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CHAPTER I

INTRODUCTION

Diffusion tensor imaging (DTI) [1] is the first in vivo imaging technique to provide the contrast

necessary to distinguish between separate axonal tracts within white matter (WM) tissue in the brain

and provide information regarding the microstructure of the tracts. Because of this, DTI has become

a popular neuroimaging tool with a wide variety of clinical applications, ranging from normal WM

maturation [2] and aging [3] to diseases and disorders, such as Huntington’s Disease [4], epilepsy

[5], multiple sclerosis [6], Alzheimer’s disease [7], and schizophrenia [8].

The issue of how best to analyze these rich data sets has become an increasingly important

question, particularly as the number of group studies increases. Currently, the two most common

means of analyzing DTI data are region of interest (ROI) and voxel-based analyses (VBA) of scalar

diffusion parameter maps derived from the tensor data. Alternative methods involving fiber tracking

to isolate specific tracts and compare diffusion parameters along [9–11] or within [12] the tracts

have been proposed and are gaining popularity.

As the number of subjects in DTI studies increases, manual ROI placement in individual data

sets becomes increasingly time-consuming and prone to error. VBA methods minimize user inter-

action; however, these methods are highly dependent on accurate co-registration of images to a

standard space, which is not always possible given the current limits on DTI resolution and inter-

subject anatomic variability. Inaccurate registration can lead to false-positive results along the edges

of structures and ambiguity in determining which WM pathways are affected. Tract-based analysis

(TBA) methods offer the possibility of isolating the same WM structure fairly accurately. However,

the methods currently used suffer from limitations, such as manual identification of seed points

for tracking, which can be time consuming for large studies, and challenges in determining point

correspondence between subjects.

The specific aims of this research project were to (1) develop a tract-based analysis method
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that could be used on a broad range of tracts with minimum user interaction, (2) compare the new

method to traditional analysis methods, and (3) apply it to clinical applications.

This dissertation is organized in the following manner: First, a brief review of DTI and the

analysis methods used in DTI studies is provided. The first manuscript, “Altered diffusion properties

in white matter in Williams Syndrome,” presents a VBA study of WM diffusion properties in Williams

syndrome. The results of this study reveal several regions of both decreased and increased FA in

the Williams syndrome group compared to normal controls, consistent with the current literature and

supporting the idea that axonal organization is altered in this disorder. This study also demonstrates

some of the limitations of a traditional VBA analysis. The second manuscript, “Semi-automated,

tract-based analysis of diffusion tensor imaging studies,” describes new methods developed for

performing tract-based analysis of DTI data. These methods were applied to a schizophrenia study,

and the results were compared to the results of a standard VB analysis of the data. The comparison

revealed that the TBA method may be able to help overcome some of the shortfalls of VBA and help

in distinguishing which WM tracts are involved in changes discovered by this method. The third

manuscript, “Lateralized differences in white matter tracts passing through the external capsule

in Williams syndrome” describes the application of TBA to investigate the WM changes found in

the external capsules of the Williams syndrome subjects in the VBA study. The study examines

fractional anisotropy along the two major WM tracts that pass through the regions-of-interest defined

by the first study and shows that the tracts may have unique contributions to the changes found in

the VBA study. Finally, a summary of the work presented in this dissertation and discussion of the

methods and results is provided in the final chapter.
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CHAPTER II

BACKGROUND & MOTIVATION

Review of diffusion tensor imaging

Theory

Diffusion-tensor imaging [1] is based upon the observations of Hahn [2] and Carr and Purcell [3]

that spin echo (SE) magnetic resonance (MR) sequences are sensitive to diffusion of the molecules

being probed and the introduction of the pulsed gradient spin echo (PGSE) sequence [4], which

allows the measurement of diffusion coefficients, such as that of water (3×10−9 m2/s at 37◦ C). In

the PGSE sequence (Figure 2.1), two gradient pulses are applied, one on either side of the 180◦

radio frequency (RF) pulse and each with amplitude G and duration δ. The net effect of these

gradient pulses is the labeling of protons in molecules with a phase related to the distance the

molecules have moved during the time ∆ between the application of the two pulses. This net phase

results in the attenuation of the signal (S). For the PGSE sequence, assuming unrestricted, isotropic

diffusion and taking hardware limitations into account, the signal attenuation due to the diffusion of

protons at the time of the echo (T E) depends upon the diffusion coefficient D and an attenuation

factor b [5]:
S(T E)

S0
= exp(−bD) (2.1)

where S(T E) is the signal at the time T E, S0 is the signal when G = 0, and

b = γ
2G2

δ
2(∆−δ/3) (2.2)

Since the values of γ (the gyromagnetic ratio) , G , δ , and ∆ are known, the diffusion coefficient (D)

of the sample being imaged can be solved for by obtaining two images: one with diffusion gradients

(G 6= 0) and one without diffusion gradients (G = 0) applied.
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Figure 2.1: The pulse sequence diagram for a PGSE experiment (Top) and schematics demon-
strating the effects of the sequence on spins that do not diffuse (middle) and spins that do diffuse
(bottom) during the diffusion encoding time ∆. The spins initially have no phase, then the first dif-
fusion sensitizing gradient (G) applies a location-dependent phase to each spin. The spins are
allowed to diffuse, and a 180◦ RF pulse is applied, reversing the phase of each spin. The spins
diffuse for a total time period ∆, when a second diffusion sensitizing gradient (G) is applied. If the
spins have not moved from their original locations (middle), they have no net phase at the time
of the signal readout. If the spins have moved (bottom), they will have a net phase change that is
related to the net distance they have moved along the direction of the diffusion sensitizing gradients.
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Equations (2.1) and Eq. (2.2) assume that the sample being imaged is homogeneous, allow-

ing unrestricted, isotropic diffusion; therefore, the diffusion encoding only needs to be applied in

one direction to accurately estimate the value of D. However, this is not the case when imaging

complicated samples, such as living tissue. Microstructures, such as cell walls, organelles, and

microtubules, hinder the diffusion of water, reducing the value of the observed or apparent diffusion

coefficient (ADC) depending upon the organization of the microstructures and the direction of the

applied diffusion gradient.

The dependence of the measured ADC on the direction of the applied gradient can be taken

advantage of to reveal information related to the structure of highly organized tissue, such as muscle

fibers and white matter tracts in the brain. If diffusion gradients are applied along a minimum of six

non-collinear directions not all in the same plane, the ADC can now be represented as a tensor

matrix D [6]. Equation (2.1) now takes the form

S(T E)
S0

= exp(−
3

∑
i=1

3

∑
j=1

bi jDi j), (2.3)

where b is a matrix composed of the individual b-values for each diffusion-weighted direction and

Di j is the corresponding ADC value. D is a symmetric matrix:

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 , (2.4)

where

Dxy = Dyx, (2.5)

Dxz = Dzx,and (2.6)

Dyz = Dzy, (2.7)
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leaving six independent elements, which can be solved for using multivariate linear regression [6].

Each tensor can then be diagonalized to obtain the eigenvectors (~e1,~e2, and ~e3) and eigenval-

ues (λ1,λ2, and λ3), which characterize the direction and magnitude, respectively, of the three-

dimensional diffusion displacement distribution within that voxel. The displacement distribution is

often represented as an ellipsoid with axes defined by the eigenvectors, and the lengths of the axes

are defined by the eigenvalues or effective diffusivities. The shape of the ellipsoid provides informa-

tion about the diffusion within that voxel (Fig. 2.2). If diffusion is isotropic (λ1 = λ2 = λ3) the ellipsoid

Figure 2.2: Effects of tissue microstructure on the diffusion tensor. The diffusion displacement
distribution for each voxel can be visualized as an ellipsoid, and its size and shape are affected
by the local tissue microstructure: (A) CSF, (B) grey matter, (C) highly organized tissue such as
bundles of myelinated WM axons, and (D) tissue organized in sheets or in regions where two sets
of WM axons cross.

will be a sphere. If diffusion is restricted to primarily one direction (λ1 � λ2 ≥ λ3), the shape of the

ellipsoid will be prolate. If diffusion is restricted to a plane (λ1 ≥ λ2 � λ3), the shape of the ellipsoid

will be oblate. The shape of the tensor can be used to infer information about the organization of the
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structures within the tissue being imaged. For example, a bundle of tightly packed myelinated axons

running in parallel will hinder the diffusion of both intracellular and extracellular water molecules in

the directions perpendicular to the axis of the bundle. Assuming axonal properties are isotropic

in the plane, diffusion will be greatest in one direction and the resulting tensor will have a prolate

shape.

Diffusion parameters

Information about the underlying structure of the tissue can also be revealed by several rota-

tionally invariant scalar values derived from the tensor. The most commonly used values are the

trace of the diffusion tensor [6], the mean diffusivity, and fractional anisotropy [1]. Example images

Figure 2.3: Diffusion parameter maps. From left to right, Tr(D), FA, and color-coded FA maps are
shown.

of these parameters are shown in Figure 2.3. The trace of D, Tr(D), is the sum of the eigenvalues,

giving a measure of the total diffusivity:

Tr(D) = λ1 +λ2 +λ3. (2.8)
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The mean diffusivity (MD) is just the average of the effective diffusivities (λ):

λ =
Tr(D)

3
(2.9)

Fractional anisotropy (FA) is an index of the variation of diffusion over measurement directions. It is

defined as

FA =
√

3√
2

√
(λ1−λ)2 +(λ2−λ)2 +(λ3−λ)2√

λ2
1 +λ2

2 +λ2
3

, (2.10)

and it ranges from 0 for isotropic diffusion to 1 for completely anisotropic diffusion restricted to one

direction. Color-coded FA maps provide contrast within highly anisotropic tissue based upon the

principal diffusion direction, where red represents greatest diffusion in the right/left direction, green

represents anterior/posterior, and blue represents inferior/superior.

These indices are sensitive to pathological changes in the underlying tissue structure, such

as demyelination/remyelination [7–9], axonal degeneration [9, 10], and edema [11–13]. MD and

anisotropy measures are also sensitive to differences in the organization of healthy tissue. For

example, within healthy white matter tissue, FA is high in regions where the axon bundles are

traveling in the same direction and low in regions where different white matter tracts are crossing

paths.

The eigenvalues themselves may also be useful in determining what is happening in the under-

lying tissue. Axial diffusivity (λ‖) is the diffusivity associated with the principal eigenvector:

λ‖ = λ1. (2.11)

It describes the diffusivity parallel to the major orientation of the underlying tissue. Radial diffusivity

(λ⊥) is the average of the second and third eigenvalues:

λ⊥ =
λ2 +λ3

2
. (2.12)
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It describes the diffusivity perpendicular to the major orientation of the underlying tissue. Song et

al. [7, 10] have shown in animal models that λ‖ and λ⊥ are sensitive to specific types of changes

to white matter microstructure. They reported that λ⊥ is sensitive to changes in the myelination of

axons but λ‖ is not [7] and that λ‖ is sensitive to axonal degeneration, while λ⊥ is not [10].

Fiber Tractography

Fiber tractography (or fiber tracking) makes use of the orientation information inherent in the

eigenvectors of the diffusion tensor to track WM bundles in DT images. The first fiber tracking

algorithms were based upon the principal diffusion direction (PDD) method, a deterministic tracking

method which uses line propagation along the direction of the principal eigenvectors [14, 15]. A

popular PDD tracking algorithm is fiber assignment by continuous tracking (FACT) [15]. This method

begins tracking from a seed point in the image, and propagates along the direction of the major

eigenvector of that voxel by a specified step size. When the fiber enters a new voxel, the propagation

direction of the fiber is adjusted to match the major eigenvector of that voxel, and so on until a

threshold criterion, such as a minimum FA value or a maximum angle between consecutive PDDs,

is violated.

Streamline approaches, such as FACT and other PDD methods, have several limitations. They

are susceptible to noise in the principal eigenvector and may terminate tracking prematurely in

regions of low anisotropy due to crossing fibers pathways. There is not enough information in a

single tensor model for these algorithms to know which path to follow. Probabilistic approaches have

been developed which create maps of the probability of the connectivity between brain regions [16–

18], based upon the uncertainty in the measurement of the principle eigenvector. These methods

attempt to allow for the branching of fiber pathways. A major criticism of many probabilistic methods

is that they make assumptions regarding the source of the noise in the tensor estimation, leaving out

the potential impact of physiological noise and image artifacts. Nonparametric bootstrap methods,

such as [18], do not make assumptions regarding the source of the uncertainty. However, they

require large data sets, which greatly increase imaging and processing time.
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Clinical applications

As mentioned previously, the diffusion tensor and the parameters derived from it are sensitive

to changes in the integrity and organization of tissue microstructure, particularly in highly organized

tissue, such as muscle and WM. Early on, the usefulness of this imaging modality was recognized in

the study of normal WM development [19] and aging [20], as well as diseases affecting myelination,

such as multiple sclerosis [21] and Krabbe disease [22]. Eventually, DTI became a popular tool

for the investigation of involvement of changes in WM structure and organization in diseases and

disorders where demyelination was not the primary manifestation. The work in this dissertation

focuses on two such disorders: schizophrenia and Williams syndrome.

