjeo)∆t.

(67)

From Eq. (66) we have,

Ve(k) =
Ck

2εRε0
d2C ,

Ve(k) = (Ck)ν.

(68)

where:

ν =
d2C

2εRε0

From Eq. (68) we can express Eq. (67) as :

Ck+1ν = Ckν +
dC

dt
∆t,

Ck+1ν = Ckν − (weAsjeo)∆t, hence

Ck+1 = Ck −
(weAsjeo)

ν
∆t.

(69)

The complete discrete time dynamic model for capacitance degradation can be summarized

as :

D6 : Ck+1 = Ck −
(2εRε0weAsjeo)

d2C
∆t (70)

The model D6, is implemented in a Bayesian estimation framework. Next we discuss

the implementation of the Bayesian framework methodology for prognostics [108,136,139] .

The following steps are implemented in this approach:

1. State estimation: The current measured capacitance (C) is defined as the state vari-

able to be estimated and the degradation model is expressed as a discrete time dynamic

model in order to estimate current C, due to decrease in electrolyte volume at the

next available measurement. Direct measurements of the C are assumed for the filter.
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2. Health state forecasting: It is necessary to forecast the state variable once there are

no more measurements available at the end of step 1. This is done by simulating the

degradation model through time using the state estimate at time t as initial value.

3. Remaining useful life computation: RUL is computed as the time between time of

prediction t and the time at which the forecasted state crosses the failure threshold

value.

These steps are repeated for different aging time (tp) through the life of the capacitor

device under test. Thee conditions for uncertainty both in the estimation step as well as

in the prediction step are as discussed in Chapter VI for electrical overstress degradation

model implementation.

Kalman Filter for Sate Estimation

A state-space dynamic model is needed for filtering. The state variable xk is the Capacitance

and yk is measured capacitance Ck. Since the system measurements are capacitance (C)

as well, the output equation is given by yk = Hk xk, where the value of H is equal to one.

The following system structure is implemented for filtering and prediction using a Kalman

Filter.

xk = Akxk−1 +Bku+ v,

yk = Hk xk + w.

(71)

where,

A = 1,

B = −(2εRε0weAsjeo)

d2C
∆t,

H = 1,

u = jeo.

(72)

In this work and application of KF, the time increment between measurements ∆t is not

constant since measurements were taken at nonuniform time intervals i.e., the capacitors
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were characterized at different time intervals. This implies that some of the parameters of

the model in Eqn. (71) will change through time. Furthermore, v and w are normal random

variables with zero mean and Q and R variance respectively. In order to avoid arbitrary

tuning of the covariance matrices, we characterized the model noise (process noise) variance

Q based on the estimated value from the model regression residuals and was used for the

model noise in the Kalman filter implementation. The measurement noise variance R, was

computed from the direct measurements of the capacitance with the EIS equipment, the

observed variance is 4.99×10−7. A detailed description of the KF algorithm implemented in

this work can be found in [140] , a description of how the algorithm is used for forecasting

can be found in [141].

Prognostics Thresholds

In prognostic implementation, it is important know when the performance of the device

or system is going to lie outside an unacceptable region of operation. In this region we

consider the degraded device or system to have failed. For the device/system to be within

the bounds of acceptable performance, we express a set of constraints,cn, C = {Ci}cni=1,

where Ci is a function

Ci : Rnx × Rnθ → B

that maps a given point in the joint state-parameter space,(x(t), θ(t), to the Boolean

domain R = [0, 1], where Ci(x(t), θ(t)) , 1 indicates the constrained is satisfied or 0 (failed)

if the constrained is not satisfied. Each individual constraint can be combined to form a

single constraint output threshold function TEOL, where

TEOL : Rnx × Rnθ → B

which is defined as :

TEOL(x(t), θ(t)) =

 1, 0 ∈ {Ci(x(t), θ(t))}ci=1

0, otherwise.
(73)
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Indicating the for a healthy state of a device/systemTEOL evaluates to 1 and 0 if any of

the constraints are violated. At some instance in the aging cyclye at time, tp , the system

is at (x(tP ); θ(tP )) and we are interested in predicting the time point t at which this state

will evolve to (x(t); θ(t)) such that TEOL(x(t); θ(t)) = 1. Using TEOL, we formally define

end of life (EOL) of a device/system as:

EOLtp , inf {t ∈ R : t ≥ tp ∧ TEOS(x(t), θ(t)) = 1} , (74)

i.e., EOL is the earliest instance in the aging cycle at which at which TEOL is valied for

a healthy system. RUL is expressed using EOL as

RUL(tp) , EOL(tp)− tp.

Prediction Step

Prediction is initiated at a given aging time tp. Using the current joint state-parameter

estimate, p(xtp, θtp|y0:tp), which is the current updated information of the system at time

tp , the goal is to compute p(EOLtp|y0:tp) and p(RULtp|y0:tp).

In case of an Kalman Filter the distribution representation p(xtp, θtp|y0:tp) is specified

by mean and covariance matrix. Given the finite set of N samples,
{

(x
tp
i , θ

tp
i )w

tp
i

}N
i=1

each

sample i is propagated out to EOL. Each sample is simulated forward to EOL to obtain

the complete EOL distribution. The pseudocode for the prediction procedure is given as

Algorithm 1 [147, 148]. Each sample, i from the distribution is propagated forward until

TEOL(x
tp
i , θ

tp
i ) evaluates to 1; at this time in the aging cycle the EOL of the device/system

is considered to have reached. In this work we assume future inputs, ûk are known, since

we have the collected experimental data.

RUL and Validation Results

State estimation and RUL prediction results are discussed for capacitor Cap # 5. Figure 84

out of a batch of 15 available capacitors under test, shows the result of the filter tracking for

completed degradation in capacitance upto 3200 hours of aging time. The residuals show an

154



0 500 1000 1500 2000 2500 3000 3500
1.68

1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88
x 10

−3

Aging Time ( Hours)

C
ap

ac
it

an
ce

 (
uF

)

 

 

Filtered

Measured

Figure 81: Tracking filter outuput against measurement data for Cap # 5

increased error with aging time, since we have implemented degradation due to a constant

evaporation rate under thermal overstress condition and the breakdown in the oxide layer

due to stress is not considered for this model which starts to dominate in the later stages

of aging of the device. This breakdown is exponential in nature and as we can observe a

dip in the capacitance values from the linear path in the later stages.

Figure 85 presents results from the remaining useful life prediction algorithm at different

aging times tp = 87.5, 607, 1495, 2131, 2800 (hrs), at which the capacitors are characterized

and their capacitance (C) value is calculated. The failure threshold is considered to be 10%

decrease in capacitance value, which in this case is at 3200 hours of aging time. End of life

(EOL) is defined as the time at which the forecasted capacitance value trajectory crosses the

EOL threshold. Therefore, RUL is EOL minus aging times tp = 87.5, 607, 1495, 2131, 2800

(hrs).

An α-λ prognostics performance metric [22, 142] is presented in figure 86 for test case

of Cap #5. Performance metric identifies whether the algorithm performs within desired

error margins (specified by the parameter α) of the actual RUL at any given time instant

(specified by the parameter λ) [142]. The central dashed line represents ground truth and

the shaded region is corresponding to a 10% (α = 0.1) error bound in the RUL prediction.
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Figure 82: Capacitance decrease prediction at different Aging Time for Cap # 5

Aging Time (hours)

R
U

L
 (

ho
ur

s)

α=0.1, β=0.5

 

 

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000
RUL∗
[(1 − α)RUL∗, (1 + α)RUL∗]

Figure 83: Performance based on Alpha-Lambda metric for Cap#5
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From the α-λ metric plot in Fig. 86 it can be observed that the relative accuracy is

not as good at the end. But since the type of capacitor we are using have a tolerance of

15-18% the model accuracy is good enough under acceptable limits. For the most part

the algorithm is conservative, i.e., RUL predictions are earlier than in reality. Hence the

results for this model are not accurate and it is always better to underestimate if the model

is not making accurate predictions than than overstimating the RUL. This is due to the

non-linearity observed in the data at the end of the aging time. It can be seen that most

of the points satisfy the performance metrics and the noise observed in the central part is

mainly due to the correction action taken. Other wise we would have observed a biased

straight line in case no correction action was applied to the state estimate.

Physics-Based Modeling Framework using Unscented Kalman Filter

In this section we present extension of our previous work [109, 146] . A model-based prog-

nostics algorithm based on UKF and derived physics-based degradation model is presented.

The prognostic methodology implemented is similar to the one explained for the KF imple-

mentation discussed in the earlier section.

In this work we implement an UKF since the degradation in capacitance (state) due

to decrease in electrolyte is considered to be a dynamic linear model. Though the applied

stress conditions are similar, there may be variation in each capacitor and hence each device

may have a varying evaporation rate. Hence as explained in Chapter VI, evaporation rate

(jeo) under constant thermal stress conditions is incorporated as a modeling error in form of

a stochastic process and estimated at each step. The model does not include the capacitance

dependence breakdown factor (cb), implementation of which will be discussed in the next

section.

From Eqn (21) and derivations for dynamic models discussed in Chapter VI, the derived

model, D4, is given by :
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D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t,

Table 18 summarizes the details the parameters that are used in degradation model

D4. Most of the parameters remain constant since similar type of capacitors are used. The

initial value of evaporation rate, jeo are referred from [125].

