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PREFACE 

 

 

Prostate cancer is the second most common form of cancer in men. It is the 

second leading cause of death in American men. Despite these alarming figures and 

decades of research, a cure still eludes prostate cancer patients. The morbidity associated 

with advanced prostate cancer is due to the metastasis of the primary tumor primarily to 

the bone. Studies have shown that 80% of prostate cancer patients have clinical evidence 

of bone metastases. These metastases severely reduce the quality of life of the patient due 

to the associated morbidity due to bone fractures and eventually cause mortality. Factors 

that affect prostate cancer progression are poorly understood. Some of these factors are 

genes that are upregulated or downregulated during the progression of the disease. 

Identifying these factors could be key to the treatment of prostate cancer.    Hepsin, a cell 

surface protease, is widely reported to be overexpressed in more than 90% of human 

prostate tumors and also hepsin expression correlates with tumor progression, therefore 

assumes tremendous relevance in prostate cancer as a therapeutic target in the future. 

Recently, targeted expression of hepsin in the mouse prostate promoted tumor 

progression and metastasis when crossed with the 12-T7f mouse model of prostate 

cancer. Intriguingly, the hepsin transgenic mice displayed reduced Ln-332 expression in 

the prostate.  Despite this evidence that hepsin promotes prostate tumor progression, its 

physiological function remains largely uncharacterized. Matriptase is another gene that is 

over-expressed in prostate cancer patients. The expression of both, hepsin and matriptase 

positively correlates with the aggressiveness of human prostate tumors. Though both 

genes are known to be over-expressed in human prostate cancer, their mechanism of 
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action is still unknown. Both hepsin and matriptase fall within a category of genes known 

as proteases that have the potential ability to cleave or digest the extra cellular matrix 

(ECM) that immediately surrounds the tumor cells (called basement membrane) in a 

primary tumor and inhibits cells from escaping and eventually metastasizing. Tumor cells 

escape the primary tumor by interacting and digesting the basement membrane and travel 

through the blood stream to reach the bone environment.  

This study reveals the interaction between the ECM component Ln-332, which is 

lost in prostate cancer and two type II transmembrane serine proteases, hepsin and 

matriptase that are consistently over-expressed in human prostate cancer cases.  We have 

found in our study that hepsin and matriptase individually cleave or digest Laminin-332 

and this cleavage facilitates movement of human prostate cells in tissue culture. Further, 

we have found that there is degradation of Ln-332 in the prostate tumor tissue of the 

hepsin transgenic mice. Furthermore, hepsin or matriptase overexpressing LNCaP 

prostate cancer cells also exhibited increased migration on Ln-332. Additionally, 

matriptase over-expression causes increased persistence of LNCaP cells on Laminin-332. 

This cleavage of Ln-332 by hepsin and/or matriptase may play the critical mechanistic 

role for the metastatic spread of human prostate cancer from primary tumors. This study 

therefore assumes relevance towards finding future therapeutic targets that inhibit tumor 

growth and metastasis in human prostate cancer. 
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CHAPTER I 

 

INTRODUCTION 

 

Cancer 

 

According to the World Health Organization (WHO), one in eight deaths is due to 

cancer, and death from cancer will continue to rise worldwide with a projected 12 million 

deaths by 2030 (Thun, DeLancey et al. 2010). Cancer is a group of different diseases 

characterized by unrestrained proliferation of cells. The progression of cancer is marked 

by genetic alterations in oncogenes and tumor suppressor genes that facilitate 

development of the tumor. Most cancers develop in various steps and stages over a period 

of many years. Cancer cells have tendency to spread to distant sites (metastasis), one of 

the main causes of death in cancer patients. Cancer can be found in most types of tissue 

or organs, and is named for the organ or cell type of origin. Carcinomas, for example, are 

the most common type of cancers and are derived from epithelial cells. Cancer treatment 

includes radiation, chemotherapy, surgery, hormones and immunotherapy. As a general 

rule, cancers diagnosed before they metastasize have a better prognosis. Therefore, 

deciphering the biomolecular events leading to metastasis is critical to define new targets 

for cancer therapies.   
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Figure 1: Prostate cancer progression model. Prostate cancer progresses from normal 

epithelium to prostatic intraepithelial neoplasia (PIN) to invasive carcinoma and finally to 

metastasis. In each step there is increased proliferation of cancer cells. Invasive 

carcinoma is characterized by cells breaking off of the primary tumor. Proteases help in 

the processes of invasion by digesting basement membrane components. Prostate cancer 

metastasizes primarily to bone. 

 

 

Prostate Cancer 

The worldwide incidence of prostate cancer is 25.3 per 100,000 men, making it 

the second most common cancer in men (Nelen 2007). Prostate cancer is also the second 

leading cause of cancer death in men in the USA with an estimated 217,730 new cases  

in the USA in 2010, 70% of which are in men above the age of 80 (Jemal, Siegel et al. 

2010). 

Prostate cancer progression is pathologically defined as a four-step process: 

dysplasia, high grade prostatic intraepithelial neoplasia (HGPIN), locally invasive 

carcinoma, systemic disease or metastases.  Prostate cancer primarily metastasizes to the 

Prostatic Intraepithelial 

Neoplasia (PIN) 
Normal Prostate Invasive Carcinoma 
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lung, liver and bone (Pinthus, Pacik et al. 2007; Witte 2009). Metastasis dramatically 

increases this disease’s morbidity and mortality (Chambers, Groom et al. 2002; Mundy 

2002; Kalluri 2003; Sherwood 2006)  (Figure 1).     

The two main methods for prostate cancer screening are digital rectal examination 

(DRE) and prostate-specific antigen (PSA) levels  (Pinthus, Pacik et al. 2007). In the 

1980s, the discovery and use of PSA as a marker of prostate cancer revolutionized the 

diagnosis of the disease (Kuriyama, Wang et al. 1980; Papsidero, Wang et al. 1980; 

Brawer, Chetner et al. 1992). Although prostate cancer has a poor prognosis if diagnosed 

at late stages, the use of PSA as a diagnostic marker has allowed for detecting the disease 

in its early stage, and thus has contributed to continuously decreasing death rate in 

patients. However, the specificity of PSA and PSA levels as markers of prostate cancer is 

being questioned (Stamey, Johnstone et al. 2002), initiating a search for new prostate 

cancer markers. 

 

Extracellular matrix and Cancer 

 About a decade ago, Hanahan and Weinberg defined cancer cells with six 

hallmarks: self-sufficiency in growth signals, insensitivity to growth-inhibitory (anti-

growth) signals, evasion of programmed cell death (apoptosis), limitless replicative 

potential, sustained angiogenesis, tissue invasion and metastasis (Hanahan and Weinberg 

2000). During the progression of human prostate cancer, these hallmarks correlate with 

various genetic and epigenetic changes, including the loss or downregulation of various 

tumor suppressor genes like Nkx3.1, PTEN, EPHB2,  pRb and KLF6 (Shaw, Rabinovitz 

et al. 1997; Wang, Parsons et al. 1998; Narla, Heath et al. 2001; Vasioukhin 2004) and 
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upregulation or overexpression of genes like, MYC, BCL2 and AR (Jenkins, Qian et al. 

1997; MacGrogan and Bookstein 1997; Vasioukhin 2004; Turner and Watson 2008).  

As in most of cancer research, the focus in prostate cancer has been on the tumor 

itself but, during the last few years, the nonmalignant tumor microenvironment is being 

increasingly recognized for its active contribution to the disease progression (Albini and 

Sporn 2007). The tumor microenvironment broadly consists of the cellular component 

(endothelial cells, myoepithelial cells, pericytes and inflammatory cells) and the 

noncellular components (growth factors, proteolytic enzymes and extracellular matrix 

[ECM] macromolecules) (Tlsty and Coussens 2006), which create a favorable 

environment for the cancer cells. In the tumor microenvironment, various ECM 

components get processed and remodeled by proteases, which in turn affects cancer cell 

behavior in terms of adhesion, migration, proliferation, survival and differentiation 

(Cudic and Fields 2009).   

 

Basement Membrane 

 In the 1980s, scientists realized that ECM was not just an inert scaffold, but 

initiated key signaling events crucial for normal cell functions (Kenny, Lee et al. 2007). 

ECM has since been involved in cell differentiation, proliferation, survival, polarity and 

migration (Liu, Wu et al. 1995; Kenny, Lee et al. 2007). Epithelial cells secrete a 

specialized ECM: the basement membrane (BM). Although the basement membrane is 

comprised of more than 50 distinct macromolecules, the major constituents are: type IV 

collagen, laminins, nidogen/entactin and proteoglycans, such as perlecan, agrin and 

bamacan (Schittny and Yurchenco 1990; Yurchenco and Schittny 1990). Most of these 
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proteins have a large molecular weight and have multiple functional domains. Laminins 

and type IV collagen are the only BM constituents that are able to self-assemble into 

polymers (Miner and Yurchenco 2004; Yurchenco, Amenta et al. 2004).  Until recently, 

the consensus about BM organization was that type IV collagen was secreted first, and 

was acting as a scaffold on to which laminins get anchored. However, recent studies 

indicate that laminins form the initial template for BM assembly (Li, Liquari et al. 2005; 

McKee, Harrison et al. 2007). In addition to ECM macromolecules, many growth factors 

such as fibroblast growth factors (FGFs) and vascular endothelial growth factors 

(VEGFs) bind to ECM proteoglycans like heparin and heparin sulfate, directly linking 

ECM with cell growth (Hynes 2009). Further, many integrins—ECM receptors—are well 

known signal transduction receptors that modulate growth factor receptor downstream 

activity (Hynes 2009). Mutations or deletions of ECM and BM component genes can lead 

to serious tissue disorganization and potentially be lethal (Liu, Wu et al. 1995; Jobsis, 

Keizers et al. 1996; Liu, Wu et al. 1997; Bonaldo, Braghetta et al. 1998; Mayer, Kohfeldt 

et al. 1998; Smyth, Vatansever et al. 1998; Colognato, Winkelmann et al. 1999; 

Colognato and Yurchenco 1999; Buzza, Wang et al. 2001). 

  

Basement membrane and cancer 

In the field of cancer research, BM has conventionally been viewed as a 

protective barrier against cancer spread, since tumor cells have to remodel or degrade it 

in order to metastasize to secondary sites via blood or lymphatic circulation (Birkedal-

Hansen 1995; Chambers, Groom et al. 2002; Sherwood 2006). However, it is now known 

that tumor cells use BM functions to their advantage to boost their own ability to  
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migrate, proliferate and invade (Hanahan and Weinberg 2000). For example, the 

remodeling of certain ECM molecules by proteolytic activity, may lead to increased 

tumor cell motility (Noel, Gilles et al. 1997; Giannelli, Quaranta et al. 2003; Schenk and 

Quaranta 2003; Woodward, Holen et al. 2007). It is now well established that tumor 

associated proteolytic enzymes play an important role in altering the BM to make it 

permissive to tumor cells. Such BM remodeling, mainly accomplished by matrix 

metalloproteinases (MMPs) and TTSPs (Type II transmembrane serine proteases) 

(Kalluri 2003; Lopez-Otin and Matrisian 2007), has been repeatedly linked to cell 

migration, a critical step of invasion and metastasis (Noel, Gilles et al. 1997; Hintermann 

and Quaranta 2004; Woodward, Holen et al. 2007).  

 

Proteases and cancer 

Proteases are enzymes that cleave proteins by hydrolysis of peptide bonds.  They 

are classified into five protease families; metalloproteinases, serine proteases, threonine 

proteases, cysteine proteases and aspartic acid proteases, and they account for more than 

2% of the total genes in the human genome (Puente, Sanchez et al. 2003; Lopez-Otin and 

Matrisian 2007; Lopez-Otin and Bond 2008; Lopez-Otin and Hunter 2010). Under 

normal physiological conditions, the activity of proteases is tightly controlled: they are 

produced as inactive zymogens that need to be activated. Proteases are associated with a 

wide variety of pathological conditions, such as cancer progression. Proteases facilitate 

tumor development by suppressing cell death, activating cell survival, promoting 

inflammation, initiating angiogenesis and stimulating tumor cell migration and invasion.  

Their proteolytic activity regulates the activities of growth factors, signaling receptors 
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and the composition of the ECM. Therefore, proteases have been considered as potential 

targets for cancer therapies (Lopez-Otin and Matrisian 2007). 

 Intracellular proteases are associated with degrading endocytosed proteins. Their 

tumor suppressor roles occur via activation of autophagy (Teitz, Wei et al. 2000; Marino, 

Salvador-Montoliu et al. 2007), induction of apoptosis (Maisonnave 1965; Mandruzzato, 

Brasseur et al. 1997; Teitz, Wei et al. 2000; Harada, Toyooka et al. 2002; Soung, Lee et 

al. 2003; Soung, Lee et al. 2004; Stupack, Teitz et al. 2006), negative regulation of NFƙB 

pathway (Bignell, Warren et al. 2000; Massoumi, Chmielarska et al. 2006; Masuya, 

Huang et al. 2006; Hellerbrand, Bumes et al. 2007), stabilization of p53 (Masuya, Huang 

et al. 2006) and inhibition of proliferation (Reinheckel, Hagemann et al. 2005; 

Wahlstrom, Cutts et al. 2007). In contrast, extracellular proteases are commonly 

associated with tumorigenesis, as they are often overexpressed in cancer (Egeblad and 

Werb 2002). But the failures of clinical trials using small-molecule MMP inhibitors to 

treat cancer implied a more complex role for these proteases in cancer progression, with 

fewer MMPs having possible anti-tumor roles (Coussens, Fingleton et al. 2002; Overall 

and Kleifeld 2006).    

 

Serine Proteases 

With a total of 176 identified members in humans, serine proteases are the largest 

family of proteases (Lopez-Otin and Matrisian 2007). All serine proteases have a serine 

residue at their active site, which is part of a catalytic triad serine-histidine-aspartic acid. 

They play important roles in various physiological processes, such as digestion, blood 
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coagulation, regulation of blood pressure, pathogen host interaction and wound healing 

(Netzel-Arnett, Hooper et al. 2003). 

 

Type II Transmembrane Serine Protease 

Type II Transmembrane Serine Proteases (TTSPs) are S1-class serine proteases with N-

terminal transmembrane domain, a C-terminal extracellular serine protease domain of the 

chymotrypsin (S1) fold and highly variable stem region (Hooper, Bui et al. 2001; Netzel-

Arnett, Hooper et al. 2003; Szabo, Wu et al. 2003). The extracellular C-terminal has the 

catalytic activity of the enzyme, while the cytoplasmic tail at its N-terminal interacts with 

cytoskeletal and signaling molecules. The enzymatic activity of these TTSPs is dependent 

on the presence of three catalytic residues—histidine, aspartate and serine (HDS)—in its 

proteolytic domain. These TTSPs are synthesized as single chain zymogens and are 

activated by cleavage after a Arg or Lys residue at the activation motif (Vu, Liu et al. 

1997; Afar, Vivanco et al. 2001; Szabo, Wu et al. 2003). Unlike secreted serine proteases, 

TTSPs have a transmembrane domain therefore they are localized at the cell surface, 

making them ideal candidates for mediating signal transduction between the cell and its 

environment. TTSPs play an important role in normal development and they are 

overexpressed in cancer. Currently, 17 TTSPs are known in human, divided into four 

subfamilies based on the phylogenetic analysis of their serine protease domains and the 

domain structure of the stem region: HAT/DESC subfamily, 

hepsin/TMPRSS/enteropeptidase subfamily, matriptase subfamily and corin subfamily 

(Szabo, Wu et al. 2003)  (Figure 2).     
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Figure 2:  Summary of the human type II transmembrane serine protease family. The 

subdivision is based on the predicted domain structures. (Bugge, Antalis et al. 2009).  
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TTSPs in Cancer 

In recent years, numerous studies have investigated the roles of TTSPs in various 

cancer types: TTSPs have been linked to tumor progression through the regulation of cell 

proliferation, migration, invasion and metastasis (Szabo and Bugge 2008; Choi, Bertram 

et al. 2009).  Several TTSPs, such as TMPRSS2, corin, hepsin, enteropeptidase, 

matriptase, YMPRSS3, TMPRSS4, matriptase-2, and differentially expressed in 

squamous cell carcinoma gene 1(DESC1), are deregulated in cancer (Netzel-Arnett, 

Hooper et al. 2003; Szabo and Bugge 2008). For example, TMPRSS2 is overexpressed in 

androgen-dependent prostate cancer (Lin, Ferguson et al. 1999; Vaarala, Porvari et al. 

2001). It is also altered via chromosomal rearrangement where TMPRSS2 fuses with 

transcription factors of ETS family, ERG, ETV1, or ETV4 (Tomlins, Rhodes et al. 2005; 

Soller, Isaksson et al. 2006; Tomlins, Mehra et al. 2006). Enteropeptidase expression is 

elevated in pancreatic cancer (Rinderknecht, Renner et al. 1978). TMPRSS3 is 

overexpressed in ovarian, pancreatic and breast cancers (Iacobuzio-Donahue, Ashfaq et 

al. 2003; Iacobuzio-Donahue and Hruban 2003; Iacobuzio-Donahue, Maitra et al. 2003; 

Sawasaki, Shigemasa et al. 2004; Carlsson, Petersson et al. 2005), whereas TMPRSS4 is 

overexpressed in pancreatic, gastric and colorectal tumors (Wallrapp, Hahnel et al. 2000). 

Interestingly, in contrast to most of the TTSPs, DESC1 is either reduced or lost in 

squamous cell carcinoma of head and neck (Lang and Schuller 2001; Aimes, Zijlstra et 

al. 2003). We discuss in detail two of these TTSPs, hepsin and matriptase, since they are 

subject to this work. 
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Hepsin 

Hepsin is a member of the TTSP family. It is highly expressed in hepatocytes, and 

also expressed in thyroid, thymus, lung, pancreas, pituitary gland, prostate and kidney 

(Tsuji, Torres-Rosado et al. 1991; Tsuji, Torres-Rosado et al. 1991; Aimes, Zijlstra et al. 

2003). The physiological function of hepsin remains unclear (Wu and Parry 2007), but in 

vitro studies have identified blood coagulation factors as substrates of hepsin (Kazama, 

Hamamoto et al. 1995). Pro-hepatocyte growth factor and pro-urokinase-type 

plasminogen activator are also substrates for hepsin (Kirchhofer, Peek et al. 2005; Moran, 

Li et al. 2006). Intracellular downstream targets of hepsin remain unknown. Hepsin is not 

essential for development: hepsin-deficient mice are viable, fertile and have no reported 

developmental defects (Wu, Yu et al. 1998; Yu, Chen et al. 2000; Wu and Parry 2007). 

However, hepsin is required for normal auditory function (Guipponi, Tan et al. 2007). 

 Level of hepsin expression varies with the tumor type (Table 1). Hepsin is 

reported to be over expressed in ovarian cancer (Tanimoto, Yan et al. 1997; Bignotti, 

Tassi et al. 2007). In the case of breast cancer hepsin expression seems to be dependent 

on tumor type; estrogen-receptor alpha (ERα)-positive breast tumors had upregulation of 

hepsin as compared with ERα-negative breast tumors (Tozlu, Girault et al. 2006). 

