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CHAPTER I

INTRODUCTION

1.1 Motivation

Complex engineering systems pervade every aspect of our daily lives. The need for

increased performance, safety, and reliability of these systems provide the motivation for

developing system health monitoring methodologies for these systems. For example, sys-

tems health monitoring is the central component of abnormal event management (AEM) in

process engineering. Early fault detection and isolation during system operations can help

system operators take timely actions to prevent abnormal event progression and to reduce

down time and productivity loss. In extreme cases, timely fault detection and isolation can

lead to avoidance of catastrophic situations, thus preserving system safety and reliability.

Faults and abnormal events cost the petrochemical industries an estimated 20 billion dollars

every year, and AEM is rated as the number one problem in the industry [176].

For space missions, safety and reliability are even more critical. Because of the com-

plex structure of spacecraft and the unpredictability of the space environment, it is prac-

tically impossible to eliminate anomalies and fault occurrences by design, even when we

employ state of the art reliability methods to design subsystems. Robust fault detection

and isolation enables accompanying fault tolerant control units to react in a timely manner,

thus reducing the possibility of damage and loss of the mission [70]. Therefore, designing

and developing integrated systems health management (ISHM) methodologies have been a

long-standing area of research in major industries as well as NASA [159].

Due to the advances in networking technology, along with the proliferation of complex

cyber-physical systems (CPS), and the availability of inexpensive sensors and processors,

we have witnessed a shift in focus from centralized to more distributed diagnosers within

the fault detection and isolation (FDI) community in recent years. State of the art health
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monitoring approaches have to be applied to systems with large number of distributed com-

ponents that exhibit complex, hybrid behaviors. Hybrid system behaviors are represented

as continuous behaviors interspersed with discrete mode transitions [172]. For such sys-

tems, the system diagnostics models are not easy to develop, and keep updated during the

system life-cycle. Therefore, reliable models of these systems are not always available.

Even when models are available, they are often incomplete and plagued by uncertainties in

tracking system behavior.

To address these issues, it is important to develop diagnosis methods that are robust

to model uncertainties and measurement noise. In situations where models are not very

accurate, their imperfections and incompleteness can be overcome by supplementing them

with additional operational data from the system. A robust monitoring algorithm can detect

and isolate faults in the presence of noise and uncertainties in the measurements and system

model. On the other hand, the lack of available models, or models of poor quality may

indicate the need to move toward data-driven approaches for diagnosis. In this thesis, we

will design and develop diagnosers that handle a number of these challenges.

1.2 Challenges

Fault detection and isolation (FDI) in complex systems with large number of compo-

nents can be a complex and challenging task. In this section, we review the challenges in

robust model-based FDI with extensions to hybrid and distributed systems. We also study

challenges that appear in data-driven diagnosis methods.

1.2.1 Robust model-based FDI

To avoid high false alarm rates (FAR) and high missed alarm rates (MAR) due to the

uncertainties in the model, disturbances generated in the environment, and measurement

noise, it is necessary to design robust diagnosis algorithms. However, designing a robust

FDI approach is challenging for the following reasons.
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• Quantifying the effects of noise and uncertainty on residuals. It is not trivial to

quantify the effects of noise and uncertainties on fault detection and isolation per-

formance, especially for complex, nonlinear systems. The distributions of noise and

uncertainties are generally unknown, and even when they are known, the nonlinearity

in the system makes it challenging to estimate their effects on the system’s measure-

ments and the residuals.

• Generating robust residuals. In many cases, noise, uncertainties and system faults

have similar effects on system behavior. Therefore, it is challenging to reduce the

effects of noise and uncertainties on the detectors while making sure they are suffi-

ciently sensitive to faults.

• Residual selection. The total number of residuals for fault detection and isolation

grows exponentially as the number of measurements [5, 167]. Since the sensitivity

of the residuals to faults and uncertainties can vary, different sets of residuals pro-

vide different performance for fault detection and isolation. Moreover, for a given

behavior trajectory, the performance of residuals can vary from one operating region

to another for the system. Because of the large number of possible residual can-

didates and their variable performance in different operating regions of the system,

especially when the system is nonlinear, it is challenging to select a set of residuals

with the acceptable performance for the behavior trajectory over the entire operating

regions for a system.

1.2.2 Distributed model-based FDI

For reliability and practical reasons, developing distributed diagnosers may be favored

for FDI in complex systems. However, designing a distributed FDI approach has the fol-

lowing challenges over and above the ones we listed for continuous systems.

• FDI among subsystems. It may be hard to differentiate the change in behavior due

3



to a fault that occurs in a specific subsystem from change in behavior caused by a

fault in neighboring subsystems. This can increase false alarm rates and decrease the

reliability of the health monitoring algorithms that are employed.

• Global accuracy with minimum communication. Transferring the collected sen-

sor information from one subsystem to another can be expensive and error prone.

On the other hand, each subsystem typically has access to few local measurements.

Fewer measurements in general means fewer redundancies, which decreases the

chances for unique fault isolation. In addition, this can increase missed alarm rates

when compared to centralized approaches. It is a challenge to solve the problem of

ensuring that each subsystem diagnoser provides the correct results while keeping

the communication between subsystems to a minimum.

• Limited information from neighboring subsystems. Subsystems of a complex

system are designed by different manufacturers, who may not be willing to pass

along all of their knowledge of the subsystems to the system integrator for intellectual

property reasons. It is challenging to design globally correct diagnosers when limited

information is available of the interactions between subsystems.

1.2.3 Model-based FDI in hybrid systems

Many complex systems, such as automobiles [172], and aircraft [41] are hybrid in na-

ture, where continuous behavior evolution is interspersed with discrete mode changes. The

discrete mode changes make diagnosis of hybrid systems much more challenging than di-

agnosis of continuous systems for the following reasons.

• Number of modes and possible trajectories. The total number of modes in a hybrid

system is exponential in the number of discrete switches. Therefore, it is computa-

tionally intractable to pre-enumerate all the operational modes of a complex system

and to design diagnosers that provide correct results for each mode. Tracking all
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the possible trajectories of a hybrid system is even more challenging, since the com-

plexity grows exponentially as the number of modes. The complexity becomes even

worse, when one considers trajectories that include possible faults in the system.

• Distinguishing mode changes and faults. It is challenging to differentiate the

change in behavior due to a fault from change in behavior caused by a mode transition

in hybrid systems. In fact, a mode change can be detected as a fault and a fault can

make mode estimation more complicated.

1.2.4 Data-driven anomaly detection

Most of health monitoring methods rely on a system behavior model. When these

models are not available for diagnosis or the available models are incomplete, data-driven

methods can be an alternate approach to link faults to measurement deviations. However,

designing data-driven diagnosers is challenging for the following reasons.

• Incomplete and corrupt data. Available data can be noisy or it may be corrupted

during collection and storage. The sampling rate may vary between the different

measurements and data may be lost during transmission and storage. Moreover, in

the real world, we usually do not have access to training data to learn the system’s

normal behaviors in all of the different operating modes.

• High dimensionality and irrelevant variables. High dimensionality of the datasets

in complex systems is another challenge for anomaly detection. High dimensionality

in the data increases the required time and space for processing the data, and can

mask the effect of faults. Typically, many variables in the dataset will be redundant or

irrelevant to a particular fault. The irrelevant variables may hurt anomaly detection by

acting as noise and hiding effects on the relevant variables. Redundant measurements

may artificially enhance some effects and, therefore, decrease the effect of others,

making some faults hard to detect [119].
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1.3 Contributions

This thesis research addresses a number of challenges in model- and data-driven analy-

ses that were discussed in Section 1.2. Overall, the contributions of this thesis research can

be primarily categorized into: 1) model-based diagnosis contributions, and 2) data-driven

diagnosis contributions. Our contributions to the model-based diagnosis are summarized

below.

1.3.1 Robust model-based FDI

Most diagnosis approaches perform residual generation and residual selection simulta-

neously [140, 154]. However, since our focus is on choosing an optimal set of residuals,

our method generates the entire set of residuals and then applies a methodology to select

a subset of residuals that has sufficient robustness to noise and uncertainties. For residual

generation we use the fault diagnosis toolbox developed by Frisk and Krysander1 [68]. The

contributions of our work in residual selection are

• Quantifying residual performance.

1. Derivative-based sensitivity analysis approach. We use derivative-based sensi-

tivity analysis [144] to define two quantitative measures, the detectability and

isolability ratios, to evaluate and quantify the performance of individual resid-

uals in fault detection and isolation in the presence of uncertainties. Unlike

distinguishability measures [50], detectability and isolability ratios can be used

for nonlinear dynamic systems with multiplicative faults.

2. Global sensitivity analysis approach. The derivative-based approach is com-

putationally efficient. However, the derivative-based approach only determines

the effect of uncertainties at the single point at which the derivative is con-

structed. For linear and smooth nonlinear systems, the effect of uncertainties in

1 https://faultdiagnosistoolbox.github.io/
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other operation points can be easily determined by extrapolation. For stiff non-

linear system this can lead to a significant error. To overcome to this problem,

we have developed a global sensitivity analysis method [175] to define global

detectability and global isolability ratios to quantify residual performance.

• Residual selection. We propose two algorithms to select subsets of residuals that

fulfill specified performances for fault detection and isolation.

1. Off-line Residual Selection: when the system’s trajectory is available, our al-

gorithm divides this trajectory into regions, such that the set of residuals that

have sensitivity values above a pre-specified threshold remain the same in a re-

gion, but vary across the different regions. The selection of a minimum number

of residuals that meet the robustness and sensitivity criteria is formulated as a

binary integer linear programming (BILP) optimization problem [182].

2. Dynamic Residual Selection: for the cases where the system’s trajectory is un-

known, an efficient dynamic residual selection algorithm is proposed. This

algorithm removes residuals when their performance drop below the threshold.

They are then replaced by residuals that provide the highest performance ratios

in the current region. This guarantees the required performance is maintained

for any trajectory.

1.3.2 Distributed model-based diagnosis

We develop two approaches to address the problem of distributed fault detection and

isolation in large scale systems with several subsystems. In method one, we generate the

residuals first and then select a set of residuals for each subsystem that guarantee full di-

agnosability and minimum communication of measurements among subsystems. We for-

mulate this problem as a BILP optimization problem. Note that this algorithm addresses
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the first two challenges presented in subsection 1.2.2. The contributions of this approach

compared to previous work are

• Minimum communication. Unlike previous work [150] that only guarantees min-

imal shared variables among subsystems, our algorithm guarantees that the subsys-

tems share the minimum number of measurements, implying that we minimize the

communication of measurement streams across subsystems of the global system.

This is important because transmitting the data to other subsystems can be costly

in large scale systems.

• Easy to extend to robust distributed diagnosis. Generating all the residuals before-

hand, makes robustness analysis and, therefore, robust distributed residual selection

possible. We can compute the detectability and isolability ratio for each residual and

select the residuals with acceptable robustness performance.

The second method instead of generating all the residuals, works directly with the sys-

tem equations and uses a matching algorithm to find a minimal set of measurements and

equations from neighboring subsystems that generate enough redundancies to make all the

faults diagnosable. The contributions of this approach are as follows.

• Computational efficiency. There are polynomial solutions for the matching algo-

rithm [179]. Therefore, the second algorithm is computationally efficient.

• No need for the global model. This algorithm only searches among neighboring

subsystems and, therefore, does not need to use the global model in the design pro-

cess of the supervisory system. This makes the algorithm more practical, especially

for the complex systems.
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1.3.3 Model-based diagnosis for hybrid systems

We develop an algorithm for fault detection and isolation in hybrid systems. Our pro-

posed approach consists of two parallel algorithms; 1) mode detection, and, 2) fault detec-

tion and isolation in each operating mode. The contributions of our approach are

• Mode detection in the presence of faults. We extend previous work on mode de-

tection in hybrid systems [43], and propose an algorithm that, if it is structurally

feasible [58, 173], selects a minimal set of equations to solve the mode identification

problem in nonlinear hybrid systems in the presence of system faults. By detecting

the operating mode, the diagnoser unit does not need to track all the possible trajec-

tories which is a primary challenge in hybrid diagnosis. Moreover, mode detection in

the presence of faults addresses the challenge of distinguishing mode changes from

faults.

• On-line residual generation. Our approach does not need to pre-compile the resid-

uals for every possible mode of the hybrid system which can be computationally in-

tractable. Therefore, it does not have to pre-enumerate all the possible modes which

is exponential in number of discrete variables in the model. Instead, our approach

updates the diagnoser when the system switches to a new operating mode.

The second part explores data-driven methods to address the monitoring problem when

the system model may be incomplete, outdated, or unavailable. Our contributions to data-

driven diagnosis is summarized below.

1.3.4 Unsupervised anomaly detection

We review the literature and develop anomaly detection methods that include the fol-

lowing steps: 1) data pre-processing, and generation of the feature space for anomaly de-

tection, 2) applying a clustering algorithm and determining regions of nominal behavior,

and by extension outliers and anomalous data points, 3) associating significant features
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with the outlier groups and consultation with experts in order to identify and characterize

special modes of operation as well as anomalous behavior of the system. Our contributions

to the unsupervised anomaly detection are:

• Anomaly detection in time series data. In this work, we extend previous work

[124] to detect anomalies in one-off long term space missions. Toward this end, we

derive a set of objects from a curated set of time series data. Our approach divides

the time series representing the entire mission trajectory into segments based on the

application. Each segment represents a data object. In our case study each segment

represents a dark or light period on the mission time line. The time interval width

(the window size) is variable depending on the period of each dark or light interval,

therefore, each object can have a different number of samples.

In the next step, we apply a wavelet transform [24] to each time series signal to ex-

tract a set of discrete features for each object. The wavelet transform captures the

time-frequency characteristics of signal waveforms, i.e., it captures the frequency

characteristics of the signal at different time intervals in the signal. Note that select-

ing few wavelet coefficients as the features for each object also helps to mitigate the

effects of noise in the anomaly detection process.

• Feature selection. Unlike [131], our approach does not require prior knowledge

about the system parameters and variables. Therefore, our approach is more general

and can easily be extended to anomaly detection in time series datasets in different

domains. A simple solution to the problem of possible redundant features in an

unknown dataset is to remove any variable that has high correlation with another

variable. However, the redundant variables can represent redundancies in the system

and, therefore, they may provide critical information for anomaly detection.

To capture this information, we add a residual to the dataset after removing each

variable. The irrelevant variables also hurt anomaly detection by acting as noise
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and hiding effects of the relevant variables. In this work, we consider the minimum

number of waveforms or variables that represents an specific percentage of the total

variance as the relevant variables. Using this approach, we also automatically remove

the residuals that are generated from identical variables and do not contribute any

meaningful information.

• Defining significant features. Our anomaly detection approach combines unsuper-

vised learning methods with human-expert support to analyze initial anomalies de-

tected in the data. Therefore, unlike other clustering-based anomaly detection meth-

ods (see [114] for example), our approach can distinguish faulty events from special

operating modes. To facilitate an expert’s task in identifying anomalies, we define

significant features, as the set of features that best differentiate each anomalous group

from the nominal groups. Our experience in anomaly detection in lunar atmosphere

and dust environment explorer (LADEE) spacecraft, show these features help the

human experts to better understand and characterize the anomalous situation as po-

tential faults, or special modes of operation.

1.4 Organization of this Dissertation

The rest of this dissertation is organized as follows. Chapter II reviews model-based

fault detection and isolation approaches in complex dynamic systems. This chapter reviews

previous work in the robust model-based FDI, distributed model-based fault diagnosis, and

model-based fault detection and isolation in hybrid systems. Chapter III presents our pro-

posed approach for robust diagnosis in nonlinear dynamic systems in the presence of noise

and model uncertainties. Chapter IV formulates the distributed fault detection and isolation

problem and presents our algorithms for distributed diagnosis. Chapter V discusses fault

detection and isolation for hybrid systems and presents our approach to diagnosis of hybrid

systems.

Chapter VI reviews data-driven anomaly detection techniques. The data-driven anomaly
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detection approaches are categorized based on their input data labels into three main groups:

1) supervised, 2) semi-supervised, and 3) unsupervised. The unsupervised anomaly de-

tection approaches are more widely applicable to the real world problems and, therefore,

are discussed in more detail. This chapter presents different information theory measures

and clustering algorithms that can be used in an unsupervised environment. Moreover, it

presents feature learning and feature selection methods for unsupervised anomaly detec-

tion. Chapter VII presents our approach to data-driven diagnosis, i.e., the anomaly detec-

tion problem, and then discusses our contributions in this topic. Chapter VIII summarizes

the contributions of this research, and presents the future work.
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CHAPTER II

BACKGROUND ON MODEL-BASED FAULT DETECTION AND ISOLATION
(FDI)

A residual is an analytical redundancy relation between known variables in the system

such as parameters of the system, process measurements, and inputs. In model based ap-

proaches, to detect a fault f , we need a residual sensitive to the fault and, to isolate a fault

fi from another fault f j we require a residual sensitive to fi and at the same time insensi-

tive to f j [62]. There are three main approaches for residual generation 1) observer-based

[3, 63], 2) identification [91, 92], and 3) parity equations and analytical redundancy rela-

tions (ARR) [73, 163]. Residual generation involves eliminating unknown variables from

a set of equations till a relation is established between measured variables and fault param-

eters. Observer-based approaches use different linear or nonlinear observers to estimate

the unknown variables. They typically reconstruct measurements of the system with the

aid of an observer using a mathematical model of the system and makes the decision on

possible faults in the system on the basis of the analytical redundancy thus being created.

Even though there are a number of different design procedures, the core of the diagnostic

approach is always observers or estimation filters such as Kalman filters or particle filters

[63].

On the other hand, identification approaches perform fault detection and isolation by

on-line parameter estimation. Identification approaches are especially useful for fault iden-

tification [61, 141]. In theory, little attention has been paid to the identification approaches.

This is probably due to the fact that the existing parameter estimation theory can read-

ily be applied to fault diagnosis without major modifications [63]. The parity equations

and analytical redundancy relations approaches derive a residual from a set of overdeter-

mined equations by developing a computation sequence for computing and eliminating
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the unknown variables. The equivalence between observer-based approaches and parity

space approaches has been proven for linear systems [127] and nonlinear state-affine sys-

tems [98]. There are several algorithms to extract analytical redundancies from the system

model. Pulido and Alonso [147] use possible conflicts to find minimal redundant sets,

Krysander et al. [106] designed an algorithm for finding minimally overdetermined sets

(MSOs) of constraints and Travé-Massuyes et al. [173] proposed an algorithm to generate

ARRs from linear system models. The equivalence between PCs, MSOs and ARRs from

a structural diagnosability point of view has been shown in the literature [5, 22]. In this

work, we focus on the MSO-algorithm [106] as a particular general technique to extract

analytical redundancies in system models.

Krysander et al. [106] use the Dulmage Mendelsohn (DM) decomposition [46] to de-

sign an algorithm for finding minimally overdetermined sets of constraints. Consider a

dynamic system model as a bipartite graph where the set of equations, E, and the set of

variables, V , represent the two disjoint vertex sets and each variable v ∈ V connects to

equation e ∈ E if v appears in e in the system dynamic model. The DM decomposition

uses a bipartite matching algorithm [179] to partition the vertices of the bipartite graph,

variables and equations, into subsets, with the property that two adjacent vertices belong to

the same subset if and only if they are paired with each other in a perfect matching of the

graph. The perfect matchings represent the exactly determined part of the system. Appli-

cation of the DM decomposition also extracts under determined, and over determined parts

of the system model [59].

The over determined part introduces redundancy in the system and can be used for resid-

ual generation for fault detection and isolation. Frisk and Nyberg [69] argued that minimal

over determined sets use fewer parameters from the system model and fewer measurements

from the sensors and, therefore, a residual generated from a minimal structurally overde-

termined (MSO) set tends to be more robust against model uncertainties. A residual can be

14



derived from a MSO by developing a computation sequence for computing and eliminat-

ing the unknown variables till a relation is established between known variables and fault

parameters. When there are no implicit equations and algebraic loops in the equation set,

eliminating unknown variables is straight forward.

However, for nonlinear systems with non-invertible equations, algebraic loops, and im-

plicit equations generating a residual by eliminating the unknown variables is challenging,

and in some cases not possible in a closed form. Zhang, et al. [186] used Ritt’s algorithm

to eliminate unknown variables in nonlinear dynamic systems. Their approach generates

residuals in derivative causality and second and higher order time derivatives of inputs and

output measurements may need to be estimated, and that can be error prone. Dustegor,

et al. [47] used a matching algorithm to derive computational sequences to solve for the

unknowns. Svard and Nyberg [166] extended the approach to dynamic equations and in-

cluded both differentiation and integration in the same solver to generate the maximize

number of possible residuals.

2.1 Robust Fault Detection and Isolation

Residuals represent redundancies in the system equations, and they can form the basis

for fault detection and isolation. Ideally, each residual should compute to a value of zero in

the fault-free case, and residuals sensitive to a fault become nonzero when the fault occurs.

Therefore, a residual ra sensitive to fault fi can be monitored to detect fi. Note that ra could

also be sensitive to other faults in the system (say f j for example). To isolate fault fi from

fault f j in residual-based approach, we need a residual, rb, sensitive to fi and insensitive to

f j. When ra becomes nonzero we detect fi and f j as possible fault candidates, and when rb

becomes nonzero we can isolate fi from f j. Due to model uncertainties and measurement

noise, a residual may deviate from zero even in the fault-free case. Therefore, noise and

uncertainty can make fault detection and fault isolation tasks much more challenging.

To make a diagnoser robust to noise and uncertainties, typically hypothesis tests are
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used to determine if a a residual deviation is statistically significant. A common type of hy-

pothesis test is the use of a threshold, where the threshold can be established using more or

less sophisticated methods, such as maximum likelihood estimators, cumulative sum con-

trol chart (CUSUM) [11] or Z-test [18]. The decision logic detects and isolates the possible

faults based on the hypothesis test outputs. When the effects of noises and uncertainties

are significant, we need to design conservative hypothesis tests to avoid false alarms. How-

ever, using conservative hypothesis tests could increase detection time or even makes a set

of faults undetectable.

To avoid this problem, geometric [129], unknown input observer [31, 177], parity space

[74], eigenstructure [6], and frequency domain [178] approaches have been developed to

generate residuals that are perfectly decoupled from uncertainties and disturbances. Frisk

and Nyberg [69] presented sufficient condition for perfect decoupling in linear systems.

When perfect decoupling is not possible, optimization methods such as the H∞ optimization

and linear matrix inequality (LMI) approaches have been used to design robust residuals

that minimizing the effect of uncertainties and disturbances [190]. Zhong et al [189] apply

an observer-based residual generation approach for fault detection in LTI systems with

additive faults and uncertainties. To achieve robust performance, the authors propose to

design the observer gain matrix and the residual weighting matrix in a way that maximizes

the effect of faults and minimizes the effect of disturbances on the residuals at the same

time. The solution of the optimization problem is then presented via a LMI formulation.

These decoupling and optimization methods generally apply to linear time invariant

(LTI) systems with additive and abrupt faults. However, most real systems are nonlinear

and time varying with possible multiplicative faults and LTI and additive fault assumptions

limit the applicability of decoupling and optimization methods to real problems. To extend

the scope of robust model based diagnosis, several robust fault detection methodologies for

specific classes of nonlinear systems have been developed (e.g., [64, 100]). However, these
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approaches are only applicable to specific classes of nonlinear systems and they don’t pro-

vide a general robust residual generation solution. Moreover, the performance of residuals

can vary from one operating region to another. Therefore, designing robust residuals with

acceptable performance for any given trajectory is not feasible. To address robust FDI in

nonlinear systems, we quantify the performance of residuals in fault detection and isolation

over the known operating region of the system. We then select a set of residuals that meet

the performance requirements for each operating region.

There are two main approaches to quantify residual performance for fault detection and

isolation in the presence of uncertainty: 1) stochastic methods, 2) sensitivity analysis meth-

ods. In the stochastic approaches, the distance between a residual probability distribution

in the presence of fault and in the fault free case is the measure to quantify the performance

of residual for detecting the fault. Note that a distance measure does not have to have the

strict definition of distance in metric space. For example, a distance measure may not sat-

isfy triangle inequality or it could be asymmetrical. Several distance measures have been

developed for stochastic models [9], among which Kullback-Liebler (KL) divergence is

one of the more prevalent measures used for fault detection [10].

Erikson et al. [50] have derived a measure called distinguishability, to evaluate fault

diagnosability performance for linear discrete-time dynamic systems. The approach uses

the KL divergence measure along with the stochastic characterizations of the different fault

modes and provides a quantified measure for fault detectability and isolability in a linear

dynamic system for a given set of sensors with associated noise distributions. In [51], Erik-

son et al. propose an on-line sequential test selection strategy where the detectability per-

formance of each residual is quantified using the distinguishability measure. Erikson and

Sundstrom [52] used distinguishability to optimize the design of residuals. The stochas-

tic approach provides fairly accurate estimation of residual performance. However, those

methods usually need faults and uncertainties to be characterized by probability distribution

functions (PDFs) and they are computationally expensive. Moreover, it is challenging to
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apply them to nonlinear systems as well as situations where the faults and uncertainties are

multiplicative. To overcome the computational problems, several researchers have adopted

sensitivity analysis methods to evaluate the performance of residuals.

Djeziri et al. [42], estimated the effects of uncertainties on residuals using sensitivity

analysis to design adaptive thresholds. Perez et al. [143] used sensitivity analysis to local-

ize leakage in water distribution networks. Blesaa et al. [19] proposed a sensor placement

algorithm to achieve maximum leak detectability and isolability in water distribution net-

works and defined a measure, robustness percentage index, to evaluate the robustness of

the methodology. In this work, we use sensitivity analysis to define detectability ratio and

isolability ratio measures that quantify the performance of residuals in nonlinear dynamic

systems. In addition to residual performance quantification, detectability and isolability

ratios are used to define dynamic systems operating regions, in order to select a set of

residuals that meet pre-specified detectability and isolability performance in each region.

Moreover, we define global detectability and global isolability ratios for stiff nonlinear

dynamic systems with measurement noise.

2.1.1 Summary

Several methods such as unknown input observer and parity space approaches have

been developed to generate residuals that are perfectly decoupled from uncertainties and

disturbances in LTI systems. When perfect decoupling is not possible, optimization meth-

ods such as the H∞ optimization and LMI approaches have been used to design robust

residuals for these systems. For nonlinear systems there is no general approach to decouple

uncertainties and disturbances. Moreover, the performance of residuals can vary from one

operating region to another. Therefore, designing robust residuals with acceptable perfor-

mance for any given trajectory is not feasible. To address robust FDI in nonlinear systems,

we use sensitivity analysis to quantify the performance of residuals in fault detection and
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isolation. We then select a set of residuals with acceptable performance for each operating

region.

2.2 Distributed Fault Detection and Isolation

Traditional approaches develop centralized diagnosers for complex systems, e.g., the

aircraft diagnostic and maintenance systems (ADMS) used on modern aircraft systems [6,

162]. However, as the complexity and size of systems, such as aircraft, automobiles, power

plants, and manufacturing processes, have grown, distributed approaches to fault detection

and isolation in large dynamic systems with many subsystems have become important [110,

112, 161]. Safety-critical systems must detect and isolate faults quickly and reliably to

enable effective safety maneuvers and fault tolerant control so as not to endanger operations

and human lives [44]. Transferring all of the collected sensor information to a central fault

detection and isolation unit can be expensive and error prone. Centralized diagnosers may

also be less reliable because they create a single point of failure.

Networking delays can also affect the timeliness of diagnosis decisions [57]. Trans-

mission delays not only increase detection time, but can also affect the order of detection,

which can further affect diagnostic accuracy. Detection time is important for the safe and

reliable operation of safety-critical systems. Faster fault detection and isolation enables ac-

companying fault tolerant control units to react in a timely manner, thus reducing damage

and down time of systems. The computational intractability of building centralized diag-

nosers for the large systems is another important reason to develop distributed solutions for

FDI problems. Also, from practical view point, subsystems of a complex system are de-

signed by different manufacturers, who may not be willing to pass along all of their knowl-

edge of the subsystems to the system integrator for intellectual property reasons. Therefore,

a centralized approach to fault detection and isolation problem may not be possible nor is

it desirable in many cases.
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In the literature, there has been considerable effort in developing distributed fault de-

tection and isolation in the context of discrete event systems. In the most simple case, a

group of distributed fault detection and isolation approaches consider each subsystem as

a node that could be "OK" or "faulty" without attributing any dynamics to the system be-

havior. This approach is especially useful in wireless sensor networks [153] and computer

networks [149]. In these systems each node has a specified operating range and can ob-

serve the other nodes performances within its operating range. When a node detects an

inconsistency between its performance and a neighboring node in the network, for exam-

ple, two sensors monitor the environment temperature differently, there could be a fault in

the neighboring node or the node itself may be faulty.

To detect faulty nodes, Blough et al. [20] used a majority vote among the neighboring

sensors to determine the status of each node. In [153], each node sends a signal to the

coordinator (manager) whenever there is a state change. The coordinator uses the collected

information to detect subsystem failures. In [97] each node identifies its own status to

be either "OK" or "faulty" and the claim is then supported or reverted by its neighbors

as they also evaluate the node behavior. Rish et al. [149] proposed an adaptive real-time

distributed diagnosis approach for computer networks. Their approach uses an information-

theoretic approach for test selection that speeds up real-time diagnosis by minimizing set

of measurements, while maintaining high diagnosability.

In many real systems, distributed fault detection and isolation is more complicated. In

these systems a subsystem has several components and a fault could occur in a sensor, ac-

tuator or other components in the subsystem. Therefore, it is not enough to simply declare

a subsystem "OK" or "faulty" and we have to isolate the faulty components inside each

subsystem. Deb et al. [40] proposed to design a local diagnoser for each subsystem where

each local diagnoser considers all the inputs to the subsystem as potential faults. When a

subsystem is fault free, all the inputs to the subsystem would be considered fault free and

when a local diagnoser detects a fault in its subsystem, all the outputs from that subsystem
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would be marked as faulty. Each subsystem receives update from its neighboring subsys-

tems as soon as there is a change in their status. In this approach, it is possible that some

faults stay undetectable or the distributed approach fails to isolate some fault pairs.

Roychoudhury et al. [150] developed an algorithm for dynamic systems to search for

the minimal number of additional external measurements to add to each local diagnoser in

order to make all the faults locally detectable and isolable. Their algorithm only guarantees

minimal number of measurements and it does not guarantee the optimum solution. Daigle

et al. [35] used the same approach for distributed fault detection in mobile robots. Bregon

et al. [23] used breadth-first search to find the minimum number of measurements that we

need to add to each subsystem to make all the faults globally detectable and isolable. The

algorithm guarantees optimum solution, however, it is exponential in terms of the cardinal-

ity number of the system measurements. To address this problem, the authors proposed a

greedy search algorithm which is computationally efficient but does not guarantee optimal-

ity of the solution.

Like centralized approaches, study of robustness of the distributed methods is critical

and has to be considered. However, there are few researchers who have investigated robust

distributed approaches. A common approach to address uncertainties in distributed fault

detection is to design an adaptive threshold for each local diagnosis subsystem [187, 188].

Ferrari et al. [56, 57] proposed a distributed fault detection and identification approach

where each subsystem uses an adaptive approximator [55] to estimate the dynamic of its

neighbors and then the neighboring subsystems use a consensus-based estimator mecha-

nism [139] to improve the detection and identify the fault. Because of the adaptive ap-

proximation, their approach is robust to uncertainties. However, they do not propose any

algorithm to partition the system or to select shared variables between the subsystems.

21



2.2.1 Summary

Most of the distributed fault detection and isolation algorithms have been developed in

the context of discrete event systems. Roychoudhury et al. [150] proposed an approach

based on quantitative fault detection and qualitative fault isolation for distributed FDI in

dynamic systems. Their algorithm produces globally correct diagnosis results with minimal

exchange of information among the subsystems. However, it does not guarantee that the

exchange of information among subsystems is globally minimum. To achieve robust FDI,

the authors apply a hypothesis test to ensure observed deviations are statically significant.

Relying on hypothesis tests to achieve robustness without designing robust residuals can

increase miss alarm rates and detection time.

Ferrari et al. [56, 57] proposed a robust distributed fault detection and identification

approach. However, their approach does not propose any algorithm to partition the system

or to determine the minimum required shared variables between the subsystems. In this

work, we propose an algorithm based on residual selection for distributed diagnosis. It

is straight forward to extend our approach to robust distributed diagnosis by considering

residuals robustness performance in the selection process. Our algorithm provides globally

correct diagnosis results and guarantees that the subsystems share the minimum number

of measurements, implying that we minimize the communication of measurement streams

across subsystems of the global system.

2.3 Fault Detection and Isolation in Hybrid Systems

In the real world, many complex systems, such as automobiles [172], aircraft [41] and

spacecraft [16, 36] exhibit hybrid behaviors, where continuous behavior evolution is inter-

spersed by discrete changes that occur at points in time. Therefore, hybrid systems exhibit

continuous behaviors with discrete mode transitions that may be attributed to configuration

changes in the system or to simplifying assumptions, where complex nonlinear behaviors

are replaced by a sequence of simpler piecewise linear forms [136]. As a result, diagnosis
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of hybrid systems present a much bigger challenge than diagnosis of continuous systems.

Tracking mode changes in hybrid observers can be a challenging task [130]. It becomes

even more challenging in the presence of faults, for multiple reasons: (i) faults cause un-

known changes in a system model, therefore, tracking mode changes in the presence of

faults is difficult; and (ii) it may be hard to differentiate the change in behavior due to a

fault from change in behavior caused by a mode transition.

Moreover, it is computationally intractable to directly extend continuous system diag-

nosis by pre-enumerating all the operation modes of the system, and generating residuals

for each mode to track and isolate faults. State estimation [85], parity equations [33], and

fault signatures based on temporal causal graphs [137] are some of the approaches that

researchers have adapted to address the problem of fault detection and isolation in hybrid

systems. Mode detection becomes an essential step when extending continuous system di-

agnosis to hybrid system diagnosis. Domlan et al [43] have presented sufficient conditions

for mode detectability of linear hybrid systems. However, the mode detection problem be-

comes challenging when hybrid systems exhibit nonlinear behaviors in one or more of their

operating modes.

A common approach to addressing fault detection and isolation in hybrid systems is

based on state estimation approaches, where multiple-model estimation schemes are em-

ployed to track the likely hybrid trajectories of the system [2, 78, 174]. However, tracking

all the possible trajectories of a hybrid system is computationally intractable, since the

complexity grows exponentially as the number of modes. The complexity becomes even

worse, when one considers trajectories that include possible faults in the system. Adap-

tive multiple-model-estimation has been proposed as a possible solution to this problem

[116, 117, 118]. The idea is to track a subset of modes that are most likely at a given

step time. An alternative approach estimates discrete modes and continuous state variables

simultaneously (e.g., see [89] and [65]). This approach is relatively efficient, however,
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because of low probability of fault modes, the standard estimation methods may fail to de-

tect them. Williams and Hofbaur [85] developed an estimation based approach for hybrid

diagnosis which only tracks a set of highly likely paths.

Cocquempot et al [34] extended parity equations and the analytical redundancy ap-

proach for mode detection in hybrid systems. They used ARRs to detect the current operat-

ing mode, and then apply a proper set of residuals to isolate faults in each operating mode.

In [33] the authors derived necessary and sufficient conditions for discernable modes under

no fault conditions, however, they do not present required conditions for isolating mode

transitions from faults. Moreover, as discussed above, pre-enumeration of all the possible

modes to monitor system behavior is computationally expensive, and in some cases infea-

sible. Bayoudh et al [12] introduced parameterized ARRs to account for different modes

of a class of hybrid systems. They considered faults as new modes in the system, and used

the ARRs to track mode transitions. Low et al [121, 122] developed the concept of global

ARRs (GARRs) for fault detection in hybrid systems. GARRs are analytical redundancy

relations between continuous and discrete known parameters that are valid over all of the

hybrid system operating modes. Levy et al. [113] proposed an integrated approach which

combines GARRs and a discrete monitoring approach [155] for mode detection.

To avoid pre-enumeration of all the system modes and maintain the detection perfor-

mance, Narasimhan and Biswas [137] used the hybrid bond graph (HBG) representation

[136] that captures discrete switches in model configuration at the component-level. The

system mode is defined by the state of all of the discrete switches associated with the

system. In their work, they assumed accurate mode tracking under nominal conditions,

and incremental on-line generation of models for a particular mode after a mode transition

[146, 151]. This reduces the complexity of tracking operating modes after fault detection.

However, they had to implement a roll back function to account for the fact that a fault may

be detected only after a certain number of unknown mode transitions after the actual fault

occurrence, and then a quick roll forward to catch up with the current measurements. In
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addition, their approach had to recompute the fault signatures after every predicted mode

transition which adds to the computational complexity of the algorithm. Bregon et al.

[21] extended the PCs approach for continuous systems to decompose the hybrid systems

to small subsystems. This increases the efficiency of the algorithm by avoiding causality

reassignment for the complete bond graph model.

2.3.1 Summary

State estimation [85], parity equations [33], and fault signatures based on temporal

causal graphs [137] are some of the approaches that researchers have adapted to address

the problem of fault detection and isolation in hybrid systems. Mode detection becomes

an essential step when extending continuous system diagnosis to hybrid system diagnosis.

Moreover, pre-enumeration of all the possible modes in the design stage is computationally

expensive, and in some cases infeasible. We propose a new approach to the problem of

mode detection and fault detection and isolation in hybrid systems in this work. Unlike

previous work [137], our algorithm can detect the operating mode even in the presence of

faults and, therefore, it does not require a backward search for the correct sequences of

mode transitions after a fault. Moreover, our approach does not pre-compile the residuals

for every possible mode and, therefore, it does not have to pre-enumerate all the possible

modes. Instead, it updates the diagnoser when the system switches to a new operating

mode. These make our approach feasible for complex systems.