Table 18: Parameter values used for model D4 - 2200 µF at 105◦C

Parameter Description Value

εR relative dielectric constant 10
εR permitivity of free space 8.8542× 10−9F − cm−1
hc height of capacitor capsule 2 cm
d diameter of capacitor capsule 0.7 cm
lC length of the spacer paper roll. 118 cm
Trated rated temperature 85◦C
jeo evaporation rate ≈ 0.2079× 10−3 mg/hr − cm2

dc thickness of oxide layer 2.22× 10−5 cm
we volume of ethyl glycol molecule 5.66× 10−9 cm3

ρE electrolyte resistivity 8× 102 Ω− cm
PE correlation factor of capacitor ≈ 2− 3.5

Model D4, is implemented in a Bayesian tracking framework. In this work we are im-

plementing a unscented Kalman filter (UKF). As seen in previous section, results with KF

not so good, and hypothesis is that, a constant jeo was used as input for all the capaci-

tors. Though each capacitor is manufactured from the same batch and subjected to same

conditions due to variations each capacitors degrades in slightly different manner. Hence

to improve the model it is essential to estimate the evaporation rate parameter online in

addition to the state (instead of having it as an input). Next we discuss the implementation

of the Bayesian framework methodology for prognostics [21,108,136].

The steps followed for UKF filter implementation as same as discussed for model D4 in

Chapter VI along with the conditions specified for uncertainty, conditions for prognostics

thresholds and prediction steps.

158



Prediction of RUL and Validation Tests

State estimation and RUL estimation results are discussed for capacitor Cap # 5 out of

a batch of 15 available capacitors under test. Figure 84 shows the result of filter tracking

for degradation in capacitance upto 3200 hours of aging time. The capacitance tolerance is

around 15% and the output errors are in the range of 10 − 20µF indicating the estimates

for model tracking are within acceptable limits.
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Figure 84: Tracking filter output against measurement data for Cap # 5

RUL

Figure 85 presents results from the remaining useful life prediction algorithm at different

aging times tp = 87, 607, 1495, 2131, 2800 (hrs), at which the capacitors are characterized

and their capacitance (C) value is calculated. The failure threshold is considered to be 10%

decrease in capacitance value, which in this case is at 3200 hours of aging time. End of life

(EOL) is defined as the time at which the forecasted capacitance value trajectory crosses the

EOL threshold. Therefore, RUL is EOL minus aging times tp = 87.5, 607, 1495, 2131, 2800

(hrs).

Validation Test

An Alpha-Lambda(α-λ) prognostics performance metric [22, 142] is presented in Figure 86

for test case of Cap #5. The central dashed line represents ground truth and the shaded
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Figure 85: Capacitance decrease prediction at different Aging Time for Cap # 5
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region is corresponding to a 30% (α = 0.3) error bound in the RUL prediction. Performance

metric identifies whether the algorithm performs within desired error margins (specified by

the parameter α) of the actual RUL at any given time instant (specified by the parameter

λ) [142] and is based on relative accuracy (RA) metric in Eqn. (75). With the α-λ metric,

we check at each prediction point whether β of the distribution lies within α of the true

RUL. In the figure, the accuracy bound defined by α = 30% is shown as a gray cone, and

we select β = 50%.

RA = 100

(
1− |RUL

∗ −RUL′ |
RUL∗

)
(75)
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Figure 86: Performance based on Alpha-Lambda metric for Cap#5

Table 19 shows the performance summary based on the RA of all the capacitors under

thermal stress performance. RUL∗ is the ground truth from the experimental data while

RUL
′

is the predicted RUL. These metrics allows for an assessment of the percentage

accuracy relative to the ground-truth value. RA values of 100 represent perfect accuracy.

The RA is presented for all the test cases for different prediction times. The last column

of Table 19 represents the median RA of all the test cases for a particular prediction time.

It must be noted that if the prediction error magnitude grows beyond 100% RA gives a

negative value. We do not consider such cases since these cases would not have qualify the

tests for calculating RA [142], these are indicated by NA in Table 19.
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From the α-λ metric plot in Figure 86 it can be observed that the relative accuracy is

not as good at the end but the accuracy is good enough under acceptable limits. This is due

to the non-linearity observed in the data at the end of the aging time and the limitation of

the model due to not including the oxide layer breakdown. The residuals show an increased

error with aging time, since the breakdown in the oxide layer observed due to stress is not

considered for this model which starts to dominate in the later stages of aging of the device.

This breakdown is exponential in nature and as we can observe a dip in the capacitance

values from the linear path in the later stages.
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Table 19: Summary of RUL forecasting results with jeo estimation - 2200µF

Aging C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 RAa

Time

181.67 98.34 95.03 100.00 98.34 98.34 98.34 98.34 93.37 98.34 96.69 91.72 91.72 98.34 98.34 96.69 96.80
295.38 98.28 94.84 98.28 100.00 100.00 98.28 98.28 93.11 98.28 96.56 93.11 91.39 98.28 100.00 96.56 97.02
384.47 98.22 94.67 100.00 100.00 98.22 98.22 98.22 92.90 98.22 96.45 91.12 91.12 98.22 98.22 96.45 96.69
450.93 98.18 94.54 98.18 100.00 100.00 100.00 98.18 92.72 98.18 96.36 92.72 90.91 98.18 100.00 98.18 97.09
540.77 98.12 94.36 100.00 100.00 100.00 98.12 98.12 92.48 98.12 96.24 92.48 90.60 98.12 100.00 96.24 96.87
607.07 98.07 94.22 98.07 100.00 100.00 100.00 98.07 92.29 98.07 96.14 92.29 90.36 98.07 100.00 98.07 96.91
701.62 98.00 94.00 98.00 100.00 100.00 100.00 98.00 91.99 98.00 96.00 91.99 89.99 98.00 100.00 98.00 96.80
766.83 97.95 91.78 97.95 100.00 100.00 100.00 100.00 93.84 97.95 93.84 91.78 89.73 97.95 100.00 97.95 96.71
860.43 97.86 93.59 97.86 100.00 100.00 100.00 97.86 93.59 97.86 95.73 91.45 89.31 97.86 100.00 97.86 96.72
950.07 97.78 93.33 97.78 100.00 100.00 100.00 97.78 93.33 97.78 95.56 91.11 88.89 97.78 100.00 97.78 96.59
1019 100.00 90.83 97.71 100.00 100.00 100.00 100.00 93.12 97.71 93.12 93.12 88.54 95.41 100.00 97.71 96.48

1084.47 97.64 92.91 100.00 100.00 100.00 100.00 97.64 92.91 97.64 95.27 90.55 90.55 97.64 100.00 97.64 96.69
1179.5 97.53 92.58 100.00 100.00 100.00 100.00 97.53 92.58 97.53 95.05 90.10 90.10 97.53 100.00 97.53 96.54
1244.82 97.44 92.33 100.00 100.00 100.00 100.00 97.44 92.33 97.44 94.89 92.33 89.77 97.44 100.00 97.44 96.59
1338.18 97.31 91.94 100.00 100.00 100.00 100.00 97.31 94.63 97.31 94.63 91.94 89.26 97.31 100.00 97.31 96.60
1404.48 97.22 91.65 100.00 100.00 100.00 97.22 100.00 94.43 97.22 94.43 91.65 88.86 97.22 100.00 97.22 96.47
1495.4 97.07 91.20 100.00 100.00 100.00 97.07 97.07 94.13 97.07 94.13 91.20 88.27 97.07 100.00 97.07 96.09
1560.48 96.95 90.85 100.00 100.00 100.00 96.95 100.00 96.95 96.95 90.85 93.90 87.80 96.95 96.95 100.00 96.34
1626.53 96.82 93.64 96.82 100.00 100.00 96.82 96.82 96.82 100.00 93.64 90.47 90.47 96.82 100.00 96.82 96.40
1716.57 96.63 89.89 100.00 100.00 96.63 93.26 100.00 100.00 96.63 89.89 93.26 86.52 96.63 96.63 100.00 95.73
1807.02 96.41 89.23 96.41 100.00 100.00 92.82 100.00 100.00 96.41 92.82 96.41 89.23 96.41 96.41 100.00 96.17
1871.62 96.24 88.71 96.24 100.00 96.24 92.47 100.00 96.24 96.24 88.71 96.24 88.71 96.24 96.24 96.24 94.98
2036.88 91.40 91.40 91.40 100.00 100.00 91.40 95.70 95.70 100.00 91.40 95.70 91.40 100.00 95.70 100.00 95.41
2131.35 90.64 95.32 90.64 95.32 100.00 90.64 95.32 95.32 95.32 90.64 95.32 90.64 100.00 95.32 95.32 94.39
2196.1 90.04 95.02 90.04 100.00 100.00 90.04 95.02 90.04 95.02 90.04 100.00 95.02 100.00 95.02 95.02 94.69
2290.12 83.51 94.50 83.51 94.50 100.00 89.01 94.50 83.51 94.50 89.01 100.00 94.50 100.00 94.50 94.50 92.67
2355.97 82.23 94.08 82.23 94.08 100.00 82.23 94.08 82.23 94.08 88.15 100.00 100.00 100.00 94.08 88.15 91.71
2421.92 80.72 100.00 80.72 100.00 93.57 74.30 100.00 74.30 93.57 87.15 93.57 100.00 100.00 87.15 87.15 90.15

2500 71.43 100.00 71.43 92.86 100.00 71.43 92.86 64.29 85.71 85.71 92.86 92.86 92.86 85.71 85.71 85.71
2650 54.55 90.91 54.55 90.91 100.00 63.64 90.91 54.55 72.73 90.91 81.82 81.82 90.91 81.82 72.73 78.18
2800 37.50 75.00 37.50 75.00 100.00 37.50 87.50 25.00 62.50 87.50 75.00 62.50 75.00 75.00 62.50 65.00
3000 NA 25.00 NA 50.00 100.00 0.00 75.00 NA 0.00 75.00 25.00 NA 50.00 50.00 25.00 43.18

RAb 87.13 90.78 87.99 96.60 99.39 89.29 94.45 85.73 92.14 92.50 90.32 87.15 95.49 94.97 92.38
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Physics Based Modeling Framework using UKF for 2200 µF capacitors

In this section we present extension of the work to the earlier section where we estimated

the evaporation rate parameter jeo. In this section we discuss the degradation model where

we update the model to estimate oxide breakdown factor,(cb) in addition with evaporation

rate, jeo. The details of the derived model are explained in section VII. The degradation

data for this set is as shown in Figure 75.