Schizophrenia

Schizophrenia is a debilitating, chronic mental disease that affects approximately 1% of the

population world-wide and over two million Americans [23]. The symptoms vary from patient to pa-

tient, but generally fall into one of three categories: positive (hallucinations and delusions), negative

(apathy, lack of emotion, and poor social functioning), and disorganization of thought, speech, or

behavior. Schizophrenia was distinguished from other forms of psychosis at the end of the 19th

century [24], and several regions of the brain, including the frontal lobe, temporal lobe, cerebel-

lum, and structures of the limbic system, are thought to be involved in the disease. However, the

underlying mechanisms producing the disease’s diverse symptoms are still poorly understood.

Post-mortem study of the brains of schizophrenic patients was the first method used to inves-

tigate the effects this disease might have on anatomy. However, these studies were only able to

reveal gross changes in anatomy. More recently, computed tomography and magnetic resonance

imaging (MRI) techniques have been used to study gross changes in WM volume of schizophrenics

in vivo. However, the results of these studies range from negative [25, 26] to regional [27–29] to

global [30, 31] differences.

Recently, disconnection theories [32, 33] have been introduced, which suggest that the integra-

tion of information across complex networks between functional areas of the brain is compromised
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in schizophrenia. While Friston & Frith [32] originally proposed that the abnormality was functional

and not anatomical in nature, it was certainly appealing to think of this ’disconnection’ as arising from

abnormalities in the physical connections of the brain. Indeed, histological evidence has revealed

differences in dendritic arborization [34, 35], decreased number of dendritic spines [36, 37], in-

creased neuronal density, which suggests a decrease in interneuronal neuropil [38, 39], decreased

oligodendrocyte density [40] and myelin-related protein expression [41], and impaired myelination

of axons [42, 43] in schizophrenic brains. Dendrites, oligodendrocytes and other glial cells in the

neuropil, and myelin all contribute to the transmission of signals between neurons. Evidence of their

involvement in schizophrenia, along with the development of disconnection theories, has initiated

considerable interest in studying WM tracts in vivo. Particular interest has developed around the

tracts that connect regions of the brain previously implicated in schizophrenia. These include the

cingulum, which is part of the limbic system, the uncinate fasciculus, which connects the frontal

and temporal lobes, the arcuate fasciculus, which connects the language regions in the frontal and

temporal lobes and is part of the superior longitudinal fasciculus, as well as others.

DTI has become a popular tool in recent studies of schizophrenia, with well over 100 studies

published in the past 10 years. (See Figure 2.4 for the number of publications per year.) The majority

of the studies examined differences in MD and/or FA between patient groups and normal controls

and found a variety of regions in major WM tracts where these parameters differed between the

groups. It has been shown that at least 20 diffusion directions are necessary for accurate estimation

of anisotropy measurements [44]. Therefore, the following review will focus on results from studies

performed with at least 20 diffusion encoding directions.

Association pathways have been investigated extensively in DTI studies of schizophrenia. In

chronic schizophrenic patients, mean diffusivity was found to be increased [45] and mean FA de-

creased [46, 47] in the bilateral anterior portion of the cingulum. Decreased FA was reported

in the left cingulum only in chronic schizophrenic patients [48] and in patients with early onset

schizophrenia [49]. No significant changes were found in either the right or left cingulum in several

studies [50–55]. The superior longitudinal fasciculus (SLF) contains the arcuate fasciculus, which
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Figure 2.4: DTI studies of schizophrenia by year.

has been suggested to be involved in auditory hallucinations [56]. Studies have reported that pa-

tients have reduced FA in the left SLF only [48, 51, 52, 54, 55], right SLF only [45, 53], and both

right and left SLF [54, 57]. Four whole-brain studies did not report changes in either SLF tract

[45, 49, 50, 58]. Decreased FA in the bilateral uncinate fasciculi has been reported in studies of

recent onset schizophrenics [55] and typical schizophrenic populations [57, 59]. Jones et al. and

Price et al. [51, 60] reported no significant differences in FA in the uncinate fasciculi of typical

schizophrenics, and several other whole-brain studies did not report any significant differences in

the uncinate [45, 48–50, 52–54, 58]. In the inferior fronto-occipital (IFO) fasciculi, decreased FA

was reported in the left tract [55, 58] and bilaterally [57]. No differences in FA or MD were found in

either tract in several studies [45, 48–54, 59]. Only two studies found any significant differences in

FA in the inferior longitudinal fasciculus (ILF). Cheung et al. reported reduced FA in the left ILF of

first-episode, never-medicated schizophrenics [58], and Shergill et al. reported reduced FA in the

bilateral ILF [54].

In addition to these association tracts, decreased FA has been reported in projection pathways

involved in motor and sensorimotor function [48, 52, 53, 58]. Also, changes in the major WM
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tract connecting the two hemispheres of the brain have been reported. In a group of early-onset

schizophrenics, Douaud et al. [52] found decreased FA in the corpus callosum ranging from the

genu to the splenium. Three studies found reduced FA in the genu [54, 61, 62]. However, Kanaan

et al. [61] reported conflicting results between two analysis methods, where one method found

the difference to be significant and the other did not, and two other studies found no significant

differences in FA in the genu [46, 58]. Two whole-brain comparison studies found decreased FA in

the splenium of the corpus callosum [50, 58], yet two studies focusing on the splenium found no

significant differences [46, 62].

Williams syndrome

Williams syndrome (WS) is a disorder caused by a 1.5Mb hemizygous deletion on chromosome

7 (7q11.23) [63]. This deletion results in a unique set of characteristic physical, cognitive, and

behavioral symptoms. These include characteristic facial features, such as a wide mouth with full

lips and protrusive ears[64], and cardiovascular abnormalities [64, 65]. Individuals with WS typi-

cally exhibit mild mental retardation along with a unique combination of relative cognitive strengths

and weaknesses, such as excellent verbal short-term memory and poor visuospatial construction

[66]. These individuals also typically demonstrate excessive friendliness and empathy [67, 68],

non-social anxiety [69], and sensitivity to loud noises [70]. Genetic evidence along with structural

and functional differences in WS patients compared to normal controls suggest that the physical

connections between certain functional areas in the brain may be disrupted in WS.

The typical WS deletion includes several genes that are potentially involved in neural develop-

ment and function, including LIM kinase 1 (LIMK1), cytoplasmic linker 2 (CYLN2), frizzled 9 (FZD9),

and syntaxin 1A (STX1A). The LIMK1 gene encodes a protein that is involved in growth cone motility

and morphology and consequently, neurite extension [71, 72]. Growth cones are processes located

at the tips of developing axons, and they are sensitive to environmental cues, which they use to

guide the axons to their proper destinations. Disruption of the normal signaling pathway involving
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LIMK1, may result in improper axonal guidance, potentially leading to neural and cognitive dysfunc-

tion. An LIMK1 knockout mouse model demonstrated altered growth cone morphology, altered fear

responses, and impaired spatial learning [73]. The CYLN2 gene encodes for CLIP-115 [74] which

is involved in the regulation of the dynamics between microtubules and specific neuronal organelles

important to neuronal function [75]. Disruption of this gene in mouse models resulted in abnormali-

ties including increased ventricular volume, decreased volume of the corpus callosum, impairment

of motor coordination, and hippocampal dysfunction [76]. The FZD9 gene encodes for a protein

that acts as a receptor for Wnt signaling proteins [77], which regulate the development of neural

structures, including the hippocampus [78]. A study investigating the effects of deletion of the FZD9

gene on the hippocampus revealed increased apoptotic cell death in the developing dentate gyrus

and deficits in visuospatial learning and memory [79]. STX1A plays an important role in neurotrans-

mitter release [80] and upregulation of the protein has been shown to be involved in hippocampal

learning processes [81]. While it is tempting to look for one-to-one correlations between genes and

specific cognitive functions, it is likely that there exists a complex interaction between genes and

between these genes and the environment.

Structural MRI studies of the WS brains have revealed several differences compared to nor-

mal brains, including reduced grey matter volume [82–85], reduced white matter volume [82, 86],

increased gyrification [86–88], reduced sulcal depth in the intraparietal sulcus [89, 90], and a re-

duction in the extent of the central sulcus [91, 92].

Jackowski et al. pointed out that the studies published to date do not reveal whether these

abnormalities are due to WS or general mental retardation [93]. However, a study comparing high-

functioning WS participants with IQ-matched controls found bilateral grey matter reductions in the

intraparietal sulcus and the orbitofrontal cortex, as well as around the third ventricle [83]; and it

has been reported that both high-functioning WS participants [89] and WS participants with mental

retardation [90] exhibit reduced sulcal depth in the intraparietal sulcus. These studies suggest that

at least some of the cognitive dysfunction in WS is unique to the disorder and not a result of general

mental retardation.
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Functional MRI studies demonstrate disruption of several functional circuits potentially related

to the cognitive symptoms demonstrated in WS. Normal activation of the ventral processing stream

during face processing has been reported [83, 94, 95], which is in agreement with behavioral data

suggesting that face processing is relatively preserved in WS [96]. However, regions that may

be involved in higher-level object recognition and face processing have been shown to function

abnormally [94, 95], suggesting that compensatory processing methods may be invoked, providing

relatively persevered face and object recognition. Studies targeting abnormal social cognition in

WS, such as decreased inhibition responses, increased non-social anxiety, and hypersociability,

have shown abnormal functioning in WS subjects in cortical and subcortical regions in frontostriatal

circuits involved in response inhibition [97] and in the amygdala, orbitofrontal cortex, dorso-lateral

prefrontal cortex, and medial prefrontal cortex during the presentation of fearful faces and scenes

[98]. Meyer-Lindenberg et al. studied high-functioning WS subjects and reported dysfunction of

the dorsal stream processing in visuospatial construction [83] and a lack of normal activation in

the anterior hippocampal formation, which is an area involved in spatial navigation and potentially

visuospatial construction [99].

All of this evidence has led to an interest in investigating the involvement of WM in the disorder.

Two DTI studies of WS have been published to date. Marenco et al. [100] studied 5 high-functioning

WS subjects recruited from the group used in previous fMRI studies [83, 99] and 5 normal controls

matched for age, gender, and IQ. The orientation of the principal eigenvector (~e1) averaged over

bilateral regions of WM surrounding the orbito-frontal cortex, collateral sulcus, intraparietal sulcus,

and ventral cingulum was found to be directed more in the anterior-posterior direction than the

right-left direction in the WS group compared to controls. Anisotropy, measured by the lattice index

[101], was found to be decreased in the cortico-spinal tracts (CST) and increased in the inferior-

longitudinal fasciculi (ILF) and the inferior fronto-occipital fasciculi (IFO) in WS compared to controls.

The shape of the diffusion distribution profile, measured by skewness of the tensor [102], was found

to be increased in the CST and decreased in the ILF, IFO, and ventral cingulum. No differences
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in anisotropy or skewness were found in the anterior thalamic radiations, dorsal cingulum, uncinate

fasciculi, or genu and splenium of the corpus callosum.

Hoeft et al. [103] used a voxel-wise analysis and two types of region of interest analysis to

investigate differences in WM between 10 WS, 10 developmentally delayed controls and 11 typically

developing controls. All three analyses revealed that the WS group had higher FA in the right SLF

when compared to both control groups. FA in the right SLF of 20 WS subjects was found to be

negatively correlated with measures of visuospatial construction abilities. In addition, the voxel-

wise analysis revealed increased FA in the WS group in bilateral regions containing the posterior

limb of the internal capsules, cortico-pontine tracts, cotrico-spinal tracts, and/or superior thalamic

radiations. Increased FA was found in right superior fronto-occipital tract, bilateral SLF (right more

than left), bilateral regions containing the uncinate fasciculus, external capsule, and inferior fronto-

occipital tracts, bilateral regions containing the inferior longitudinal fasciculi and the inferior fronto-

occipital fasciculi, and bilateral forceps major.

Review of inter-subject data analysis methods

In medical imaging, the two most commonly used data analysis methods for investigating differ-

ences between populations are region of interest (ROI) analysis and voxel-based analysis (VBA).

These methods have been used in a wide variety of applications, including DTI. Although these

methods are popular, they are not without their limitations and often do not make full use of infor-

mation provided in the diffusion tensor. In an effort to take advantage of the structural information

inherent in DTI data, tract-based methods of analyzing diffusion parameters along WM tracts iso-

lated by fiber tracking have been proposed [104, 105]. The merits and limitations of each of these

three analysis techniques are described below.

Region of interest analysis

ROI analysis is a hypothesis-driven method. A priori knowledge of the location and extent of

the affected tissue is used to guide the selection of the voxels within the image which represent
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this tissue. Then the image intensity or scalar parameters derived from the images at those voxel

locations are compared across subjects. While this method is straightforward and does not require

any form of image normalization or registration, it is not without its limitations.

First, this method is extremely time consuming and is susceptible to intra- and inter-rater error.

Each ROI in each data set must be defined manually, and inter-subject variability in anatomy makes

identifying exactly the same location within the same structure across many different subjects ex-

tremely difficult. Reliability scores for raters can be calculated, but are not always reported in the

literature.