2.4 Conclusion

We have reviewed the state of the art for three fundamental research problems in the

area of model-based diagnosis; 1) robust fault detection and isolation, 2) distributed fault

detection and isolation, and 3) fault detection and isolation in hybrid systems. We have

also listed some of the limitations in these approaches. It is critical for diagnosis methods

to provide accurate and efficient solutions that can be applied for diagnosis in nonlinear
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complex systems. Therefore, we develop solutions to address some of the limitations of

the existent methods in these three different problem areas in the next chapters.
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CHAPTER III

ROBUST FAULT DETECTION AND ISOLATION

A number of residual generation methods have been developed for robust model-based

fault detection and isolation (FDI). However, the robust residual generation methods are

only applicable to specific classes of systems and don’t provide a general robust FDI solu-

tion. Moreover, design-time algorithms are not tuned to optimize performance for different

operating regions of system behavior. Our proposed approach for robust fault detection

and isolation has three main steps: 1) residual generation, 2) quantifying the performance

of the residuals over the known operating regions of the system, and 3) residual selection

to meet the performance requirement (see Figure 1). For residual generation, we use the

fault diagnosis toolbox developed by Frisk and Krysander [68]. The toolbox generates

a set of residuals given a system model and set of measurements. The basic algorithms

implemented in the toolbox are presented in [67, 106, 107, 166]. To quantify the perfor-

mance of the residuals, we need to define measures of sensitivity and robustness. We also

need efficient algorithms to select a set of residuals that meet the performance requirements

as system behavior transitions between operating regions. The rest of this chapter is orga-

nized as follows. Section 3.1 presents the background concepts and definitions. Section 3.2

presents the problem formulation. Section 3.3 develops the sensitivity analysis approach to

define the performance measures: detectability ratio, isolability ratio, global detectability

ratio, and global isolability ratio. Section 3.4 defines fault detectability and isolability in

the presence of noise and uncertainties in the system. Section 3.5 presents our algorithms

for residual selection. Section 3.6 presents the case studies, and Section 3.7 presents the

conclusions of this chapter.
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Figure 1: Automated residual generation and selection for robust FDI.

3.1 Background

This section reviews the background concepts and presents relevant definitions. We

start with a general definition of a nonlinear system model, and introduce the basic concepts

associated with residual generation and robust residual selection for diagnosis of dynamic

systems.

3.1.1 System Representation

Model-based approaches to dynamic systems diagnosis use a system model, S, that can

be defined as:

Definition 1 (System model). A system model S is defined as a four-tuple: (V , E, F, ∆),

where V is the set of variables, E is the set of equations, F is the set of system faults and ∆

is the set of system uncertainties.

Adopting a state space equation representation, the general model of nonlinear dynamic

systems takes the form:

ẋ = g(θn,x,u,∆,F),

y = h(θn,x,u,∆,F),

(1)

where x ⊂ V represents the set of state variables, ẋ ⊂ V is the corresponding set of state

variable (time) derivatives, u ⊂ V are the actuator signals, y ⊂ V is the set of measured

signals in the system and θn⊂V is the set of system parameters. g⊂ E and h⊂ E represent
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the set of system equations, ∆ is the set of parameter uncertainties, and F is the set of

possible faults in the system.

In this work, we model faults and disturbances as deviations of system parameters from

their nominal values [66]. Faults and uncertainties can have additive and multiplicative

effects. Therefore, each component parameter in the system may vary from its nominally

specified value due to uncertainties and fault occurrences. Consider component i with

parameter value θi. We can represent θi as: θi = θni(1+ δθ i)(1+ fθ i), where θni is the

presumed nominal value of the component parameter, and fθ i ∈ F and δθ i ∈ ∆ represent

faults and uncertainties associated with the component. As a running example for this

chapter, consider the following dynamic system

ẋ1 =−(1+δ1)x1 +u1 + f1

ẋ2 = x1−2(1+δ2)x2 +u2

y1 = (1+δ3)x1

y2 = (1+ f2)x2

ẋ1 =
dx1

dt

ẋ2 =
dx2

dt
,

(2)

where x1 and x2 are the system state variables, u1 and u2 represent the inputs to the system,

y1 and y2 are the system measurements, δ1 and δ2 represent system uncertainties, δ3 repre-

sents a sensor uncertainty, f1 is an actuator fault and f2 is a sensor fault. Figure 2 illustrates

the system model in block diagram form.

3.1.2 Residuals

Residuals are the basis for model-based fault detection and isolation. A residual repre-

sents as an analytical redundancy relation (ARR) in the system. In this work, we define a

residuals as
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Figure 2: Simple example diagram.

Definition 2. (Residual) A residual r is an analytical redundancy relation between nominal

parameters of the system, process measurements, and inputs. We model residuals for the

nonlinear dynamic system (1) as a nonlinear relationship between known nominal param-

eters of the system, process measurements, and known inputs in the following manner:

ż = ĝ(z,θn,u,y)

r(z,θn,u,y) = 0,
(3)

where z represents the internal dynamics of the residual and ĝ and r represent the dynamic

model of the residual.

To generate a residuals, the system has to be redundant or overdetermined. Structurally

overdetermined (SO) sets and minimal structurally overdetermined (MSO) sets are defined

in the next subsection.

3.1.3 Minimal Structurally Overdetermined Sets of Equations

Frisk and Nyberg [69] argued that minimal residuals use fewer parameters from the

system model and fewer measurements from the sensors and therefore, tend to be more

robust against model uncertainties. Moreover, MSOs are well suited for automatic residual

generation. Krysander et al. [106] developed an algorithm for finding the set of MSOs
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given the set of system equations. This algorithm is used in the diagnosis toolbox [68] for

residual generation. Next, we formally define structurally overdetermined and MSO sets.

Definition 3. (Structural Overdetermined Set) Consider a subset of system equations and

its associated variables: (E i,V i). This set of equations is structurally overdetermined (SO)

if the cardinality of the set E i is greater than the cardinality of set of unknown variables

V i
unknown ⊆V i, i.e. |E|> |V i

unknown|.

Consider the running example in equation (2). There are four unknown variables, x1,

ẋ1, x2, and ẋ2, and six equations. Therefore, this system presents a SO set:

e1 : ẋ1 + x1−u1 = 0

e2 : ẋ2− x1 +2x2−u2 = 0

e3 : y1− x1 = 0

e4 : y2− x2 = 0

e5 : ẋ1−
dx1

dt
= 0

e6 : ẋ2−
dx2

dt
= 0.

(4)

Definition 4. (Minimal Structurally Overdetermined Set) A set of over determined equa-

tions is minimal structurally overdetermined (MSO) if it has no subset of equations that is

structurally overdetermined.

Consider the SO set in equation (4). e1, e3, and e5 represent a minimal set of over

determined equations:

e1 : ẋ1 + x1−u1 = 0

e3 : y1− x1 = 0

e5 : ẋ1−
dx1

dt
= 0.

(5)

Note that faults and uncertainties are not mentioned in Definition 4. However, in addition
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to equations, and variables, each MSO can have a set of faults and uncertainties. For ex-

ample, the MSO in equation (70) can be represented in a more general way as MSO70 =

(E70,V70,M70,F70,∆70), where E70 = {e1,e3,e5} is the set of equations, V70 = {ẋ1,x1} is

the set of unknown variables, M70 = {u1,y1} is the set of measurements (known variables),

F70 = { f1} is the set of faults and ∆70 = {δ1,δ3} is the set of uncertainties in the MSO. For

the sake of brevity and simplification we simply say a specific equation, variable, measure-

ment, fault, or uncertainty is a member of a MSO. For example, we say f1 ∈MSO70.

3.1.4 Fault Detectability and Fault Isolability

MSOs represent the redundancies in the system and can be used for fault detectability

and isolability analysis [107]. A detectable fault is defined as:

Definition 5. (Detectable fault) A fault f ∈ F is detectable in system S if there is a minimal

structurally overdetermined set MSOi in the system, such that f ∈MSOi.

Consider Definition 5 and MSO70. Fault f1 is detectable because f1 ∈ MSO70. In a

similar way, fault isolability is defined as:

Definition 6. (Isolable fault) A fault fi ∈ F is isolable from fault f j ∈ F if there exists a

minimal structurally overdetermined set MSOi in the system S, such that fi ∈MSOi and f j

6∈MSOi .

Consider Definition 6 and MSO70. Fault f1 is isolable from fault f2 because f1 ∈MSO70

and f2 6∈MSO70.

3.1.5 Residual Generation

To generate an explicit mathematical residual equation from an MSO we have to ap-

ply a computational sequence to eliminate the unknown variables. A residual is in integral
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(derivate) causality if and only if its computational structure or equation includes only in-

tegral (derivative) forms. Equation (86) represents a residual in integral causality. To gen-

erate a residual from MSO70 in derivative causality, we start with (70), use e3 to substitute

x1 = y1 in e1 and generate a residual:

rd = ẏ1 + y1−u1. (6)

Otherwise, we can use e1 to estimate x1 and generate a residual in integral causality

ż1 =−z1 +u1

ri = y1− z1.

(7)

In this work, an exhaustive approach for generating residuals is adopted so that the

minimum set of residuals can be picked to meet specified detectability and isolability cri-

teria. As we mentioned earlier, we use the fault diagnosis toolbox [68] to generate the set

of residuals. Given the set of system equations, the toolbox uses an efficient algorithm de-

signed by Krysander et al. [106] for finding minimally overdetermined sets of constraints

to generate the minimal structurally overdetermined (MSO) sets. It then applies the algo-

rithm developed by Svard and Nyberg [166] to generate residuals from the generated MSO

sets.

3.1.6 Residual Selection

Most diagnosis approaches reported in the literature perform residual generation and

residual selection simultaneously [140, 154]. However, since our focus is on choosing an

optimal set of residuals, our method generates the entire set of residuals and then applies a

methodology to select a minimum subset of residuals with sufficient sensitivity to the faults

of interest, and robustness to known uncertainties. The total number of residual candidates

33



for fault detection and isolation grows exponentially as the number of measurements in-

crease [5, 167]. Using the model form in (1), the total number of redundancies introduced

into the system model is equal to the number of measurements, ly. Theoretically, each MSO

can include from one to ly measurements. Therefore, the total number of MSOs, NMSO is

proportional to all possible combinations of the measurements:

NMSO ∝

ly

∑
i=1

(
ly
i

)
= 2ly (8)

In addition, by assuming different causality types (integral, differential), each MSO

can be used to generate several residuals [67]. Further, linear and non-linear combinations

of residuals generate new residuals. Therefore, a large number of residual subsets can be

generated to detect faults. Given the uncertainties in the system model, the sensitivity of

these residuals to each uncertain parameter has to be computed to determine the residuals

that provide the required performance. The sensitivity of the residuals to the faults and

uncertainties are not the same. Therefore, different sets of residuals can have different per-

formance values for fault detection and isolation. Moreover, for a given behavior trajectory,

the performance of residuals can vary from one operating region to another for the system.

To achieve the required performance for the entire trajectory our algorithm needs to find

a set of residuals that satisfies the pre-specified performance thresholds across all of the

operating regions. To simultaneously minimize computational costs, the algorithm selects

a residual set that have minimal cardinality.

Note that this is equivalent to finding an optimal solution for the set covering prob-

lem, which is known to be NP-hard [105] and, therefore, any algorithm for finding a set of

residuals with minimal cardinality and required performance will have exponential compu-

tational complexity. Svard et al. [167] used a greedy search strategy to select a minimal

set of residuals that can detect and isolate a set of faults. Roychoudhury et al. [150] devel-

oped a greedy heuristic algorithm for selecting a set of measurements for each distributed
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fault diagnosis unit and compared the results to an optimal solution generated by exhaus-

tive search. Greedy algorithms are computationally efficient but they are not guaranteed

to find the optimal solution. Sarrate et al. [157] have employed a binary integer program-

ming approach for optimal sensor placement for fault detection and isolation. In this work,

the residual selection problem is formulated as a BILP problem. The approach efficiently

picks a minimum number of residuals that guarantees the required detectability and isola-

bility performances for all the operating modes.

3.2 Problem Formulation

In this chapter, the detectability ratio of each fault of interest, fi, given a residual r,

D( fi|r), is defined as a measure that captures the performance of residual r in detecting the

fault fi. The isolability ratio for a residual, r, for pairs of faults fi and f j, fi 6= f j, I( fi, f j|r)

is also defined as a measure that represents the performance of residual r in isolating fi from

f j. Using these measures and minimum specified detectability and isolability thresholds

provided by the system designers and operators, the set of qualified residuals for fault

detection and isolation at a time interval, Ta, are defined as

Definition 7 (Set of qualified residuals for detecting fault fi). The set of residuals that

meet the specified criterion to detect each fault fi over a time interval Ta, is the set of

residuals whose detectability ratios of fault fi is greater than the specified detectability

ratio threshold during the time interval Ta.

Definition 8 (Set of qualified residuals for isolating fault fi from fault f j). The set of quali-

fied residuals for isolating fault fi from fault f j over a time interval Ta is the set of residuals

whose isolability ratios for ( fi, f j) is greater than a pre-specified isolability ratio for the

time interval Ta.

The system operating regions are defined based on the qualified residuals for fault de-

tection and isolation.
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Definition 9 (System operating regions). The operating regions for a system is defined as

the longest time interval starting at t1 and ending at t2 such that for each pair of faults fi

and f j in the system, the set of qualified residuals for detecting fi and f j, and also the set

of qualified residuals for isolating fi from f j do not change in that time interval.

Using definition 9, a new system operating region is defined when the set of residu-

als that meet the pre-specified performance criteria for detection and isolation change. As

system behavior evolves dynamically, it is possible that the system may switch back to a

previous region of operation, i.e., it may switch back to a set of residuals that were used ear-

lier. To maintain the pre-specified detectability and isolability performances with minimum

on-line computation as the regions of operation change, our algorithm chooses a minimum

subset of residuals that meet the detectability and isolability performance criteria over the

entire behavior trajectory. The objective is to find a subset of residuals with minimum

cardinality number that fulfills a specified diagnosability performance for all the operating

regions of the system. The selected residual set can then be invoked on-line for the fault

detection and isolation tasks. The offline residual set selection problem is presented as

follows.

The residual selection problem for known system behavior trajectory: let F = { f1, f2,

. . . , fn} denote the set of faults, and R = {r1,r2, . . . ,rl} represent the entire set of residuals

given the system model and the set of measurements made on the system. It is assumed that

this set of measurements is sufficient to detect and uniquely isolate all of the faults in F .

Our goal is to develop an algorithm that selects a subset of residuals R∗ which guarantees

the pre-specified detectability ratio for each fault f j ∈F and pre-specified isolability ratio

for each pair of faults f j and fk at all the operating regions, M, and includes a minimum

number of residuals. More formally, the residual selection problem can be defined as:
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min R∗ ⊆R

s.t.

∀mi ∈M :

∀ fi& f j ∈F :

∃ri&r j ∈ R∗ :

D( fi|ri)> Dreq,

I( fi, f j|r j)> Ireq,

(9)

where Dreq and Ireq are minimum detectability and isolability required performances, re-

spectively. In the next section, we develop our method to quantify the diagnosability per-

formance of each residual.

3.3 Quantifying Residual Performance

A residual, r(y,u) = 0, captures nominal system behavior. Ideally, each residual should

be zero in the fault-free case and residuals sensitive to a fault become nonzero when it

occurs. Due to uncertainties and noise, the residuals may deviate from zero even in the

fault-free case, and this complicates the fault detection and isolation task. Depending on

the relationships between faults and uncertainty magnitudes, the likelihood of detecting

and isolating a fault of a specified magnitude in the presence of uncertainties can vary.

If we can quantify these relations, we can use them to select the best set of residuals for

fault detection and isolation. In this section we use two approaches to develop quantitative

measures of residual performance for fault detection and isolation in the presence of noise

and uncertainties: 1) derivative-based sensitivity analysis, and 2) global sensitivity analysis.
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3.3.1 Derivative-based sensitivity analysis approach

Sensitivity analysis evaluates how model behaviors are affected by changes in model

parameters [160]. In reality, faults and uncertainties result in deviations in the system vari-

ables from their nominal values, producing non zero residual values. Unlike previous work

[42], where the focus is on computing the sensitivity of the residuals with respect to model

uncertainties, we start by computing the derivative of state and measured variables with

respect to all parameters by applying the chain rule for derivative computation. Consider a

general nonlinear dynamic system model (1). We assume that the system has lx state vari-

ables, and ly measurements and x ∈ Rlx is the state vector and y ∈ Rly is the measurement

vector. The chain rule [144] applied to the state and output equations produces:

ṗψ =
∂g
∂x

pψ +
∂g
∂ψ

qψ =
∂h
∂x

pψ +
∂h
∂ψ

,

(10)

where ∂g
∂x ∈ Rlx×lx , ∂g

∂ψ
∈ Rlx , ∂h

∂x ∈ Rly×lx , and ∂h
∂ψ
∈ Rly . pψ = ∂x

∂ψ
∈ Rlx , and qψ = ∂y

∂ψ
∈ Rly

represent the sensitivity of state variables and measurements to the parameter ψ . ψ can be

a fault, fi, or the uncertainty associated with a parameter, δ j.

Consider the running example represented by equation (2). We can present the dynam-

ics associated with p1δ1 =
∂x1
∂δ1

and p2δ1 =
∂x2
∂δ1

for nominal behavior as:

ṗ1δ1 =−p1δ1− x1

ṗ2δ1 = p1δ1−2p2δ1

(11)

Using equation (2) and the chain rule we can derive the sensitivity of known system vari-

ables to δ1 as a function of p1δ1 and p2δ1:

∂u1

∂δ1
= 0

∂y1

∂δ1
= p1δ1

∂u2

∂δ1
= 0

∂y2

∂δ1
= p2δ1.

(12)
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Note that u1 and u2 are external control signals that does not depend on system incarcerates,

implying ∂u1
∂δ1

= ∂u2
∂δ1

= 0. We can present the state equations associated with the sensitivity

of system variables to fault f1 as:

ṗ1 f1 =−p1 f1 +1

ṗ2 f1 = p1 f1−2p2 f1

∂y1

∂ f1
= p1 f1

∂y2

∂ f1
= p2 f1,

(13)

where p1 f1 =
∂x1
∂ f1

and p2 f1 =
∂x2
∂ f1

. Sensitivity of system variables to other uncertainties and

faults can be derived in a similar manner but for the lack of space we do not list all of them

in this section.

Sensitivity analysis of residuals: Consider the residual model given by equation (86).

We assume that the residual has lz state variables, and z ∈ Rlz is the residual state vector.

We can use the sensitivity of the system variables to uncertainties and faults derived in

the previous section to compute the sensitivity of the residual to faults and uncertainties,

represented by ψ , as:

˙̂pψ =
∂ ĝ
∂ z

p̂ψ +
∂ ĝ
∂y

qψ

∂ r
∂ψ

=
∂ r
∂ z

p̂ψ +
∂ r
∂y

qψ ,

(14)

where ∂ ĝ
∂ z ∈ Rlz×lz , ∂ ĝ

∂y ∈ Rlz×ly , ∂ r
∂ z ∈ Rlz , ∂ r

∂y ∈ Rly and p̂ψ = ∂ z
∂ψ
∈ Rlz . For the running

example, the fault diagnosis toolbox generates four MSOs and a residual from each MSO.

The four residuals are

ż11 =−z11 +u1

r1 = y1− z11

ż22 = y1−2z22 +u2

r2 = y2− z22

(15)
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ż31 =−z31 +u1

ż32 = z31−2z32 +u2

r3 = y2− z32

r4 = y1− ẏ2−2y2 +u2 (16)

The first three residuals are in integral causality and the last one is in derivative causality.

As an example, the sensitivity of the first residual r1 to δ1 is derived as:

∂ r1

∂δ1
= p1δ1, (17)

where p1δ1 dynamic equation is presented in (11).

3.3.1.1 Detectability Ratio

We use sensitivity analysis to compute the effects of uncertainties and faults on the

residuals. It is assumed that the fault magnitude and uncertainties are small and approxi-

mately constant over time. Ideally, in no fault situations all residuals will have a value of

zero. A first order linear approximation of the residual with respect to the set of faults F

and uncertainties ∆ is given by:

r(y,u)≈
l f

∑
i=1

∂ r
∂ fi

fi +
lδ

∑
j=1

∂ r
∂δ j

δ j, (18)

where l f is the cardinality of F and lδ is the cardinality of the set of uncertainties, ∆. The

partial derivatives ∂ r
∂ fi

and ∂ r
∂δ j

are computed using (14). Note that if a residual r is not

sensitive to a fault or uncertainty then the corresponding partial derivative is zero.

When quantifying the detectability performance of a residual r with respect to a fault

fi the relative effect of the fault is compared to the total effect of the uncertainties ∆. Since

the actual magnitudes of the fault and uncertainties are unknown, the maximum values

of the magnitude of uncertainties and minimum magnitudes of a fault fi are used for the
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calculations. This gives us the worst case scenario of the difficulty in detecting a fault. We

define a quantitative measure of detectability performance as follows.

Definition 10. (Detectability Ratio) Given a dynamic system (1) the detectability ratio of a

fault fi for a residual r presented in (86) is defined as:

D( fi|r) =

∣∣∣ ∂ r
∂ fi

min( fi)
∣∣∣∣∣∣ ∂ r

∂ fi
min( fi)

∣∣∣+ lδ
∑
j=1

∣∣∣ ∂ r
∂δ j

max(δ j)
∣∣∣ , (19)

If ∂ r
∂ fi

= 0 then D( fi|r) = 0.

Note that we assume that each fault fi and uncertainty δi have known lower and upper

bounds magnitudes:

min( fi)≤ | fi| ≤max( fi)

min(δi)≤ |δi| ≤max(δi).

(20)

If the maximum magnitude of a fault fi is unknown, then max( fi) = ∞. The detectability

ratio has a value in the interval [0,1], where 0 corresponds to the situation where the residual

is not sensitive to the fault fi and 1 if there are no uncertainties affecting the residual’s

ability to detect the fault. For example, consider u1 = sin(t), u2 = cos(t), with a maximum

amplitude of 1% for each parameter and sensor uncertainty, and min( f2) = 1, in the running

example in equation (2). The detectability ratio of f2 given residual rd in equation (6) is

D( f2|r) = 0. This is not surprising because rd is an analytical redundancy relationship

between u1, y1 and ẏ1 and, therefore, it is not sensitive to the second sensor fault. If the

effect of a fault, f , is larger than the total effect of all the uncertainties then D( f |r)> 0.5,

which means that the fault is detectable.

3.3.1.2 Hybrid Residuals

Sensitivity of system measurements to δ1 and f1 are presented in equation (12) and (13)

respectively. We derive sensitivity of system variables to δ2 and δ3 in a similar manner as
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follows.
ṗ2δ2 =−2p2δ2−2x2

∂y1

∂δ2
= 0

∂y2

∂ f1
= p2δ2,

(21)

where p2δ2 =
∂x2
∂δ2

.
∂y1

∂δ3
= x1

∂y2

∂δ3
= 0.

(22)

Using equations (12), (13), (21), and (22), we can derive the detectability ratios of

fault f1 for the four residuals generated by the fault diagnosis toolbox in equation (15) and

equation (16) as:

D( f1|r1) =

∣∣p1 f1 min( f1)
∣∣∣∣p1 f1 min( f1)

∣∣+ ∣∣p1δ1 max(δ1)
∣∣+ |x1 max(δ3)|

D( f1|r2) = 0

D( f1|r3) =

∣∣p2 f1 min( f1)
∣∣∣∣p2 f1 min( f1)

∣∣+ ∣∣p2δ1 max(δ1)
∣∣+ ∣∣p2δ2 max(δ2)

∣∣
D( f1|r4) = 0.

(23)

r1 and r3 are sensitive to fault f1 and, therefore, we can use each of them to detect f1.

However, these residuals do not represent the same detectability performances. r1 is not

sensitive to δ2, and its sensitivity to δ3 is a function of the state variable x1. On the other

hand, r3 is not sensitive to δ3.

A residual with higher detectability ratio is less likely to produce false alarms, is more

likely to report the fault and also because of higher sensitivity it can detect smaller fault

magnitudes. As we can see in equation (23), the detectability ratio of residuals vary in

different operating regions. It is possible to track the detectability ratio of residuals, and

choose the best residual for each of the operating regions of the system. If we use the

following hybrid residual for the system we will have a residual with maximum sensitivity
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to f1 and robustness to the uncertainties.

r =

{
r1 i f D( f |r1)≥ D( f |r3)

r3 otherwise.
(24)

3.3.1.3 Isolability Ratio

In typical diagnosis applications, fault detection is followed by fault isolation. To iso-

late a fault fi from the other faults in the system, we need a residual that is sensitive to

fault fi but invariant or robust to other faults and uncertainties. However, the effects of

faults and uncertainties in the residuals are unknown, and we have to, like before, estimate

them using sensitivity analysis. Making the single fault assumption, we consider that only

one of the possible faults occurs, and we want to quantify the performance of each of the

residuals to isolate that fault from the others. The magnitudes of the possible faults and un-

certainties are unknown, therefore, to quantify the performance of residual r to isolate fault

fi from another fault f j, the minimum magnitude of fi and the maximum magnitude of f j

and uncertainties are considered. In other words, the other fault f j is treated as an uncer-

tainty. Then, the isolability ratio is defined, using equation (18) as a quantitative measure

of isolation performance as follows.

Definition 11. (Isolability Ratio) Given the dynamic system (1) the isolability ratio for fault

fi from another fault f j, using residual r is defined as:

I( fi, f j|r) =

∣∣∣ ∂ r
∂ fi

min( fi)
∣∣∣∣∣∣ ∂ r

∂ fi
min( fi)

∣∣∣+ ∣∣∣ ∂ r
∂ f j

max( f j)
∣∣∣+ lδ

∑
k=1

∣∣∣ ∂ r
∂δk

max(δk)
∣∣∣ , (25)

I( fi, f j|r) > 0.5 implies that the effect of a fault fi on r is always larger than the total

effects of the fault f j and the combined uncertainties present in the system. Therefore, we

can use r to isolate fi from f j. Note that if r is sensitive to f j and we do not know the

maximum magnitude of f j, i.e. max( f j) = ∞ , then r cannot be used to isolate fi from f j
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and I( fi, f j|r) = 0. The isolability ratio is simply a generalization of the detectability ratio.

In fact, the detectability ratio of a fault fi is the isolability ratio of fi from the no fault case.

In this subsection, we used a derivative-based sensitivity analysis to quantify the perfor-

mance of residuals. The derivative-based approach is the most common method to perform

sensitivity analysis. The derivative-based approach is easy to understand intuitively and

computationally efficient to implement. However, the derivative-based approach only de-

termines the effect of uncertainties at the single point at which the derivative is constructed.

For linear systems, the effect of uncertainties in other operation points can be easily deter-

mined by extrapolation. For nonlinear system this can lead to a significant error. Moreover,

the derivative-based approaches perform well when the there is no noise in the measured

signals. To overcome to these problems, we investigate the application of a global sensi-

tivity analysis method [175] which is based on exploring the uncertainty space in multiple

points in the next subsection. In comparison with the derivative-based approach, global

sensitivity approach increases the computational complexity but generates more robust re-

sults for residual quantification.

3.3.2 Global sensitivity analysis approach

The global sensitivity analysis approach computes the effects of the faults or uncertain-

ties, represented by ψ , on residual, r, as:

Sr
ψ =

Var(r)−E[Var(r|ψ)]

Var(r)
(26)

Var(r)−E[Var(r|ψ)] is the expected reduction in the variance of residual, r, when param-

eter, ψ is fixed. Sr
ψ is called the first order sensitivity index and is always between 0 and

1 [175]. Several researchers have used global sensitivity analysis to introduce different

measures for quantifying uncertainties in dynamic systems. Iman and Hora [90] defined

uncertainty importance of a parameter Xi, Ii, as the expected reduction in the variance of
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model output, Y , when Xi is fixed:

Ii =
√

Var(Y )−E[Var(Y |Xi)] (27)

Sankararaman et al. [156] used total effect index, ST
i , to rank the parameters uncertainty

effects in prognostics.

ST
i = 1− E[Var(Y |Xi)]

Var(Y )
, (28)

Note that in the derivative-based approach, the sensitivity of a residual with respect to

a fault or uncertainty was independent of the other faults and uncertainties. However, the

global sensitivity analysis considers the total effects of different sources of uncertainty and

generates more accurate results. Moreover, by using derivative-based sensitivity analysis,

we had to assume that the fault magnitude and uncertainties are small and approximately

constant over time. To overcome to these problems, we will use global sensitivity anal-

ysis to define the global detectability ratio and global isolability ratio and develop robust

fault detection and isolation methods with high performance in the presence of noise and

uncertainty.

Consider the running example represented by equation (2) and residual r1 represented

by equation (15). We consider the scenario where the initial state is X0 = (2,1.5), each un-

certainty has normal distribution with zero mean and 0.1 standard deviation; δi =N(0,0.1) :

i ∈ {1,2,3}, and there is no fault in the system; f1 = f2 = 0. Figure 3 represents Scatter-

plots of r1 versus uncertainties δ1, δ2 and δ3. Figure 3 shows r1 is sensitive to δ1 and δ3 but

is not sensitive to δ2. We can use Figure 2 to explain the observation. Residual r1 represents

the redundancy relationship between u1 and y1 and it is expected to be insensitive to δ2. In

this work, we are interested to study the effect of faults and uncertainties in the residuals

and develop reliable measures to quantify the sensitivity of residuals to uncertainties and

faults for robust residual selection. The effects of the faults or uncertainties on residuals

can be computed using global sensitivity analysis. For residual r1 in the running example,
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Figure 3: Scatter-plots of residual r1 versus δ1, δ2, δ3 when f1 = f2 = 0.

we can use equation (26) to derive the sensitivity of r1 to δ1, δ2 and δ3:

Sr1
δ1
= 0.509

Sr1
δ2
= 0

Sr1
δ3
= 0.516 (29)

These results validate our observation in the scatter-plot in Figure 3.

Consider the case where in addition to the uncertainties, there is a fault f1 = N(1,0.1)

in the running example. Figure 4 shows the scatter-plots of residual r1 versus δ1, δ2, δ3 and

f1 in this scenario. Figure 4 shows that r1 is very sensitive to f1 and can be used to detect

it. We can confirm this observation by computing first order sensitivity index of residual r1

with respect to f1 and uncertainties:

Sr1
δ1
= 0.029

Sr1
δ2
= 0

Sr1
δ3
= 0.075

Sr1
f1
= 0.92

(30)

Note that in the presence of fault Sr1
δ1

and Sr1
δ3

decrease significantly. This is an important

difference between using global sensitivity analysis versus derivative-base analysis. In the

derivative-base approach, the sensitivity of a residual with respect to a fault or uncertainty

was independent from the other faults and uncertainties. However, the global sensitivity
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Figure 4: Scatter-plots of residual r1 versus δ1, δ2, δ3 and f1.
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Figure 5: Scatter-plots of residual r2 versus δ1, δ2, δ3 and f1.

analysis considers the total effects of different sources of uncertainty and generates more

accurate results.

In addition to r1, the fault diagnosis toolbox generates three more residuals for the

running example (see equations (15) and (16)). Figure 5 represents the scatter-plots of

residual r2 versus δ1, δ2, δ3 and f1. We can see from the scatter-plots that r2 is not sensitive

to f1 and can not be used to detect this fault. We validate this observation by computing

sensitivity indexes of residual r2 with respect to the fault and uncertainties:

Sr2
δ1
= 0

Sr2
δ2
= 0.43

Sr2
δ3
= 0.45

Sr2
f1
= 0

(31)
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3.3.2.1 Global Detectability Ratio

In the previous subsection, we used derivative-based sensitivity analysis to quantify the

detectability performance of a residual r with respect to a fault fi. We compared the effect

of the fault to the total effect of the uncertainties ∆. Using derivative-based, we had to

make several limiting assumptions. To develop a more general approach, we use global

sensitivity analysis to define the global detectability ratio as follows.

Definition 12. (Global Detectability Ratio) Given a dynamic system (1) the global de-

tectability ratio of a fault fi for a residual r (86) is defined as:

GD( fi|r) = Sr
fi, (32)

where ∀ f j 6= fi =⇒ f j = 0.

In fact, to compute the global detectability ratio of a fault fi for a residual r, we assume

that fi is the only possible fault in the system and consider the global sensitivity of r to fi

as GD( fi|r).

If Sr
fi = 0 then GD( fi|r) = 0. The global detectability ratio has a value in the interval

[0,1], where 0 corresponds to the situation where the residual is not sensitive to the fault

fi and 1 if there are no uncertainties affecting the residual’s ability to detect the fault. For

example, consider the running example in equation (2) with a δi =N(0,0.1) for i∈{1,2,3},

and f1 = N(1,0.1). The detectability ratio of f1 given each of the residuals in equations

(15) and (16) are

GD( f1|r1) = 0.92

GD( f1|r2) = 0

GD( f1|r3) = 0.92

GD( f1|r4) = 0
(33)

This is not surprising because r2 and r4 are analytical redundancy relationships between y1,

u2 and y2 and, therefore, they are not sensitive to the actuator fault, f1. On the other hand,
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r1 and r3 perform equally well in detecting f1. This is because we considered the same

distribution for δ2 and δ3.

3.3.2.2 Global Isolability Ratio

Like the previous subsection, we follow fault detection by fault isolation. To isolate

a fault fi from fault f j in the system, we need a residual that is sensitive to fault fi but

invariant or robust to f j and uncertainties. However, the effects of faults and uncertainties

in the residuals are unknown, and we have to, like before, estimate them using sensitivity

analysis. Making the single fault assumption, we consider that only one of the possible

faults occurs, and we want to quantify the performance of each of the residuals to isolate

that fault from the others. The size and time-variant behavior of the possible faults and

uncertainties are unknown, therefore, to quantify the performance of residual r to isolate

fault fi from another fault f j, the distribution of fi, f j and the uncertainties in the system

are considered. Then, the global isolability ratio is defined, as a quantitative measure of

isolation performance as follows.

Definition 13. (Global Isolability Ratio) Given the dynamic system (1) the global isolabil-

ity ratio for fault fi from another fault f j, using residual r is defined as:

GI( fi, f j|r) = Sr
fi, (34)

where ∀ fk 6= fi and fk 6= f j =⇒ fk = 0.

To compute the global isolability ratio of fi from f j for a residual r, we assume that fi

and f j are the only possible faults in the system and consider the global sensitivity of r to

fi as GI( fi, f j|r).

GI( fi, f j|r)> 0.5 implies that the effect of a fault fi on r is always larger than the total

effects of the fault f j and the combined uncertainties present in the system. Therefore,

we can use r to isolate fi from f j. The isolability ratio is simply a generalization of the
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detectability ratio. In fact, the detectability ratio of a fault fi is the isolability ratio of fi

from the no fault case. Consider the running example. The global isolability ratio of fault

f1 from fault f2 = N(1,0.1) for each of the generated residuals is as follows.

GI( f1, f2|r1) = 0.88

GI( f1, f2|r2) = 0

GI( f1, f2|r3) = 0.37

GI( f1, f2|r4) = 0
(35)

We can see that r1 is the only reliable residual to isolate f1 from f2.

3.4 Fault Detectability and Fault Isolability in the Presence of Noise and

Uncertainty

As we mentioned earlier, residuals represent redundancies in the system equations, and

they can form the basis for fault detection and isolation. Ideally, each residual should

compute to a value of zero in the fault-free case, and residuals sensitive to a fault become

nonzero when the fault occurs. In subsection 3.1.4, we used a structural approach to define

fault detectability and fault isolability. Due to model uncertainties and measurement noise,

the residual may deviate from zero even in the fault-free case. Therefore, we go beyond

previous work [22, 107], and define fault detectability and isolability taking into account

noise and uncertainties in the system using detectability and isolability ratios.

Definition 14. (Detectable fault) A fault f ∈ F is detectable in system S if there is a residual

r, such that D( f |r)> 0.5.

In this definition, we consider a fault detectable if the effect of fault on the residual

is greater than the effects of noise and uncertainties on the residual. In this case, we can

design a proper threshold to distinguish normal operation from faulty scenarios. Note that

in Definition 21, we can replace detectability ratio with global detectability ratio based on

the application. Fault isolability in the presence of noise and uncertainties is defined as:
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Definition 15. (Isolable fault) A fault fi ∈ F is isolable from fault f j ∈ F if there exists

residual r, such that I( fi, f j|r)> 0.5.

In this definition, we consider a fault fi isolable from fault f j, if there is a residual r

where the effect of fi on r is greater than the effects of f j, noise and uncertainties in the

model on r. Therefore, we can design a threshold in a way that the residual passes the

threshold only when fi occurs. Note that in Definition 23, we can replace isolability ratio

with global isolability ratio based on the application.

3.5 Residual selection problem

In this section, our approach for selecting a subset of residuals for fault detection and

isolation is presented.

3.5.1 Off-line Residual Selection

The total number of residuals that can be derived given a system model and a set of

measurements grows exponentially as a function of the number of measurements (see equa-

tion (8)). Therefore, computing the detectability and isolability ratios of all the residuals

on-line, is computationally expensive and in many cases infeasible. When the system’s be-

havior trajectory is known beforehand, the detectability and isolability ratios of the resid-

uals can be computed off-line and the minimum number of residuals that guarantees the

specified required performance can be selected. This method minimizes the on-line com-

putational cost.

The residual selection problem was presented in (9). As discussed, the residual selec-

tion problem is equivalent to a set covering problem, and, there is no polynomial algorithm

for deriving the minimum set of residuals that meet the detectability and isolability per-

formance constraints. However, formulating the problem as a binary integer linear pro-

gramming (BILP) problem at least provides us with a systematic approach for finding the
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minimal number of residuals that satisfy the required performance criteria. There are sev-

eral tools1 available for solving BILP optimization problems in an efficient manner.