Elucidating the role of hepsin in prostate cancer is of great interest because it is 

overexpressed in more than 90% of human prostate cancer. Its expression even correlates 

with the progression of the disease (Dhanasekaran, Barrette et al. 2001; Luo, Duggan et 

al. 2001; Magee, Araki et al. 2001; Stamey, Warrington et al. 2001; Stephan, Yousef et 

al. 2004; Riddick, Shukla et al. 2005; Xuan, Schneider et al. 2006). Moreover, a study 

searching for genetic factors involved in prostate cancer susceptibility in men of 
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European origin identified many single nucleotide polymorphisms (SNPs) in the hepsin 

gene that were associated with increased risk for the disease, (Pal, Xi et al. 2006).  

  Recently, a prostate cancer mouse model demonstrated that hepsin overexpression 

causes disorganization of the BM and promotes prostate cancer progression and 

metastasis (Klezovitch, Chevillet et al. 2004). The mechanism involved in this 

disorganization of the BM was not revealed, however the authors did report that prostate 

tissues from hepsin-overexpressing mice exhibited weaker immunohistochemical staining 

of basement membrane components like Laminin-332 (Ln-332) compared to wild-type 

mice. The transgenic mice used in that study had an overexpression of hepsin in the 

prostatic epithelial cells, by using the prostate specific probasin promoter (PB). These 

mice display a disorganized BM caused by a weakened epithelial-stromal adhesion, 

despite normal differentiation, proliferation and apoptosis. Further, it was shown that the 

areas of disorganized BM correlated with the area of higher hepsin expression 

(Klezovitch, Chevillet et al. 2004). This corresponds to a weakening or sometimes absent 

Ln-332 staining in the PB-hepsin mice. Similarly, type IV collagen staining showed 

disorganized and diffused localization of the protein in the PB-hepsin mice as compared 

to the wild type control. Integrin α6β4, an important Ln-332 receptor that is associated 

with formation of hemidesmosomes (specialized cell adhesion structure linked to 

intermediate filaments that connect epithelial cells to the ECM), is also decreased in 

human prostate cancer (Murant, Handley et al. 1997; Bonkhoff 1998; Davis, Cress et al. 

2001). Immunofluorescent staining of α6β4 integrin demonstrated perturbations of 

hemidesmosomes in the PB-hepsin mice (Klezovitch, Chevillet et al. 2004). Taken 

together, the staining for markers of the BM and adhesion structures of cell-substratum 
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suggests that the BM structure is compromised in the hepsin overexpressing transgenic 

mice.  

Interestingly, the hepsin overexpressing mice did not show any other major 

abnormalities of the prostate, therefore a bigenic mouse was created by crossing the PB-

hepsin mice with another mouse model of prostate cancer, the LPB-Tag 12T-7f (Lady 

transgenic model). The LPB-Tag 12T-7f mouse was made by expressing SV40 large T 

antigen (Tag) under the control of PB promoter (Kasper, Sheppard et al. 1998; Masumori, 

Thomas et al. 2001). While the LPB-Tag 12T-7f mice develop HGPIN and 

adenocarcinoma, but no metastasis, the PB-hepsin/LPB-Tag 12T-7f bigenic mice show 

metastases in the liver, lung and bones, along with a lower prostate expression of type IV 

collagen and β4 integrin (Klezovitch, Chevillet et al. 2004). The decreased staining of 

Ln-332 following hepsin overexpression led us to hypothesize that Ln-332 is processed 

by hepsin, which may be a step in the progression of prostate cancer. 

In a very recent study, another group has shown that hepsin cooperates with myc in the 

progression of adenocarcinoma in a prostate cancer mouse model (Nandana, Ellwood-

Yen et al. 2010). These investigators crossed the PB-hepsin mice with the myc mice 

(Ellwood-Yen, Graeber et al. 2003), another model of prostate cancer. Myc mouse (Hi-

Myc mouse) was generated using a probasin promoter (ARR2PB) to target high levels of 

the human c-myc gene to the mouse prostate. These mice develop androgen dependent 

invasive adenocarcinoma in the prostate by 6 months of age. This breeding program to 

increase the low endogenous levels of hepsin found in the myc transgenic mice.  

Interestingly, the hepsin/myc bigenic mice display accelerated tumor progression and 

develop adenocarcinoma of higher grade as compared with the c-myc transgenic mice. 
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Taken together, these observations indicate that hepsin deserves to be investigated in 

more depth as to its effect on prostate cancer progression.  

 

 

Table 1: Expression of TTSPs, Hepsin and Matriptase in human tumors (modified from 

(Bugge, Antalis et al. 2009). 

 

Protease  Cancer type Changes in gene expression  

Hepsin Prostate Significant overexpression, high levels correlate with 

Gleason score 

 Ovarian Significant overexpression in tumors compared to 

normal tissue 

 Breast  Elevated expression in ERα-positive compared to 

ERα-negative breast tumors 

 Hepatocellular  Decreased expression, low expression correlates with 

shorter patient survival 

Matriptase Ovarian  5 to 18-fold overexpression compared to normal 

tissue 

 Breast  Elevated levels correlate with tumor stage  

 Prostate  Increased expression correlates with Gleason score 

 Cervical  Increased expression correlates with 

histopathological grade 

 Pleural 

mesothelioma 

More than 800-fold overexpression in malignant 

tumors compared to normal tissue 

 Lung  Expression in malignant but not normal adjacent 

tissue 

 Liver  Elevated expression in tumors compared to normal 

tissue 

 Kidney  Elevated expression in tumors compared to normal 

tissue 

 Pancreatic  Overexpression in hypoxic areas of the tumor 

 Gastric  Downregulation of expression 

 Colorectal  Downregulation of expression but increased 

matriptase/HAI-1 ratio 
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Matriptase 

Matriptase, another member of TTSP, is expressed in the epithelial compartment 

of many embryonic and adult tissues: gastrointestinal tract, hair follicles, kidney, 

epidermis, trachea, thymus, urinary bladder, prostate, seminal vesicle, epididymus, uterus 

and oviduct (Takeuchi, Shuman et al. 1999; Indyk, Chen et al. 2003; Johnson, Oberst et 

al. 2003; Oberst, Singh et al. 2003; Oberst, Williams et al. 2003; List, Bugge et al. 2006; 

Netzel-Arnett, Currie et al. 2006; Bugge, List et al. 2007; List, Currie et al. 2007; Szabo, 

Molinolo et al. 2007). Recently, matriptase was reported to be expressed in monocytes 

and macrophages (Kilpatrick, Harris et al. 2006; Bhatt, Welm et al. 2007). Matriptase-

deficient mice die shortly after birth due to a severely impaired water barrier function in 

the epidermis of the skin and oral epithelium (List, Haudenschild et al. 2002). The strong 

oncogenic potential of matriptase has been firmly established most recently by a report of 

transgenic mice with overexpression of matriptase in the skin that leads to malignant 

transformation and potentiates chemical carcinogenesis (Oberst, Williams et al. 2003). 

 Matriptase regulates physiological and pathological functions by proteolytically 

processing or cleaving its substrates (Uhland 2006; Bugge, List et al. 2007; Darragh, 

Bhatt et al. 2008; List, Kosa et al. 2009).  A few studies have demonstrated that 

matriptase can cleave the pro forms of Hepatocyte growth factor (HGF), macrophage-

stimulating protein1 (MSP-1), urokinase-type plasminogen activator, prostasin zymogen, 

Trask (transmembrane and associated with src kinases) and protease-activated receptor-2 

(Lee, Dickson et al. 2000; Takeuchi, Harris et al. 2000; Bhatt, Erdjument-Bromage et al. 

2005; Netzel-Arnett, Currie et al. 2006; Bhatt, Welm et al. 2007; Seitz, Hess et al. 2007; 

Darragh, Bhatt et al. 2008).  
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 Matriptase is overexpressed in several carcinomas (Table 1), and has recently 

been recognized as a potential marker for prostate cancer progression (Saleem, Adhami et 

al. 2006) by many studies showing that its expression is significantly increased in 

prostate tumor samples compared to normal tissue and correlates with disease 

progression (Riddick, Shukla et al. 2005; Saleem, Adhami et al. 2006; Warren, Twohig et 

al. 2009). In addition, Forbs et al. reported that inhibition of matriptase in prostate cancer 

cells by siRNA reduces invasive growth potential in vitro (Forbs, Thiel et al. 2005). This 

group also reported a similar effect using a synthetic matriptase inhibitor. Another recent 

study found that a small molecule inhibitor of matriptase reduced growth of tumors in 

prostate cancer xenograft models (Galkin, Mullen et al. 2004). These authors also showed 

that the inhibition of tumor growth was through the attenuation of cancer cell invasion, 

rather than cell proliferation. A similar study showed reduction of cell migration and 

invasion using both in vitro and in vivo xenograft models by inhibiting matriptase by 

siRNA (Sanders, Parr et al. 2006). Matriptase is inhibited by the Kunitz domain (KD) of 

hepatocyte growth factor (HGF) activator inhibitor-1 (HAI-1), which is a Kunitz-type 

transmembrane serine protease inhibitor (Lin, Anders et al. 1999; Lin, Anders et al. 1999; 

Kirchhofer, Peek et al. 2003; Cao and Ye 2005; List, Szabo et al. 2005; Shia, Stamos et 

al. 2005; Zeng, Cao et al. 2005; Fan, Brennan et al. 2007; Szabo, Molinolo et al. 2007). 

Using this inhibitor, it has been shown that inhibition of HAI-1 expression in prostate 

cancer cells results in increased cell invasion and migration in vitro (Sanders, Parr et al. 

2007).  
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 In summary, identification of critical substrates for hepsin and matriptase is an 

important approach for targeting these proteases therapeutically for the treatment of 

prostate cancer. This was a key motivation for our study. 

 

Laminins  

 Laminins are high-molecular weight, heterotrimeric glycoproteins and are an 

essential component of all BM (Marinkovich 2007). The trimers are composed of one α, 

one β and one γ chain held together by disulphide bonds, forming a cruciform structure 

when viewed by rotary shadowing electron microscopy (Martin and Timpl 1987). To date 

five α, four β and three γ chains have been identified, forming at least 15 members of a 

laminin family.  (Aumailley, Bruckner-Tuderman et al. 2005). The molecular weight of 

Laminins ranges from 0.5 million to one million Daltons. Epithelial cells use laminins as 

ligands to adhere, spread and migrate (McGowan and Marinkovich 2000). Laminin 

functions also depend on the tissue distribution. For example, laminin-111 is an 

embryonic isoform that is essential at the blastocyst stage (Li, Harrison et al. 2002). 

Laminins-511 and -521 are located in the epithelial BM, and are the most abundant 

laminins (Zhang 1996; Ekblom 1998; Kikkawa 1998).  Mutation of laminin-211 causes 

congenital muscular dystrophy (Zhang 1996; Allamand 1997). Deficiency in laminin-411 

causes developmental defects in the peripheral nervous system (Iivanainen 1995). 

Therefore, Laminins are essential players for many important biological processes 

including tissue development, wound healing and tumorigenesis (Figure 3) (Miner and 

Yurchenco 2004; Marinkovich 2007).   
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Receptors for Laminins 

Laminins have two types of cell-surface receptors: integrins and non-integrins. 

Integrins are a large family of heterodimeric glycoproteins formed by non-covalent 

association of two transmembrane subunits: α and β. Out of 18 α and 8 β subunits 

discovered, 24 distinct integrin heterodimers are known. The extracellular domain of 

integrins binds to the ECM, and the cytoplasmic domain binds to the actin cytoskeleton 

and affiliated proteins, such as vinculin, talin, and -actin  (Chrzanowska-Wodnicka and 

Burridge 1996; Hannigan, Leung-Hagesteijn et al. 1996).  Integrins integrate the 

intracellular and extracellular environment via bidirectional signaling. ―Outside-in‖ 

signaling occurs when ligand binds to integrins and activates intracellular pathways (the 

signal received by the integrin comes from outside of the cell) and ―inside-out‖ signaling 

occurs when intracellular signaling pathways activate the extracellular domain of 

integrins by acting on their cytoplasmic domain (in this case, the signal received by the 

integrin comes from inside of the cell) (Hynes 2002; Hynes 2002; Hynes, Lively et al. 

2002). Integrin activation involves two processes: 1) conformational change of the 

integrin to a high affinity state, and 2) clustering of integrins at the cell-matrix interaction 

site (Lee, Bankston et al. 1995; Schwartz, Schaller et al. 1995; Parsons 1996; Takagi, 

Erickson et al. 2001). Integrins regulate cell adhesion, spreading and migration via their 

interaction with ECM ligands (Carman and Springer 2003). An important motif for 

integrin-ligand interactions is the RGD (Arg-Gly-Asp) motif: a cell attachment site that is 

recognized by nearly half of the members of integrin family. Short peptides containing 

RGD motif have been shown to bind integrins and have been used as integrin activity 

blockers. Interestingly, such peptides are able to influence tumor growth, invasion and  
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Figure 3: Laminins and Cancer Progression. Laminins involved in four main cell 

processes of cancer progression; proliferation, death, angiogenesis and invasion. Jourquin 

et al (chapter from book Laminins and cancer progression‖ in ―Cell- Extracellular Matrix 

Interactions and Cancer.‖ Zent R and Pozzi A (editors), Springer-Verlag New York 

(Publisher) 2009. 
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metastasis, and are used in the design of drugs for the treatment of diseases like 

thrombosis, osteoporosis and cancer (Pierschbacher, Hayman et al. 1981; Brooks 1994; 

Brooks, Clark et al. 1994; Pierschbacher 1994; Ruoslahti 1996; Ruoslahti 1996).

 Integrins 31 and 64 are the main receptors for laminin-332 (Carter, Ryan et 

al. 1991; Delwel, de Melker et al. 1994; Niessen, Hogervorst et al. 1994). Integrin 31 

links laminin-332 to the intracellular actin cytoskeleton and integrin 64 links laminin-

332 to the intracellular intermediate filaments (Carter, Ryan et al. 1991; Georges-

Labouesse, Messaddeq et al. 1996).  In resting epithelia, like skin, gut, breast and prostate, 

integrin 64 is the main integrin engaged with unprocessed laminin-332, leading to the 

formation of hemidesmosomes (Baker, Hopkinson et al. 1996). Hemidesmosomes 

mediate the adhesion of epithelial cells to the underlying basement membrane and link 

the cytoskeleton to the ECM (Borradori and Sonnenberg 1996). Interestingly, in the 

resting epithelia, 31 is mostly present at the lateral cell-cell adhesion sites (Carter, 

Ryan et al. 1991; Bartolazzi, Kaczmarek et al. 1993; Baker, DiPasquale et al. 1996; 

Baker, Hopkinson et al. 1996), but is redistributed to the basal cell surface during wound 

healing, when it promotes adhesion, spreading and migration of keratinocytes (Borradori 

and Sonnenberg 1996; Goldfinger, Hopkinson et al. 1999). As a confluent layer gets 

reconstituted, integrin 31 disappears from the basal surface and gets replaced by 

integrin 64 which forms hemidesmosomes, leading to a stronger cell-BM adhesion 

(Jones, Kurpakus et al. 1991; Ryan, Christiano et al. 1996). 

Laminins are also known to bind to proteoglycans. For example, dystroglycan, 

highly expressed in muscle tissue, is a receptor for laminin-211(Ervasti, Ohlendieck et al. 

1990; Campbell 1995; Henry and Campbell 1998; Henry, Williamson et al. 1998). 
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Dystroglycan interacts with LG45 module (LG modules are globular domains present at 

the C-terminus of alpha chains of Laminins) (Campbell 1995). This interaction between 

laminin-211 and α-dystroglycan is critical for the muscle sarcolemma, which is the cell 

membrane of muscle cells and alterations in it can cause muscular dystropy (Ervasti and 

Campbell 1991; Ervasti, Kahl et al. 1991; Ohlendieck, Ervasti et al. 1991; Ohlendieck, 

Ervasti et al. 1991). Syndecan-4, another proteoglycan, binds to LG4 module of laminin-

332 (Utani, Nomizu et al. 2001).  

 

Laminin-332 

 One essential component of BM is laminin-332 (ln-332: previously known as 

laminin-5, kalinin, nicein, ladsin and epiligrin (Aumailley, Bruckner-Tuderman et al. 

2005), which plays an important role in epithelial homeostasis, remodeling, wound 

healing and tumorigenesis (Ryan, Christiano et al. 1996). Ln-332, just like other 

laminins, is a large, multi-domain glycoprotein consisting of α3, β3 and γ2 disulfide-

bonded subunits (Figure 4).  It has a cross-shaped structure, with its long arm consisting 

of domains I and II of the three subunits wound in a coiled-coil and holding the molecule 

together (Marinkovich 2007). At its C-terminus, the 3 chain has 5 large globular (LG) 

domains that interact with various cell surface receptors, including 31, 64 and 

heparin proteoglycan syndecans, which leads to the establishment of cell adhesion and 

migration phenotype (Hintermann and Quaranta 2004; Marinkovich 2007). Through its 

N-terminus, the 3 chain of Ln-332 interacts with other ECM molecules like laminin-

321, laminin-411 and type VII collagen. These interactions affect BM assembly and cell-

survival signaling (Hintermann and Quaranta 2004; Marinkovich 2007). The 2 chain 
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contains epidermal growth factor (EGF)-like domains III-V (Marinkovich 2007) and 

interacts with the epidermal growth factor receptor (EGFR), which also stimulates cell 

migration (Schenk, Hintermann et al. 2003; Hintermann and Quaranta 2004). Of note, 

several studies have shown that all three Ln-332 chains can be processed by different 

protease families (Hintermann and Quaranta 2004). Previous reports have suggested that 

these proteolytic events regulate cell motility of both normal and transformed cells which 

may have implications in cancer progression (Marinkovich 2007).   

The importance of Ln-332 in the BM assembly was established by the discovery 

of the occurrence of a lethal skin blistering disorder, junctional epidermolysis bullosa, 

which is due to mutation in any of the three chains of Ln-332 (Meneguzzi, Marinkovich 

et al. 1992). Ln-332 is a ligand for important epithelial integrin receptors, 31 and 64 

(Carter, Kaur et al. 1990; Carter, Ryan et al. 1991; Delwel, de Melker et al. 1994; 

DiPersio, Hodivala-Dilke et al. 1997; Fuchs, Dowling et al. 1997; De Arcangelis 1999; 

Belkin and Stepp 2000; DiPersio, van der Neut et al. 2000). Based on the integrin it is 

interacting with, Ln-332 promotes the formation of two different types of cell attachment 

structure: interaction with 31 leads to focal adhesion formation (promotes cell 

adhesion and migration of normal and malignant cells), and interaction with 64 leads 

to formation of  hemidesmosomes in vivo (Gil, Brown et al. 1994) (Carter, Kaur et al. 

1990; DiPersio, Hodivala-Dilke et al. 1997; De Arcangelis, Mark et al. 1999). 