Second, the size and shape of the ROI can affect results. Large ROIs are less sensitive to noise

and image artifacts. However, they may introduce partial volume averaging if they include voxels not

in the structure of interest. ROIs that do not fit the exact shape of the structure of interest may also

introduce partial volume averaging effects. Also, the importance of knowledge of the extent of the

disease within the tract should not be overlooked when defining ROIs. If it is the entire structure that

is involved, a two-dimensional ROI defined in only one image plane that contains a small portion of

the structure could result in a decrease in statistical power when comparing groups. On the other

hand, if a three-dimensional ROI is defined to cover the entire structure when only a specific portion

of the structure is involved, partial volume averaging may mask significant differences.

Another limitation is that the inconsistency of ROI placement across studies makes it difficult to

compare results. For example, DTI studies of schizophrenia that have used ROI analysis placed

their ROIs in a variety of locations, including the hippocampus [45, 46], the corpus callosum [47-

49], the uncinate fasciculus [50], the cingulum [48, 51, 52], the cerebellar peduncles [53, 54], and

various other WM regions in the frontal, temporal, parietal, and occipital lobes [48, 55-57]. There

was even variability within studies that examined the same structure. For example, in the three

studies that placed ROIs specifically within the cingulum, each used a different size ROI defined

in a different location. The first study segmented the cingulum bundles from the 8 coronal slices

which also contained the body of the corpus callosum and found decreased FA in both bundles in

schizophrenics [51]. Another study placed ROIs of 49 pixels (172 mm2) only in the anterior cingulum
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and found decreased FA values in schizophrenics [48]. The third study used ROIs of 42 pixels in size

(148 mm2) placed in the anterior and posterior cingulum located in the three transverse slices just

inferior to the slices containing the medial portion of the cingulum. This study reported decreased

FA in the anterior portion but not the posterior portion of the cingulum [52].

Voxel-based analysis

VB analysis is the statistical comparison of two data sets on a voxel-by-voxel basis. In order to

accomplish this, each data set must all be aligned (or co-registered) so that the same structures

appear in the same image locations across all subjects. This method has several advantages over

ROI analysis: no prior knowledge of the location or extent of the diseased tissue is necessary and

user interaction is minimized making it less time-consuming and reducing rater bias. Unfortunately,

this method has its limitations, as well. The assumption is often made that the image registration

results are ideal and each image is aligned perfectly to the other. However, inter-subject variabil-

ity in anatomy and limitations in current image registration software prevent this from being the

case. Also, image normalization is generally performed on scalar images with registration algo-

rithms that attempt to minimize (or maximize) a cost function, which quantifies how well the images

are matched. While cost functions, such as mutual information, may perform extremely well and

result in excellent matching of scalar images, they are based upon intensity alone and cannot de-

termine whether smaller tracts within a large WM bundle are aligned properly. For example, the

uncinate fasciculus and the inferior fronto-occipital fasciculus pass through the external capsule to-

gether. The top row of Fig. 2.5 shows an example of a point in the left external capsule, where the

uncinate and inferior fronto-occipital (IFO) tracts travel together. If registration results based upon

scalar FA images appear to be perfect, there is still no way to know what proportion of the WM

bundle in this region is occupied by the unciate and what proportion is occupied by the IFO. Images

E and F in Fig. 2.5 demonstrate the case where a single point in the common image space may

actually refer to different WM tracts in different subjects, yet the VBA assumes that because the FA

maps are aligned well, parameters from the same tracts are being compared in the analysis.
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Figure 2.5: Example of the limitations of VBA. The relative proportions of space that the inferior lon-
gitudinal fasciculus (orange) and the uncinate fasciculus (green) occupy within the external capsule
may vary between subjects(E and F), resulting in comparison of different tracts at the point marked
by the crosshairs in a VBA style analysis.

Another problem with VBA is that the registered data are often smoothed in order to minimize

this inter-subject variability and increase the signal to noise ratio. However, the size of the smoothing

kernels used can introduce bias into the results. Jones et al. [106] investigated the effect of kernel

size and found that it makes a significant difference in results, suggesting that a priori knowledge

of the size of the affected area is still important in VB methods and that the results of different VB

studies must be compared with caution.
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Tract-based analysis

As the field of DTI has developed, the limitations of traditional analysis methods have become

more apparent and there has been increasing interest in taking advantage of fiber tracking to im-

prove specificity and sensitivity in DTI analysis. With a few exceptions, analysis methods that utilize

fiber tracking generally fall into one of two categories: tract-based analysis and tract-based ROI

analysis.

Fillard et al. [105] and Mori et al. [104] first introduced the concept of tract-based analysis:

the statistical comparison of diffusion parameters at corresponding locations along specific WM

tracts isolated by fiber tracking. This method is appealing because it should ideally minimize the

error in location compared to ROI studies, yet allow for statistical analysis of points along the entire

tract, similar to VBA methods. However, a major challenge in utilizing this method is determining

correspondence between points along fiber tracts in different subjects.

The first studies to implement tract-based analysis methods studied a single tract-of-interest

and used means of defining point correspondence across subjects that were specific to that tract

[107–110]. Unfortunately, these methods relied on specific anatomical reference points and could

not be easily translated to other WM pathways. Another drawback to these methods was that they

still required manual definition of seed points for tracking in each subject.

In an attempt to incorporate tracking information without having to deal with the definition of point

correspondence across subjects, tract-based ROI methods have become increasingly popular. In

this method, fiber tracking is used to identify the segment specific WM tracts-of-interest, then the

tracking results are treated as a single large ROI. One of the first studies to implement this type

of analysis method was published by Jones et al. [51]. While this method is relatively easy to

implement, just as a typical ROI analysis is, many studies still rely upon manual selection of seed

points in each data set, which is time consuming and susceptible to user-introduced error. Another

problem is that it is unclear whehter the diffusion parameters should be averaged over the entire

length of the tractography results or not. The accuracy of fiber tracking results decreases as the

distance from the seed points increases, and regions near the ends of the fibers typically have low

21



FA. Also, it is known that diffusion parameters, particularly FA, often vary along the length of a WM

tract as its structure and relationship with other tracts varies. (For example, see [104, 107, 109].)

Averaging the parameters over such a large region reduces the sensitivity to localized changes

within the tract.

An additional analysis method that has become popular since its introduction is referred to as

tract-based spatial statistics (TBSS) [111]. This method attempts to minimize the effects of poor

registration while keeping a voxel-wise analysis. The name is misleading, as no fiber tracking is

involved. Images are normalized and the FA is skeletonized to define the centers of the major WM

bundles in the image. These WM skeletons are mapped onto a template and a voxel-wise analysis

is performed within the skeletons only. This method provides a global comparison with no a priori

knowledge of the locations of the differences necessary. However, with the exception of the core of

the corpus callosum, there is generally more than one pathway passing through a given region of

WM, and there is no way to distinguish which tract may be causing any detected differences.

A new approach to TBA is presented in Chapter 4. This method is designed to avoid key

limitations in the previous techniques. It is evaluated in studies of WM changes in schizophrenia

and Williams syndrome described in Chapters 4 and 5.
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CHAPTER III

ALTERED DIFFUSION PROPERTIES IN WHITE MATTER IN WILLIAMS SYNDROME

Introduction

Williams syndrome (WS) is a disorder caused by a 1.5Mb hemizygous deletion on chromo-

some 7 (7q11.23) [1]. This deletion results in a unique set of characteristic physical, cognitive,

and behavioral symptoms. Characteristic physical traits include unique facial features, such as a

wide mouth with full lips and protrusive ears [2] and cardiovascular abnormalities [2, 3]. Individuals

with WS typically exhibit mild mental retardation along with a unique combination of relative cogni-

tive strengths and weaknesses, such as excellent verbal short-term memory and poor visuospatial

construction [4]. These individuals also typically demonstrate excessive friendliness and empathy

[5, 6], non-social anxiety [7], and sensitivity to loud noises [8].

The diversity of symptoms exhibited in this syndrome suggests that multiple functional networks

within the brain may be affected in different ways. This, along with evidence that several genes

included in the typical WS deletion are involved in normal neural development and function [9–13]

has led to increasing interest in studying the neural mechanisms involved in the disorder. Mag-

netic resonance imaging (MRI) studies have revealed structural abnormalities, such as increased

gyrification [14–16], reduced sulcal depth in the intraparietal and orbitofrontal sulci [17, 18], and a

reduction in the extent of the central sulcus [19, 20]. Functional MRI (fMRI) studies have revealed

differences in neural activation during tasks involving response inhibition [21], processing of fearful

stimuli [22], and visuospatial construction [23, 24] in WS subjects compared to normal controls.

Recently, diffusion tensor imaging (DTI) has been used to investigate white matter (WM) involve-

ment in WS [25, 26], revealing not only regions of reduced anisotropy, but also regions of increased

anisotropy. These studies used region of interest analysis methods [25, 26] and tract-based spatial

statistics (TBSS) [25]. In the study described here, differences in fractional anisotropy (FA) were

examined with a voxel-based comparison of young adults with WS and normal young adults.
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Methods

Subjects

Williams syndrome subjects were recruited from the annual music camp for young adults with

Williams syndrome and other developmental disorders hosted by the Vanderbilt Kennedy Center for

Research on Human Development, the Blair School of Music, and the National Williams Syndrome

Association. Normal controls (NC) were recruited from the general population. Functional, struc-

tural, and diffusion tensor imaging scans were acquired for each subject during a single imaging

session. Informed consent was obtained from each subject according to the requirements of the

Institutional Review Board. DTI data sets from a total of 16 WS subjects and 16 normal controls

were compared. Structural images from an additional NC who did not have DTI data were used as

the initial target for creation of a study-specific template used in the image co-registration process.

The WS group consisted of 6 females and 10 males; all but 3 subjects were right handed; and their

mean age was 24 years (range = 16 to 33 years). The NC group consisted of 8 females and 8

males; 12 NCs were right-handed, 3 were left-handed and one was ambidextrous; and their mean

age was 23 years (range = 16 to 32 years). The target subject was a 19 year-old male who was right

handed. A summary of the subject demographics is shown in Table 3.1. There was no significant

difference in the mean age of the two groups (p = 0.255), and handedness was determined by the

Edinburgh handedness inventory [27].

Image Acquisition

All images were acquired using a Philips Intera Achieva 3T MRI scanner with high-performance

gradient coils (80 mT/m gradient strength and 100 mT/m/ms slew-rate) and an 8 channel SENSE

(sensitivity encoding) head coil. Diffusion weighted images (DWIs) were acquired with 32 diffusion-

encoding directions (tr(b) = 1000 s/mm2) and one non-diffusion-weighted image volume (tr(b) =

0 s/mm2). Single-shot EPI and sensitivity encoding (SENSE) were used to decrease total scan

time. The imaging parameters used were TE = 60 ms, TR = 10,000 ms, SENSE factor = 2,
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Table 3.1: Subject demographics

N Age (years) Handedness
Group Range Mean Std. Dev. Right Left Ambidextrous

Controls 16 16 - 32 23 4 12 3 1

Male 8 18 - 32 23 5 5 2 1
Female 8 16 - 26 22 4 7 1 0

Williams Syndrome 16 16 - 33 24 6 13 3 0

Male 10 16 - 33 24 5 7 3 0
Female 6 16 - 30 24 5 6 0 0

FOV = 256 x 256 mm2, matrix size of 128 x 128, and 2 mm slice thickness. Whole-brain cover-

age was obtained with 60 axial slices in 6 minutes. A high-resolution, T1-weighted 3D anatomical

volume was acquired using a multi-shot gradient echo sequence with TE = 4.6 ms, TR = 8.9 ms,

SENSE factor = 2, FOV = 256 x 256 mm2, and matrix size of 256 x 256. The volume consisted

of 170 sagittal slices with an isotropic voxel size of 1 mm3, and total scan time was 4 minutes and

24 seconds.

Image Processing

Tensor Calculation

Eddy current distortion and in-plane bulk subject motion were corrected within the original DWIs

with the Philips Research Imaging Development Environment (PRIDE) Diffusion Registration tool

(release 0.5). This tool performs an affine registration of each DWI to its corresponding non-

diffusion-weighted image (b0) [28]. The distortion and motion-corrected DWIs were then used to

calculate the diffusion tensor and FA maps, as well as extract the b0 image volume, with a modified

version of the PRIDE Fiber Tracking tool (Version 6.0a1). The in-house modifications to the tool
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included the addition of a routine to automatically reject from the tensor calculation voxels corrupted

by bulk and physiological motion. (See Appendix A for more details.)

Image Registration

Normalization of the FA maps was performed in two major steps. First, a study-specific FA

template was created by normalizing each subject’s FA map (FAi) to the target T1-weighted image

space (T1targ) and then averaging the resulting images (FAtemp). Normalization of the FA maps

was performed by combining the transformations from an intra-subject registration (b0i to T1i) and

an inter-subject registration (T1i to T1targ) to define the total transformation between the b0 image

space of each subject (b0i), which is inherently co-registered to FAi, and the target T1-weighted

image space (T1targ). The resulting total transformation for each subject was then applied to FAi,

and the transformed FA maps were averaged to create the template. second, the original FA maps

(FAi) were co-registered directly to the template (FAtemp) to reduce potential bias introduced from

the selection of a single normal control as the initial target.