Definition 16. (Binary Integer Linear Programming Problem (BILP)) A Binary integer

linear programming problem is a special case of an integer linear programming (ILP)

optimization problem in which some or all the unknown variables to be solved for are

required to be binary, and the constraints in the problem and the objective function, like

ILP, are linear.

The mathematical formulation of BILP is as follows.

mincT x

Ax≤ b,

∃xb ⊂ x,

∀xk ∈ xb⇒ xk ∈ {0,1}.

(36)

Vector c is the cost weights associated with the variables, x that have to be minimized

using the linear optimization approach. Matrix A and vector b define the linear constraints

imposed on the optimization problem, Ax ≤ b, and xb represents a subset of the variable

set, x, that are binary valued [182].

To formulate problem (9) as a BILP problem a binary variable xi for residual ri is

defined as follows.

xi =

{
1 i f ri ∈ R∗

0 i f ri /∈ R∗,
(37)

where R∗ is the answer to problem (9). To minimize the number of residuals the cost

vector is considered c = Ilr∗1, where lr is the number of residuals in R. c = Ilr∗1 implies

that the optimization problem considers the same weight for each residual, and minimizes

the total number of residuals. In the running example, there are four residual candidates
1For example, see http://www.mathworks.com/help/optim/ug/

mixed-integer-linear-programming-algorithms.html in the Matlab™linear integer
programming toolbox.
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(see equations (15) and (16)) and, therefore, cT = [1 1 1 1 ]. Assume that for fault fl a

set of residuals Rl = {rl1,rl2, ...,rlg} has detectability ratio above the minimum required

detectability ratio for operating region m. To have an acceptable detectability performance

for fl in this operating region at least one of these residuals has to be in the final set R∗.

Mathematically speaking, the following constraint has to be considered.

i=g

∑
i=1
−xl i ≤−1. (38)

To solve the isolability problem, the same procedure is followed. Consider a case that

R fm fn = {rmn1,rmn2, ...,rmnh} is the set of residuals with isolability ratio of fault fm from

fault fn above the minimum isolability requirement in an operating region m. To have

acceptable isolability performance of fm from fn in this operating region the following

constraint has to be considered.
i=h

∑
i=1
−xmni ≤−1, (39)

where xmni is the binary variable associated with residual rmni. Therefore, when there are

p faults and q operating regions in the system p2q constraints have to be considered in

the optimization problem. The goal is to minimize the number of selected residuals while

satisfying these constraints at the same time.

As an example, consider the running example when the minimum required detectability

ratio and minimum required isolability ratio are Dreq = Ireq = 0.8, and the inputs to the

system are u1 = sin(0.2t) and u2 = cos(0.2t). Using Definition 9, five operating regions

are detected for the system in time interval [0s 10s], and the optimal residual selection

problem can be formally represented as:
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min
i=4
∑

i=1
xi Subject to :

−



1 1 1 1

0 1 1 1

1 0 0 0

0 1 1 1

1 1 1 0

0 1 1 1

1 0 0 0

0 1 1 1

1 0 1 0

0 1 1 1

1 0 0 0

0 1 1 1

1 0 1 0

0 1 1 1

1 0 0 0

0 1 1 1





x1

x2

x3

x4


≤



−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1

−1


∀i ∈ {1,2,3,4} ⇒ xi ∈ {0,1}.

(40)

Matlab function bintprog is used to solve this optimization problem and obtained the

result: x = [1,1,0,0]. This means our diagnostic algorithm minimally needs r1 and r2 to

achieve the required performance for the given trajectory. These two residuals can be used

for on-line residual selection approach. For example, to detect f1 the following on-line

residual selection approach can be used.

r =

{
r1 i f D( f1|r1)≥ D( f1|r2)

r2 otherwise.
(41)
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The same approach can be applied to select residuals to detect f2, isolate f1 from f2 and

isolate f2 from f1 using D( f2), I( f1, f2) and I( f2, f1), respectively.

3.5.2 Dynamic Residual Selection

The approach discussed in the previous subsection assumed the system behavior tra-

jectory is known, and used a BILP approach to derive the minimum number of residuals

that guarantee the required performance across the different operating regions of system

behavior. In this subsection, an algorithm for residual selection when the system trajectory

is not known beforehand is proposed.

Algorithm 1 Dynamic Residual Selection

1: input: R, R∗(k), S, Tr, k
2: output: R∗(k+1)
3: if k = 0 then
4: for each fi ∈ F do
5: R∗(i, i,1)←maxD(R(i, i,0))
6: end for
7: for each f j& fk ∈ F do
8: R∗(i, j,1)←max I(R(i, j,0))
9: end for

10: else
11: for each fi ∈ F do
12: if D(R∗(i, i,k))< Tr then
13: R∗(i, i,k)←maxD(R(i, i,k))
14: end if
15: end for
16: for each f j& f j ∈ F&i 6= j do
17: if I(R∗(i, j,k))< Tr then
18: R∗(i, j,k)←max I(R(i, j,k))
19: end if
20: end for
21: end if

The algorithm achieves the required detectability and isolability performances by switch-

ing to a new set of residuals, when one or more residuals performances drop below the
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threshold. The algorithm starts by computing the detectability and isolability ratio of all

the residuals at the start of system operation, it selects the best residual to detect each fault

and the best residual to isolate each fault from every other fault, taking into account their

detectability and isolability ratios at the initial point. The algorithm keeps track of the

selected residuals on-line and if a residual’s performance drops below the required perfor-

mance, the algorithm recomputes the performances of all the residuals at that point and

replaces the residuals, whose performance has fallen below the pre-specified threshold, by

a subset that provides the highest performance gain at this point.

In Algorithm 1, R∗(i, i,k) is the residual that our algorithm uses to detect fault fi, but at

sample time k its performance falls below the pre-specified threshold, Tr. maxD(R(i, i,k))

is the residual in R that provides maximum detectability ratio to detect fi at sample time

k. Similarly, R∗(i, j,k) was the selected residual to isolate fault fi from fault f j at sample

time k. max I(R(i, j,k)) represents the new residual in R with maximum isolability ratio

for faults fi and f j at sample time k. Dynamic residual selection tracks the detectability and

isolability ratios of the selected residuals on-line, and replaces the residuals that do not per-

form well with a new set of residuals that provide the maximum increase in performance.

This approach helps us achieve the required robustness to uncertainties and sensitivity to

the faults in each region of system operation but there is no guarantee that the set of resid-

uals being used is minimum. The advantage of this method is that the algorithm does not

need to know the trajectory of the system behavior beforehand, and the method guarantees

the required robustness in fault detection and isolation for all the system trajectories. Note

that in both off-line residual selection algorithm and dynamic residual selection algorithm,

we can replace detectability ratio and isolability ratio with global detectability ratio and

global isolability ratio respectively.
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3.6 Case Studies

3.6.1 The Reverse Osmosis System

The Advanced Water Recovery System (AWRS) is a part of the Advanced Life Support

(ALS) system, which was designed and built at the NASA Johnson Space Center for long

duration manned missions. During the mission, the AWRS converts wastewater in micro-

gravity conditions to potable water for the astronauts. The block diagram of the AWRS is

shown in Figure 6. The Biological Water Processing System (BWP) is designed to remove

organic impurities, whereas the Reverse Osmosis System (RO) is designed to remove in-

organic impurities from the wastewater. After these two stages, about 85% of the water is

clean enough to be fed to the Post Processing System that employs ultraviolet light treat-

ment to remove microbial matter. The remaining 15% containing mostly sludge is sent

through the Air Evaporation System (AES), which uses an evaporation and condensation

processes to recover the water. In this work, our residual selection method is applied to the

RO system, whose behavior includes complex nonlinearities.

Wastewater 

Tank  

Biological 

Water 

Processing 

System (BWP)  

Drinking-water 

Tank 

Reverse 

Osmosis 

System (RO) 

Post Processing 

System 

Air Evaporation 

System (AES) 

85% 

15% 

Figure 6: Advanced Water Recovery System (AWRS) [17].
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Figure 7: Reverse Osmosis System (RO).

3.6.1.1 The state space model for the RO system

The RO system, shown in Figure 7, operates in three modes that are controlled by a

three-way valve. In this chapter, a diagnoser is developed for the first mode of operation,

where the water circulates in the longer loop. In Chapter V, we develop a hybrid diagnoser

for all the operating modes of the system. The first mode of the RO system can be modeled

by a sixth order lumped parameter state space model, with state variables: f f p, the volume

flow rate generated by the pump, ptr, the pressure of the fluid in the tubular reservoir, frp,

the volume flow rate due to the recirculation pump, pmemb that represents the pressure of

fluid at the membrane through which the clean water passes (but leaves the impurities be-

hind), and two abstract variables, eCbrine and eCk that capture the dynamics of the impurities

in the fluid as it circulates through the primary RO loop.

The feed pump pushes the partially purified water from the BWP into the main loop of

the RO system at a nominal pressure p f p. The rate of change of the volume flow rate, f f p is

given by: ḟ f p =
∆p f p
I f p

, where ∆p f p is drop in pressure of the fluid across the feed pump and

I f p represents the inertia of the rotating elements of the feed pump. Taking into account

the pump internal resistance to flow, R f p, its uncertainty, δR f p , and the efficiency decrease

in the feed pump, which is modeled by a multiplicative factor f f , the pressure drop can be
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computed, ∆p f p = p f p(1− f f )−R f p(1+δR f p) f f p− ptr and the first state equation can be

derived as:

ḟ f p =
1

I f p
(−R f p(1+δR f p) f f p− ptr + p f p(1− f f )). (42)

The tubular reservoir with capacity value, Ctr, acts as a storage capacity that helps

the system to keep water circulation rate steady. The net volume flow rate to the tubular

reservoir, ftr, is equal to the algebraic sum of the volume flow rates into and out of the

tubular reservoir. The flow in is f f p plus the flow from the membrane module that can

be computed as the pressure difference between the membrane and the tubular reservoir,

pmemb− ptr, over the resistance of the pipe from the membrane module to the tubular reser-

voir, Rreturnl(1+δreturn), where δreturn is the uncertainty associated with the pipe resistance.

The output volume flow rate from the tubular reservoir is equal to the recirculation pump

volume flow rate, frp. Using these the net volume flow rate to the tubular reservoir can be

computed as ftr = f f p +
pmemb−ptr

Rreturnl (1+δreturn)
− frp. Considering the uncertainty associated with

the tubular reservoir capacitance, δCtr , the second state equation can be derived as:

ṗCtr =
1

Ctr(1+δCtr)
( f f p +

pmemb− ptr

Rreturnl(1+δreturn)
− frp). (43)

The recirculation pump boosts the liquid pressure by prp. The rate of change of pump’s

fluid flow rate, ḟrp, is given by ( ḟrp =
∆prp
Irp

), where ∆prp represents drop in the fluid pressure

inside the pump and Irp represents the inertia of the rotating elements of the pump. The

pump’s internal resistance includes uncertainties, and is represented as Rrp(1+δRrp). The

efficiency decrease in the recirculation pump, fr, is the second fault parameter in the RO

system. The pressure at the pump output can be computed as a function of the membrane

module pressure, pmemb and the pressure drop in the pipe from the pump to the membrane

module, R f orward(1+ δ f orward) frp, where R f orward(1+ δ f orward) represents resistance of

the pipe from the recirculation pump to the membrane (with the nominal value R f orward

and associated uncertainty δ f orward). From these components, the third state equation is
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derived as:

ḟrp =
1

Irp
(−Rrp(1+δRrp) frp−R f orward(1+δ f orward) frp− pmemb + prp(1− fr)). (44)

The membrane is a key component for removing particulate matter from the water in

the RO system. The recirculation pump pushes the input water at high pressure onto the

membrane. The purified water that comes out of the other side of the membrane is fed to

the Post Processing System, and the remaining water recirculates in the RO primary loop.

As more and more water passes through the membrane, the water remaining in the loop has

an increased concentration of impurities. At the same time particulate matter that collects

on the membrane, increases its resistance to flow. The membrane chamber can be modeled

as a combination of a capacity, Cmemb, and a resistance, Rmemb. The rate of membrane

pressure variation, ṗmemb, is given by (ṗmemb =
fmemb

Cmemb
), where fmemb is the net volume flow

rate to the membrane.

The uncertainty associated with Cmemb is modeled with an unknown parameter, δCmemb ,

and the membrane capacitance including this uncertainty is represented as: Cmemb(1 +

δCmemb). In previous work, Carl et al. [27] empirically derived membrane resistance:

Rmemb = 0.202(4.137 ∗ 1011(eCk−12000
165 + 29)). Note that Rmemb increases as the impuri-

ties in the water, and, therefore, the water conductivity, eCk, increases. The membrane

clogging factor fm is the third fault in the system, implying that its resistance is higher

than nominal, i.e., Rmemb(1+ fm). We compute the net volume flow rate to the membrane,

fmemb, as an algebraic sum of the input volume flow rate from the recirculation pump, frp,

and the output volume flow rates to the post processing system, fout =
pmemb

Rmemb(1+ fm)
, and the

return volume flow rates to the tubular reservoir, ppmemb−ptr
Rreturnl (1+δreturn)

. Using this the fourth state

equation is derived,
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Table 1: RO System Parameters and Inputs

Parameter Name Value and unit (SI)
Feed pump inertance I f p 0.1 N.s2/m5

Recirculation pump inertance Irp 2 N.s2/m5

Feed pump energy dissipation R f p 0.1 N./m5

Recirculation pump energy dissipation Rrp 0.1 N./m5

Conductivity capacitor Ck 565 m5/N
Hydraulic resistance R f orward 70 N./m5

Capacitance of the tubular reservoir Ctr 1.5 m5/N
Hydraulic resistance (long loop) Rreturnl 15 N./m5

Hydraulic resistance (short loop) Rreturns 8 N./m5

Hydraulic resistance RreturnASE 5 N./m5

Capacitance of the membrane module Cmemb 0.6 m5/N
Brine capacitor Cbrine 8 m5/N

Feed pump nominal pressure p f p 1 N./m2

Recirculation pump nominal pressure prp 160 N./m2

ṗmemb =
1

Cmemb(1+δCmemb)
( frp−

pmemb

Rmemb(1+ fm)
− pmemb− ptr

Rreturnl(1+δreturn)
). (45)

To complete the dynamic state space model, the conductivity of the fluid is represented

as a state variable, making the assumption that the conductivity of the water increases every

cycle through the flow loop, with the increase being proportional to the flow of liquid out

of the membrane. This generates the two last state equations:

ėCbrine =
pmemb− ptr

1.667∗10−8CbrineRreturnl

ėCk =
frp

Ck
(6eCbrine +0.1)/(1.667∗10−8),

(46)

where Cbrine and Ck are conductivity parameters and are represented in Table 1. The system

inputs are the feed pump pressure, p f p and the recirculation pump pressure, prp. More

details of the RO modeling scheme are presented in [17, 27, 169].
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There are five sensors in the system. These sensors measure y1 = ptr, y2 = pmem, y3 =

fout , y4 = eCbrine, and y5 = eCk. The system inputs, p f p and prp, are assumed to be known

as well. The RO system’s parameters and input signals in this case study are presented in

Table 1.

3.6.1.2 Residual generation and residual selection for the RO system

Figure 8 shows the schematic for residual generation and selection in the RO system

case study. Running the fault diagnosis toolbox [68], produces 380 residuals for the RO

system. For efficiency, our residual selection algorithm selects a minimum subset of resid-

uals with an acceptable robustness performance. As it is shown in Figure 8, the residual

selection algorithm requires 1) the set of residuals, 2) the minimum required robustness

performance, 3) the system trajectory, 4) the upper bounds of parameter uncertainties, 5)

the lower and the upper bounds of system faults, as the inputs.

For this case study, the minimum required detectability and isolability ratios are consid-

ered to be 0.8. To select the residuals, the algorithm needs to know the system trajectory.

In this case study the system inputs are p f p = 1N./m2 and prp = 160N./m2 during the sim-

ulation time T = [0s 10800s]. The minimum and maximum fault amplitude are 25% and

100% deviation, respectively. For example, when the efficiency decrease occurs in the feed

pump, the pump pressure, which is equal to 1 N./m2 in the nominal operation, is expected

to be 0 ≤ p f p ≤ 0.75. For our experiment, a 1% maximum uncertainty is assumed for

all uncertain parameters. Therefore, 0.099 ≤ R f p ≤ 0.101 and 1.485 ≤Ctr ≤ 1.515. Our

algorithm selects three residuals that guarantee the required detectability and isolability

performance for the given trajectory.

r1 = y2− y3 ∗0.202(4.137∗1011(
y5−12000

165
+29)). (47)
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Figure 8: Residual generation and selection for the RO system.

z21 = (ẏ2 +
y2

0.202(4.137∗1011(y5−12000
165 +29))

+
y2

Rreturnl

+

y2− z22

CmembR f orward
))(

1
1

CmembR f orward
+ 1

Rreturnl

)

ż22 =
1

Irp
(u2−Rrpz22−

1
R f orward

(z21 + z22− y2))

r2 = y1− z21.

(48)

z31 = (R f orward)(Cmembẏ2 +
y2

0.202(4.137∗1011(y5−12000
165 +29))

+
y2− z32

Rreturnl

− z32− y2

R f orward
)

ż32 =
1
z2
∗ (z3 +

y2− z32

Rreturnl

− 1
R f orward

(z2 + z31− y2))

ż3 =
1

I f p
(−R f pz3− z2 +u1)

r3 = y1− z31.

(49)

The detectability ratios of the system faults fm, fr, and f f using the selected residuals r1,

r2 and r3 are shown in Figure 9 for the assumed behavior trajectory in the phase 1 operation

of the RO system. The detectability ratio of fault fm is above the pre-specified performance
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threshold, Dreq = 0.8, for residual r1. The detectability ratio of fault fr is above the pre-

specified threshold for residual r2. Finally, r3 provides the required performance to detect

f f .
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Figure 9: Detectability ratios of faults f f , fm and fr using r1, r2 and r3 .

Figure 10 shows the performances of the selected residuals for fault isolation. The

plots with blue background represent the isolability ratios that are above the pre-specified

performance threshold, Ireq = 0.8, for the given trajectory. The isolability ratios of fault fm

from faults f f and fr are above the pre-specified threshold, Ireq, using r1. r2 can be used

to isolate fr from f f and fm, and r3 is a reliable candidate to isolate f f from fm and fr

robustly. In this example, the choice of the three residuals is easily justified. The first fault

fm can be detected and isolated from fr and f f using residual r1. The second fault, fr can

be detected and isolated from the two other faults using r2. Finally, r3 provides the required

performance to detect and isolate fault f f .

65



0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
m

,f
r
|r

1
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
m

,f
r
|r

2
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
m

,f
r
|r

3
)

I
req

0 5000 10000
0

0.5
1

Time(s)

R
es

id
ua

ls
 P

er
fo

rm
an

ce
s 

 f
or

 F
au

lt 
Is

ol
at

io
n

 

 

Ir(f
m

,f
f
|r

1
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
m

,f
f
|r

2
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
m

,f
f
|r

3
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
r
,f

m
|r

1
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
r
,f

m
|r

2
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
r
,f

m
|r

3
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
r
,f

f
|r

1
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
r
,f

f
|r

2
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
r
,f

f
|r

3
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
f
,f

m
|r

1
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
f
,f

m
|r

2
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
f
,f

m
|r

3
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
f
,f

r
|r

1
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
f
,f

r
|r

2
)

I
req

0 5000 10000
0

0.5
1

Time(s)

 

 

Ir(f
f
,f

r
|r

3
)

I
req

Figure 10: Isolability ratios of the system faults using r1, r2 and r3.

In this case study, three hundred and eighty residuals have been generated, but three

of them are enough to achieve the robustness performance. Higher detection and isolation

ratio thresholds may have required a greater number of residuals. Similarly, increasing the

levels of uncertainty in the model parameters may have required a higher number of resid-

uals. For example, if we consider the maximum uncertainty in the parameters 5% instead

of 1%, the algorithm selects five residuals to achieve the same robustness performance.

3.6.1.3 Fault detection and isolation in the RO system

In this section, the derived residuals that meet our detectability and isolability criteria

are applied for on-line diagnosis. In realistic situations, statistical tests are employed to

accommodate for modeling errors and measurement noise and reduce the false alarm rate

for detection and isolation. In previous work, Biswas et al. [18] developed a Z-test that

has produced high accuracy in detection tasks, while ensuring low false alarm rates. The

effectiveness of the residual selection scheme combined with a Z-test based fault detector

in detecting and isolating abrupt faults is demonstrated through different fault detection and
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Table 2: Fault Detection and Isolation Performance

Fault Fault Magnitude Detection Time Isolation Time
fm 0.25 0.1s 0.1s
fr 0.25 0.3s 0.3s
f f 0.25 0.4s 0.4s

isolation scenarios in the RO system. For all of our detection and isolation experiments,

the confidence level for the Z-test is 95%.

In the first scenario, an abrupt membrane clogging fault fm = 0.25 occurs at t = 5400s.

Figure 11 shows that r1, which has a high detectability ratio for fm, immediately changes

as fm occurs, but the other residuals as expected from the performance analysis do not react

to the fault. In another scenario, an abrupt actuator fault, fr = 0.25, occurs at t = 5400s.

Figure 11 shows that residual r2, which has a high detectability ratio for fr, jumps to a non

zero value, but the other residuals do not react in any significant way. Finally, consider the

case where an abrupt fault f f = 0.25 occurs at t = 5400s. Figure 11 shows the expected

result. Note that because of uncertainties in the system the residuals have a non zero value,

even when there is no fault in the system. Table 2 shows the fault detection and isolation

performance for each scenario.
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Figure 11: Residuals outputs in each fault scenario.

3.6.2 The Hot Water System

The hot water system is designed to provide hot water and energy for the heating system

of Lentz Public Health Center, Nashville, TN. The system consists of three identical vari-

able speed drive pumps with nominal pressure, pn = 51.15psi, nominal rotational speed

ωn = 1750rpm and nominal flow rate qn = 200gpm. The goal is to provide hot water

with a required pressure to each of the building three floors. The operators can adjust the

pump speeds to control the water pressure. There are two differential pressure sensors in

the system. The first sensor is located at the output of the hot water system and measures

the differential pressure in the in the entire system, ph. The second one is located in the

hydraulically most remote point of the building heating water piping system and measures

the differential pressure in the third floor, pt .

The hot water system also has three sensors that measure the rotational speed of each

pump. The sampling rate is 1 sample per minute. In our experiment, we record the sensor

values for 10000 minutes. To validate our diagnosis algorithm, we create an artificial leak

by slightly opening a pressure relief valve in the system 7200 minutes after the start of

the experiment. We closed the valve after 100 minutes, so the system transits to normal

operation. The block diagram of the hot water system is shown in Figure 12 .

68



Table 3: Hot water System Parameters and Uncertainty Distributions

Parameter Name Value
Pump nominal pressure pn 51.51 psi

Pump nominal rotational speed ωn 1750 rpm
Pump nominal flow rate qn 200 gpm

Units Constant K 20
Viscosity compensation factor V 1

Specific gravity S 1
Pipe resistance (first floor) Ra 0.7165458 Lohms

Resistance uncertainty (first floor) δRa N(0,6.250977e−08)
Pipe resistance (third floor) Rb 0.7028942 Lohms

Resistance uncertainty (third floor) δRb N(0,6.452614e−08)

Pump 1

Pump 2

Pump 3

𝑦 4

Speed command

ω1

Speed command

ω2

Speed command

ω3

On/off

On/off

On/off

Differential pressure in the boiler 

room

𝑦 5

Differential pressure in the third 

floor

𝑦1

𝑦2

𝑦3

𝑅𝑎

𝑅𝑏

𝑞1

𝑞2

𝑞3

𝑞

Leak in the system

𝑞 𝑓

Figure 12: Hot water system.

Using the affinity laws [76], we can compute pump i flow rate at any given rotational

speed, ωi, as follows.

qi(ωi) = (
ωi

ωn
)qn. (50)

As we mentioned above, each pump has a tachometer to measure its rotational speed. We
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represent these measurements as

y1 = ω1 +δ1

y2 = ω2 +δ2

y3 = ω3 +δ3,

(51)

where yi represents measurement i and δi represents noise in the measurement. Figure 13

shows the first three measurements in the hot water system. We can see that during our

experiment, only one of the pumps is operating at each moment.

Figure 13: y1:3 in the hot water system.

The hot water system is a closed loop system. This means the flow rate at each given

point in the loop is equal to the total flow rate generated by the pumps.

q = q1 +q2 +q3, (52)
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where q is the system flow rate. Using the Lohm laws, we can derive the following equation

KV
√

ph

S
= Ra(1+δRa)q (53)

where K is a constant to correct different units of measure. In this case study, we represents

pressures in psi and flow rates in gpm and, therefore, K is equal 20. S is specific gravity, V

is viscosity correction factor, Ra is the total pipe resistance outside of the hot water system,

and δRa represents the uncertainty in Ra. As we mentioned earlier, ph is measured by a

sensor in the hot water system. We represent the fourth measurement, y4, and the noise in

the sensor, δ5, as

y4 = ph +δ4. (54)

A possible leak in the system decreases the flow rate. However, when there is no fault

in the system, the flow rate stay the same in the entire loop and the flow rate in the third

floor is equal to the flow rate in the hot water system.

qt = q, (55)

where qt is the flow rate in the third floor. The Lohm laws can be applied to derive the

following equation for the third floor.

KV
√

pt

S
= Rb(1+δRb)qt (56)

where Rb is the pipe resistance in the third floor, and δRb represents the resistance uncer-

tainty. We assume the uncertainties have normal distribution and use the nominal data

from Lentz Public Health Center to estimate pipe resistances and uncertainty distributions.

Table 3 represents the parameters. pt is the last measurement in the system.

y5 = pt +δ5, (57)
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where y5 is the sensor value and δ5 represents the noise. Figure 14 shows the last two

measurements in the system.

Figure 14: y4:5 in the hot water system.

To detect the leak in the hot water system, we use equations (50) to (56) to derive the

following residuals.

r1 = KV (
1

Ra

√
y4

S
− 1

Rb

√
y5

S
)

r2 = (
3

∑
i=1

(
yi

ωn
)qn)−

KV
Ra

√
y4

S

r3 = (
3

∑
i=1

(
yi

ωn
)qn)−

KV
Rb

√
y5

S

(58)

To analyze the detectability performance of each residual, we use the nominal and

faulty data from Lentz public health center to compute the global detectability ratio of
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each residual.
GD(qt |r1) = 0.8847921

GD(qt |r2) = 0.2660716

GD(qt |r3) = 0.4135846

(59)

Therefore, only r1 can be used to reliably detect q f . Note that to compute global detectabil-

ity ratio, we do not need to estimate fault and uncertainties distributions. We only need to

compute variance of each residual for normal and faulty data.

Figure 15: Residuals in the hot water system.

The leak occurs at sample point 7200 and lasts till sample point 7300. Figure 15 shows

the residuals. We can see that r1 is very sensitive to the leak and r2 is not sensitive to

the leak. r3 is the most interesting case. Figure 15 shows that r3 is sensitive to the leak.

However, the global detectability ratio of qt given r3 is less than 0.5 and therefore, we do not

expect r3 to detect qt . Figure 15 shows that r3 is also sensitive to noise and uncertainties
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Table 4: Fault Detection Performance

Fault False Positive Rate False Negative Rate Time
r1 0% 0%
r2 100% 1.27%
r3 37% 0.76%

in the system and therefore, it is not reliable to detect qt . We apply a Z-test with 95%

confidence level to detect the leak. Figure 16 shows the output of the Z-test for each

residual.

Figure 16: Hypothesis test outputs for the hot water system residuals.

Table 4 shows fault detection performance for each residual. r1 detects the fault with

no false alarm. r2 has 100% false positive rate which means it does not detect the fault. r3

only detects 37% of faulty sample points.
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3.7 Conclusions

In this chapter, a general framework for automated residual generation and robust resid-

ual selection for nonlinear dynamic systems has been developed. Detectability and isolabil-

ity measures were defined to quantify the performance of generated residuals in nonlinear

systems using derivative-based sensitivity analysis. The derivative-based approach is the

most common method to perform sensitivity analysis. The derivative-based approach is

easy to understand and computationally efficient. However, the derivative-based approach

only determines the effect of uncertainties at the single point at which the derivative is

constructed. For linear and smooth nonlinear systems, the effect of uncertainties in other

operation points can be easily determined by extrapolation. For stiff nonlinear system this

can lead to a significant error. To overcome to this problem, we defined global detectabil-

ity and global isolability ratios using global sensitivity analysis. In comparison with the

derivative-based approach, global sensitivity approach increases the computational com-

plexity but generates more robust measures for residual selection.

The robust residual selection problem was formulated as a binary integer linear pro-

gramming (BILP) optimization problem to select a subset of residuals to achieve the pre-

specified performances. Unlike our previous work [104], the algorithm developed in this

work guarantees the number of selected residuals is minimum. This minimizes the com-

putational cost of on-line fault detection and isolation. Moreover, the algorithm identifies

the regions of operation automatically. For the cases where the trajectory is unknown,

the dynamic residual selection algorithm can be applied. Developing an automated robust

residual evaluation and selection algorithm for nonlinear systems that fulfills the required

performance over multiple operating regions is novel, and has not been discussed in the

literature. Our experimental studies demonstrate the effectiveness of our approach.
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CHAPTER IV

DISTRIBUTED FAULT DETECTION AND ISOLATION

The increasing complexity and size of cyber-physical systems (e.g., aircraft, manufac-

turing processes, and power generation plants) is making it hard to develop centralized

diagnosers that are reliable and efficient. On the other hand, advances in networking tech-

nology, along with availability of inexpensive sensors and processors, is causing a shift in

focus from centralized to more distributed diagnosers. This chapter develops two structural

diagnosis approaches; 1) MSO-based, and 2) equation-based for distributed fault detection

and isolation (FDI). The first approach is based on Minimal Structurally Overdetermined

(MSO) set selection. Each MSO represents an analytical redundancy relation in the system

and can be used for residual generation.Even though we do not discuss robustness in this

chapter, it is straight forward to extend our first approach to robust distributed diagnosis

by considering residuals robustness performance in the selection process as discussed in

Chapter III.

The fist method provides globally correct diagnosis results and guarantees that the sub-

systems share the minimum number of measurements, implying that we minimize the com-

munication of measurement streams across subsystems of the global system. However, the

total number of residuals is exponential in terms of the system measurements. This in-

creases the computational cost of the solution. To avoid the computational complexities of

dealing with a large number of residuals, we develop another distributed diagnosis method

based on system equations in this chapter. The second algorithm is computationally effi-

cient. Moreover, it does not use the global model in the design process of the supervisory

system. This makes the algorithm suitable for large, complex systems where global systems

models are likely to be unavailable or unknown. We compare the diagnosis performances

and the computational costs of the proposed algorithms and clarify the pros and cons of

76



each method. We then demonstrate through a case study the results obtained from each of

the proposed methods.

The rest of this chapter is organized as follows. Section 4.1 presents basic definitions

and the running example of the chapter. Our first method for distributed diagnosis is pre-

sented in Section 4.2. Section 4.3 presents our second approach for distributed diagnosis.

Section 4.4 compares computational complexities of the proposed methods. Section 4.5

presents the case study and Section 4.6 presents the summary and conclusions of the chap-

ter and points out the advantages and disadvantages of each approach.

4.1 Basic Definitions and Running Example

This section introduces the basic concepts associated with distributed diagnosis of dy-

namic systems. The system model S is defined as follows.

Definition 17 (System model). A system model S is a four-tuple: (V , M, E, F), where V is

the set of variables, M is the set of measurements, E is the set of equations and F is the set

of system faults.

We use a four tank system example to describe the nature of the problem, and use this

system as a running example to discuss the algorithms for distributed diagnosis presented

in this chapter. Fig. 17 illustrates the four tank system model. We assume each tank,

and the outlet pipe to its right, constitute a subsystem. Therefore, this system has four

subsystems. Two of the subsystems, 1 and 3, also have inflows into their tanks. We assume

the subsystems are disjoint, i.e., they have no overlapping components. Associated with

each subsystem are a set of measurements that are shown as encircled variables in the

figure.

More generally, we assume the system, S has n pre-defined subsystems, S1,S2, ....Sn.

Each subsystem model is defined as:

Definition 18 (Subsystem model). A subsystem model of system model S, Si (1 ≤ i ≤ k)
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Figure 17: Running example: Four Tank System.

is also a four-tuple: (Vi, Mi, Ei, Fi), where Vi ⊆ V , Mi ⊆ M, Ei ⊆ E and Fi ⊆ F. Also,

S1∪S2∪ ....Sk = S.

For illustration, the first subsystem in our running example is described by the following

set of equations:

e1 : ṗ1 =
1

CT 1 + f1
(qin1−q1)

e2 : q1 =
p1− p2

RP1 + f2

e3 : p1 =
∫

ṗ1 dt

e4 : qin1 = u1

e5 : p1 = y1

e6 : q1 = y2.

(60)

Therefore, E1 = {e1,e2,e3,e4,e5,e6} defines the set of equations, V1 = { ṗ1, p1, p2,qin1,q1}

defines the set of subsystem unknown variables, M1 = {u1,y1,y2} defines the set of subsys-

tem known variables (measurements), and F1 = { f1, f2} defines the set of faults associated

with this subsystem model. We assume the system parameters, (CT 1, and RP1 in the first

subsystem), are known.

Similarly, the second subsystem model is defined by the following equations:

e7 : ṗ2 =
1

CT 2 + f3
(q1−q2)

e8 : q2 =
p2− p3

RP2 + f4

e9 : p2 =
∫

ṗ2 dt

e10 : p2 = y3

e11 : q2 = y4.

(61)

For this subsystem the set of equations is E2 = {e7,e8,e9,e10,e11}, the set of variable is
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V2 = {ṗ2, p2, p3,q1,q2}, the set of measurements is M2 = {y2,y4}, and F2 = { f3, f4} is

the set of faults. We assume there are no overlapping components among the subsystems.

However, the subsystems may share variables at their interface, e.g., liquid flowrate at outlet

of pipe = liquid flowrate at input to connected tank.

Definition 19 (First Order Connected Subsystems). Two subsystems, Si and S j are defined

to be first order connected if and only if they have at least one shared variable.

In the running example, subsystems S1 and S2 are first order connected and their shared

variables are V1∩V2 = {p2, ,q1}. The two other subsystems in the running example are:

e12 : ṗ3 =
1

CT 3
(qin2 +q2−q3)

e13 : q3 =
p3− p4

RP3 + f5

e14 : p3 =
∫

ṗ3 dt

e15 : qin2 = u2

e16 : q3 = y5.

(62)

e17 : ṗ4 =
1

CT 4 + f6
(q3−q4)

e18 : q4 =
p4

RP4

e19 : p4 =
∫

ṗ4 dt

e20 : p4 = y6.

(63)

In more general terms, ith order connected subsystem models are defined as follows.

Definition 20 (ith Order Connected Subsystems). Two subsystems, Sk and S j are defined

to be ith order connected if and only if there exists a subsystem model Sm that is (i−1)th

order connected to Sk, and is first-order connected to S j, or Sm is (i−1)th order connected

to S j, and is first-order connected to Sk .

For example in the four tank system, S1 and S3 are second order connected because

both of them are first order connected to S2. In this chapter, we use MSO sets [106] as

the primary conceptual approach for fault detection and isolation. The formal definitions

of Structurally Overdetermined (SO) and MSO sets are presented in definition 3 and defi-

nition 4. Consider subsystem S1 of the four tank system in equation (60). Using the fault
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diagnosis toolbox [68] , we can compute the only minimal structurally overdetermined set

in this subsystem as MSO11 = (E11,V11,M11,F11), where E11 = {e1,e3,e4,e5,e6}, V11 =

{ṗ1, p1,qin1,q1}, M11 = {u1,y1,y2} and F11 = { f1}. MSOs represent the redundancies in

the system and can form the basis for fault detection and isolation. Global and local fault

detectability are defined as:

Definition 21. (Globally detectable fault) A fault f ∈ F is globally detectable in system

S if there is a minimal structurally overdetermined set MSOi in the system, such that f ∈

MSOi.

Definition 22. (Locally detectable fault) A fault f ∈ Fi is locally detectable in subsystem Si

if there is a minimal structurally overdetermined set MSOi in the subsystem that f ∈MSOi.

Consider Definition 22 and equation (60). Fault f1 is locally detectable because f1 ∈

MSO11 but f2 is not locally detectable since there is no MSO in this subsystem that includes

f2. To detect f2 locally, the diagnosis subsystem needs to include additional measurements.

Global and local fault isolability are defined as:

Definition 23. (Globally isolable fault) A fault fi ∈ F is globally isolable from fault f j ∈

F if there exists a minimal structurally overdetermined set MSOi in the system S, such that

fi ∈MSOi and f j 6∈MSOi .

Definition 24. (Locally isolable fault) A fault fi ∈ Fi is locally isolable from fault f j ∈ F

if there exists a minimal structurally overdetermined set MSOi in subsystem Si, such that fi

∈MSOi and f j 6∈MSOi .

Note that if a fault fi is locally detectable in a subsystem Si, it is globally detectable too,

and if a fault fi is locally isolable from a fault f j, it is globally isolable from f j as well. In

the next section, we present the MSO-based distributed FDI approach. Section 4.3 presents

the equation-based FDI method.
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4.2 MSO-based Distributed Fault Detection and Isolation

4.2.1 Problem Formulation

Designing a set of distributed diagnosers that together have the same diagnosability as

a centralized diagnoser is the focus of our work in this chapter. In the ideal case, each

subsystem includes sufficient redundancies, such that its set of MSOs is sufficient to detect

and isolate all of its faults, Fi uniquely and unambiguously. In that case, we can associate

an independent diagnoser Di with each subsystem Si;1 ≤ i ≤ k, and each diagnoser oper-

ates with no centralized control, and no exchange of information with other diagnosers. If

the independence among diagnosers does not hold, then the subsystems need to commu-

nicate some of their measurements to other subsystems to detect and isolate the faults. To

address this problem in an efficient way, we derive an integrated approach to select a set

of MSOs for each subsystem that guarantee full diagnosability and minimum exchange of

measurements among subsystems.