Hemidesmosomes are formed with the interaction of Ln-332 with 64 and of 4 

integrin with type XVII collagen and plectin (Nievers, Schaapveld et al. 1999; Litjens, de 

Pereda et al. 2006). Interestingly, focal adhesions are short time adhesion structures that 
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are critical to epithelial cell migration, whereas hemidesmosomes are stronger adhesion 

structures that are much more resistant to mechanical stress. 

 

 

 

 

Figure 4: Ln-332 with its interaction partners. Ln-332 consists of three chains, α3, β3 and 

γ2, which associate through the carboxyl-terminal coiled coil long arm. The α3 chain 

comprises of globular structure composed of five homologous laminin G-like or LG 

repeats, that interact with integrins α3β1 and α6β4. The amino-terminal region interacts 

with CollagenVII, Ln-6 and Ln-7.  The γ2 chain is processed by MMPs including MT1-

MMP, liberating domains III–V, which contain EGF-Iike repeats. The collagen VII 

interacting domain VI of β3 chain gets cleaved by MMP7, MT1-MMP, hepsin and 

matriptase. 
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α3 chain of Ln-332 

 The α3 chain is directly involved in the interaction of Ln-332 with integrins. Our 

laboratory reported that LG3 and LG4 domains of α3 chain contain binding sites for 

integrin 31 (Shang, Koshikawa et al. 2001; Yamashita, Shang et al. 2010). α3 chain is 

also part of laminin-331 and laminin-321 heterotrimers. Of note, Ln-332 interacts with 

these two laminins.  Recently, it has been reported that LG4-5 domains of α3 chain are 

highly expressed in carcinoma (Tran, Rousselle et al. 2008), correlating with an increase 

tumor growth and invasion via activation of phosphoinositide 3-kinase (PI3K) and 

increase in MMP activity. 

 

β3 chain of Laminin-332 

 The non-collagenous domain of type VII collagen (NC1) binds to the β3 chain of 

Ln-332 (Rousselle, Keene et al. 1997). This interaction which occurs at the domain VI of 

β3 chain is necessary for the adhesion activity of Ln-332 (Nakashima, Kariya et al. 

2005). Very recently, this interaction has been reported to promote tumorigenesis in 

squamous cell carcinoma (Waterman, Sakai et al. 2007), through the activation of anti-

apoptotic and tumor invasion factors promoting PI3K pathways. 

 

γ2 chain of Laminin-332 

The γ2 chain is secreted and incorporated in the BM either as a part of the Ln-332 

heterotrimer or in a monomeric form (Gagnoux-Palacios, Allegra et al. 2001). The γ2 

chain of Ln-332 has been extensively studied when it comes to its role in cancer: its 

expression correlates with invasion, particularly at the leading edge of the invading 
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tumor. In hepatocellular cancer, γ2 chain expression is associated with the occurrence of 

metastasis (Giannelli, Quaranta et al. 2003). Patients with pancreatic ductal 

adenocarcinoma and liver metastases have elevated levels of γ2 fragment in their serum 

(Katayama, Funakoshi et al. 2005), making γ2 chain expression a potential marker for 

cancer prognosis. Our laboratory, recently published a report suggesting that decreased 

ratio of Ln-332 β3 to γ2 subunit mRNA is associated with poor prognosis in colon cancer 

(Guess, LaFleur et al. 2009). This finding raises the possibility that Ln-332 γ2 might be a 

therapeutic target against metastatic colon cancer. 

 

Ln-332 and cancer 

 The expression of Ln-332 is altered in various types of cancers (Katayama and 

Sekiguchi 2004; Guess and Quaranta 2009). Ln-332 is overexpressed in many tumor 

types, including: oesophageal, cutaneous, oral, laryngeal, colon, tracheal, and cervical 

cancers (Skyldberg, Salo et al. 1999; Lenander, Habermann et al. 2001; Marinkovich 

2007). In these tumors, Ln-332 is found to accumulate at the interface of the tumor and 

the surrounding stroma. Interestingly, Ln-332 expression is instead decreased or lost in 

prostate cancer (Davis, Cress et al. 2001; Hao, Jackson et al. 2001; Nagle 2004; Calaluce, 

Beck et al. 2006), basal cell carcinoma (Guess, LaFleur et al. 2009), lung(Guess, LaFleur 

et al. 2009), breast (Martin, Kwan et al. 1998) bladder cancers (Sathyanarayana, 

Maruyama et al. 2004) and prostate (Hao, Jackson et al. 2001; Nagle 2004). Studies of 

Ln-332 in mouse models of cancer have been carried out to determine the role of the Ln-

332 heterotrimer in tumor progression and in the underlying mechanism(s) (Figure 5). 

Ortiz-Urda et al. showed that Ln-332 acts as a tumor promoter in squamous cell 
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Table 2: Laminin-332 Proteolytic Processing. 

 

 

 

carcinoma of the epidermis, through the interaction of its β3 chain and type VII collagen 

(Ortiz-Urda, Garcia et al. 2005; Waterman, Sakai et al. 2007). This finding is in sharp 

contrast with the study by Yuen et al. that shows that Ln-332 is a tumor suppressor in 

tumors generated with the human head and neck cancer cell line, JUH-022 (Yuen, Ziober 

et al. 2005). The authors suggested that the increased cell motility induced by Ln-332 

suppression was responsible for increased tumorigenicity. Taken together, the role played 

Ln-332  

Chain 

Processing Protease Cellular Phenotype References 

α3 chain Plasmin Migration and 

Hemidesmosome 

assembly 

Lawrence E. Goldfinger 

 

β3 Chain MT1-MMP 

 

MMP7 

 

Hepsin 

 

Matriptase 

Migration 

 

Migration 

 

Migration 

 

Migration 

(Udayakumar, Chen et al. 

2003)  

Remy, Trespeuch et al. 2006) 

Tripathi 2008 

 

Tripathi 2010 

γ 2 Chain MMP2 and MT1-

MMP 

  

 

MMPs 3, 8, 12, 13, 

14, and 20 

 

cathepsin S 

 

mTLD,  

 

BMP-1  

 

neutrophil elastase  

Migration 

 

 

 

Migration 

 

 

Angiogenesis 

 

 

 

 

 

Migration 

(Giannelli, Falk-Marzillier et 

al. 1997; Koshikawa, Schenk 

et al. 2004) 

 (Pirila, Sharabi et al. 2003), 

 

 (Wang, Sun et al. 2006) 

 

 (Veitch, Nokelainen et al. 

2003) 

 Amano, Scott et al. 2000) 

 

 Mydel, Shipley et al. 2008) 
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by the Ln-332 in tumor progression is still being debated, and seems to be dependent on 

the type of cancer. 

 

Laminin-332 and migration 

 Ln-332 has been known as a motility inducing agent for normal and cancerous 

cells (Pyke, Romer et al. 1994; Giannelli, Falk-Marzillier et al. 1997; Plopper, Domanico 

et al. 1998; Koshikawa, Giannelli et al. 2000; Schenk, Hintermann et al. 2003; 

Hintermann and Quaranta 2004).  It has been shown that in the absence of Ln-332 during 

wound healing, keratinocytes migrate to the wound edge and attach to the wound bed 

through focal adhesions and β1 integrin, with activation of the GTPase Ras homolog 

gene family, member A or RhoA (Nguyen, Gil et al. 2000; Nguyen, Ren et al. 2001). 

After producing Ln-332, these keratinocytes switch their attachment to Ln-332 and the 

GTPase activation changes to Ras-related C3 botulinum toxin substrate 1 or Rac1 due to 

the interaction of Ln-332 with 64 integrin. Another study has shown that cells 

migrating on Ln-332 have downregulated RhoA and Rho-associated, coiled-coil 

containing protein kinase 1 or Rock1 (Zhou and Kramer 2005). Further, it has been 

shown that 31 integrin binds to Ln-332 if binding with 64 integrin is blocked, 

resulting in enhanced cell migration via RhoA activation. Therefore it appears that Ln-

332 promotes cell migration via two different mechanisms depending on its binding to 

alternate integrins and downstream signaling. It is interesting that RhoA and Rac1 

mediated keratinocyte migration have notable differences: RhoA-mediated migration is 

accompanied with decreased cell-cell contact, whereas Ras-related (C3 botulinum toxin 

substrate 2 (Rac2)-mediated) migration occurs as multi-cellular epidermal sheets 
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(Russell, Fincher et al. 2003). The Ln-332/64 integrin-induced migration with Rac1 

activation is directional whereas RhoA-mediated migration is non- directional (Pullar, 

Baier et al. 2006; Sehgal, DeBiase et al. 2006). 

 

Proteolytic processing of Laminin-332 

 Secretion of Ln-332 into the ECM is followed by its proteolytic processing 

(Figure 6 and Table 2): the α3 chain gets processed from 190-200 to 160kDa, the β3 

chain gets processed from 145 to 80kDa and the γ2 chain from 155 to 105kDa and further 

to 80kDa (Meneguzzi, Marinkovich et al. 1992; Giannelli, Falk-Marzillier et al. 1997; 

Udayakumar, Chen et al. 2003). Previously, our group has shown that Ln-332 γ2 chain is 

cleaved by MMP2 and MT1-MMP (Giannelli, Falk-Marzillier et al. 1997; Koshikawa, 

Schenk et al. 2004); others have shown that this chain is also cleaved by MMPs 3, 8, 12, 

13, 14, and 20 (Pirila, Ramamurthy et al. 2003; Pirila, Sharabi et al. 2003; Wang, Sun et 

al. 2006), cathepsin (Wang, Sun et al. 2006), mTLD (Veitch, Nokelainen et al. 2003), 

BMP-1 (Amano, Scott et al. 2000), and neutrophil elastase (Mydel, Shipley et al. 2008) 

(Table 2). Furthermore, processing of Ln-332 γ2 chain by these proteases regulates cell 

migration (Giannelli, Falk-Marzillier et al. 1997; Pirila, Sharabi et al. 2003; Mydel, 

Shipley et al. 2008). The β3 chain of Ln-332 was believed to be relatively resistant to 

proteolytic processing, until recently when studies have shown that Ln-332 3 chain is 

processed by MT1-MMP, which enhances prostate cancer cell migration compared to 

uncleaved Ln-332 (Udayakumar, Chen et al. 2003). Another study reported that Ln-332 

3 chain is a ligand for MMP7, which enhances cell motility of a colon carcinoma cell 

line (Remy, Trespeuch et al. 2006). It has also been reported that Ln-332 β3 chain is 
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Figure 5: Laminin-332 and the signaling pathways involved in cancer progression. These 

four diagrams represent the relationships between laminin-332 and cell proliferation (a), 

cell death (b), migration (c), and cancer invasion (d).  Solid lines denote activation, 

whereas dot lines represent inhibition. Modified from Jourquin et al (chapter from book 

Laminins and cancer progression‖ in ―Cell- Extracellular Matrix Interactions and 

Cancer.‖ Zent R and Pozzi A (editors), Springer-Verlag New York (Publisher) 2009. 
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Figure 6:  Proteolytic processing of Ln-332 chains and its effect on cellular motility. Full 

length Ln-332 interacts with integrin α3β1 and supports haptotaxis.  Serine protease 

cleavage releases LG4/5 from the α3 chain that might expose a cryptic site on LG1-3, 

which then binds with integrin α6β4. Binding to α6β4 leads to static adhesion structure 

formation, hemidesmosome. Further processing of γ2 releases domains that contain EGF-

like repeats, DIII, and DIV/V.  Domain DIII can bind and activate erbB1 leading to 

chemotaxis.  

 

 

cleaved at its N-terminus by endogenous proteases in human keratinocytes and other cell 

lines (Nakashima, Kariya et al. 2005); however, the specific proteases involved in this 

cleavage have not been identified.  Taken together, these studies establish that the 

proteolytic processing of Ln-332 occurs physiologically and can alter cellular functions 

such as adhesion and migration (Carter, Wayner et al. 1990; Belkin and Stepp 2000), 

both important in cancer progression. 
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Hypothesis Aims and Rationale for the Study 

Hypothesis 

Type II Transmembrane Serine Proteases proteolytically process Ln-332, 

facilitating basement membrane degradation and contributing to prostate cancer 

progression. 

Aim 1 

Determine the role of cleavage of Ln-332 by hepsin in prostate cancer progression. 

Aim 2 

Determine the role of cleavage of Ln-332 by matriptase in prostate cancer progression. 

 

Rationale 

 Ln-332 is lost in prostate cancer progression. Ln-332 facilitates migration of 

cancer cells when cleaved by various cell surface proteases, including MMPs. We 

have found that Ln-332 is individually cleaved by two serine proteases, hepsin and 

matriptase, and that this cleavage enhances migration of human prostate cancer 

cells in vitro. Hepsin is overexpressed in more than 90% prostate cancer cases. 

Similarly, matriptase is overexpressed in human prostate cancer cases and 

expression of both proteases correlates with tumor progression. However, the 

mechanisms by which these two serine proteases regulate prostate cancer 

progression are unknown. 
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CHAPTER II 

 

MATERIALS AND METHODS 

 

Cell culture 

Prostate cancer cell line DU145 (American Type Culture Collection, Manassas, 

VA) and 804G bladder squamous cell carcinoma cells  (previously described in Falk-

Marzillier et al. (Falk-Marzillier, Domanico et al. 1998)) were maintained in Dulbecco's 

modified Eagle's medium (DMEM; Life Technologies, Inc., Rockville, MD) 

supplemented with 10% fetal bovine serum (FBS; Gemini, Irvine, CA) and 1% 

glutamine/penicillin/streptomycin antibiotics  (g/p/s) (Life Technologies) in an incubator 

with  5% CO2 at 37°C.  

 

Generation of Hepsin or matriptase overexpressing LNCaP cells 

LNCaP-17 (low hepsin-expressing) and LNCaP-34 (hepsin-overexpressing) 

prostate cancer cells were created at Genentech, previously described by Moran et al. 

(Moran, Li et al. 2006). Briefly, a LNCaP clone expressing luciferase gene (LNCaP-luc) 

was used for hepsin transfection experiments.   Full-length hepsin cDNA was inserted 

into a mammalian expression vector containing the puromycin resistance gene for 

antibiotic selection (Genentech). The LNCaP-luc clone was transfected with full-length 

hepsin construct with a C-terminal FLAG tag, and the cells were selected with 0.5 μg/ml 

puromycin (Sigma-Aldrich).  Two clones, LNCaP-34, the high hepsin expressor and 

LNCaP-17, the low hepsin expressor were used in this study.   
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LNCaP (low matriptase expressing, LNCaP-wt) and matriptase-overexpressing 

LNCaP (LNCaP-mt) prostate cancer cells were also created at Genentech in the 

laboratory of Dr. Kirchhofer. The cDNA of full-length matriptase was inserted into a 

mammalian expression vector containing the puromycin resistance gene for antibiotic 

selection (Genentech). The LNCaP-luc clone (Moran, Li et al. 2006) was transfected with 

the construct encoding full-length matriptase with a C-terminal FLAG tag, and the cells 

were selected with 0.5 μg/ml puromycin (Sigma-Aldrich). The clones were analyzed by 

FACS for matriptase surface expression using an anti-FLAG monoclonal antibody 

(Sigma-Adrich). Two clones, the high matriptase expressor LNCaP-mt and the one low 

matriptase expressor LNCaP-wt, were selected for further experiments. 

 LNCaP-17, LNCaP-34, LNCaP-wt and LNCaP-mt cells were cultured in RPMI 

1640 medium supplemented with 10% FBS, 500 g/ml Geneticin (Invitrogen, Carlsbad, 

CA), 0.5 g/ml puromycin (Sigma, St. Louis, MO), and 1% g/p/s antibiotics and 

incubated with 5% CO2 at 37

C. 

 

Purification of rat Laminin-332 

Rat Ln-332 was purified from spent medium of 804G, bladder squamous cell 

carcinoma cells. Briefly, 804G cells were cultured in 10% FBS containing DMEM in 

150-mm dish. Cells were then washed with PBS twice and cultured in serum-free 

conditioned medium for 2 days in roller bottles. The serum- free conditioned medium 

was collected and concentrated by ammonium sulfate at 80% saturation and dialyzed 

against 20 mM Tris-HCl (pH 7.5)/0.5 M NaCl / 0.005% Brij-35 (TNB buffer). The 

concentrated serum- free conditioned medium was then used for immunoaffinity 
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chromatography. The Protein A-Sepharose column (0.8 X 4.0 cm; Bio-Rad Laboratories, 

Hercules, CA) chemically conjugated with non-functional Ln-332 mouse antibody, TR-1 

(Plopper, Falk-Marzillier et al. 1996) was equilibrated with TNB buffer at a flow rate of 

15 ml/h. The concentrated and dialyzed sample was applied to the TR1 column. The 

column was then washed with TNB and absorbed Ln-332 was eluted with 10 ml of 

0.05% trifluoroacetic acid (TFA), pH 2.5. The eluted fractions were neutralized by 300 µl 

of 1 M Tris-HCl, pH 8.0, and then 1% CHAPS was added to each fraction.  

 

Recombinant Proteins 

The proteases, hepsin and matriptase and the inhibitor KD1 used in this work was 

provided by Dr. Daniel Kirchhofer at Genentech. The construction, expression, and 

purification of recombinant hepsin is described in detail in the original publication by 

Moran et al (Moran, Li et al. 2006). Briefly, a secreted His-tagged hepsin cDNA was 

made by fusion of cDNA coding for the signal sequence of honeybee melittin with cDNA 

coding for the extracellular domain of human hepsin. This cDNA construct was inserted 

in a baculovirus expression vector under the control of a polyhedrin promoter and was 

expressed in T.in.Pro cells. Hepsin was purified by nickel-nitrilotriacetic acid affinity 

chromatography.  

The cloning, expression, and purification of matriptase protease domain is also  

described in Moran et al (Moran, Li et al. 2006). Briefly, full-length clone of matriptase 

was obtained by PCR from human cDNA libraries. The nucleotide sequence encoding the 

mature protease domain was cloned by PCR from the full-length clone into plasmid 

pSTII.TIR3 variant 4 (Simmons and Yansura 1996). The plasmid contained a phoA 
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promoter, the stII signal sequence, and the λto transcriptional terminator. The matriptase 

protease domain was produced in E. coli and purified using Ni-NTA metal chelate 

column. The matriptase protease domain was analyzed by N-terminal sequencing and 

mass spectrometry.  

Production and purification of KD1 is described in Shia et al (Shia, Stamos et al. 

2005). Briefly, the first Kunitz domain of human HAI-1B was expressed in the 

Escherichia coli using the plasmid pKD1. This pBR322-based construct has phoA 

promoter for transcription and trp ribosome-binding site for translation initiation. The 

poly-histidine leader sequence was used before the coding sequence for the Kunitz 

domain for purification. The KD1 protein was purified on a Ni-NTA metal chelate 

column. 

