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PREFACE

Wireless Sensor Networks (WSNs), with low-power wireless devices integrated with sensors and

actuators, are emerging as a new computing paradigm that promise to seamlessly integrate cyber-

and physical-worlds. WSNs have great potential for many existing and novel application areas such

as environmental monitoring, industrial and manufacturing automation, health-care, and military.

Heterogeneous Sensor Networks (HSNs), with heterogeneity in terms of their computation re-

sources, wireless link properties, power capacities or sensing modalities, are the natural step in the

evolution of WSNs driven by several factors, such as multiple application support, incorporation

of legacy hardware, hierarchical deployment/architecture, and monitoring of multimodal phenom-

ena. HSNs have been increasingly used in surveillance applications such as monitoring and tracking.

Such applications require an information fusion framework that incorporates the data from multiple

sensors. Classical target tracking approaches, such as probabilistic data association filtering and

multiple hypothesis tracking, perform decision-level information fusion, wherein local decisions are

made on the sensors which are then fused at a centralized location for global decision and tracking.

Such approaches suffer from poor discrimination and exponential complexity, especially for multiple

targets. Target tracking approaches based on signal-level information fusion, wherein the entire raw

data from sensors are utilized for tracking, are not feasible in WSNs due to limited communication

bandwidth.

The goal of this dissertation is to develop feature-level information fusion methods for target

tracking in HSNs. Feature-level information fusion, wherein several features that are extracted from

the raw data, should be used for tracking due to their lower communication bandwidth requirement,

while maintaining good target discrimination capability. We design and implement a multimodal

multisensor information fusion system for target tracking in an urban environment using an HSN

of audio and video sensors. We demonstrate the system operating online in real-time. Further,

we extend the audio sensing component of the multimodal system by including multiple acoustic

features. We develop and implement a feature-based approach to collaborative source localization

of multiple acoustic sources in WSNs. We also extend the video sensing component of the system

to include multiple video features. We develop and implement an approach for collaborative target

tracking in 3D space using a wireless network of smart cameras.
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CHAPTER I

INTRODUCTION

Motivation

Recent technological advances in sensing, communication and computing have enabled the emergence

of Wireless Sensor Networks (WSNs) as a new computing paradigm. A WSN is a wireless network

consisting of spatially distributed autonomous low-power computing devices equipped with various

sensors, a processor, memory, a power supply, and a radio. WSNs have great potential for many

existing and novel application areas such as environmental monitoring, industrial and manufacturing

automation, health-care, and military [1–3].

WSNs with device heterogeneity in terms of their computation resources, wireless link properties,

power capacities or sensing modalities are called Heterogeneous Sensor Networks (HSNs). HSNs are

the natural step in the evolution of WSNs driven by several factors, such as multiple application

support, incorporation of legacy hardware, hierarchical deployment/architecture, and monitoring of

multimodal phenomena. Heterogeneity in WSNs is both a design feature, e.g., multimodal tracking,

as well as a necessity, e.g., legacy hardware support [4].

HSNs can be used for applications such as monitoring and tracking [5, 6]. Tracking applica-

tions have a long history. In WWII, radar and sonar measurements were used to track aircraft

and submarines, respectively. Recently video-based surveillance systems have proliferated due to

miniaturization of video sensors and lowering costs [7]. Classical target tracking approaches, such

as probabilistic data association filtering and multiple hypothesis tracking, are decision-level fusion

approaches, wherein local decisions are made on the sensors. These local decisions from all sensors

are communicated to the fusion node that combines them for global decision and target tracking.

Such approaches suffer from poor discrimination and exponential complexity, especially for multi-

ple targets. An alternate approach is signal-level fusion, wherein the entire raw data from sensors

are utilized for tracking. Such approaches are not feasible in WSNs due to limited communication

bandwidth [8]. An alternative approach is feature-level fusion, wherein several features are extracted

from the raw data that are used for tracking. Feature-level fusion approaches for target tracking can

be formulated using the powerful framework of graphical models. The goal of dissertation is to

develop feature-level information fusion methods for target tracking in HSNs.

1



Research Challenges

Target tracking refers to estimating the trajectory and other desired properties, such as shape, color,

acoustic frequency of a target as it moves around in a sensing field. This is achieved by deploying

various sensors, such as audio, video, etc., gathering data at the sensors and analyzing the collected

data. The major challenges to tracking using HSNs are elaborated below.

1. Realistic Sensing Models. Depending on the modality, sensors have capabilities and hand-

icaps. In general, sensor models are based on assumptions for the sensing environment, e.g.

propagation speed of sound, energy decay factor, etc. In addition, sensors assume a measurement

noise distribution, e.g. zero-mean additive white Gaussian noise in acoustic signal intensity. In

reality, such assumptions fail in less than ideal situations. Also, the measurement noise distri-

bution is affected by a number of factors, e.g. temperature, humidity, which are not very well

understood.

2. Realistic Target Models. Like sensor models, a tracking system is designed with certain target

assumptions, e.g. omnidirectional source, ellipsoid shape, monochromatic object, etc. In reality,

such assumptions are either limiting or invalid. Other challenges for realistic target models are

complex target motion, target interaction, and a variable number of targets entering and leaving

the sensing environment. Complex models are available to handle such challenges but model

complexity is a trade off with real-time performance.

3. Real-time Processing Algorithms. Target tracking is useful and effective only if the system is

able to track the targets at a desirable rate. The desirable rate depends on the tracking resolution

and target speed. There is a clear trade off between sensor and target model complexity, and

real-time performance. Balancing such trade offs is a research challenge.

4. Communication Bandwidth. Along with computation constraints that tighten the real-time

processing requirements, limited communication bandwidth in HSNs poses a major challenge. As

sensor nodes get even smaller, and sensor networks grow larger in size, limited bandwidth will

cause packet delay, packet loss, and network congestion.

5. Urban Environment. There exist a number of additional challenges in sensor networks de-

ployed in to urban environments. These challenges are often specific to the sensing modality. For

example, the challenges for video sensing include gradual and sudden illumination changes, vac-

illating backgrounds, shadows, visual clutter, reflection from windows, and occlusion. For audio

sensing, they include strong background noise, wind gusts, multipath effects, and reverberation.
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Contributions

The contributions of this dissertation include approaches for using the capabilities of HSNs to min-

imize or mitigate the handicap of sensor and target models, due to violation of assumptions. This

is achieved by redundant, complementary and cooperative information fusion. A HSN can have a

number of sensors of different modalities spatially distributed over the sensing environment. The

advantage of HSNs is that when one sensor, or a group of sensors are handicapped due to violation

of some sensor or target assumption, other sensors at different locations and of modalities, might be

able to carry out tracking.

Along with handicap mitigation, we attempt to address the real-time processing requirements

and limited communication bandwidth. We use simple target models and simple features for fast

processing. We also focus on concise features for efficient communication. In addition, this dis-

sertation catalogs extensive related work in the area of general target tracking approaches, and

specific approaches for target localization and tracking using audio and video sensors. The specific

contributions made in this dissertation are listed below:

1. We design and implement a multimodal multisensor information fusion system for target track-

ing in an urban environment using an HSN [9–13]. The HSN consists of mote class devices

equipped with microphone arrays as audio sensors and embedded PCs equipped with web

cameras as video sensors. The system operates online in real-time at 4Hz, thus addressing

the real-time processing requirement. The audio and video sensors compute local features and

communicate them with the fusion node, thus addressing the limited communication band-

width. We present tracking results gathered in an uncontrolled urban environment and provide

a thorough evaluation including a comparison of different fusion and tracking approaches.

2. We develop and implement a feature-based approach to collaborative source localization of

multiple acoustic sources in WSNs [14–16]. Acoustic beamform and power spectral density

(PSD) extracted from sensor nodes equipped with microphone array are used as acoustic fea-

tures. We use a graphical modeling framework to formulate the problem, and employ Maximum

Likelihood (ML) and Bayesian estimation for multiple source localization and discrimination.

We present simulation results for multiple source localization in a grid sensor network for three

different simulation scenarios to study the effect of (1) source density, (3) source SNR, and (3)

distance between sources. We also present evaluation of the localization accuracy when the

assumptions for the acoustic sources are relaxed. Finally, we implement the proposed feature
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extraction algorithms on an FPGA chip onboard micaz sensor nodes, and conduct outdoor

experiments with real acoustic sources. Outdoor experimental results reinforce the simulation

results.

3. We develop an approach for collaborative target tracking in 3D space using a wireless network

of smart cameras. We model the targets in 3D space thus circumventing the problems inher-

ent in the tracker based on 2D target models. We use color and texture features to model

the target. We propose a number of probabilistic 3D trackers and implement them using

sequential Monte Carlo algorithms. The variations include optimizations such as the use of

mixture models, in-network aggregation, and the use of image-plane based filtering where it is

appropriate. We present qualitative comparison of the trackers according to their supported

Quality-of-Service (QoS) and Quality-of-Information (QoI). Finally, we evaluate the trackers

using synthetic targets in simulated camera networks, as well as using real targets (objects and

people) in real-world camera network deployments. We also compare the proposed trackers

with an implementation of previous state-of-the-art approach for 3D tracking. The simulation

results show robustness against target scale variation and rotation, while working within the

bandwidth constraints.
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CHAPTER II

RELATED WORK

Target localization and tracking, in WSNs, usually consists of four parts, (1) modeling, (2) sen-

sor model and feature extraction, (3) sensor data fusion, and (4) tracking. The problem is more

challenging for WSNs due to computational constraints, limited communication bandwidth, and

spatially distributed sensors. However, WSNs have the advantage that if one sensor or a group of

sensors are handicapped, other sensors can be used to provide necessary measurements.