Given subsystems, Si;1 ≤ i ≤ k, with a set of local fault candidates, Fi, such that⋃
i=1

kFi = F . We may need to augment each subsystem with additional measurements

that are typically acquired from the (nearest) neighbors of the subsystem, such that all of

the faults associated with the extended model of this subsystem are detectable and isolable.

In the worst case, all of the measurements from another subsystem may have to be included

to make the current subsystem diagnosable. When such a situation occurs, we say the two

subsystems are merged and represented by a common diagnoser, therefore, the total num-

ber of independent distributed diagnosers may be less than k. Each MSO is sensitive to

a set of faults and, therefore, can be used to detect and isolate them from the other faults

in the system. For each subsystem Si, our goal is to find a minimal set of MSOs that pro-

vide maximum detectability and isolability to that subsystem. A set of MSOs is minimal if

there is no subset of MSOs that provides the same detectability and isolability. To achieve

distributed fault diagnosis, we also want each subsystem to use the minimum number of
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measurements from the other subsystems. In other words, we want to minimize commu-

nication or the amount of data (measurements) to be transmitted between the subsystems.

More formally, the problem for designing a diagnoser for a particular subsystem Si can be

described as follows:

Consider MS O = {MSO1,MSO2, . . . ,MSOr} as the set of possible MSOs for the

subsystem Si. We need to develop an algorithm to select a minimal subset of MS O that

guarantees maximal structural detectability and isolability for faults Fi associated with the

subsystem, and include a minimum number of measurements from the other subsystems in

the system to assure the equivalence of local and global diagnosability , i.e.,

∀Si; 1≤ i≤ k

Select MSOSi ⊂MS O

s.t. min
Mo⊆M

|Mo|

Di(Mi∪Mo) = Di(M),

Ii(Mi∪Mo) = Ii(M),

(64)

where Mo represents the set of measurement we need to communicate to the subsystem Si

along with the set of measurements, Mi associated with the subsystem Si. M represents

the set of all measurements in the system. For a given set of measurements, X , Di(X)

represents the set of detectable faults in Fi, and Ii(X) represents the set of isolable faults in

Fi from the system faults, F . In the next subsection we formulate the problem as a BILP

problem. Formulating the problem as a BILP, enables us to use a number of well-developed

tools like branch and bound algorithms [109] and branch and cut algorithms [134] to solve

the problem. However, much like integer linear programming, the general BILP solution is

exponential
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4.2.2 MSOs Selection for Distributed Fault Detection Using Global Model

In this subsection, we present our algorithm to select a minimal set of residuals for each

subsystem of a system whose global model is available as a set of equations. In the next

subsection, we modify this algorithm to make it applicable to much larger systems, where

a compiled global model is not available. For the situation in which the global model

is known, M in equation (64) is the set of all system measurements. Assume we have l

measurements in the system: M = {m1,m2, ...,ml}. The measurements imply redundancies

in the system model that form the basis for generating MSOs. Let us assume we can

generate r MSOs given M: MS O = {MSO1,MSO2, . . . ,MSOr}.

Our goal is to design an algorithm that selects MS O i ⊆MS O in a way that we

add a minimum number of measurements Mo ⊆M,Mi∩Mo = /0, i.e., measurements from

the system not belonging to subsystem i, to a subsystem to make all its faults globally

diagnosable. Note that this is equivalent to the set covering problem and, therefore, any

algorithm for finding the minimal measurements is exponential, in general. Roychoudhury

et al [150] have adopted heuristic search methods for solving this problem. Their approach

for designing subsystem diagnosers used the Temporal Causal Graph (TCG) approach. In

this work, we formulate the search for minimal sensors as a BILP problem. The general

formulation of BILP is presented in (36).

To formulate the problem (64) as a BILP problem we define a binary variable x(k):

1≤ k ≤ l, for measurement mk in the system as follows:

x(k) =

{
1 i f mk ∈Mi∪Mo

0 i f mk /∈Mi∪Mo,
(65)

where Mo is the answer to problem (64). We also define x(k+ l): 1≤ k≤ r, for MSO MSOk
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in the system as follows.

x(k+ l) =

{
1 i f MSOk ∈MS O i

0 i f MSOk /∈MS O i.
(66)

To minimize the number of measurements from the other subsystems, we develop the fol-

lowing cost function c as:

c(k) =

{ 0 i f mk ∈Mi

1 i f mk ∈M\Mi

0 i f l < k ≤ l + r,

(67)

where l is the number of system measurements and r is the number of MSOs in the system.

Using the fault diagnosis toolbox [68], 165 MSOs are generated for the running example,

the four tank system. Since there are 8 measurements in the system c is a vector with 173

elements for this example.

Consider subsystem Si with local faults Fi and the set of system faults, F . Each local

fault f j ∈ Fi has to be locally detectable. Given definition 22, we can guarantee local

detectability of all the faults f j ∈ Fi with the following constraints in the optimization

problem (36).

A( j,k) =

{ 0 i f k < l

−1 i f f j ∈MSOk−l

0 otherwise.

(68)

Note that l is the number of measurements in the system. By considering b( j) = −1 for

1 ≤ j ≤ g, where g is the number of faults in Fi, we make sure that we have selected at

least one MSO to detect each fault. To address isolability requirement we follow the same
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procedure. To isolate f j ∈ Fi from any other fault in system, i.e., fh ∈ F we need to have:

A( j+g,k) =

{ 0 k < l

−1 f j ∈MSOk−l, fh /∈MSOk−l

0 otherwise.

(69)

Setting b( j) =−1 for g < j ≤ g∗h, where h is the number of faults in the system, h = |F |,

we make sure that there is at least one MSO to isolate each of the subsystem faults from

the other faults in the system.

In addition to the constraints that guarantee maximum detectability and isolability for

the distributed diagnosis system, we need a set of constraints that capture the relationship

between the measurements and MSOs in the distributed diagnosis system. Using a MSO is

equivalent to using the measurements that are included in the MSO, and we need to include

this in the optimization problem. For example, consider MSO11, it has three measurements

M11 = {u1,y1,y2}. Using MSO11 in a local diagnosis subsystem means we need to com-

municate these measurement streams to that subsystem to achieve global diagnosability for

the faults that belong to that subsystem. The following equation represents this constraint.

− x(1)− x(2)− x(3)+ |M1|x(7)≤ 0, (70)

where |M1| = 3 is the cardinality number of M1 and x(1), x(2), x(3) and x(7) are binary

variables that are 1 if we use u1, y1, y2 and MSO11 in the diagnosis system and are zero

otherwise. This constraint implies that if we use MSO11: x(7) = 1, its associated measure-

ments are used by the subsystem too: x(1) = x(2) = x(3) = 1.

Equation (71) represents these set of constraints in A matrix.

A( j+g∗h,k) =

{ −1 i f mk ∈MSO j

|M j| i f k = j+ |M|

0 otherwise,

(71)

85



where |M j| is the cardinality number of set of measurements in MSO j and |M| is the

cardinality number of set of all the measurements in the system. Setting b( j) = 0 for

g∗h < j≤ g∗h+ r, where r is the number of MSOs in the system. The optimization prob-

lem takes into account the relationship between measurements and MSOs. For the running

example we generated 165 MSOs, there are also 3 measurements in the subsystem 1, and

8 measurements for the entire system. Similarly, subsystem 1 has two faults of interest,

and the goal is to be able to isolate them from any of the 6 faults in the complete system.

Therefore, to solve the optimization problem (36) for subsystem 1, matrix A has 177 rows

(equal to the number of constraints: 2 constraints to guarantee the local detectability of f1

and f2, 10 constraints to guarantee the local isolability of f1 and f2 from the other faults,

and 165 constraints to capture the relationship between the MSOs and the measurements)

and 173 columns (equal to the number of binary variables: 8 for the measurements and 165

for the MSOs) and b is a vector with 177 elements (equal to the number of constraints).

Table 5 shows the set of measurements that we need to add for each of the subsystem

diagnosers to achieve maximum possible detectability and isolability using our proposed

algorithm. To find the optimum measurements, we solved the optimization problem (36)

for each subsystem. Considering the expanded measurement set, the schematic of the four

Table 5: Set of augmented measurements to each subsystem model

Subsystem Set of augmented measurements
S1 y3
S2 u2, y2, y6
S3 y4, y6
S4 y5

tank system with the four distributed diagnosers is shown in Fig. 18. The figure shows the

complete set of measurements required by the four subsystem diagnosers to achieve global

detectability and isolability for the set of faults they contain. For example subsystem 1
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includes three measurements M1 = {u1,y1,y2}, and to achieve global diagnosability for its

faults, y3 must be communicated to its diagnoser from subsystem 2. Subsystem 2 is the

only subsystem that shares a variable with a second order connected subsystem, all the

other subsystems only need to communicate with their first order connected subsystems.

Note that communicated measurements typically will incur additional cost and may lower

reliability of the system diagnoser. But keeping them to a minimum (see results in Table 5)

reduces that cost and uncertainty, while maintaining global diagnosability.
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Figure 18: Distributed diagnosis subsystems.

A common way to validate a distributed fault detection and isolation approach is to

compare the result with the maximum global detectability and isolability. Adopting the

exoneration assumption, Table 21 shows the detectability and isolability performance of

the centralized approach. An X in the table shows that the fault in the row and the fault in

the column are not isolable from each other. An X in the first column (NF) means the fault

in the corresponding row is not isolable from NF (No Fault) or simply it is not detectable.

Table 21 shows that with a centralized approach we can detect and isolate all the faults.

However, Table 7 shows that using the original subsystems for distributed diagnosis does

not provide the same results as the centralized global diagnoser. In fact, only f1 can be

detected and isolated from the other faults. Using the augmented subsystems in Table 5

(Figure 18) we achieve the same performance as the global diagnoser as shown in Table 8.

This demonstrates that the distributed approach can achieve the same performance with the
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Table 6: Fault isolability table for running example using centralized approach

NF f1 f2 f3 f4 f5 f6

f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

Table 7: Fault isolability table for running example using distributed approach for
the original subsystems

NF f1 f2 f3 f4 f5 f6

f1 X
f2 X X X X X X
f3 X X X X X X
f4 X X X X X X
f5 X X X X X X
f6 X X X X X X

centralized approach for fault detection and isolation in the running example.

In general, the worst case scenario for a system with strongly connected subsystems

(i.e., all subsystems are connected to each other) will typically require a large number of

measurements from other subsystems to be communicated to each subsystem diagnoser. In

those situations, subsystem diagnosers just get rid of the single point of failure, but each

subsystem diagnoser may require a large number of measurements to be communicated to

it from all of the other subsystems. In our example, the four tank system model included

165 MSOs, which means for each subsystem there was 2165 different MSO candidate sets.

This creates a very large search space (in general the search space is exponential in the

number of MSOs, and generating all MSOs is in itself an exponential problem. This jus-

tifies the formulation of the problem as a BILP problem that provides efficient tools, like

the bintprog function in Matlab™(see earlier footnote), to solve it. However, given the

exponential nature of the solution, this method will not scale up for larger systems, even
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Table 8: Fault isolability table for running example using distributed approach for
the augmented subsystems

NF f1 f2 f3 f4 f5 f6

f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

if the subsystem diagnoser design is performed off-line. In addition to the computational

complexity, the availability of global models for large, complex systems is unlikely because

of the issues discussed in the beginning of this chapter. To overcome this problem, we sac-

rifice minimality of the solution to some extent, and propose an incremental algorithm for

designing the subsystem diagnosers.

4.2.3 MSOs Selection for Distributed Fault Detection Using Neighboring Subsys-

tems

The proposed approach in the previous section used the global model of the system

to generate the residuals, and then derived the subsystem diagnosers using the BILP algo-

rithm run on the global MSO set. In this section, we achieve global diagnosability of a

subsystem diagnoser by incrementally adding a minimum number of measurements from

the neighbors of this subsystem till the global diagnosability property is established. The

algorithm starts with the set of equations for the subsystem whose diagnoser is being de-

signed, and if global diagnosability is not achieved using this model, it expands to include

equation sets that correspond to the models of its immediate neighbors. If global diag-

nosability is achieved, the algorithm terminates, otherwise the algorithm expands to use

the next higher order of neighbors and repeats the search for minimal MSOs to achieve

complete diagnosability. The process of including successively higher order neighbors is

shown in Fig. 19. In the worst case, this process continues, till the complete set of system
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equations are required to generate all possible MSOs, and establish global diagnosability

for the subsystem. Therefore, it is guaranteed that the method has the same diagnosability

performance as the best centralized diagnoser for the same set of measurements.
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Figure 19: Expanding the search environment to the higher order connected sub-
systems.

Algorithm 2 describes the algorithm for our proposed method. Consider the running

Algorithm 2 Incremental Algorithm
1: for each Si ∈ S do
2: SS = Si
3: j = 0
4: while Di(SS) 6= Di(S) or Ii(SS) 6= Ii(S) do
5: j = j+1
6: SS =SS ∪ ( jth order connected subsystems of Si)
7: Generate all the MSOs for SS
8: Use equation (67) to compute cost function for SS
9: Use equations (68), (69), and (71) to generate A matrix for SS

10: Generate vector b for SS
11: Use bint prog(c,A,b) to solve the problem and compute Di(SS) and Ii(SS)
12: end while
13: end for

example. To design the diagnosis system for the first subsystem, we start with its set of
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equations and we can only generate one MSO which is not enough to detect subsystem

faults and isolate them from the system faults. We then augment the subsystem model with

the model from its nearest neighbor subsystem 2, and generate the set of MSOs for the

augmented model. The total number of MSOs for the augmented subsystem (Subsystem

1 + subsystem 2) is 11 which leads to 211 MSO set candidates which is much smaller

than 2165 candidates. Solving the optimization problem presented in this section gives the

same result with the global method for this subsystem, but the computation time is reduced

significantly. Using the same approach for every subsystem, the set of measurements that

we need to transfer to each subsystem of the running example are presented in Table 9.

Table 9: Set of augmented measurements to each subsystem model

Subsystem Set of augmented measurements
S1 y3
S2 u2, y2, y5
S3 y4, y6
S4 y5

Fig.20 shows that for the four tank case study, all the subsystems share measurements

with their first order connected subsystems. This provides a practical advantage to this

algorithm because usually the subsystems with shared variables are physically closer to

each other (corresponding to our definition of nearest neighbors) and, therefore, we do

not need to transfer data over long distances, which, as discussed earlier, can be costly

and error-prone. Table 10 shows that this distributed diagnosis system provides the same

diagnosability performance as the centralized diagnosis method. The proposed algorithm

provides the maximum possible detectability and isolability that can be achieved. The

advantage of this algorithm is that not only we do not need a global model for detecting

and isolating the faults, but also we do not use the global model in the design process of the

supervisory system. This makes the approach suitable for large, complex systems, such as
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Figure 20: Distributed diagnosis subsystems using incremental algorithm.

Table 10: Fault isolability table for running example using the incremental algorithm

NF f1 f2 f3 f4 f5 f6

f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

aircraft and power plants where the global systems models are likely to be unavailable or

unknown.

4.3 Equation-based Distributed Fault Detection and Isolation

In the algorithm developed in the last section, the total number of MSOs is an exponen-

tial function of the system measurements. This makes the problem computationally very

expensive. To avoid this computational complexity, we propose a distributed diagnosis

method that works directly with the system equations. To recap from earlier work [59], the

Dulmage-Mendelsohn (DM) decomposition decomposes a system model into three parts:

(1) under determined, (2) exactly determined and (3) over determined. The over determined

part introduces redundancy in the system and can be used for fault detection and isolation.

Fig. 21 shows the DM decomposition for the first subsystem of the running example. This

subsystem model has a just determined part (S1
0) and an over determined part (S1

+).
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Figure 21: DM decomposition of the first subsystem model.

Fig. 21 represents the set of equations in the just determined part and the over deter-

mined part of S1 and the set of unknown variables in each equation. The shared variables

are shown as encircled variables in the figure. In this section, we assume every fault pa-

rameter is included in exactly one equation. This is not a restricting assumption because if

we have more than a fault in an equation we can consider the other faults as new variables

and then add new equations for each of these new variables making the variable equal to

the fault. Therefore, after making the appropriate changes, for each fault f there is one

and only one equation e f associated to this fault. Given that, the local detectability can be

defined as:

Definition 25. (Locally detectable) A fault f ∈ Fi is locally detectable in subsystem Si if e f

∈ Si
+, where Si

+ is the over-determined part of subsystem Si.

Note that Definition 25 is equivalent to Definition 22. Consider Definition 25 and

Fig. 21. Fault f1 is locally detectable because e1 ∈ S1
+ but f2 is not locally detectable

since e2 /∈ S1
+. To expand the overdetermined part and make f2 detectable, the diagnosis

subsystem needs to have at least one additional equation. We define such a subsystem as

Definition 26. (Augmented subsystem) Given subsystem Si and a set of equations, Ek, the

augmented subsystem model SiEk = (Si|Ek) is (ViEk , MiEk , EiEk , FiEk), where ViEk is the union

of Vi and the unknown variables that appear in Ek, MiEk is the union of Mi and the known
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variables that appear in Ek, EiEk is the union of Ei and Ek and FiEk is the union of Fi and

the possible faults associated with Ek.
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Figure 22: DM decomposition of S1e10 = (S1|e10).

Consider the running example. S1e10 = (S1|e10) = (V1e10, M1e10, E1e10, F1e10), where

V1e10 = { ṗ1, p1, p2,qin1,q1}, E1e10 = {e1,e2,e3,e4,e5,e6,e10}, M1e10 = {u1,y1,y2,y3} and

F1e10 = { f1, f2}. Note that e10 did not add any new unknown variables or faults to the

subsystem model. Fig. 22 represents the DM decomposition of the augmented subsystem,

S1e10. This figure shows that e2 ∈ S1e10
+, and, therefore, f2 is locally detectable for the

augmented subsystem S1e10. We re-define locally isolable faults using the equation-based

approach as:

Definition 27. (Locally isolable) A fault fi ∈ Fi is locally isolable from fault f j ∈ F if e fi

∈ (Si\e f j)
+, where (Si\e f j)

+ is the over-determined part of subsystem Si without equation

e f j .

Note that Definition 27 is equivalent to Definition 24. Fig. 23 shows DM decomposi-

tion of the S1e10\e1. e2 is in the overdetermined part of the augmented subsystem model,

therefore, f2 is locally isolable from f1 in the augmented subsystem.
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Figure 23: DM decomposition of S1e10\e1.

4.3.1 Problem formulation

We formulate the problem and equation-based solution approach for designing a dis-

tributed diagnoser for a system, S made up of a number of subsystems, S1,S2, · · ·Sn. As

we mentioned in the previous section, there is no overlap of components among the sub-

systems, however, the subsystems may share variables at their interface. In the ideal case,

each subsystem includes a sufficient number of measured variables, such that the ensuing

redundancy is sufficient to detect and isolate all of its faults Fi locally. In that case, we

can associate an independent diagnoser Di with each subsystem Si;1 ≤ i ≤ n, and each

diagnoser operates with no centralized control, and no exchange of information with other

diagnosers. If the independence among diagnosers does not hold, then we have to consider

the following additional cases:

1. fk ∈ Fi is not locally detectable.

2. fl ∈ Fi, and fm ∈ Fi are not locally isolable from each other.

3. fn ∈ Fi is not locally isolable from fo ∈ Fj and fo /∈ Fi.

Designing distributed diagnosers that account for these three scenarios is the focus of our

work in this section. After addressing each of these situations, we derive an integrated

approach to distributed FDI, and derive algorithms that apply to complex, dynamic systems

made up of a number of subsystems.
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Given subsystems, Si;1≤ i≤ n, associated with each subsystem there is a set of equa-

tions Ei and a set of local fault candidates, Fi, such that
⋃

i=1
nFi = F . We may need to

augment each subsystem with additional equations that are typically acquired from the

neighbors of the subsystem, such that all of the faults associated with the extended model

of this subsystem are detectable and isolable. In the worst case, all of the equations from

a neighboring subsystem may have to be included to make the current subsystem diag-

nosable. For each subsystem Si, our goal is to find minimal sets of equations from the

neighboring subsystems that provide complete detectability and isolability to that subsys-

tem. A set of equations is minimal if there is no subset of equations that provides the same

detectability and isolability. More formally, the problem for designing a diagnoser for a

particular subsystem Si can be described as follows.

Consider NSi = {S1,S2, . . . ,Sl} as the set of neighboring subsystems to subsystem Si.

To address the three situations mentioned above, we need to develop an algorithm to find a

minimal equation set Eo in NSi that guarantees maximal structural detectability and isola-

bility for subsystems faults Fi, i.e.,

min
Eo⊆El

|Eo|

D(Si|Eo) = D(Si|El),

I(Si|Eo) = I(Si|El),

(72)

where El represents the set of all the equations in NSi, D represent the set of detectable

faults in Fi, and I represents the set of isolable faults in Fi from the system faults F . Con-

sider the first subsystem of the running example S1, e10 makes f1 and f2 detectable and

isolable from all the other faults in the system. Therefore, A1 = {e10} is a minimal solution

to the problem. In this section, we present a method to make all the faults in a subsystem
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locally detectable (situation (1) above). We also discuss the solution to the fault isolabil-

ity problem (situation (2) above), and prove that if we address the first situation, the third

situation is automatically taken care of.

4.3.2 Maximum Detectability

Consider subsystem 1 whose equations are listed in (60). The DM decomposition of this

subsystem is shown in Fig. 21. f2 is in the just determined part of the subsystem, therefore,

the fault is not locally detectable. However, p2 is a shared variable with subsystem 2.

Therefore, we could find an equation from subsystem 2, e10, to make f2 locally detectable

in the augmented subsystem, S1e10, (see Fig. 22). Adding measurement equation e10 made

p2 known and, therefore, the subsystem overdetermined. Note that we cannot make a

variable that only appears in subsystem 1 (ṗ1 for example) known by adding equations

from other subsystems. Therefore, our ability to increase fault diagnosability is limited to

the shared variables in the subsystem. More formally, we can prove the following theorem.

Theorem 1. Consider local subsystem model Si = {Vi, Mi, Ei, Fi} and Vishared ⊂ Vi the

set of shared variables in the subsystem. If a fault f ∈ Fi is not locally detectable in a

new subsystem S j = {Vi−Vishared, Mi∪Vishared, Ei, Fi} where all the shared variables are

known, f is not globally detectable.

Proof. If e f stays in the just determined part or under determined part of the subsystem

when all the shared variables have became known, there is no addition equation in the

system that can make any of the variables in e f known and, therefore, moves the equation

to the over determined part of the structural decomposition.

Therefore, the maximum detectability performance that we can achieve in each sub-

system cannot be more than the detectability performance when all the shared variables

are known. Using Theorem 1, we develop Algorithm 3 and Algorithm 4 to find an upper
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bound for the number of detectable faults and isolable fault pairs in each subsystem without

requiring any information from the neighboring subsystems respectively.

Algorithm 3 Detectable-Faults
1: input: Vishared
2: input: Si = {Vi, Mi, Ei, Fi}
3: Let DF be {}
4: Let SDF be {Vi−Vishared, Mi∪Vishared, Ei, Fi}
5: for each f ∈ Fi do
6: if f ∈ (SDF)

+ then
7: DF = DF ∪ { f}
8: end if
9: end for

10: return DF

Algorithm 4 Isolable-Faults
1: input: Vishared
2: input: Si = {Vi, Mi, Ei, Fi}
3: Let IF be {}
4: Let SIF be {Vi−Vishared, Mi∪Vishared, Ei, Fi}
5: for each f j ∈ Fi do
6: for each fk ∈ Fi do
7: if fi ∈ (SIF \ e fk)

+ then
8: IF = IF ∪ { f j, fk}
9: end if

10: end for
11: end for
12: return DF

In this work, we are interested in finding a minimal set of shared variables to achieve the

maximum detectability performance for each subsystem. Adopting the following strategy,

we can find a minimal set of shared variables that guarantees maximum detectability.

• We assume all the shared variables are known. If a fault is not locally detectable when
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all the shared variables are known, we remove that fault from the list of detectable

faults (see Algorithm 3).

• We move each shared variable form the list of known variables to the unknown vari-

ables, and examine the list of detectable faults. If removing the shared variable from

the known variables decreases the number of faults in the list of detectable faults,

we reveres our action and add the variable to the list of minimal required shared

variables. Otherwise, we do not need to know this shared variable.

Algorithm 5 presents our method to find a minimal set of required share variables.

We initialize the algorithm with the subsystem model and the set of shared variables (for

subsystem 1, p2 and q1 are unknown shared variable) and it provides a minimal subset of

shared variables in the subsystem that makes all the faults detectable. For subsystem 1,

V1m = {p2} is a possible answer.

Algorithm 5 Minimal-Shared-Variables

1: input: Si = {Vi, Mi, Ei, Fi}
2: Let Vishared be the set of shared variables in Si
3: DF = Detectable-Faults(Vishared , Si)
4: Let Vim be Vishared
5: for each vis ∈Vim do
6: Let Vim be Vim/vis
7: if Detectable-Faults(Vim, Si) not equal DF then
8: Vim = Vim ∪ {vis}
9: end if

10: end for
11: return Vim

In this subsection, we developed an algorithm to find a minimal set of unknown shared

variables, that if transfered from neighboring subsystems, can provide maximum detectabil-

ity performance. Note that all the shared unknown variables are not necessarily measured

in the neighboring subsystems. However, in some cases it is possible to transfer a set of
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equations from the neighboring subsystems that can be used with the equations in the sub-

system to compute the unknown variables. In the next subsection, we present our proposed

approach to find a minimal set of equations from the neighboring subsystems in order to

compute the minimal set of required shared unknown variables and provide maximum pos-

sible fault detectability.

4.3.3 Equation-based Fault Detection Approach

Given a minimal set of required shared variables, we present our proposed approach

to find a minimal set of equations from the neighboring subsystems in order to achieve

maximum possible fault detectability. We illustrate the procedure by solving this problem

for subsystem 2 of the case study, and then generalize this approach by developing a general

algorithm to solve this problem. Consider subsystem 2 presented in equation (61). The

corresponding structural decomposition of this subsystem is shown in Fig. 24.

Figure 24: DM decomposition of S2.

This subsystem is just determined, therefore, none of the faults are locally detectable.

However, q1 and p2 are shared variables with subsystem 1, and q3 and p3 are shared vari-

ables with subsystem 3. Algorithm 5 finds V1m = {q1, p3} as a minimal set of shared

unknown variables, that if transfered from neighboring subsystems, can provide maximum

detectability performance. Therefore, to make f3 and f4 locally detectable, we have to find

equations from the neighboring subsystems to make q1 and p3 known.

To find a minimal set of just determined equations that includes q1,we start with all
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equations in S1 that have q1. These equations are e1, e2, and e6 as it is shown in Fig. 25.

Then for the additional variables in each equation that is not already in S0
2 we need to add

𝑒3:{𝑝1, ሶ𝑝1}

𝑒4:{𝑞𝑖𝑛1}
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Figure 25: Finding the minimal sets of equations in S1 to compute q1.

other equations. For e1 we need to add two new equations one with qin1 and the other one

with ṗ1. Finally, we need to add a new equation with p1 and since p2 ∈ S2
0 we do not have

to consider it.

To find the other minimal sets we keep adding the relative equations to the other sets

using the same approach described above. As it is shown in Fig. 25, by adding equations

to the system we eventually achieve four sets of minimal constraints: A2 = {e1,e2,e3,e4},

A3 = {e1,e3,e4,e5}, A4 = {e2,e5}, and A5 = {e6}. Fig. 25 represents a matching algo-

rithm. In fact, we applied a matching algorithm to find a minimal set of equations from

neighboring subsystems for computing each required shared variable. The general form of

our algorithm is presented as Algorithm 6. If we initialize the algorithm with the set of

unknown variables (in Fig. 25, q1 is the unknown variable) it provides a set of complete

matching of variables and equations in the neighboring subsystems that includes the un-

known variables. Fig. 26 shows that augmenting A2 with S2 makes f3 detectable. To make
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Algorithm 6 Count-Matchings
1: input: current matching M
2: input: sets of determined variables D and undetermined variables U , set of equations

E
3: if U = /0 then
4: return M as a feasible (minimal) matching.
5: end if
6: for each x ∈U do
7: for each e ∈ E which can determine x do
8: Let M ′ be M ∪{e→ x}
9: Let D ′ be D ∪{x}.

10: Let U ′ be U \{x}.
11: Let E ′ be E \{e}.
12: Add all the undetermined variables of y to U ′.
13: COUNT-MATCHINGS(M ′,D ′,U ′,E ′)
14: end for
15: end for

f4 locally detectable as well, we need to use Algorithm 6 to find a minimal set of equations

in the neighboring subsystems that includes p3 and augment S2|A2 with those equations.

Subsystem 2 is just determined but a subsystem can have an under-determined part as

well. For example, consider subsystem S3 in equation (62). The DM decomposition of this

subsystem model is shown in Fig. 27. f5 is in the underdetermined part of the structure.

qin2 and q3 are in the just determined part of the system and we can compute them using e15

and e16, respectively. However, to compute the other four variables in the subsystem, p3,

q2, ṗ3, and p4, we only have three constraints, which makes complete matching between

constraint and variables impossible. To make this part of the subsystem just determined,

we need to augment a set of equations from the neighboring subsystems.

Unlike previous work [103] where we had to develop a new algorithm for subsystems

with under-determined parts, Algorithm 5 automatically takes care of subsystems with

under-determined sections. Using algorithm 5 gives us Vm3 = {q2,q3} as a minimal set of

required shared variables to make f5 detectable. Having the set of required shared variables,
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Figure 26: DM decomposition of (S2|A2).

Figure 27: DM decomposition of S3.

Algorithm 6 gives us A6 = {e11,e17,e18,e19} as a minimal sets of equations from neighbor-

ing subsystems that we can augment to S3 to make the f5 locally detectable. Fig. 28 shows

DM decomposition of (S3|A6).

Figure 28: DM decomposition of (S3|A6).

In some cases, it is possible that an augmented minimal set, Ai, also adds a set of faults
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FAi to the subsystem model Si. These faults can be sensor faults or faults in other equations.

The following theorem states that these faults are locally detectable in subsystem model Si.

Theorem 2. Consider local subsystem model Si = {Vi, Mi, Ei, Fi} and Ek a set of minimal

equations that makes set of faults Fi detectable in the augmented subsystem (Mi|Caugments)=

{Vj,C j,Fj}, then the set of faults Fj in the augmented subsystem (Si|Ek) are locally de-

tectable.

Proof. The proof of this theorem is straight forward, since the minimal set makes a part of

the system that includes the fault overdetermined, the set itself should be in the overdeter-

mined part as well. This means the associated faults in the set are detectable.

For example, f6 is locally detectable in (S3|A6). Therefore, as long as we are focused

on fault detection the augmented faults do not cause any problem. The fault detection

algorithm is summarized as Algorithm 7 below.

Algorithm 7 Detectability
1: input: subsystem Si
2: input: subsystem model neighbors NSi
3: M = {}
4: Vd = set of determined variables in Si
5: if ∀ f ∈ Fi therefore e f ∈ Si

+ then
6: return
7: end if
8: U = Minimal-Shared-Variables(Si)
9: D = Vd \U

10: Ed = Count-Matchings (M , D, U , NSi)

4.3.4 Equation-based Fault Isolation Approach

In this subsection we assume the set of minimal equations to make all the faults locally

detectable have been derived based on the method presented in the previous subsections.
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It is clear that the locally detectable faults in each subsystem are locally isolable from the

faults in the other subsystems.

Theorem 3. Consider local subsystem Si = {Vi, Mi, Ei, Fi} if fi ∈ Fi is locally detectable

in Si, then fi is locally isolable form f j if f j /∈ Fi.

Proof. Since fi is detectable we have e fi ∈ Si
+ and since f j /∈ Fi we can say e f j /∈ Si

+.

Therefore, Si
+ = (Si\e f j)

+ and e fi ∈ (Si\e f j)
+

For example, in (S3|A6), f5 is isolable from f1, f2, f3, and f4 because they are not in

the augmented subsystem and f5 is detectable in this augmented subsystem. Considering

Theorem 3, it is straight forward to address the isolability problem. For each fault fi ∈

Fi, we remove the associated equation e fi from Ei and all the neighboring subsystems.

Then we use Algorithm 7 to make all the remaining faults in Fi detectable. For example,

consider (S3|A6). To make f5 isolable from f6, we remove e17 from (S3|A6) and S4. DM

decomposition of (S3|A6)\e17 is shown in Fig 29. Applying algorithm 7 to S4\e7 gives us

Figure 29: DM decomposition of (S3|A6)\e17.

{e20} as a minimal set that can make f5 detectable. Therefore, we can say the augmented

subsystem (S3|A6∪{e20}) will detect f5 and isolate it from all the other faults in the global

system S. Algorithm 8 summarizes the method discussed above.

Much like Algorithm 2, our proposed approach considers the first order neighboring
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Algorithm 8 Diagnosability
1: input: subsystem model Si
2: input: subsystem model neighbors NSi
3: Ed = Detectability(Si, NSi)
4: Si = (Si|Ed)
5: for each f ∈ Si do
6: S̄i = Si \ ( f and e f )
7: Ed = Detectability(S̄i, NSi)
8: Si = (Si|Ed)
9: end for

subsystems of subsystem Si and augment minimal constraints from them to maximize di-

agnosability. If the set of first order neighboring subsystems does not have required re-

dundancies to achieve maximum diagnosability we have to expand the search process to

the next higher order of neighborings subsystems. The process of including successively

higher order neighbors is shown in Fig. 19. The expansion process will stop when the

distributed approach achieves maximum diagnosability. Therefore, it is guaranteed that

the method has the same diagnosability performance as the best centralized diagnoser for

the same set of measurements. In the case that no independent subsystem diagnosers can

be derived using our distributed approach, the solution gradually expands to include all

subsystems and eventually derives the centralized diagnoser. Algorithm 9 summarizes this

approach.

Algorithm 9 DistributedDiagnosis
1: input: subsystem Si
2: input: subsystem model neighbors NSi
3: Let Vishared be the set of shared variables in Si
4: DF = Detectable-Faults(Vishared , Si)
5: IF = Isolable-Faults(Vishared , Si)
6: Eo = Diagnosability(Si, NSi)
7: if D(Si|Eo) = DF and I(Si|Eo) = IF then
8: return
9: end if

10: NSi =NSi ∪ (neighboring subsystems of NSi)
11: DistributedDiagnosis(Si, NSi )
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Table 11 shows the set of equations that each subsystem in the running example needs

from its neighbors to achieve maximum possible detectability and isolability using the

equation-based approach. Like previous section, to validate our distributed fault detection

Table 11: Set of augmented constraints to each subsystem model

Subsystem Set of augmented equations
S1 e10
S2 e6, e12, e14, e15, e16
S3 e11, e17, e18, e19
S4 e16

and isolation approach, we compare the result with the maximum global detectability and

isolability. Table 21 shows that with a global diagnostic method we can detect and isolate

all the faults. Using the augmented subsystems in Table 11 we will have the same perfor-

mance as the global model as shown in Table 12. This demonstrates that the distributed

Table 12: Fault isolability table for running example using equation-based dis-
tributed approach for the augmented subsystems

NF f1 f2 f3 f4 f5 f6

f1 X
f2 X
f3 X
f4 X
f5 X
f6 X

approach has the same performance with the centralized approach for fault detection and

isolation in the running example.
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4.4 Time Complexity

Algorithm 6 is the only exponential step in Algorithm 7 and, therefore, the time com-

plexity of Algorithm 7 is mostly governed by this algorithm. In the worst case scenario,

Algorithm 6 has to consider all the permutations of the equations to find a solution for the

required unknown variable. Therefore, theoretically this algorithm has O(|U |×|EN |!) time

complexity, where |U | is the number of required unknown variables in the subsystem and

|EN | is the number of equations in the neighboring subsystems. Algorithm 8 calls Algo-

rithm 7 for every fault in the subsystem. Therefore, Algorithm 8 has O(|Fi|× |U |× |EN |!)

time complexity for subsystem i, where |Fi| is the number of faults in the subsystem. Note,

that in the case that no globally accurate diagnoser can be derived using neighboring sub-

systems, the solution gradually expands to include all subsystems. Therefore, the time

complexity of our proposed method in Algorithm 9 for subsystem i is O(|Fi|× |U |× |E|!),

where |E| is total number of equations in the system.

In practice, Algorithm 6 finds the answer much faster. For example, consider Fig. 25

where algorithm 6 is searching for a set of equations to solve q1. As soon as the algorithm

reaches to an equation which does not have the required unknown variable, the algorithm

discards that equation and, therefore, avoids enumerating the rest of the candidate equa-

tions in that branch. To achieve even faster solutions, we can sort the equations by the

number of their unknown variables before the search. In this way, the algorithm starts with

equations with fewer unknown variables and, therefore, has to expand fewer branches in

average. For example, consider the case where the equations are sorted in Fig. 25. In this

scenario, the algorithm starts with e6 which has no unknown variable and that is the solu-

tion. Note that this step does not improve the worst case scenario, but reduces the average

time significantly.

The equation-based solution is exponential in terms of number of equations in the sys-

tem. The MSO-based solution is exponential in terms of number of MSOs in the system.

The total number of MSO sets for fault detection and isolation grows exponentially as the
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Figure 30: ADAPT-Lite subsystems [36].

number of measurements increase [5]. Consider definition 40. The total number of redun-

dancies introduced into the system model is equal to the number of measurements, |M|.