 

Cleavage of Laminin-332 

  The cleavage of rat Ln-332 was studied with human recombinant hepsin 

consisting of the entire extracellular domain and the human recombinant protease domain 

of matriptase (Moran, Li et al. 2006). To study the cleavage of Ln-332 by hepsin and 

matriptase, purified rat Ln-332 (0.2 M) was incubated with either the recombinant 

protease domain of hepsin (at both 0.13 and 1.3 M), or the human recombinant protease 

domain of matriptase (0.6, 2 and 6 M) and reaction buffer containing 250 mM NaCl and 

50 mM Tris (pH 7.5) for 1.5 hours (for hepsin) or 2 hours (for matriptase) at 37°C. For 

the time course experiment, Ln-332 (0.8 M) was incubated with either hepsin (5.2 M) 

or matriptase (24µM) and reaction buffer containing 250 mM NaCl and 50 mM Tris pH 

7.5 for 0, 2, and 6 h (for hepsin) or 0, 3, 6 and 12 hours (for matriptase) at 37°C. After 
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incubation, hepsin and Ln-332  or matriptase and Ln-332 reaction mixtures were 

electrophoresed on 4%-12% precasted sodium dodecyl sulfate polyacrylamide gel 

electrophoresis (SDS-PAGE) gradient gel under reducing/non-reducing (as indicated) 

conditions and then stained with SimplyBlue™ Safe Coomassie Blue stain (Invitrogen). 

A standard marker (identified as M in figures; Precision Plus™ protein dual color 

standard; BioRad, Hercules, CA) was also run for comparison. 

 Western blot analysis was performed after transferring the untreated and treated 

protein on a PVDF membrane (Perkin Elmer, Waltham, MA), from reducing gel. 

Polyclonal antibody (pAb; 1:500) against the C- terminus of Ln-332 β3 chain (sc-20775; 

H-300; Santa Cruz Biotechnology, Inc.), and secondary anti-rabbit IgG HRP mAb 

(1:5000; GE Healthcare, UK), were used for western blot. Protein bands were visualized 

with the ECL plus system (Perkin Elmer). ImageJ was used for quantification of bands in 

the scanned western blot film. Briefly, in the ―Analyze‖ function of ImageJ we “Set 

Measurements” for area, mean gray value, and integrated density. The band of interest 

was selected and the parameters were measured. The raw intensity measurement for each 

band was normalized to its corresponding -actin control. 

 

Mass spectrometry 

 The cleaved product of Ln-332 by hepsin or matriptase was further identified 

using mass spectrometry analysis performed by the Mass Spectrometry Research Center 

at Vanderbilt University (Nashville, TN). After digestion, the proteins in the reaction 

mixture were separated by SDS-PAGE under
 
non-reducing conditions and visualized 

using Coomassie Blue stain. The protein bands of interest were excised from the SDS-



 37 

PAGE gel, and then equilibrated in 100 mM NH4HCO3, reduced with 3 mM DTT in 100 

mM NH4HCO3 at 37
o
C for 15 min. Alkylation was carried out with iodoacetamide (6 

mM in 100 mM NH4HCO3 for 15 min). After destaining, the gel slices were dehydrated 

with 50% acetonitrile in 50 mM NH4HCO3, followed by 100% acetonitrile. Gel slices 

were rehydrated with 15 µl of 25 mM NH4HCO3 containing 0.01 µg/µl modified trypsin. 

Trypsin digestion was performed for 2 h at 37
o
C. Peptides were extracted with 60% 

acetonitrile with 0.1% trifluoroacetic acid, dried by vacuum centrifugation, and 

reconstituted in 10 µl 0.1% trifluoroacetic acid. After desalting, peptides were 

concentrated into 2 µl 60% acetonitrile with 0.1% trifluoroacetic acid using ZipTipC18 

pipette tips. For the preparation of sample for matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry (MALDI-TOF MS), 0.4 µl of the sample was applied to 

a target plate and overlaid with 0.4 µl alpha-cyano-4-hydroxycinnamic acid matrix (10 

mg/ml in 60% acetonitrile, 0.1% trifluoroacetic acid). MALDI-TOF MS and tandem 

TOF/TOFMS/MS were performed using a Voyager 4700 mass spectrometer (Applied 

Biosystems, Foster City, CA). TOF/TOF fragmentation spectra were acquired in a data-

dependent fashion based on the MALDI-TOF peptide mass map for the protein. Both 

types of mass spectral data were collectively used to examine the protein databases to 

generate statistically significant candidate identification using GPS Explorer software 

(Applied Biosystems) running the MASCOT database search algorithm (Matrix Science). 

Searches were performed against the SWISS PROT and the NCBI databases.  
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Edman degradation sequencing 

  For N-terminal sequencing, 20 pmole (10 ug) of Ln-332 was digested and 

transferred to PVDF membrane. The membrane was then stained with Commassie blue 

(R250, acetic acid/methanol/water destain), destained, washed with water and air dried.   
 

N-terminal sequencing
 
of the PVDF membrane containing the cleaved protein was 

carried out on an Applied Biosystems (AB) Procise® 494 cLC at the W. M. Keck 

Foundation Biotechnology Resource Laboratory
 
at Yale University (New Haven, CT). 

The detected amino acids were matched to the theoretical sequence for all the possible 

matches. The amino acids with the strongest signal (NH2-LQGSCFC) was further 

analyzed on the basis of predicted published sequence for hepsin (Herter, Piper et al. 

2005). Further the mass spectrometry data of the same band has this sequence 

(LQGSCFCHGHADR) as first peptide sequence confirmed to be present in the band by 

MS/MS.      

 

Enzyme inhibition assay 

 HGF activator inhibitor-1 derived KD1 was used to inhibit enzymatic matriptase 

and hepsin activity. KD1 is the N-terminal Kunitz domain of HAI-1 and was produced in 

Escherichia coli as described by Shia et al. (Shia, Stamos et al. 2005). As described in the 

cleavage of Ln-332 section above, purified rat Ln-332 (0.2 M) was incubated alone or 

with either recombinant matriptase (6 M) or recombinant hepsin (1.3µM) and reaction 

buffer with or without KD1 inhibitor (15 M for matriptase inhibition) or (5.6 M or 

11.2 M for hepsin inhibition)  for 2 h at 37°C.  SDS-PAGE was then performed and the 

gel was stained with Coomassie Blue. 
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Inactivation of hepsin enzymatic activity by Glu-Gly-Arg chloromethyl ketone 

(EGRcmk) 

Inactivation of hepsin was performed at Genentech in the laboratory of Dr. 

Kirchhofer. Briefly, purified recombinant hepsin as described (40) was incubated either 

with 10-fold molar excess of an irreversible covalent inhibitor, EGR-cmk (Hematological 

Technologies, Essex Junction, VT), or with buffer containing 50 mM Tris, pH 8.0, 150 

mM NaCl (for Ctrl-hepsin) for 3-hours at room temperature. EGR-hepsin complex was 

separated from un-reacted EGR-cmk by size exclusion chromatography using a Superdex 

S-200 column (GE Healthcare Inc.) with a buffer containing 50 mM Tris, pH 8.0, 150 

mM NaCl. Ctrl-hepsin was also subjected to size exclusion chromatographic purification 

as described above. Relative to Ctrl-hepsin, EGR-hepsin had lost >99% of its catalytic 

activity as assessed by the rate of substrate hydrolysis with a small synthetic substrate, 

S2366 (Diapharma, West Chester, OH). 

 

EGR-hepsin assay 

 EGR-hepsin was used to further examine the specificity of Ln-332 cleavage by 

hepsin.  As with earlier assays, 0.2 µM purified rat Ln-332 was incubated with reaction 

buffer alone or with recombinant EGRcmk- inactivated hepsin (EGR-hepsin; 1.3 µM), 

control hepsin for EGR-hepsin (Ctrl-hepsin; 1.3 µM), or the recombinant hepsin (1.3 

µM) used for the initial cleavage reactions  at 37°C. The reaction mixtures were 

electrophoresed on 4%-12% pre-casted gradient gel under reducing conditions and then 

stained with Coomassie blue. 
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Transwell migration assays 

Cell migration assays were performed using 8.0 µm pore size Transwell™ 

permeable supports (Corning Costar, Lowell, MA). For Ln-332 and hepsin experiments, 

the underside of the filters were coated with either untreated or hepsin- treated rat Ln-332 

(1 µg/ml), Ln-332 coincubated with hepsin and KD1,  phosphate buffered saline solution 

(PBS), hepsin (1.3 M), or KD1 (5.6 M) overnight at 4°C. For Ln-332 and matriptase 

experiments, the lower side of the filters were coated with either untreated or matriptase-

treated rat Ln-332 with and without KD1, phosphate buffered saline solution (PBS), or 

Ln-332 coincubated with matriptase and KD1 overnight at 4°C. Transwells were then 

blocked with 5% milk in PBS with 0.2% Tween 20 for 1 h. DU145 or LNCaP cells were 

trypsinized, resuspended in serum-free medium, washed twice with serum-free medium, 

and cells (20,000 or 50,000, respectively) were seeded in the upper chamber of inserts. 

After 5 h (DU145) or 24 h (LNCaP) incubation in 5% CO2 at 37°C, cells remaining on 

the upper filter were scraped off gently using a cotton swab and the inserts were gently 

washed with PBS. Those cells that migrated to the lower chamber were fixed with 400 µl 

of fixation solution (Hema-3® stain kit, cat. # 122-911, Fisher Scientific Company LLC, 

Kalamazoo, MI) for 10 min, stained with 400 µl of staining solution for 20 min, and 

imaged with a Zeiss LSM-510 inverted microscope (Zeiss, Germany). Five representative 

images (10x magnification) were randomly captured for each insert and used to manually 

count the number of cells present. Results are presented as mean number of cells per field 

± standard deviation. Student’s t-tests (α = 0.05) were performed on final data to test 

significance of effects. 
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Cell Adhesion Assay 

 Cell adhesion assays were performed in 96-well plates.  Plates were first coated 

with cleaved or uncleaved Ln-332 overnight at 4 °C. Unbound protein was removed with 

phosphate-buffered saline (PBS) washing. Cells were detached with 0.025% trypsin and 

0.53 mM EDTA (Life Technologies) with 10% FBS was used to neutralize trypsin. Cells 

were washed twice with serum-free media. Cells were then resuspended in serum-free 

media and counted.  8.0 × 10
4
 cells were plated per well in 100 μl of serum-free media, 

and allowed to attach for 1 h at 37 °C. After one hour non-adherent cells were removed 

by washing; adherent cells were fixed with glutaraldehyde (3% (v/v) in phosphate-

buffered saline) and stained with crystal violet (3% (w/v) in methanol); and absorbance 

was measured at 560 nm. 

 

Hepsin overexpressing cell mediated cleavage of Laminin-332 

  LNCaP-17 (low hepsin-expressing) or LNCaP-34 (hepsin-overexpressing) cells 

(9.0 x 10
4
) in 100 l of RPMI 1640 were incubated with either 100 g/ml of Ln-332 or of 

PBS for 12 h at 37C. After 12 h, Ln-332 solution with media and cells was collected and 

centrifuged for 5 min at 15,000 rpm and supernatant was collected. SDS-PAGE analysis 

was performed under reducing conditions and protein was transferred to a nitrocellulose 

membrane. A pAb against the C- terminus of Ln-332 β3 chain (1:200; sc-20775; H-300; 

Santa Cruz Biotechnology, Inc.) and the secondary anti-rabbit IgG HRP antibody 

(1:5000) was used for visualization in western blot. Protein bands were visualized with 

the ECL plus system (Perkin Elmer). 
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LNCaP cell protein isolation and Western blot analysis 

LNCaP-wt and LNCaP-mt cells were lysed with RIPA buffer (25 mM Tris, pH 

7.5, 150 mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate, and 0.1% SDS) 

containing protease inhibitor cocktail (Roche, Indianapolis, IN). Total protein levels of 

samples were measured using a bicinchoninic acid assay (Pierce, Thermo Fisher 

Scientific, Rockford, IL) and normalized. Denatured proteins were separated by SDS-

PAGE and transferred for western blotting. Nonspecific binding to membranes was 

blocked for 1 h with blocking buffer (5% milk in PBS). Blots were incubated overnight in 

primary antibody (1:1000 pAb matriptase; Bethyl Laboratories, Inc., Montgomery, TX) 

or 1:1000 monoclonal anti -actin antibody (AC-74, Sigma) in blocking solution at 4°C, 

and subsequently in HRP conjugated anti-rabbit IgG and anti-mouse IgG secondary 

antibody (NA493v: GE Healthcare) for 1 h at room temperature. Protein bands were 

visualized with an ECL Plus system (Amersham Pharmacia Biotech, Piscataway, NJ). 

 

Single cell motility assay 

  LNCaP-wt or LNCaP-mt cells were plated (20,000 cells) overnight on 60-mm 

dishes coated with Ln-332 (10 g/ml). Cell density was kept low to avoid interacting cell 

populations. Cells were monitored using the phase-contrast optics in a Zeiss Axiovert 

200M inverted microscope with a monochrome, cooled CCD camera (CoolSNAP HQ, 

Roper Scientific, Trenton, NJ) equipped with temperature-controlled, humidified 

chamber. Cellular images were captured using Metamorph (Molecular Devices 

Corporation, Sunnyvale, CA) for data acquisition and analysis. Time-lapse images were 

collected at a magnification of 10x (1 pixel=0.98 µm) using a sampling time interval of 1 



 43 

min. All cells were equilibrated in the humidified, temperature-controlled (37 

C) 

microscope chamber for 30 min and media was replaced with fresh growth media before 

data collection. The cells were tracked for at least 12 h in all experiments.  

 

Cell tracking 

Each cell was tracked by following the cell nucleus using the ―track objects‖ 

function in Metamorph. Only single cells were considered for the analysis; cells that 

remained stationary, moved outside the viewing area, underwent cell division during the 

course of the experiment, did not migrate over a distance of at least 2 cell bodies (<20 

µm), or that adhered to other cells were excluded from the tracking procedure. Applying 

this criterion, ~60% cells were retained. Results are presented in combined box-and-

whisker and scatter plots, which show the mean speed per population (dark horizontal 

line), quartiles (box), 95% confidence intervals (whiskers), and raw data points (scatter). 

Mann-Whitney U tests were performed on final data to test significance of effects, with 

values less than 0.05 accepted as significant. 

 

Immunohistochemistry 

Immunohistochemistry was performed on 5 μm thick paraffin sections.  Sections 

were deparaffinizied and rehydrated though a series of ethanols. Following washing with 

PBS, the tissue sections were blocked using 10% serum of appropriate species for 

20 mins at room temperature. Tissue sections were then incubated with primary antibody 

diluted in blocking buffer for overnight at 4°C. Primary antibody were polyclonal 

antibody (pAb) against the C-terminus of Ln-332 β3 chain (1:1000; sc-20775; H-300; 
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Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and Hepsin Cayman Chemical cat# 

100022 (1 μg/ml). Vectastain ABC kit (Vector Laboratories Inc, Burlingame, CA, USA) 

and 3,3'-diaminobenzidine tetrahydrochloride (Dako) were used to visualize the staining. 

Sections were counterstained with hematoxylin, dehydrated, and permanently mounted. 

 

Reverse transcriptase-polymerase chain reaction (RT-PCR) 

Total RNA was extracted from LNCaP-17 and LNCaP-34 cells using RNeasy 

Mini kit (Qiagen, Valencia, CA). The mixture of 2 µg of RNA, 50 ng random hexamer, 

and 1 mM NTP was incubated at 65 ºC for 5 min, briefly chilled on ice, and added to a 20 

µl reaction mixture containing 2 µl of 10x RT buffer (Invitrogen), 4 µl of 25 mM MgCl2, 

2 µl of 0.1 M DTT, 1 µl of RNase OUT
TM

, and 1 µl of SuperScript
TM

. Reaction mixture 

was incubated at 50 ºC for 1 hour. Single-stranded cDNAs were amplified by 40 cycles 

of PCR using Taq DNA polymerase (Promega, Madison, WI). Denaturation was carried 

out at 95 ºC for 2 min, annealing at 71 ºC (hepsin) and 52 ºC (GAPDH) for 30 sec, and 

extension at 72 ºC for 2 min. The amplified PCR products were electrophoresed on 1% 

(w/v) agarose gels. RT-PCR was performed using the following primer sets:  hepsin 

forward primer, 5’ – TGGTCTTTGACAAGACGGAAGGGA - 3’; hepsin reverse primer, 

5’-GCAATCACAACGGAGATGACCT - 3’; GAPDH forward primer, 5’-

ATGACATCAAGAAGGTGGTG -3’; and GAPDH reverse primer, 5’ - 

CTGTAGCCAAATTCGTTGTC - 3’. 
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Quantitative real-time reverse transcriptase polymerase chain reaction (q RT-PCR) 

Total RNA was extracted from LNCap-WT and LNCaP-MT cells using the 

RNeasy mini kit (Qiagen, Valencia, CA) according to the manufacturer’s protocol. The 

concentration of RNA was measured using a spectrophotometer. Reverse transcription 

was performed using Superscript II reverse transcriptase (Invitrogen, Carlsbad, CA) and 

quantitative real-time q RT-PCR was done using iQ SYBR green supermix (Biorad, 

Hercules, CA). Relative quantitation of matriptase expression was performed by ΔΔct 

method normalized to GAPDH. The matriptase primers were generated based on the 

Human sequence of matriptase. The forward matriptase primer (5’ 

TGTGGATGCCTACGAGAACTCCAA 3’) and reverse matriptase primer (3’ 

TGTCCTGGGTCCTCTGTACTGTTT5’) generated a 170 bp amplimer. GAPDH 

forward primer, 5’-ATGACATCAAGAAGGTGGTG -3’; and GAPDH reverse primer, 

5’ - CTGTAGCCAAATTCGTTGTC - 3’. 

 

Isolation of protein from tumor tissue and Western blot analysis 

Tumor tissues for 12 month old wild type, myc and hepsin/myc mice were frozen 

in liquid nitrogen and then crushed using a mortar and pestle with RIPA buffer (25 mM 

Tris, pH 7.5, 150 mM NaCl, 1% Nonidet P-40, 1% sodium deoxycholate , and 0.1% 

SDS) containing protease inhibitor cocktail (Roche, Indianapolis, IN). Further 

homogenization of the tissue was done by sonicator. The lysate was centrifuged for 15 

min at 15000 rpm to collect the supernatant.  Total protein levels of samples were 

measured by BCA assay (Pierce, Thermo Fisher Scientific, Rockford, IL) and 

normalized. Denatured proteins were separated by SDS-PAGE and then transferred for 
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Western blotting. Nonspecific binding to membranes was blocked for overnight with 

blocking buffer for near infra-red fluorescent Western blotting (Rockland, Gilbertsville, 

PA). Blots were incubated overnight in primary polyclonal antibody to C-terminus of Ln-

332 β3 chain (1:500 sc-20775; H-300; Santa Cruz Biotechnology, Inc.) or mAb Anti-β-

actin (1:5000, Sigma,St. Louis, MO). Secondary antibodies used were Alexa Fluor 680 

anti-rabbit IgG (Invitrogen) and IRDye 800 anti-mouse IgG (Li-COR Biosciences, 

Lincoln, NE) and subsequently signals were detected using the Odyssey infrared imaging 

system (LI-COR Biosciences, Lincoln, NE). 
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CHAPTER III 

 

LAMININ-332 IS A SUBSTRATE FOR HEPSIN, A PROTEASE ASSOCIATED 

WITH PROSTATE CANCER PROGRESSION 

 

Introduction 

 Hepsin, a cell surface protease, is widely reported to be overexpressed in more 

than 90% of human prostate tumors (Dhanasekaran, Barrette et al. 2001; Stephan, Yousef 

et al. 2004). Interestingly, hepsin expression correlates with tumor progression, making it 

a significant marker and target for prostate cancer (Xuan, Schneider et al. 2006). Despite 

overwhelming evidence that hepsin expression promotes prostate tumor progression, the 

physiological function of hepsin remains largely unknown (Wu and Parry 2007). 