In this chapter, we start by reviewing WSNs and HSNs, their applications, challenges and sources

of heterogeneity. In Section II, we review different target tracking approaches. In Section II, we give

an overview of information fusion, its classification, methods and architectures. In Section II and

II, we review different types of target localization and tracking approaches using audio and video

modalities, respectively. We also compare the reviewed approaches in WSN context. Finally in

Section II, we review approaches for multimodal target tracking and compare them to the work in

this thesis.

Wireless Sensor Networks

WSNs are emerging as an important computing class based on a new platform and networking

structure. A WSN is a wireless network consisting of spatially distributed autonomous sensor nodes,

which are low-power computing devices equipped with various sensors, a processor, memory, a power

supply, and a radio [1–4]. WSNs may consist of many different types of sensors such as seismic, low

sampling rate magnetic, thermal, visual, infrared, acoustic, radar, biological, and chemical. These

sensors are able to cooperatively monitor a physical phenomenon or environmental conditions, such

as temperature, sound, vibration, pressure, humidity, vehicular movement, lightning condition, soil

makeup, pollutants, the presence or absence of certain kinds of objects, mechanical stress levels on

attached objects, and the current characteristics such as speed, direction, and size of an object. The

sensor nodes in a typical WSN are small, with limited processing and computing resources, and they

are inexpensive compared to traditional sensors [7, 8].
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Applications

WSNs have great potential for many applications in scenarios such as military target tracking and

surveillance [4,17], natural disaster relief [18], biomedical health monitoring [19,20], and hazardous

environment exploration and seismic sensing [21]. In military target tracking and surveillance, a

WSN can assist in intrusion detection and identification. With natural disasters, sensor nodes can

sense and detect the environment to forecast disasters before they occur. In biomedical applications,

surgical implants of sensors can help monitor a patients health. For seismic sensing, ad hoc deploy-

ment of sensors along the volcanic area can detect the development of earthquakes and eruptions.

WSNs can be used for applications such as monitoring and tracking. Monitoring applications in-

clude indoor/outdoor environmental monitoring, health and wellness monitoring, power monitoring,

inventory location monitoring, factory and process automation, and seismic and structural monitor-

ing. Tracking applications include tracking objects, animals, humans, and vehicles. Table 1 lists a

number of potential WSN applications.

Table 1: Wireless sensor network applications
Military applica-
tions

Monitoring friendly forces, equipment and ammunition; battlefield surveil-
lance; reconnaissance of opposing forces and terrain; targeting; battle dam-
age assessment; and nuclear, biological and chemical (NBC) attack detec-
tion and reconnaissance.

Environmental
applications

Tracking the movements of birds, small animals, and insects; monitoring
environmental conditions that affect crops and livestock; irrigation; chemi-
cal/biological detection; precision agriculture; forest fire detection; meteo-
rological or geophysical research; flood detection; bio-complexity mapping
of the environment; and pollution study.

Health applica-
tions

Providing interfaces for the disabled; integrated patient monitoring; diag-
nostics; drug administration in hospitals; telemonitoring of human physi-
ological data; and tracking and monitoring doctors and patients inside a
hospital.

Home applica-
tions

Home automation, smart environments

Commercial appli-
cations

Monitoring material fatigue; managing inventory; monitoring product qual-
ity; constructing smart office spaces; environmental control in office build-
ings; robot control and guidance in automatic manufacturing environments;
monitoring disaster area; smart structures with sensor nodes embedded in-
side; vehicle tracking and detection.

Wireless Sensor Network Challenges

The suitability of WSNs for monitoring and tracking applications is due to the unique characteristics

and fundamentally different capabilities of WSNs as compared to the traditional distributed sensing

systems. Consequently, the design of WSN systems has become more challenging than that of the

6



traditional distributed systems. The development of sensor networks requires technologies from three

different research areas: sensing, communication, and computing (including hardware, software, and

algorithms). In general, WSNs pose considerable technical problems in data processing, communica-

tion, and sensor management. Because of potentially harsh, uncertain, and dynamic environments,

along with energy and bandwidth constraints, wireless ad hoc networks pose additional technical

challenges in network discovery, network control and routing, collaborative information processing,

querying, and tasking. In this section, we review the most pressing challenges to WSNs. Table 2

lists the WSN design assumptions and resulting constraints.

Table 2: Assumptions and constraints in WSNs
Sensor node characteristics Constraints/Challenges

Low-cost components
Limited computation
Limited communication bandwidth

Small/lightweight
Small battery
Small lifespan
Limited range

Table 3 lists the WSN design characteristics and resulting challenges. A short description of each

of these challenges is presented below.

Table 3: Characteristics and challenges in WSNs
WSN characteristics WSN Challenges

Ad hoc deployment
Localization,
Network discovery,
Coverage and Connectivity

Large number of sensors
Scalability
Compression and aggregation

Recording of physical event on
distributed sensors

Time-synchronization
Collaborative signal and information processing

Wide-area deployment w/ limited
range

Multihop routing

Harsh/hostile environment
Fault-tolerance
Security

Wireless medium Communication protocols

Low-cost, low-power components
Power management,
Coverage and Connectivity,
Programming abstractions

Localization and Network Discovery. In WSNs, sensor nodes that are deployed into the en-

vironment in an ad hoc manner do not have prior knowledge of their location. The problem of

determining the node location is referred to as localization. Existing localization methods include

global positioning system (GPS), beacon (or anchor) nodes, and proximity-based localization [22,23].
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In addition to self-localization, knowledge of the network is essential for a sensor in the network to

operate properly. Each node needs to know the identity and location of its neighbors to support

processing and collaboration. In planned networks, the topology of the network is usually known a

priori. For ad hoc networks, the network topology has to be discovered in real time, and updated

periodically as sensors fail or new sensors are deployed. In the case of a mobile network, since

the topology is always evolving, mechanisms should be provided for the different fixed and mobile

sensors to discover each other.

Time-Synchronization. In WSN applications, the reasoning about the ordering of the events,

the causal relationships and correlations between the events, the rate of change of observations over

time, and the ability to coordinate future actions, are critical and important requirements [24, 25].

The sensed data is of limited usage if it is not accompanied by the coordinates of the sensor -

position and time stamp. This is perhaps the primary reason for time synchronization in wireless

sensor networks. In addition, various time division multiple access (TDMA) schemes proposed in

literature for ad hoc networks assume time synchronization of the nodes. The software component

responsible for maintaining a common notion of time over possibly multi-hop links is called the time

synchronization service.

Routing and Communication Protocol. The development of a reliable and energy-efficient

protocol stack is important for supporting various WSN applications [26]. Depending on the ap-

plication, a network may consist of hundreds to thousands of nodes. Each sensor node uses the

protocol stack to communicate with one another and to the sink. Hence, the protocol stack must

be energy efficient in terms of communication and be able to work efficiently across multiple sensor

nodes.

Fault Tolerance. WSNs introduce new challenges for fault-tolerance, since they are inherently

fault-prone due to the shared wireless communication medium: message losses and corruptions (due

to fading, collision, and hidden-node effect) are the norm rather than the exception. Moreover, node

failures (due to crash and energy exhaustion) are commonplace. Since on-site maintenance is not

feasible, sensor network applications should be self-healing. Another challenge for fault-tolerance

is the energy-constraint of the sensor nodes. Applications that impose an excessive communication

burden on nodes are not acceptable since they drain the battery power quickly. Thus, self-healing

of sensor network applications should be local and communication-efficient [27].
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Collaborative Signal and Information Processing. The nodes in an ad hoc sensor network

collaborate to collect and process data to generate useful information. Collaborative signal and

information processing over a network is a new area of research and is related to distributed infor-

mation fusion [28,29]. Important technical issues include the degree of information sharing between

nodes and how nodes fuse the information from other nodes. Processing data from more sensors

generally results in better performance but also requires more communication resources (and, thus,

energy). Similarly, less information is lost when communicating information at a lower level (e.g.,

raw signals), but requires more bandwidth. Therefore, one need to consider the multiple trade

offs between performance and resource utilization in collaborative signal and information processing

using microsensors.

Security and Privacy. Since the WSNs are deployed in a potentially hostile environment, it is

vulnerable to threats and risks. An adversary can compromise a sensor node, alter the integrity of

the data, eavesdrop on messages, inject fake messages, and waste network resource. Unlike wired

networks, wireless nodes broadcast their messages to the medium. Hence, the issue of security must

be addressed in WSNs [30].

Power Management. WSNs have been proposed to be deployed in inaccessible or hazardous

regions meaning frequent maintenance such as battery replacement is undesirable and in some cases

impossible. Intelligent power management for these devices is critical in maximizing the networks

life span and success of the WSN application. This longevity must, however, be achieved while

maintaining the integrity of the sensory data harvested by the network. Various power-aware WSN

protocols and algorithms have been proposed for power management. A new subclass of WSN

called Energy Harvesting (EH) WSN have been proposed that harvest environmental energy to

extend system lifetime [31].

Programming Abstractions. A key to the growth of WSN is raising the level of abstraction for

programmers. Currently, programmers deal with too many low levels details regarding sensing and

node to node communication [32,33]. For example, they typically deal with sensing data, fusing data

and moving data. They deal with particular node to node communication and details. If we raise

the level of abstraction to consider aggregate behavior, application functionality and direct support

for scaling issues then productivity increases.
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Coverage and Connectivity. A challenge related to power management is of coverage and con-

nectivity (CC). The fundamental problem in CC is to minimize the number of nodes that remain

active, while still achieving acceptable quality of service for applications. In particular, maintaining

sufficient sensing coverage and network connectivity with the active nodes are critical requirements

in sensor networks. Also, the network must be able to configure itself to any feasible degrees of

coverage and connectivity in order to support different applications and environments with diverse

requirements [34].

Compression and Aggregation. Both data compression and aggregation reduce communica-

tion cost and increase reliability of data transfer. Data compression and aggregation are necessary

for WSN applications which have large amount of data to send across the network [35]. In data

compression, it is important that no information is lost and individual data readings are retained.