Theoretically, each MSO can include from one to |M| measurements. Therefore, the total

number of MSOs, NMSO is proportional to all possible combinations of the measurements:

NMSO ∝

|M|

∑
i=1

(
|M|

i

)
= 2|M| (73)

In general, there are much more MSOs in a system than equations. For example, the

running example in this paper has 20 equations and the fault diagnosis toolbox generated

165 MSOs for this system. Therefore, we expect the equation-based approach to solve

the problem in a more efficient way. In the next section, we demonstrate computational

advantage of the equation-based method through a case study.

4.5 Case study

ADAPT-Lite system is designed to emulate the operation of unmanned aircraft electri-

cal power systems [36]. The system has five subsystems: 1) the battery, 2) the direct current

(DC) electric load, 3) the inverter, 4) the alternative current (AC) electric load, and 5) the

electric fan (see Fig 30). The system has seven measurements: yE240, yE242, and yE281

represent DC voltage measurements in the system, yIT 240 represents the battery current,
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yE265 represents the inverter AC output voltage, yIT 267 is the inverter AC output current,

and yST 516 is the fan rotational speed. We consider six faults in the system: fE240 and fE242

are the sensor faults in yE240, and yE242, respectively, fdc represents the fault in the DC

load, fINV models the inverter fault, fac represents the fault in the AC load, and f f an is the

fan fault. The ADAPT-Lite system has several circuit breakers (CB236, CB262, CB266,

and CB280), and relays (EY244, EY260, EY281, EY272, and EY275) and, therefore, is a

hybrid system. In Chapter V, we discuss diagnosis in hybrid systems. In this chapter, we

focus on distributed diagnosis. Therefore, we assume all the circuit breakers and relays are

on and there is no mode change in the system. The set of equations in each subsystem are

presented as follows.

Subsystem 1 (battery): the set of equations in the first subsystem are

ea1 : v̇0 =
1

C0
(−iB)

ea2 : v0 =
∫

v̇0dt

ea3 : v̇s =
1

Cs
(iBRs− vs)

ea4 : vs =
∫

v̇sdt

ea5 : vB = v0− vs

ea6 : v1 = vB

ea7 : v2 = v1

ea8 : v3 = v2

ea9 : yE240 = v1 + fE240

ea10 : yE242 = v2 + fE242

ea11 : yIT 240 = iB

(74)
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where Va1 = {v̇0,v0, iB, v̇s,vs,vB,v1,v2,v3} is the set of unknown variables in this subsys-

tem, the set of measurements is Ma1 = {yE240,yE242,yIT 240}, Fa1 = { fE240, fE242} repre-

sents subsystem faults, and C0, Cs and Rs are the parameters in the subsystem. The battery

is directly connected to the second subsystem (DC load).

Subsystem 2 (DC load): the DC load is modeled by an electric resistance, Rdc. The set

of equations for this subsystem are

ea12 : v3 = vdc

ea13 : iB = idc + iinv

ea14 : idc = fdc
vdc

Rdc

ea15 : yE281 = vdc

(75)

where Va2 = {v3,vdc, iB, idc, iinv} is the set of unknown variables in the subsystem, Ma2 =

{yE281} represents the set of subsystem measurements, Fa2 = { fdc} is the set of faults

associated with this subsystem, and Rdc is the only parameter in the subsystem. Subsystems

1 and 2 are first order connected and their shared variables are Va1∩V2 = {v3, iB}.

Subsystem 3 (inverter): the inverter converts DC power to AC. When there is no fault

in the subsystem and the input voltage, vin, is above 18V , the output voltage, vrms, stays at

120V . Rinv represents the internal resistance in the inverter and e is the inverter efficiency

rate. The set of equation for the subsystem are

ea16 : vin = vdc

ea17 : vrms = 120.(vin > 18). fINV

ea18 : iinv =
vrms.irms

e.vin
+

vinv

Rinv

ea19 : yE265 = vrms

(76)

where Va3 = {vin,vdc,vrms, iinv, irms} defines the set of subsystem unknown variables, Ma3 =

{yE265} is the set of subsystem measurements, Fa3 = { fINV} defines the set of subsystem
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faults, and e and Rinv are the subsystem parameters. Subsystems 2 and 3 are first order

connected and their shared variables are Va2 ∩Va3 = {vdc, iinv}. Subsystems 1 and 3 are

second order connected because they have no shared variable and they are both first order

connected to the second subsystem.

Subsystem 4 (AC load): like the DC load, the AC load is modeled with an electric

resistance, Rac. The set of equations for this subsystem are

ea20 : v4 = vrms

ea21 : iac = fac
v4

Rac

ea22 : irms =
1√
2
|
√

2i f an(cosφ + jsinφ)+
√

2iac|

ea23 : yIT 267 = irms

(77)

where Va4 = {v4,vrms, iac, irms, i f an} represents the set of subsystem unknown variables,

Ma4 = {yIT 267} represents the set of measurements in the subsystem, Fa4 = { fac} is the set

of subsystem faults, and Rac and φ are the parameters. Subsystems 3 and 4 are first order

connected and their shared variable is Va3∩Va4 = {vrms}.

Subsystem 5 (electric fan): the fan rotational speed, ω , is a function of fan current, i f an.

The last subsystem equations are

ea24 : i f an = f f an
v4

R f an

ea25 : ω̇ =
1

J f an
(

i f an

B f an
−ω)

ea26 : ω =
∫

ω̇dt

ea27 : yST 516 = ω

(78)

where Va5 = {i f an,v4, ω̇,ω, i f an} is set of unknown variables in the subsystem, Ma5 =

{yST 516} represents the set of subsystem measurements, and Fa5 = { f f an} is the set of

subsystem faults. Fan electrical resistance, R f an, fan inertial, J f an, and fan mechanical
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resistance, B f an, are the parameters. Subsystems 4 and 5 are first order connected and

Va4∩Va5 = {i f an,v4} is the set of shared variables among these subsystems. More details

of the ADAPT-Lite system are presented in [36]. In this case study, we use the ADAPT-Lite

system to represent the application of our proposed distributed diagnosis methods.

4.5.1 MSO-based Method Using Global Model

For the ADAPT system the fault diagnosis toolbox generates 258 MSOs. To find the

optimum measurements, the global MSOs selection algorithm solves an optimization prob-

lem for each subsystem. Table 13 shows the set of measurements that we need to add for

each of the subsystem diagnosers to achieve maximum possible detectability and isolability

using our global MSOs selection algorithm. In the first subsystem all the faults are locally

detectable and isolable, and, therefore, this subsystem does not require any measurement

from the other subsystems. For each other subsystem, we have to transfer exactly one

measurement to achieve maximum diagnosability.

Table 13: Set of augmented measurements to each ADAPT subsystem using global
method

Subsystem Set of augmented measurements
Subsystem 1 -
Subsystem 2 yIT 267
Subsystem 3 yE281
Subsystem 4 yST 516
Subsystem 5 yE265

Table 14 shows the set of MSOs for each local diagnoser. Not that the global MSOs

selection method only minimizes the number of shared variables, but the subsystems may

require equations from the other subsystems. For example, the first subsystem in ADAPT

does not require any additional measurement to locally detect and isolate its faults, how-

ever, as we can see in Table 14, this subsystem requires several equations from the other
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subsystems. The total time for MSO generation, and solving the optimization problems to

Table 14: Set of MSOs for each local diagnoser using global method

Subsystem Set of MSOs
1 MSOa11 = {ea8,ea10,ea11,ea12,ea13,ea14,ea16,ea17,ea18,ea20,ea21,ea22,ea24}

MSOa12 = {ea7,ea9,ea10}
MSOa13 = {ea7,ea8,ea9,ea11,ea12,ea13,ea14, ,ea16, ...

ea17,ea18,ea20,ea21,ea22,ea24}
2 MSOa21 = {ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8,ea12,ea13,ea14,ea15,ea16, ...

ea18,ea20,ea21,ea22,ea23,ea24}
MSOa22 = {ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8,ea12,ea13,ea14,ea15,ea16, ...

ea17,ea18,ea23}

3 MSOa31 = {ea15,ea16,ea17,ea19}

4 MSOa41 = {ea21,ea22,ea23,ea24,ea25,ea26,ea27}
MSOa42 = {ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8,ea12,ea13,ea14,ea16, ...

ea17,ea18,ea20,ea21,ea22,ea23,ea25,ea26,ea27}

5 MSOa51 = {ea19,ea20,ea24,ea25,ea26,ea27}

find a set of MSOs for each subsystem with minimum shared variables was 118s, where

the experiment was run on a desktop with a the Intel Core i7-4790 processor (3.60 GHz).

4.5.2 MSO-based Method Using Neighboring Subsystems

Table 15: Set of augmented measurements to each subsystem model using neigh-
boring subsystems

Subsystem Set of augmented measurements
Subsystem 1 −
Subsystem 2 yE265, yIT 267
Subsystem 3 yE281
Subsystem 4 yE265, yST 516
Subsystem 5 yE265
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Table 16: Set of MSOs for each local diagnoser using neighboring subsystems

Subsystem Set of MSOs
1 MSOb11 = {ea1,ea2,ea3,ea4,ea5,ea6,ea9,ea11}

MSOb12 = {ea7,ea9,ea10}
MSOb13 = {ea1,ea2,ea3,ea4,ea5,ea6,ea7, ,ea10,ea11}

2 MSOb21 = {ea1,ea2,ea3,ea4,ea5,ea6,ea7,ea8,ea12,ea13,ea14,ea15,ea16,ea18,ea19,ea23}

3 MSOb31 = {ea15,ea16,ea17,ea19}

4 MSOb41 = {ea21,ea22,ea23,ea24,ea25,ea26,ea27}
MSOb42 = {ea19,ea20,ea21,ea22,ea23,ea25,ea26,ea27}

5 MSOb51 = {ea19,ea20,ea24,ea25,ea26,ea27}

In the previous subsection we used the global model of the ADAPT system to generate

the MSOs, and then selected the MSOs for each subsystem diagnosers using the BILP al-

gorithm run on the global MSO set. In this section, we achieve global diagnosability of a

subsystem diagnoser by incrementally adding a minimum number of measurements from

the neighbors of this subsystem till the global diagnosability property is established. Com-

pared to the global method, the computational complexity is much lower in this approach.

For example, to design the diagnosis system for the first subsystem, we start with its set

of equations and the fault diagnosis toolbox generates only 3 MSOs for this subsystem

which are enough to detect and isolate all the subsystem faults. Therefore, we do not need

to consider other subsystems. Using the same approach for every subsystem, the set of

measurements that we need to transfer to each ADAPT subsystem are presented in Table

15.

In some cases, considering the first order neighboring subsystem is not enough to de-

tect and isolate all the faults and the algorithm has to expend to the higher order neighbors.

For example, for subsystem 2, the algorithm can not find any solution when it considers

the first order neighbors (subsystem 1 and subsystem 3). Therefore, it extends the search
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to the second order neighboring subsystems (subsystem 4). For these four subsystems, the

fault diagnosis toolbox generates 44 MSOs, and the algorithm selects 1 MSO to detect and

isolate the subsystem fault. We can see the advantage of using neighboring subsystems

over the global approach in this example because the computational cost of solving the set

covering problem for 44 MSOs is significantly less than 258 MSOs. Using the same pro-

cessor, the total time for this method was 2.9s. This is significantly less than the total time

for the global method. However, as we mentioned earlier, this algorithm does not guaran-

tee global minimum communication among subsystems. In the global method subsystem 2

only requires yIT 267 to be transfered from the other subsystems. However, in this approach

it requires yE265, and yIT 267. Table 16 shows the set of MSOs for each local diagnoser using

the neighboring subsystems. Compared to the global method (see Table 14), the MSOs in

this approach tend to have fewer number of equations.

4.5.3 Equation-based Distributed Diagnosis

Instead of generating all the MSOs and selecting a subset of MSOs for each local di-

agnoser, Algorithm 9 finds a minimal set of equations from neighboring subsystems that

guarantees complete diagnosability performance. Table 17 shows the set of equations that

Table 17: Set of augmented equations and measurements to each subsystem model
using equation-based approach

Subsystem Augmented equations Augmented measurements
Subsystem 1 - -
Subsystem 2 ea11, ea16, ea18, ea19, ea23 yIT 240, yE265, yIT 267
Subsystem 3 ea15 yE281
Subsystem 4 ea19, ea25, ea26, ea27 yE265, yST 516
Subsystem 5 ea19, ea20 yE265

we need to augment from neighboring subsystems to each local diagnoser to achieve max-

imum possible detectability and isolability using equation-based approach.
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Table 18: Set of MSOs for each local diagnoser using equation-based approach

Subsystem Set of MSOs
1 MSOc11 = {ea1,ea2,ea3,ea4,ea5,ea6,ea9,ea11}

MSOc12 = {ea7,ea9,ea10}
MSOc13 = {ea1,ea2,ea3,ea4,ea5,ea6,ea7, ,ea10,ea11}

2 MSOc21 = {ea11,ea13,ea14,ea15,ea16,ea18,ea19,ea23}
3 MSOc31 = {ea15,ea16,ea17,ea18,ea19}
4 MSOc41 = {ea19,ea20,ea21,ea22,ea23,ea25, ea26, ea27}
5 MSOc51 = {ea19,ea20,ea24,ea25,ea26,ea27}

Table 17 also represents the set of measurements that we need to transfer to each

ADAPT subsystem. Note that like the previous subsection, our algorithm in this subsection

does not guarantee global minimum communication. For example, subsystem 2 requires

three measurements from other subsystems (see Table 17). However, we can see in Table

11 that the complete diagnosability is achievable by only one additional measurement. To

detect and isolate faults in each subsystem, we use the subsystem equations and the set of

augmented equations to generate MOSs. Table 18 shows the set of MSOs for each local

diagnoser using the equation-based method. We used the same desktop (Intel Core i7-4790

processor, 3.60 GHz) to run this experiment and the total time was 0.32s. This shows the

computational advantage of this method.

4.6 Discussion and Conclusions

Two structural distributed diagnosis methodologies are presented in this chapter. The

proposed algorithms provide the maximum possible detectability and isolability that can be

achieved for a system given a set of measurements. Unlike previous work, such as [23, 35]

our proposed methods directly work with system equations, and therefore, do not need to

use the temporal response and event ordering in the diagnosis, all of which are derived

properties, and, therefore, require additional computation. Using a purely structural ap-

proach, reduces the overall diagnosability of the system for the given set of measurements.
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However, it also reduces the number of assumptions we need to make about the fault char-

acteristics, order of events in the diagnoses subsystems (which can be error-prone), and we

do not have to analyze in detail the subsystem dynamics.

We proposed two algorithms for MSOs selection for the distributed diagnosis. The first

algorithm guarantees that the subsystems share the minimum number of measurements,

implying that we minimize the communication of measurement streams across subsystems

of the global system. This is important because sending the data to other subsystems is

costly in large scale systems. On the other hand, the second algorithm does not need to use

the global model in the design process of the supervisory system. This makes the algorithm

more practical, specially for the complex systems. However, the second algorithm does not

guarantee that the number of shared variables among the subsystems are globally minimum.

The MSO-based methods generate the MSOs sets and select a subset of MSOs with

minimum required shared variables. The total number of MSOs is exponential in terms

of the system measurements and selecting a subset of MSOs with minimum shared mea-

surements is equivalent to the set covering problem. Therefore, these algorithms have high

computational cost specially for large-scale systems. Instead of selecting a subset of MSOs

from the generated MSOs for each local diagnoser, the equation-based algorithm finds a

minimal set of equations from neighboring subsystems that guarantees maximum possible

detectability and isolability that can be achieved. The number of equations is significantly

smaller than the number of MSOs. This makes the approach very feasible for large-scale

complex systems.
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CHAPTER V

FAULT DETECTION AND ISOLATION IN HYBRID SYSTEMS

Hybrid systems are characterized by continuous behaviors that are interspersed with

discrete mode changes in the system, making the analysis of behaviors quite complex.

Developing feasible approaches for on-line monitoring, fault detection, and fault isolation

of complex hybrid and embedded systems such as automobiles, aircraft, power plants, and

manufacturing processes, is essential in securing their safe, reliable, and efficient operation.

Frequent changes in the operational modes of these systems because of operators actions

such as changing gears in an automobile, or environmental changes, such as driving on a

wet or icy road make the fault detection and isolation task in these systems challenging. It

is important to detect and isolate faults in all the operating modes, and at the same time, not

mistake a mode change as a fault in the system. The MSO approach has been used exten-

sively for designing model based fault detection and isolation schemes for complex systems

[106, 168]. We extend this approach by working with equations that contain continuous

and discrete variables to describe hybrid systems behavior. Using the mixed continuous-

discrete equations, we define Hybrid Minimal Structurally Overdetermined (HMSO) sets

for fault detection and isolation in hybrid systems.

In this chapter, we adopt a structural approach to developing a mode detection algo-

rithm. We address the mode detection problem in hybrid systems as the first step in di-

agnoser design. The proposed method uses analytic redundancy methods to detect the

operating mode of the system. The mode detection unit, once designed can track the op-

erating mode even in the presence of system faults. When the operating mode is detected,

the corresponding diagnosis methodology efficiently picks a set of HMSOs that guarantee

complete fault diagnosability in the current mode. We develop two solutions for the HMSO

selection problem. The first solution finds a subset of HMSOs with minimum cardinality
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that satisfies a pre-specified diagnosability performance. Note that this is equivalent to

finding an optimal solution for the set covering problem, which is known to be NP-hard

[105] and, therefore, any algorithm for finding a set of HMSOs with minimal cardinality

and required diagnosability performance will have exponential computational complexity.

We formulate this problem as a binary integer linear programming (BILP) problem.

To reduce the computational complexity, we also develop a greedy search algorithm

to find a minimal set of HMSOs that guarantee complete fault detectability and isolabil-

ity in the current mode. Therefore, the selected HMSOs set may not have the minimum

cardinality number. A larger number of HMSOs increases the residual generation compu-

tational cost but this increase in the computational complexity is negligible compared to

the computational complexity of finding an optimal solution for the set covering problem.

The selected HMSO set can then be used for residual generation. The proposed structural

approach does not require pre-enumeration of all possible modes in the diagnoser design

step. Therefore, our approach is feasible for hybrid systems with large number of switch-

ing elements, implying that the system can have large number of operating modes. We

demonstrate its effectiveness using a case study on a Reverse Osmosis (RO) subsystem of

an Advances Life Support System (ALS) for long duration manned space missions. Impor-

tant challenges that can affect the success of our approach include the need for sufficiently

detailed hybrid models that capture nominal and faulty behavior, and a sufficient number

of sensors to make simultaneous mode change and fault detection and isolation possible.

The rest of this chapter is organized as follows. A formal definition of hybrid systems

and the running example, a four-tank system, is presented in Section 5.1. The problems

of mode detection and FDI for hybrid systems and our general approach to address these

problems are formally described in Section 5.2. Section 5.3 presents our algorithm for

mode detection. The fault diagnosis approach in hybrid systems is presented in Section

5.4. Section 5.5 presents the case study and Section 5.6 presents the conclusions of the

chapter.
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5.1 Hybrid Systems

5.1.1 Hybrid systems modeling

A number of different approaches have been used for modeling hybrid systems. These

include hybrid automata, hybrid I/O automata, mixed logic-dynamic systems, piecewise

affine systems, and hybrid bond graphs. Heemels et al [82] have proved equivalences

among several hybrid system modeling approaches. In this work, we model hybrid systems

as a set of equations that contain both continuous and discrete variables, much like the

mixed logic-dynamic approach proposed by Bemporad and Morari [13]. Formally, we

define a hybrid system H as follows:

Definition 28 (Hybrid system model). A hybrid system model H is a tuple: (X, Σ, T , E, M),

where X represents the set of continuous variables in the system, Σ = Σ1 ∪Σ2 represents

the set of discrete variables; Σ1 are variables whose values are defined by controlled mode

transitions, i.e., signals that are generated external to the system, e.g., by a controller;

Σ2 are a set of variables whose values are defined by autonomous mode transitions, i.e.,

they are based on values associated with continuous variables in the system; T : X →

Σ2 represents the set of conditions on continuous variables that define autonomous mode

transitions; and E : X×Σ→ X represents the set of equations that define the hybrid system

behavior. The total number of modes in the hybrid system, M is exponential in the number

of discrete variables, Σ, i.e., M = 2|Σ|.

This definition adopts the Mosterman and Biswas [136] approach to model mode tran-

sition functions. E generalizes this approach, and adopts the mixed logic-dynamics [13]

form that combines continuous and discrete variables to model hybrid systems. Since the

number of modes in a hybrid system is an exponential function of its discrete variables,

any approach that requires pre-computing all the possible modes of operation is compu-

tationally intractable. We extend the hybrid model H to support diagnosis by considering

measurements and faults in the system. Thus the hybrid system model for diagnosis, Hd , is

defined as:
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Definition 29 (Hybrid system model for diagnosis). A hybrid system model for diagnosis

is Hd = H ∪Y ∪Z∪F, where Y is a set of continuous measurements that are made on the

system, i.e., Y = Φ(X); Z represents discrete measurements, where Z ⊆ Σ; and F is the set

of fault parameters that are of diagnostic interest.

Figure 31: Running example: Hybrid Four Tank System.

We use a configured four tank system, shown in Fig. 31, as a running example through-

out this chapter to illustrate the hybrid diagnosis problem, and to develop our structural

approach for hybrid systems diagnosis. Tanks 1 and 3 have inflows that we assume are

know, and represented by measurements y1 and y6, respectively. There are connecting

pipes between adjacent tanks. For Tanks 1 and 4 these pipes are located at the bottom of

the tanks. For Tanks 2 and 3, the pipes are located at known heights, h1 and h2, respec-

tively. The flow through the connecting pipe between Tanks 1 and 2 is controlled by an

on/off valve, whose state is controlled by an external signal, generated by a controller. The

controller function depends on the pressure in Tanks 1 and 2, which are measured values,

y2 and y4, respectively. The flow through this valve is a measured variable, y3.

For the valve on the outlet pipe of Tank 4, we assume the discrete on/off state of the

valve is determined by the known external control signal z1. The direction and amount of

flow between Tanks 2 and 3, and between Tanks 3 and 4, depend on the liquid levels in the

three tanks. Of these three pressures, only the pressures in Tanks 2 and 4 are measured,
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and represented by the variables y4 and y8, respectively. In addition, the flow through the

two connecting pipes are also measured, and represented by y5 and y7, respectively. All of

the continuous and discrete measurements are shown as encircled variables in the figure.

The equations, transition conditions, and the output variables corresponding to the hybrid

system diagnosis model for our running example are listed below. E = {ei|1 ≤ i ≤ 21}

defines the set of equations, T = {t1:5} is the set of transitions, X = {ṗ1:4, p1:4,q1:4,qin1,3}

defines the set of continuous variables, Σ= {σ1:6} is the set of discrete variables, Y = {y1:8}

defines the set of continuous measurements, Z = {z1} is the set of discrete measurements,

and F = { fi|1≤ i≤ 6} represents the set of faults associated with the hybrid system model.

The system has six binary variables and, therefore, 26 modes.

e1 : ṗ1 =
1

CT 1
(qin1−q1− f1)

e2 : p1 =
∫

ṗ1 dt

e3 : q1 = σ1
p1− p2

RP1 + f2

t1 : σ1 =

{
1 p1 ≥ p2

0 p1 < p2

e4 : ṗ2 =
1

CT 2
(q1−q2− f3)

e5 : p2 =
∫

ṗ2 dt

e6 : q2 =
σ2 p2−σ3 p3

RP2 + f4

t2 : σ2 =

{
1 p2 ≥ ρgh1

0 p2 < ρgh1

t3 : σ3 =

{
1 p3 ≥ ρgh1

0 p3 < ρgh1

e7 : ṗ3 =
1

CT 3
(qin3 +q2−q3)

e8 : p3 =
∫

ṗ3 dt

e9 : q3 =
σ4 p3−σ5 p4

RP3 + f5

t4 : σ4 =

{
1 p3 ≥ ρgh2

0 p3 < ρgh2

t5 : σ5 =

{
1 p4 ≥ ρgh2

0 p4 < ρgh2

e10 : ṗ4 =
1

CT 4
(q3−q4− f6)

e11 : q4 = σ6
p4

RP4

e12 : p4 =
∫

ṗ4 dt

(79)
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e13 : qin1 = y1

e14 : p1 = y2

e15 : q1 = y3

e16 : p2 = y4

e17 : q2 = y5

e18 : qin3 = y6

e19 : q3 = y7

e20 : p4 = y8

e21 : σ6 = z1.

(80)

In the equations, pi represents the pressure in Tank i, and qi represents the flow through

the connecting pipe associated with the adjoining tanks. qini represents the inflow into

Tank i, and the on/off state of valve i is represented by σi = 1 (on), and σi = 0 (off). The yis

represent continuous measurements, and zks represent discrete measurements. The capacity

of Tank i is represented as CTi, and the resistance of the connecting pipe to the right of a

tank is represented by RPi. The fault parameters are modeled by fi. f1 represents a leak

in Tank 1, f2 represents a clog in the connecting pipe to the right of Tank 1, f3 represents

a leak in Tank 2, f4 represents a clog in the connecting pipe to the right of Tank 2, f5

represents a clog in the connecting pipe to the right of Tank 3, and f6 represents a leak in

Tank 4. Other parameters required by the model include the density of the liquid, ρ , and

the gravitational constant, g. The height of the pipes, h1 and h2, are assumed to be constant

and known.

5.1.2 Mode detection and mode observability in hybrid systems

This subsection introduces the basic concepts and definitions associated with structural

mode detection and fault detection and isolation in hybrid systems. In this work, we extend

the DM decomposition approach [59] for mode detection. To detect the operating mode of

the system, we have to know the value of all of its discrete variables ( e.g., Σ = {σ1:6} in

the running example). To compute a discrete variable σi we need a subset of determined

transition and behavior equations (sets T and E) that include σi and a sequential ordering

for computing σi. For example, to compute σ1 in our running example (see (79) and (80)),
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we can use e14 and e16 to compute p1, and p2, respectively and substitute for p1, and p2, in

t1 to compute σ1.

We define the notion of detectable modes in hybrid systems in the presence of faults,

by introducing the concepts of structural determined (SD) sets and minimal structural de-

termined (MSD) sets as follows.

Definition 30. (Structural Determined Set in Hybrid Systems) Consider a set of equations

and transitions and their associated continuous variables, discrete variables, and faults:

(E,T,X ,Σ,F). This set of equations and transitions is structurally determined (SD) if the

cardinality of the set E plus cardinality of T is greater than or equal to the sum of the

cardinalities of the sets X, Σ, and F , i.e. |E|+ |T | ≥ |X |+ |Σ|+ |F |.

Definition 31. (Minimal Structural Determined Set in Hybrid Systems) A set of structurally

determined equations is minimal structurally determined (MSD) if it has no subset of struc-

turally determined equations.

Consider the four tank system represented by equations (79) and (80). A minimal struc-

turally determined set in this system is MSD1 = (E1,T1,X1,Σ1,F1), where E1 = {e14,e16},

T1 = {t1}, X1 = {p1, p2}, Σ1 = {σ1}, and F1 = {}. For the sake of brevity, in the rest of

the chapter we simply say a specific equation, transition, variable, or fault is a member of

a MSD (e.g., σ1 ∈MSD1). MSDs represent solvable set of variables in the system and can

be used for mode detection. We define a detectable discrete variable in a hybrid system as

follows.

Definition 32. (Detectable discrete variable in hybrid systems) A discrete variable σ ∈ Σ

is detectable for diagnostic hybrid system, Hd , if there is a minimal structurally determined

set MSDi in the system, such that σ ∈MSDi.

For example, discrete variable σ1 in equation (79) is detectable because σ1 ∈ MSD1.
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Babaali and Egerstedt [7] defined mode observability based on continuous variables tra-

jectories in different modes. In this work, we define a mode observable diagnostic hybrid

system model as

Definition 33 (Mode Observable Diagnostic Hybrid system). A hybrid system Hd = (X, Σ,

T , E, M, Y , Z, F) is mode observable if all the discrete variables σi ∈ Σ are detectable

(i.e., they are directly observed, or their values are computable given Hd).

5.1.3 Fault detection and isolation in hybrid systems

Mode detection is an integral part of hybrid system diagnosis. We derive a mode de-

tection scheme based on the structural properties of the system equations, i.e., the MSD

approach, making the assumption that the hybrid system is mode observable. In addition,

we assume faults and mode changes do not occur at the same time and a fault is detected

and isolated in the same mode in which it initially occurs. Therefore, our approach to fault

detection and isolation, requires synchronous solution of the mode identification, fault de-

tection, and fault isolation tasks. We describe our diagnosis algorithm in greater detail in

the next section.

We formally define the concepts of Hybrid Structurally Overdetermined (HSO) and

Hybrid Minimal Structurally Overdetermined (HMSO) sets for hybrid system diagnosis

below.

Definition 34. (Hybrid Structural Overdetermined Set) Consider a set of equations and its

associated continuous variables, discrete variables, and faults: (E,X ,Σ,F). This set of

equations is a set of hybrid structurally overdetermined (HSO) if the cardinality of the set

E is greater than the cardinality of set X, i.e. |E|> |X | and all the σ ∈ Σ are detectable.

Definition 35. (Hybrid Minimal Structurally Overdetermined Set) A HSO is hybrid mini-

mal structurally overdetermined (HMSO) if it has no subset of hybrid structurally overde-

termined equations.
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For example, consider the four tank system in equations (79) and (80). A hybrid min-

imal structurally overdetermined set in this system is HMSO1 = (E2,X2,Σ2,F2), where

E2 = {e1,e2, e13,e14,e15}, X2 = {ṗ1, p1,q1,qin1}, Σ1 = {}, and F1 = { f1}. Note that

HMSO1 does not include a discrete variable. For the sake of brevity and simplification

we simply say a specific equation, variable, measurement, or fault is a member of a HMSO

in the rest of the chapter. For example, we say f1 ∈ HMSO1. HMSOs represent the redun-

dancies in the hybrid system and can be used for fault detection and isolation. We define

fault detectability in hybrid systems as follows.

Definition 36. (Detectable fault in hybrid systems) A fault f ∈ F is detectable in hybrid

system Hd if there is a hybrid minimal structurally overdetermined set HMSOi in the sys-

tem, such that f ∈ HMSOi.

For example, consider fault f1 in the running example in equation (79). f1 is detectable

because f1 ∈ HMSO1.

Definition 37. (Isolable faults in hybrid systems) A fault fi ∈ F is isolable from fault f j

∈ F if there exists a hybrid minimal structurally overdetermined set HMSOi in the system

Hd , such that fi ∈ HMSOi and f j 6∈ HMSOi .

As an example f1 is isolable from f2 because f1 ∈ HMSO1 and f2 /∈ HMSO1.
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5.2 Problem Formulation and Solution

Hybrid System

System outputs 
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Figure 32: Fault Detection and Isolation in Hybrid Systems.

Fig.32 represents our diagnosis approach for hybrid systems. Our approach has two

main steps: 1) mode detection, and 2) fault detection and isolation. To detect the operating

mode of a hybrid system, we have to compute the value of its discrete variables. Therefore,

finding a minimal structural determined (MSD) set to detect each discrete variable is the

first problem we have to address in this chapter. We assume the hybrid system is mode

observable and develop an algorithm to find a MSD to detect each discrete variable in the

presence of possible faults.

Definition 38. (Mode detection problem): Let Σ denote the set of discrete variables in a

diagnostic hybrid system, Hd . Our goal is to develop an algorithm that selects a minimal

structurally determined set MSDi for each σi ∈ Σ such that σi ∈MSDi. More formally, the

mode detection problem for hybrid systems can be defined as:

∀σi ∈ Σ find MSDi,

such that σi ∈MSDi.

(81)
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The mode detection unit in Fig.32 continuously tracks the operating mode of the sys-

tem. When the hybrid system transitions to a new mode, our diagnosis approach generates

a new set of residuals to support fault detection and isolation in that mode. Note that if the

hybrid system revisits a mode that has been active earlier, we can simply revive a cashed set

of residuals that was generated for this mode. When our mode detection algorithm reports

a new mode of operation, we apply the fault diagnosis toolbox [68] to generate the entire

set of HMSOs for the operating mode. We then select a minimal set of HMSOs for fault

detection and isolation in this mode. Developing an algorithm to select a minimal set of

HMSOs that guarantees complete fault detectability and isolability in each operating mode

of hybrid systems is the second problem we address in this chapter.

Assuming the modes are detectable, we can define fault detection and isolation problem

in hybrid systems as follows. Each HMSO is sensitive to a set of faults and, therefore, can

be used to detect and isolate them from the other faults in the hybrid system. Given the

hybrid system model for diagnosis, Hd , with a set of faults F , we assume that the set of

HMSOs in each mode, m, HMSOm = {HMSOm1 ,HMSOm2, . . . ,HMSOmr}, is sufficient to

detect and uniquely isolate all of the faults in that mode, Fm ⊂ F . Note that the set of fault

candidates is not necessarily the same in all the operating modes. Our goal is to develop

an algorithm that selects a minimal subset of HMSOs, HMSO∗m for each mode, m, which

guarantees the fault detectability for each fault fi ∈ Fm and fault isolability for each pair

of faults f j ∈ Fm and fk ∈ Fm. More formally, for each operation mode we define minimal

HMSO set as a minimal set of HMSOs that can be used to achieve the complete structural

diagnosability performance.

Definition 39. (Minimal HMSO set for operation mode m): HMSO∗m ⊂ HMSOm is a min-

imal set of HMSOs for diagnosis the faults in mode m, Fm, if HMSO∗m fulfills the following
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diagnosability performances

∀ fi& f j ∈ Fm :

∃HMSOk ∈ HMSO∗m :

fi ∈ HMSOk,

f j /∈ HMSOk,

(82)

and all proper subsets of HMSO∗m do not.

As discussed earlier, and illustrated in Fig.32, we use the fault diagnosis toolbox [68]

to derive the set of residuals from the selected HMSOs, HMSO∗m, in each operating mode.

The derived residuals are used for FDI in the mode. Note that HMSO selection and residual

generation are only required when the system transits to a mode for the first time. The

generated residuals for each visited mode can be saved and used when the system returns

to the mode later during system operations. Algorithm 10 summarizes this approach. In

the next sections we present each step of the algorithm in greater detail.

Algorithm 10 Fault Detection and Isolation
1: input: ( Y , Z)
2: Detect the current mode
3: Generate the model in the current mode
4: Generate the set of HMSOs for the current mode
5: Find a minimal HMSO set for FDI in the current mode
6: Genrate a residual from each HMSO
7: Apply the residuals for FDI

5.3 Mode Detection Algorithm

In this section, we present our proposed approach to finding a minimal set of constraints

for detecting each discrete mode change during the hybrid system operation. We illustrate

the procedure by solving this problem for the running example, and then generalize this
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approach and present an algorithm that solves this problem. The tank system has six dis-

crete variables. To detect each σi ∈ Σ, we have to find a determined set of equations and

transitions (MSD) that include σi. We illustrate this for σ1 by starting with all of the system

equations and transitions in Hd that have σ1. These equations and transitions are e3, and t1

as shown in Fig. 33. Then for the additional variables and faults in each equation or tran-

sition we need to add other equations so that they may be replaced to generate an equation

with only one unknown variable. For t1 we need to add two new constraints: one with p1

and the other with p2. e14 and e16 represent measurement equations and p1 and p2 are the

only unknown variables in these equations, respectively. Therefore, these equations do not

add any new variable to t1, and E1 = {e14,e16} plus t1 is a minimal structurally determined

set that makes σ1 detectable.

Figure 33: Detecting σ1.

However, as it is shown in Fig. 33 there is no additional set of equations that we can add

to e3 to generate a structurally determined set. More formally, Fig. 33 depicts a matching

algorithm whose general form is presented as Algorithm 11.If we initialize the algorithm

with the set of unknown variables and faults, U , (in this example p1 and p2 are the un-

known variables) it returns a set of complete matching of variables and equations in the

subsystem that includes the unknown variables. We use Algorithm 11 to find a MSD set

to detect each discrete variable in the running example as it is shown in Fig. 34. Note that

we used the same matching algorithm in Chapter IV (see Algorithm 6) to find minimal

equations in the neighboring subsystems. Algorithm 12 summarizes the procedure. Table

19 shows the set of constrains in each MSD.
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Algorithm 11 Count-Matchings
1: input: current matching M
2: input: sets of determined variables D and undetermined variables U
3: if U = /0 then
4: return M as a feasible (minimal) matching.
5: end if
6: for each x ∈U do
7: for each y which can determine x do
8: Let M ′ be M ∪{x→ y}
9: Let D ′ be D ∪{x}.

10: Let U ′ be U \{x}.
11: Add all the undetermined variables of y to U ′.
12: COUNT-MATCHINGS(M ′,D ′,U ′)
13: end for
14: end for

Algorithm 12 Mode Detection
1: input: (X , Σ, E, T , Y , Z, M, F)
2: for each σ ∈ Σ do
3: Cσ = the set of equations and transitions that include σ

4: for each c ∈Cσ do
5: Let M be (c,σ)
6: Let D be σ and U be the rest of variables in c
7: MSDσ = Count-Matchings(M , D , U )
8: if MSDσ 6= /0 then
9: select MSDσ as a feasible MSD for σ .

10: end if
11: end for
12: end for
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𝑡1:{𝑝1, 𝑝2}

𝑒14:{} 𝑒16:{}

𝜎1 𝜎6
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Figure 34: Detecting σ1 - σ6.

Table 19: Set of selected MSDs

HMSOs Set of equations discrete variable
MSD1 t1, e14, e16 σ1
MSD2 t2, e16 σ2
MSD3 t3, e8, e7, e18, e17, e19 σ3
MSD4 t4, e8, e7, e18, e17, e19 σ4
MSD5 t5, e20 σ5
MSD6 e21 σ6

To detect each discrete variable, we assign a reverse causality to the graphs shown in

Fig. 34 to solve the MSDs for the discrete variables using the known variables. Equations

(83) and (84) show the solutions for the discrete variables.