From Eqn.25 and other derivations in Chapter V, we have the time dependent degrada-

tion models, D1 for capacitance (C) given by :

D1 : C(t) =

(
2 εR ε0 cb

dC

)(
Ve0 − Ve(t)
jeo t we

)
,

The complete discrete time dynamic model for capacitance degradation as derived in

section VII is :

D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t,

cb(k+1) = cb(k) − ξeξ.

The model D4, in Eqn. (VIII) is implemented in a Bayesian tracking framework. An

Unscented Kalman Filter (K.F) framework is implemented since the degradation in capac-

itance (state) due to decrease in electrolyte is considered to be a dynamic non-linear model

since evaporation rate (jeo) and oxide layer breakdown factor (cb) are estimated online based

on the state values. The steps followed for UKF filter implementation as same as discussed

for model D4 in Chapter VI along with the conditions specified for uncertainty, conditions

for prognostics thresholds and prediction steps.

Table 20 summarizes the details the parameters that are used in degradation models

D4. Most of the parameters remain constant since similar type of capacitors are used. The

initial value of evaporation rate, jeo are referred from [125].
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Table 20: Parameter values used for models D4 - 2200 µF at 105◦C

Parameter Description Value

εR relative dielectric constant 10
εR permitivity of free space 8.8542× 10−9F − cm−1
hc height of capacitor capsule 2 cm
d diameter of capacitor capsule 0.7 cm
lC length of the spacer paper roll. 118 cm
Trated rated temperature 85◦C
jeo evaporation rate 0.2079× 10−3 mg/hr − cm2

dc thickness of oxide layer 2.22× 10−5 cm
we volume of ethyl glycol molecule 5.66× 10−9 cm3

ρE electrolyte resistivity 8× 102 Ω− cm
PE correlation factor of capacitor ≈ 2− 3.5
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Figure 87: Tracking filter output against measurement data for Cap # 8

Prediction of RUL and Validation Tests

State estimation and RUL prediction results are discussed for capacitor Cap # 8. Figure 87

out of a batch of 15 available capacitors under test, shows the result of the filter tracking for

completed degradation in capacitance upto 3200 hours of aging time. As can be observed

from the residuals the tracking of the model with respect to the data in acceptable. The

model tracks well since it incorporates the electrolyte evaporation (jeo) parameter as well

as the oxide layer breakdown factor, (cb).
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Figure 88: Capacitance decrease prediction at different Aging Time for Cap # 8

RUL

Figure 88 presents results from the remaining useful life prediction algorithm at different

aging times tp = 87.5, 607, 1495, 2131, 2800 (hrs), at which the capacitors are characterized

and their capacitance (C) value is calculated. The failure threshold is considered to be 10%

decrease in capacitance value, which in this case is at 3200 hours of aging time. End of life

(EOL) is defined as the time at which the forecasted capacitance value trajectory crosses the

EOL threshold. Therefore, RUL is EOL minus aging times tp = 87.5, 607, 1495, 2131, 2800

(hrs).

Validation Tests

An α-λ prognostics performance metric [22, 142] is presented in Figure 89 for test case

of Cap #8. The central dashed line represents ground truth and the shaded region is
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Figure 89: Performance based on Alpha-Lambda metric for Cap#8

corresponding to a 30% (α = 0.3) error bound in the RUL prediction. From the α-λ metric

plot in Figure. 89 it can be observed that the relative accuracy is good till the end of the

experiment time and the accuracy is good enough under acceptable limits. As mentioned

earlier this is due to inclusion of the degradation parameters and estimating them as the

capacitance changes with degradation.

Table 21 presents the capacitance loss estimation and EOL prediction at different points

during the aging time. Predictions are made after each point in which measurements are

available. It can be observed that the predictions become better as the prediction is made

closer to the actual EOL. This is possible because the estimation process has more infor-

mation to update the estimates as it nears EOL.
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Table 21: Summary of RUL forecasting results with jeo and cb estimation - 2200µF

Aging C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 RAa

Time

181.67 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36 90.36
295.38 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37 93.37
384.47 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11 93.11
450.93 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90 92.90
540.77 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72 92.72
607.07 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48 92.48
701.62 94.22 94.22 94.22 94.22 94.22 92.29 94.22 92.29 94.22 94.22 92.29 94.22 94.22 92.29 92.29 93.57
766.83 94.00 94.00 94.00 94.00 94.00 91.99 94.00 91.99 94.00 94.00 91.99 94.00 94.00 91.99 91.99 93.33
860.43 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84 93.84
950.07 93.59 93.59 93.59 93.59 93.59 91.45 93.59 91.45 93.59 93.59 91.45 93.59 93.59 91.45 91.45 92.88
1019 93.33 93.33 93.33 93.33 93.33 91.11 93.33 91.11 93.33 93.33 91.11 93.33 93.33 91.11 91.11 92.59

1084.47 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12 93.12
1179.5 90.55 90.55 90.55 92.91 92.91 90.55 92.91 90.55 90.55 92.91 90.55 90.55 90.55 90.55 90.55 91.18
1244.82 90.10 90.10 90.10 92.58 92.58 90.10 92.58 90.10 90.10 92.58 90.10 90.10 90.10 90.10 90.10 90.76
1338.18 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 92.33 89.77 92.16
1404.48 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 91.94 89.26 91.76
1495.4 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65 91.65
1560.48 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20 91.20
1626.53 93.90 93.90 93.90 93.90 93.90 90.85 93.90 90.85 93.90 93.90 90.85 93.90 93.90 90.85 90.85 92.88
1716.57 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47 90.47
1807.02 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26 93.26
1871.62 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82 92.82
2036.88 96.24 96.24 92.47 96.24 96.24 92.47 96.24 92.47 96.24 96.24 92.47 92.47 96.24 92.47 92.47 94.48
2131.35 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40 91.40
2196.1 90.64 90.64 90.64 90.64 95.32 90.64 90.64 90.64 90.64 90.64 90.64 90.64 90.64 90.64 90.64 90.95
2290.12 95.02 90.04 90.04 95.02 95.02 90.04 95.02 95.02 95.02 95.02 90.04 90.04 95.02 90.04 90.04 92.70
2355.97 94.50 94.50 89.01 94.50 94.50 94.50 94.50 94.50 94.50 94.50 94.50 89.01 94.50 89.01 89.01 93.04
2421.92 94.08 94.08 94.08 94.08 100.00 94.08 100.00 94.08 94.08 94.08 94.08 88.15 94.08 94.08 94.08 94.47

2500 100.00 93.57 93.57 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 93.57 100.00 93.57 93.57 97.86
2650 92.86 92.86 92.86 100.00 100.00 92.86 100.00 100.00 92.86 100.00 92.86 85.71 92.86 92.86 92.86 94.76
2800 90.91 90.91 90.91 100.00 100.00 100.00 100.00 100.00 90.91 100.00 100.00 81.82 100.00 90.91 90.91 95.15
3000 87.50 87.50 87.50 100.00 100.00 100.00 100.00 100.00 87.50 100.00 100.00 75.00 100.00 100.00 100.00 95.00
3200 75.00 75.00 75.00 100.00 100.00 100.00 100.00 100.00 75.00 100.00 100.00 50.00 100.00 100.00 100.00 90.00

RAb 92.22 91.88 91.60 94.00 94.32 93.03 94.18 93.39 92.22 94.00 93.03 89.79 93.64 92.39 92.23
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Physics Based Modeling Framework using UKF for 10000 µF capacitors

In this section we present our work where we use the same physics degradation model

to validate against a different set of capacitors. In this experiment we subjected set of

capacitors rated at at 10000 µF, 10V and maximum storage temperature of 85◦C, from

the same manufacturing lot were used for the experiment. Similar to the earlier thermal

overstress setup the chamber temperature was gradually increased in steps of 25◦C till the

pre-determined temperature limit was reached. The capacitors were allowed to settle at a

set temperature for 15 min and then the next step increase was applied and was continued

till the required temperature was attained. The degradation data for this set is as shown

in Figure 75.
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Figure 90: Thermal Overstress at 105◦ C - 10000uF

Similar to the earlier section we estimate the oxide layer breakdown factor,(cb) in addi-

tion with evaporation rate, jeo for a different set of data with same derived physics degra-

dation models. The only parameters which were updated in this model were the structural

parameters of height(hc), paper length, (lc) to estimate the initial electrolyte volume. The

details of the derived model are explained in section VII.

From Eqn.25 and other derivations in Chapter V, we have the time dependent degrada-

tion models, D1 for capacitance (C) given by :
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D1 : C(t) =

(
2 εR ε0 cb

dC

)(
Ve0 − Ve(t)
jeo t we

)
,

And the complete discrete time dynamic model for capacitance degradation as derived

in section VII is :

D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t,

cb(k+1) = cb(k) − ξeξ.