For data aggregation, data is collected from multiple sensors and combined together to transmit to

the base station. In this case, aggregated data is more important than individual readings. This

method is often used in a cluster-based approach.

Heterogeneous Sensor Networks

Heterogeneous sensor networks (HSNs) are the natural step in the evolution of WSNs driven by

several factors, such as multiple application support, incorporation of legacy hardware, hierarchical

deployment/architecture, and monitoring of multimodal phenomenon [4, 12]. With its increasing

popularity and ubiquity/pervasiveness, WSNs will be required to support multiple, although not

necessarily concurrent, applications. Different applications may require different resources, and may

make use of nodes with different capabilities. As the technology matures, new types of nodes will

become available and existing deployments will be refreshed. Diverse nodes will need to coexist

and support old and new applications. In multihop WSNs, it may be advantageous to organize the

sensors into clusters of low-power sensors with a high-power clusterhead sensor. In such hierarchical

architecture, the low-power sensors communicate with the clusterheads, which communicate with

the data processing center. In addition, the clusterheads can also act as intermediate data processing

and aggregation centers. Furthermore, as WSNs are deployed for applications that observe more

complex phenomena, multiple sensing modalities become necessary. Different sensors usually have

different resource requirements in terms of processing power, memory capacity, or communication

bandwidth. Instead of using a network of homogeneous devices supporting resource intensive sensors,

an HSN can have different nodes for different sensing tasks [36–38]. For example, at one end of the
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spectrum low data-rate sensors measuring slowly changing physical parameters such as temperature,

humidity or light, require minimal resources; while on the other end even low resolution video sensors

require orders of magnitude more resources.

The heterogeneity in HSNs can be categorized in following four categories, (1) computational

heterogeneity, (2) network heterogeneity, (3) energy heterogeneity, and (4) sensing heterogeneity.

Table 4 lists the type of heterogeneity in HSNs.

Table 4: Type of heterogeneity in HSNs
Types of heterogeneity Examples

Computational heterogeneity
High-power: Intel’s stargate
Low-power: Mica2, Micaz, etc.

Network heterogeneity
Long-range reliable links: 802.11, WiMAX, etc.
Short-range links: 802.15, Bluetooth, etc.

Energy heterogeneity
High/unlimited energy: plugged to wall outlet
Rechargeable: energy harvesting sensors
Limited energy: AAA batteries

Sensing heterogeneity Audio, Video, Seismic, etc.

Target Localization and Tracking

Target tracking is an important representative application in HSNs. The classical application of

target tracking is to manned surveillance systems such as air traffic control, maritime surveillance

and airborne early warning system. With the emergence and potential ubiquity of WSNs, automated

surveillance systems are gaining popularity. In this section, we review some approaches to target

localization and tracking. Figure 1 shows the classification of various target tracking approaches.

Target Tracking

Data Association 
based

FISST basedBayesian Network

PDAF

JPDAF

Particle Filters

Grid Filters

JMPD Filter

Target-
Oriented 

Measurement-
Oriented 

MHT

MCMCDA

PHD Filter

CPHD Filter

Figure 1: Classification of target tracking approaches.

11



Data Association-Based Approaches

The classical approaches to multiple target tracking include data association-based approaches such

as Multiple Hypothesis Tracking (MHT) [39] and data association filters [5, 6]. These approaches

propose a set of exclusive and exhaustive hypotheses either associating measurements with the tar-

gets and clutter, called target-oriented methods, or associating targets with measurements, called

measurement-oriented methods. Probabilities are computed for each hypothesis and the most prob-

able (or a set of) hypotheses are used to compute target estimates. The number of hypotheses is

combinatorial in number of targets and observations, as well as in time.

In these approaches, the measurements are noise-corrupted observations related to the state of

a target, such as direct estimate of position, range and/or azimuth from a sensor, time-difference-

of-arrival, signal strength, etc. The measurements of interest in multitarget applications are usually

not raw data points, but rather the outputs of signal processing and detection subsystems [6]. A

track is a state trajectory estimated from a set of measurements that have been associated with the

same target. The crux of the multitarget tracking problem is to carry out this data association for

measurements whose origin is uncertain due to, (1) false alarm in detection process, (2) clutter, (3)

interfering targets, and (4) decoys or other countermeasures. The data association model in these

approaches either deterministically or probabilistically associate measurements to targets. The data

association results are then used in a standard state estimation algorithm, e.g. Kalman filter.

The problem of multiple target tracking using data association based approaches can be stated

as follows. Let T ∈ Z+ be the duration of surveillance. Let K be the unknown number of objects

moving around the surveillance region. Let F k : Rd → Rd be the the discrete-time dynamics of the

object k, where d is the dimension of the state variable, and let xkt ∈ Rd be the state of the object

k at time t for k = 1, 2, · · · ,K. The object k moves according to

xkt = F k(xkt−1) + wkt

where wkt ∈ Rd are white noise processes. The noisy observation of the state of the object is measured

with a detection probability less than unity. There are also false alarms with a nonzero false alarm

rate. Let yjt ∈ Rm be the jth observation at time t for j = 1, · · · , nt where m is the dimensionality

of each observation vector and nt is the number of observations at time t. Each object generates a

unique observation at each sampling time if it is detected. Let Hj : Rd → Rm be the observation
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model. Then the observations are generated as follows:

yjt =

 Hj(xkt ) + vjt if jth observation is originated from xkt

ut otherwise

where vjt ∈ Rm are white noise processes and ut ∼ Unif(R) is a random process for false alarms.

Notice that, with a nonzero probability, the object is not detected, which is called a missing observa-

tion. The goal is to, either deterministically or probabilistically, associate measurements to targets,

and used the associations in a standard state estimation algorithm, e.g. Kalman filter, to estimate

target trajectories.

Probabilistic Data Association Filter

Kalman filter [40] is an efficient method for tracking single targets when the distribution on measure-

ments is Gaussian, and the dynamic model and measurement model are linear. Variants of Kalman

filter such as Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) exist for cases

where the linear model or Gaussian noise assumption does not hold. The basic KF and its variants,

however, are not able to track single target in clutter, or multiple targets.

The Probabilistic Data Association Filter (PDAF) [6] is an extension of the Kalman filter to

track single target in presence of multiple measurements due to clutter. A key notion in the PDAF

is that of an association event Θ or conjunction of association events θi (denoting association of ith

measurement and the target). At each time step, PDAF generate association events, associating

measurements with the target. The probability of a particular Θ depends on the distances between

target’s predicted measurement and the actual measurement it is associated with in Θ.

Like the computation of the innovation in Kalman filter, PDAF introduces a notion of the com-

bined innovation, computed over the nt measurements detected at a given time step as the weighted

sum of the individual innovations: ν =
∑n
i=1 βiνi. Each βi is the probability of the association

event θi that the ith measurement is target-originated. Also computed is β0, the probability of the

event that none of the measurements is target originated (i.e., the target is associated with the null

measurement). These events encompass all possible interpretations of the data, so
∑n
i=1 βi = 1.

Joint Probabilistic Data Association Filter

The Joint Probabilistic Data Association Filter (JPDAF) [6] is an extension of PDAF to track a

fixed known number of targets in presence of multiple measurements. JPDAF computes the proba-
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bilities of measurement-to-target associations jointly across all targets. JPDAF enforces an exclusion

principle that prevents two or more measurements to be associated with the same target. In other

words, joint data association in JPDAF maintains a one-to-one association between measurements

and targets.

Similar to PDAF, the key notion in the JPDAF is that of a joint association event Θ or con-

junction of association events θj,tj (denoting association of jth measurement and tjth target). The

probability of a particular Θ depends on the distances between each target’s predicted measurement

and the actual measurement it is associated with in Θ. However, an additional influence on the

probability of Θ stems from the interaction of the various association events in the joint association

event.

Multiple Hypothesis Tracking

The multiple hypothesis tracking algorithm was originally developed in [39]. Unlike JPDAF, which

can only track a fixed known number of targets, MHT provides track initiation and termination

capabilities. This enables MHT to track a variable number of targets, which is the case when

targets enter and leave the scene. An iteration begins with the set of current hypotheses from

iteration (k − 1). Each hypothesis (leaf) contains a set of active tracks, and becomes a parent

hypothesis node in the current iteration. Each hypothesis provides an interpretation of all past

measurements consisting of a collection of disjoint tracks. Predictions are made as to the expected

location of measurements and these predictions are matched to actual measurements using the

Mahalanobis distance. Each measurement may either (1) belong to a previously known target or (2)

be the start of a new target (track initiation) or (3) be a false alarm. In addition, for targets that are

not assigned measurements, there is the possibility of (4) deletion of the target (track termination).

The resulting enumeration of associations produces a set of children (events) for each parent node,

extending the depth of the tree by another level. Associated with each new leaf is a probability. In

the final step of the iteration, the tree is pruned to remove unlikely correspondences.

Markov Chain Monte Carlo Data Association

The JPDAF is not able to handle a varying number of targets, which is the case when new targets can

come and old targets can leave the the scene at any time. A single-scan approach, which updates the

posterior based only on the current scan of measurements, can be used to track an unknown number

of targets with the help of trans-dimensional MCMC [41, 42] or a detection algorithm [43]. But a
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single-scan approach cannot maintain tracks over long periods because it cannot revisit previous,

possibly incorrect, association decisions in the light of new evidence. This issue can be addressed

by using a multi-scan approach, which updates the posterior based on both current and past scans

of measurements. The MHT is a multi-scan tracker, however, it is not widely used due to its high

computational complexity.

A newly developed algorithm, called Markov chain Monte Carlo data association (MCMCDA),

provides a computationally desirable alternative to MHT [44]. The MCMCDA is a data-oriented,

combinatorial optimization approach to the data association problem but avoid the enumeration of

tracks by applying a sampling method called Markov chain Monte Carlo (MCMC). MCMCDA shows

remarkable performance compared to the greedy algorithm and MHT under extreme conditions such

as a large number of targets in a dense environment, low detection probabilities, and high false alarm

rates. The simulation study in [44] showed that MCMCDA was computationally efficient compared

to MHT with heuristics (i.e., pruning, gating, clustering, N-scan-back logic and k-best hypotheses).