Recently, it was reported that a hepsin transgenic mouse model, displayed disorganized 

basement membrane (Klezovitch, Chevillet et al. 2004). Further, crossing these mice with 

LPB-Tag 12-T7f mice, another prostate cancer model, resulted in significant tumor 

progression and induced metastasis. The underlying mechanisms, however, remain 

largely uncharacterized. Hepsin transgenic mice displayed reduced Ln-332 expression in 

prostate tumors. This is an intriguing cue, since proteolytic processing of extracellular 

matrix macromolecules such as Ln-332 is believed to be involved in cancer progression, 

and Ln-332 expression is lost during human prostate cancer progression. In this study, we 

provide the first direct evidence that hepsin cleaves Ln-332. Direct cleavage of Ln-332 

may be one of the mechanisms by which hepsin promotes prostate tumor progression and 

metastasis, possibly by upregulating prostate cancer cell motility.  
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Results 

 

Processing of Laminin-332 by hepsin 

To determine whether hepsin cleaves Ln-332, purified rat Ln-332 was incubated 

with  recombinant hepsin at different concentrations in reaction buffer for 1.5 h with the 

enzyme : substrate (i.e., hepsin : Ln-332) molar ratio of 1.0 : 1.5 and 1.0 : 0.15 (latter 

ratio used in all follow-up experiments), as described in Materials and Methods. After 

incubation, protein samples were separated under reducing conditions by SDS-PAGE and 

stained with Coomassie blue (Figure 7A). We observed a unique band at  ~100 kDa in 

the lanes containing Ln-332 incubated with hepsin at both concentrations tested (arrow; 

lanes 2 and 3), but not in untreated samples (lane 1). The intensity of the cleaved band 

correlated with increasing hepsin concentration (lane 3).  Additionally, lanes 2 and 3 

produced a unique band at ~30 kDa, which corresponds to the protease domain of hepsin.  

Lane 4, which includes hepsin alone, also revealed this ~30 kDa band.  Ln-332, both in 

the absence and presence of hepsin, was also electrophoresed under non-reducing 

conditions (Figure 7C). Under both reducing and non-reducing conditions, Ln-332 

appeared proteolytically degraded by hepsin on SDS-PAGE; however under non-

reducing conditions the bands appeared less defined, which was due to the absence of the 

reducing agent (DTT).  This electrophoretic behavior under non-reducing conditions is 

consistent with the presence of  disulfide bonds between the Ln-332 chains, as mentioned 

in the Introduction.  

 

 



 49 

 

 

 

 

Figure 7:  SDS-PAGE analysis of hepsin cleavage of purified rat laminin-332.  (A) 

Purified rat Ln-332 (0.2 µM) was incubated alone or with the recombinant extracellular 

domain of hepsin for 1.5 h at 37°C, electrophoresed on 4%-12% gradient gel under 

reducing conditions, and stained with Coomassie Blue.  After incubation of Ln-332 

alone, the gel included bands identified as the α3 (190 kDa), β3 (145 kDa), and γ2 (155 

kDa and 80 kDa) chains (lane 1).  However, upon incubation of Ln-332 with 0.13 or 1.3 

µM hepsin (lanes 2 and 3, respectively), an additional ~100 kDa band was seen (indicated 

by solid arrow), indicating a cleavage event. Those lanes including hepsin treatment 

(lanes 2-4) also produced an ~30 kDa band, which represents the protease domain of 

hepsin (indicated by open arrow). (B) After incubation of Ln-332 alone at various time 

points (0, 2, and 6 h), the same uncleaved Ln-332 chains are visible. However, co-

incubation of Ln-332 (0.2 µM) with hepsin (1.3 µM) resulted in the generation of a new 

band (~ 100 kDa, indicated by closed arrow), again indicating cleavage. Again, the ~30 

kDa band corresponds to the hepsin protease domain (indicated by open arrow; lanes 2,4, 

and 6). (C) Non-reducing SDS-PAGE analysis of hepsin cleavage of laminin-332. Ln-

332 (0.2 µM) was incubated alone or with hepsin for 1.5 h at 37°C. Upon incubation of 

Ln-332 hepsin, an additional band was seen indicating a cleavage event.  However, Ln-

332 incubated with hepsin electrophoresed under non-reducing conditions demonstrated 

degraded Ln-332, compared to Ln-332 control (lane 2), but less obvious changes than 

those seen in reducing conditions (lane 4). 
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In a time-course experiment, we incubated Ln-332 and hepsin in reaction buffer 

for 0, 2, or 6 h (Figure 7B). As expected, no cleavage product of Ln-332 was observed at 

0 h (lane 2), whereas the intensity of the  ~100 kDa band increased from 2 h (lane 4) to 6 

h (lane 6) ( arrow). As shown in Figure 7B, those treatments including hepsin (lanes 2, 4, 

and 6) also showed the ~30 kDa hepsin band.  These results confirmed that untreated Ln-

332 resolved as bands corresponding to α3 (190 kDa), β3 (145 kDa), and γ2 chains (155 

kDa and 80 kDa), and that no cleavage band was detectable in the absence of hepsin 

(lanes 1, 3, and 5). These results suggest that the ~100 kDa band is a unique product of 

hepsin cleavage.  

 

Laminin-332 is specifically cleaved by hepsin 

In order to confirm that Ln-332 was cleaved by hepsin specifically and not by 

another contamination protease, we performed an enzyme inhibition assay. We added an 

inhibitor of hepsin, KD1, in the cleavage reaction with Ln-332 and hepsin during 

incubation, and analyzed by SDS-PAGE (Figure 8A). Hepsin-treated Ln-332, as 

expected, contained a ~100 kDa band, not present in untreated Ln-332. However, 

addition of the inhibitor KD1 nearly abolished this band. Those lanes with hepsin 

treatment again revealed ~30 kDa protease domain bands. Additionally, those treatments 

with KD1 inhibitor produced a band at ~10 kDa. This experiment indicates that the ~100 

kDa band is a product of cleavage of Ln-332 by hepsin. 
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Figure 8:  SDS-PAGE analysis to show specificity of hepsin-cleavage of laminin-332.  

(A)  Ln-332 (0.2 µM) was incubated alone, with recombinant hepsin (1.3 µM), or with 

hepsin and KD1 inhibitor for 1.5 h at 37°C.   Ln-332 coincubated with hepsin displayed 

an additional band of cleavage product.  However, Ln-332 incubated with both hepsin 

and KD1 inhibitor  displayed greatly diminished bands of cleavage product compared to 

the band in the absence of KD1 . Those treatments with hepsin produced an ~30 kDa 

band. Lanes with KD1 also showed ~11 kDa band, representing the presence of this 

inhibitor.  (B)  Ln-332 was incubated either alone, or in the presence of hepsin, inactive 

EGR-hepsin, or Ctrl-hepsin. Ln-332 incubated with catalytically active hepsin or Ctrl-

hepsin resulted in an ~100 kDa band.  In contrast, Ln-332 alone, or Ln-332 incubated 

with inactive EGR-hepsin did not produce this band.  Those lanes with only hepsin (7), 

Ctrl-hepsin (6), or inactive EGR-hepsin (5) only produced a single band at ~30 kDa.   

 

A B 



 52 

Inactive hepsin does not cleave Laminin-332 

To further examine the specificity of Ln-332 cleavage, we performed experiments 

with catalytically inactive EGR-hepsin. In enzymatic assays with synthetic S2366 

substrate, EGR-hepsin displayed less than 1% activity of uninhibited Ctrl-hepsin.  In the 

experiments (Figure 8B), we incubated Ln-332 either alone, or in the presence of hepsin, 

inactive EGR-hepsin, or Ctrl-hepsin.  As shown in Figure 8B, Ln-332 incubated with 

active hepsin or Ctrl-hepsin resulted in an ~100 kDa band.  In contrast, Ln-332 alone, or 

Ln-332 incubated with inactive EGR-hepsin, did not produce this band.  Those lanes with 

only hepsin, Ctrl-hepsin, or inactive EGR-hepsin only produced a single band at ~30 

kDa.  These results further support the conclusion that Ln-332 is cleaved specifically by 

catalytically active hepsin molecule, and not by any other contaminating protease. 

 

Characterization of cleaved Laminin-332 band 

  To determine the identity of the unique band that appeared after hepsin treatment 

of Ln-332, we resorted to using an antibody specific for the Ln-332 chains. A polyclonal 

antibody raised against the C-terminal sequence of Ln-332 β3 chain (Zapatka, Zboralski 

et al. 2007) reacted in western blotting (Figure 9A), both with the full-length β3 chain in 

Ln-332 alone and the 100 kDa hepsin-cleaved fragment This result suggested that hepsin 

cleaves the β3 chain of Ln-332, located in the ~100 kDa C-terminal region of rat Ln-332 

β3 chain (Figure 9A). This result indicates that hepsin cleaves the Ln-332 β3 chain in the 

vicinity of the N-terminus. To confirm this possibility, we further established the identity 

of the cleaved fragment by mass spectrometry (performed by Mass Spectrometry 

Research Center at Vanderbilt University). Briefly, trypsin digestion of the ~100 kDa 
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Figure 9:  Identification of hepsin–cleavage site on laminin- 332 ß3 chain by Western 

blot analysis and N-terminal sequencing. (A) Western blot was performed on Ln-332 

alone (0.1 µM) and in combination with hepsin (0.7 µM), and probed with a polyclonal 

antibody specific for the ß3 chain. Application of ß3 antibody identified the ~100 kDa 

cleaved-product of Ln-332 ß3 chain and the uncleaved ß3 chain. (B) Schematic 

representation of Ln-332 including the specific hepsin cleavage site determined to be 

between the Arg
245

-Leu 
246 

residues of the rat Ln-332 ß3 chain. Note that cysteine 

residues are not detected by Edman sequencing and were deduced from cDNA. The three 

chains (α3, β3, and γ2) including domains I-VI and LG domains of  Ln-332 are also 

indicated.  Abbreviations for amino acid residues: S, serine; Q, glutamine; L, leucine; R, 

arginine; G, glycine; C, cysteine; F, phenylalanine. The sequence around the cleavage site 

is a perfect match to the consensus sequence found by a high-throughput combinatorial 

approach by Herter S.et al, 2005 Biochem J   
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Figure 10:  Identification of hepsin–cleavage on laminin- 332 ß3 chain by mass 

spectrometry:  Trypsin digestion of the ~100 kDa band was performed for 2 hours at 37 

°C before subjection to matrix- assisted laser desorption/ionization, time-of-flight mass 

spectrometry. The mass spectral data were used to examine protein databases to generate 

statistically significant candidate identifications using GPS Explorer software running the 

Mascot database search algorithm.  Seventeen individual peptides (highlighted in gray) 

were identified from the digestion, which directly aligned with the sequence of rat Ln-

332 ß3 chain  



 55 

cleavage band produced 17 distinct peptides, all identical to peptides located in the ~100 

kDa C-terminal region of rat Ln-332 β3 chain (Figure 10). This result indicates that 

hepsin cleaves the Ln-332 β3 chain in the vicinity of the N-terminus. To confirm this 

possibility, and to positively identify the cleavage site, we performed N-terminal 

sequencing of the cleaved band. The strongest signal was obtained for the following 

sequence: NH2-LQGSCFC (note that cysteine residues are not detected by Edman 

sequencing and were deduced from cDNA), which corresponds exactly to a sequence in 

rat Ln-332 starting at Leu
246

 (Figure 9B). Therefore, we conclude that the hepsin 

cleavage site on Ln-332 β3 chain is located between Arg
245

 and Leu
246

. 

 

Migration of DU145 cells on Laminin-332 is enhanced  by hepsin cleavage 

 To determine the potential biological significance of the cleavage of Ln-332 β3 

chain, we examined the migratory behavior of DU145 prostate cancer cells on hepsin-

cleaved Ln-332 versus untreated Ln-332 substrate (Figure 11A and B). Using a modified 

Boyden chamber assay, we applied various substrates to transwells, as described in 

Materials and Methods.  Hepsin-cleaved Ln-332 promoted a significant increase in 

migration (1.7-fold) compared to untreated Ln-332 (N = 4, in duplicate; P < 0.05). To 

confirm that hepsin cleavage of Ln-332 caused increased migration of cells, we added 

inhibitor KD1, to test its ability to abolish increased activity. As expected, in the presence 

of KD1, cells migrated similar to cells on Ln-332 (N = 4, in duplicate). As a control, 

almost no cells were seen on PBS-, KD-1, or hepsin-treated alone inserts, (i.e., without 

ECM substrate). These results suggest that cleavage of Ln-332 by hepsin may 

physiologically enhance migration. 
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Figure 11:  DU145 prostate cancer cells exhibit enhanced migration on hepsin-cleaved 

laminin-332. DU145 cells (2 x 10
4
) in serum-free DMEM were added to pretreated upper 

chambers of transwell inserts and allowed to migrate for 5 h at 37ºC.  After incubation, 

non-migratory cells and media were washed from transwells, and those cells that 

migrated to the bottom of the filters were stained with Hema® kit, fixed, and imaged 

using a Zeiss LSM-510.  (A) Representative images (5 fields) were taken of pretreated 

(Ln-332, Ln-332+Hepsin, Ln-332+Hepsin+KD1 or PBS filters with fixed cells. The scale 

bar is equal to 20 µm.  (B) Cells plated on hepsin-cleaved Ln-332 treated inserts had a 

significant (N = 4; P < 0.001) increase in migration, compared to cells on either Ln-332 

alone or Ln-332 with hepsin and KD1 inhibitor.  Cells on PBS treated inserts migrated 

significantly (N = 4, in duplicate; P < 0.01 in all cases) less that all other treatments.   
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Cell adhesion of DU145 cells exhibit no significant difference on hepsin-cleaved Ln-332 

 To determine if cellular adhesion of DU145 cells was different on hepsin cleaved 

Ln-332 versus untreated Ln-332 substrate, we performed cell adhesion assay as described 

in the Materials and Methods Chapter. We coated Ln-332 alone (L), Ln-332 + hepsin 

(LH), Ln-332 + hepsin + KD1 and PBS onto 96-well plates. DU145 cells were allowed to 

adhere for 1 h at 37ºC in serum-free medium. Unbound cells were washed off; adherent  

cells were fixed, stained (crystal violet), and solubilized; and absorbance was read at 560 

nm.  We found that DU145 cells had no significant difference in cell adhesion on hepsin 

cleaved Ln-332 as compared to untreated Ln-332 or on mixture with Ln-332, hepsin and 

KD1 (Figure 12). Results represent mean ± S.D. (N= 2, in duplicates; P < 0.05). 

 

Migration of hepsin-overexpressing cells is enhanced on Laminin-332 substrate 

To further determine the potential biological significance of hepsin cleavage of Ln-332, 

we also examined the migratory behavior of hepsin-overexpressing LNCaP-34 prostate 

cancer cells on Ln-332 versus low hepsin-expressing LNCaP-17 cells on the same 

substrate. We verified LNCaP cells for hepsin expression by RT-PCR and western blot, 

and obtained data consistent with published findings that LNCaP-34 cells express ~5-fold 

higher levels of hepsin than LNCaP-17 cells (Figure 13A and B) (Moran, Li et al. 2006) . 

Using a modified Boyden chamber assay, we applied either Ln-332 (10 g/ml) or PBS 

substrate to transwells, and allowed cells to migrate at 37C for 24 h, as described in 

Materials and Methods.  As shown in Figure 14A, LNCaP-34 cells exhibited a significant 

increase in migration on Ln-332 (~2.1-fold) compared to LNCaP-17 cells on Ln-332 
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Figure 12:  DU145 prostate cancer cells exhibit no change in cell adhesion on hepsin-

cleaved Ln-332. Ln-332 alone (L), Ln-332 + hepsin (LH), Ln-332 + hepsin + KD1 and 

PBS were coated onto 96-well plates. DU145 cells were allowed to adhere for 1 h at 37ºC 

in serum-free medium. Unbound cells were washed off; adherent cells were fixed, 

stained, dried and solubilized; and absorbance was read at 560 nm.  Results represent 

mean ± S.D. (N= 2, in duplicates; P < 0.05). 

 

 

                        

 

 

Figure 13: Hepsin expression in LNCaP-17 and LNCaP-34 by Western blot and RT PCR 

(A) Western blot using an antibody against hepsin confirmed that LNCaP-34 cells 

express more hepsin than LNCaP-17 cells. As a control, the blot was probed for GAPDH, 

which revealed that similar total protein was used for each cell type. (B) mRNA encoding 

hepsin was detected by RT-PCR on RNA extracted from LNCaP-17 and LNCaP-34 cells. 

Amplified PCR products were electrophoresed on 1% agarose gel. GAPDH was used as a 

control. Estimated size of PCR products were hepsin, 229 bp and GAPDH 196 bp. 
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(N = 3, in duplicate; P < 0.01). To confirm that degradation of Ln-332 by cells influenced 

migration, we also measured both cell lines on PBS-treated inserts. As expected, both cell 

clones migrated slowly on PBS-treated transwells (N=3, in duplicate; P > 0.05). 

Additionally, a polyclonal antibody directed against the 3 chain of Ln-332 in western 

blot analysis (Figure 14B) revealed an additional ~100 kDa band unique to hepsin-

overexpressing LNCaP-34 cells incubated with Ln-332 (lane 2), which was not exhibited 

by LNCaP-17 cells (lanes 1 and 3), nor by LNCaP-34 cells in the absence of Ln-332  

(lane 4). The bands in lanes 3 and 4 are background bands, possibly due to endogenous 

expression of 3 by these LNCaP cells. Taken together, these results suggest that 

cleavage of Ln-332 by hepsin may physiologically enhance migration. 