The model D4, in Eqn. (VIII) is implemented in a Bayesian tracking framework. An

Unscented Kalman Filter (K.F) framework is implemented since the degradation in capac-

itance (state) due to decrease in electrolyte is considered to be a dynamic non-linear model

since evaporation rate (jeo) and oxide breakdown factor (cb) are estimated online based on

the state values. Table 22 summarizes the details the parameters that are used in degra-

dation models D4. Most of the parameters remain constant since similar type of capacitors

are used. The initial value of evaporation rate, jeo are referred from [125].

Table 22: Parameter values used for models D4 - 10000 µF at 105◦C

Parameter Description Value

εR relative dielectric constant 10
εR permitivity of free space 8.8542× 10−9F − cm−1
hc height of capacitor capsule 3.5 cm
d diameter of capacitor capsule 1.0 cm
lC length of the spacer paper roll. 118 cm
Trated rated temperature 85◦C
jeo evaporation rate 0.2079× 10−3 mg/hr − cm2

dc thickness of oxide layer 2.22× 10−5 cm
we volume of ethyl glycol molecule 5.66× 10−9 cm3

ρE electrolyte resistivity 8× 102 Ω− cm
PE correlation factor of capacitor ≈ 2− 3.5

Prediction of RUL and Validation Tests

Plots of State estimation and RUL prediction results are discussed for capacitor Cap #7.

Figure 91 out of a batch of 15 available capacitors under test, shows the result of the filter

tracking for completed degradation in capacitance upto 3200 hours of aging time. As can be
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observed from the residuals the tracking of the model with respect to the data in acceptable.

The model tracks well since it incorporates the electrolyte evaporation (jeo) parameter as

well as the oxide layer breakdown factor, (cb).
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Figure 91: Tracking filter output against measurement data for Cap # 7

RUL

Figure 92 presents results from the remaining useful life prediction algorithm at different

aging times tp = 87.5, 607, 1495, 2131, 2800 (hrs), at which the capacitors are characterized

and their capacitance (C) value is calculated. The failure threshold is considered to be 10%

decrease in capacitance value, which in this case is at 3200 hours of aging time. End of life

(EOL) is defined as the time at which the forecasted capacitance value trajectory crosses the

EOL threshold. Therefore, RUL is EOL minus aging times tp = 87.5, 607, 1495, 2131, 2800

(hrs).

Validation Tests

An Alpha-Lambda (α-λ) prognostics performance metric for 10000µF is presented in fig-

ure 93 for test case of Cap #7. Performance metric identifies whether the algorithm performs

within desired error margins (specified by the parameter α) of the actual RUL at any given

time instant (specified by the parameter λ) [142]. The α-λ metric also allows us to visual-
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Figure 92: Capacitance decrease prediction at different Aging Time for Cap # 7
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ize how the RUL prediction performance changes as data closer to EOL becomes available.

The central dashed line represents ground truth and the shaded region is corresponding to

a 30% (α = 0.3) error bound in the RUL prediction. From the α-λ metric plot in Fig. 93

it can be observed that the relative accuracy is good till the end of the experiment time

and the accuracy is good enough under acceptable limits. As mentioned earlier this is due

to inclusion of the degradation parameters and estimating them as the capacitance changes

with degradation.
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Figure 93: Performance based on Alpha-Lambda metric for Cap#7

Table 23 presents the capacitance loss estimation and EOL prediction at different points

during the aging time. Predictions are made after each point in which measurements are

available. It can be observed that the predictions become better as the prediction is made

closer to the actual EOL. This is possible because the estimation process has more infor-

mation to update the estimates as it nears EOL.
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Table 23: Summary of RUL forecasting results with jeo and cb estimation - 10000µF

Aging C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 RAa

Time

87.75 98.39 98.39 96.79 96.79 96.79 96.79 96.79 96.79 95.18 98.39 96.79 96.79 100.00 98.39 96.79 97.32
181.67 98.34 96.69 100.00 100.00 100.00 100.00 100.00 100.00 98.34 98.34 100.00 100.00 98.34 100.00 100.00 99.34
295.38 98.28 94.84 100.00 100.00 100.00 100.00 100.00 100.00 98.28 98.28 100.00 100.00 98.28 98.28 100.00 99.08
384.47 98.22 96.45 100.00 100.00 100.00 100.00 100.00 100.00 98.22 98.22 100.00 100.00 98.22 98.22 100.00 99.17
450.93 98.18 94.54 100.00 100.00 100.00 100.00 100.00 100.00 98.18 98.18 100.00 100.00 96.36 98.18 100.00 98.91
540.77 98.12 96.24 100.00 100.00 100.00 100.00 100.00 100.00 98.12 98.12 100.00 100.00 98.12 98.12 100.00 99.12
607.07 98.07 94.22 100.00 100.00 100.00 100.00 100.00 100.00 100.00 98.07 100.00 100.00 96.14 98.07 100.00 98.97
701.62 98.00 94.00 100.00 100.00 100.00 100.00 100.00 100.00 98.00 98.00 100.00 100.00 96.00 98.00 100.00 98.80
766.83 97.95 93.84 97.95 97.95 100.00 97.95 100.00 100.00 100.00 97.95 97.95 97.95 95.89 97.95 97.95 98.08
860.43 97.86 93.59 97.86 100.00 100.00 97.86 100.00 100.00 100.00 97.86 100.00 100.00 95.73 97.86 100.00 98.58
950.07 97.78 93.33 100.00 100.00 100.00 100.00 100.00 100.00 97.78 97.78 100.00 100.00 95.56 97.78 100.00 98.67
1019 97.71 93.12 97.71 97.71 100.00 97.71 100.00 100.00 100.00 97.71 97.71 97.71 95.41 97.71 97.71 97.86

1084.47 97.64 95.27 100.00 100.00 100.00 100.00 100.00 100.00 97.64 97.64 100.00 100.00 97.64 97.64 100.00 98.90
1179.5 100.00 95.05 100.00 100.00 100.00 100.00 97.53 100.00 97.53 97.53 100.00 100.00 97.53 100.00 100.00 99.01
1244.82 97.44 92.33 100.00 100.00 100.00 100.00 100.00 100.00 97.44 97.44 100.00 100.00 97.44 97.44 100.00 98.64
1338.18 97.31 94.63 100.00 100.00 100.00 100.00 100.00 100.00 97.31 97.31 100.00 100.00 97.31 97.31 100.00 98.75
1404.48 97.22 91.65 100.00 100.00 100.00 100.00 100.00 100.00 97.22 97.22 100.00 100.00 94.43 97.22 100.00 98.33
1495.4 97.07 91.20 100.00 100.00 100.00 100.00 100.00 100.00 97.07 97.07 100.00 100.00 97.07 97.07 100.00 98.44
1560.48 96.95 90.85 96.95 100.00 100.00 96.95 100.00 100.00 100.00 96.95 100.00 100.00 93.90 96.95 100.00 97.97
1626.53 100.00 93.64 100.00 100.00 100.00 100.00 96.82 100.00 96.82 96.82 100.00 100.00 96.82 100.00 100.00 98.73
1716.57 96.63 89.89 96.63 96.63 100.00 96.63 100.00 100.00 100.00 96.63 96.63 100.00 93.26 96.63 96.63 97.08
1807.02 96.41 89.23 100.00 100.00 100.00 100.00 100.00 100.00 96.41 96.41 100.00 100.00 92.82 96.41 100.00 97.85
1871.62 96.24 88.71 96.24 96.24 100.00 96.24 100.00 100.00 100.00 96.24 96.24 96.24 92.47 96.24 96.24 96.49
2036.88 95.70 91.40 100.00 100.00 100.00 100.00 100.00 100.00 95.70 95.70 100.00 100.00 95.70 100.00 100.00 98.28
2131.35 100.00 90.64 100.00 100.00 100.00 100.00 95.32 100.00 95.32 95.32 100.00 100.00 95.32 100.00 100.00 98.13
2196.1 95.02 85.06 100.00 100.00 100.00 100.00 100.00 100.00 95.02 95.02 100.00 100.00 95.02 95.02 100.00 97.34
2290.12 94.50 89.01 100.00 100.00 100.00 100.00 100.00 100.00 94.50 94.50 100.00 100.00 94.50 94.50 100.00 97.44
2355.97 94.08 82.23 100.00 100.00 100.00 100.00 100.00 100.00 94.08 94.08 100.00 100.00 88.15 94.08 100.00 96.45
2421.92 93.57 80.72 93.57 93.57 100.00 93.57 100.00 100.00 100.00 93.57 93.57 100.00 87.15 93.57 93.57 94.43

2500 92.86 78.57 100.00 100.00 100.00 100.00 100.00 100.00 92.86 92.86 100.00 100.00 85.71 92.86 100.00 95.71
2650 90.91 72.73 100.00 100.00 100.00 100.00 100.00 100.00 90.91 90.91 100.00 100.00 81.82 90.91 100.00 94.55
2800 87.50 62.50 100.00 100.00 100.00 100.00 100.00 100.00 87.50 87.50 100.00 100.00 75.00 100.00 100.00 93.33
3000 100.00 25.00 100.00 100.00 100.00 100.00 100.00 100.00 75.00 75.00 100.00 100.00 50.00 100.00 100.00 88.33

RAb 96.79 88.17 99.20 99.36 99.90 99.20 99.59 99.90 96.38 95.72 99.36 99.66 92.82 97.35 99.36
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Discussion and Summary

This chapter presents a first principles based degradation electrolytic capacitor model and

a parameter estimation algorithm to validate the derived model, based on the thermal

overstress experimental data. The major contributions of the work presented in this chapter

are:

1. Identification of the lumped-parameter model, M2 and M3, based on the equivalent

electrical circuit of a real capacitor as a viable reduced-order model for prognostics-

algorithm development;

2. Developing the thermal capacitance experiments based on the failure modes observed

and collecting and analyzing data at regular intervals.