We use the online version of MCMCDA algorithm in our audio-video fusion based target tracking

system in Chapter III.

Probabilistic Graphical Model (Bayesian Network) Approaches

In data association based approaches, the sensor model assumes that each measurement (or detec-

tion) corresponds to a single target (i.e. each measurement originated either due to a single target

or due to clutter). Also, each target gives rise to a single measurement. The measurement due to

one target is not affected by other targets. In other words, measurement for target A would be

same regardless the presence of other targets in the scene. Due to these assumptions, the approach

is not able to model target interaction such as partial or full target occlusion. In the worst case,

if target A completely occludes target B, the lack of measurement due to target B is considered a

missed detection. In reality, the measurement due to target B is contained in the measurement due

to target A.

Due to this model, wherein a measurement is not the raw data but rather the output of signal

processing and detection subsystem, data association based tracking can be categorized as high-

level (or decision-level) fusion. In high-level fusion, discriminating information is lost, especially

for multiple target tracking case, where raw data is a mixture of the raw signals originating from

multiple targets. Alternate approaches are low-level (or signal-level) fusion and medium-level (or

feature-level) fusion. Low-level fusion is not good for WSNs due to low communication bandwidth.
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Medium-level fusion includes signal processing and feature extraction algorithms that compress

raw data into features that are communicated to the sensor fusion node. In this case, we need

explicit models for target interaction and process/observation models that capture the generation

of observation (and features) on multiple target state. In other words, we need models for how the

raw signals originating from multiple targets are mixed together as raw data.

Recent approaches to multiple target tracking include Bayesian estimation where the quantity of

interest is a Markov process, the multitarget state, which is the concatenation of several individual

target states [45]. The observations in this model are described in terms of the joint multitarget

state, hence taking into account the target interactions. The Bayesian approach has the advantages

of providing a recursive solution with arbitrary target dynamic models.

The problem of multiple target tracking using Bayesian estimation can be stated as follows. To

define the problem of tracking, consider the evolution of the state sequence {xt, t = 1, · · · , T} of a

target given by

xt = ft(xt−1,vt) (1)

where ft : Rnx × Rnv → Rnx is a possibly nonlinear function of the state xt−1, vt is process noise,

and nx, nv are dimensions of the state and process noise vectors, respectively. The objective of

tracking is to recursively estimate xt from measurements

zt = ht(xt,nt) (2)

where ht : Rnx × Rnn → Rnz is a possibly nonlinear function, nt is measurement noise, and nz, nn

are dimensions of the measurement and measurement noise vectors, respectively. In particular, we

seek filtered estimates of xt based on the set of all available measurements z1:t = {zi, i = 1, · · · , t},

up to time t.

From a Bayesian perspective, the tracking problem is to recursively calculate some degree of

belief in the state xt at time t, taking different values, given the data z1:t up to time t. Thus, it is

required to construct the posterior distribution p(xt|z1:t). It is assumed that the initial probability

distribution p(x0|z0) = p(x0) of the state vector, which is also known as the prior, is available (z0

being the set of no measurements). Then, in principle, the posterior p(xt|z1:t) may be obtained,

recursively, in two stages: prediction and update.

Suppose that the posterior distribution p(xt−1|z1:t−1) at time t− 1 is available. The prediction
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stage involves using the system model (Equation (1)) to obtain the predictive prior of the state at

time t via the Chapman-Kolmogorov equation

p(xt|z1:t−1) =

∫
p(xt|xt−1) p(xt−1|z1:t−1) dxt−1 (3)

Note that in Equation (3), use has been made of the fact that p(xt|xt−1, z1:t−1) = p(xt|xt−1), as

Equation (1) describes a Markov process of order one. The probabilistic model of the state evolution

p(xt|xt−1) is defined by the system equation (1) and the known statistics of vt−1. At time step t,

a measurement zt becomes available, and this may be used to update the prior (update stage) via

Bayes’ rule

p(xt|z1:t) =
p(zt|zt) p(xt|z1:t−1)

p(zt|z1:t−1)
(4)

where the normalizing constant

p(zt|z1:t−1) =

∫
p(zt|xt) p(xt|z1:t−1) dxt (5)

depends on the likelihood function p(zt|xt) defined by the measurement model (Equation (2)) and the

known statistics of nt. In the update stage Equation (5), the measurement zt is used to modify the

prior density to obtain the required posterior density of the current state. The recurrence relations

Equation (4) and (5) form the basis for the optimal Bayesian solution. This recursive propagation

of the posterior density is only a conceptual solution in that in general, it cannot be determined

analytically. Solutions do exist in a restrictive set of cases, including the Kalman filter and grid-based

filters. When the analytic solution is intractable, extended Kalman filters, approximate grid-based

filters, and particle filters approximate the optimal Bayesian solution.

A comprehensive review of optimal and suboptimal Bayesian algorithms for nonlinear/non-

Gaussian tracking problems, with a focus on particle filters is presented in [46]. Particle filters

are sequential Monte Carlo methods based on point mass (or particle) representations of probabil-

ity densities, which can be applied to any state-space model and which generalize the traditional

Kalman filtering methods. Several variants of the particle filter such as SIR, ASIR, and RPF are

introduced within a generic framework of the sequential importance sampling (SIS) algorithm. Se-

quential Monte Carlo (SMC) implementation of the Bayesian estimation and tracking are presented

in [46, 47]. Several approaches based on Bayesian estimation [48, 49] and graphical models [50, 51]

have been proposed.

17



An approach for audiovisual object tracking based on graphical models that combine the audio

and video data is proposed in [50]. The paper presents graphical models and generative models

for the audio-video data, and Bayesian inference algorithm for tracking. An EM algorithm also

presented for learning model parameters.

A graphical model formulation for self-localization of sensor networks is presented in [51]. They

proposed a technique called nonparametric belief propagation that is a generalization of particle

filtering. The NBP approach has the advantage of being amenable to distributed implementation,

can include a wide variety of statistical models, and can represent multimodal uncertainty.

A Bayesian approach for tracking the DOA of multiple targets using a passive sensor array is

proposed in [48]. The paper includes a constant velocity target dynamics model and a data model

for uniform linear sensor array. They construct the data likelihood density and marginalizing the

nuisance parameters. Two tracking algorithms are proposed based on particle filtering.

A Bayesian approach for multiple target detection and tracking, and particle filter-based al-

gorithms are proposed in [49]. The particle filter is designed in such a way that the importance

density is measurement-directed. The paper constructs and computes the joint multitarget proba-

bility density (JMPD) for multitarget state estimation. The joint estimation and joint proposal of

multitarget state enables the filter to better handle the situations in which several targets in close

proximity. For unknown number of target, the multitarget state is extended to include a random

variable corresponding to the number of target.

Finite-Set Statistics Based Tracking

An alternative to Bayesian statistics is Finite Set Statistics (FISST). The Bayesian framework treats

the states and observations as realizations of random variables. In FISST framework the multitarget

state and multiple observations are treated as finite sets. The first systematic treatment of multi-

sensor multitarget tracking using random set theory is conceived in [52, 53], which later developed

into FISST [54]. The FISST Bayes multitarget recursion is generally intractable. An approach to

approximate the multitarget Bayes recursion by propagating the Probability Hypothesis Density

(PHD) of the posterior multitarget state is proposed in [55]. This strategy is similar to the con-

stant gain Kalman filter that propagates the mean of the posterior single-object state. The PHD

recursion still involves multiple integrals with no closed forms in general. Generalization of PDH

filters, Cardinalized probability hypothesis density (CPHD) filter provides more accurate estimates
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of target number than the PHD filter, and hence, also of the states of targets [56]. Several SMC

implementations of the PHD filter are proposed in [57,58].

Like data association based tracking approaches, the measurements in FISST based tracking are

not the raw data, but the outputs of signal processing and detection subsystems. This measurement

model makes this approach also a decision-level fusion method.

Summary of Target Tracking Approaches

Table 5 summarizes different target tracking approaches.

Table 5: Summary of target tracking approaches
KF/EKF PDAF JPDAF MHT MCMCDA PHD filter PF JMPD

Multiple targets
fixed, known X X X X X X
variable, unknown X X X X

Data association based X X X X X
Joint multitarget esti-
mation

X X X

Decision-level X X X X X X
Feature-level X X

Information Fusion in Wireless Sensor Networks

HSNs utilize multiple physically distributed sensors of different modalities to provide a large amount

of data. According to the application objectives, the data might need to be processed, communicated

and assessed. A fundamental issue in HSNs is the way the collected data is processed. In this

context, information fusion is a discipline that is concerned with how data gathered by sensors can

be processed to increase the relevance of such a mass of data. In a nutshell, information fusion can

be defined as the combination of data from multiple sensors to obtain improved information (i.e.

cheaper, greater quality, or greater relevance).

Terminology

There are many terms related to information fusion that refer to similar concepts. Some of these

terms are data fusion, multisensor integration, and data aggregation. Joint Directors of Laboratories

(JDL) define data fusion as a multilevel, multifaceted process dealing with the automatic detection,

association, correlation, estimation, and combination of data and information from multiple sources.

According to the definition in [59], data fusion is the combination of data from multiple sensors,

and related information provided by associated databases, to achieve improved accuracy and more

specific inferences than could be achieved by the use of a single sensor alone.
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Another term used in this context, multisensor integration is defined as the synergistic use of

information provided by multiple sensory devices to assist in the accomplishment of a task by a

system; and multisensor fusion deals with the combination of different sources of sensory information

into one representational format during any stage in the integration process in [60]. Multisensor

integration is intended to be a broader term than multisensor fusion. It makes explicit how the

fused data is used by the whole system to interact with the environment.