σ1 =

{
1 y2 ≥ y4

0 y2 < y4

σ2 =

{
1 y4 ≥ ρgh1

0 y4 < ρgh1

σ3 =

{ 1
∫ 1

CT 3
(y6 + y5− y7)≥ ρgh1

0
∫ 1

CT 3
(y6 + y5− y7)< ρgh1

(83)
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σ4 =

{ 1
∫ 1

CT 3
(y6 + y5− y7)≥ ρgh2

0
∫ 1

CT 3
(y6 + y5− y7)< ρgh2

σ5 =

{ 1 y8 ≥ ρgh2

0 y8 < ρgh2

σ6 = z1.

(84)

5.4 Fault Detection and Isolation Algorithm

In this section, we present our algorithm to select a minimal HMSOs set that guarantees

complete diagnosability in each operating mode. We then discuss residual generation and

the fault detection and isolation algorithm for hybrid systems.

5.4.1 Selecting a minimal HMSO set for FDI

The FDI algorithm assumes that the discrete variables values have been computed and

the hybrid system mode is known. Therefore, we can remove the discrete variables from

the list of unknown variables. Assume we generate r HMSOs for hybrid system diagno-

sis model, Hd , in mode m, HMSOm = {HMSOm
1 ,HMSOm

2 , . . . , HMSOm
r }, given its set of

measurements Y ∪Z. Our goal is to design a greedy search algorithm that selects a minimal

set of residuals HMSO∗m ⊆HMSOm in a way that makes all the system faults in this mode,

Fm, structurally diagnosable. Algorithm 13 sorts the HMSOs by number of equations in

the first setp (line 5). Because of the sorting step the greedy search selects HMSOs with

the smallest number of equations. The smaller the number of equations that make up an

HMSO, the smaller are the number of the system model parameters in this HMSO (this

is a heuristic), and, therefore, the HSMO is likely to be more robust against model uncer-

tainties. Moreover, the computational complexity of solving for unknown variables and
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deriving residuals from HMSOs with fewer equations is likely to be smaller than HMSOs

that include more equations (note, this is again a heuristic).

Algorithm 13 HMSO-Selection
1: input: set of selected HMSOs for the current mode HMSO∗m
2: input: set of HMSOs in the current mode HMSOm
3: input: set of undetectable faults UD
4: input: set of pair of faults that are not isolable UI
5: sort HMSOm by number of equations
6: if UD = /0 and UI = /0 then
7: return HMSO∗m as a minimal HMSO set.
8: end if
9: HMSOnew= Find-HMSO(HMSOm,HMSO∗m,UD,UI)

10: for each f ∈UD if f ∈ HMSOnew do
11: Let UD be UD\{ f}
12: end for
13: for each ( fi, f j) ∈UD if fi ∈ HMSOnew and f j /∈ HMSOnew do
14: Let UI be UI \{( fi, f j)}
15: end for
16: Let HMSO∗m be HMSO∗m∪{HMSOnew}.
17: Let HMSOm be HMSOm \{HMSOnew}.
18: HMSO-SELECTION(HMSOm, HMSO∗m, UD, UI)

When the system transits to a mode m for the first time, the set of selected HMSOs for

this mode, HMSO∗m, is empty, and therefore, no fault is detectable or isolable in this mode.

At each step, function Find-HMSO adds a HMSO candidate, HMSOnew, to HMSO∗m that

makes at least a fault detectable, if not isolable from other faults that can occur in this

mode. The algorithm keeps adding HMSOs to HMSO∗m till all the faults are detectable and

isolable. The selected HMSO∗m are used to generate the set of residuals for this mode. The

residuals for each visited mode will be saved to be used when the system returns to the

mode.

As an example consider the case where discrete variables in the running example are

Σ = {1,0,0,1,1,0}. This is the running example’s mode number 38 when we number

the system’s 64 modes from 0 to 63. In this operating mode, the system equations are as
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Algorithm 14 Find-HMSO
1: input: set of selected HMSOs for the current mode HMSO∗m
2: input: set of HMSOs in the current mode HMSOm
3: input: set of undetectable faults UD
4: input: set of pair of faults that are not isolable UI
5: for each HMSO ∈ HMSOm if (∃ f ∈ HMSO and f ∈UD) or (∃ fi ∈ HMSO and ∃ f j /∈

HMSO and ( fi, f j) ∈UI) do
6: return HMSO as the selected HMSO
7: end for

follows.

e1 : ṗ1 =
1

CT 1 + f1
(qin1−q1)

e2 : p1 =
∫

ṗ1 dt

e3 : q1 =
p1− p2

RP1 + f2

e4 : ṗ2 =
1

CT 2 + f3
(q1−q2)

e5 : p2 =
∫

ṗ2 dt

e6 : q2 = 0

e7 : ṗ3 =
1

CT 3
(qin2 +q2−q3)

e8 : p3 =
∫

ṗ3 dt

e9 : q3 =
p3− p4

RP3 + f5

e10 : ṗ4 =
1

CT 4 + f6
(q3−q4)

e11 : q4 = 0

e12 : p4 =
∫

ṗ4 dt

e13 : qin1 = y1

e14 : p1 = y2

e15 : q1 = y3

e16 : p2 = y4

e17 : q2 = y5

e18 : qin2 = y6

e19 : q3 = y7

e20 : p4 = y8

(85)

The set of system faults in this operating mode is F38 = { f1, f2, f3, f5, f6}. Note that in

this operation mode f4 is not among the system faults. In fact, when σ2 = 0 the valve

flow q2 = 0 independent of the resistance in the pipe, RR2 . In this situations, a fault in RR2

does not have any effect on the system dynamics. To detect f4 the diagnoser should wait

for a mode change in the hybrid system or adopt an active fault diagnosis approach [135].
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Running the fault diagnosis toolbox, produces 47 HMSOs for the running example in this

operating mode and, therefore, HMSO38 = {HMSO38
1 , HMSO38

2 , ...,HMSO38
47}. Table 20

shows the selected HMSOs and their sets of equations and faults in mode 38. To implement

Table 20: Set of selected HMSOs for FDI in mode 1010

HMSOs Set of equations Set of faults
HMSO38

1 e3, e14, e15, e16 f2
HMSO38

2 e10, e11, e12, e19, e20 f6
HMSO38

3 e4, e5, e15, e16, e17 f3
HMSO38

4 e1, e2, e13, e14, e15 f1
HMSO38

5 e7, e8, e9, e17, e18, e19, e20 f5

the diagnosis approach for detecting and isolating the faults, we generate residuals in the

manner shown next.

5.4.2 Generating residuals for hybrid systems

We developed Algorithm 13 to select a minimal set of HMSOs for fault detection and

isolation. When the system operating mode is detected and, therefore, the discrete vari-

ables in the hybrid system are known, we can use the fault diagnosis toolbox to generate a

residual from each HMSO. Consider the set of HMSOs in Table 20. The residual generated

by fault diagnosis toolbox from each HMSO is presented as follows.

HMSO38
1 :r1 = y3−

y2− y4

RP1

HMSO38
2 :r2 = y8−

1
CT4

∫
y7

HMSO38
3 :r3 = y4−

1
CT2

∫
y3− y5

HMSO38
4 :r4 = y2−

1
CT1

∫
y1− y3

HMSO38
5 :r5 = y8 +RP3y7−

1
CT3

∫
y6 + y5− y7

(86)

To show how this set of five residuals is enough to detect and isolate all of the system

faults in the current operation mode we present the residuals for detecting individual faults
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Table 21: Selected residuals for FDI in mode 38.

Detection f1 f2 f3 f4 f5 f6

f1 r4 X r4 r4 r4 r4 r4
f2 r1 r1 X r1 r1 r1 r1
f3 r3 r3 r3 X r3 r3 r3
f5 r5 r5 r5 r5 r5 X r5
f6 r2 r2 r2 r2 r2 r2 X

and isolating pairs faults in Table 21. The detection column lists the residuals that can be

used to detect system faults, and the residuals in row fi and column f j can be applied to

isolate fault fi from fault f j.

5.4.3 Designing fault diagnosers

As it is shown in Fig 32, the fault detection and isolation unit applies the generated

residuals to detect and isolate system faults in each operation mode. To apply the residuals

for FDI, we need to go beyond structural analysis, take into account parameter values, and

also consider sensor noise and modeling uncertainties in the system. Residuals represent

redundancies in the system equations, and they can form the basis for fault detection and

isolation. Ideally, each residual should compute to a value of zero in the fault-free case,

and residuals sensitive to a fault become nonzero when the fault occurs. In practice, due

to model uncertainties and measurement noise, a residual may deviate from zero when no

faults have occurred.

To address this problem, we apply a Z-test [18] to determine where the change in the

residual value, r, is statistically significant. We consider the last N2 residual values to

compute the mean value of residual distribution (assumed to be a normal distribution):

µr(k) =
1

N2

k

∑
i=k−N2+1

r(i). (87)
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The last N1 samples (typically, N1� N2) to compute the variance:

σ
2
r (k) =

1
k−N1−1

k

∑
i=k−N1+1

(r(i)−µr(k))2. (88)

The confidence level for the Z-test, α , determines the bounds, z−, and z+, and, therefore,

the sensitivity of the residuals.

P(z− < (r(k)−µr(k))< z+) = 1−α. (89)

The Z-test is implemented as follows:

z− < r(k)−µr(k)< z+→ NF

Otherwise→ Fault
(90)

5.5 Case Study

5.5.1 The RO system hybrid model

The RO system, shown in Figure 7, operates in three modes controlled by a three-way

valve. In Chapter III we developed a robust FDI for the first operating mode (valve setting

1). In this chapter we apply our hybrid diagnosis method for mode detection and FDI in

the RO system. In the first mode of operation, the water circulates in the longer loop. The

accumulation of impurities in the membrane increases membrane resistance, Rmemb, which

decreases the output flow rate, qout . After a specific period of time, the system switches

to the secondary mode (valve setting 2). In this mode, the recirculation pump circulates

the water in a smaller secondary loop, which increases its flow rate. As a result, the output

flow rate increases compared to the primary loop. As clean water leaves the RO system, the

concentration of brine, eCbrine, in the residual water increases. High concentration of brine

leads to increases in Rmemb, which decreases the system performance significantly. Again

after a predetermined time interval the system switches to the purge mode (valve setting 3).
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In this mode the recirculation pump is turned off, and concentrated brine is pushed out to

the AES subsystem.

The RO system can be modeled as a hybrid system, with continuous state variables: q f p,

the volume flow rate generated by the feed pump, ptr, the pressure of the fluid in the tubular

reservoir, qrp, the volume flow rate due to the recirculation pump, pmemb that represents the

pressure of fluid at the membrane through which the clean water passes (but leaves the

impurities behind), and two abstract variables, eCbrine and eCk that capture the dynamics of

the impurities in the fluid, and discrete variables: σ1 and σ2 where σ1 = 1,σ2 = 0 means

the system is in the first mode, σ1 = 0,σ2 = 1 means the system is in the second mode, and

σ1 = σ2 = 0 means the system is in the third mode. In the original design and experiments

conducted with a prototype RO system, operating times in each mode were fixed by the

system operators. However, to demonstrate our mode detection algorithm, we assume the

transition times are unknown, and apply our algorithm to detect mode transitions.

The feed pump pushes the partially purified water from the BWP into the main loop

of the RO system at a nominal pressure p f p. The rate of change of the volume flow rate,

q f p is given by: q̇ f p =
∆p f p
I f p

, where ∆p f p is drop in pressure of the fluid across the feed

pump and I f p represents the inertia of the rotating elements of the feed pump. Taking into

account the pump internal resistance to flow, R f p, and the efficiency decrease in the feed

pump, which is modeled by a multiplicative factor f f , the pressure drop can be computed,

∆p f p = p f p(1− f f )−R f pq f p− ptr and the first equation of the RO system, eRO1, can be

derived as:

eRO1 : q̇ f p =
1

I f p
(−R f pq f p− ptr + p f p(1− f f )). (91)

Note that this equation is independent of the system operating mode.

The tubular reservoir with capacity value, Ctr, acts as a storage capacity that helps

the system to keep water circulation rate steady. The net volume flow rate to the tubular

reservoir, qtr, is equal to the algebraic sum of the volume flow rates into and out of the

tubular reservoir. The flow in is q f p plus the flow from the membrane module. This flow
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rate can be computed as the pressure difference between the membrane and the tubular

reservoir, pmemb− ptr, over the resistance of the pipe from the membrane module to the

tubular reservoir in the long loop, Rreturnl , in the first mode. In the second and third modes

there is no flow from the membrane toward the tubular reservoir. The output volume flow

rate from the tubular reservoir is equal to the recirculation pump volume flow rate, qrp in the

first and third modes and equal to qrp minus the pressure difference between the membrane

and the tubular reservoir, pmemb− ptr, over the resistance of the pipe from the membrane

module to the tubular reservoir in the short loop, Rreturns . Using these the net volume flow

rate to the tubular reservoir can be computed as qtr = q f p+σ1
pmemb−ptr

Rreturnl
−qrp+σ2

pmemb−ptr
Rreturns

.

Therefore, the second equation can be derived as:

eRO2 : ṗtr =
1

Ctr
(q f p +σ1

pmemb− ptr

Rreturnl

−qrp

+σ2
pmemb− ptr

Rreturns

).

(92)

The recirculation pump boosts the liquid pressure to prp in the first and second modes.

In these modes, the rate of change of pump’s fluid flow rate, q̇rp, is given by (q̇rp =
∆prp
Irp

),

where ∆prp represents drop in the fluid pressure inside the pump and Irp represents the

inertia of the rotating elements of the pump. The pump’s internal resistance is represented

as Rrp. The efficiency decrease in the recirculation pump, fr, is the second fault parameter

in the RO system. The pressure at the pump output can be computed as a function of the

membrane module pressure, pmemb and the pressure drop in the pipe from the pump to the

membrane module, R f orwardqrp, where R f orward represents resistance of the pipe from the

recirculation pump to the membrane. From these components, the third state equation in

the first two modes is derived as:

q̇rp =
1

Irp
(−Rrpqrp−R f orwardqrp− pmemb + prp(1− fr)). (93)

In the third mode, the recirculation pump is turned off, therefore, qrp is not a state variable
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and can be computed as qrp =
ptr−pmemb
R f orward

. We can write qrp in general as:

eRO3 : qrp =
σ1 +σ2

Irp

∫
(−Rrpqrp−R f orwardqrp− pmemb

+prp(1− fr))+(1−σ1−σ2)
ptr− pmemb

R f orward

(94)

The membrane is a key component for removing particulate matter from the water in the

RO system. The purified water that comes out of the membrane is fed to the Post Process-

ing System, and the remaining water recirculates in a RO loop or goes to the AES based

on the operation mode. As more and more water passes through the membrane, the water

remaining in the loop has an increased concentration of impurities. At the same time partic-

ulate matter that collects on the membrane, increases its resistance to flow. The membrane

chamber can be modeled as a combination of a capacity, Cmemb, and a resistance, Rmemb.

The rate of membrane pressure variation, ṗmemb, is given by (ṗmemb =
qmemb
Cmemb

), where qmemb

is the net volume flow rate to the membrane.

In previous work, Carl et al. [27] empirically derived the dynamic value for the mem-

brane resistance, Rmemb = 0.202(4.137∗1011(eCk−12000
165 +29)). Note that Rmemb increases

as the impurities in the water, and, therefore, the water conductivity, eCk, increases. The

membrane clogging factor fm is the third fault in the system, implying that its resistance

is higher than nominal, i.e., Rmemb(1+ fm). The net volume flow rate to the membrane,

qmemb, is an algebraic sum of the input volume flow rate from the recirculation pump, qrp,

and the output volume flow rates to the post processing system, qout =
pmemb

Rmemb(1+ fm)
, and the

return volume flow rates. The return flow rate to the flow is equal to ppmemb−ptr
Rreturnl

in the first

mode, equal to ppmemb−ptr
Rreturns

in the second mode, and equal to ppmemb
RreturnASE

, where RreturnASE is

the resistance of the pipe from the membrane to the ASE. Using this the fourth equation is

derived,
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eRO4 : ṗmemb =
1

Cmemb
(qrp−

pmemb

Rmemb(1+ fm)

−σ1
pmemb− ptr

Rreturnl

−σ2
pmemb− ptr

Rreturns

−(1−σ1−σ2)
ppmemb

RreturnASE

).

(95)

To complete the model, the conductivity of the fluid is represented as a state variable,

making the assumption that the conductivity of the water increases every cycle through the

flow loop, with the increase being proportional to the flow of liquid out of the membrane.

This generates the two last state equations:

eRO5 : ėCbrine =
1

1.667∗10−8Cbrine
(σ1

pmemb− ptr

Rreturnl

+σ2
pmemb− ptr

Rreturns

+(1−σ1−σ2)
pmemb

RreturnASE

)

eRO6 : ėCk =
qrp

Ck
(6eCbrine +0.1)/(1.667∗10−8),

(96)

where Cbrine and Ck are conductivity parameters and are represented in Table 1. The system

inputs are the feed pump pressure, p f p and the recirculation pump pressure, prp. More

details of the RO modeling scheme are presented in [17, 27].

There are five sensors in the system. These sensors measure the following variables in

the system.

eRO7 : ptr = y1

eRO8 : pmem = y2

eRO9 : q f p = y3

eRO10 : eCbrine = y4

eRO11 : eCk = y5

(97)

The system inputs, p f p and prp, are assumed to be known in this case study.

eRO12 : p f p = u1 eRO13 : prp = u2 (98)
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To complete the set of constrains, we present the differential constrains and the dynamic

value for the membrane resistance as follows.

eRO14 : q f p =
∫

q̇ f p

eRO15 : ptr =
∫

ṗtr

eRO16 : qrp =
∫

q̇rp

eRO17 : pmemb =
∫

ṗmemb

eRO18 : eCbrine =
∫

ėCbrine

eRO19 : eCk =
∫

ėCk

(99)

eRO20 : Rmemb = 0.202(4.137∗1011(
eCk−12000

165
+29)). (100)

The RO system’s parameters and input signals in this case study are presented in Table 1.

In the experiments, for the case study, we assume 1% uncertainty in the system parameters

and Gaussian measurement noise, with variance = 0.01 × mean value of the signal.

5.5.2 Mode detection for the RO system

Employing Algorithm 12 we extract MSDRO1 = (ERO1, TRO1, XRO1, ΣRO1, FRO1), where

ERO1 = {eRO2, eRO5, eRO6, eRO7, eRO8, eRO9, eRO10, eRO11, eRO15, eRO18, eRO19}, TRO1 = {},

XRO1 = {pmem, ptr, ṗtr, eCbrine, ėCbrine, eCk, ėCk, qrp, q f p}, ΣRO1 = {σ1, σ2}, and FRO1 =

{}, to detect each discrete variable in the RO system.

By substituting the known variables in the set of determined equations in MSDRO1, and

after some algebraic manipulations, we reach to the following linear equation to solve for

σ1 and σ2 :

a1σ1 +b1σ2 = c1

a2σ1 +b2σ2 = c2,

(101)

where a1 = y2−y1
Rreturnl

, b1 = y2−y1
Rreturns

, c1 = Ctrẏ1− y3 +
ẏ5Ck1.667∗10−8

6eCbrine+0.1 , a2 = y2−y1
Rreturnl

− y2
RreturnASE

,

b2 =
y2−y1
Rreturns

− y2
RreturnASE

, c2 = (1.667 ∗ 10−8Cbrine)ẏ4− y2
RreturnASE

. Therefore, σ1 and σ2 can
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be computed as

σ1

σ2

=

a1 b1

a2 b2


−1c1

c2

 (102)

To show the performance of our proposed mode detection approach, we perform a simu-

lation study where the RO system operates for 1000s and switches mode every 33s. The

system starts from mode 1, switches to modes 2 after 33s, switches to mode 3 after 66s,

and switches back to mode 1 at t = 100s. Figure 35 shows that equation (102) can per-

fectly estimate the discrete variables, and therefore, the operating mode of the system. To

overcome the effects of measurement noise we applied a simple low pass filter.

Figure 35: Mode detection in the RO system in no fault (NF) scenario.

Note that Algorithm 12 guarantees that mode detectability is independent of the system

faults. However, to show a possible fault cannot affect the mode detection performance, we

consider another experiment, where an abrupt fault f f = 0.5 occurs at t = 510s. Figure 36

shows that f f does not affect mode detection performance.
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Figure 36: Mode detection in the RO system in the presence of fm.

5.5.3 Fault Detection and Isolation in the RO system

As it is shown in Figure 32 the proposed FDI approach for hybrid systems has the

following steps; 1) mode detection, 2) HMSO generation for the detected mode, 3) select-

ing a minimal set of HMSOs for fault detection, 4) generating residuals from the selected

HMSOs, 5) applying the generated residuals for FDI. We developed algorithms for mode

detection, and selecting a minimal set of HMSOs (steps 1 and 3) in this chapter, for HMSO

generation and residual generation (steps 2 and 4) we use the fault diagnosis toolbox [68].

We discussed step 5 in subsection 5.4.3.

Table 22: Set of selected HMSOs for FDI in the RO system

HMSOs Set of equations Set of faults Mode
HMSORO11 eRO1, eRO7, eRO9, eRO12, eRO14 f f 1
HMSORO12 eRO3, eRO6, eRO8, eRO10, eRO11, eRO13, eRO16, eRO19 fr 1
HMSORO13 eRO4, eRO6, eRO7, eRO8, eRO10, eRO11, eRO17, eRO19, eRO20 fm 1
HMSORO21 eRO1, eRO7, eRO9, eRO12, eRO14 f f 2
HMSORO22 eRO3, eRO6, eRO8, eRO10, eRO11, eRO13, eRO16, eRO19 fr 2
HMSORO23 eRO4, eRO6, eRO7, eRO8, eRO10, eRO11, eRO17, eRO19, eRO20 fm 2
HMSORO31 eRO1, eRO7, eRO9, eRO12, eRO14 f f 3
HMSORO32 eRO3, eRO4, eRO7, eRO8, eRO11, eRO17, eRO20 fm 3

In the first mode this system has three possible faults F = { f f , fr, fm}. In this mode,

the fault diagnosis toolbox generates 98 HMSOs and Algorithm 13 selects 3 HMSOs,
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Table 23: Selected Residuals for Fault Detection and Isolation

Selected residual First mode Second mode Third mode
Detecting f f rRO11 rRO21 rRO31

Detecting fr rRO12 rRO22 −
Detecting fm rRO13 rRO23 rRO32

Isolating f f from fr rRO11 rRO21 −
Isolating f f from fm rRO11 rRO21 rRO31

Isolating fr from f f rRO12 rRO22 −
Isolating fr from fm rRO12 rRO22 −
Isolating fm from f f rRO13 rRO23 rRO32

Isolating fm from fr rRO13 rRO23 −

HMSORO11 , HMSORO12 , and HMSORO13 , as a minimal set of HMSOs that can detect and

isolate the faults. The fault diagnosis toolbox generates a residual from each HMSO (rRO11 ,

rRO12 , and rRO13). The RO system has three possible faults, F = { f f , fr, fm}, in mode 2.

The fault diagnosis toolbox generates 84 HMOSs and Algorithm 13 selects 3 HMSOs,

HMSORO21 , HMSORO22 , and HMSORO23 , as a minimal set of HMSOs that can detect and

isolate the faults in the second mode. The fault diagnosis toolbox generates 3 residuals,

rRO21 , rRO22 , and rRO23 , for this mode. In the third mode the RO system only has two possi-

ble faults, F = { f f , fm} because the recirculation pump is turned off. In this mode, the fault

diagnosis toolbox generates 59 HMSOs and Algorithm 13 selects 2 HMSOs, HMSORO31 ,

and HMSORO32 , as a minimal set of HMSOs that can detect and isolate the faults. Table

22 represents the selected HMSOs and their associated faults in each mode. The fault di-

agnosis toolbox generates rRO31 , and rRO32 for the third mode. The set of residuals for each

operating mode is available on GitHub1.

To detect and isolate the RO system’s faults we need to use a new set of residuals in each

operating mode. Table 23 shows the possible residuals for FDI in each operating mode.

To design a fault diagnoser for hybrid systems, we need to define hybrid residuals. For

example, to detect f f we have to use rRO12 or rRO13 when the system is in the first operation

1https://rosystemresiduals.github.io/
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mode, and we have to use rRO22 or rRO23 when the system is in the second operation mode,

and rRO32 is the only choice when the system is in the third mode. Therefore, a possible

candidate to detect f f is

r f f =

{ rRO12 i f σ1 = 1

rRO22 i f σ2 = 1

rRO32 otherwise.

(103)

To isolate f f from fr and fm we use the following residuals.

r f f | fr =

{
rRO12 i f σ1 = 1

rRO22 i f σ2 = 1
(104)

r f f | fm =

{ rRO13 i f σ1 = 1

rRO23 i f σ2 = 1

rRO32 otherwise.

(105)

Figure 37: Operating modes in the RO system.

In this case study we assume that the system goes through the cycle shown in Figure

35. Figure 37 shows the operating modes of the RO system. To show FDI performance

148



we consider an abrupt efficiency decrease in the feed pump f f = 0.5 occurs at t = 510s.

Figure 38 shows the state variables in this case study.

Figure 38: Continuous state variables in the RO system.

Figure 39 shows the hybrid residuals, r f f , r f f | fr and r f f | fm can successfully detect and

isolate f f . For all of our detection and isolation experiments, the confidence level for the

Z-test is 95%.

Figure 39: f f detection and isolation.

5.6 Summary and Conclusions

A new approach to the problem of fault detection and isolation in hybrid systems is

presented in this chapter. Our proposed approach consists of two algorithms; 1- mode de-

tection, and, 2- fault detection and isolation in each operating mode. The contribution of
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this work is that we do not need to pre-compile the MSOs and residual for every possi-

ble mode of the hybrid system, which can be computationally intractable. Therefore, our

algorithm does not have to pre-enumerate all the possible modes, which is exponential in

number of discrete variables in the model. Instead, our approach updates the diagnoser

when the system switches to a new operating mode. These make the approach feasible for

fault diagnosis in complex systems, where there are large number of modes.

Unlike previous work [102], where we formulated HMSO selection as an exponential

problem in term of the number of HMSOs in each mode, Algorithm 13 selects a minimal

set of residuals with O(l2
f mrm) time complexity, where l f m is the number of faults in mode

m, and rm is the number of HMSOs in that mode. Note that in this work we have adopted

a greedy search approach and, therefore, our algorithm does not guarantee the minimum

number of HMSOs for each mode. However, in the running example and in the case study

the algorithm selected the minimum number of HMSOs and in general, we expect the

number of selected HMSOs to be close to the optimal solution.

It is expected that solving mode detection and fault detection and isolation as two inter-

related but separated problems requires more redundancies and therefore, more measure-

ments, compared to the approaches that address both problems simultaneously such as

[137] and [65]. This is because we have to extract sets of just determined equations for

mode identification which are independent of the system faults. However, the recent de-

velopments in manufacturing inexpensive and efficient sensors and processors make our

approach feasible for complex, modern systems.

In this work, we used mixed causality (integral and derivative) to solve for discrete vari-

ables for mode detection, and to generate residuals for fault detection and isolation. Using

mixed causality improves mode detection and FDI performances. Limiting our approach

to integral causality can reduce the number of solvable equations and this may make a set

of discrete variables or a set of system faults undetectable [67]. However, in the presence

of measurement noise, derivative computation can be error-prone. In that case, restricting
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mode detection and residual generation to integral causality naturally increases the robust-

ness of the approach.

To handle issues of robustness in a more general way, we have to consider the effect

of model uncertainty and sensor noise in mode detection and FDI. In Chapter III, we used

sensitivity analysis to define a detectability ratio measure and a isolability ratio measure

to quantify the performance of a residual in fault detection and isolation. In future work,

we will extend the previous work in robust residual selection to hybrid systems. Toward

this end, we will develop a quantitative measure for robust mode detection and apply de-

tectability ratio and isolability ratio measures for residual selection for robust FDI in each

operating mode.
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CHAPTER VI

BACKGROUND ON DATA-DRIVEN DIAGNOSIS AND ANOMALY DETECTION

Traditional approaches to fault detection typically rely on a model that defines nominal

behavior of a system, or on human expertise that characterizes the parameters or thresholds

that separate nominal from anomalous behavior. However, for complex systems it is often

expensive to generate system models. On the other hand, models generated by human

experts, who are required to provide a fairly exhaustive set of relations between faults and

observed measurements, are likely to be incomplete. In the real world these models are

not always available, and are often incomplete, and sometimes erroneous. Moreover, it

is hard to maintain the accuracy of these models during a system’s life-cycle. This could

lead to misclassifying faults or missing faulty behavior. In some situations, faulty and

anomalous situations may be unknown because of a lack of sufficient experience in some

of the operational regions of the system. In such situations, data-driven approaches for

diagnosis become the key to protecting system safety and integrity [124].

Data-driven diagnosis algorithms aim to detect and isolate system faults by operating

exclusively on measured data without detailed system knowledge. Data-driven diagnosis

approaches typically detect deviations in a process time series measurement as a fault and

then use a classifying technique for fault isolation [39]. This approach performs well for

systems with smooth nominal trajectories but for hybrid systems or nonlinear systems with

stiff behaviors a discrete change in a measurement may not represent a fault. A more

general approach is to find patterns in operational data that do not conform to expected

systems behavior. These patterns, typically called anomalies or outliers, are represented

by single data points or a small group of data points that appear to be sufficiently different

from the rest of the data that make up the operational behaviors of the system [28]. For
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dynamic systems, anomalies can represent unexpected changes in the systems behavior,

and correspond to faults in system operation and component failures.

Anomaly detection is a key issue in securing safe and reliable operation of advanced

complex systems such as spacecraft [16], aircraft [115, 125] and power systems [15]. Sev-

eral surveys and review articles have categorized data-driven anomaly detection approaches

based on different aspects of the problem [28, 84, 145]. A common approach is to divide

data-driven anomaly detection approaches into three main groups: 1) supervised, 2) semi-

supervised, and 3) unsupervised. The supervised anomaly detection approaches assume the

training data is available for both normal and anomalous operations. The semi-supervised

methods only need normal data for the training and the unsupervised methods do not use

any training data.

Supervised anomaly detection approaches are based on classification methods. A typ-

ical approach to develop a supervised anomaly detector is to consider normal operation

modes and anomalies as different classes and design a classifier that differentiates between

the two sets of data. The classifier can then label new data points as nominal or anomalous.

Ma et al [123] compared the performances of several classifiers such as linear discriminant

analysis (LDA), naive Bayes (NB), and decision tree (DT) for anomaly detection in uncer-

tain data streams. The learning step in the classification approaches is done off-line and,

therefore, the on-line implementation is computationally efficient. However, having access

to labeled data specially for anomalous operations is expensive and difficult. Abe et al [1]

proposed to artificially generate anomalous data to address this problem. However, in the

real world, new and unknown types of anomalous behaviors may arise. Therefore, we have

to consider semi-supervised, and unsupervised methods for anomaly detection.

6.1 Semi-supervised Anomaly Detection

Semi-supervised anomaly detection approaches are more general than supervised tech-

niques; the only labeled data they need corresponds to the data that represents nominal
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behavior. Then they apply similarity-based measures to label data points that are not close

to the nominal regions as anomalies [28]. These methods are also called novelty detection

methods in the literature [95]. A common approach in semi-supervised anomaly detection

is to apply a classification algorithm, such as neural networks to learn the normal operation

class or the multiple normal operation classes using available nominal data from a system.

In the implementation phase, each new data point is provided as an input to the classifier. If

the classifier accepts the input, it is normal and if the classifier rejects an input, it is labeled

as an anomaly.

Support vector machines and other kernel based learning methods can be used to learn

complex regions [158]. Ratsch et al [152] applied a one-class support vector machine

(I-SVM) to learn the boundaries of region that contains the normal training data objects

by finding a set of separating hyperplanes. They formulated the problem as a constraint

quadratic optimization problem. For each test instance, if the test instance falls within the

learnt region, it is considered as normal, else it is declared as an anomaly. Barbara et al [8]

applied a naive Bayes classifier for novel network intrusion detection. They considered an

extra class in addition to the classes in the training data to represent new attacks. The naive

Bayes network estimates the posterior probability of observing class label data, given a test

data instances. The class label with largest posterior is chosen as the predicted class for

the given test instance. The likelihood of observing the test instance given a class, and the

classes prior probabilities, are estimated from the training data set.

Several neural networks based methods have been proposed for semi-supervised anomaly

detection [128]. Hawkins et al. [80] applied replicator neural networks (RNN) for anomaly

detection on a large multivariate dataset. The RNN is a three layers perceptron neural-

networks with the same number of input and output neurons. The number of neurons in

the input and output layers is equal to the number of features in the dataset. The RNN is

trained with normal data in a way that reproduces the input points at the output layer with

the minimum reconstruction error. The hidden layer has a smaller number of nodes than
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the input and output layers and is designed to extract normal operating features. In the

implementation stage, any test point that has large reconstruction errors is considered as an

anomaly. Wulsin et el [183] applied deep belief nets (DBNs) which is a type of multi-layer

generative neural networks with the ability to model high-dimensional data, for anomaly

detection. Like [128], they used reconstruction error for each test object as the anomaly

score. DBNs can learn higher-level features which can improve classification accuracy.

However, their loss function is non-convex, therefore, there is no guarantee that the global

minimum is achieved [49].

The computational complexity of semi-supervised anomaly detection techniques de-

pends on the classification algorithm used, however, like the supervised methods, the test-

ing phase is usually very fast since it uses a pre-computed model [28]. However, several

factors can make semi-supervised anomaly detection methods challenging. Defining every

possible region of nominal behavior for a complex system that has many operating modes

may be difficult and sometimes, computationally intractable. Furthermore, as systems op-

erate under different environmental and operational conditions, and as the systems age,

their nominal behaviors may keep drifting and evolving, and current nominal behavior may

not be indicative of future nominal behaviors. And last, training data labeled as nominal

for every operating mode of the system may be hard to come by. Further, even if the data is

labeled, noise and corruption may distort the differences between nominal and anomalous

behavior. Therefore, unsupervised anomaly detection may be the only practical choice in

many real world applications.

6.2 Unsupervised Anomaly Detection

There are several techniques that can be used for anomaly detection in unlabeled data.

For example, histogram based approaches use a simple non-parametric statistical technique

for unsupervised anomaly detection. To use histogram for unsupervised anomaly detection

in an univariate dataset, we can build a histogram based on the different values taken by
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that feature and assign an anomaly score to each object based on the height (frequency) of

the bin in which it falls. For multivariate data, a basic technique is to construct feature-

wise histograms. The anomaly score for each feature of each object can be calculated

as the height of the bin that contains the feature value. The per-feature anomaly scores

are aggregated to obtain an overall anomaly score for the object. The size of bins is the

key parameter in histogram based anomaly detection. If the bins are small, many normal

test instances will fall in empty or rare bins, resulting in high false alarm rates (FAR). If

the bins are large, many outliers will fall in frequent bins, resulting in high missed alarm

rates (MAR). Thus an important challenge is to determine an optimal size of the bins to

achieve low FAR and low MAR [28]. This becomes more challenging for high dimension

data. More sophisticated unsupervised anomaly detection approaches, such as information

theory techniques, and clustering based methods can be used to address this problem.

6.2.1 Information theory techniques

Information theory techniques can be applied to unsupervised anomaly detection. These

techniques assume anomalies in data induce irregularities in the information content of the

data set and information theoretic measures can be used to detect the anomalies. For ex-

ample, Threepak and Watcharapupong [170] use the fact that entropy level of anomaly

requests are usually higher than entropy level of legitimate behavior requests on the web

and declare all the request strings with relative entropy values more than 2σ away from

the average relative entropy as high-risk requests. Lee and Xiang [111] propose several

information-theoretic measures for anomaly detection:

Entropy: For a dataset X where each data item belongs to a class x ∈Cx, the entropy of

X relative to this |Cx|-wised classification is defined as:

H(X) = ∑
x∈Cx

P(x)log
1

P(x) (106)

where P(x) is the probability of x ∈ X . The entropy value is smaller when the data is more
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redundant. For example, if all data items are identical, the entropy is zero. Therefore,

entropy can be used as a measure of regularity for anomaly detection.

Conditional entropy: The conditional entropy of X given Y is defined as:

H(X |Y ) = ∑
x,y∈Cx,Cy

P(x,y)log
1

P(x|y) (107)

where P(x,y) is the join’s probability of x ∈ X and y∈Y and P(x|y) is the conditional prob-

ability of x given y. For anomaly detection, we can use conditional entropy as a measure

of regularity of sequential dependencies. When the conditional entropy takes on smaller

values, the data is more sequentially dependent and, therefore, more predictable.

Arackaparambil et al [4] argue that monitoring conditional entropy, which presents the

dependency of one feature on another, makes the job of masking the effects of attack on

network traffic harder and therefore, is more reliable than using entropy in attack detection.

Attackers typically mask their attacks on network traffic by mimicking the normal distri-

bution of traffic features in the packets they introduce. Maintaining dependencies between

any pair of features is more challenging than just maintaining the distribution of features

independently. Therefore, monitoring conditional entropy makes the attacker’s job harder

and improves the reliability of the monitoring approach.

Relative entropy: The relative entropy between two probability distributions p(x) and

q(x) defined over the same x ∈Cx is defined as

relentropy(p|q) = ∑
x∈Cx

p(x)log
p(x)
q(x) (108)

Relative entropy measures the distance of the regularities between two datasets. For exam-

ple, if the two dataset have the same distribution, p = q, then the relative entropy is zero,

indicating that the two datasets have the same regularity.