All intermediate image registration steps were performed using linear [29, 30] and non-linear

[31] registration software provided by the Medical Image Processing Laboratory in the Department

of Electrical Engineering and Computer Science. Intra-subject registration steps included a rigid

registration to account for subject motion between the diffusion-weighed scan and the T1-weighted

scan and a then a nonlinear registration step to reduce the effects of image distortion. Inter-subject

registration included a rigid registration with scaling to account for differences in head size and

orientation between each subject and the target, as well as a nonlinear registration step to account

for anatomical differences.

Voxel-based analysis

The normalized FA maps for the NC and WS groups were compared on a voxel-wise basis

with a two-sample t-test. No smoothing was applied to the maps prior to analysis. The resulting

significance maps were thresholded at the p < 0.05 level and masked so that only voxels with an
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average FA value of 0.3 or greater in the FAtemp remained. Permutation testing was performed

with the same significance level and masking to determine the minimum significant cluster size

(in 3 dimensions) according to the methods described by Bullmore et al. [32]. Only clusters with

a volume greater than 90 voxels (90 mm3) were considered to be significant (p < 0.05). The

average FA template and map of significant clusters were transformed to the Talairach space for

visualization.

Results

On visual inspection, image normalization appeared to perform well in the larger WM structures,

with reliability decreasing for smaller WM tracts and tracts branching off to cortical areas, particularly

in the parietal and occipital lobes. Significant differences in FA between the two groups were found

in several regions where image normalization performed well. Figure 3.1 shows the overlay of the

significance map on the average FA template. The mean FA of the WS subjects compared to NCs

was decreased in the splenium of the corpus callosum, bilateral corona radiata, external capsules

(EC), cortico-spinal/cortico-cerebellar tracts extending from the pons through the posterior limb

of the external capsules (PLIC), uncinate fasciculi (UF)/inferior front-occipital fasciculus (IFO), and

superior longitudinal fasciculi (SLF). An increase in mean FA in WS was found in the left IFO/inferior

longitudinal fasciculus (ILF), bilateral SLF (right > left), and bilateral UF. (See Table 3.2 for a list of

representative Talairach coordinates for these regions.) Note that a given anatomical structure can

have positive and negative changes at different positions along the tract. Significant clusters were

also found in regions of poor registration: bilateral forceps major, anterior commissure, prefrontal

WM, ventral cingulum, fornix, cerebellar peduncles, and WM underlying the intraparietal sulci.
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Figure 3.1: Significant differences in FA in WS. Overlay of regions of significantly increased (warm
colors) and reduced (cool colors) FA in WS compared to controls on coronal slices of the average
FA template in Talairach space. (Images displayed in radiological convention.)
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Table 3.2: Voxel-based anaylsis results

WM Region Talairach Coordinates
X Y Z

Decreased FA
Corona radiata (L) -15 -6 45
Corona radiata (R) 17 -6 44
External capsule (L) -26 9 8
External capsule (R) 27 9 8
PLIC (L) -20 -18 5
PLIC (R) 21 -18 5
Splenium 1 -36 12
SLF (L) -39 -11 31
SLF (R) 41 -8 28
Uncinate/IFO (L) -17 19 -9
Uncinate/IFO (R) 17 19 -9

Increased FA
External capsule (L) -29 5 -5
External capsule (R) 27 8 -3
ILF/IFO (L) -38 -37 -4
SLF (L) -42 -30 26
SLF (R) 37 -25 32
SLF (L) -37 -44 21
SLF (R) 33 -42 21

Discussion

We performed a voxel-based comparison of FA between young adults with Williams syndrome

and normal controls and found several regions of WM with increased FA, as well as several regions

with decreased FA, in the WS subjects. These results are generally consistent with previously

reported differences in WM diffusion parameters between subjects with WS and normal controls

[25, 26].

Decreased FA in the splenium of the corpus callosum is consistent with the findings of Hoeft

et al. [25], as well as reports of altered shape and reduced volume in the posterior portion of the

corpus callosum in WS[33–35]. Changes in this portion of the corpus callosum, which contains

fibers connecting the right and left parietal and occipital lobes, may be related to the visuospatial
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deficits associated with the disorder. It should be noted that if the volume of the splenium was

significantly reduced in the WS subjects compared to the normal control used as the initial target in

the image registration process, then the observed reduction in FA in that region could be the result

of an interpolation artifact introduced during image co-registration and not the result of a change in

the diffusion properties of the underlying axons.

Another major WM tract with changes in FA that is potentially involved in visuospatial deficits is

the SLF, which contains connections between the frontal, parietal, and temporal lobes. Hoeft et al.

reported increased FA in both the right and left SLF (right > left) and a negative correlation of FA

in the right SLF with scores from the WAIS-III Object Assembly subtest. We also found regions of

increased FA in both the left and right SLF, with larger cluster size in the right SLF. We also found

small regions of reduced FA in both the left and right SLF, just anterior to the regions of increased

FA.

Results in the WM regions containing the ILF and IFO vary between this study and the studies

published by Hoeft et al. and Marenco et al. [26]. We found increased FA in the left ILF/IFO only,

Hoeft et al. reported significantly increased FA in the right ILF only, and Marenco et al. found

increased anisotropy in tract-based ROIs averaged over both hemispheres. This region of WM

contains fiber pathways associated with face and object recognition, and it has been proposed that

while face processing abilities seem to be relatively intact in WS, higher-level object recognition and

face processing may actually be functioning abnormally [36, 37].

We found that the bilateral EC also contained regions of both increased and decreased FA, while

Hoeft et al. reported only increased FA. An additional region of WM in the UF/IFO, slightly anterior

to the EC, showed reduced FA in bilaterally. Changes in the EC and frontal WM may potentially be

related to the social aspects of the disorder. The UF and IFO, two major association pathways with

connections to the frontal lobes, pass through this region, as well as several smaller tracts, which

include connections between the frontal lobe and the basal ganglia and amygdala. Functional

connections between the cortical regions connected by pathways passing through the EC have

been shown to be disrupted in WS. Mobbs et al. [21] reported abnormal activity in the striatum,
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dorsolateral prefrontal, and dorsal cingulate cortices in an fMRI study of response inhibition, and an

fMRI study designed to invoke activation in the amygdala from threatening visual stimuli by Meyer-

Lindenberg et al. [22] suggested that functional connections between different regions of frontal

cortices and the amygdala may be disrupted.

Our finding of decreased FA in the bilateral PLIC is consistent with the Hoeft and Marenco stud-

ies, which also reported bilateral reductions of anisotropy in these regions, and the extent of the

regions of reduced FA we observed was quite remarkable. Both regions extended from the level of

the pons to the level of the superior portion of the thalamus and include several WM pathways impor-

tant in motor and sensory function, such as the corticobulbar (cranial motor function), corticospinal

(motor function in the body), corticorubral (motor coordination), thalamocortical (sensory and motor

function), and corticopontine (relay between motor cortex and cerebellum) tracts. While mild motor

symptoms have been noted in the literature [38, 39], it has not been until recently that quantitative

studies of motor signs and symptoms in WS have been published. Gagliardi et al. [40]reported

the existence of cerebellar, pyramidal, and extrapyramidal signs that varied in distribution according

to age. Hocking et al. [41] studied abnormal gait characteristics in adults with WS and suggested

that basal ganglia dysfunction and visuomotor deficits may be involved. Quantitative measures of

Figure 3.2: Large regions of significantly reduced FA in the bilateral PLIC. (Coronal slice Y = -20
from Figure 3.1.)
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neurological signs or symptoms in the WS cohort in this study were not obtained because, prior to

the studies by Gagliardi et al. and Hocking et al., little attention had been paid to them in clinical

studies. However, camp organizers did report the existence of abnormal gait and muscle weakness

in several of the WS subjects in this study (T. Thornton-Wells, personal communication, November

14, 2008).

It is difficult to interpret the underlying cause of the differences in FA between the WS and NC

groups observed in this study because the diffusion tensor is sensitive to changes in local tissue

microstructure, such as cell density, edema, and demyelination, as well as differences in structural

organization. Marenco et al. hypothesized that changes they found in the principal orientation of

WM tissue in several association tracts indicated that WM fibers that normally developed in the right-

left orientation either changed course during development or failed to develop. However , as Hoeft et

al. pointed out, it is also possible that the orientational differences Marenco et al. observed and the

increases in FA observed in this study and the study by Hoeft et al. indicates a decrease in normal

branching of these tracts to cortical regions along their paths. Decreased branching might lead to a

decrease in the normal amount of fiber crossing, resulting in an increase in FA. This hypothesis is

consistent with evidence that the LIMK1 and CYLN2 genes included in the typical WS deletion are

involved in normal neuronal migration and development [10, 42, 43]. LIMK1 is required for proper

functioning of an axonal guidance protein called semaphorin 3A in neural migration [42]. This same

protein has also been shown to be involved in normal pruning of axonal branches in hippocampal

neurons [44]. In early development, axons send out many branches to different functional areas,

which are selectively pruned later in development as the brain refines itself. Perhaps, while some

regions experience a decrease in branching causing an increase in FA, other regions may initially

develop normal branching that is never properly pruned, causing a decrease in FA.

An additional consideration that should be made in the interpretation of the results reported

here is the fact that there were methodological differences between this study and the studies by

Hoeft et al. and Marenco et al.. Both of the previous studies had 10 or fewer subjects per group

and acquired multiple sets of 6 diffusion directions. We compared 16 WS subjects with 16 controls
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and acquired a single set of 32 diffusion directions, which has been shown to provide a better

estimation of anisotropy than multiple acquistions of fewer than 20 directions [45]. We performed a

voxel-based comparison, which allowed us to explore the entire brain for changes without restriction

to a priori knowledge of regions or tracts of interest. However, a major limitation of this analysis

technique is that it is reliant upon accurate image co-registration. While the registration algorithms

we used are sophisticated and great care was taken to ensure the best possible co-registration,

anatomical variability between subjects makes it impossible for the algorithms to produce a perfect

result. Registration results are generally best in large WM structures near the center of the brain,

such as the internal capsule and corpus callosum, and the quality decreases as the structures

get smaller in size and closer to the cortex, where differences in gyrification can be particularly

problematic. An example of false positive results that arise from registration errors in small WM

Figure 3.3: Example of Type I error due to poor registration of small WM tracts. The ventral portion
of the right cingulum bundle is outlined in the normalized FA maps (Y = -32) of a control (A) and
WS subject (B). An overlay of the two regions on FAtemp map reveals that they do not overlap (C),
resulting in false positive results around the tract (arrow, D).

tracts is shown in Figure 3.3. Even within well-registered large WM structures, the registration

algorithms typically used have no way of determining whether smaller WM tracts within the larger

structure are properly aligned across subjects. This creates ambiguity in regions of WM that contain

multiple WM tracts. An example from this study, is the external capsule. There is no way of knowing

whether changes in the uncinate fasciculi, inferior fronto-occipital fasciculi, or both are the cause
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of the significant differences in FA that we observed. Hoeft et al. faced a similar dilemna in their

findings in the inferior longitudinal fasciculus (ILF) in both an ROI-style and a tract-base spatial

statistics (TBSS) analysis [46], where neither method could distinguish between the ILF and IFO.

Marenco et al. averaged diffusion parameters over pairs of entire WM tracts segmented by fiber

tractography, which reduces sensitivity to localized changes, particularly since diffusion parameters

can vary greatly along fiber tracts.

Although there are limitations in the analysis and interpretation of diffusion parameter changes

in DTI studies, the evidence from this study and previous DTI studies of WS is consistent with struc-

tural differences, functional, and behavioral differences found in the disorder and warrant further

study to improve our understanding of the role of white matter changes.
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CHAPTER IV

SEMI-AUTOMATED, TRACT-BASED ANALYSIS OF DIFFUSION TENSOR IMAGING STUDIES

Introduction

As the use of diffusion tensor imaging (DTI) has increased in the field of neuroimaging, greater

attention is being paid to the limitations of traditional data analysis tools and the need for more

accurate analysis methods for performing group comparisons of the data. Region of interest (ROI)

methods require a priori knowledge of the location of the affected tissue and are time consuming,

susceptible to intra- and inter-rater error, and susceptible to partial volume averaging effects if the

ROI size and shape do not match the structure of interest well. Voxel-based analysis (VBA) methods

are much more advantageous in that they allow an exploratory comparison without prior knowledge

of the locations of affected tissue. However, VBA methods require accurate image normalization

which is difficult to achieve due to anatomical differences between individuals. Registration results

are generally good in large white matter (WM) structures, such as the corpus callosum and internal

capsule. However, even with the use of sophisticated nonlinear registration algorithms, reliability in

the registration results decreases in small white matter structures. Typically, image normalization

is performed using scalar images derived from the diffusion tensor data, such as the non-diffusion

weighted images or the fractional anisotropy (FA) maps, which raises another issue. Even when

registration results appear to be good across subjects in large white matter structures, they may

consist of a set of smaller fiber pathways, and the algorithm has no way of determining whether

those smaller pathways are aligned or not, resulting in comparison of different tracts between sub-

jects. This is particularly an issue if different WM tracts are affected by the disease or disorder in

unique ways.