 

Cell adhesion of hepsin-overexpressing prostate cancer cells exhibit no significant 

difference on Ln-332 

 To determine if cellular adhesion of hepsin-overexpressing LNCaP-34 prostate 

cancer cells on Ln-332 was different as compared to low hepsin-expressing LNCaP-17  

cells on Ln-332, we performed cell adhesion assay as described in Materials and Methods 

Chapter. We coated Ln-332 or PBS onto 96-well plates. Both Cell types were allowed to 

adhere for 1 h at 37ºC in serum-free medium. Unbound cells were washed off; adherent 

cells were fixed, stained (crystal violet), and solubilized; and absorbance was read at 560 

nm.  We found that hepsin-overexpressing LNCaP-34 cells had no significant difference 

in cell adhesion on Ln-332 as compared to low hepsin-expressing LNCaP-17 cells 

(Figure 15). Results represent mean ± S.D. (N= 3, in triplicates; P < 0.05). 
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Figure: 14 Migration of LNCaP hepsin-overexpressing prostate cancer cells is enhanced 

on Ln-332. (A) We examined the migratory behavior of hepsin-overexpressing LNCaP-

34 prostate cancer cells on Ln-332 versus low hepsin-expressing LNCaP-17 cells. Using 

a modified Boyden chamber assay, we applied either Ln-332 (10 g/ml) or PBS to 

transwells, and allowed cells (5 x 10
4
) to migrate at 37C for 24 h.  LNCaP-34 cells 

exhibited a significant increase in migration on Ln-332 (~2.1-fold) compared to LNCaP-

17 cells on Ln-332 (N = 3, in duplicate; P < 0.01). To confirm that degradation of Ln-332 

by cells influenced migration, we also measured both cell lines on PBS-treated inserts. As 

expected, both clones weakly migrated on PBS-treated transwells (N=3, in duplicate; P > 

0.05). These results suggest that cleavage of Ln-332 by hepsin may physiologically 

enhance migration. (B) Western blot analysis of LNCaP-17 and LNCaP-34 cells, each in 

the presence or absence of Ln-332, revealed that hepsin-overexpressing cells (LNCaP-34) 

created an addition band at ~100 kDa. The bands in lanes 3 and 4 (cells alone) are 

background, possibly due to endogenous expression of 3 by these LNCaP cells.  
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Figure 15:  Hepsin overexpressing LNCaP cells exhibit no change in cell adhesion on Ln-

332. Ln-332 or PBS was coated onto 96-well plates. LNCaP17 and LNCaP cells were 

allowed to adhere for 1 h at 37ºC in serum-free medium. Unbound cells were washed off; 

adherent cells were fixed, stained (crystal violet), and solubilized; and absorbance was 

read at 560 nm.  Results represent mean ± S.D. (N= 3, in triplicates; P < 0.05).  

Both Cell types were allowed to adhere for 1 h at 37ºC in serum-free medium. Unbound 

cells were washed off; adherent cells were fixed, stained (crystal violet), and solubilized; 

and absorbance was read at 560 nm.  We found that hepsin-overexpressing LNCaP-34 

cells had no significant difference in cell adhesion on Ln-332 as compared to low hepsin-

expressing LNCaP-17 cells. Results represent mean ± S.D. (N= 3, in triplicates; P < 

0.05). 

 

 

 

Figure 16: Hepsin/myc tumors mice display increased degradation of Laminin-332 as 

compared with myc alone tumors. Western blot analysis showing Laminin-332 β3 chain 

expression in 12 month wildtype, myc and hepsin/myc mice. Western blot is 

representative of the experiment performed three times, two mice for each group has been 

used. Lane WT shows intact Laminin-332 in 12 month wildtype mice (145 kDa). Lanes 

Myc and Myc/Hep show cleaved Laminin-332 (100kDa) in 12 month myc and 

hepsin/myc mice respectively. 
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 Hepsin/myc tumors mice display increased degradation of Laminin-332 as compared 

with myc alone tumors 

In an effort to correlate increased hepsin expression with increased hepsin activity in 

terms of Ln-332 cleavaged in vivo, we performed Western blot analysis with the tumor 

tissues derived from wild type, myc and hepsin/myc mice. The Western blot results 

showed intact Ln-332 (145 kDa), in the tissue lysate of wild type mice. The myc tumor 

displayed a 100 kDa band. In the hepsin/myc tumor this 100 kDa band was further 

diminished (Figure 16). These data correlate with the fact that hepsin cleaves laminin-332 

in vitro. The tissue lysate from wild type mice showed intact Ln-332 beta3 chain whereas 

our data indicates that increased hepsin levels in hepsin/myc tumors are correlated with 

degradation of Ln-332, a component of the basement membrane that is lost during human 

prostate cancer. 

We also performed immunohistochemical analysis for Ln-322 on tumors derived 

from myc mice, that develops adenocarcinoma by 6 month of age (Ellwood-Yen, Graeber 

et al. 2003) and hepsin/myc mice, that develops invasive adenocarcinoma at 4.5 months 

and develops a higher grade adenocarcinoma compared with age-matched myc mice 

tumors (Nandana, Ellwood-Yen et al. 2010). We found that 12 month old hepsin/myc 

tumor displayed increased degradation of Ln-332 as compared with age-matched myc 

tumor. Although, the immunohistochemistry data (Figure 17) are not very clear as we see 

more staining of Ln-332 on hepsin/myc mice as compared to myc mice but it is possible 

that the staining appears to be more due to diffused Ln-332. 
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Figure 17: Immunohistochemical staining of tumor sections of lateral prostate of 

hepsin/myc and Myc overexpressing Mouse models of Prostate Cancer. Panel A and B 

showing hepsin staining in  hepsin/myc (A) and myc (B) mouse and panel C and D 

showing Ln-332 staining in hepsin/myc (C) and myc (D) mouse.  
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Conclusions 

In summary, a role for either Ln-332 or hepsin in prostate cancer progression is 

supported by several studies. However, the roles of these two molecules have been 

studied separately and they have not been previously linked to date.  In this chapter, we 

demonstrate for the first time that hepsin cleaves Ln-332. Using western blot analysis and 

mass spectrometry, we identified that cleavage occurs specifically in the β3 chain. 

Further, N-terminal sequencing identified the hepsin cleavage site between the Arg 
245

-

Leu 
246 

residues in the β3 chain.  Cleavage of Ln-332 was inhibited by a known hepsin 

inhibitor (KD1), and did not occur in the presence of catalytically inactive hepsin, 

confirming specificity.  We also report increased migration of DU145 prostate cancer 

cells on hepsin-cleaved Ln-332, which was also inhibited in the presence of KD1. 

Similarly, we show that hepsin-overexpressing LNCaP-34 cells exhibit enhanced motility 

on Ln-332, compared to low hepsin-expressing LNCaP-17 cells. We show that hepsin 

correlated with Ln-332 degradation in vivo in mouse model of prostate cancer over 

expressing hepsin.  This study suggests a physiological role of hepsin in proteolytic 

cleavage of Ln-332 and gives new insight into possible mechanisms for hepsin in prostate 

cancer progression. 
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CHAPTER IV 

 

LAMININ-332 CLEAVAGE BY MATRIPTASE ALTERS MOTILITY 

PARAMETERS OF PROSTATE CANCER CELLS. 

 

Introduction 

Matriptase, a type II transmembrane serine protease, is involved in maintaining 

the integrity of epithelia. Matriptase has been linked to initiation and promotion of 

epidermal carcinogenesis in a murine model, suggesting that deregulation of its role in 

epithelial integrity contributes to transformation. Overexpression of matriptase in mouse 

epidermis induces spontaneous skin lesions, however epidermal hyperproliferation and 

tumors are abolished by coexpression of its physiological inhibitor, HAI-1 (List, Szabo et 

al. 2005). In human prostate cancer, matriptase expression indeed correlates with 

progression, suggesting it could be used as a biomarker for prognosis and a target for 

treatment (Riddick, Shukla et al. 2005; Saleem, Adhami et al. 2006). It is therefore of 

interest to determine how matriptase may contribute to epithelium neoplastic progression. 

One approach is to identify matriptase substrates involved in epithelial integrity 

and/or transformation. In this study, we provide the first direct evidence that matriptase 

proteolytically processes Ln-332, a key extracellular matrix macromolecule found in the 

basement membrane of many epithelia, including prostate. Ln-332 has a demonstrated 

role in maintaining epithelial integrity. Its deregulated expression has been reported in 

several cancers and, especially relevant to this study, it is extinguished in advanced 

prostate cancer. Based on these findings, we propose that proteolytic processing of Ln-
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332 could be a possible mechanistic role for matriptase in prostate cancer progression via 

altered migration parameters and subsequent basement membrane transgression. 

 

Results 

Laminin-332 is cleaved by matriptase 

To determine whether matriptase cleaves Ln-332, purified Ln-332 from 804G rat 

bladder cells was incubated with three concentrations of the recombinant protease 

domain of matriptase for 2 h.  After incubation, the mixtures and Ln-332 alone were 

electrophoresed on SDS-PAGE and then stained with Coomassie Blue.  Not surprisingly, 

Ln-332 alone revealed 4 primary bands representing the 3 (190 kDa), 3 (145 kDa), and 

2 chains (155 and 80 kDa; Figure 18A) of the structure and matriptase alone revealed 

one strong band at ~27.5 kDa .  Of note, the lanes containing Ln-332 and matriptase 

mixtures revealed a unique band at ~100 kDa, particularly at higher concentrations of the 

latter (arrows) (Figure 18 A).  The lanes with the protease also resolved bands at ~27.5, 

~18, and ~10 kDa, which were determined to be matriptase by mass spectrometry (data 

not shown).  These results suggest that the recombinant protease domain of matriptase 

cleaved Ln-332. To determine if this cleavage was time-dependent, we also performed a 

time-course experiment whereby Ln-332 and matriptase were coincubated for 0, 3, 6 and 

12 h and the mixtures were again resolved using SDS-PAGE.  As expected, no cleavage 

product of Ln-332 was observed in the 0 h mixture, however the cleaved ~100 kDa band 

was present in lanes containing the mixtures from 3, 6, and 12 h (Figure 18B).  
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Figure 18:  Ln-332 is cleaved by matriptase.  A. Purified Ln-332 from 804G rat bladder 

cells (0.2 µM) was incubated with the recombinant protease domain of matriptase (0.6, 2, 

and 6 M) for 2 h.  After incubation, the mixtures and Ln-332 alone were 

electrophoresed on SDS-PAGE and then stained with Coomassie blue. Ln-332 alone 

revealed 4 primary bands representing the 3 (190 kDa), 3 (145 kDa), and 2 chains 

(155 and 80 kDa).  Of note, a unique band was resolved at ~100 kDa in the lanes 

containing Ln-332 and matriptase, particularly at higher concentrations of the latter 

(arrows). (B) Ln-332 (0.8 µM) and matriptase (24 µM) were coincubated for 0, 3, 6 and 

12 h.  No cleavage product of Ln-332 was observed from the 0 h mixture, however the 

cleaved ~100 kDa band was present in lanes containing the mixtures from 3, 6, and 12 h.  
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Matriptase cleaves the Laminin-332 β3 chain  

  To determine that the cleavage event of Ln-332 was due to addition of matriptase, 

we also added inhibitor, KD1, to the mixture. As in earlier experiments, purified rat Ln-

332 alone revealed 4 bands, representing its respective chains (Figure 19A) and Ln-332 

treated with matriptase again revealed the ~100 kDa cleavage product.  Of interest, the 

mixtures containing KD1 lacked the ~100 kDa cleavage product, suggesting that 

matriptase was responsible for cleavage of Ln-332. Matriptase was again resolved as an 

~27.5 kDa band, which matches up with the previous SDS-PAGE results, and KD1 was 

resolved as an ~11 kDa band, in line with our published report (Tripathi, Nandana et al. 

2008). 

To further determine the identity of the unique band that appeared after matriptase 

treatment of Ln-332, we used both western blotting with an antibody to Ln-332 and a 

proteomics approach. As shown in Figure 19B, a polyclonal antibody against the C-

terminal sequence of Ln-332 β3 chain reacted with both the full-length β3 chain in Ln-

332 alone and the ~100 kDa matriptase-cleaved fragment as revealed by western blotting. 

This result suggests that matriptase cleaves the β3 chain of Ln-332, possibly removing an 

N-terminal sequence. To explore this, then performed mass spectrometric analysis. The 

protein bands of Ln-332 and the ~100 kDa product were excised from a gel from SDS 

PAGE. After trypsin digestion, MALDI-TOF MS and tandem TOF/TOFMS/MS were 

performed, and data from both methods were collectively used to examine the protein 

databases. Statistically significant candidates were identified using GPS Explorer 

software running the MASCOT database search algorithm. Searches were performed 
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Figure 19:  Matriptase cleaves the Ln-332 β3 chain. (A) A known matriptase inhibitor, 

KD1, was added to the Ln-332 and matriptase mixture. Purified rat Ln-332 (0.2 µM) 

alone revealed 4 bands, representing its respective chains. Ln-332 (0.2µM) treated with 

matriptase (6µM) again revealed the ~100 kDa cleavage product.  The mixture also 

containing KD1 lacked the ~100 kDa cleavage product. (B) A western blot was 

performed using a polyclonal antibody against the C-terminal sequence of Ln-332 β3 

chain.  The antibody reacted with both the full-length β3 chain in Ln-332 alone and the 

~100 kDa matriptase-cleaved fragment.  
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Figure 20: Mass spectrometry was performed to analyze the contents of the protein bands 

of Ln-332 and the ~100 kDa product from Ln-332 treated with matriptase. This analysis 

revealed that the Ln-332 protein band contained its 3 chains: 3 (190 kDa), β3 (145 kDa) 

and 2 (155 kDa), and the digested ~100 kDa band that appeared upon treatment of Ln-

332 with matriptase produced nineteen different peptides (grey) that were clearly 

identical to amino acid sequences of Ln-332 β3 chain. 
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against the SWISS PROT and NCBI databases. The Ln-332 protein band contained its 

three chains: 3 (190 kDa), β3 (145 kDa) and 2 (155 kDa). In addition, the digested 

~100 kDa band that appeared upon treatment of Ln-332 with matriptase produced 19 

different peptides that were identical to amino acid sequences of the Ln-332 β3 chain 

(Figure 20; peptides in gray). 

 

Migration of DU145 cells is enhanced on Laminin-332 cleaved by matriptase 

Since previous studies have shown that cleavage of the Ln-332 β3 chain by other 

proteases leads to changes in cell migration (Hintermann and Quaranta 2004; Tripathi, 

Nandana et al. 2008), we also investigated the effect of the cleavage of Ln-332 β3 chain 

by matriptase on prostate cancer cell migration. First, we examined the motility of 

DU145 cells using modified Boyden chambers coated with either untreated Ln-332, 

matriptase- cleaved Ln-332, PBS, or a mixture containing Ln-332, matriptase, and KD1. 

The number of cells that passed through filters after 5 h were then manually counted 

under a microscope. Cells seeded in chambers coated with matriptase-cleaved Ln-332 

migrated significantly more (~1.6-fold) than cells on uncleaved Ln-332 (Figure 21A and 

B). In addition, cells in chambers coated with the Ln-332, matriptase, and KD1 inhibitor 

mixture migrated significantly less than cells on matriptase-cleaved Ln-332, which was 

similar to migration levels on untreated Ln-332.  
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Figure 21: Migration of DU145 cells is enhanced on Ln-332 cleaved by matriptase. (A) 

DU145 prostate cancer cell migration was measured using Boyden chambers coated with 

either untreated Ln-332 or matriptase-cleaved Ln-332. Some filters were also coated with 

either PBS or a mixture containing Ln-332, matriptase, and KD1. The number of cells 

that passed through filters after 5 h were then manually counted under a microscope.  (B) 

Cells seeded in chambers coated with matriptase-cleaved Ln-332 exhibited significantly 

more migration (~1.6-fold) than cells on uncleaved Ln-332 (N=2, in duplicate; P<0.001). 

Further, cells in chambers coated with the Ln-332, matriptase, and KD1 inhibitor mixture 

exhibited significantly less migration than those cells on matriptase-cleaved Ln-332 

(N=2, in duplicate; P<0.001), similar to levels on untreated Ln-332.  
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Cell adhesion of DU145 cells exhibit no significant difference on matriptase-cleaved Ln-

332 

 To determine if cellular adhesion of DU145 cells was different on matriptase 

cleaved Ln-332 versus untreated Ln-332 substrate we performed cell adhesion assay as 

described in Materials and Methods. We coated Ln-332 alone (L), Ln-332 + matriptase 

(LM), Ln-332 + matriptase + KD1 and PBS onto 96-well tissue culture treated plates. 

DU145 cells were allowed to adhere for 1 h at 37ºC in serum-free medium. Unbound 

cells were removed by washing and adherent cells were fixed, stained with crystal violet, 

solubilized; and absorbance was read at 560 nm.  We found that DU145 cells had no 

significant difference in cell adhesion on matriptase cleaved Ln-332 as compared to 

untreated Ln-332 or on mixture with Ln-332, matriptase and KD1 inhibitor. Results 

represent mean ± S.D. (N= 2, in duplicates; P < 0.05) (Figure 22). 

 

Matriptase-overexpression enhances LNCaP cell migration on Laminin-332 

Since our experiments indicated that DU145 cell migration was increased on matriptase-

cleaved Ln-332, we decided to also examine migration of LNCaP prostate cancer cells 

stably overexpressing matriptase, LNCaP-mt (described in materials and methods).  

Migration of these overexpressor cells was compared to that of wild-type LNCaP cells 

(LNCaP-wt) first using modified Boyden chamber assays.  Prior to performing assays, we 

verified LNCaP cell expression by RT-PCR and western blot (Figure 23). These results 

indicated that LNCaP-mt cells expressed ~2 times more matriptase than LNCaP-wt cells. 

For Boyden chamber assays, inserts were coated with either Ln-332 or PBS, and cells 

were allowed to migrate for 24 h prior to counting the number of cells that passed  
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Figure 22:  DU145 cells exhibit no change in cell adhesion on matriptase-cleaved Ln-

332. Ln-332 alone (L), Ln-332 + matriptase (LM), Ln-332 + matriptase + KD1 (LMI) 

and PBS were coated onto 96-well plates. DU145 cells were allowed to adhere for 1 h at 

37ºC in serum-free medium. Unbound cells were washed off; adherent cells were fixed, 

stained (crystal violet), and solubilized; and absorbance was read at 560 nm.  Results 

represent mean ± S.D. (N= 2, in duplicates; P < 0.05)  

 

 

 

 

Figure 23: Matriptase expression of both types of LNCaP cells was confirmed by 

Western blot and RTPCR. Band intensity for each sample was normalized to its 

corresponding -actin control.  These results indicated that LNCaP-mt cells express ~2 

times more matriptase than LNCaP-wt cells. 
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through filters. As expected, LNCaP-mt cells exhibited significantly more migration than 

LNCaP-wt cells on Ln-332 (~3-fold; Figure 24A and B). In contrast, both cell types 

migrated minimally on PBS-treated Transwells.  

 

Matriptase-overexpression enhances cell speed and directional persistence 

  In order to acquire more detailed information about the motility of LNCaP cells, 

we also performed single-cell motility assays using high-content microscopy in 

collaboration with Alka Potdar (Department of Chemical Engineering).  This technique 

involves tracking individual cell movement over time using video microscopy (Figure 

25). In contrast to static Boyden chamber assays, this approach allows inspection of 

dynamic cell movement in real time. Further, single-cell level parameters can help to 

model and predict population level behavior.   

 In line with previous Boyden chamber results, the LNCaP-mt population moved 

significantly faster than LNCaP-wt cells using this technique (Figure 26). In addition, 

LNCaP-mt cells also moved in a more directed manner than LNCaP-wt cells, leading to 

significantly increased directionality ratios for this cell type (Figure 27A). This ratio 

represents the linear distance a cell travels during an assay (d) versus the total distance 

traveled by that cell (t), which essentially captures cell persistence, or the tendency of a 

cell to continue moving in a particular direction without turning (Pankov, Endo et al. 