3. Identification of C as a failure precursor in the lumped parameter model,M2 as shown

in Figure 70;

4. Estimating the electrolyte volume from structural model of the capacitor to be im-

plemented in the first principles degradation model, D3;

5. Implementation of parameter estimation algorithm to cross validate the derived first

principles degradation model, D1.

6. Development of the first principles degradation model based on accelerated life test ag-

ing data which includes decrease in capacitance as a function of time and evaporation

rate linked to temperature conditions;

7. We discussed the results and prediction implementing the Kalman Filter and Un-

scented Kalman Filters.

The physics-based capacitance degradation model, D1 gives an indication of how a specific

device degrades based on its geometric structure and operating conditions. The derived

model can be updated and developed at a more finer granularlarity to be implemented for

detailed prognostic implementation. The results presented here are based on accelerated
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aging experimental data and on the accelerated life timescale. This extends our previous

work where we derived empirical degradation models from accelerated aging data.

The performance of the derived physics-based capacitance degradation model, D4 was

successfully achieved based on the RUL results for the experimental data and cross valida-

tion performance for the two separate data sets.
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CHAPTER VIII

NOMINAL DEGRADATION

Introduction

Nominal degradation is the damage observed in the capacitor when it is operated for long

periods under normal operating conditions. We study continuous operation of these ca-

pacitors in DC-DC power converters. Continuous operation under rated or below rated

applied voltage also results in a slow but steady accumulation of damage. The damage

accumulation or performance degradation for these capacitors is monotonic during most of

the aging period and it accelerates exponentially during the end of life stage. A study of

the literature [126, 149–151] indicates that the degradation in electrolytic capacitors under

EOS can be primarily attributed to three phenomena

1. The operation of the capacitors under nominal rating will result in slow electrolyte

evaporation.

2. Electrolyte evaporation results in a decrease in C and an increase in ESR.

3. This evaporation process is slow, and visible degradation effects may take years to

manifest.

4. Aging of oxide material leading to breakdown. Again, this may take a long time to

manifest, but once the phenomena occurs, the degradation process accelerates.

The heat generated internally when current passes through the capacitor during its

nominal operation cycle is transmitted from the core to the surface of the capacitor, leads

to evaporation of the electrolyte [116]. Though as mentioned earlier this is a slower process

since relatively less heat is generated during nominal operation. In addition to this, as the

capacitor continues to degrade over time, eventually another phenomenon manifests in the

form of oxide layer breakdown, which leads to further deterioration in the capacitor causing

the capacitance to decrease significantly. The physics-based degradation models associated
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with electrolyte evaporation and oxide layer breakdown were discussed in Chapter V. Their

relevance and application to accelerated degradation situations were described in Chapter VI

and Chapter VII. In this chapter, we first discuss the electrical equivalent model and the

setup for the nominal degradation experiments. We then implement an empirical model for

ESR and further study each of the derived degradation model in detail along with the RUL

prediction results and discussion.

Equivalent Electrical Circuits

A simplified electrical lumped parameter model of impedance, M1, also used for our elec-

trical and thermal overstress models is shown in Fig.94.
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Figure 94: Lumped Parameter Model ( M1 )

Nominal Degradation Experiment

Under nominal operation, the DC-DC converters we use(Figure 95) has a rated input volt-

age of 22V-28V DC, sourced through a power supply operating at room temperature . This

source is likely to be 28V DC in case of avionics systems. This converter, purchased off the

shelf, met all the specifications for the experiment. Configuration for the converter hard-

ware is similar to the schematic of the DC-DC converter presented earlier in Chapter IV.

The main hardware components include the MOSFET’s, isolating transformers, pulse width

modulation (PWM) controller chip and an electrolytic capacitor functioning as a filter at

the output. The capacitor is subjected to stresses due to long periods of operations at a

constant voltage output. The capacitor leads are made available so that measurements can

be made easily without any added measurement noise and without disturbing the rest of

the system setup.
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Figure 95: DC-DC converter Hardware

Three sets of DC-DC converter hardware units were considered for the experiment as

seen in Fig. 96. Electrolytic capacitors of 2200µF capacitance value, with a maximum rated

voltage of 10V, maximum current rating of 1A and maximum operating temperature of

85◦C were used for the study suggested by the manufacturers of the converters. The ca-

pacitors used for the experiments were picked from the same manufacturing lot, and all the

capacitors in the lot had similar specifications. The electrolytic capacitors under test were

characterized using an the Biologic SP-150 [145], which measures the impedance parameters.

The average initial ESR value was measured to be around 0.049Ω and the average ca-

pacitance of 2068µF for the three electrolytic capacitors under test. An input DC voltage

of 22V is supplied from a steady voltage source to the DC-DC power supply converter. At

the output, a constant value of 5V with ripples within the accepted noise tolerance of 1%

was observed. All the three converters were subjected to testing test under similar opeating

conditions, measurements for all the three capacitors on these converters were taken at the

same time interval.
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Figure 96: Experimental Setup for 3 DC-DC converter Units

The ESR measurements were made approximately every 150 - 200 hours during the

aging process. The ambient temperature for the experiment was controlled and kept at

25◦C. During each measurement the voltage source was shut down, all the capacitors

were allowed to discharge completely before they were characterized using the impedance

measurement instrument. The EIS measurements and steps are the same that are followed

in Chapter VI. Keeping all the conditions intact the experiment was started again till the

next measurement. This procedure was repeated for all the subsequent measurements in

the experiment.

Plots in Figure 98 show the decrease in capacitance value while plots if Figure 97 show

ESR increase for all the three capacitor devices under test operating under normal condi-

tions . The three capacitors and the converter units were subjected to similar conditions

of temperature, input voltage and loading. As observed from Figure 97 upto 3200 hours of

operation we observed almost a linear increase in the ESR value, and a change in the slope

was observed in the ESR value after about 3200 hours of operation indicating inception

of the breakdown phenomenon in the degradation process. At the end of 3600 hours of

operation the average capacitor ESR value increased by approximately 110% of the initial

value.
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Figure 97: ESR degradation under Nominal Operating Conditions

Similarly in Figure 98 an initial decrease in the capacitance value was observed which

then stabilized after a few hundred hours and decreased at a linear rate towards the middle

aging period. When the aging time reached 2800 hrs, a non-linear change in the capacitance

was observed. As discussed earlier in the EOS and TOS experiments this could be attributed

to increase in dominance of the oxide breakdown phenomenon. It was observed that at the

end of 3600 hours the capacitance decreased by and average of 12% from its initial value.

0 500 1000 1500 2000 2500 3000 3500
1850

1900

1950

2000

2050

2100

2150

2200

Aging Time (Hours)

C
ap

ac
it

an
ce

(μ
F

)

 

 
Cap#1
Cap#2
Cap#3

Figure 98: Capacitance Degradation under Nominal Operating Conditions

Empirical Model

In the initial stages of the research work we analyzed the data and implemented an empirical

model to study degradation in ESR. The data analyzed from the experiments was compared
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with empirical model based on the Arrhenius Law [149]. A linear inverse model has been

derived as an extension of Arrhenius Law to define the change in ESR value over time

for a capacitor subjected to a constant high temperature. This model was first discussed

in [24,41]. The linear inverse model for computing ESR value at time t for a given operating

temperature T is given by:

1

ESRt
=

1

ESR0

[
1− k.t.exp

( −4700

T + 273

)]
(76)

where :

- ESRt : ESR value at time t,

- T : operating temperature,

- t : aging time,

- ESR0 : initial ESR value at pristine condition.

- k : constant factor which depends on the design and the construction of the capacitor.

The factor k depends on the parameters, such as the size of the capacitor. The value of

k is typically determined empirically for a particular class of capacitors and derived in [24].

We simulated the model under similar conditions of the nominal degradation experiment

and compared the results against each capacitor. The plots in Figures 99, 100 and 101

compare the results from the empirical model against the actuals ESR measurements from

experimental data.

As can be observed from the plots, the empirical model tracks the degradation well in

the initial stages of aging cycle. Though all the three capacitors are from the same manu-

facturing lots and type, each capacitor degrades differently and the model could not predict

these variations. Furthermore, for two capacitors specifically #1 and #3 the capacitors

degrade at a different rate than predicted by the model.

These models are specifically used in reliability studies to make generalized failure es-

timations for a set of manufactured components. While in case of physics-derived models,

since the underlying degradation phenomenon due to operation is considered while deriving
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Figure 99: Arrhenius model data against measurement data for Cap# 1
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Figure 100: Arrhenius model data against measurement data for Cap# 2
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Figure 101: Arrhenius model data against measurement data for Cap# 3

the models we are able to track the degradation changes and make more perfect estimates

than an empirical model. In the next section we discuss the physics-based degradation

model and results for nominal degradation experiment data.

Degradation Dynamic Models

We used the same degradation model which we derived in Chapter V. From Eqn.(25) and

other derivations in Chapter V, we have the time dependent degradation models, D1 for

capacitance (C) given by :

D1 : C(t) =

(
2 εR ε0 cb

dC

)(
Ve0 − Ve(t)
jeo t we

)
,

The degradation in capacitance is directly proportional to the variable Ve, which repre-

sents the electrolyte volume, capacitance degradation factor, cb respectively. It also depends

on the evaporation rate, jeo which is directly proportional to the operating temperature.