Relative conditional entropy: The relative conditional entropy between two conditional

probability distributions p(x|y) and q(x|y) defined over the same x∈Cx and y∈Cy is defined
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as

relconentropy(p|q) = ∑
x∈Cx

p(x,y)log
p(x|y)
q(x|y) (109)

The relative conditional entropy represents sequential dependencies between distributions.

The last measure is information gain.

Information gain: The information gain of a feature f on dataset X is

Gain(X , f ) = H(X)− ∑
v∈Value( f )

|Xv|
|X |

H(Xv) (110)

where Value( f ) is all the possible values of feature f , and Xv is a subset of X where f is

equal to v. This measure can be used to evaluate the features in anomaly detection. Ham

and Choi [77] used information gain to rank the features for malware detection.

Other complexity measures such as Kolmogorov complexity and Complexity-invariant

distance have been used for anomaly detection. Keogh et al [101] developed compression-

based dissimilarity measure (CDM) motivated by Kolmogorov complexity and used a di-

vide and conquer algorithm to find anomalous section of data with the least similarity to

the global sequence.

6.2.2 Clustering methods

Clustering is a process of partitioning a set of objects into clusters such that objects in

the same cluster are more similar to each other than objects in different clusters according

to some defined criteria [126]. Li et al [115] used a density-based clustering approach to

detect anomalous flights based on onboard-recorded flight data. In previous work [16] we

used a hierarchical clustering to identify anomalies in a spacecraft telemetry data. This

section reviews three main clustering methods for anomaly detection.

K-means clustering: k-means are partitioning clustering algorithms. Partitioning clus-

tering algorithms are based on specifying an initial number of groups, and iteratively reallo-

cating objects among groups till convergence. The k-means algorithm assigns each object
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to the cluster with the nearest centroid. The centroid is the average of all the objects in the

cluster. The k-means algorithm can be expressed as the following optimization problem:

Find U&Z

s.t.

min P(U,Z) =
k

∑
l=1

n

∑
i=1

m

∑
j=1

ui,ld(xi, j,zl, j)

k

∑
l=1

ui,l = 1,0≤ i≤ n, ui,l ∈ {0,1}

(111)

where U is an n× k partition matrix, Z is a set of k vectors representing the centroids of

the k clusters, n is the number of objects, and m is the number of features in the dataset.

ui,l ∈U is a binary variable that is equal to 1 when object i belongs to cluster l, d(xi, j,zl, j)

represents the distance of feature j of object i from the center of cluster l, zl, j ∈ Z.

Several algorithms have been developed to search for the optimal partition of the k-

means clustering in the literature [87]. Forgy [60] proposed Algorithm 15 to solve problem

Algorithm 15 K-means
1: input: O, k
2: output: C
3: generate k random centroids Z
4: assign each object oi ∈ O to the cluster with the closest center
5: while no movement of an object has occurred do
6: compute the centroids with the current arrangement of objects
7: assign each object oi ∈ O to its closest center
8: end while

(111). The running time for this algorithm is O(nkdi), where di is the number of iterations

in the optimization problem. Algorithm 15 is easy to implement and computationally effi-

cient. However, the drawback of this algorithm is that different initial centroids might lead

to different local optima of the clustering results.

K-Means clustering is computationally efficient, and therefore, easy to implement for
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large datasets. Moreover, the algorithm is intuitive and easy to understand. However, K-

means clustering requires the number of cluster as an input to the algorithm and has no

notion of outliers. Therefore, each object has to be assigned to one of the clusters even if

it does not belong to any of them. This can degrade anomaly detection performance by

assigning few outliers to each normal cluster. In that situation, the outliers pull the normal

cluster centroid towards them, and make it harder to detect anomalies.

Density-based clustering algorithms consider a region in which the density of data ob-

jects exceeds a specified threshold a cluster. Low density regions represent clusters of noise

or clusters of outliers. These methods can be used for anomaly detection by assuming nor-

mal data instances belong to clusters in the data with high density, while anomalies belong

to the low density regions. Density-based methods can discover arbitrary-shaped clusters.

Moreover, they have advantages in dealing with large datasets with uneven clusters and

noise [126]. In this section, we review two common density-based algorithm, density-based

spatial clustering of applications with noise (DBSCAN) [54] and shared nearest neighbor

(SNN) [53].

DBSCAN considers an object o a core object if there are at least MinOb j objects within

its ε distance. MinOb j and ε are input parameters to the algorithm. An object q is directly

reachable from a core object o if q is within ε distance from o; dis(o,q) ≤ ε . An object

q is reachable from a core object o if there is a path p1, ..., pn with p1 = o and pn = q,

where each pi+1 is directly reachable from pi (all the objects on the path must be core

objects, with the possible exception of q). If an object is reachable from any object of the

cluster, it is part of the cluster as well. All objects not reachable from any other object

are outliers. The key idea of the DBSCAN algorithm is that, for each object of a cluster,

the neighborhood of a given radius has to contain at least a minimum number of objects.

The DBSCAN algorithm identifies the directly reachable objects of each object using the

ε threshold and if the directly reachable objects are more than MinOb j, it marks the object

as a core object with a new cluster that forms a new set of reachable objects. At the end,
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the composition of the clusters is verified in order to check if there exist clusters that can

be merged together [54]. Algorithm 16 represents pseudo code for DBSCAN.

Algorithm 16 DBSCAN
1: input: O, ε , MinOb j
2: output: C
3: C = {}
4: for each Oi ∈ O do
5: if Oi is not visited then
6: mark Oi as visited
7: NeighborsOfObj = Neighbor(Oi, ε)
8: if sizeof(NeighborsOfObj) ≥MinOb j then
9: Generate a new cluster Ci ∈C

10: Ci = ExpandCluster(Ci,Oi, NeighborsOfObj, ε , MinOb j)
11: end if
12: end if
13: end for

Algorithm 17 ExpandCluster
1: input: Ci,Oi, NeighborsOfObj, ε , MinOb j
2: output: Ci
3: for each O j ∈ NeighborsOfObj do
4: if O j is not visited then
5: mark O j as visited
6: NeighborsOfObj

′
= Neighbor(O j, ε)

7: if sizeof(NeighborsOfObj
′
) ≥MinOb j then

8: NeighborPts = NeighborsOfObj ∪ NeighborsOfObj
′

9: end if
10: end if
11: if O j is not a member of any cluster then
12: add O j to Ci
13: end if
14: end for

The time complexity of DBSCAN is mostly governed by the Neighbor function (see

Algorithm 18), which in the worst case (when ε is large) has O(n) complexity, where n is
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Algorithm 18 Neighbor
1: input: Oi, ε

2: output: NeighborsOfObj
3: return all points within Oi ε-neighborhood (including Oi )

the number of objects . Therefore, the complexity of Algorithm 16 is O(n2). DBSCAN

does not require the number of clusters as an input. However, as it is shown in algorithm

16, it has two inputs: ε and MinOb j. A common approach to determine ε is to compute the

distance of k nearest neighbors of each object point for some k determined by the user and

select ε where a sharp change is observed [71]. The proper approach for selecting MinOb j

can be different based on the dataset. Gaonkar and Sawant [71] proposed to consider

MinOb j =
1
n

i=n

∑
i=1

pi, (112)

where pi is the number of objects in ε distance of object i. Therefore, MinOb j is determined

as a function of ε .

Unlike K-means clustering that is designed to discover spherical clusters, DBSCAN is

capable of finding clusters of different shapes and sizes. However, it fails to find clusters

with different densities. The SNN algorithm, is a modified version of DBSCAN to address

this problem. The main difference between this algorithm and DBSCAN is that SNN de-

fines the similarity between two objects by the number of nearest neighbors that they share.

In fact, shared nearest neighbors is the similarity measure. Using this similarity measure

in the SNN algorithm, the density is defined as the sum of the similarities of the nearest

neighbors of an object. Objects with high density become core objects, while objects with

low density represent outliers. All remainder objects that are strongly similar to a specific

core object will represent a new clusters. Like DBSCAN, SNN runs in O(n2) time [53].

Hierarchical clustering: There are two general approaches for hierarchical clustering:
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1) agglomerative (bottom-up), 2) divisive (top down). The agglomerative approach con-

siders each observation as a cluster, and pairs of clusters are merged as it moves up the

hierarchy. The divisive approach considers all the observations as an unit cluster, and

splits are performed recursively as it moves down the hierarchy. Divisive clustering with

an exhaustive search is exponential and, therefore, the divisive methods have been largely

ignored in the literature because of limitations due to their computational complexity [99].

An agglomerative hierarchical clustering algorithm is presented in Algorithm 19. First,

a dissimilarity matrix Dnn = dist(Oi,O j),1 ≤ i, j ≤ n is created. Several metric distances

have been used for the dissimilarity matrix in the literature. The most common ones are

the Euclidean distance, Manhattan distance, maximum distance and Mahalanobis distance

[45]. Consider two clusters X and Y , where X and Y have |X |, and |Y | number of objects,

respectively. The agglomerative hierarchical clustering algorithm defines the mean distance

between the elements of X and Y as the distance between the clusters:

dist(X ,Y ) =
1
|X ||Y | ∑

Oi∈X
∑

O j∈Y
dist(Oi,O j), (113)

and combines the two clusters that are the closest to each other into a higher-level cluster

at each step. To calculate the distance between the new joined cluster X ∪Y and a cluster,

Z, the algorithm uses the proportional averaging of dist(X ,Z) and dist(Y,Z):

dist(X ∪Y,Z) =
|X |dist(X ,Z)+ |Y |dist(Y,Z)

|X |+ |Y |
. (114)

The algorithm saves the distances between merged clusters in a distance vector, dv. Algo-

rithm 19 runs in O(n2logn) time.

After generating dendrograms by hierarchical clustering we have to choose the level at

which to cut the dendrogram. Therefore, like k-means clustering, we establish the number

of clusters or groups in hierarchical clustering. Determining the number of clusters in the

dataset is a challenging problem. Several approaches have been proposed to determine the
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Algorithm 19 Clustering
1: input: O
2: output: C , dv
3: for each Oi,O j ∈ O do
4: D(i, j)← dist(Oi,O j)
5: end for
6: C← O
7: while |C|> 1 do
8: for each X ,Y ∈C do
9: if dist(X,Y) is equal to min distance in C then

10: merge X and Y
11: add dist(X ,Y ) to dv
12: end if
13: end for
14: end while

number of clusters in a dataset [132, 184]. Typically these methods use different criteria

based on within cluster distances [79, 88], the ratio of between cluster distances to within

cluster distances [26], or information theory [165] to find the number of clusters in a data

set.

Milligan and Cooper [132] compared 30 different methods for finding the number of

clusters in a dataset and concluded that Calinski and Harabasz method [26] generally shows

the best performance. Calinski and Harabasz select the number of clusters that maximize

the following ratio

CH(g) =
B(g)/(g−1)
W (g)/(n−g)

, (115)

where g is the number of clusters in the dataset, n is the number of objects, B(g) is be-

tween the clusters sum square error and W (g) is within clusters sum square errors. B(g) is

calculated as the trace of between-group dispersion matrix B [184]:

B =
g

∑
m=1

nm( f̄m− f̄ )( f̄m− f̄ )′

f̄ =
1
n

n

∑
i=1

fi,

(116)
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where nm is the number of objects in group m, fi is the set of features for object i, and f̄m

is the mean of features for the set of objects in group m. W (g) is calculated as the trace of

within-groups dispersion matrix W [184]:

W =
g

∑
m=1

nm

∑
i=1

( fmi− f̄m)( fmi− f̄m)
′, (117)

where fmi is the set of features for object i in group m.

When the measures are sensitive to the amplitude of the input signals, such as Eu-

clidean distance between voltage and current variables, it is necessary to standardize the

objects before clustering. Milligan and Cooper [133] performed an experimental study of

seven standardization methods for clustering plus no standardization at all and concluded

the approaches which standardize by division by the range of the variable give superior

performance in recovering the cluster structure in the presence of noise. These approaches

use the range of each feature to standardize it. A common method to standardize variable,

v, is

vs =
v−min(v)

max(v)−min(v)
, (118)

where 0≤ vs ≤ 1.

Clustering algorithms generally generate a small number of clusters from a big dataset.

Therefore, these methods simplify the data analyzing process significantly. However, the

performance of a clustering based technique is highly dependent on the effectiveness of

the clustering algorithm in capturing the clusters structures in the dataset and a success-

ful clustering method for a specific dataset does not necessarily performs well for others.

Moreover, the computational complexity of some of the clustering algorithms could be a

problem for large datasets.
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6.3 Feature Learning and Feature Selection

To perform anomaly detection we are usually confronted with very high dimensional

data. High dimensionality can be a problem in anomaly detection for several reasons; 1) it

significantly increases the time and space requirements for processing the data, 2) anomaly

detection techniques such as classification or clustering, that are analytically or compu-

tationally manageable in low dimensional spaces may become completely intractable in

spaces of several hundred or thousand dimensions [25], 3) Usually many features are re-

dundant or irrelevant in high dimensional data. The irrelevant features may hurt anomaly

detection by acting as noise and hiding the relevant features. The redundant features are

generally of no help for anomaly detection as well. They may reduce the effect of noise

but at the same time they artificially embolden some features and, therefore, decrease the

effect of others in the detection [119].

To overcome this problem, two general strategies have been used: 1) feature learning, 2)

feature selection. Given the input data, D, with the set of features, m, and the performance

target, ct , a feature learning procedure generates a new set of features, h, with a lower di-

mension than m that can optimally characterize ct . On the other hand, a feature selection

algorithm selects a subset of features, h ⊂ m, that can optimally characterize ct . Among

feature learning algorithms, Principal Components Analysis (PCA) is the most widely used

[14]. It learns a set of orthogonal bases in the directions where the data has the greatest vari-

ances. The method is easy to understand and the features are decorrelated. PCA has been

widely used to reduce dimensionality for clustering [115, 120]. However, the performance

of PCA in feature learning for clustering is not justified because the principal components

with largest eigenvalues do not necessarily provide the best separation between subgroups

[29]. Note that PCA based feature learning approach is a special case of a more general

auto-encoder learning approaches.

The auto-encoder is a common feature learning approach which starts by explicitly

defining a feature extracting function, f , in a specific parametrized closed form. This

166



function is called the encoder and will allow the straightforward and efficient computation

of new feature vectors, h = f (m;θ), from the original features, m. The decoder function, g,

maps the new feature space back into the input space, r = g(h;θ). The set of parameters, θ ,

of the encoder and decoder are learned simultaneously to minimize the reconstruction error

ct = L(m,r), where L is a measure of the discrepancy between m and its reconstruction,

r. PCA is a linear auto-encoder (linear encoder and decoder) with squared reconstruction

error. Various versions of auto-encoders such as sparse auto-encoders, denoising auto-

encoders and deep auto-encoders are proposed in the literature [14].

The main drawback of feature learning is that each new feature is a function of the

full set of original features. This makes interpretation of the anomaly detection results

harder. To overcome this problem, feature selection techniques can be applied. The feature

selection is a data reduction process performed with the selection of subset of features

that capture the relevant aspects of system operations. When we have domain knowledge

about the data we can select a set of "ad hoc" features. For example, in the previous work

[16] since our focus was on the power generation and distribution systems of a spacecraft,

we selected voltage an current waveforms of the solar array panels, the battery, and the

electrical loads in the spacecraft. Therefore, each object was made up of a set of voltage

and current variables where each variable was a time series.

More sophisticated approaches have been proposed for feature selection in the liter-

ature. Huang et al [86] proposed to update the basic K-means optimization problem as

follows to automatically weights variables based on their importance in K-means cluster-

ing.

P(U,Z,W ) =
k

∑
l=1

n

∑
i=1

m

∑
j=1

ui,lw
β

j d(xi, j,zl, j)

k

∑
l=1

ui,l = 1, ui,l ∈ {0,1}, 0≤ i≤ n

m

∑
j=1

w j = 1, 0≤ w j ≤ 1,

(119)
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where k is the number of clusters, n is the number of objects, and m is the number of fea-

tures in the dataset. ui,l ∈U is a binary variable that is equal to 1 when object i belongs

to cluster l, d(xi, j,zl, j) represents the distance of feature j of object i from the center of

cluster l, zl, j ∈ Z, β > 1 is a constant and w j ∈W is the weight of feature j. The optimiza-

tion algorithm assigns smaller weights to the features with higher within cluster distances.

Therefore, noise variables can be identified with their small weights. Moreover, the weight-

ing process reduces the effects of noise variables on the clustering result. They called the

new algorithm W-k-means. W-k-means updates variables weights in each step based on

the current clusters. The generated weights can be used for variable selection and data

reduction.

Jing et al [96] considered an additional term based on information theory in the opti-

mization cost function to avoid sparsity problem of high dimensional data. The updated

optimization problem is called entropy weighting k-Means (EWKM) and is presented as

P(U,Z,W ) =
k

∑
l=1

(
n

∑
i=1

m

∑
j=1

ui,lw j,ld(xi, j,zl, j)+ γ

m

∑
j=1

w j,llogw j,l)

k

∑
l=1

ui,l = 1, ui,l ∈ {0,1}, 0≤ i≤ n

m

∑
j=1

w j,l = 1, 0≤ w j,l ≤ 1, 0≤ l ≤ k

(120)

where w j,l is the weight of feature j in cluster l. Unlike objective function (119) in which

a weight is assigned to a feature for the entire data set, objective function (120) assigns a

weight to each feature for each cluster. The weight entropy term in the objective function,

∑
m
j=1 w j,llogw j,l , is considered to stimulate more features to contribute to the identification

of clusters and avoid selecting few features for each cluster with very high weights. Select-

ing a large value for γ leads to a relatively even distribution of weights across the features.

On the other hand, a small γ leads to a more uneven distribution of weights, giving more
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discrimination between features. Chen et al [32] extend objective function (120) to generate

weights for the given feature groups in addition to individual features. The new clustering

algorithm is called FG-k-means. When we have several groups of features this approach

can be used to compare the performance of feature groups in clustering. de Amorim [38]

provides an extensive survey for feature weighting based on K-means algorithm.

K-means clustering assumes the data points in each cluster are modeled as lying within

a sphere around the cluster centroid. A sphere has the same radius in each dimension.

Moreover, K-means algorithm models clusters by the position of their centroids, therefore,

it implicitly assumes all clusters have the same radius. These assumptions are hardly the

case in anomaly detection. When these assumptions are violated, K-means can behave in a

non-intuitive way, even when clusters are visually identifiable [148]. Witten and Tibshirani

[181] developed a general framework for feature selection that is applicable to both K-

means and hierarchical clustering. They argue that weighting features in many clustering

methods can be expressed as a general optimization problem of the form

max
m

∑
j=1

w j f j(X j,Θ) (121)

where X j ∈ Rn denotes feature j with weight w j. Θ represents clustering parameters. For

example for K-means clustering Θ is a partition of the observations into K disjoint sets and

for hierarchical clustering Θ is dissimilarity matrix. f j is some function that involves only

the jth feature of the data. For K-means clustering f j is between cluster Euclidean distance

for feature j, and for hierarchical clustering f j is total Euclidean distance between all the

objects for feature j. For hierarchical clustering the algorithm re-weight the dissimilarity

matrix. Since this method involves computations on a n2×m matrix, it has the potential to

become quite slow if the number of objects, n, and the number of features, m, are large.

So far we have considered the feature selection methods which perform clustering and

feature weighting simultaneously. These methods combine the feature subset search and
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the clustering by assigning small weights to irrelevant features and, therefore, reducing

their importance in the clustering algorithm. A common drawback of these techniques is

that they have a higher risk of over-fitting. An alternative approach is to assess the relevance

of features separately. Typically, a feature relevance score is calculated, and low-scoring

features are removed. Afterwards, the set of selected features can be presented as input

to any clustering algorithm. These algorithms usually scale to high-dimensional datasets

easier, they are computationally more efficient, and they are less dependent to the cluster-

ing algorithm. As a result, feature selection needs to be performed only once, and then

different clustering methods can be used. Peng et al [142] developed a method based on

mutual information to select a subset of features that have maximum relevance to clusters

and minimum redundancy. Finding the set of features that guarantees maximum mutual

information with the clusters (Max-Dependency) is computationally expensive, therefore,

they select a set of features with maximum average mutual information (Max-Relevance)

instead. They defined the relevance between the features and clusters, D, as

D =
1
|Xs| ∑

xi∈Xs

I(xi,c), (122)

where Xs is the set of selected features, c is the clusters, and I(xi,c) represents the mutual

information of feature xi and c.

Considering Max-Relevance as the only criterion can lead to a highly redundant set of

features. To address this problem, they combine Max-Relevance with a minimal redun-

dancy criterion (Min-Redundancy). To quantify feature redundancy, the authors defined

features redundancy, R, as

R =
1
|Xs|2 ∑

xi,x j∈Xs

I(xi,x j), (123)

The Max-relevance, and min-redundancy algorithm selects a subset of features Xs that max-

imizes Φ = D−R. The Min-Redundancy term penalizes features with high mutual infor-

mation. Note that this algorithm is still dependent on a clustering algorithm because we
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have to have the clusters c. However, we expect less dependency than the previous ap-

proach since the feature selection procedure is not integrated into the clustering algorithm.

Moreover, unlike K-means and hierarchical clustering based feature selection methods, the

problem of redundant features has been dealt with in this method.

He et al [81] proposed a filter method for unsupervised feature selection. Their ap-

proach evaluates the importance of a feature by its power of locality preservation or Lapa-

cian score. They construct a nearest neighbor graph of the objects, and select those features

that represent the graph structure. Their approach has the following steps:

• Construct a graph G where each object in the data-set is a node. Two nodes are

connected in the graph if one of them is among the k nearest neighbors of the other

one. This step most likely will leave all the anomalies completely isolated.

• If node i is connected to node j, Si j = e
−||xi−x j ||

t , where t is a constant parameter.

Otherwise Si j = 0.

• Consider matrix S. They define matrix D and matrix L as follows. D = diag(SIn×1),

and L=D−S, where matrix L is often called the graph Laplacian. Let fr = [ fr1, ..., fnr]

represent the value of feature r in each object. To remove the mean from the samples,

they define:

f̂r = fr−
f T
r DI

IT DI
I (124)

• The Laplacian score of feature r is

Lr =
f̂ T
r L f̂r

f̂ T
r D f̂r

(125)

The features with lower Laplacian score, are the more important features. Therefore, we

can consider the features with high Laplacian score as the irrelevant features. Using this
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method implies that a feature which is significantly different with the rest of the features is

irrelevant.

6.4 Summary and Discussion

Anomaly detection methods, especially those based on unsupervised learning, focus on

finding previously undiscovered faults, or new faults that may arise because of new exten-

sions to system behavior, aging, and system degradation. Training data labeled as nominal

for every operating mode of the system may be hard to come by. Therefore, unsupervised

anomaly detection is the only practical choice in many real world problems. However, it

is not trivial to detect anomalies in an unsupervised manner. The large number of data

points makes the unsupervised anomaly detection even more challenging. Clustering algo-

rithms simplify the problem by grouping the data points into a small number of clusters.

K-means clustering methods tend to generate spherical clusters and, therefore, are not the

best choices for anomaly detection applications where the goal is to identify a small number

of outliers. Hierarchical clustering does not assume any prior knowledge about the number

of clusters in the dataset. Agglomerative hierarchical clustering uses dissimilarity matrix

to merges the two most similar clusters at each step. We expect the anomalies to be more

dissimilar to other observations and, therefore, be more resistant to be merged with normal

clusters [72]. Density-based clustering algorithms require the minimum number of objects

within a specific distance as the inputs and automatically determine the number of clusters

and the outliers. Moreover, they are capable to find clusters of different shapes, size, and

density.

To address high dimensionality problem, two general strategies have been proposed:

1) feature learning, 2) feature selection. Feature learning methods generate a completely

new set of features which makes it harder for the experts to interpret the anomaly detection

results. Among the feature selection techniques, W-k-means, EWKM, and FG-k-means,

are various versions of K-means clustering, and, therefore, have disadvantages in anomaly
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detection applications. Witten and Tibshirani [181] method which can be used in hierarchi-

cal clustering framework, is a promising alternative. For large datasets where this approach

is computationally intractable, mutual information based feature selection approaches can

be applied. He et al [81] proposed a filter method for unsupervised feature selection. Their

method selects a subset of features that represent the general structure of the dataset. Us-

ing this method implies that a feature which is significantly different with the rest of the

features is irrelevant.
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CHAPTER VII

DATA-DRIVEN DIAGNOSIS AND ANOMALY DETECTION

As engineered systems have become more complex, self-monitoring, self-diagnosis,

and adaptability to maintain operability and safety have become focus areas for research

and development. Typical goals of such self-diagnosis approaches are the detection and

isolation of faults, identifying and analyzing the effects of degradation and wear, and pro-

viding fault-tolerant and fault-adaptive control [30]. As we have discussed in the previous

chapters, the majority of projects dealing with monitoring and diagnosis applications rely

on models created using physical principles or by human experts. However, these models

are not always available, and are often incomplete, and sometimes even erroneous. More-

over, it is hard to maintain the accuracy of these models during a system’s life-cycle. More

recently, data-driven alternatives have emerged that exploit the large amounts of opera-

tional data collected from systems to better understand system operations under nominal

and faulty conditions [185]. The longer-term goal is to develop Cyber-Physical Systems

(CPSs) [138] that can monitor their own behavior, recognize unusual situations, and in-

form operators, who can then modify system operations to ensure safety and ability to

complete a mission. In some situations, this information can also help to plan maintenance

tasks. Systems experts and engineers can use the information gleaned from this data to

update operational procedures, increase autonomy of the system, and even redesign future

versions of the system.

In this chapter, we take on the challenges of developing a data-driven scheme for

anomaly detection. As a case study, we analyze telemetry data that was generated by

NASA’s Lunar Atmosphere and Dust Environment Explorer (LADEE) spacecraft1, a robotic

1see https://www.nasa.gov/mission_pages/ladee/main/index.html
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mission that orbited the moon to gather detailed information about the structure and com-

position of the thin lunar atmosphere, and determine whether dust is lofted into the lunar

sky [83]. The LADEE system block diagram2, shown in Figure 40, shows the four pri-

mary subsystems of the spacecraft: (1) the Integrated Avionics system, (2) the Propulsion

system, (3) the Attitude Control system (ACS)), and (4) the Electrical Power Subsystem

(EPS). Using the lessons learned from this case study, our overall goal is to develop a gen-

eral data-driven monitoring approach for telemetry (i.e., streaming time series) data for

purposes of health monitoring, which includes fault and anomaly detection, prognosis, and

performance analysis of the monitored system.

Our primary focus in this chapter is on developing unsupervised methods for data-

driven anomaly detection in complex systems. We want our solution to be viable for future

2( see https://directory.eoportal.org/web/eoportal/satellite-missions/l/
ladee)
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long-duration space missions. For these missions that often operate in environments that are

not completely known, it makes sense that we learn about system operations and anomalies

that occur by collecting and analyzing data during the mission, and then using the knowl-

edge gained to develop fault detectors and isolation mechanisms that make it easier to keep

the system operational and safe as the mission progresses. To enable the operators to use

our approach, we develop an anomaly detection toolbox that can be used for future mis-

sions without significant modifications. The results of our anomaly detection approach can

be used for designing on-line fault detectors for system health monitoring.

When dealing with one-off space missions, one may not have access to a lot of histor-

ical data on spacecraft operations from previous missions to characterize faults and errors,

that may form the basis for detecting and analyzing faults during the current mission. On

the other hand, these missions are often long in duration, and it is possible to collect and

analyze telemetry data from early in the mission to discover and characterize anomalies

that may occur during spacecraft operations. Characterizing anomalies can help the mis-

sion specialists to come up with corrective actions or change the mission plan to avoid

adverse incidents. Alternately, discovering the root causes may influence the design of

future spacecraft to avoid such anomalies.

For long duration spacecraft missions, the spacecraft may operate in multiple modes

linked to maneuvering the spacecraft and initiating a variety of science experiments. We

have developed a multi-step unsupervised learning method to distinguish normal operating

modes from the anomalies or faults. Figure 41 illustrates this process. Typically, a large

majority of the time segments of the telemetry data will represent nominal operations of the

spacecraft, but a small subset may represent anomalous and faulty behaviors. We hypothe-

size that the clusters or groups that contain a large number of the time segments represent

nominal operations, whereas outliers (single time segments) and smaller groups may rep-

resent anomalous situations. In previous work, researchers have developed classifier or

supervised methods for characterizing known faults (e.g., [125]) and semi-supervised and
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Figure 41: Unsupervised learning method anomaly and mode detection

unsupervised methods for discovering and characterizing unknown faults and anomalies

(e.g., [115]). We propose a mixed method that combines unsupervised learning and ex-

pert analysis for anomaly detection in robotic space missions. Figures 41 represents our

four step approach: 1) data pre-processing; 2) unsupervised learning using a clustering

approach; 3) identifying outlier groups and deriving the significant features that character-

ize each outlier group from the nominal: and 4) expert characterization of the anomalous

groups. We describe each step in greater detail in this chapter.

The rest of this chapter is organized as follows. Section 7.1 presents the per-processing

steps. Section 7.2 represents our unsupervised learning method using a hierarchical cluster-

ing approach. Section 7.3 presents our approach for identifying outlier clusters and deriving

the significant features that characterize each outlier cluster from the nominal. Section 7.4

shows the application of our methodology to telemetry data from the Electric Power System

(EPS) of the LADEE spacecraft. Section 7.5 extends the analysis to include the EPS and
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the Guidance, Navigation and Control (GNC) units of the spacecraft. Section 7.6 presents

the summary and conclusions of the chapter.

7.1 Pre-processing

7.1.1 Standardization

The feature selection algorithms and the clustering algorithms are sensitive to the am-

plitude of the features. The features can have a large range of amplitudes. For example,

in the LADEE dataset the temperature variables are typically larger than the electrical cur-

rent measurements. This can bias feature selection and clustering algorithms. To avoid

this problem, we standardize the variables as the first step. Milligan and Cooper [133]

performed an experimental study of seven standardization methods for clustering and con-

cluded the approaches which standardize by division by the range of the variable give

superior performance in recovering the cluster structure in the presence of noise. These

approaches use the range of each feature to standardize it. We use the method presented in

equation (118) to standardize each signal in the dataset.

7.1.2 Defining the objects

In this work, anomaly detection is applied to telemetry data streamed to earth stations

from different subsystems of the spacecraft. We derive a set of objects from a curated

version of the time series data. Each object is defined by a set of signals, and each signal

is extracted from a longer time series signal representing the variable waveform over the

entire mission. We start with each time series waveforms that captures the relevant aspects

of system operations represented as a variable; therefore, each data object is represented

by a set of variables, V = {v1,v2, ...,vm}, and each variable is a time series made up of k j

samples, 1≤ j ≤m. For example, in the first case study, our focus is on the EPS, so the set

of variables includes electrical measurements from components such as solar array panels,

the battery, and the electrical loads. In the second case study, we extend the analysis to
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include GNC subsystems of the LADEE spacecraft. Therefore, the set of variables also

includes measurements related to the GNC subsystems such as the reaction wheels, and the

star trackers.

Our approach divides the time series representing the entire mission trajectory into

segments, i.e., O = {O1,O2, ...,On}, and each segment represents an object of interest on

the mission time line. We can adopt different approaches to define the objects. In the fist

case study, we assume the windows have the same number of samples and use an empirical

approach to derive the window size. In the second case study, we derive the time interval

width of each object (window size) by considering the mission phases (see Figure 42). In

the beginning of the mission the spacecraft has access to the sunlight constantly. When

the spacecraft enters the lunar orbit it experiences dark and light intervals periodically. To

select the time interval for each object we adopt the following strategy. In the earth orbital

phase, each time window (object) is an hour long. During the lunar orbital phase, each

period of dark or light is selected as an object. This strategy has been chosen based on our

expectation that the signals in the dataset follow different patterns during the light periods

and the dark periods.

7.1.3 Re-sampling

In the second case study, we define the object windows using dark and light periods.

Since measurement sampling rates vary, each window can have a different number of sam-

ples. This makes the comparison between the objects and, therefore, detecting the anoma-

lous objects complicated. We apply a simple sampling approach in order to have the same

number of samples in each object. For discrete variables, we estimate the value of signal

in each sample time tk by using the closest available sample point. For example consider

the case where ta is the time of the last sample point before tk and tb is the time of the first

available sample point after tk. We estimate the value of discrete variable, vi, at sample
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Figure 42: LADEE mission phases [48]
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point tk as

vi(tk) =

{
vi(ta) i f tb− tk ≥ tk− ta

vi(tb) otherwise.
(126)

For continuous variables, we consider a weighted average of previous and next sample

point as the value of the signal. For example, consider the case where we are interested to

estimate the value of a continuous signal, v j at time tk. If the value of v j is not measured at

tk, we estimate v j at time tk as

v j(tk) =
tk− ta
tb− ta

v j(ta)+
tb− tk
tb− ta

v j(tb), (127)

where ta is the sampling point before tk and tb is the sample point after tk. In the second

case study, we select 64 sample points for each object.

7.1.4 Feature selection

In the feature selection step, our goal is to address two main challenges in the data-

driven anomaly detection: 1) redundant variables, 2) irrelevant variables.

7.1.4.1 Redundant variables

Redundant variables are very common in datasets. There are different reasons for re-

dundant variables. For example, several sensors may measure the same variable, a single

measurement may be recorded with different names in the dataset, or two variables could

be highly correlated. Redundant measurements can make anomaly detection challenging.

They may artificially enhance some effects and, therefore, decrease the effect of others,

making some faults hard to detect. On the other hand, they can represent redundancies in

the dataset and, therefore, they can be valuable resources for anomaly detection.

Whitley et al [180] compute squared correlation coefficients for pairs of variables, and

eliminate one of the pair if the coefficients values are large. In this work, we use the
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absolute value of Pearson correlation coefficient as a measure for redundant variables.

Pearson correlation coefficient of two measurement vectors, v j and vk is computed as the

ratio of their covariance over the product of their standard deviations.

r jk =
E[(v j−µv j)(vk−µvk)]

σv jσvk

, (128)

where E(x) and σx represent the expectation value and the standard deviation of x respec-

tively. A simple solution is to remove any variable that has high correlation with another

variable. However, as we mentioned earlier, the redundant variables can represent redun-

dancies in the system and, therefore, they may provide critical information for anomaly

detection. To capture this information, we add a residual to the dataset after removing each

variable.

For example, it is possible that two variables have similar patterns during the normal

operation, but follow different trajectories in the fault modes. Typically, the majority of

data points represent nominal operations, therefore, we expect the variables to be highly

correlated. However, the difference between their trajectories during the anomalous points

can help us to detect these anomalies. Our goal is to generate a residual that captures

possible dissimilarities between the variables with high correlation coefficients. Consider

two measurements v j and vk with correlation coefficient, r jk, above the minimum threshold

for redundant variables, rthreshold . After removing vk from the set of variables we add

residual, Res jk, to the dataset.

Res jk = v j−
v j.vk

vk.vk
vk, (129)

where v j.vk represents inner product of v j and vk. When vi and v j are identical, Res jk = 0.

182



7.1.4.2 Irrelevant variables

The irrelevant variables may hurt anomaly detection by acting as noise and hiding ef-

fects of the relevant variables. To remove irrelevant variables, Peng et al [142] developed

an approach to select a subset of features that have maximum relevance to the clusters. In

this work, the set of clusters are not determined. Therefore, we have to adopt an unsu-

pervised method to remove irrelevant features. Whitley et al [180] argued that the vari-

ables with small standard deviations contribute no significant information and therefore,

are irrelevant. In this work, we consider the minimum number of waveforms or variables

that represents an specific percentage of the total variance as the relevant variables. Let

V = {v1,v2, ...,va} denotes the set of variables plus the added residuals. We select a subset

of variables Vs = {vs1, ...,vsb} that represent a minimum required percentage, It , of the total

sum of variable variances, i.e.,

min Vs ⊆V

s.t.
b

∑
i=1

(σvsi)
2 > It

a

∑
j=1

(σv j)
2

(130)

Using this approach, we retain features with the highest information content. Therefore,

we automatically remove the residuals that are generated from identical variables and do

not contribute any meaningful information.

7.1.5 Feature extraction

High dimensionality of the datasets in complex systems is another challenge for anomaly

detection. High dimensionality in the data increases the required time and space for pro-

cessing the data. For example, in the first case study, we have 1512 objects and each object

has 380 samples for each feature. In the second case study, we have 877 objects in the

earth orbital phase and 4556 objects in the lunar orbital phase and each object includes 64

sample points for each selected feature. We use the feature reduction step to convert each
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Figure 43: Data pre-processing and feature extraction

time series signal to a set of discrete features whose values are derived by applying the

wavelet transform [24] to the signal. Figure 43 illustrates the feature extraction process on

the time line for each signal segment. The wavelet transform captures the time-frequency

characteristics of signal waveforms, and, in this process it can also be used to capture the

frequency characteristics of the signal at different time intervals in the signal. The wavelet

transform that we describe in greater next, is illustrated in Figure 44.

We employ the Haar discrete wavelet transform (DWT) [164] to extract the time-

frequency characteristics of the signals at specific intervals, and, in this process, compress

the signal waveforms. Computing the Haar wavelet coefficients is equivalent to passing the

signal through a series of shifted and cascaded low- and high-pass filters that decomposes

the signal into high and low frequency bands, which are then down-sampled to capture the

local time-frequency characteristics of the signal. Figure 44 shows the first three levels of

the computation for an input example, o = [3,4,−1,5,6,57]. The computational scheme

requires the number of discrete samples in the signal to be a power of 2. Therefore, DWT

algorithms extend the signals of other sizes using different signal extension methods such

as zero-padding.
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Figure 44: Haar Discrete Wavelet Transform (DWT)

In the first case study, each time window has 380 sample points, and, we use zero-

padding to extend each window to 512 samples. In the second case study, in the re-sampling

step we make sure that the number of samples in each object is a power of 2. Therefore, sig-

nal extension was not required. Based on the application, we select the DWT coefficients

at a specific level as the features that define the signal. Therefore, the set of features ex-

tracted for each object, Oi, is a vector fi ∈ Rm∗l , where m represents the number of selected

time series signals, and l is the number of coefficients extracted for each signal by the Haar

transformation. In fact, each data object is represented by a set of m ∗ l features. In the

second case study, each object has 64 samples and we consider level 4 DWT coefficients

as the features that define the signal. Therefore, we represent each signal in a data object

with 8 features which reduces computational cost compare to 64 original sample points.