Information fusion, according to [28], encompasses the theory, techniques and tools created and

applied to exploit the synergy in the information acquired from multiple sources (sensor, databases,

information gathered by humans, etc.) in such a way that the resulting decision or action is in some

sense better (qualitatively or quantitatively, in terms of accuracy, robustness, etc.) than would be

possible if any of these sources were used individually without such synergy exploitation.

The term Data Aggregation is widely used in WSN community as a synonym for information

fusion. According to [35], data aggregation comprises the collection of raw data from pervasive data

sources, the flexible, programmable composition of the raw data into less voluminous refined data,

and the timely delivery of the refined data to data consumers.

Challenges

HSNs are intended to be deployed in environments where sensors can be exposed to conditions that

might interfere with their measurements. Therefore, sensor measurements may be imprecise and

noisy in such scenarios. Additionally, due to harsh deployment environments, sensor failures are

not an exception. Due to limited sensing coverage and various power saving services on sensors,

both spatial and temporal coverage also pose limitations to information fusion in HSNs. In such

situations information garnered from a single sensor or a single modality is unreliable, incomplete

or intermittent.

To overcome sensor failures, technological limitations, spatial, and temporal coverage problems,

HSNs are deployed with three basic characteristics, namely, cooperation, redundancy, and com-

plementarity [61]. These characteristics result in HSNs composed of a large number of multimodal

sensor nodes posing scalability and other classical HSN challenges. From information fusion perspec-

tive, these characteristics lead to correct and continued operation of HSNs. In other applications,

the use of multiple multimodal sensors increases the robustness and reliability.
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Classification

Information fusion can be categorized based on several aspects, such as the relationship between

the sensors, level of data abstraction, and data input and output format. Figure 2 shows the

categorization of information fusion approaches based on different criteria.

Figure 2: Classification of information fusion.

According to the relationship among the sources, information fusion can be classified as, com-

plementary, when the information provided by the sensors is complementary; redundant, when the

information is redundant; or cooperative, when the information from the sensors can be fused into

new information that is more complex than the original. Complementary fusion is intended for

completeness by compounding information from multiple sensors. Redundant fusion is intended to

increase the reliability, accuracy and confidence of the information, and cooperative fusion is in-

tended for extraction/inference of complex information that cannot be gathered directly through

sensors.

Information fusion deals with three levels of data abstraction: measurement, feature, and deci-

sion. Thus, according to the abstraction level of the data, information fusion can be classified into

four categories. Low-level fusion, also called signal-level fusion, uses raw data (or signals) provided

by the sensors as inputs and combines it into new data. The raw data is closest to the physical

event, hence low-level fusion incurs smallest amount of information loss. Medium-level fusion, also

called feature-level fusion, uses attributes (or features) extracted from the raw data as inputs and

fuses them into new features, or feature map. High-level fusion, also called decision-level fusion,

takes the decisions from each sensor as inputs and fuses them to obtain a global decision. Finally,

multilevel fusion involves data from different levels of abstraction, e.g. a measurement is fused with

a feature to provide a decision. The loss of information increases as data is passed from the lower
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level of abstraction to the higher levels. Hence, lower level fusion methods are more accurate than

higher level fusion, however, the amount of information required for lower level of abstraction is

greater than that for the higher level, which makes the lower level methods expensive in term of

computational and communication requirements.

Another classification that considers the abstraction level is provided in [62], in which information

fusion methods are categorized based on the abstraction level of the input and output information.

The five categories are, Data In - Data Out (DAI-DAO), Data In - Feature Out (DAI-FEO), Feature

In - Feature Out (FEI-FEO), Feature In - Decision Out (FEI-DEO), and Decision In - Decision Out

(DEI-DEO).

Algorithms

According to the application requirements, information fusion can be performed using different

mechanisms such as inference, estimation, classification, feature maps, abstract sensors, aggregation,

and compression. Some of these mechanisms are described below.

Inference

Inference, in statistics, is the process of inferring the properties of a random variable, or a random

process, using the data generated by the random process. Inference methods are often applied in

decision fusion or hypothesis testing. Classical inference methods are based on Bayesian inference

and Dempster-Shafer Belief Accumulation theory. Bayesian inference is based on the Bayes’ rule,

which states that

P (X|Y ) =
P (Y |X)P (X)

P (Y )

where the posterior probability P (X|Y ) represents the belief of hypothesis X given the information

Y , P (X) is the prior probability of the hypothesis X, P (Y |X) is the probability of information

Y , given that X is true (also called the likelihood of information Y conditioned on hypothesis X),

and P (Y ) is the information evidence that is independent of hypothesis X and can be treated as a

normalizing constant.

Other methods for inference include following.

• Dempster-Shafer Inference. It is based on the Dempster-Shafer Belief Accumulation theory

(also referred to as Theory of Evidence or Dempster-Shafer Evidential Reasoning), which is

a mathematical theory introduced by Dempster and Shafer [63] that generalizes the Bayesian

theory. It deals with beliefs or mass functions just as Bayes’ rule does with probabilities.
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• Fuzzy Logic. Fuzzy logic is a form of multi-valued logic derived from fuzzy set theory to deal

with approximate reasoning to draw (possibly imprecise) conclusions from imprecise premises

[64]. Each quantitative input is fuzzyfied by a membership function. The fuzzy rules of an

inference system produce fuzzy outputs which, in turn, are defuzzyfied by a set of output rules.

• Neural Networks. Artificial neural networks are a set of interconnected programming con-

structs that mimic the properties of biological neurons. Neural networks are most commonly

used to implement supervised/unsupervised learning mechanisms that starting from exam-

ples, are able to generalize [65,66]. Neural Networks represent an alternative to Bayesian and

Dempster-Shafer theories, being used by classification and recognition tasks in the information

fusion domain.

Estimation

Estimation, in statistics, is the process of estimating the values of parameters and/or unknown data

based on measured data. The parameters and the unknown data describe an underlying physical

process that determines the distribution of the measured data. Most common estimation methods

include maximum likelihood, maximum a posteriori, least squares, moving average filter, Kalman

filter, and particle filter.

Maximum Likelihood (ML). Estimation methods based on maximization of likelihood are suit-

able when the parameter and/or data (called state x) being estimated is not the outcome of a random

variable. In the context of information fusion, given z1:n = {z1, · · · , zn}, a sequence of n observa-

tions of x, the ML estimate x̂ML is the values of x that maximizes the likelihood function, given

by

x̂ML(k) = arg max
x
L(x) = arg max

x
p(z|x)

Maximum A Posteriori (MAP). In Bayesian statistics, a MAP estimate is a mode of the

posterior distribution. Unlike ML estimation, it is used when the state x to be estimated is the

outcome of a random variable with known prior density p(x). In the context of information fusion,

given z1:n = {z1, · · · , zn}, a sequence of n observations of x, the MAP estimate x̂MAP is the value

of x that maximizes the posterior distribution

x̂MAP = arg max
x

p(x|z) = arg max
x

p(z|x)p(x)

23



Both methods, ML and MAP, try to find the most likely value for the state x. However, the former

method assumes that state is a fixed, though unknown, point of the state space, while the latter

considers the state as the outcome of a random variable with known prior density.

Architectures

The presence of multiple sensors and fusion nodes provides many choices in the architecture, i.e.,

how the sensors report to fusion node and the connectivity among the nodes. Figure 3 shows four

possible architectures: centralized, hierarchical without feedback, hierarchical with feedback, and

fully distributed [67].
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Figure 3: Fusion architectures. S and F indicate sensor and fusion node, repectively. (a) Centralized,
(b) Hierarchical without feedback, (c) Hierarchical with feedback, and (d) Distributed.

The traditional architectures for fusion are centralized. Data from multiple sensors are sent to a

single location where the data are fused and the results are distributed to various users. Although,

the centralized architecture is theoretically optimal and conceptually simpler, it requires high com-

munication bandwidth to send the sensor data from all the sensors to the fusion node, and more

computer resources to process the data.

On the other hand, distributed (including hierarchical) fusion architectures have the following

advantages: lighter processing load at each fusion node due to the distribution over multiple nodes;

no need to maintain a large centralized database since each node has its own local database; lower

communication load since data does not have to be sent to/from a central processing site; faster user

access to fusion results since there is less communication delay; and higher survivability since there
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is no single point of failure associated with a central fusion node. In a fully distributed architecture,

there is no fixed superior/subordinate relationship among nodes. Each node can communicate with

other nodes subject to connectivity constraints. Communication can be adaptive and dependent on

the information content and needs of the individual nodes.

Biological and Cognitive Foundations

Various psychophysical and neurophysical studies have been conducted to understand the biological

and cognitive foundations of intelligent sensor fusion. Such studies have tried to investigate the

mechanism of sensor fusion and cognitive model of associated activities, including optimization of

sensing configurations, improvement of sensing quality, and filtering of noise [68].

According to the studies, intelligent sensor fusion is defined as a process which can autonomously

gather observations from multiple sensors and combine them into a single, coherent percept (execu-

tion of the sensor fusion mechanism), allows the sensor fusion mechanism to adapt itself to major

environmental changes and sensor malfunctions (perform exception handling), and can determine its

own sensing strategies for observing the percept in order to maintain efficient use of shared sensing

resources (configuration)

Biological studies and the neurological model describe several aspects of intelligent sensor fusion

relevant to robotics. First, sensor fusion couples perception with action. Second, sensor fusion

incorporates contextual information. Also, sensors can be combined in different ways for different

percepts. Another important aspect is the observation that multisensor neurons can respond more

to multiple sources of weak stimuli suggests that sensor evidence accrues rather than is averaged.

This is thought to be beneficial to an agent because it can ascertain danger from multiple weak

clues (e.g., a camouflaged predator). Cognitive studies reveal following aspect of intelligent sensor

fusion for robotics [69], (1) Sensor integration under certain circumstances is a form of closed-loop

control, (2) Not all sensors contribute equally, and (3) Control of sensory integration is separate

from planning for perception.