Under nominal operating conditions, the oxide layer breakdown has a less prominent effect

in the early stages of the aging cycle, the breakdown phenomenon will start to dominate very

late in the aging cycle. As discussed earlier, increase in the core temperature evaporates

the electrolyte thus decreasing the electrolyte volume leading to degradation in capacitance.

Since under nominal condition the amount of heat generated is relatively low we observe
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a lower degradation rate as compared to high stress conditions, where the core tempera-

ture is high. The resultant decrease in the capacitance can be computed using Eq. (25).

The complete discrete time dynamic model for capacitance degradation as derived earlier

is given as :

D4 : Ck+1 = Ck −
(2εRε0weAsjeocb)

d2C
∆t,

cb(k+1) = cb(k) − ξeξ.

Similarly from Eqn. (26), the dynamic ESR degradation model can be expressed as :

ESRk =
1

2
(ρE dC PE eb)

(
jeo t we
Ve(k)

)
,

The complete discrete time dynamic model for ESR degradation derived earlier is given

by :

D5 :
1

ESRk+1
=

1

ESRk
− 2weAsjeo
ρE PE d2C eb

∆t,

eb(k+1) = eb(k) − ξ.

The models D4, and D5 using a Unscented Kalman Filter (UKF) since in model D4

the degradation in capacitance (state) due to decrease in electrolyte is considered to be

a dynamic non-linear model since evaporation rate (jeo) and capacitance oxide breakdown

factor (cb) are estimated online based on the state values. While in modelD5 the degradation

in ESR (state) due to decrease in electrolyte is considered to be a dynamic non-linear model

since evaporation rate (jeo) and resistive breakdown factor (cb) are estimated online based

on the state values

Similar steps are followed as in the electrical overstress approach. Table 24 summarizes

details of the parameters that are used for degradation models D4 and D5. Most of the

parameters remain constant since similar type of capacitors are used. The initial value of

evaporation rate, jeo for nominal operation is obtained and computed from [125].
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Table 24: Parameter values used for degradation models D4 and D5 - Nominal

Parameter Description Value

εR relative dielectric constant 10
εR permitivity of free space 8.8542× 10−9F − cm−1
hc height of capacitor capsule 2 cm
d diameter of capacitor capsule 0.7 cm
lC length of the spacer paper roll. 118 cm
Trated rated temperature 85◦C
jeo evaporation rate 0.0075× 10−3 mg/hr − cm2

dc thickness of oxide layer 2.22× 10−5 cm
we volume of ethyl glycol molecule 5.66× 10−9 cm3

ρE electrolyte resistivity 8× 102 Ω− cm
PE correlation factor of capacitor ≈ 2− 3.5

Prediction of RUL and Validation Tests for Capacitance Degradation Model,

D4

State estimation and RUL prediction results are discussed for all the three capacitors under

test. Figures 102, 103 and 104 shows the result of the filter tracking for degradation in

capacitance upto 3600 hours of aging time. For all the three capacitors we observed a non-

linear decrease in the capacitance very early in the aging cycle, since the model considers

an initial linear decrease in the capacitance value we see that the model does not track well

in this early aging cycle. This initial decrease stabilizes in the later periods of aging and

the model is able to track the degradation in capacitance well. Though we observe higher

residuals between the model and the measured data, they are acceptable and still within

acceptable limits. In the later stages of the aging cycle when the breakdown phenomenon

starts dominating, the model tracks the capacitance data more accurately since it includes

the electrolyte evaporation (jeo) parameters as well as the oxide layer breakdown factor,

(cb).

RUL

Plots in Figures 105, 106 and 107, presents results from the remaining useful life prediction

algorithm at different aging times tp = 80, 740, 1578, 2418, 3200 (hrs), respectively, at

which the three capacitors are characterized and their capacitance value is calculated. The

experiments were run till almost 3600 hours and hence the predictions are done till the end of
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Figure 102: Tracking filter output against measurement data for Cap # 1
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Figure 103: Tracking filter output against measurement data for Cap # 2
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Figure 104: Tracking filter output against measurement data for Cap # 3
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experiments. End of life (EOL) is defined as the time at which the forecasted capacitance

value trajectory crosses the EOL threshold. Therefore, RUL is EOL minus aging times

tp = 80, 740, 1578, 2418, 3200 (hrs).
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Figure 105: Capacitance decrease prediction at different Aging Time for Cap # 1

Validation Tests

An Alpha-Lambda (α-λ) prognostics performance metric for each of the three capacitors is

presented in Figures 108, 109 and 110, respectively. Performance metric identifies whether

the algorithm performs within desired error margins (specified by the parameter α) of

the actual RUL at any given time instant (specified by the parameter λ) [142]. The

central dashed line represents ground truth and the shaded region is corresponding to a

30% (α = 0.3) error bound in the RUL prediction. From the α-λ metric plot for all

the three figures it can be observed that the relative accuracy is good till the end of the

experiment time and the accuracy is good enough under acceptable limits. As mentioned

earlier this is due to inclusion of the degradation parameters and estimating them as the

capacitance changes with degradation.

188



0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

C
ap

ac
it

an
ce

 (
μ 

F
)

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

Aging Time ( Hours)

Measured Predicted

t
p
 = 740

t
p
 = 80

t
p
 = 1578

t
p
 = 2418

t
p
 =3200

Figure 106: Capacitance decrease prediction at different Aging Time for Cap # 2

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

 

 

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

C
ap

ac
it

an
ce

 (
μ 

F
)

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

0 500 1000 1500 2000 2500 3000 3500 4000
1.5

2

2.5
x 10

−3

Aging Time ( Hours)

Measured Predicted

t
p
 = 740

t
p
 = 80

t
p
 = 1578

t
p
 = 2418

t
p
 =3200

Figure 107: Capacitance decrease prediction at different Aging Time for Cap # 3
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Figure 108: Performance based on Alpha-Lambda metric for Cap#1
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Figure 109: Performance based on Alpha-Lambda metric for Cap#2
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Figure 110: Performance based on Alpha-Lambda metric for Cap#3
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Table 25 summarizes the results for all the capacitors and their percentage relative ac-

curacy of capacitance degradation model D4 for all the capacitors under test. As mentioned

earlier model D4 is used for making predictions for all the capacitors with same parameters,

and though it is observed that in the later stages the model performance reduces by some

margin the overall accuracy of the model is acceptable.

Table 25: Summary of validation results based on RA for Capacitance degradation model
D4 - Nominal

Aging C1 C2 C3 RAa

Time

80 94.32 94.32 95.74 94.79
248 97.02 97.02 98.51 97.51
410 96.87 96.87 100.00 97.91
578 95.04 96.69 98.35 96.69
740 94.76 96.50 98.25 96.50
908 96.29 96.29 100.00 97.52
1076 94.06 96.04 98.02 96.04
1240 95.76 95.76 97.88 96.47
1410 95.43 97.72 100.00 97.72
1578 95.05 95.05 100.00 96.70
1746 97.30 97.30 100.00 98.20
1910 97.04 97.04 97.04 97.04
2082 96.71 96.71 96.71 96.71
2250 100.00 96.30 92.59 96.30
2418 95.77 100.00 87.31 94.36
2575 95.12 95.12 85.37 91.87
2751 88.22 94.11 82.33 88.22
2922 85.25 92.63 70.50 82.79
3093 90.14 90.14 70.41 83.56
3200 87.50 87.50 75.00 83.33
3368 100.00 78.45 56.90 78.45
3530 28.57 28.57 100.00 52.38

RAb 91.65 91.64 90.95

RAa is the mean relative accuracy of all capacitors at each prediction time
RAb is the mean relative accuracy of each capacitor at all prediction times

Prediction of RUL and Validation Tests for ESR Degradation Model, D5

State estimation and RUL prediction results are discussed for all three capacitors. Fig-

ures 111,112, and 113, show the results of the filter tracking degradation in capacitance

upto 3600 hours of aging time. As can be observed from the residuals the tracking of the

model with respect to the data in acceptable.
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Figure 111: Tracking filter output against measurement data for Cap # 1
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Figure 112: Tracking filter output against measurement data for Cap # 2
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Figure 113: Tracking filter output against measurement data for Cap # 3

192



RUL

Figures 114, 115 and 116 presents results from the remaining useful life prediction algorithm

at different aging times tp = 80, 740, 1578, 2418, 3200 (hrs), at which the capacitors are

characterized and their ESR value is calculated. Model D5 is implemented for predicting the

increase in ESR while the measured values are the ESR measurements done at respective

aging time intervals. The experiments were run till almost 3600 hours and hence the

predictions are done till the end of experiments. End of life (EOL) is defined as the time at

which the forecasted capacitance value trajectory crosses the EOL threshold at end of 200

hrs. Therefore, RUL is EOL minus aging times tp = 80, 740, 1578, 2418, 3200 (hrs).
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Figure 114: ESR prediction at different Aging Time for Cap # 1 by Model D5

Validation Tests

An Alpha-Lambda (α-λ) prognostics performance metric is presented in Figure 117, 118 and