2005).   

 



 76 

 

 

Figure 24: Matriptase-overexpression enhances LNCaP cell migration on Ln-332. (A) 

Boyden chamber assay was used to examine cell migration of both LNCaP-wt and 

LNCaP-mt cell types. Transwells were coated with either Ln-332 (10 g/ml) or PBS, 

cells were allowed to migrate for 24 h, and cells that migrated across the filter were fixed, 

stained, and counted manually under a microscope. (B) LNCaP-mt cells exhibited 

significantly more migration than LNCaP-wt cells on Ln-332 (~3-fold; N=3, in duplicate; 

P<0.001). In contrast, both cell types migrated minimally on PBS-treated inserts.  

 

 

  

Figure 25:  Migration movie tracks of LNCaP-mt and LNCaP-wt cells. Cells plated on 

dishes coated with Ln-332 were monitored using phase-contrast optics in a Zeiss 

Axiovert 200 M inverted microscope with camera.  Images were both acquired and cells 

tracked using Metamorph. Cell tracks are shown here in different colors for both cell 

types. LNCaP-mt (A) cells have longer tracks as compared to LNCaP-wt cells (B).  

A B 

A B 
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Figure 26: Matriptase-overexpression enhances cell speed. Individual cell speed was 

measured using Metamorph software. The LNCaP-mt cell population moved significantly 

faster than LNCaP-wt cells using this technique (N=32 and 35 cells, respectively; 

P=0.006). Box and whisker plots show the population mean (bold horizontal line), 25
th

 

and 75
th

 quartiles (box), and 95% confidence intervals (whiskers) overlaid on raw single-

cell data (scatter).  

 

 

 Windrose plots were also created by overlaying single cell tracks onto a single 

origin (0,0), in order to qualitatively assess the persistence for each cell type (Figure 27 

B). Twelve-hour trajectories of LNCaP-wt (green) and LNCaP-mt (red) cells are shown, 

which indicate that matriptase overexpressing cells are generally more persistent and 

travel further than wt cells. The concentric circles superimposed on the plots indicate the 

root mean squared displacement for each cell population after 12 h. This value was 

obtained by first calculating the mean squared displacement (MSD) for each cell 

population, using Equation 1, where 



r (t) is the position vector of the cell after time t,  
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

r (0)  is the position at the beginning and   denotes the average over the entire cell 

population, followed by taking the square root of the MSD. 

 



MSD  (r (t) r (0))2

RMSD  MSD

                     [1] 

 

 

 

Figure 27: Matriptase-overexpression enhances directionality ratio and directional 

persistence.  (A) LNCaP-mt cells were also found to move in a more directed manner 

than LNCaP-wt cells, leading to significantly increased directionality ratios for this cell 

type, which represents the linear distance a cell travels during an assay (d) versus the total 

distance traveled by that cell (t).  

(B) Windrose plots were made to qualitatively examine the persistence for these cell 

types; these plots overlay all cell tracks (from x and y coordinates) starting with a 

common origin (0,0). Twelve-hour trajectories of LNCaP-wt (grey) and LNCaP-mt 

(black) cells are shown, which indicate that, in general, the matriptase overexpressing 

cells are more persistent and travel further than wt cells. The circles superimposed on the 

Windrose plots indicate the root mean squared dispersal for each cell type.  
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 These results show that the LNCaP-mt cell population covered a greater area than 

the LNCaP-wt population. Taken together, all single-cell motility parameters indicate that 

the matriptase overexpressing cells exhibit a different migration phenotype than wild-

type cells. 

 

Conclusions 

 In this report, we demonstrate for the first time that matriptase cleaves Ln-332. 

Using western blot analysis and mass spectrometry, we demonstrated that this cleavage 

occurs specifically in the β3 chain. We also determined that this event could be inhibited 

by a matriptase inhibitor, KD1, confirming specificity of the cleavage. In addition, we 

found that DU145 prostate cancer cell migration was significantly enhanced on 

matriptase-cleaved Ln-332, which was also reversible by treatment with KD1. Similarly, 

matriptase-overexpressing LNCaP cells exhibited increased motility on Ln-332, 

compared to wild-type cells.  Interestingly, single-cell motility analysis revealed that 

these overexpressor cells exhibited both a faster and more persistent phenotype. This 

study suggests a physiological role for matriptase in proteolytic cleavage of Ln-332 and 

gives new insight into possible mechanisms for matriptase in cancer progression. 
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CHAPTER V 

 

DISCUSSION 

In this study, we found that the processing of Ln-332 by TTSPs, hepsin and 

matriptase enhances cell motility, and therefore might contribute to invasion processes in 

prostate cancer progression. The findings of this thesis are relevant to two important steps 

of the metastatic cascade: 1) breach of the basement membrane and 2) cell migration 

(Talmadge and Fidler 2010). Specifically, we focused on Ln-332, an essential basement 

membrane component, and hepsin & matriptase, members of the TTSP family—all of 

which are important players in prostate cancer progression (Szabo and Bugge 2008; 

Bugge, Antalis et al. 2009). The role of Ln-332 in human prostate cancer has been of 

special interest because it is downregulated or lost in human prostate cancer, a clear 

contrast with other tumor types where Ln-332 is overexpressed (Hao, Jackson et al. 2001; 

Nagle 2004; Calaluce, Beck et al. 2006).   

The TTSPs hepsin & matriptase are overexpressed in some cancers, including 

human prostate cancer, and their expression has been shown to correlate with disease 

progression; however the mechanism of action of both TTSPs remains to be elucidated 

(Stephan, Yousef et al. 2004; List, Bugge et al. 2006; List, Szabo et al. 2006; Uhland 

2006; Xuan, Schneider et al. 2006; Bugge, List et al. 2007; List, Kosa et al. 2009). 

Hepsin, for example, is upregulated in more than 90% of human prostate cancer cases 

(Stephan, Yousef et al. 2004; Landers, Burger et al. 2005). Matriptase is reportedly 

overexpressed in a wide variety of epithelial tumors, including breast, cervix, esophagus, 

liver, mesothelium, prostate and colorectal cancers (Oberst, Johnson et al. 2002; Kang, 
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Dolled-Filhart et al. 2003; Santin, Cane et al. 2003; Hoang, D'Cunha et al. 2004; Lee, 

Yong Song et al. 2005; Riddick, Shukla et al. 2005; Tanimoto, Shigemasa et al. 2005; 

Cheng, Tzao et al. 2006; Saleem, Adhami et al. 2006; Tsai, Chao et al. 2006; Tsai, Chu et 

al. 2008), and its overexpression correlates with tumor grade in prostate cancer (Riddick, 

Shukla et al. 2005; Saleem, Adhami et al. 2006; Warren, Twohig et al. 2009). 

 The mechanism of action of these proteases in tumor progression remains to be 

determined; however the possibilities include activation of growth factors, receptors, 

proteases, and the processing of ECM components (Bugge, Antalis et al. 2009). For 

example, in prostate and colon cancer cells, activation of pro-HGF to HGF by matriptase 

was shown to be inhibited by using siRNA to inhibit matriptase (Forbs, Thiel et al. 2005).  

It has been shown that overexpression of matriptase in mouse epidermis induces 

spontaneous skin lesions in the absence of genetic alteration and independent of 

carcinogen exposure, effects that can be abolished by coexpression of its inhibitor, HAI-1 

(List, Szabo et al. 2005). The equilibrium between matriptase and its inhibitor HAI-1 

appears to be the key to the normal functioning of this enzyme. If this equilibrium is 

altered then activities of matriptase lead to disease conditions like cancer (Oberst, 

Johnson et al. 2002). The Matriptase: HAI-1 ratio is increased in ovarian, prostate 

(Saleem, Adhami et al. 2006) and colorectal cancer carcinoma (Vogel, Saebo et al. 2006). 

These studies have established that matriptase is an important molecule for physiological 

and pathological pericellular proteolysis and that its activity must be tightly regulated to 

maintain the epithelial homeostasis. Altered matriptase expression, especially an increase, 

caused malignant transformation.  
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Intuitively, the inversely-correlated expression between Ln-332 and hepsin (or 

matriptase) in prostate cancer led us to hypothesize that an interaction between these 

proteins may occur during disease progression. 

In this study, we identified and then focused on a novel substrate of hepsin and 

matriptase: Ln-332. The role of laminin-332 in cancer progression is yet to be completely 

defined; Ln-332 could have different mechanisms of action depending on the type of 

cancer. Expression of Ln-332 is altered in many cancers: it is increased in colon (Pyke, 

Romer et al. 1994; Pyke, Salo et al. 1995), cervical (Noel, Fernandez-Aguilar et al. 2005) 

and oral cancers (Gasparoni, Della Casa et al. 2007); on the other hand it is decreased in 

lung (Akashi, Ito et al. 2001) and bladder cancers (Sathyanarayana, Maruyama et al. 

2004). In the case of prostate cancer expression of Ln-332 is entirely lost (Nagle, Hao et 

al. 1995; Davis, Cress et al. 2001; Hao, Jackson et al. 2001). We propose the loss of Ln-

332 in human prostate cancer could be attributed to processing by the TTSP, hepsin and 

matriptase.  

 We have found that Ln-332 is cleaved by the serine proteases hepsin and 

matriptase, both of which are overexpressed in human prostate cancer (Stephan, Yousef 

et al. 2004; Riddick, Shukla et al. 2005; Saleem, Adhami et al. 2006; Warren, Twohig et 

al. 2009). Specifically, the experimental evidence that hepsin and matriptase 

proteolytically cleave the Ln-332 β3 chain are as follows: 1) treatment of purified Ln-332 

with catalytically active hepsin or matriptase produces a ~100 kDa fragment both in a 

time- and dose-dependent fashion; 2) production of this fragment is abolished by KD1, an 

inhibitor of hepsin and matriptase; 3) catalytically-inactive hepsin (EGR-hepsin) does not 

promote cleavage; 4) the cleaved (~100 kDa) fragment reacts by Western blot with 



 83 

antibodies against the C-terminal region of the β3 chain; and 5) the sequences of peptides 

from the cleaved ~100 kDa band, determined by mass spectrometry, are identical to 

peptides from the C-terminal region of rat Ln-332 β3 chain. 

 The human genome includes at least 500 proteases (Puente, Sanchez et al. 2003). 

Proteolysis is an important step in both physiological and pathological conditions (Lopez-

Otin and Matrisian 2007; Lopez-Otin and Bond 2008; Rowe and Weiss 2008; Lopez-Otin 

and Hunter 2010). For example, the cleavage of Ln-332 increases cell migration 

(Hintermann and Quaranta 2004; Marinkovich 2007). The mechanism involves DIII, a 

Ln-332 domain, that is released by MMPs and binds to EGFR to stimulate mitogen-

activated protein kinase (MAPK) signaling, MMP-2 gene expression, and cell migration 

(Schenk, Hintermann et al. 2003; Schenk and Quaranta 2003). Also, the processing of 2 

chain may influence Ln-332 turnover in basement membrane and affect epithelial 

morphogenesis (Koshikawa, Schenk et al. 2004). Several proteinase systems are reported 

to cleave Ln-332 (Schenk and Quaranta 2003; Hintermann and Quaranta 2004), but we 

propose that the cell surface proteases of the TTSPs family are more involved in 

specialized physiological and pathological events that require direct interactions with cell 

surface (Takeuchi, Harris et al. 2000),  or direct access to ECM components.  

 Due to the limited availability of purified human Ln-332, most of the studies in 

this field (including ours) have been carried out using purified rat Ln-332.  However, due 

to the functional interchangeability of ECM components across mammalian species 

(Yurchenco, Amenta et al. 2004), we are confident that similar processing of human Ln-

332 by matriptase and hepsin occurs.  Nonetheless, we sought additional evidence and 

therefore searched for the hepsin cleavage site on Ln-332, both in rat and human. N-
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terminal sequencing of the hepsin-generated Ln-332 3 fragment identified the hepsin 

cleavage site at Arg
245

-Leu
246 

of the 3 chain of rat Ln-332.  The sequence around this 

cleavage site, SQLR↓LQGSCFC, is in agreement with the previously identified target 

sequences for hepsin. Using a tetrapeptide positional scanning-synthetic combinatorial 

library (PS-SCL) screening approach, Herter et al. identified optimal P4-P1 cleavage 

motifs for hepsin (P1 represents the residue immediately N-terminal to the cleavage site) 

on the basis of peptide profiling and amidolytic activity measurements: hepsin exhibits a 

strong preference for arginine (R) at the P1 position, and moderately favored threonine 

(T), leucine (L), or asparagine (N) at P2, glutamine (Q) or lysine (K) at P3, and proline 

(P) or lysine (K) at the P4 position (Herter, Piper et al. 2005). Accordingly, we found that 

hepsin cleaves Ln-332 after a QLR sequence (P3-P1). It is to be noted that the target 

sequence for pro-HGF, which turned up at the top of the list of hepsin substrates 

identified by Herter et al. (Herter, Piper et al. 2005), is KQLR, almost identical to the Ln-

332 hepsin target sequence, SQLR. The only difference is at the P4 position (L for pro-

HGF and S for Ln-332), which was found to be more promiscuous and less critical than 

P3-P1 (Herter, Piper et al. 2005). The same author also identified serine as a possible 

residue in position P4 (Figure 1 in reference (Herter, Piper et al. 2005)).  

Visual inspection for homology showed that the hepsin substrate sequence 

SQLR↓LQGSCFC is completely conserved between rat, mouse and human Ln-332 β3 

sequences (NCBI data base rat LAMB3 accession- XM_001069930, mouse LAMB3 

accession- NM_008484 and human LAMB3 accession- NM_000228). Sequence 

conservation strongly supports a functional significance of this hepsin cleavage site. 
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Nonetheless, cleavage of human Ln-332 could not be verified directly, because purified 

human Ln-332 is not available at this time, and remains to be formally determined. 

 Interestingly, the SQLR
245

 is repeated downstream in the rat Ln-332 β3 sequence, 

SQLR
743

. However, this is an unlikely cleavage site of hepsin for three reasons: 1) we 

found no evidence of cleavage products matching a corresponding molecular weight; 2) 

the sequence SQLR
743

 is not conserved in human Ln-332 β3 chain; and 3) residue 743 

falls within the predicted coiled-coil region of Ln-332, presumably inaccessible to 

proteases. Therefore, it is unlikely that SQLR
743

 is cleaved by hepsin. However, once the 

residue 245 site is cleaved, it is theoretically possible that the coiled coil opens up and 

exposes SQLR
743

, allowing for a second hepsin-induced cut. Because this double 

cleavage could only occur in the rat protein (SQLR
743

 is absent in human), we performed 

a time-course experiment to determine if cleavage occurred at this second site. We did 

not see additional cleavage product, even at longer incubation times (Figure 1B). In 

summary, the SQLR
245

 cleavage sequence, directly identified by N-terminal sequencing, 

appears to be the main cleavage site of Ln-332 by hepsin. 

 Among the Ln chains expressed in prostate, α1 (Ln-111) is expressed in the fetus 

and newborn, while α3 (Ln-332) and α5 (Ln-511/Ln-521) are expressed in adults (Nagle 

2004). Ln-511/Ln-521 and Ln-211 are present in the normal gland and prostate cancer. In 

contrast, Ln-332 is present in normal gland and lost in prostate cancer (Nagle 2004). 

Therefore, it is of great interest for studying prostate cancer progression that Ln-332 is a 

substrate for hepsin: Ln-332 is the only heterotrimer featuring the β3 chain. It is unlikely 

that the other laminin beta chains, β1 and β2, are substrates for hepsin since, while 

homologous to β3, they do not contain sequences resembling the hepsin substrate 
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sequence (SQLR↓LQGSCFC). However, future studies will need to experimentally 

confirm whether other ECM macromolecules are substrates for hepsin.  

We tried N-terminal sequencing to determine the cleavage site of matriptase on 

Ln-332 using a similar approach as to the hepsin experiments. However, the same 

approach failed to determine the exact cleavage site for matriptase on Ln-332, possibly 

due to the fact that very large proteins typically do not sequence well, sometimes not at 

all: the random cleavages add up and obscure the true N-terminal amino acid peaks. 

However, mass spectrometry and western blotting analyses indicated that catalytically 

active recombinant matriptase also cleaves the 3 chain of Ln-332 and produces a novel 

~100 kDa fragment. It appears that matriptase might not be cleaving Ln-332 at the same 

site as hepsin. The mass spectrometry data for the matriptase cleaved Ln-332 shows a 

peptide fragment (
230

GSYPPSAYFAVSQLR
245

) that is located before the cleavage site of 

hepsin (R
245

-L
246

) on Ln-332 3 chain. Although without N-terminal sequencing and 

further experimental proof it cannot be stated definitively, based on the mass 

spectrometry data matriptase might be cleaving before the hepsin cleavage site on Ln-332 

3 chain. If matriptase cleavage event of Ln-332 3 chain occurs before hepsin cleavage, 

then it is possible that matriptase cleavage results in exposing the hepsin cleavage site on 

Ln-332 3 chain facilitating hepsin processing of Ln-332. It is difficult to speculate 

which protease might be cleaving Ln-332 before the other, or if both the cleavages occur 

at the same time, or if only one protease cleaves Ln-332 at one time. Further, it might be 

possible that one cleavage event facilities the other. Extensive experiment research needs 

to be done to delineate these proteolytic events. 
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It is intriguing that the hepsin and matriptase cleavage sites are located around the 

predicted boundary between domains V and VI of the Ln-332 β3 chain (Aumailley, 

Bruckner-Tuderman et al. 2005). It is therefore possible that hepsin and matriptase 

cleavages release domain VI of β3 chain, a domain important for the interaction of Ln-

332 with type VII collagen (Chen, Marinkovich et al. 1999; Brittingham, Uitto et al. 

2006). If hepsin and matriptase were to disrupt this interaction, at least two events could 

be triggered: 1) hemidesmosome formation would be downregulated or prevented, 

because β3 chain domain VI has a key role in their assembly (Jones, Hopkinson et al. 

1998; Litjens, de Pereda et al. 2006; Waterman, Sakai et al. 2007). 2) Domain FNC1, the 

specific region of type VII collagen that physically interacts with Ln-332 β3 chain (Chen, 

Marinkovich et al. 1999), would be free and could promote tumor invasion (Ortiz-Urda, 

Garcia et al. 2005). Taken together, hepsin and matriptase cleavage of Ln-332 would be 

involved in epithelial organization and in tumor development. Interestingly, it has 

previously been reported that hemidesmosomes are lost in prostate cancer (Nagle, Hao et 

al. 1995). Determining if the cleavage of Ln-332 by hepsin and matriptase induces a loss 

of interaction between Ln-332 and type VII collagen will be critical for a deeper 

understanding of the role of hepsin and matriptase in prostate cancer.  