Methods that incorporate additional information from the diffusion tensor have been proposed

as alternatives to the traditional analysis methods in an attempt to avoid their associated limitations.

Tract-based methods where statistical comparisons are performed at corresponding locations along
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a tract of interest were first proposed by Mori et al. [1] and Fillard et al. [2]. Early attempts at these

methods were limited in their usefulness because the methods used to define point correspondence

across subjects were based upon a single tract of interest and used anatomical landmarks that

could not be easily translated to other WM pathways [3–6]. The challenges in defining accurate

point correspondence in multiple tracts of interest led to the introduction of alternative methods:

tract-based ROI [7] and tract-based spatial statistics (TBSS) [8]. Tract-based ROI methods utilize

fiber tracking to segment specific WM tracts-of-interest and then treat the tracking results as a

single large ROI, averaging the diffusion parameters over the entire volume of the tract. While this

method is relatively easy to implement, just as a typical ROI analysis is, many studies still rely upon

manual selection of seed points in each data set, which is time consuming and susceptible to user-

introduced error. Another problem is that it is unclear whether the diffusion parameters should be

averaged over the entire length of the tractography results or not. The accuracy of fiber tracking

results decreases as the distance from the seed points increases, and regions near the ends of the

fibers typically have low FA. Also, it is known that diffusion parameters, particularly FA, often vary

along the length of a WM tract as its structure and relationship with other tracts varies. (For example,

see [1, 3, 5].) Averaging the parameters over such a large region reduces the sensitivity to localized

changes within the tract. Alternatively, the TBSS method attempts to minimize the effects of poor

registration while keeping a voxel-wise analysis. The name is misleading, as no fiber tracking is

involved. Images are normalized and the FA is skeletonized to define the centers of the major WM

bundles in the image. These WM skeletons are mapped onto a template and a voxel-wise analysis

is performed within the skeletons only. This method provides a global comparison with no a priori

knowledge of the locations of the differences necessary. However, with the exception of the core of

the corpus callosum, there is generally more than one pathway passing through a given region of

WM, and there is no way to distinguish which tract may be causing any detected differences.

Proposed here is a semi-automated, tract-based analysis method for DTI studies, which is per-

formed in conjunction with a tradition voxel-based analysis. There are four major steps, and the

algorithms used to perform each step are user-defined:
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1. Image normalization to allow for an exploratory, voxel-based analysis for comparison and

assist in automating the tract-based analysis.

2. Tract segmentation to isolate the white matter tracts of interest.

3. Tract parameterization to simplify the definition of point correspondence.

4. Definition of point correspondence to perform statistical comparisons of diffusion parameters

along the tracts of interest between subject groups.

We describe in detail the methods we used for each step in the process. We then describe the

application of our tract-based analysis to a study of schizophrenia, comparing diffusion parameters

along four sets of major association pathways in the brain: the bilateral arcuate, cingulum, inferior

fronto-occipital, and uncinate fasciculi. We also performed a standard voxel-based analysis and

compare results between the two methods.

Methods

Subjects

Data from 22 normal controls (NC) and 33 schizophrenia (SZ) outpatients were analyzed. The

NC group consisted of 10 females and 12 males; all were right-handed except for one female; and

their mean age was 36 years (range = 22 to 53 years). The SZ group consisted of 15 females and 18

males; 5 were left-handed and three were ambidextrous; their mean age was 40 years (range = 23

to 54 years); and all 33 were on medication to control symptoms of the disease at the time of the

investigation. The images from an additional NC were used as the initial target for the purpose of

image co-registration. The target subject was a 36 year-old, right handed, female. Handedness

was determined by the Edinburgh handedness inventory [9]. Informed consent was obtained for

each subject and all imaging was done in accordance with Institutional Review Board requirements.
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Table 4.1: Subject demographics

Age (years) Handedness
Group N Range Mean Std. Dev. Right Left Ambidextrous

NC 22 22 - 53 36 9 21 1 0

Female 10 26 - 53 36 8 11 1 0
Male 12 22 - 51 35 10 10 0 0

SZ 33 23 - 54 40 10 25 5 3

Female 15 23 - 54 45 9 12 2 1
Male 18 23 - 52 35 9 13 3 2

Image Acquisition

All images were acquired using a Philips Intera Achieva 3T MRI scanner with high-performance

gradient coils (80 mT/m gradient strength and 100 mT/m/ms slew-rate) and an 8 channel SENSE

(sensitivity encoding) head coil. High angular resolution diffusion weighted images (DWIs) were

acquired with 92 diffusion-encoding directions. Single-shot EPI and SENSE were used to decrease

total scan time. The imaging parameters used were TE = 48 ms, TR = 10,000 ms, SENSE factor = 3,

tr(b) = 1000 s/mm2, FOV = 240 x 240 mm2, and a matrix size of 96 x 96. Whole-brain coverage was

obtained with 55 axial slices in 17 minutes and 20 seconds. A high-resolution T2-weighted anatom-

ical data set, slice-matched to the DWIs, and a high-resolution 3D T1-weighted anatomical volume

were also acquired for use in the image co-registration process. The T2-weighted anatomical im-

ages were obtained with a turbo spin echo sequence. The slice number, thickness, and location

were exactly the same as the DWIs, but with higher in-plane resolution resulting in a voxel size of

0.45 x 0.45 x 2.5 mm3. The imaging parameters used were TE = 80 ms, TR = 6000 ms, FOV = 230

x 230 mm2, and an reconstructed matrix size of 512 x 512, resulting in a total scan time of 3 minutes

and 36 seconds. The T1-weighted 3D anatomical volume was acquired using a multi-shot gradient

echo sequence with TE = 4.6 ms, TR = 8.9 ms, SENSE factor = 2, FOV = 256 x 256 mm2. The
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volume consisted of 176 sagittal slices with an isotropic voxel size of 1 mm3, and total scan time

was 4 minutes and 37 seconds.

Image Pre-processing

Eddy current distortion and bulk subject motion were corrected within the original DWIs with

the Philips Research Imaging Development Environment (PRIDE) Diffusion Registration tool (re-

lease 0.5). This tool performs an affine registration of each DWI to its corresponding non-diffusion-

weighted (b0) image [10]. Occasional artifacts from spike noise and incomplete fat saturation were

observed in some of the images. However, with 92 diffusion-encoding directions, we were able to

remove the corrupted images and still have a sufficient number of images for proper estimation of

the tensor. Individual images affected by spike noise were automatically detected and removed

from the data set prior to tensor calculation. Also, the voxels corrupted by fat signal shifted into the

brain were detected and excluded from statistical analysis. (See Appendix A for more details.) The

distortion-, artifact-, and motion-corrected DWIs were then used to calculate the diffusion tensor

maps and FA maps, as well as extract the b0 image volume, with a modified version of the PRIDE

Fiber Tracking tool (Version 6.0a1). The in-house modifications rejected diffusion-weighted voxels

corrupted by bulk and physiological motion. (See Appendix A for more details.)

Image Registration

Individual FA maps were normalized using a two-step process. First, a study-specific, average

FA template was created by co-registering the individual FA maps to the high-resolution T1-weighted

anatomical image of the target control and averaging the resulting normalized FA maps. second,

the original FA maps were co-registered to the average FA template, to minimize bias that might

have been introduced by selection of a single control as the initial template. Mutual information

based linear [11, 12] and nonlinear [13] registration programs were provided by the Medial Image

Processing group in the Department of Electrical Engineering and Computer Science. Each non-

linear registration step was initialized a linear registration step, and trilinear interpolation was used
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when applying the transformations. When multiple registration steps were required (e.g. combin-

ing intra- and inter-subject registrations) the transformations resulting from each intermediate step

were combined to create a single transformation, which was then applied to the reference image to

minimize interpolation effects. A detailed description of the process is presented below.

Creation of the study-specific, average FA template required multiple intermediate steps involv-

ing both intra- and inter-subject coregistration for each subject i. The registration was performed

using the b0 images in place of the FA maps, since they are inherently co-registered and they have

T2-weighted contrast, providing better results when normalizing to anatomical images. A graphi-

cal representation of this process is displayed in Figure 4.1. The b0 images of each subject (b0i)

were co-registered to the T1-weighted images of the target subject (T1TARG). The T1-weighted

volume was chosen as the temporary common image space because it had isotropic voxel size

and could be used to overlay results. First, to reduce distortion due to susceptibility artifacts, the

non-diffusion-weighted image (b0i) was registered to its own high-resolution T2-weighted volume

(T2i) with a nonlinear registration, which was initialized by the results of a rigid registration. This

resulted in two transformations: Ψ1,i and Ψ2,i for the rigid and nonlinear steps, respectively. Next,

the T2i image, as well as the the T2TARG image, was stripped of extra-cranial tissue using an in-

house program implemented in IDL (Interactive Data Language) . Then the skull-stripped T2i image

was registered to the T2TARG image with a nonlinear registration, initialized by the results of a rigid

registration that included scaling. This resulted in two additional transformations: Ψ3,i and Ψ4,i for

the rigid and nonlinear steps, respectively. Next, the T2TARG image was rigidly registered to the

T1TARG image, resulting in transformation Ψ5. The five transformations (Ψ1,i, Ψ2,i, Ψ3,i, Ψ4,i, Ψ5)

were combined for each subject to create a single transformation ΨTOTAL1,i, which was then applied

to the subject’s FA map, (FAi). The transformed FA maps were then averaged to create the tem-

plate (FAAVG
TARG). Then, each subject’s original FA map (FAi) was co-registered to the study-specific

template (FAAVG
TARG) with a nonlinear registration, initialized by a rigid registration with scaling, pro-

ducing two new transformations: (Ψ6,i, Ψ7,i) for the rigid and nonlinear registrations, respectively.
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Figure 4.1: Image co-registration process.
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These two transformations were combined to produce ΨTOTAL2,i, which was then applied to FAi to

produce FAAVG
i , the normalized FA map used in the statistical analysis.

Semi-automated WM Tract Isolation

Fiber tracking was performed in the native image space of each subject to isolate the left and

right tracts of 4 major association pathways possibly affected in schizophrenia: the cingulum, un-

cinate, arcuate, and inferior fronto-occipital fasciculi. The seed point selection process was semi-

automated to minimize user interaction and processing time, and a multi-ROI approach [14] was

used to minimize the chance of tracking fibers within other WM pathways located near the tracts of

interest.

Seed Selection

Two seed coordinates in the core of the most coherent portions of each tract of interest were de-

fined manually in the average FA template. These coordinates were then transformed to the native

image space of each subject via the total transformation defined in the normalization of the indi-

vidual FA maps to the template FA map. Once in the native image space, spherical seed volumes

surrounding each original seed point were created. The points in the volume were spaced evenly at

0.7 voxels on a Cartesian grid, extending from the original seed point with a predefined radius. The

radii were generously sized in order to compensate for possible registration errors and inter-subject

anatomic variability. The default radius length was chosen to be 5 voxels, as a compromise between

maximizing the number of fibers tracked within the tract of interest and minimizing the number of

extraneous fibers, and the radii were scaled to account for global scaling differences between the

individual subjects and the template brain, if necessary. The seed spacing of 0.7 voxels provided

consistent tracking results, while minimizing redundancy in the tracking results that would lead to

unnecessarily increased processing time in later stages of the process.
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Fiber tracking and editing

The PRIDE Fiber Tracking Tool was used to perform deterministic, multi-ROI fiber tracking with

the predefined seed regions. The PRIDE tool is an implenatation of the FACT algorithm [15] and

was chosen because of its advanced visualization features and the ease of making modifications

to the program in IDL. The tracking parameters used were a step size of 0.5 voxels, minimum FA

threshold of 0.2, and a maximum deflection angle of 27◦. The coordinates defining the resulting

fibers for each subject were saved in text files for further processing. The tracking results for all

subjects in the study were loaded into an in-house program implemented in IDL which allows the

user to view the results from all subjects in the study in the common image space and manually

select which fibers will be considered in further analysis steps. This serves two main functions.

First, it allows the user to remove extraneous fibers outside the tract of interest from the analysis

process. second, it also allows the user to identify and separate subsets of fibers within a particular

tract, such as the arcuate fasciculus, which contains fibers traveling from the frontal lobe to the

superior temporal gyrus, the middle temporal gyrus, and Geschwind’s territory in the parietal lobe.

First, in order to simplify the fiber editing computation, the native-space fibers of the tract of interest

for each subject are clustered using methods described by Corouge et al.[16] with a distance metric

described by Zhang et al. [17]. Then the medial axis of each fiber cluster is defined with methods

described by Ding et al. [18]. The mean cluster axes for each subject are then transformed to the

common image space and displayed in an interactive viewer which allows the user to select/deselect

clusters for further processing. When the user is satisfied with the results, the program automatically

removes the individual fibers associated with any clusters that have been removed from the data

set and saves the ’edited’ version of the fiber tracts. Even after this editing process, there may still

be differences in the branching of the tracts between subjects. In order to ensure that the same

portion of the tract is being compared across all subjects, a “trimming” process was performed. A

statistical map of the proportion of subjects whose edited fibers passed through a given voxel was

created and masked, so that only voxels that contained fiber contributions from a minimum of a
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user-selected percentage of subjects were included. This mask was then used to remove (or trim)

the portions of the individual fibers that lay outside the mask.