Target Localization and Tracking using Audio

Localization of acoustic sources using sensor arrays has been one of the central problems in sonar,

navigation, geophysics, and acoustic tracking. Traditional acoustic source localization methods were

developed for wired sensor networks. In WSNs, collaborative source localization is needed where

the objective is to estimate the positions of multiple sources by fusion of data from multiple sensors.
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There are two broad classes of methods for collaborative source localization. The first class of

approaches, where the estimation is done by fusion of the sampled signals, is called the signal-level

fusion methods. The second class of approaches, where signal features are extracted at each sensor

and estimation is done by fusion of the extracted features, is called the feature-level fusion methods.

The signal-level fusion methods are not suited for WSNs because they require transmission of the

raw signal, which is costly due to limited bandwidth and power on sensors. On the other hand,

the feature-level fusion methods are appropriate for WSNs due to its lower bandwidth and power

requirements.

The localization approaches depend on the type of the acoustic source. For coherent and nar-

rowband signals, several approaches utilizing the phase differences measured at the receiving sensor

have been proposed to estimate the direction-of-arrival (DOA) of the sources in the far-field [70]. A

review and comparison of the various narrowband approaches are presented in [71]. For wideband

signals, e.g., acoustic or seismic signals, many approaches utilizing the narrowband techniques with

suitable transformations have been proposed. A class of methods called coherent signal subspace

method (CSM) involves a preprocessing step to transform the wideband signal subspaces into nar-

rowband subspaces and then apply narrowband algorithms [72,73]. However, the drawback of these

methods is the preprocessing that must be performed beforehand.

Another class of wideband source localization algorithms is based on time delays. These tech-

niques typically include two steps, namely, time delay estimation (TDE) between signals received

on spatially separated sensors and source localization based on the time delay estimates [74–79].

Other methods for wideband acoustic source localization include beamforming [71, 80], hemisphere

sampling [81], and probabilistic accumulation [82].

Among feature-based methods, energy-based localization (EBL) methods utilizing signal energy

as acoustic features have been proposed [83–85]. In free space, acoustic energy decays at a rate that is

inversely proportional to the distance from the source. Several least-squares formulations for EBL are

presented in [83,85]. A ML formulation with capability for multiple source localization is presented

in [84]. Figure 4 shows the categorization of various acoustic source localization approaches.

Signal Propagation Models

Three signal propagation models have been used in the acoustic source localization literature. They

are, the ideal single-path propagation model, the multipath model, and the reverberation model.

26



Figure 4: Acoustic source localization approaches.

Ideal Propagation Model

The ideal propagation model assumes that the signal acquired by each sensor is a delayed and

attenuated version of the original source signal plus some additive noise. The ideal single-path

model can again be categorized into far-field and near-field cases.

The Far-Field Case. When the source is in the far-field of the sensor array, the wave front is

assumed to be planar and only the DOA information can be estimated. In this case, one of the

sensors is used as the reference point and the signal model is defined based on the relative time

delays from this position. The received signal at kth sensor is expressed as

zk[n] = αks[n− τkq] + wk[n] (6)

where αk, is the attenuation factor due to propagation effects, s[n] is the unknown source signal,

wk[n] is an additive noise signal at the kth sensor, and τkq is the relative time delay between

sensors k and the reference sensor indexed q. In far-field case, the relative time delay is given by,

τkq = tk − tq = dkq cos(φ − βkq)/C, where dkq and βkq are the distance and angle between two

sensors, respectively, φ is the source DOA, and C is the speed of sound.

The Near-Field Case. In this case, the wave from is assumed to be spherical and the range

information can also be estimated in addition to the DOA. The source location is itself considered

as the reference point. The received signal at kth sensor is expressed as

zk[n] = αks[n− τk] + wk[n]
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where αk, is the attenuation factor due to propagation effects, s[n] is the unknown source signal,

wk[n] is an additive noise signal at the kth sensor, and τk is the absolute time delay between sensor

k and the source. In near-field case, the absolute time delay is given by, τk = tk =‖ xk − x ‖ /C,

where xk and x are locations of the kth sensor and the source, respectively, and C is the speed of

sound.

Multipath Model

In this model, each sensor receives multiple delayed and attenuated replicas of the source signal due

to reflections of the wavefront from boundaries and objects in addition to the direct-path signal (See

Figure 5(a)). This multipath effect has been intensively studied in the literature [86, 87]. In this

case, the received signals are often described mathematically as

zk[n] =

M∑
m=1

αkms[n− t− τkm] + wk[n] (7)

where αkm is the attenuation factor from the unknown source to the kth sensor via the mth path,

t is the propagation time from the source to a reference sensor via direct path, τkm is the relative

delay between sensor k and the reference sensor for path m, M is the number of different paths.

(a)

Sensors

Source

Multipaths

(b)

Figure 5: Illustration of the signal model in a (a) multipath environment, and (b) reverberant
environment.

Reverberation Model

The multipath model is not valid for all environments. In addition, if there are many different

paths, i.e., M is large, it is difficult to estimate all τkm in Equation (7). Recently, a more realistic
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reverberation model has been used to describe the TDE problem in a room environment where each

sensor often receives a large number of echoes due to reflections of the wavefront from objects and

room boundaries such as walls, ceiling, and floor [88]. In addition, it accounts for multiple reflections,

as shown in Figure 5(b). In this model, the received signals are expressed as

zk[n] = hk ∗ s[n] + wk[n] (8)

where ∗ denotes convolution, hk is the channel impulse response between the source and the kth

sensor. It is assumed that s[n] is reasonably broadband and wk[n] is uncorrelated with s[n] and the

noise signals at other sensors.

Time Delay Estimate Based Localization

These techniques typically include two steps, namely, TDE between signals received on spatially

separated sensors and source localization based on the time delay estimates [74–79].

Time Delay Estimation

A number of algorithms have been proposed for TDE under various circumstances. Depending

on the application, TDE can be categorized as either the time-of-arrival (TOA) estimation [89] or

time-difference-of-arrival (TDOA) estimation [90]. TOA estimation methods measure the time delay

between transmission and reception of a known signal. TOA estimation methods are part of active

systems such as radar and active sonar, where time delay is measured between transmission of a

known signal and reception of its echo. On the other hand, TDOA estimation methods are part

of passive systems such as passive sonars and microphone array systems, where the time delay is

measured as the difference of travel time of an unknown signal between two spatially separated

receiving sensors.

The cross-correlation (CC) method is the most straightforward and the earliest developed TDE

algorithm, which is formulated based on the ideal signal propagation model (Equation (6)) for single

source and two receivers. The time delay estimate with the CC method is obtained as the lag time

that maximizes the cross-correlation function (CCF) between two received signals

τ̂CC = arg max
m

ΨCC [m] (9)
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where ΨCC [m] = E[zi[n]zj [n+m]] is the CCF between zi[n] and zj [n] and E[·] is the expectation.

Other methods for TDE include, generalized cross-correlation (GCC) method and multichannel

cross-correlation (MCC) algorithm.

Source Localization

The second step of TDE-based localization includes estimating the location of the sound source

using the time delay estimates. For this step a number of approaches have been proposed. These

include the maximum likelihood estimation [76] and several closed-form solutions such as spherical

interpolation (SI) [74, 75], hyperbolic intersection (HI) [77], and linear intersection (LI) [78]. These

closed-form solutions exploit geometric relationship between sensors to approximate the solution.

In this section, we review a typical source localization problem formulation based on the time delay

estimates.

The localization problem can be stated as follows. Given K sensors, their 3D locations, and

TDOA estimates τij for each sensor pair ij for a signal source located at an unknown location x,

find an estimate for location of the source. For K sensors there are N = K(K − 1)/2 sensor pairs.

The true TDOA associated with the source and a sensor pair ij is given by

T (x,xi,xj) =
‖ x− xi ‖ − ‖ x− xj ‖

C

where C is the speed of propagation in the medium. In practice, τij is corrupted by noise with

variance σ2
ij , and is an unbiased estimate of the true TDOA and possesses a unimodal probability

distribution. If the TDOA estimates are assumed to be independently corrupted by additive zero-

mean, uncorrelated Gaussian noise, the ML estimate x̂ML can be given by

x̂ML = arg min
x
`(x) (10)

where

`(x) =
∑
i,j

1

σ2
ij

[τij − T (x,xi,xj)]
2

is the negative log-likelihood function. Since T (x,xi,xj) is a nonlinear function of x, Equation (10)

does not possess a closed-form solution.
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Beamforming

Another class of wideband acoustic source localization algorithms is called beamforming [71, 80].

Two common types of beamforming are time-domain and frequency-domain beamforming.

Time-Domain Beamforming

Traditional time-domain delay-and-sum beamforming computes the likelihood that a sound source

is at a location by measuring the energy of the reconstructed signal at that location

Bbeam(x) =

∫ t0+W/2

t0−W/2

[
K∑
k=1

zk(t+ τk,x)

]2

dt

where K is the number of microphones, zk is the signal received by the kth microphone, τk,x is the

travel time for sound to reach microphone k from location x, and t0 and W are the center and width

of the integration window, respectively. Source localization is then performed by maximizing the

likelihood

x̂ML = arg max
x
Bbeam(x)

In far-field case, a sensor array cannot estimate the source location. Instead, beamforming is used

to estimate the source direction. The ML estimate for source direction in this case can be given by

θ̂ML = arg max
θ
Bbeam(θ) =

∫ t0+W/2

t0−W/2

[
K∑
k=1

zk(t+ τk,θ)

]2

dt

where τk,θ is the travel time for sound to reach microphone k from a reference location at angle θ.

Beamforming generally produces better results because it takes the raw signals into account during

source localization, as opposed to the two-step TDE approaches. However, TDE techniques are

more computationally efficient because they rely upon the fast operation of cross-correlation.