Interestingly, our laboratory and others have shown that MT1-MMP-mediated 

cleavage of Ln-332 impacts the expression of this ECM protein (Koshikawa, Schenk et 

al. 2004; Riggins, Mernaugh et al. 2010). Further, the authors even hypothesized that 

MT1-MMP may regulate Ln-332 turnover. Based on these studies, it is tempting to 

speculate that TTSPs also regulate Ln-332 expression via cleavage of the protein. To 
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determine this it would be necessary to first determine the expression level of Ln-332 in 

hepsin and matriptase knockout and overexpressing mouse models in future studies.  

 In this study, we have shown that hepsin-induced cleavage of Ln-332 correlates 

with an enhanced migration of prostate cancer cells plated on Ln-332. Similar results 

were obtained when matriptase was used. Furthermore, hepsin-overexpressing LNCaP-34 

cells also displayed significantly increased migration on Ln-332 compared to low hepsin-

expressing LNCaP-17 cells. We also found that LNCaP prostate cancer cells 

overexpressing matriptase migrated significantly more on Ln-332 than their wild-type 

counterparts.  The basis for this enhancement remains to be elucidated. One possible 

explanation is that domain VI of Ln-332 β3 chain may support ―non-specific‖ adhesion 

with the filters used in the migration assays, an artifactual cell-anchoring effect that is 

then released by hepsin and matriptase. Nonetheless, this enhanced, hepsin/matriptase-

induced cell migration fits well with the pro-tumorigenic and pro-invasive effects linked 

to hepsin and matriptase in animal tumor models (Klezovitch, Chevillet et al. 2004; List, 

Szabo et al. 2005). These results can also explain why LNCaP-34 tumors grew larger 

tumors than LNCaP-17 in an orthotopic prostate cancer model, and why only LNCaP-34 

tumors showed 100% contra-lateral prostate invasion (Li, Wang et al. 2009). For 

matriptase, its siRNA-induced inhibition in prostate cancer cells reduced their invasive 

growth potential in vitro, an effect that can be reproduced with a synthetic matriptase 

inhibitor (Forbs, Thiel et al. 2005). Furthermore, a small molecule matriptase inhibitor 

reduced tumor growth in prostate cancer xenograft models (Galkin, Mullen et al. 2004). 

Along the same lines, single-cell motility analysis of matriptase-overexpressing LNCaP 

cells showed that on Ln-332, they migrated faster and more persistently than the 
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corresponding control cells. Taken together in the context of our results, these reports 

constitute potential evidence that cleavage of Ln-332 by hepsin or matriptase may occur 

in vivo. 

Virtually all cell migration studies are conducted at the population level (e.g., 

Boyden chamber), whereby a cell population is represented by an average measurement 

and some range of error. In this study, we investigated cell motility both at the population 

level and at the single-cell level using time-lapse video microscopy for slightly different 

purposes.  Boyden chamber assays captured an end-point population level behavior of 

cells seeded at a high density; in contrast, single cell assays were performed at a lower 

cell density, data were collected dynamically and evaluated both at the single-cell and 

ensemble levels.   

Recently, it was reported that two different phenotypic outcomes for cell 

migration may occur in vitro, dependent upon whether an investigator uses single-cell or 

cohesive migration strategies (Giampieri, Manning et al. 2009).  Also, it is thought that in 

vivo single-cell migration is required for metastasis through blood, whereas cohesive 

migration is required for lymphatic metastasis (Ozerlat 2009). In other words, studying 

migration using these two different approaches investigates two different questions. In 

our case, change(s) in the migratory phenotype due to cleavage of Ln-332 by matriptase 

produced a similar result using both approaches. Intuitively, the increased number of 

LNCaP-mt cells that crossed through Boyden chambers can be explained by the single 

cell results, which show that matriptase overexpressing cells have increased speed and 

persistence on Ln-332. Persistence in cell motion can be defined as the property by which 

a cell continues to migrate in one direction without much deviation (before changing its 
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path) (Pankov, Endo et al. 2005). Studies have shown that cancer cell migration is 

directionally persistent, for instance in the case of highly invasive cancers like 

neuroepithelial tumors (Deisboeck, Demuth et al. 2005) or epithelial cell overexpressing 

HER2 (Kumar, Zaman et al. 2006). In addition, genetic modifications of biological 

molecules in a cell line have previously been shown to change the intrinsic pattern of cell 

migration (Pankov, Endo et al. 2005). To our knowledge, our report is the first study to 

show that overexpression of a cell surface protease leads to increased cell speed and 

persistence of cells plated on its substrates.  

At the physiological level, hepsin overexpression has been linked to human 

prostate cancer in multiple studies, (Dhanasekaran, Barrette et al. 2001; Luo, Duggan et 

al. 2001; Magee, Araki et al. 2001; Ernst, Hergenhahn et al. 2002; Ernst, Hergenhahn et 

al. 2002; Lai, Wu et al. 2004; Stephan, Yousef et al. 2004; Halvorsen, Oyan et al. 2005), 

and reported to be as much as 10-times higher (Stephan, Yousef et al. 2004). However, 

the mechanism(s) by which it affects tumor progression have remained elusive 

(Vasioukhin 2004). When hepsin was specifically overexpressed in mouse prostate 

epithelium, it did not cause changes in cell proliferation or differentiation, but rather 

correlated with areas of disorganized basement membrane and weak or absent staining of 

Ln-332 (Klezovitch, Chevillet et al. 2004). Moreover, when hepsin was introduced in a 

mouse model of prostate cancer, the LPB-Tag 12T-7f mouse, the tumor progression was 

accelerated and the bigenic mice developed metastases to the bone making it the only 

mouse model to develop bone metastasis. This feature is of relevance to the field of 

prostate cancer since the predominant cause of mortality and morbidity in human prostate 

cancer patients is due to bone metastases. However, one caveat of this model is that it 
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develops a mixture of adenocarcinoma and neuroendocrine tumors at the primary site and 

the bone metastases are neuroendocrine in nature. In contrast, human prostate tumors are 

predominantly adenocarcinomas at the primary site and metastases; metastases that are 

neuroendocrine in nature are very rare in human prostate cancer (Grignon 2004). Another 

existing mouse model for prostate cancer is the c-myc model that develops 

adenocarcinoma by 6 months but fails to develop metastases (Ellwood-Yen, Graeber et 

al. 2003). In addition, the myc mice have very low endogenous levels of hepsin. In order 

to test if the over-expression of hepsin in the myc model would result in further 

progression, Dr. Matusik’s laboratory at Vanderbilt University crossed the c-myc mice 

with the hepsin transgenic mice. Interestingly, the hepsin/myc transgenic mice showed 

progression of tumorigenesis at the primary site including development of higher grade 

tumors as compared to the myc alone mice, however the bigenic mice did not show 

metastasis (Nandana, Ellwood-Yen et al. 2010). These results indicate that hepsin 

overexpression, although incapable of initiating tumorigenesis in the prostate, is 

sufficient to drive an already existing tumor. These results also indicate that hepsin 

expression is insufficient to develop adenocarcinoma metastases. One possible 

explanation of why hepsin expression caused neuroendocrine metastases in the 12T-7f 

model is due to the extreme aggressive nature of neuroendocrine tumors. Since a mouse 

model of human prostate cancer would seek to incorporate as many of its features, the 

development of a mouse model of human prostate cancer that replicates all its features 

including the development of adenocarcinoma metastases to the bone is still an open 

issue in the field. In collaboration with Dr. Matusik’s group, we studied whether the 

increase in tumorigenesis in the hepsin/myc transgenic mice is correlated with Ln-332 
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degradation. Although Klezovitch et al have shown that hepsin overexpression in vivo 

resulted in decreased staining of Ln-332, the authors did not provide direct evidence of 

cleavage of Ln-332 by hepsin (Klezovitch, Chevillet et al. 2004). Therefore we 

investigated by Western blot analysis the tumor tissues from 12-month old wildtype, myc 

and hepsin/myc mice. The tissue lysate of wild type mice showed intact Ln-332 β3 chain 

(145 kDa), the myc tumor displayed a 100 kDa band, and in the case of the hepsin/myc 

tumor this 100 kDa band was further diminished due to degraded Ln-332. These in vivo 

data provides biological significance to our in vitro results of cleavage by hepsin.  

Further studies need to be performed to determine the effect of this cleavage of 

Ln-332 on the formation of prostate tumors in vivo. A follow-up experiment to our study 

would be to inject genetically-modified human prostate cancer cells with different hepsin 

or matriptase levels into mouse prostates and evaluate tumor progression and lesion 

formation of these cells in vivo. For example, it has been reported that PC3 cells, a human 

prostate cancer cell line, grow into primary tumors and metastasizes to lymph nodes 

when orthotopically injected into the mouse prostate (Bastide, Bagnis et al. 2002). 

Therefore, we would expect that hepsin overexpressing PC3 cells will form larger, more 

aggressive tumors, along with enhanced or accelerated metastases. This effect would be 

accompanied with reduced Ln-332 staining, more proliferation, and reduced apoptosis in 

these tumors. On the contrary, we would anticipate that matriptase knock-down PC3 cells 

will feature increased Ln-332 staining, less aggressive, smaller tumors, and reduced 

number or increased latency of metastases formation. Another area of interest that this 

study could lead to is to the elucidation of role of hepsin, and specifically the cleavage of 

Ln-332 by hepsin, on the formation of prostate cancer bone lesions in vivo. Bone is the 
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most common site of metastases in human prostate cancer, and is a significant cause of 

morbidity and mortality in patients (Mundy 2002; Higano 2008). Prostate cancer cells 

that metastasize from the primary tumor typically form osteoblastic lesions in the bone; 

however, the mechanisms determining the osteoblastic response is largely unknown 

(Bonfil, Dong et al. 2007).  Recently, the expression of hepsin was found higher in bone 

metastases versus liver and lymph node metastases in human prostate cancer metastases 

(Morrissey, True et al. 2008), arguing that the bone microenvironment may influence 

hepsin expression in tumor cells. Human prostate tumors have two marked features i) 

hepsin is overexpressed (Stephan, Yousef et al. 2004) and ii) the majority of the bone 

metastases in human prostate cancer are osteoblastic in nature (Bonfil, Dong et al. 2007). 

Therefore it might be hypothesized that hepsin expression leads to the osteoblastic nature 

of the prostate cancer bone metastases. Interestingly, another correlation along this 

direction is that PC3 cells that do not endogenously express hepsin form osteolytic 

lesions when directly placed in bone environment (Armstrong, Miller et al. 2008). 

Therefore, to further address the role played by hepsin in the bone physiology, an elegant 

experiment would be to place hepsin overexpressing PC3 cells directly in contact with 

bone and evaluate the nature of lesions formed. One possible action of hepsin in bone 

metastases is to cleave Ln-332, as Ln-332 is expressed in the bone (Klees, Salasznyk et 

al. 2005). This could be tested by grafting PC3 cells stably overexpressing hepsin into the 

bone, using the mouse intra-tibial inoculation model (Yamamoto, Bonfil et al. 2007). We 

anticipate that hepsin overexpressing PC3 cells will form osteoblastic lesions in the bone. 

Another possibility is to use the intra-cardiac inoculation model (Schneider, Kalikin et al. 

2005), a model in which cells travel through the blood stream, reach the bone and form 



 94 

lesions. One can also use the LNCaP cells. Although intra-tibial inoculation of LNCaP 

cells have been reported to have failed to produce lesions in bone, it will be interesting to 

examine if hepsin over-expression in LNCaP cells promotes lesions.  Also, in case the 

bone lesions do not show Ln-332 expression, one could co-inject purified Ln-332 with 

the cells to determine the effect of hepsin over-expression on Ln-332.   

In our in vitro experiments, Ln-332 cleavage by hepsin and matriptase was 

detectable at an enzyme: substrate ratio of 1:1.5 and 1:0.3 respectively, although maximal 

yield of cleavage occurred at the enzyme:substrate ratio of 1:0.15 and 1:0.03, 

respectively.  The need for this high ratio can be explained by the multi-chain nature and 

high molecular size of Ln-332 (490 kDa), which may hinder accessibility of cleavage 

sites in vitro.  Accordingly, other studies focusing on MMP-induced cleavage of laminins 

used high enzyme: substrate ratios in vitro (Giannelli, Falk-Marzillier et al. 1997; Pirila, 

Sharabi et al. 2003; Veitch, Nokelainen et al. 2003; Remy, Trespeuch et al. 2006; Wang, 

Sun et al. 2006). In addition to substrate availability, proteolysis also depends on 

additional factors like temperature, pH, cations, and the relative topology of enzyme and 

substrate. In this respect, it is worth stressing the transmembrane location of the serine 

proteinase, since this topology places it in close vicinity to the BM (Somoza, Ho et al. 

2003). According to the structure of hepsin, its catalytic domain is extracellular and 

should lie flat on the plasma membrane (Somoza, Ho et al. 2003), i.e. in an ideal position 

to access BM substrate such as Ln-332.  

Under normal physiological conditions, proteolysis is tightly regulated. However 

in the case of disease, there can be increased or decreased proteolytic activity. Blocking 

abnormal proteolytic activity has been a major area of interest for the pharmaceutical 
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industry. For example, warfarin, a heparin and vitamin K analogue, has been used to treat 

thrombosis for the last 50 years (Gustafsson, Bylund et al. 2004). More recently, 

angiotensin-converting enzyme (ACE) inhibitors have been introduced to treat heart 

attack, heart failure and hypertension (Acharya, Sturrock et al. 2003). However, clinical 

trials involving small molecule inhibitors targeting MMPs failed, even if the 

overexpression of MMPs in cancerous tissues had led to the notion that proteases help 

tumor progression (Coussens, Fingleton et al. 2002). Small molecule MMP inhibitors had 

disappointing results probably because of their broad spectrum and the lack of detailed 

knowledge of their specific substrates: the best possible way to delineate the role of any 

proteinase in normal and disease condition is to identify the physiological substrates of 

the proteinase. 

Overall, our findings raise the possibility that one mechanism whereby hepsin/ 

matriptase contribute to human prostate cancer progression is via its proteolytic activity 

on Ln-332 which results in increased migration. Identifying other physiological 

substrates of these proteases could help in unraveling their activity in diseases, such as 

cancer. Our study raises the possibility that other substrates of hepsin/matriptase, such as 

blood coagulation factors (Kazama, Hamamoto et al. 1995), pro-hepatocyte growth 

factor, and pro-urokinase-type plasminogen activator (Kirchhofer, Peek et al. 2005; 

Moran, Li et al. 2006), macrophage-stimulating protein1 (MSP-1), prostasin zymogen, 

Trask (transmembrane and associated with src kinases) and protease-activated receptor-2 

(Lee, Dickson et al. 2000; Takeuchi, Harris et al. 2000; Bhatt, Erdjument-Bromage et al. 

2005; Netzel-Arnett, Currie et al. 2006; Bhatt, Welm et al. 2007; Seitz, Hess et al. 2007; 

Darragh, Bhatt et al. 2008) could be involved in the hepsin/matriptase-mediated prostate 
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cancer progression. Therefore, further investigating the role of the BM in prostate cancer, 

and possibly finding other substrates of hepsin and matriptase will help us better 

understand the mechanism of action of these two proteases. Ultimately, this better 

knowledge of prostate cancer progression may stimulate designing novel therapies to 

prevent prostate cancer invasion and/or metastasis.  

With our experimental evidence from this study and insights from the literature, 

we find that hepsin and matriptase cleavage of Ln-332 might be a critical step in prostate 

cancer progression. Therefore in accordance with the working hypothesis of our study, 

we believe that blocking the hepsin and/or matriptase cleavage site on Ln-322 would 

affect the progression of cancer cells in a tumor microenvironment. To provide 

experimental evidence to prove that Ln-332 cleavage is critical for prostate cancer 

progression, a possible experiment would be to generate a cell line expressing 

uncleavable Ln-332 by mutating the residues of the cleavage site. To do so, we can start 

with a cancer cell line that does not express Ln-332 and transfect it with Ln-332 α3, 

mutated β3 and γ2 chains. The mutated β3 chain construct would have its cleavage site 

(in case of hepsin, SQLR↓LQGSCFC) blocked using procedures like site directed 

mutagenesis. This cell line with uncleavable β3 chain could then be over expressed with 

hepsin or matriptase.  These cells could then be evaluated for their tumorigenicity in a 

tumor microenvironment utilizing a mouse xenograft model such as the kidney capsule or 

the orthotopic model. Similarly, targeted prostate transgenic mice could be created with 

uncleavable Ln-332. These mice could be crossed with the hepsin or matriptase 

transgenic mice. These experiments would tease apart the biological relevance of the 
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proteolytic processing of Ln-332 by hepsin and matriptase in the progression in a tumor 

microenvironment. 

     

 In summary, from the work in this dissertation, we draw the following 

conclusions: 

1) Hepsin and matriptase cleave Ln-332 in vitro; 

2) The cleavage site of Ln-332 is located on the N-terminus of the domain VI 

of 3 chain; 

3) This processing of Ln-332 by hepsin and matriptase is inhibited by an 

inhibitor of these proteinases; 

4) Migration of DU145 and LNCap prostate cancer cells is increased on 

hepsin- and matriptase-cleaved Ln-332 in vitro; 

5) Matriptase overexpression causes increased persistence of LNCap cell 

migration on Ln-332; 

6) Cell adhesion of prostate cancer cells is not affected by hepsin or 

matriptase cleavage of Ln-332; 

7) Hepsin overexpression induces Ln-332 degradation in vivo. 

   

To put our findings in perspective, our working model is the following: under 

physiological conditions, full-length Ln-332 interacts with α3β1 integrin and induces cell 

migration, whereas TTSP-cleaved Ln-332 interacts with α6β4 integrin and promotes 

static adhesion (hemidesmosomes). However, these TTSPs are overexpressed in prostate 

cancer, leading to an unregulated processing of Ln-332 by these TTSPs, which might 
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result in a) degradation of basement membrane and help the cancer cells in escaping the 

primary site and b) the disruption of focal adhesion complexes and increased cancer cell 

migration. In turn, more motile cells might become more invasive, resulting in more 

metastases (Figure 28). 

 In summary, we have identified a new substrate for matriptase and hepsin, the 

processing of which has been directly linked to increased cell migration in vitro and 

correlated with increased tumorigenesis in vivo. Our findings contribute to unraveling the 

roles of matriptase and hepsin in prostate cancer. By understanding the mechanisms of 

action of these two proteinases, we can better target their inhibition, towards developing 

novel therapeutic strategies in the cure of human prostate cancer. In a broader 

prospective, our study should promote additional studies aimed at molecular mechanisms 

of interaction between epithelial cells and their immediate microenvironment, the 

basement membrane. 
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Figure 28:  Hypothetical Model for Ln-332/TTSP interaction in cancer. Based on our data 

from this study we hypothesize that under normal conditions, full-length Ln-332 interacts 

with α3β1 integrin and induces cell migration, whereas TTSP-cleaved Ln-332 interacts 

with α6β4 integrin and promotes static adhesion (hemidesmosomes). However, these 

TTSPs are overexpressed in prostate cancer, leading to an unregulated processing of Ln-

332 by these TTSPs, which might result in i) degradation of basement membrane and 

help the cancer cells in escaping the primary site and ii) the disruption of focal adhesion 

complexes and increased cancer cell migration. In turn, more motile cells might become 

more invasive, resulting in more metastases. 
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