Definition of point correspondence between tracts

The definition of point correspondence across subjects along a given tract-of-interest was per-

formed in multiple steps. First, the mean axis of the remaining fibers was calculated for each subject

in the same manner as the mean axes of the fiber clusters mentioned above. Next, the axes were

reparameterized using cubic b-splines in a manner similar to the method described by Corouge et

al. [19]. Parameterization was initiated in a plane located at the centroid of the axes and oriented

perpendicular to the mean direction of the axes passing through it, and the axes were sampled

such that the resulting spacing between sample points along each axis was roughly equivalent to

2.5 mm, the voxel spacing in the native DTI space. Points with the same arc length away from and

position relative to the initial plane on each axis were then considered to correspond to the same

portion of the tract across all subjects.

Statistical Analysis

Voxel-based Analysis

The normalized FA maps for the NC and SZ groups were compared on a voxel-wise basis

with a two-sample t-test. No smoothing was applied to the maps prior to analysis. The resulting

significance maps were thresholded at the p < 0.05 level and masked so that only voxels with an

average FA value of 0.2 or greater in the FAtemp remained. Permutation testing was performed with

the same significance level and masking to determine the minimum significant cluster size (in 3

dimension) according to the methods described by Bullmore et al. [20]. Only clusters with a volume

greater than 93 voxels (93 mm3) were considered to be significant. The average FA template and

map of significant clusters were transformed to the Talairach space for visualization.
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Tract-based Analysis

The coordinates of each subject’s “corresponding” points were transformed to the native im-

age space, and the FA values corresponding to those coordinates were interpolated using trilinear

interpolation. Then the FA values of the two group’s fiber bundles were compared performing a

two-sample t-test at each of the corresponding points along the medial axes. Differences were

considered to be significant for p < 0.05 (uncorrected).

Comparison of analysis methods

Variance in the FA values within the control group was compared between the two methods. A

DTI data set was also acquired for the subject used as the initial target for the image normalization

process. This subject was included in the automated fiber tracking process but not in subsequent

group statistical comparisons. The coordinates along the reparameterized axes in the target’s fiber

tracts were considered to be corresponding locations between the VBA and TBA. The variance

in the FA values of the NC group were calculated at these locations and compared between the

methods with the Levene’s test for equality in variance [21].

Results

Fiber tracking

The semi-automated tracking process was able to extract the eight tracts-of-interest in all sub-

jects, except for a few cases: one SZ subject for the left arcuate, 3 SZ subjects for the right arcuate,

two SZ subjects for the left IFO, and 3 SZ subjects and 1 NC for the right IFO. There were no signif-

icant differences in the number of fibers per tract between groups (AL: p = 0.68, AR: p = 0.77, CL:

p = 0.65, CR: p = 0.64, IFOL: p = 0.18, IFOR: p = 0.51, UL: p = 0.37, UR: p = 0.92). Typical results

from a single subject are shown in Figure 4.2. The tracking results for the left arcuate fasciculus

revealed three subsets of fibers with connections between the frontal lobe and the superior tempo-

ral gyrus (STG) , the middle temporal gyrus (MTG) , and occasionally Geschwind’s Territory. The
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Figure 4.2: Fiber tracking results from a single subject. From left to right: axial, sagittal, and coronal,
projections of typical fiber tracking results (prior to fiber editing) for the right (green) and left (yellow)
arcuate (A), cingulum (B), inferior fronto-occipital (C), and uncinate (D) fasciculi.
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right arcuate generally contained connections to the superior and middle temporal gyri. The unci-

nate fasciculus also appeared to contain two subsets of fibers, one connecting the temporal lobe

with the prefrontal (PF) area and another subset connecting the temporal lobe with the dorso-lateral

prefrontal cortex (DLPFC). These sub-tracts were all extracted during the fiber editing process and

analyzed individually in subsequent statistical comparisons, with the exception of the portion of the

left arcuate traveling to Geschwind’s territory, which was not found in all subjects.

TBA

In the tract-based comparison, 5 of the 12 tracts-of-interest contained localized regions of sig-

nificantly reduced FA in the SZ group: AL (MTG), AR (MTG), IFOL, UL (PF), and UR (PF). Plots of

the mean FA for each group and the locations of the significant reductions are shown in Figures 4.3

and 4.4. Representative Talairach coordinates for each significant region are listed in Table 4.2.

VBA

The voxel-based analysis revealed several clusters of significantly reduced FA in the schizophren-

ics compared to the controls, including regions near the association tracts-of-interest in this study.

Table 4.2 lists the locations of these regions in Talairach space. There were several other regions of

reduced FA, including the bilateral posterior limb of the internal capsule, bilateral corona radiata in

the posterior portion of the frontal lobe, the genu, rostral body, posterior middle body, and isthmus of

the corpus callosum, and bilateral regions of frontal WM at the crossing of the the corpus callosum

and the corona radiata. There were also five small clusters of increased FA located in the left and

right cerebellar WM, right occipital WM, and right and left frontal WM.

Comparison of VBA and TBA

Plots of the within-group (NC) variance in FA as a function of position along the tract for the VBA

and TBA methods are shown in Figures 4.5 and 4.6. The within-group variance of points defined

by the TBA was significantly lower in only the posterior portion of the IFOR and IFOL tracts. The
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Figure 4.3: Tract-based analysis results for AL (MTG), AR (MTG), and IFOL. Plots of the mean FA
as a function of position along the tract (left) and projections of the subjects’ medial axes for each
tract (right), with the locations of significantly reduced FA in SZ compared to NC marked (blue).
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Figure 4.4: Tract-based analysis results for UL (PF) and UR (PF). Plots of the mean FA as a function
of position along the tract (left) and projections of the subjects’ medial axes for each tract (right),
with the locations of significantly reduced FA in SZ compared to NC marked (blue).
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Table 4.2: Regions of reduced FA in or near the tracts-of-interest.

VBA TBA
WM Region Talairach Coordinates Talairach Coordinates

X Y Z X Y Z

AL - - - -49 -35 -7
- - - -36 -4 26
- - - -36 -38 20
- - - -42 -40 2

-45 -17 29 - - -
-43 -43 22 - - -

AR - - - 47 -46 1
48 -16 24 - - -
39 -23 35 - - -
38 -6 37 - - -
39 -3 27 - - -
43 -51 21 - - -

UL/FOL -19 17 -10 -20 18 -8
- - - -17 35 -7

UR/FOR 26 -5 -11 - - -
FOL -40 -33 -4 -39 -32 -4
FOR 37 -39 -3 - - -
UR - - - 35 1 -20
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Figure 4.5: Comparison of within-group variance in TBA and VBA: Arcuate & cingulum. Within-
group variance for the NC group is plotted as a function of position along the tract for the VBA
(purple) and TBA (orange) methods. Circles indicate locations of significant between-group differ-
ences in mean FA.

63



Figure 4.6: Comparison of within-group variance in TBA and VBA: IFO and uncinate. Within-group
variance for the NC group is plotted as a function of position along the tract for the VBA (purple)
and TBA (orange) methods. Circles indicate locations of significant between-group differences in
mean FA.
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variance was significantly higher in the TBA in portions of the AR (MTG), AL (STG), AR (STG), CL,

UL (PF), UR (PF), and UR (DLPFC).

Discussion

In this study, we have proposed a framework for performing tract-based comparisons of diffusion

parameters between groups, applied it to a study of schizophrenia, and compared the results with

a traditional voxel-based analysis. Both analysis methods showed reduced FA in regions consistent

with recent DTI studies of schizophrenia [7, 22–30]: the right and left arcuate fasciculi, the left IFO,

and the left uncinate/IFO. The tract-based analysis showed an additional small region of reduced

FA in the temporal portion of the right uncinate that was not seen in the voxel-based analysis, and

the voxel-based analysis showed regions of reduced FA in the IFOR and UR/IFOR that were not

found in the tract-based analysis. Some differences in the locations of the regions of significant

differences are to be expected, as the tract-based analysis only compared FA values within the

cores of specific tracts of interest, while the voxel-based analysis examined all WM.

The semi-automated fiber tracking scheme performed well in most cases. In 6 of the 10 cases

where no fiber tracts were identified by multi-ROI tracking, inspection of the data revealed that

artifacts from incomplete fat saturation disrupted the fiber tracking. Inspection of the image data

for the remaining 4 cases revealed no obvious image artifacts that would have affected the tracking

results, so fiber tracking was performed with manual placement of seed ROIs to investigate. In one

of the SZ data sets with a missing right arcuate, there appeared to be no connections between the

frontal and temporal lobes via the superior longitudinal fasciculus (or SLF). In the NC with no right

IFO, there were fibers that connected the frontal and occipital lobes. However, the fibers terminated

in the dorsolateral prefrontal cortex just after passing through the external capsule and did not

extend toward the frontal lobe as the IFO fibers in the left hemisphere of this subject did. The SZ

subject with missing left and right IFO tracking results did have connections between the frontal

and occipital lobes. However, the occipital extensions of the tracts went around the automatically
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generated occipital ROIs. Perhaps this was due to either misregistration errors large enough to

prevent the ROIs from catching the fibers or to alterations in the pathways.

It is difficult to accurately compare the two analysis methods without a ground-truth data set.

One would generally assume that the method that minimized within-group variance would be more

sensitive to between-group differences, so the variance of FA values within the control group at

corresponding locations in the voxel-based and tract-based data were compared. The results re-

vealed that the tract-based method generally did not produce significantly lower variance within the

control group. Closer inspection of the data reveals interesting results. First, a region where the

within-group variance and the statistical comparison between the SZ and NC groups were the same

in both methods, such as the middle portion of the FOL, was inspected (Figure 4.7). Normalization

results in this location were excellent, and it is a region where the WM tracts are highly coherent

with very little branching to nearby cortical regions. Next, a region of the left arcuate where the

tract-based analysis provided lower within-group variance and found a significant between-group

difference, while the voxel-based analysis did not was examined (Figure 4.8). In this case, image

normalization was poor, resulting in that particular voxel falling inside the tract in some subjects

and outside the WM altogehter in other subjects in the voxel-based analysis. It appears that the

precautions taken in the fiber tracking methods to minimize the effects of poor image co-registration

allowed the tract-based analysis method to provide a more accurate comparison of FA in this por-

tion of the tract. Finally, a region in the right IFO was examined, where the voxel-based analysis

provided significantly lower within-group variance and found a significant between-group difference,

while the voxel-based analysis did not (Figure 4.9). Inspection of the normalized FA maps and in-

dividual color-coded FA maps revealed a case where the image co-registration, which was based

solely upon the scalar FA images, performed relatively well but failed to align smaller fiber tracts

within larger WM structures. The co-registration process may have artificially (and erroneously)

reduced the within-group variance in this region.

While voxel-based analysis relies heavily upon accuracy in image co-registration, tract-based
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Figure 4.7: Example of similar results in both TBA and VBA methods. Significantly reduced FA was
found in the temporal portion of the left IFO of the SZ group by both methods. The red circle in the
plot of within-group variance (top left) indicates the position along the tract that corresponds to the
cross-hairs in the sagittal (top right), axial (bottom left) and coronal views of the color coded FA map
for a single subject.
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Figure 4.8: Example of different results in TBA and VBA due to registration errors. Significantly
reduced FA in the SZ group was found in the temporo-parietal region of the AL (MTG) by the TBA
method and not by the VBA method in this portion of the tract. The red circle in the plot of within-
group variance (top left) indicates the position along the tract that corresponds to the cross-hairs in
the sagittal (top right). In some subjects, such as the one shown on the bottom left, this point fell
within WM. In others, such as the one shown on the bottom, this point fell outside of the WM.
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Figure 4.9: Example of different results in TBA and VBA due to misaligned tracts within larger
WM structures. A region of significantly reduced FA in the SZ group was found in the right IFO
by the VBA method only. The red ellipse in the plot of within-group variance (top) indicates the
position along the tract that was investigated more closely. Color-coded FA maps of a SZ subject
(middle) and a NC (bottom) are shown for reference. Point correspondence defined by the image
normalization process in the VBA is indicated by the crosses, and point correspondence defined by
the TBA method is indicated by the white circles. The VBA appears to be comparing two slightly
differenct tracts at that point.
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analysis relies on the accuracy of the algorithms for both fiber tracking and definition of point cor-

respondence across subjects. However, the results of the semi-automated fiber tracking scheme

implemented here suggest that consistent results across subjects can be obtained in several differ-

ent WM pathways of interest, and the similarities in the shape of the plots of mean FA along the

tracts between groups (Fig. 4.3 and 4.4) suggest that even the relatively simplistic methods used

here to define point correspondence across subjects worked fairly well, particularly in the central

portions of the tracts. The results become more questionable at the ends of the axes, where there is

more variation in the tracjectories of the axes between subjects. For example, see the results at the

temporal ends of the tracts for the AL (MTG) in Fig. 4.3 and the UL (PF) in Fig. 4.4. There is quite a

bit of variation in the location of the temporal ends of the axes (posterior), yet points with similar arc

lengths from the initial parameterization plane are considered to be corresponding. The variability

between subjects could be driven by several factors, including poor image registration and poor

tract parameterization. We chose to parameterize the tracts by their medial axes because the cores

of several major WM tracts have a roughly cylindrical shape, which could easily be characterized by

a streamline. However, as the WM tracts branch and fan out toward their cortical destinations, the

assumption we have made about the tract shape is violated. We attempted to address this issue

by trimming the fiber results to remove the portions of fibers that branch significantly. However,

this relied on the image co-registration results, and subtle registration errors could have resulted in

trimming too much or not enough off of fibers in different subjects, potentially altering the definition

of the medial axis.