Frequency-Domain Beamforming

In frequency-domain beamforming, both the array signal model is formulated in frequency-domain.

Frequency-domain beamforming formulation and an optimal parametric ML solution to locate wide-

band sources in the near-field and far-field are proposed in [91–93]. In the frequency domain, the
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array signal model for multiple sources is given by

Z(q) = D(q)S0(q) + η(q) (11)

for q = 0, · · · , Q − 1, where the array data spectrum is given by Z(q) = [Z1(q), · · · , ZK(q)]t, the

steering matrix is given by D(q) = [d1(q), · · · ,dM (q)], the steering vector is given by dm(q) =

[dm1 (q), · · · , dmK(q)]t, dmk (q) = e−j2πqt
m
k /N , for m = 1, · · · ,M , the source spectrum is given by

S0(q) =
[
S1

0(q), · · · , SM0 (q)
]t

, and K, M are number of sensors and sources, respecitvely. The noise

spectrum vector η(q) is zero-mean complex white Gaussian, distributed with variance Lσ2.

ML Source Localization and DOA Estimation The unknown parameter space is Θ =[
Xt,S1

0
t
, · · · ,SM0

t
]t

, where the source locations are denoted by X = [xt
1, · · · ,xt

M ]
t

and the source

signal spectrum is denoted by Sm0 = [Sm0 (1), · · · , Sm0 (Q/2)]
t
, for m = 1, · · · ,M . By stacking up the

Q/2 positive frequency bins of the signal model in Equation (11) into a single column, the sensor

data can be rewritten into an QK/2× 1 space-temporal frequency vector as

Z = G(Θ) + ξ (12)

where G(Θ) = [S(1)t, · · · ,S(Q/2)t]
t
, S(q) = D(q)S0(q), and Rξ = E

[
ξξH

]
= Lσ2IQK/2. The

negative log-likelihood function of the data is given by L(Θ) =‖ Z−G(Θ) ‖2. The ML estimation

of the source locations and source signals is given by

min
Θ
L(Θ) = min

Θ

Q/2∑
q=1

‖ Z(q)−D(q)S0(q) ‖2 (13)

which is equivalent to finding minX,S0(q) `(q) for all q bins, where

`(q) =‖ Z(q)−D(q)S0(q) ‖2 (14)

The minima of `(q), with respect to the source signal vector S0(q), must satisfy ∂`(q)/∂SH0 (q) = 0,

hence the estimate of the source signal vector which yields the minimum residual at any source

location is given by

Ŝ0(q) = D†(q)Z(q) (15)
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whereD†(q) =
(
D(q)HD(q)

)−1
D(q)H is the pseudo inverse of the steering matrixD(q). Define the

orthogonal projection P (q,X) = D(q)D†(q) and the complement orthogonal projection P⊥(q,X) =

I− P (q,X). By substituting Equation (15) into (14), the minimization function becomes

`(q) =‖ P⊥(q,X)Z(q) ‖2 (16)

After substituting the estimate of S0(q), the ML source locations estimate can be obtained by solving

the following maximization problem

max
X
J (X) = max

X

Q/2∑
q=1

‖ P (q,X)Z(q) ‖2 (17)

Once the ML estimate of X is obtained, ML estimate of the source signals can be given by

Equation (17). Similarly, in the far-field case, the unknown parameter vector contains only

the DOAs, that is, φs =
[
φ1
s, · · · , φMs

]T
. Thus, the ML DOA estimation can be obtained by

maxφs
∑Q/2
q=1 ‖ P (q,φs)Z(q) ‖2.

Other Signal-Level Localization Methods

Hemisphere Sampling Like TDE, the method involves correlating pairs of microphone signals,

but instead of taking the peak of each correlation vector, all the correlation values from all the

vectors are accumulated in the common coordinate system, namely a unit hemisphere centered

on the microphone array. The maximum cell in the hemisphere then indicates the azimuthal and

elevation angles to the source [81].

Accumulated Correlation This method combines the advantages of both beamforming and

TDE approaches. Like beamforming, it is accurate because it takes all the information into account

before making a decision. Like TDE, it is computationally efficient because it uses cross-correlation

as its basic operation [82].

Energy Based Localization

Among feature-based methods, EBL methods use signal energy as acoustic features [83–85]. In free

space, acoustic energy decays at a rate that is inversely proportional to the distance from the source.

Given simultaneous measurements of acoustic energy of an omnidirectional point source at known

sensor locations, the source location can be estimated based on these readings.
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Acoustic Energy Attenuation Model

Let K be the number of acoustic sensors and M be the number of omnidirectional acoustic point

sources in the sensor field. The acoustic signal received at the kth sensor k = 1, 2, · · · ,K during

time interval n then can be expressed as

zk(n) = γk

M∑
m=1

sm(n− tmk)

‖ xm(n− tmk)− xk ‖α/2
+ νk(n)

where νk(n) is the background noise modeled as a zero-mean additive white Gaussian (AWGN) noise

random variable with variance ς2k , sm(n− tmk) is the intensity of the mth acoustic source measured

1 m away from that source, tmk is the propagation delay of the acoustic signal from the mth source

to the kth sensor, and α(≈ 2) is an energy decay factor. Algebraic manipulations lead to following

acoustic energy decay model

yk(t) = ysk(t) + εk(t) = gk

M∑
m=1

Sm(t)

dαmk
(t) + εk(t) (18)

where dmk =‖ xm(t)−xk ‖ is the distance between the kth sensor and the mth source. The square of

the background noise ν2
k(n) will have a χ2 distribution with mean equal to E[ν2

k(n)] = ς2k and variance

equal to 2ς4k/M . For sufficiently large number of samples (L >> 30), εk can be approximated well

with a normal distribution, namely, εk ∼ N (ς2k , 2ς
4
k/M) ≡ N (µk, σ

2
k).

Energy Ratio Formulation

For single target, a least-squares solution based on energy ratio formulation is presented in [83].

The basic idea behind energy ratio formulation is that the ratio of the signal energy received at

two separate sensors constraints the locus of acoustic source on a hypersphere (i.e. a circle in 2D

and a sphere in 3D). If all the sensors that receive the signal from the same target are used, the

corresponding target location hyperspheres must intersect at a point that corresponds to the source

location.

The acoustic energy decay model for single target (putting M = 1 in Equation (18)) is

yk(n) = gk
S(n)

|x(n)− xk|α
+ εk(n) (19)
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Approximating the additive noise term εk(n) in Equation (19) by its mean value µk, the energy ratio

κij of the ith and the jth sensors can be computed as

κij =

(
(yi(t)− µi)/(yj(t)− µj)

gi(t)/gj(t)

)−1/α

=
|x(t)− xi|
|x(t)− xj |

(20)

Note that for 0 < κij 6= 1, all the possible source coordinates x(t) that satisfy Equation (20) must

reside on a hypersphere described by the equation

|x(t)− cij |2 = ρ2
ij

where the center cij and the radius ρij of this hypersphere, called target location hypersphere asso-

ciated with sensor i and j are given by

cij =
xi − κ2

ijxj

1− κ2
ij

and ρij =
κij |xi − xj |

1− κ2
ij

In the limiting case when κij → 1, the solution of Equation (20) form a hyperplane between xi and

xj

x(t) · (xi − xj) =
|xi|2 − |xj |2

2
or x(t) · γij = ξij

where γij = xi − xj and ξij =
(
|xi|2 − |xj |2

)
/2. Then, target localization can be modeled as a

nonlinear least square optimization problem where the cost function is defined as

J(x) =

M1∑
m=1

(‖ x− cm ‖ −ρm)
2

+

M2∑
n=1

(γtnx− ξm)
2

where m and n are indices of the energy ratios computed between different pairs of sensor energy

readings, M1 is the number of hyperspheres, and M2 is the number of hyperplanes.

Maximum Likelihood Formulation

A ML formulation for EBL with the capability for multiple source localization is presented in [84].

The method maximizes the joint likelihood of both the source locations and corresponding acoustic

energy readings. By stacking the variables and using matrix notation, the acoustic energy decay
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model (Equation (18)) can be represented as

Z = GDS + ξ = HS + ξ

where Z = [(y1 − µ1)/σ1 · · · (yN − µN )/σN ]
t
, G = diag [g1/σ1 · · · gN/σN ], S = [S1 · · ·SK ]

t
, H =

GD, ξ = [ξ1 · · · ξN ]
t
, and

D =



1/d2
11 · · · 1/d2

1K

1/d2
21 · · · 1/d2

2K

...
. . .

...

1/d2
N1 · · · 1/d2

NK



where ξi = (εi−µi)/σi ∼ N (0, 1) are independent Gaussian random variables. The joint probability

density function of Z then is expressed as

L(Z|θ) = (2π)−N/2exp

(
−1

2
(Z−HS)t(Z−HS)

)

where θ = [xt
1 · · ·xt

M S1 · · ·SM ]
t
, is the vector of unknown parameters, xm and Sm are the location

and energy for mth source. The negative log-likelihood function is proportional to a quadratic form

`(θ) =‖ Z−GDS ‖2

Thus, the maximum likelihood parameter estimation of θ can be obtained by minimizing `(θ). Two

complementary methods are proposed to solve this nonlinear optimization problem. The first method

is based on a projection formulation and uses multiresolution search to expedite computation. The

second method is based on an Expectation–Maximization (EM) like iterative algorithm.

Summary of Acoustic Source Localization

Table 6 summarizes different acoustic source localization approaches.

Most of the acoustic source localization methods are signal-level fusion methods. TDE based

localization is combination of signal processing algorithm for time delay estimation and ML estima-

tion (or closed-form solution) for localization. Beamforming, hemisphere sampling and probabilistic
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Table 6: Summary of acoustic source localization approaches
TDE TDE BF HemiSamp ProbCorr ER EBL
(SI/HI/LI) (ML) (TD/FD) (ML)

Fusion type signal signal signal signal signal feature feature
Number of targets single single single/

multiple
single single single single/

multiple
Method nls ml ml ml ml nls ml

correlation are all signal-level fusion methods, hence cannot be directly applied to WSNs. Energy

based methods, which use feature-level fusion, are well-suited for WSNs.