119 for all the three capacitors under test respectively. The central dashed line represents

ground truth and the shaded region is corresponding to a 30% (α = 0.3) error bound in
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Figure 115: ESR prediction at different Aging Time for Cap # 2 by Model D5
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Figure 116: ESR prediction at different Aging Time for Cap # 3 by Model D5
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Figure 117: Performance based on Alpha-Lambda metric for Cap#1

the RUL prediction. From the α-λ metric plot in the figures it can be observed that the

relative accuracy is good till the end of the experiment time and the accuracy is good enough

under acceptable limits. As mentioned earlier this is due to inclusion of the degradation

parameters and estimating them as the ESR increases with degradation.
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Figure 118: Performance based on Alpha-Lambda metric for Cap#2

Table 26 summarizes the results for all the capacitors and their percentage relative

accuracy of ESR degradation model D5 for all the capacitors under test. As mentioned

earlier model D5 is used for making predictions for all the capacitors with same parameters,

and it is observed from the results that overall the model performs better for estimating

the increase in ESR parameter value.
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Figure 119: Performance based on Alpha-Lambda metric for Cap#3

Table 26: Summary of validation results based on RA for Capacitance degradation model
D5 - Nominal

Aging C1 C2 C3 RAa

Time

80 98.58 98.58 98.58 98.58
248 98.51 98.51 98.51 98.51
410 98.43 96.87 98.43 97.91
578 98.35 98.35 98.35 98.35
740 98.25 98.25 98.25 98.25
908 98.14 96.29 98.14 97.52
1076 100.00 98.02 98.02 98.68
1240 97.88 97.88 97.88 97.88
1410 97.72 97.72 97.72 97.72
1578 100.00 97.53 97.53 98.35
1746 97.30 97.30 97.30 97.30
1910 97.04 97.04 97.04 97.04
2082 100.00 96.71 96.71 97.80
2250 96.30 96.30 96.30 96.30
2418 95.77 95.77 95.77 95.77
2575 100.00 100.00 100.00 100.00
2751 94.11 94.11 94.11 94.11
2922 92.63 92.63 92.63 92.63
3093 100.00 90.14 100.00 96.71
3200 100.00 87.50 100.00 95.83
3368 78.45 78.45 78.45 78.45
3530 100.00 100.00 100.00 100.00

RAb 97.16 95.63 96.80

RAa is the mean relative accuracy of all capacitors at each prediction time
RAb is the mean relative accuracy of each capacitor at all prediction times
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Discussion and Summary

An important goal achieved through the nominal experiment case, shows that the same

degradation models D4, for capacitance, and D5 for ESR degradation applies to both the

nominal and overstress conditions. The only parameters which changed in the models for

the experiment were ones related to the operating experimental conditions while rest of

the structural and geometrical parameters were kept constant for model validation. This

confirms that we have been successful in developing a generalized physics-based degrada-

tion model based on underlying operating phenomenons and demonstrated its effectiveness

through these experimental case studies.

Another interesting observation from the two data sets of the experimental cases were :

1. In Case I under 12V electrical overstress operating at the end of 200 hours the overall

degradation observed in the capacitance was more than 22% and ESR increase by

over 54%.

2. In Case II under 10V electrical overstress operating at the end of 300 hours the overall

degradation observed in the capacitance was more than 15% and ESR increase by over

105%.

3. In the nominal operating experiments at the end of 3600 hours of operation the overall

degradation observed in the capacitance was more than 12% and ESR increase by over

110%.

Thus it was observed that under higher electrical stress the rate of capacitance degra-

dation was higher as compared to ESR degradation while under relatively lower stress

level ESR degradation was comparatively higher. This phenomenon could be hypothesized

due to the variation in the internal core temperature variations due to change operating

conditions. At higher voltage more heat will be generated leading to increase in the core

temperature and thus degrading the capacitance at a faster rate. While in the case of lower

electrical stress, the heat generated internally is lower with lower evaporation rate causing

the capacitance to degrade at a lower rate while the ESR increases predominantly.

The major contributions of the work presented in this chapter are:
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1. Developing the nominal operation experiments based on the failure modes observed

and collecting and analyzing data at regular intervals.

2. Identification of C and ESR as a failure precursor in the lumped parameter model,

M1 as shown in Figure 94;

3. Implementing a empirical ESR change model , based on the nominal degradation

data.

4. Implementing the Unscented Kalman Filter framework to the derived models D4 and

D5 for predicting degradation.

5. Discussion of the validation results from ESR empirical model and degradation model,

D5. It is observed that the physics based model is more accurate and tracking the

ESR degradation of each capacitor and also predicting the RUL.

6. The performance of degradation models, D4 and D5 implemented for predicting degra-

dation in capacitance and ESR respectively under nominal degradation, was within

acceptable limits.

As can be observed from the capacitance data, an initial non-linearity was observed

which was not considered in D5. The derived degradation model can be updated and devel-

oped at a more finer granularity to be implemented for detailed prognostic computations.
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CHAPTER IX

CONCLUSIONS

This thesis has extended previous data-driven approaches to prognostics of electrolytic ca-

pacitors by deriving physics-based models to model the degradation phenomena in capaci-

tors, and then employing experimental data to estimate model parameters and also validate

the model for RUL predictions. A secondary contribution of this work are the design of

experimental frameworks, and the the collection of data to support the model building and

model validation efforts.

Summary of Contributions

Our contributions have focused on enhancements to implementing physics-based degrada-

tion modeling methodologies to prognostics and health management in electronic compo-

nents and systems and experimental validation of our approach.

1. Fault detection and isolation at System level : The work presented in Chap-

ter III demonstrated implementation of a model based methodology using fault sig-

nature techniques that can be applied to online diagnosis of faults in critical avionics

electronic systems. The task was especially challenging because the system was em-

bedded, and combination of a significant number of software (computational) as well

as hardware components. Therefore, our fault modeling, detection, and isolation

schemes was applied to heterogeneous subsystems. Techniques were also designed to

handle the interactions between these subsystems. We developed a fault signature

framework, where the fault signatures were derived by systematic analysis of com-

bined physical system and computational models. In all of these cases, the challenge

was to build these models at the right level of abstraction, so as not to be overwhelmed

by computational complexity, at the same time, include sufficient detail to model cap-

ture the fault effects. The overall contributions to this section of the research can be

summarized as :
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(a) Development of an Integrated Avionics Simulator that included the power supply,

the GPS, and INAV system..

(b) Identification of ten critical hardware and software faults. Developed mechanism

for simulating these faults within the avionics simulator.

(c) Developed fault detectors and reasoner to demonstrate the ability to isolate a

number of single faults across the three subsystems.

(d) Incorporated the physics-based capacitor degradation models into the power sup-

ply system model, and demonstrated how that could be used to simulate perfor-

mance degradation using Monte Carlo methods.

2. Physics-based degradation models : In Chapter V, we discussed the structure

of an electrolytic capacitor and its equivalent electrical lumped circuit models. As

summarized in the fishbone diagram (Figure 35) the most common stressors leading to

degradation in capacitors are electrical and thermal overstress conditions respectively.

A thorough literature survey of the two degradation phenomena led to the derivation

of physics-based models that modeled the effects of electrolyte evaporation and oxide

layer breakdown on equivalent series resistance (ESR) and capacitance parameters as

a function of capacitor aging.

The internal structure of the capacitor was then combined with the physics-based

phenomena to derive accurate dynamic models of capacitor aging when they were

subjected to different stressor conditions. To support the physics-based modeling

tasks, we developed appropriate experimental setups, and conducted laboratory ex-

periments for simulating collecting degradation data on the capacitors under different

operating conditions. Under these conditions the capacitors were regularly character-

ized and data was collected for all the capacitors to study the underlying degradation

phenomenon. The data from these experiments was then used to test and validate

each of the derived models.

3. Electrical Overstress Case Study : The goal achieved in this work, was implemen-

tation of the capacitance degradation model D4 and ESR degradation model D5 over
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a different data sets of electrical operating conditions and achieving results for both

the models which are within acceptable limits. The only parameters which changed

in the models for the experiment were the operating parameters as per experimental

conditions while rest of the structural and geometrical parameters were kept constant

for model validation. Early in the thesis work we mentioned to implement a gener-

alized physics-based degradation model based on underlying operating phenomenons

which is shown through these experimental case studies.

The major accomplishments in this chapter were can be summarized as :

(a) Identification of the lumped-parameter model,M1 andM4, based on the equiv-

alent electrical circuit of a real capacitor as a viable reduced-order model for

prognostics-algorithm development;

(b) Developing the electrical capacitance experiments based on the failure modes

observed and collecting and analyzing data at regular intervals.

(c) Identification of C and ESR as a failure precursor in the lumped parameter

model, M1 as shown in Figure 70;

(d) Implementing a physics-based empirical degradation model, E2 based on the 12V

electrical overtress data and validating the model.

(e) Development of the first principles based degradation models, D4 and D5 for

capacitance and ESR degradation respectively, based on accelerated life test

aging data as a function of time, evaporation rate and oxide breakdown;

(f) Implementing the Unscented Kalman Filter framework for models D4 and D5 for

predicting degradation.

(g) Discussion of the validation results from physics-based empirical degradation

model, E2 and degradation model, D4

(h) The performance of degradation models, D4 and D5, implemented for predicting

degradation in capacitance and ESR respectively under different case, for similar

type of capacitors operating under different operating conditions was analysed

and found to be withing acceptable limits.
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The derived degradation models can be updated and developed at a more finer gran-

ularity to be implemented for detailed prognostic implementation. The results pre-

sented here are based on electrical accelerated aging experimental data and on a

accelerated life timescale.