Another major limitation of the tract-based analysis method is that diffusion parameters can only

be compared within the central core of relatively large WM pathways that can be easily tracked.

While this does greatly reduce the amount of WM tissue that can be investigated compared to a

voxel-wise analysis, it should be noted that the fiber branches extending to the cortex are much

more prone to co-registration error and results in these regions should be interpreted with caution.

Also, as Smith et al. [8] point out in their paper describing the tract-based spatial statistics (TBSS)
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method, resolution limits in DTI studies lead to partial volume averaging along the edges of the WM

tracts, reducing the accuracy of the diffusion parameters at these locations.

Recently, Van Hecke et al. introduced an image registration algorithm that takes the diffusion

tensor components into account [31] during inter-subject normalization. This registration method

is currently quite computationally costly and the methods for transforming the tensors could use

improvement. However, it provides promise for being able to incorporate the benefits of voxel-based

analysis and fiber tracking in a more unified approach than the tract-based approach we describe

here. Not only are co-registration results within WM tracts improved over scalar-based registration

methods, but the tensors are also transformed to the common image space, allowing fiber tracking

to be performed directly in the common space.

The results of our study suggest that the tract-based analysis may provide a means of dealing

with some of the shortcomings of a traditional voxel-based analysis, which relies heavily upon the

assumption that the images are perfectly co-registered. It may be particularly useful in interpreting

results from voxel-based analyses in regions where multiple major WM pathways travel near each

other and are indistinguishable in the scalar images often used for image co-registration or in major

WM pathways where image co-registration may produce unreliable results across subjects.
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CHAPTER V

LATERALIZED DIFFERENCES IN WHITE MATTER TRACTS PASSING THROUGH THE

EXTERNAL CAPSULE IN WILLIAMS SYNDROME

Introduction

We previously reported the discovery of several regions of both increased and decreased frac-

tional anisotropy (FA) in white matter (WM) regions throughout the brain in a voxel-based analysis

of diffusion tensor imaging (DTI) data in Williams syndrome (WS) [1]. WS is a disorder caused by

a 1.5Mb hemizygous deletion on chromosome 7 (7q11.23), which results in a unique set of char-

acteristic behavioral and cognitive dysfunctions. A major WM structure that contained clusters of

both increased and decreased FA bilaterally was the external capsule (EC), which contains several

WM pathways connecting to the frontal lobes. It is speculated that changes in diffusion properties

of these tracts may be related to some of the behavioral and cognitive dysfunctions of the disor-

der, such as increased nonsocial anxiety, hypersociability, and ipaired visuospatial construction.

However, one of the limitations of using a voxel-wise analysis is that it is difficult to interpret the

involvement of distinct WM pathways in regions where several tracts travel together. In this study,

we use a tract-based analysis method [2] to investigate the involvement of the two major white mat-

ter tracts that pass through the regions of significant differences found in the inferior portion of the

external capsules: the uncinate and inferior fronto-occipital fasciculi.

Methods

Subjects

Informed consent was obtained from each subject according to the requirements of the Insti-

tutional Review Board. Artifact-free DTI data sets were collected from a total of 16 WS subjects

and 16 normal controls. Structural images from an additional NC who did not have DTI data were
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used as the initial target for creation of a study-specific template used in the image co-registration

process. The WS group consisted of 6 females and 10 males; all but 3 subjects were right handed;

their mean age was 24 years (range = 16 to 33 years). The NC group consisted of 8 females and 8

males; 12 NCs were right-handed, 3 were left-handed and one was ambidextrous; and their mean

age was 23 years (range = 16 to 32 years). The target subject was a 19 year-old male who was right

handed. A summary of the subject demographics is shown in Table 5.1. There was no significant

difference in the mean age of the two groups (p = 0.255), and handedness was determined by the

Edinburgh handedness inventory [3].

Table 5.1: Subject demographics

N Age (years) Handedness
Group Range Mean Std. Dev. Right Left Ambidextrous

Controls 16 16 - 32 23 4 12 3 1

Male 8 18 - 32 23 5 5 2 1
Female 8 16 - 26 22 4 7 1 0

Williams Syndrome 16 16 - 33 24 6 13 3 0

Male 10 16 - 33 24 5 7 3 0
Female 6 16 - 30 24 5 6 0 0

Image Acquisition

All images were acquired using a Philips Intera Achieva 3T MRI scanner with high-performance

gradient coils (80 mT/m gradient strength and 100 mT/m/ms slew-rate) and an 8 channel SENSE

(sensitivity encoding) head coil. Diffusion weighted images (DWIs) were acquired with 32 diffusion-

encoding directions. Single-shot EPI and sensitivity encoding (SENSE) were used to decrease total
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scan time. The imaging parameters used were TE = 60 ms, TR = 10,000 ms, SENSE factor = 2,

tr(b) = 1000 s/mm2, FOV = 256 x 256 mm2, and a matrix size of 128 x 128. Whole-brain cover-

age was obtained with 60 axial slices in 6 minutes. A high-resolution, T1-weighted 3D anatomical

volume was acquired using a multi-shot gradient echo sequence with TE = 4.6 ms, TR = 8.9 ms,

SENSE factor = 2, FOV = 256 x 256 mm2. The volume consisted of 170 sagittal slices with an

isotropic voxel size of 1 mm3, and total scan time was 4 minutes and 24 seconds.

Image Processing

Eddy current distortion and in-plane bulk subject motion were corrected prior to tensor calcu-

lation. Normalization of the FA maps was performed in two major steps. First, a study-specific FA

template was created by normalizing each subject’s FA map to the target T1-weighted image space

and then averaging the resulting images. second, the original FA maps were co-registered directly

to the template to reduce potential bias introduced from the selection of a single normal control as

the initial target. See Arlinghaus et al. [1] for details.

Tract-based analysis

The left and right inferior fronto-occipital fasciculi and uncinate fasciculi were segmented, param-

eterized, and compared by methods described previously [2]. Briefly, fiber tracking was performed

in the native image space of each subject to segment each tract-of-interest. The central axes of the

resulting fiber tracts were defined for each subject in a way that also defined point correspondence

across subjects. Finally, FA values were compared between groups at corresponding locations

along each tract with a two-sample t-test and thresholded at a significance level of p < 0.05 (uncor-

rected).

Results

The right and left uncinate and the left inferior fronto-occipital tracts were successfully tracked

in each subject. The right inferior fronto-occipital tract was successfully tracked in all NCs and all
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but 2 WS subjects, where only a single fiber was found in this tract. Figure 5.1 shows the plots

of mean FA as a function of position along the tracts, as well as projections of the mean axes for

each subject (in the common image space) with regions of significant differences highlighted. The

left uncinate contained two large regions of increased FA and a small region of decreased FA in

the portion passing through the EC in the WS group compared to NCs. An additional small region

of reduced FA was also found in the temporal portion of the tract. The right uncinate contained a

region of reduced FA at the anterior extent of the portion passing through the EC, as well as a small

region of reduced FA in the portion of the tract extending into frontal WM. The left IFO contained a

single region of reduced FA in the portion passing through the EC, as well as an additional region

of reduced FA in the temporal portion of the tract and two regions of increased FA in the posterior

portion of the tract. The right IFO contained a large region of increased FA in the portion passing

through the EC, as well as an additional region of increased FA in the temporal portion of the tract.

Discussion

We compared FA values between a group of young adults with WS and a group of normal

controls along the uncinate and inferior fronto-occipital fasciculi, the two major WM pathways that

pass through the inferior portion of the external capsules, and found regions significantly different

FA in all four tracts. Our results were consistent with the findings from the same groups in a voxel-

based study [1] and the two other previously published studies of WS with DTI [4, 5]. In a TBSS

study of 10 WS subjects compared with 10 typically developing controls, Hoeft et al. reported

regions of increased FA in the bilateral external capsule and bilateral regions of WM containing the

inferior longitudinal fasciculi and the inferior fronto-occipital fasciculi. In a study of 5 high-functioning

WS subjects compared to age-, gender-, and IQ-matched controls, Marenco et al. [5] reported

increased anisotropy in the bilateral tract-based regions of interest in the IFO and no significant

differences in the uncinate fasciculi. Discrepancies between these two studies and ours are most

likely due to methodological differences between the studies. The analysis methods used by Hoeft
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Figure 5.1: TBA results in the external capsule. On the left, the mean FA of each group is plotted
as a function of position along the fiber tract. On the right, projections of the corresponding central
axes for each subject are displayed in the common image space. Regions of significantly (p < 0.05)
reduced and increased FA in the WS group compared to the NCs, are marked in blue and red,
respectively.
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Figure 5.2: The spatial relationship of tract-specific changes in the external capsules. The mean
axes of the right and left uncinate (green) and inferior fronto-occipital (yellow) fasciculi from each
subject are displayed together with a view from below (A), from the right (B), and from the left
(C). Regions of significantly reduced and increased FA are marked in blue and red, respectively.
Orientation is marked as follows: anterior (A), left (L), right (R), superior (S), and inferior (I).
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et al. and Marenco et al. cannot distinguish between neighboring fiber pathways in large WM

regions through which multiple tracts pass, like the external capsule.

The semi-automated fiber tracking scheme utilized in this study performed well, except in the

right IFO of two WS subjects. Fiber tracking with manually defined ROIs revealed that there were

a few fibers connecting the frontal and occipital lobes in both cases. However, in the first subject,

the frontal portion of the tract branched off laterally immediately after passing through the external

capsule and did not contain any fibers that continued on to the prefrontal cortex as in the other

subjects. In the other subject, the right IFO appeared to have connections with the prefrontal cortex,

but very few with medial occipital cortex, as in the other subjects. Inspection of the DTI data for these

two subjects revealed no obvious image artifacts that might have affected the fiber tracking.

The results from the voxel-based comparison of these data suggested that the FA differences

in the EC were fairly homologous between hemispheres. However, the results of this tract-specific

comparison indicate that the left and right uncinate fasciculi and IFO each contribute to changes in

FA in the EC in different ways. This is not entirely surprising in the uncinate fasciculi, which con-

nect regions in the frontal (mainly orbitofrontal) lobes with regions in the temporal lobes, including

the amygdala [6, 7]. There is evidence of lateralization in the function of the amygdala [8], and

an fMRI study of WS designed to invoke activation in the amygdala from threatening visual stim-

uli by Meyer-Lindenberg et al. [9] revealed reduced activation in the amygdalae of WS subjects

compared to normal controls, with the difference much more pronounced in the right hemisphere.

Further investigation of the functional network involved in this observed dysfunction suggested that

normal functional connections between different regions of frontal cortices and the amygdala may

be disrupted. While the path analyses implemented by Meyer-Lindenberg et al. are not meant

to be interpreted as direct connections between anatomical locations, it is certainly possible that

the reduced FA observed in the right uncinate is involved. In normal subjects, the left IFO tract

possibly plays a role in semantic processing in language ability [10]. A review of studies investi-

gating semantic ability in WS suggests that semantic fluency may not necessarily be impaired [11].
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Although, Jarrold et al. [12] report high incidence of repeating words during semantic tasks, sug-

gesting the possibility that higher-level inhibition processes in language may be dysfunctional. The

right IFO is involved in normal face processing [13]. Normal activation of the ventral processing

stream during face processing has been reported [14–16], which is in agreement with behavioral

data suggesting that face processing is relatively preserved in WS [17]. However, regions that may

be involved in higher-level object recognition and face processing have been shown to function ab-

normally [14, 16], suggesting that compensatory processing methods may be invoked, providing

relatively persevered face and object recognition.

The methods used in the paper allowed us to investigate the role of specific white matter tracts

in behavioral and cognitive dysfunction in Williams syndrome and demonstrate their usefulness. To

the best of our knowledge, it is the first of its kind in the study of Williams syndrome. Previous DTI

studies that included fiber tracking could not identify localized changes within the tracts or assign

involvement to particular tracts in regions of WM where multiple fiber pathways traveled together.

Hopefully, more precise knowledge of the specific WM tracts affected in WS will aid in the design of

future functional, structural, and behavioral studies of the disorder.
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CHAPTER VI

DISCUSSION

The application of diffusion tensor imaging (DTI) to the study of white matter (WM) tissue in the

brain is rapidly increasing. The voxel-wise comparison of fractional anisotropy (FA) measurements

in Williams syndrome (WS) presented in Chapter 3 provides an example of one of the newest

clinical applications of DTI. The results of this study revealed several regions of both decreased and

increased FA in WM regions that appear to correspond to anatomical, functional, and behavioral

data previously reported; and genetic evidence suggests that these changes are most likely due

to problems in the organization of the axons, not changes to the myelin content of the WM tissue.