7.2 Unsupervised Learning

For unsupervised learning in step 2, we have applied a hierarchical clustering algorithm

[94]. We adopt the Euclidean distance as the metric to compute the dissimilarity matrix.
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For clustering, we run a generic UPGMA (Unweighted Pair Group Method with Arithmetic

Mean), agglomerative (bottom-up) hierarchical clustering algorithm [37], and represent the

order of cluster formation as a dendrogram. UPGMA defines the distance between the clus-

ters as the mean distance between the cluster’s objects. At each step, two existing clusters

that are the closest to each other are merged into a higher-level cluster. The algorithm saves

the distances between merged clusters in a distance vector, dv. To achieve computational

efficiency in the next step of merging, the algorithm calculates the distance between the

new cluster and all other existing clusters, using the proportional averaging (see Algorithm

19).

After generating dendrograms by hierarchical clustering, we have to choose the level

at which to cut the dendrogram. One of the advantages of generating dendrograms by

hierarchical clustering is that we can apply a number of heuristic methods to choose the

level at which to cut the dendrogram, and, in this process establish the number of clusters

or groups in the data set. Several approaches have been proposed for determining the

number of clusters in a data set (e.g., [132, 184]). In the first case study, we select the

number of clusters based on a metric derived from the distances between successive cluster

formations in the dendrogram. The distance level (y−axis on the dendrogram) at which

the clusters are partitioned is defined by a distance threshold (say, dt) to define a distinct

grouping of clusters. Therefore, by increasing or decreasing dt , we can decrease or increase

the number of clusters considered.

Our approach to selecting the value dt ensures that the clusters or groupings formed

are unambiguous and stable, i.e., small changes in dt do not result in large changes in

the number of clusters generated. Toward this end, we apply a Z-test [18] to determine

where the change in the distance vector, dv is statistically significant. In the second case

study, we select the number of groups based on two common methodes; 1) Calinski and

Harabasz method [26] and 2) Krzanowski and Lai method [108]. Calinski and Harabasz

method selects the number of clusters that maximizes the between the clusters distance over
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within clusters distance ratio (see (115)). Krzanowski and Lai method selects the number

of clusters where there is a dramatic decrease in within clusters distances.

7.3 Cluster Labeling

In order to gain a deeper understanding of anomalies, and to devise methods for de-

tecting anomalies, we have to identify the clusters that represent anomalies and understand

the root causes that differentiate them from nominal operations. We consider large groups

derived from the clustering algorithm to be nominal (this corresponds to the assumption

that the system operates normally most of the time). Singletons and smaller groups that

are sufficiently distant from the nominal groups are labeled as outliers or anomalies. As

discussed earlier, spacecraft missions are complex, and they may involve multiple phases

and operational modes, corresponding to trajectory maneuvers and conducting of scientific

experiments, over the duration of the mission. In reality, some of the smaller clusters ini-

tially labeled as anomalies or outliers may correspond to special modes of operation, and,

therefore, are not of interest in discovering discrepant and faulty behavior. Therefore, an

additional challenge we face in this work is separating the special modes of operation from

truly anomalous behaviors.

We have developed an approach to extract additional cues to identify special operat-

ing modes. We map the objects constituting the smaller clusters back onto the mission

timeline, and look for continuous or discrete signals that may explain the differences in

system behavior in the small clusters from the nominal operation. For example, the reac-

tion wheels are activated to correct the attitude of the spacecraft, and this can be detected

by a switch turning on to supply power to the reaction wheels. The activation of the reac-

tion wheels increases the overall load currents in the power system, but since this increase

can be primarily correlated with the switches being commanded on, the experts labeled the

outlier group corresponding to this phenomena as a special operational mode rather than

187



an anomaly. In this section, we generalize this approach to detect other special modes of

operation.

Other groups of data objects not be explained by observed mode changes in spacecraft

operations, are then presented to human experts for further characterization. These may

turn out to be additional special modes that are not easily interpreted from the switching

signals, or they may represent anomalous behaviors that are linked to faults in the system.

We define significant features to formally generate additional cues for the experts in order

to help them distinguish anomalies from the special modes of operation. The significant

features are defined as follows.

Definition 40 (Significant features). Significant features are a single feature or a set of

features that best distinguish an outlier group from nominal operations of a system.

To facilitate identification of anomalies and special modes, we pick significant features

that best differentiate each small cluster from the labeled nominal groups. These features

help our human experts better understand and characterize the outlier clusters as potential

faults, or special modes of operation. Different methods, such as variance decomposi-

tion [75] and information gain measures applied to decision trees [93] can be applied to

extract significant features for each outlier cluster. In our work, we developed a simple

Euclidean distance based method to extract significant features: The distance measure be-

tween normal operation group, a, and an outlier group, b for signal variable, j is computed

as:

D j
ab =

√√√√ l

∑
i=1

(
E[o j

ai]−E[o j
bi]

E[o j
ai]

)2, (131)

where E[o j
ai] represents the mean value of the ith level coefficient of signal j in group a.

When summed over all m variables, the total distance between the normal operation group,

a and an outlier group, b is computed as:

Dab =

√
m

∑
j=1

(D j
ab)

2, (132)
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We define the importance of each time series waveform v j in distinguishing an outlier

group, b, from normal operations, a, Iab(v j), as the ratio of D j
ab to Dab, i.e.,

Iab(v j) =
D j

ab
Dab

(133)

The importance of a set of variables, Vk = {v1,v2, ...,vk} in distinguishing b from normal

operation, a, is defined as:

Iab(Vk) =

√√√√ k

∑
i=1

(Iab(vi))2. (134)

Let V = {v1,v2, ...,vm} denote the set of variables. We select a subset of variables Vb to

guarantee a minimum required importance, Ir, in distinguishing b from normal operation

with minimum cardinality, i.e.,

min Vb ⊆V

s.t. Iab(Vb)> Ir

(135)

Once the significant features have been established and ranked, this information is pre-

sented to the human expert to further characterize the anomalous group. After study, the

expert may establish that this group represents a true anomaly, i.e., unexpected or aberrant

behavior, or otherwise it is a mode of operation that we could not characterize.

7.4 Case study 1: The Electrical Subsystem

The data used for this chapter was telemetry data from the LADEE lunar mission di-

rected by the NASA Ames Research Center. This mission lasted for 223 days from launch

till the spacecraft was intentionally crashed onto the moon’s surface. The telemetry data we

analyzed contained 2,949 time-series waveforms that represented variables from the differ-

ent subsystems of the spacecraft. The sampling rates for the waveforms differed between

subsystems, and they also differed during the different phases of the mission. Overall, the

data set contained 1,894,285,525 samples, which was about 14 GB of data. For the first
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case study, we focused on the Electric Power System (EPS) of the spacecraft. This subsys-

tem includes 265 time series variables. From the 265 variables, we selected 34 continuous

voltage and current variables for analysis. Of these 7 represented voltage variables; this

included the battery voltage, solar panel voltages, and load voltages. 27 were current mea-

surements, such as, battery, solar panel, and load currents. 67 variables were binary-valued,

and they helped us interpret the different modes of operation of the EPS.

For our analysis, we subdivided the 34 continuous voltage and current telemetry wave-

forms into 1512 windows, with each window corresponding to a data object. Each time

window contained 380 samples. As discussed earlier, the sampling rate of the recorded

data was not constant, therefore, a time window represented anywhere between 5 minutes

to 10 hours of operation. The average window size was 3 hours and 31 minutes. The Haar

wavelet transform was applied to each waveform segment to extract a set of 8 wavelet coef-

ficients as distinct features representing that segment. The result was that the set of voltage

and current waveforms for each data object were transformed into 34× 8 = 272 features.

To apply the discrete Haar transform, each waveform segment had to be represented by a

number of samples that were a power of 2, therefore, we padded our waveform represented

by 380 samples with 0′s to make 29 = 512 samples.

The Euclidean distance metric was used to create the dissimilarity matrix of 1512×

1512 object pairs. Then we applied the UPGMA hierarchical clustering algorithm (the

R function: hclust)3 to generate the dendrogram shown in Figure 45. The dendrogram

is a graphical representation of the order in which the objects and groups merge to form

larger clusters. Figure 46 represents 1511 distance values at which the objects and groups

merged to form larger groups in the dendrogram. This case study was conducted more

as a proof-of-concept as opposed to an attempt to exhaustively generate all of the special

modes and anomalies. Therefore, we intentionally set a very high confidence bound of

3 see http://www.R-project.org/
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Figure 45: The dendrogram generated by applying the UPGMA hierarchical clus-
tering algorithm. The red line represents the chosen threshold distance for cluster
formation. The green section of the dendrogram (the large cluster) represents nor-
mal operations, and the outliers and smaller groups are represented by different
colors

99.7% to establish the level at which the dendrogram would be cut to establish the number

of clusters.

Application of Z-test with 99.7% confidence bound produced the distance threshold and

the corresponding red line shown in Figure 46. As expected, this produced one large cluster

Figure 46: Distance values indicating levels of cluster formation
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that we assumed to represent the nominal behavior of the spacecraft. In addition, Figure 45

shows that we generated eight smaller clusters. We studied these groups in greater detail

by comparing them against the nominal group to determine if they represented special

modes and anomalies. Of the eight groups, three turned out to be modes of operation that

were identifiable because of their correspondence to the switching signals. In this chapter,

we analyze the other five groups in greater detail. To study the five smaller clusters, we

identified the objects corresponding to these clusters on the spacecraft mission timeline.

Figure 47 shows these objects as dots on the timeline plot.

Figure 47: Clusters projected back on the mission timeline

As a first step toward mode characterization, we studied the discrete switch values dur-

ing these intervals to see if they provided information about special modes of operation.

When we were unable to assign a definite interpretation to a cluster, we extracted the sig-

nificant features that differentiated that cluster from the nominal group. Using equation

(135) we selected significant features by setting the threshold, Ir = 0.9. The significant

features represented an ordered subset of features that contributed the largest amounts to

the distance from the mean of the outlier group to the mean of the nominal, and the chosen

subset accounted for 90% of the distance between the outlier and nominal group means.
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Figure 48: Reaction wheels (OFF=0, ON=1)

Table 24 represents the most important significant features of five of the outlier groups we

identified by our clustering approach.

We presented the significant features for each anomalous group and the position at

which they occurred on the mission time line to our experts to help us further characterize

and classify the special modes and anomalies. In this section, we present our character-

ization of the five clusters in greater detail using expert input. Our mission experts and

specialists from NASA Ames are acknowledged at the beginning of this thesis. Cluster 5

represented the nominal behavior of the spacecraft. Clusters 1-4 are discussed below.

Cluster 2 (the reaction wheels control problem): the behavior represented by this clus-

ter covered two time windows that occurred early in the mission. The behaviors covered

40 and 6 minutes of the mission time line, respectively. Figure 48 shows that the reaction

wheels went off twice (corresponding to Reaction Wheels = 0) during the mission. Our

experts confirmed after studying the mission operator logs that the reaction wheels only

went off once during the mission, and the second zero in the figure was a case of bad data.

Figure 49 shows that different currents in the SATORI board4#2 were the most significant

features for this cluster. SATORI #2 current variable has significantly higher average in

cluster 2 than the nominal operation.

4The SATORI boards provide power to the Command & Data Handling System.
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Table 24: Summary description of the detected modes and anomalies

Group Detected Mode or
Anomaly

Significant Features Switches

1 Normal operation mode
2 Anomaly: Reaction

wheels • SATORI #2 HP #2 cur-
rent

• SATORI #2 HP #4 cur-
rent

• Propulsion heater
turned on

• Star tracker went off

3 Mode: Lunar orbit in-
sertion • PAPI #2 HP #7 current

• PAPI #2 current

• Pressurant tank heater
went on

• Valve driver unit went
on

4 Anomaly: Laser com-
munication test (during
dark phase)

• SATORI #1 Current

• Load Current

• Battery Current

• Laser communications
switch went on

5 Anomaly: Eclipse
lasted longer than
expected

• Battery Voltage

• SATORI #1 Voltage

• SATORI #2 Voltage

• Several heaters went on
(e.g. Propulsion heater)

6 Mode: Safe

• Battery Voltage

• SATORI #1 Voltage

• SATORI #2 Voltage

• Several loads (e.g. star
tracker) turned off
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Figure 49: Significant features for cluster 2

The high current values read by the sensors on the SATORI #2 boards indicated that

this incident very likely was related to the guidance navigation and control unit. The fact

that these currents were related to the three Reaction wheels further confirmed this inter-

pretation. The experts from NASA further substantiated this anomaly as follows. In the

first few orbits around the earth, the spacecraft began to spin at a faster rate than was ex-

pected, and the reaction wheels were turned off by the control software to avoid a high load

current, and, therefore, draining of the battery. This stopped the spacecraft rotations, but,

as a consequence, the side of the spacecraft facing away from the sun became much colder

than normal. Several heaters went on to prevent the equipment from freezing, and this led

to the high currents in a number of units connected through the SATORI board#2.

Cluster 3 (lunar orbit insertion): Figure 47 shows that cluster 3 data objects corre-

sponded to three time intervals that occurred on three different days of the mission. Each

time interval was about six minutes long. Two different currents in the Power-switching

and Pyro Integration boards (PAPI) board5#2 were the significant features that character-

ized this group. Figure 50 shows that the PAPI #2 high pressure current number 7 during

these three time intervals. The high amplitude in the PAPI # 2 propulsion subsystem current

5The PAPI boards route power to the Thermal Control, Guidance, Navigation & Control and the Propul-
sion Subsystems.
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Figure 50: PAPI #2 high pressure current number 7 for cluster 3 objects
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was the second significant feature for this cluster. However, unlike cluster 6, the increase in

PAPI board #2 current did not occur simultaneously with the battery voltage drop. With the

help of our experts, we found out that the valve driver unit, which controls the propulsion

subsystem and the pressurant tank heaters, (part of the propulsion subsystem (see Figure

40)) were ON for the three time intervals. This corresponded to a unique behavior, how-

ever, our experts confirmed that the behavior was not anomalous. Instead, it represented

the lunar orbit insertion process. There were three firings of the propulsion subsystem that

occurred to get the spacecraft into lunar orbit and our algorithm successfully grouped them

into a single cluster.

Cluster 4 (the laser communication test): this cluster included two time windows, each

about 20 minutes in duration. The SATORI #1 current is the most significant feature for

this cluster. The load current and battery current are the next two significant features for

this cluster. Further analysis showed that the data points in this cluster corresponded to

laser communication tests, which were part of the mission plan. The laser communication

tests increased load currents significantly. The two time intervals in this cluster also co-

incided with the occurrence of a new moon, which meant that the solar arrays were not

generating any current (values recorded were very close to 0) during this period. The high

battery current caused the battery to discharge below acceptable levels, and, therefore, the

battery voltage dropped significantly. Our experts characterized this as an anomaly in oper-

ations because the laser communications test led to unintended consequences of the battery

voltage dropping below specified thresholds.

Cluster 5 (the eclipse): the objects in this cluster extended over a 5 hour time span. It

should also be noted that the sampling rate was also significantly lower, because this was

the end of the mission. The most significant feature for this group was the battery voltage,

which fell below the 95% bounds of normal operation (see Figure 51). The drop in battery

voltage led to drops in the SATORI #1 and SATORI #2 voltages. Figure 52 shows SATORI

#1 and SATORI #2 voltages were the next set of significant features.
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Figure 51: Battery voltage for cluster 5 data points
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Figure 52: Significant features for cluster 5

The experts confirmed that cluster 5 behavior was directly the consequence of the

eclipse that happened at the end of the mission. The solar array current was zero dur-

ing the first 2 hours of this time interval, and it fluctuated between zero and small non zero

values after that. The lack of sunlight caused a significant drop in temperatures (we did

not include temperature values in this analysis), and several heaters came on to prevent

large temperature drops, which would have affected spacecraft operations. This increased

the load current significantly. A simultaneous increase in the load currents and decrease in
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the solar array current put an unprecedented load on the battery, which led to large voltage

drops in the battery voltage. This likely jeopardized the battery health, therefore, it clearly

represented anomalous or unexpected behavior of the EPS.

Cluster 6 (the safe mode): the system went into the safe mode right after the eclipse

ended. This mode was about 41
2 hours long. The battery voltage was again the most

significant feature that distinguished this group from nominal operations. Figure 53 shows

battery voltage during this time interval. The remaining significant features for this cluster
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Figure 53: Battery voltage for cluster 6 objects

and their importance factors are presented in Figure 54.

To preserve the health of the battery, several loads were switched off to reduce energy

consumption and give the battery a chance to recharge. Figure 53 shows that the battery

voltage came back to an acceptable level during this mode. Our experts explained that the

data points in this group represented a unique behavior in spacecraft operations. However,

they did not classify the behavior to be anomalous, since the spacecraft systems operated

exactly as they should have to avoid larger failures and possible loss of the spacecraft power
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Figure 54: Significant features for cluster 6

system. Hence, this was a special operational mode, i.e., the safe mode to allow for EPS

recovery.

7.5 Case Study 2: Anomaly Detection combining telemetry data from the EPS and

GNC

In this case study, we include telemetry data from the GNC subsystems in addition to

the EPS. For the clustering analysis, we only consider continuous-valued features. In the

cluster labeling step we also include binary switches. In the GNC subsystem, we con-

sider variables related to the reaction wheels (RW), and internal measurement unit (IMU).

There are 28 variables associated with 4 reaction wheels in the spacecraft and each vari-

able has 3,796,693 data samples. These measurements include reaction wheel’s torques,

reaction wheel’s rotational speeds, and gyro and reaction wheel’s temperatures. The IMU

has 4 variables: three accelerations and a temperature. Each variable in the IMU dataset

has 692,459 sample points. As we discussed in the previous case study, the EPS dataset

includes 37 voltage and current continuous variables, and 67 binary switches. Each vari-

able in the EPS has 574,687 data samples. Without standardization, variables with smaller

amplitudes have small effect on the clusters. However, these variables may be important
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in detecting abnormal behaviors. To avoid neglecting variables with small amplitudes, we

standardize all the variables using equation (118).

For our analysis, we divide the mission into two main parts; 1) initial earth orbital phase

2) lunar orbital phase. In the earth orbital phase, the spacecraft is exposed to sun light con-

stantly. Therefore, we do not observe charge and discharge cycles in the electrical variables

such as battery voltage. However, in the lunar orbital phase, the spacecraft enters cycles of

dark and light and we can observe charge and discharge cycles in electrical variables. The

dark cycles and the light cycles represent fundamentally different behavior. Therefore, the

experts in NASA recommended to consider dark and light periods in defining objects. For

the earth orbital phase, where there is no dark period, we consider each 60 minimizes time

interval as an object. This subdivides the earth orbital phase into 877 windows. For the lu-

nar orbital phase, we consider each dark or light interval as an object. This subdivides the

lunar phase into 4556 windows where we have 2278 light objects and 2278 dark objects.

As discussed earlier, the sampling rate of the recorded data was not constant, therefore, the

time windows may have different number of samples. Moreover, EPS, RW, and IMU sub-

systems have different number of sample points. In order to integrate the subsystems and

make the comparison of the objects easier, we re-sampled the waveforms using equation

(126) for discrete variables and equation (127) for continuous variables in a way that each

object has 64 sample points. Note that 64 is a power of 2, therefore, we did not have to pad

the waveforms in the feature reduction step.

Our first steps after data cleansing and alignment, and segmenting the signals into win-

dows, was to apply a feature selection algorithm, which first removed redundant features,

added the corresponding residuals and then applied the variance method for feature selec-

tion. Table 25 shows a subset of variables with high correlation coefficient. Figure 55

shows battery voltage, SATORI # 1 voltage, and their corresponding residual. We can see

that the residual value is close to zero for the entire mission. This means SATORI # 1

voltage always follows the battery voltage.

201



Table 25: Redundant variables.

First feature Second feature correlation coefficient

BATTERY VOLTAGE SATORI1 VOLTAGE 0.9966
BATTERY VOLTAGE SATORI2 VOLTAGE 0.9966

GYRO TEMP MOTOR TEMP 0.998
GYRO TEMP RW TEMP 0.997

COARSE RATE GYRO COARSE 0.994
IMU PROP ACC1 IMU PROP ACC2 0.999

For each pair variables, vi and v j, with correlation coefficient higher than ri j > 0.99,

we replace one of the variables, say v j, with a residual, Resi j = vi−
vi.v j
v j.v j

v j. We then use

equation (130) to select a minimum set of variables and residuals from each subsystem

that represents 95% of the total variance of the subsystem variables. This reduced the

total number of features significantly, reducing the total number of features considered

for clustering to 36 features listed in the Table 26. Figure 56 shows that Coarse rate #3

and Gyro coarse #3 demonstrate different behaviors in the beginning of the mission and

therefore, their corresponding residual has been selected by our feature selection algorithm

(see Table 26).

Note that in this case study only one residual is selected for clustering. This means

the other generated residuals (such as the residual corresponding to battery voltage and

SATORI #1 current shown in Figure 55) had low variances. Each time window contained

64 samples. The Haar wavelet transform was applied to each waveform segment. We

select the output of the low pass filter and the high pass filter in level 4 as the set of distinct

features representing each segment. Therefore, 64 samples of each variable in a data object

were transformed into 64
24 × 2 = 8 features. As it shown in Table 26, the feature selection

algorithm selects 36 variables for this case study, therefore, the total number of features for

each object is 36×8 = 288. As we mentioned earlier, we divide the mission into two main

phases; 1) initial earth orbital phase 2) lunar orbital phase. We present the results for our

anomaly detection for the two phases of the mission in the following subsections. Note that
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Figure 55: Battery voltage, SATORI #1 voltage, and their corresponding residual

unlike the previous case study, the results of this case study have not been confirmed by the

experts in NASA.

7.5.1 Earth orbital phase

We use the Euclidean distance metric to create the dissimilarity matrix of 877×877 ob-

ject pairs for the earth orbital phase. Then we applied the UPGMA hierarchical clustering

algorithm to generate the dendrogram shown in Figure 57. After generating dendrograms

we have to choose the level at which to cut the dendrogram to generate the clusters. In this

case study, we apply Calinski and Harabasz method [26] and Krzanowski and Lai method

[108] and select the highest output among these two methods as the number of clusters. We

select the maximum number to make sure we capture all the clusters in the dataset. For the

earth orbital phase, the Calinski and Harabasz method and Krzanowski and Lai method find

5 and 4 clusters in the dataset respectively. Therefore, we cut the dendrogram to generate
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Table 26: Selected features for each subsystem.

EPS RW IMU

PCS PAPI 1 current Reaction wheel 0 speed Acceleration 0
PAPI 5 voltage Reaction wheel 1 speed Acceleration 1
PAPI 5 current Reaction wheel 2 speed IMU temperature
PAPI 6 voltage Reaction wheel 3 speed
PAPI 6 current Gyro 0 temperature
PAPI 7 voltage Gyro 1 temperature
PAPI 7 current Gyro 2 temperature
PAPI 8 voltage Gyro 3 temperature
PAPI 8 current Reaction wheel 1 torque

PCS PAPI 1 HP 7 current Reaction wheel 2 torque
SATORI 1 HP 3 current Gyro coarse 0
SATORI 1 HP 7 current Gyro coarse 2
SATORI 2 HP 1 current Coarse rate 0
SATORI 2 HP 6 current Coarse rate 1

Battery heater temperature 1 Coarse rate 2
Battery heater temperature 2 Residual (Coarse rate 3 and Gyro coarse 3 )

Solar array current

Figure 56: Battery voltage, SATORI #1 voltage, and their corresponding residual
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Figure 57: The dendrogram generated by applying the UPGMA hierarchical cluster-
ing algorithm to the earth orbital phase of the mission.
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5 clusters. Figure 58 shows the clusters for the earth orbital phase. Cluster 5 includes 594

Figure 58: Clusters during the earth orbital phase

time windows and, therefore, it is clear that this cluster represents nominal operations for

the earth orbital phase. Clusters 1-4 are discussed below.

Cluster 1: this cluster corresponds to four consequent time intervals. Each time interval

in the earth orbital phase is an hour long. The two selected acceleration measurements in

the IMU subsystem are the significant features that characterized this cluster. The IMU

acceleration measurements during the earth orbital phase are shown in Figure 59. Cluster

1 is marked in this figure. We can see that the accelerations have high amplitude during the

cluster. Solar tracker power which is a binary variable is the other significant feature for

this cluster. Figure 60 shows the average value of solar tracker power in cluster 5 (normal

operation) and cluster 1. We can see that solar tracker has zero average in the beginning

of the windows in cluster 1. This means the solar trackers went off during this cluster.
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Figure 59: IMU acceleration variables during the earth orbital phase
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However, the average is close to one in cluster 5, which means the solar trackers are almost

always on in the normal operation. This cluster can represent an anomalous behavior.

Figure 60: Solar tracker power average for cluster 1 and cluster 5

Cluster 2 includes twelve time intervals that occurred on seven different days during

Figure 61: Valve driver unit power average for cluster 2 and cluster 5

the per-orbital phase of the mission. A high pressure current in the SATORI #2 and valve

driver unit power switch are the significant features that characterized this cluster. The

valve driver unit controls the propulsion subsystem (see Figure 40)). Figure 61 and Figure

62 show the VDU power average and the SATORI #2 HP #6 current average have the

identical pattern. Therefore, this cluster can present an operating mode.
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Figure 62: SATORI #2 HP #6 current average for cluster 2 and cluster 5

Cluster 3 has 154 time windows. SATORI #1 HP #7 current is the significant feature

that distinguishes this cluster from the normal operation. Figure 63 shows that SATORI

#1 HP #7 current in cluster 3 is significantly lower in average compared to cluster 5. This

Figure 63: SATORI #1 HP #7 current average for cluster 3 and cluster 5

cluster seems to represent an operation mode.

Cluster 4 includes 113 objects. The significant features for this cluster are SATORI #2

HP #1 current and solar tracker power. SATORI #2 HP #1 current is significantly lower

in this cluster than the normal operation (cluster 5). Moreover, Figure 64 shows that solar

tracker power switch average is close to zero for this cluster. This means this switch has

been mostly off for the sample points in the cluster. Note that solar tracker power switch
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also went off in cluster 2 but it is mostly on in the normal operation. This cluster can present

an operating mode corresponding to the solar tracker operation. Table 27 summarizes the

Figure 64: Solar tracker power average for cluster 4 and cluster 5

significant features and our initial assessment of the five clusters in the pre-orbital phase.
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Table 27: Summary description of the clusters during the earth orbital phase

Cluster Objects Significant Features Mode
1 4 objects

• IMU Acceleration 0
(low)

• IMU Acceleration 1
(high)

• IMU Acceleration 2
(high)

• Anomaly

2 12 objects

• SATORI 2 HP 6 current
(high)

• Valve Driver Unit
(VDU) Power

• Operation mode

3 154 objects

• SATORI 2 HP 1 current
(high)

• Operation mode

4 113 objects

• SATORI 2 HP 1 current
(high)

• Star Tracker (ST)
Power

• Operation mode

5 594 objects

• – • Normal operation
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7.5.2 Lunar orbital phase

The dendrogram for the lunar orbital section of the dataset is shown Figure 65. For the

Figure 65: The dendrogram generated by applying the UPGMA hierarchical clus-
tering algorithm. The dashed line represents the chosen threshold distance for
cluster formation. The green section of the dendrogram represents normal dark
operations, the yellow section represents normal light operations, and the outliers
and smaller groups are represented by different colors

lunar orbital phase, the Calinski and Harabasz method finds 7 clusters and the Krzanowski

and Lai method finds 9 clusters in the dataset. Therefore, we cut the dendrogram to generate

9 clusters. Figure 66 shows the clusters for the lunar orbital phase. Cluster 7 has 2273

objects and 99.96% of the objects are light windows. Cluster 9 includes 2265 objects and

100% of the objects in this cluster are dark windows. It is clear that cluster 7 represents

nominal operations for the light phase and cluster 9 represents nominal operations for the

dark phase of the lunar orbital phase of the mission. Clusters 1, 2, 3, and 4 represent the

eclipse and dark and light periods after the eclipse when the spacecraft is in the safe mode.
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Figure 66: Clusters during the lunar orbital phase

We discussed the eclipse and the safe mode in previous case study in great details. In this

section, we discuss the new clusters as follows.

Cluster 5 is a single data object in the light phase (object number 1678 among 5433

objects in the mission including the earth orbital phase and the lunar orbital phase). Note

that windows in the light phase are represented by even numbers and odd numbers represent

windows in the dark phase. Solar array current is the significant feature in cluster 5. This

cluster represents missing data in the dataset. Figure 67 shows the average solar current

for cluster 5 and cluster 7. The data is missing in the second half of the time window in

cluster 5. The re-sampling step uses linear interpolation to estimate the solar current which

obviously does not follows the actual pattern. This cluster represents an anomaly due to

missing data.

Cluster 6 includes four consequent dark windows (objects 5423, 5425, 5427 and 5429)

at the end of the mission. Figure 68 shows the average IMU temperature in this cluster

is significantly higher than the normal dark periods. High SATORI #1 HP #7 current is
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Figure 67: Solar current average for cluster 5 and cluster 7

another significant feature in this cluster. This cluster may represent a special operating

condition at the end of the mission before the spacecraft was crashed onto the surface of

the moon.

Figure 68: IMU temperature average for cluster 6 and cluster 9

Cluster 8 has three dark windows. Figure 69 shows the average solar array current in

this cluster is significantly higher than the normal dark periods at the second half of the

time windows. We investigated this cluster and we believe it represents an error in labeling

dark and light periods. In the objects of this cluster, the end points of the time windows
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are several minutes later than when the dark periods actually ended. Therefore, each dark

window has few minutes of light with high solar array current. Table 28 shows the clusters,

Figure 69: Solar array current average for cluster 8 and cluster 9

their objects and the significant features for each cluster for the lunar orbital phase.

7.6 Summary and Discussion

In this chapter, we have developed a mixed anomaly detection method that applies an

unsupervised learning method combined with human-expert support to analyze telemetry

data from spacecraft missions. We have described the various steps of the method from

the data pre-processing, generation of the feature space, applying a clustering algorithm,

determining nominal and outlier processes, associating significant features with the outlier

groups, to the consultation with experts resulting in the identification and characterization

of special modes of operation as well as anomalous behavior of the system. As the first case

study, we applied our approach to analyzing telemetry data from the Electric Power System

(EPS) of a recent lunar mission called LADEE. This case study provided interesting results.

We were successful in working with mission experts to identify a set of special modes as

well as some anomalies that occurred during the mission. The use of significant features
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Table 28: Summary description of the clusters during the lunar orbital phase

Cluster Objects Significant Features Detected Mode or
Anomaly

1 2 objects (100% light)

• Reaction wheel # 2
temperature (low)

• Propulsion red heater

Safe Mode (light win-
dows)

2 2 objects (100% dark)

• Gyro # 1 temperature

• Propulsion red heater

Eclipse and a dark window
during the safe mode

3 1 objects ( 100% dark )

• Propulsion red heater

• Oxid tank #1 heater

safe mode ( dark window)

4 5 object (60% light, 40%
light) • SATORI #1 HP #7

• Oxid tank #2 heater

Safe mode

5 1 object (100% light)

• Solar current

Missing data

6 4 objects (100% dark)

• IMU temperature

• SATORI #1 HP #7

End of the mission

7 2273 objects (99.96%
light)

Normal light

8 3 objects (100% dark)

• Solar current

Dark period error

9 2265 objects (100% dark) Normal dark

216



as well as the projection of the outlier data groups back onto the mission timeline greatly

facilitated the mission experts’ tasks of identifying and characterizing the special modes

and anomalies.

In the second case study, we extended the analysis by including telemetry data from two

GNC subsystems in addition to the EPS. To integrate signals from different subsystems, we

re-sampled the signal variables in all the subsystems with an unified rate. Moreover, we

applied a feature selection method to remove redundant and irrelevant features. The feature

selection step helps us to have reasonable computational complexity while including more

subsystems in our analysis. This approach shows great promise in generalizing to complex

cyber physical systems (CPSs), where well-developed models of the system are not readily

available, therefore, operational data has to be used to understand and evaluate system

operations, and detect anomalies and outlier behaviors.
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CHAPTER VIII

RESEARCH CONTRIBUTIONS AND FUTURE WORK

In this chapter, we review the research contributions and present future work.

8.1 Summary and Research Contributions

One of the primary contributions of this thesis research was the development of derivative-

based sensitivity analysis methods using the concepts of detectability and isolability ratios

to quantify residuals fault diagnosis performance in the presence of noise and uncertainty.

This contribution was discussed in Chapter III of the thesis. Derivative-based sensitivity

analysis is easy to implement and computationally efficient and it can be used to generate

accurate results for linear and smooth nonlinear systems. We defined global detectability

and global isolability ratios to quantify diagnosis performance in stiff nonlinear systems. In

comparison with the derivative-based approach, global sensitivity approach increases the

computational complexity but generates more robust results for residual quantification.

We combined these measures with a residual selection algorithm to find a residual set

that meets pre-specified diagnostic criteria. When the system’s trajectory is available, our

algorithm divides this trajectory into regions, such that the set of residuals that have sensi-

tivity values above a pre-specified threshold remain the same in a region, but vary across the

different regions. The selection of a minimum number of residuals that meet the robustness

and sensitivity criteria over all the operating regions is formulated as a BILP optimization

problem. For the cases where the system’s trajectory is unknown, an efficient dynamic

residual selection algorithm is proposed. This algorithm removes residuals when their per-

formance drop below the threshold. They are then replaced by residuals that provide the

highest performance ratios in the current region. This guarantees the required performance

is maintained for any trajectory.

218



A second contribution of this thesis in the model-based diagnosis domain was develop-

ing two general approaches for distributed fault detection and isolation: 1) MSO-based, and

2) equation-based. The first method provides globally correct diagnosis results and guar-

antees that the subsystems share the minimum number of measurements, implying that we

minimize the communication of measurement streams across subsystems of the global sys-

tem. Moreover, it is straight forward to extend this approach to robust distributed diagnosis

by considering residuals robustness performance in the selection process. However, the

total number of MSOs is exponential in terms of the system measurements. This increases

the computational cost of the solution.

To avoid the computational complexities of dealing with a large number of MSOs, we

develop another distributed diagnosis method based on system equations in this chapter.

The second algorithm is computationally efficient. Moreover, it does not use the global

model in the design process of the supervisory system. This makes the algorithm suitable

for large, complex systems where global systems models are likely to be unavailable or un-

known. However, it does not guarantee the minimum communication among subsystems.

We compared the diagnosis performances and the computational costs of the proposed al-

gorithms. We then demonstrated through a case study the results obtained from each of the

proposed methods.

Our next contribution was developing model based methods for diagnosis of hybrid

systems. Our method uses analytic redundancy methods to detect the operating mode of

the system even in the presence of system faults. We defined hybrid minimal structurally

overdetermined (HMSO) sets for hybrid systems. For residual generation, we develop a

greedy search algorithm to select a minimal set of HMSOs that guarantee complete diag-

nosability in each operating mode. We then used standard methods to generate a resid-

ual from each selected HMSO. Our proposed structural approach does not require pre-

enumeration of all possible modes in the diagnoser design step. Therefore, our approach

is feasible for hybrid systems with large number of switching elements, implying that the
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system can have large number of operating modes. We demonstrated the effectiveness of

our approach through a case study.

In the area of data-driven diagnosis methods, we have developed anomaly detection

methods using unsupervised learning along with human expert input for analyzing teleme-

try data from long-duration robotic space missions. We have described the various steps

of the method from the data standardization, defining the objects, data re-sampling, feature

selection, feature reduction, applying a clustering algorithm, determining nominal and out-

lier processes, associating significant features with the outlier groups, to the consultation

with experts resulting in the identification and characterization of special modes of opera-

tion as well as anomalous behavior of the system. The case study showed that our proposed

approach can generate promising results for one-of space missions, where well-developed

models of the system and labeled historical data of previous missions are not available,

and, expert inputs can be used to understand and evaluate system operations, and detect

anomalies and outlier behaviors.

8.2 Future Work

In this thesis, we developed model-based approaches for robust FDI, distributed diag-

nosis, and mode detection and FDI in hybrid systems. We also developed a data-driven

unsupervised anomaly detection strategy for long-duration robotic space missions. The

model-based methods are computationally efficient. Moreover, it is easy to understand and

interpret the diagnosis results when we apply these approaches. However, for complex sys-

tems, it is expensive and sometimes infeasible to generate an accurate model for the entire

system. When reliable models are not available data-driven diagnosis methods can be used

as an alternative solution. However, in many cases, the available data-set does not represent

all the operating modes of a system. This could include normal and fault modes. Lack of

sufficient historical data makes accurate data-driven diagnosis challenging.
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When model and data are incomplete, a combined diagnosis approach that uses histor-

ical data and the available model equations in an unified framework can generate the best

diagnosis results. By combining model-based diagnosis and data-driven anomaly detection

methods, we may be able to detect and isolate faults that was not possible with pure model-

based or data-driven methods. Several researchers have combined model-based diagnosis

with data-driven approaches to achieve better diagnosis performances [171]. Howevere,

these combined solutions are typically limited to specific cases and, it is not straightfor-

ward to generalize the solutions. Moreover, they often assume complete model and com-

plete historical data are available. In future work, we will develop a general framework to

build crossover solutions that integrate techniques from data-driven and model-based com-

munities in a way that the combined solution operates with incomplete models and limited

historical data and generates more accurate results.
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