4. Thermal Overstress Case Study : Chapter VII, presented a physics-based degra-

dation model and a parameter estimation algorithm to validate the derived physics-

based degradation models under thermal overstress experimental data. The major

contributions of the work can be summarized as:

(a) Identification of the lumped-parameter model,M2 andM3, based on the equiv-

alent electrical circuit of a real capacitor as a viable reduced-order model for

prognostics-algorithm development;

(b) Developing the thermal capacitance experiments based on the failure modes ob-

served and collecting and analyzing data at regular intervals.

(c) Identification of C as a failure precursor in the lumped parameter model,M2 as

shown in Figure 70;

(d) Estimating the electrolyte volume from structural model of the capacitor to be

implemented in the first principles degradation model, D3;

(e) Implementation of parameter estimation algorithm to cross validate the derived

first principles degradation model, D1.

(f) Development of the first principles degradation model based on accelerated life

test aging data which includes decrease in capacitance as a function of time and

evaporation rate linked to temperature conditions;

(g) We discussed the results and prediction implementing the Kalman Filter and

Unscented Kalman Filters.

The performance of the derived physics-based capacitance degradation model, D1 was

successful based on the quality of the model fit to the experimental data and cross

validation performance based on the parameter estimations done. A derived second

order parameterized volume degradation model provided good results.

202



5. Nominal Degradation Case Study : In Chapter VIII, we implemented models

D4 and D5 for the nominal experiment case. The only parameters which changed

in the models for the experiment were ones related to the operating experimental

conditions while rest of the structural and geometrical parameters were kept constant

for model validation. Early in the thesis work mentioned to implement a generalized

physics-based degradation model based on underlying operating phenomenons which

is shown through these experimental case studies.

Thus it was observed that under higher electrical stress the rate of capacitance degra-

dation was higher as compared to ESR degradation while under relatively lower stress

level ESR degradation was comparatively higher. This phenomenon could be hypoth-

esized due to the variation in the internal core temperature variations due to change

operating conditions. At higher voltage more heat will be generated leading to in-

crease in the core temperature and thus degrading the capacitance at a faster rate.

While in the case of lower electrical stress, the heat generated internally is lower with

lower evaporation rate causing the capacitance to degrade at a lower rate while the

ESR increases predominantly.

The major contributions of the work presented in this chapter are:

(a) Developing the nominal operation experiments based on the failure modes ob-

served and collecting and analyzing data at regular intervals.

(b) Identification of C and ESR as a failure precursor in the lumped parameter

model, M1 as shown in Figure 94;

(c) Implementing a empirical ESR change model , based on the nominal degradation

data.

(d) Implementing the Unscented Kalman Filter framework to the derived models D4

and D5 for predicting degradation.

(e) Discussion of the validation results from ESR empirical model and degradation

model, D5. It is observed that the physics based model is more accurate and

tracking the ESR degradation of each capacitor and also predicting the RUL.
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(f) The performance of degradation models, D4 and D5 implemented for predicting

degradation in capacitance and ESR respectively under nominal degradation,

was within acceptable limits.

As can be observed from the capacitance data, an initial non-linearity was observed

in the data which was not considered in the derived model D5. The derived degrada-

tion model can be updated and developed at a more finer level of granularity to be

implemented for nominal degradation operation of the capacitors.

Future Directions

We consider a number of extensions to our current work on model-based diagnostics and

a combination of model-based and data-driven prognostics. In the area of diagnostics, our

work could be extended beyond the qualitative fault signature approach to quantitative

approaches than can combine diagnostics and prognostics to support performance-driven

analysis of subsystems and systems.

System Level Prognostics

As discussed and presented in Chapter III, extending our prognostics approach from the

component level to the sub-system level will be an important future step to take is work to

the next level. A majority of the discussion and results presented in this research work are

focused at the component level, some of the work in diagnostics was at the subsystem and

systems level, and some preliminary studies were conducted in combining component-level

prognostics with subsystem level diagnostics. As future work, we can extend our methods

by combining physics-based models of different components e.g., electrolytic capacitors and

MOSFET at the subsystem and system levels to make predictions of system behavior and

performance.

Since more and more electronic components are being used on systems in power drives,

power supplies for avionics electronic which require a system and sub-system level prognos-

tics capability. The research work presented is an important and first step towards moving

at the next level. Knowing the prediction degradation models of the different components
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in a system will improve in making RUL predicitions for a system and thus help in making

logistic decessions of replacing or repairing the degradaded system.

Granularity of the Models

In this work the granularity of the models was to the level where we could estimate the

parameters based on the experimental measurements. With the current granularity of the

derived degradation models we are able to make fairly accurate predictions as can be seen

from the validation results. As discussed in ChapterVIII, in the capacitance degradation

data we observed some non-linearity in the initial stages of aging cycle which the degradation

model D5 was not able to capture well.

Analyzing the data from both the accelerated aging and nominal aging tests, as men-

tioned in the summary of the fishbone diagram some of the degradation phenomenons are

similar but with different operating conditions other phenomenons also come into play.

Thus the basic degradation models remains same but with change in the operational condi-

tions some dormant parameters need to be updated in the model for more better prediction

accuracy.

In the current work we had three devices under test for the nominal degradation ex-

periment. The degradation model can be improved with conducting more experiments and

tracking the data to help understand the other underlying degradation phenomenons. This

will be helpful in deriving more accurate degradation models which will be able to track

the degradation phenomenon more precisely.

More systematic methods need to be developed to extend the results of accelerated aging

to more nominal modes of operations, and to make the degradation models more sensitive to

the environmental conditions. This will enable better dynamic tracking of systems, and also

the ability to track degradation under varying environmental conditions. More experiments

and data will help us develop more precise and accurate models of the different degradation

phenomena, and also to determine ways in which multiple models of degradation phenomena

may be combined to define an overall degradation model.
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Handling Uncertainty

In Chapters VI, VII, and VIII, we discussed implementation of Bayesian frameworks that

combined with the physics-based degradation phenomena were employed to track the degra-

dation states of the capacitor under nominal or stressed conditions. The models used in

these methodologies are mathematical abstractions of the time evolution of the degrada-

tion process and used for the estimation of remaining useful life. The Bayesian tracking

framework allows for estimation of state of health parameters in prognostics making use

of available measurements from the system under consideration. In this framework, health

parameters are regarded as random variables for which, in the case of Kalman and Extended

Kalman filters, their distribution are regarded as Normal and the estimation process focuses

on computing estimates of the expected value and variance parameters as they relate to the

mean and variance of the parameterized Gaussian distributions. In addition to the health

estimation process, forecasting of the health parameters in future time points provides the

framework for computing the RUL of the component.

In this research work we did not include all the uncertainty measures associated with

the entire methodology models. Some of the uncertainties that relate to this work are

[152]include

1. Structural Uncertainties: these uncertainties arise from inherent variability modeling

dynamic processes. These certainties were considered in our experiments by taking

taking multiple measurements for a single reading and computing the measurement

error. Examples of such uncertainties include manufacturing variations and difference

in material properties depending on the manufacturing lot that the devices come

from, and also variations created by different manufacturers. These uncertainties can

be mitigated to some extent by using multiple experimental runs, and also running

experiments with components from different manufacturing batches.

2. Systematic Uncertainties: these uncertainties arise due to unknown details in the ex-

perimental set up and experimental measurements that cannot easily be identified and

eliminated. These uncertainties are often modeled as drift and bias terms in the com-

ponent and system models. Additional uncertainties arise because of modeling errors
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and noisy measurements. These are often modeled as additive stochastic phenomena

added to appropriate parts of the component and system models. With improved

methods and deeper investigations these uncertainties may be reduced but are rarely

eliminated. Modeling uncertainties fall under this category and include modeling er-

rors due to unmodeled phenomena in both system model and the fault propagation

model.

3. Prejudicial Uncertainties: these uncertainties arise due to the way a process is set

up, and it is expected to change if the process is redesigned. Conceptually these

can be considered a type of epistemic uncertainty, except it is possible to control

these by redesigning the experimental and measurement set up. Examples for these

uncertainties include, sensor coverage, information loss due to data processing, various

approximations and simplifications, and numerical errors.

The Bayesian tracking framework, especially the Kalman filter framework, allows for

modeling of modeling uncertainties and measurement noise as Gaussian processes. For

example, measurement noise is considered to be additive, and is modeled as a Gaussian

distribution with zero mean and a predefined covariance. This allows for the aggregation

of different sources of uncertainty o track and estimate the health state of a component

or system. Its implications on the uncertainty estimation for remaining useful life (RUL)

omputations have been dealt with in a simplistic way in this thesis research. However, these

methods can be extended using sequential Monte Carlo and a variety of particle filtering

schemes [138, 152]. Recent work by [138, 152] have discussed representing uncertainty in

model-based prognostics in electronic systems, and this is very relevant to future extension

of this research.

When employing the KF and UKF approaches, better methods have to be developed for

estimating the parameters of the modeling uncertainty and measurement noise uncertainty

distributions. If considered as tuning parameters, then the generated uncertainty in proba-

bility density function will not be representative of the real process. A proper propagation

of uncertainty through the RUL prediction step as well as its correct interpretation are key

to developing decision-making methodologies that make use of the remaining useful life pre-
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diction estimates and their corresponding uncertainties in order to make actionable choices

that will optimize reliability, operations or safety in view of the prognostics information.
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APPENDIX B

ELECTRICAL OVERSTRESS - PRINTED CIRCUIT BOARD

This section shows the PCB layout designs for the boards developed for the Electrical

Overtress Experiments. These boards are the second version of the experiment.

Figure 120: Top Layout of the EOS Board
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Figure 121: Bottom Layout of the EOS Board
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Figure 122: Component Layout of the EOS Board
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