This study also demonstrated some of the advantages and limitations of a voxel-based comparison

of DTI data. Voxel-based analyses (VBA) allow a whole-brain, exploratory approach, requiring no

a priori knowledge of the location or extent of the changes in WM. However, Type I errors due to

misregistration and changes detected in large regions of WM containing multiple fiber tracts make

it difficult to interpret results found by VBA.

These limitations motivated the development of the tract-based analysis (TBA) method pre-

sented in Chapter 4. This new TBA method utilizes image co-registration to isolate WM tracts of

interest in each subject in a semi-automated fashion and parameterize them in such a way that spa-

tially localized statistical comparisons can be made between groups along the tracts. The image

co-registration process provides the benefit of allowing a traditional VBA to be performed, as well.

The TBA and VBA methods were compared in a study of schizophrenia, and the results suggested

that the tract-based method may provide a more accurate comparison of a given tract of interest in

two cases: (1) regions where large WM structures are misregistered and (2) regions where large

WM structures may be well registered, but the individual WM pathways passing through the struc-

tures are not.

In Chapter 5, the new TBA method was applied to the data from the DTI study of WS described
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in Chapter 3. The VBA performed in the previous study revealed regions of both decreased and

increased FA in the WS subjects compared to the normal controls (NC) in the inferior portion of

the bilateral external capsules. In this study, TBA was used to investigate the involvement of the

two major pathways passing through this portion of the external capsule, and the results suggested

that the changes detected in the inferior portion of the external capsule by the VBA were due to

lateralized changes in both pathways - an observation that was not possible to make with previous

analysis methods.

While the results of the application of this new method are promising, there are several limita-

tions that should be discussed. First, the tract-based method relies upon the co-registration results

from the voxel-based analysis. We attempted to minimize the effects of misregistration by perform-

ing multi-ROI fiber tracking with large seed ROIs in the native image space of each subject. We

also investigated relatively large fiber tracts because they lie within regions of WM where image

co-registration typically performs well and because current image resolution levels prevent the in-

vestigation of fiber tracts with diameters less than or nearly equal to the voxel width. The tracts

we investigated also do not have major intersections with other large fiber tracts, which could result

either in premature termination of the tracts because of low FA values or in misleading tracking

results if the algorithm follows the wrong pathway.

The choice to parameterize each tract by a single streamline along its medial axes limited the

extent of the tract that could be compared between subjects. However, WM structures are affected

by partial volume averaging along their edges and as they spread out to their cortical destinations,

and the extent of the effects within the tracts will vary between subjects. Therefore, it may be

that it is best to only compare diffusion parameters along the central cores of WM structures to

minimize the effects of partial volume averaging. The choice of a streamline may also not be

appropriate for large WM structures, such as the corpus callosum and the cortico-spinal tracts, that

might be more accurately parameterized as sheet-like surfaces at their cores instead. Although,

more elaborate shapes would introduce more complexity to the definition of point correspondence

between subjects, which is a challenge even with simple streamlines. We chose a relatively simple
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approach [1] that based correspondence upon arc length and relative position from the plane used

to initialize reparameterization of the axes. Perhaps more accurate results could be obtained by

taking the curvature of the axes or even cross-sectional shape of the tract into account.

As mentioned above, we chose to perform fiber tracking in the native image space of each

subject and transform the medial axes of the tracts to the common image space to assist in the def-

inition of point correspondence. An alternate approach would be to co-register the tensor data and

perform both the VBA and the fiber tracking (and TBA) in the common image space. The advan-

tage of this approach is that fiber tracts from different subjects would be inherently co-registered.

However, the major disadvantages are that the method is even more reliant upon the accuracy of

co-registration of individual WM pathways results and that a robust algorithm for rotating the ten-

sors is necessary. The feasibility of such an approach has increased with the recent development

of registration algorithms optimized for normalization of DTIs [2, 3]. Van Hecke et al. recently used

their multi-channel DTI registration algorithm [3] to create a population-based atlas that provides a

more accurate result than normalization based upon a subject-specific template [4]. However, the

method is still susceptible to small registration errors that can significantly affect the tensor rotation,

which would affect subsequent statistical comparisons, and creation of a population-based atlas is

computationally expensive.

Interest in developing analysis methods specific to DTI has been increasing as the field grows.

A new tract-based analysis method for group comparison of DTI data was presented here. The

method was applied to studies of schizophrenia and Williams syndrome, and results of these studies

suggest that a combination of the exploratory benefits of a voxel-wise comparison and the specificity

of a tract-based analysis may be able to provide more information than either method does in

isolation.
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APPENDIX A

IMAGE ARTIFACTS

Images acquired with an echo planar imaging (EPI) acquisition scheme, such as the diffusion

tensor images (DTI) in the Williams syndrome and schizophrenia studies discussed in this disser-

tation, are inherently susceptible to several types of image artifacts. A common artifact in DTI that

affected both studies is signal dropout due to motion. The DTI data in the schizophrenia study were

affected in varying degrees by two additional types of artifacts caused by signal spikes in k-space

and incomplete fat saturation. Descriptions of these three artifacts and the methods implemented

to detect them are discussed below.

Artifact descriptions

Signal dropout due to motion

Severe subject motion results in rigid-body rotation and translations, and pulsatile flow of blood

through large vessels and cerebrospinal fluid (CSF) through the ventricles results in nonlinear de-

formation of the surrounding brain tissue on the order of 1 mm [1]. Both types of motion can cause

intravoxel dephasing of spins, decreasing the measured signal and resulting in what is referred to

as signal dropout in the image. Examples are shown in Figure A.1.

Spike artifacts

The signal that is measured in a magnetic resonance imaging study is sampled at a predeter-

mined range of spatial frequencies values which corresponds to the field of view of the image. This

is referred to as k-space, and an image is obtained by applying the Fourier transform to the 2D or

3D k-space data. If an individual data point in k-space is corrupted by additional signal from sources

such as static discharge in the subject’s clothing or arcing from loose wires within the scanner, it will

89



Figure A.1: Examples of signal dropout. Top: Axial slice from a diffusion-weighted image volume
with normal signal (left) and with severe signal dropout due to subject motion (right). Bottom: Axial
slice from a diffusion-weighted image volume with normal signal (left) and with signal dropout due
to pulsatile motion of the brain (right).

appear as a spike in k-space. The reconstructed image will contain a periodic artifact at the corre-

sponding spatial frequency. The orientation and period of the artifact are given by the orientation

and distance, respectively, of the spike relative to the origin of k-space. For example, see Figure

A.2.

Incomplete fat saturation

The protons in fat and water precess at different frequencies. Depending on the image acqui-

sition scheme and parameters, this difference can lead to the signal from fat being spatially shifted

relative to signal from water. EPI sequences are particularly susceptible to this chemical shift artifact

in the phase encoding direction. Fat saturation techniques are typically employed to eliminate the

signal from fat, preventing it from being shifted into voxels containing signal from other tissue types.

However, several factors, including inhomogeneities in the RF field and local magnetic susceptibility

differences, can result in incomplete fat suppression. Also, if chemical shift artifacts occur in images
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Figure A.2: The effects of spike artifacts. Top: The k-space data (left) for an example image (right).
Bottom: The same k-space data with a single point contaminated by a spike in the signal (circle)
results in a periodic artifact in the reconstructed image (right).

acquired with parallel imaging techniques, such as SENSE, reconstruction artifacts can cause the

artifacts to become ghosted into the center of the image, contaminating even more voxels. See

Figure A.3 for examples.

Figure A.3: The effects of incomplete fat saturation in EPI. In an inhomogeneous sample contain-
ing multiple tissue types, such as CSF (black), brain tissue (white), and subcutaneous fat (grey)
(A), proper fat saturation completely suppresses the fat signal from images acquired with EPI (B).
However, if fat saturation is incomplete in the EPI acquisition (C), the signal from fat is shifted along
the phase encoding direction (vertically, in this case), corrupting voxels containing signal from other
types of tissue (arrow). SENSE reconstruction artifacts can increase the number of corrupted voxels
by causing ghosting of the artifacts into the center of the image (D).
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Solutions

Signal dropout due to motion

The tensor fitting algorithm in the PRIDE Fiber Tracking tool was modified to automatically detect

and reject data points corrupted by signal dropout from the voxel-wise tensor fit. These corrupted

data points lead to large residuals in the tensor fit, which are easily detected. We assume that

the residuals of the tensor fit are normally distributed with a with a mean of zero. We screen for

residuals with absolute values greater than three standard deviations (3σ) from the mean (µ), and

exclude data points from the tensor recalculation with outliers that violate the threshold.

Figure A.4: Rejection of outlier residuals. The residuals of the tensor fit are assumed to be normally
distributed, and data points with residuals greater than 3 standard deviations (|z| = 3) away from
the mean are considered to be outliers.

The estimated mean and standard deviation of the residuals will be biased by outliers, so the

value of σ must be calculated in way that is robust to the effects of the outliers. The standard value

of each residual (r) is defined as

z =
r−µ

σ
. (A.1)
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By determg the value of the residuals that correspond to the 25th (r25) and the 75th (r75) percentiles,

the value of σ can be solved for, since µ is assumed to be zero and the standard values for the 25th

(z25) and 75th (z75) percentiles can be found in any standard normal table. The values of r25 and

r75 are determined by

r25 = MEDIAN(r < 0) (A.2)

and

r75 = MEDIAN(r > 0), (A.3)

respectively, and, for a normal distribution,

z25 =−0.6745 (A.4)

and

z75 = 0.6745. (A.5)

Plugging these values into Eq. A.1 gives

−0.6745 =
r25−µ

σ
(A.6)

and

0.6745 =
r75−µ

σ
. (A.7)

Rearranging and combining Eqs. A.6 and A.7 gives

−0.6745σ− r25 = 0.6745σ− r75, (A.8)

from which σ can be calculated:

σ =
r75− r25

1.349
. (A.9)
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Spike artifacts

A standalone program was written to detect spike artifacts on a slice-by-slice basis. The raw k-

space data are generally not saved due to storage limitations, so the Fourier transform was applied

to each 2D image to obtain the spectral image (K). The magnitude of the spike does not have to

be large relative to the peak spectral intensity to produce the periodic artifact in the image space; it

just has to be large relative to the values in its local neighborhood. Therefore, the sliding-window,

median peak detector method described by Aizenberg et al. [2] was used. Because a large portion

of the spectral power lies at the center of the spectral image, this central portion (C) of the spectrum

was ignored. For all points outside the center mask, the ratio of the intensity of the current voxel

K(i, j) and the median value of all voxels within a window of m×m voxels, centered about the cur-

rent voxel (MED
m×m

(Ki j)), was calculated. Points where the ratio was greater than a user-determined

threshold (θ),
Ki j

MED
m×m

(Ki j)
≥ θ f or (i, j)/∈C, (A.10)

were considered to be spikes. Images with detected spikes were removed from subsequent analy-

sis.

The size of the central mask was determined separately for each image so that it masked out

a circular region containing 15% of the total power in the spectrum. The window size used was

11×11 voxels and θ = 10. To reduce the number of false positives, points with θ > 10 were only

considered to be spikes if the spectral intensity at that location was at least 1% of the maximum

spectral intensity, as this threshold was found to be necessary for significant changes in FA values.

Several steps were taken to speed up the computing time. First, only the central region of

the image (64 x 64 voxels) was transformed. Second, image volumes were acquired with 92 total

diffusion weighting directions, which consisted of 46 unique directions and their opposites. For

each unique diffusion direction, the two images with equal but opposite weighting were subtracted,

highlighting image artifacts. This difference image was transformed and subjected to the peak

detector, and measures were taken to assign any detected artifacts to the proper image.
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Incomplete fat saturation

Voxels corrupted by chemical shift artifacts were detected on a voxel-wise basis during ten-

sor calculation. The residuals of the final tensor fit, after removing data points corrupted by spike

artifacts and rejection of outliers due to signal dropout, were used to estimate a measure of the

uncertainty in the estimation of the FA value [3]. This uncertainty measure was calculated by per-

forming a wild bootstrap analysis with the final residuals of the tensor fit, estimating a value of FA at

each iteration (FA∗i ), and then calculating the standard deviation of the FA estimates over iterations:

ST D(FA∗) =

√
N

∑
i=1

(FA∗i −FA∗i )2

N−1
, (A.11)

where N is the total number of iterations. If STD(FA∗) was greater than a user-defined threshold,

then the voxel was considered to be corrupted and removed from further analysis.

The threshold used for the schizophrenia study was 0.065. This value was determined using

six control data sets that were unaffected by major image artifacts. A histogram of the ST D(FA∗)

values for voxels with FA > 0.2 from all 6 data set was created, and the ST D(FA∗) value associated

with the 97.7th percentile (2 standard deviations in a one-tailed normal distribution) was chosen as

the threshold.
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