One way beamform can be applied to WSNs is by using multiple spatially separated microphone

arrays. Each array computes the beamform and the fusion center uses the entire beamform, not

just the DOA estimate, for sensor fusion and localization. This would be an example of feature-level

fusion methods, where beamform has been used as an acoustic feature.

In general, feature-level fusion methods are not very common in acoustic source localization and

tracking. As WSN applications incorporate more acoustic sensors, it is important to discover and

define relevant acoustic features and feature-level fusion algorithms.

Target Localization and Tracking using Video

Target tracking, also called object tracking, is an important task in the field of computer vision

and image processing. It is key part of a number of applications such as automated surveillance,

traffic monitoring, vehicle navigation, motion-based recognition, human-computer interaction, etc.

In its simplest form, object tracking can be defined as the problem of estimating the trajectory and

other desired properties, such as orientation, area, or shape of an object as it moves around in a

scene. Most common challenges to object tracking are, (1) loss of information caused by projection

of the 3D world on a 2D image, (2) noise in images, (3) complex object motion, (4) nonrigid or

articulated nature of objects, (5) partial and full object occlusions, (6) complex object shapes, (7)

scene illumination changes, and (8) real-time processing requirements.

The key aspects of any object tracking approach are, (1) object representation, e.g. using points,

simple geometric shapes, contours or appearance models, (2) selection and extraction of image

features from incoming frames, such as color, motion, edges, etc., (3) object detection based on the

features, and (4) a tracking algorithm that maintains and updates an estimate of object trajectory

and other desired properties. In this section, we review these aspects and various object tracking

approaches.
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Object Representation

Objects can be represented by their shapes and/or appearances. The most commonly employed

shape representations are following [94].

1. Points or a set of points that represent a fixed marker on the object, e.g. centroid. In general,

the point representation is suitable for tracking objects that occupy small regions in an image.

2. Primitive geometric shapes, e.g. rectangle, ellipse, etc. Such representations are suitable for

tracking objects with rigid shapes.

3. Object silhouette and contour representation that defines the boundary of an object. Such

representations are suitable for tracking complex nonrigid shapes.

4. Articulated shape models are used to represent objects that are composed of rigid parts held

together with joints. For example, the human body is an articulated object with torso, legs,

hands, head, and feet connected by joints.

5. Skeletal models are used to represent object shape outline and connectivity neglecting shape

details. This model is commonly used as a shape representation for recognizing objects.

The most commonly employed object appearance representations are following.

1. Probability densities of object appearance, including parametric densities, e.g. Gaussian, mix-

ture of Gaussian, etc., or nonparametric, e.g. histograms [95].

2. Templates that are formed using one or more simple geometric shapes or silhouettes. An

advantage of a template is that it carries both spatial and appearance information.

3. Active appearance models that are generated by simultaneous modeling of object shape and

appearance. In general, the object shape is defined by a set of landmarks, where for each

landmark, an appearance vector is stored which is in the form of color, texture, or gradient.

4. Multiview appearance models that encode different views of an object. One approach to

represent the different object views is to generate a subspace from the given views. Subspace

approaches, for example, Principal Component Analysis (PCA) and Independent Component

Analysis (ICA), have been used for both shape and appearance representation [96].

38



Feature Selection for Tracking

The most desirable property of a visual feature, also called visual cue, is its uniqueness and dis-

cernibility, so that the objects can be easily distinguished in the feature space. Feature selection is

closely related to object representation. For example, color is used as a feature for histogram-based

appearance representations, while for contour-based representation, object edges are usually used as

features. In general, many tracking algorithms use a combination of these features. The details of

common visual features are as follows.

Motion

In object tracking, motion feature refers to moving foreground in the video. The motion feature

is computed by background subtraction via frame-differencing. Correct extraction of motion fea-

ture requires robust and adaptive background model. There exist a number of challenges for the

estimation of robust background model [97], including gradual and sudden illumination changes,

vacillating backgrounds, shadows, visual clutter, occlusion, etc. In practice, most of the simple

motion detection algorithms have poor performance when faced with these challenges.

Color

The apparent color of an object is influenced primarily by two physical factors, (1) the characteristics

of the light source and (2) the surface reflectance properties of the object. In image processing, the

RGB (red, green, blue) color space is usually used to represent color. However, the RGB space

is not a perceptually uniform color space and is highly sensitive to illumination changes. HSV

(hue, saturation, value) space, on the other hand, is approximately uniform in perception. The hue

parameter in HSV space represents color information, which is illumination invariant as long as the

following two conditions hold, (1) the light source color can be expected to be almost white, and (2)

the saturation value of object color is sufficiently large [98].

The color feature is computed using one of the two methods. In the simple model, the color of

each pixel in the current image is compared to a prototype color [h0(t), s0(t), v0(t)] describing the

color of the tracked object, e.g. face color in [99]. The pixels with acceptable deviation from the

prototype color constitute the color cue. In a more complex model, the prototype color is modeled

with adaptive mixture model. An adaptive Gaussian mixture model in hue-saturation space is used

in [100].
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Texture

Visual textures are the patterns in the intensity variations of a surface. The patterns can be the

result of physical surface properties such as roughness, or they could be the result of reflectance

differences such as the color on a surface. Image texture is defined as a function of the spatial

variation in pixel intensities. Texture is the most important visual feature in identifying different

surface types, which is called texture classification. Image contrast, defined as the standard deviation

of the grayscale values within a small image region, is considered a simple texture feature [100].

Shape

An object can be represented as a primitive geometric shape, e.g. rectangle, ellipse, etc. Such object

shapes can be called templates, and they carry both spatial and appearance information. The shape

feature is computed by template matching. Template matching is a brute force method of searching

the input image for a region similar to the shape template [99]. The similarity of the region with

the template is defined as a similarity measure, e.g. cross correlation.

Prediction

In object tracking applications, the position of the object can be predicted using the previous position

and the motion model. When the object is represented by a geometric shape, the motion model is

usually in the form of a parametric transformation of the shape, such as translation, rotation, and

affine [99,100].

Edge Map

Edge detection algorithms, such as Canny Edge detector [101], are used to identify points in an image

at which the image intensity changes sharply or has discontinuities. Such discontinuities in image

intensity are generated by object boundaries. In general, edges are are less sensitive to illumination

changes compared to color features. Algorithms that track the boundary of the objects usually use

edges as the representative feature.

Interest Points

Interest points in images are the points in the image that have an expressive texture in their respective

localities. A desirable quality of an interest point is its invariance to changes in illumination and
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camera viewpoint. Commonly used interest point detectors include Moravec’s interest operator [102],

Harris interest point detector [103], KLT detector, and SIFT detector [104].

Optical Flow

Optical flow is a dense field of displacement vectors that defines the translation of each pixel in

a region. It is computed using the brightness constraint, which assumes brightness constancy of

corresponding pixels in consecutive frames [105]. Optical flow is commonly used as a feature in

motion-based segmentation and tracking applications.

Video Feature Fusion

In many situations information garnered from a single feature is unreliable, incomplete or intermit-

tent. For example, most colorspaces are sensitive to illumination variation. Such situations require

the use to multiple visual features for correct and continued operation. In other applications, the

use of multiple cues will increase the robustness and reliability of estimation. Fusion of multiple

video features is also called cue integration.

Probabilistic approaches have been widely used in fusion of multiple cues [100, 106, 107]. These

approaches require a model that fits to the data and prior distributions of possible results, hence

often called the model-based approaches for feature fusion/cue integration. An alternative to the use

of strong models is model-free approach to cue integration [99, 100, 108]. These approaches exploit

the incidental agreement of multiple cues where methods like voting and fuzzy logic can be used for

fusion. These approaches have been widely used in cases where a precise mathematical model of the

controlled process is not available. Various cue integration techniques are following.

Bayesian Fusion

In a Bayesian approach, the posterior of the target model given the current image is computed using

the Bayes rule. Let C = {C1, · · · , CK} represent a set of K visual cues extracted from an image I

of an object (e.g., edge maps, surface normals, color), and X represent a particular target model.

Using Bayes theorem

p(X|I) ∝ p(I|X)︸ ︷︷ ︸
likelihood

p(X)︸ ︷︷ ︸
prior

∝ p(C|X)︸ ︷︷ ︸
appearance

p(X)︸ ︷︷ ︸
spatial configuration

(21)
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In Equation (21), I is substituted by C to indicate that the image information is represented by a

set of visual cues. The target model is estimated using the MAP estimate as

X̂ = arg max
X

p(X|I) = arg max
X

p(X|C)

Voting-Based Fusion

The key feature of the voting methods is that each cue makes a decision independent of all other

cues before the results are combined. Voting enables increased reliability of an integrated system

consisting of a number of modules/cues where the reliability of each individual module varies sig-

nificantly over time. In principle, each cue estimator may be a simple classifier that votes for a

particular attribute or against it (binary voting), and the votes from all cues are fused in a simple

way to produce global decision.

Voting can also be loosely put in a probabilistic framework by allowing each cue to compute

posterior independent of all other cues and then fuse the posterior together using weighted summa-

tion [100]

score(X) =
∑
k

wkpk(X|Zk) =
∑
k

wk
pk(Zk|X)p(X)

p(Zk)

and the target is estimated as

X̂ = arg max
X

score(X)

In a similar technique, called Democratic Integration, different cues agree on a result, and each cue

adapts toward the result [99]. In particular, discordant cues are quickly suppressed and recalibrated,

while cues that have been consistent with the result in the recent past are given a higher weight in

the future.

Object Detection

Object detection algorithms detect and/or estimate objects of interest in incoming frames based on

the selected/extracted image features. An object detection algorithm can either use information in

a single frame or use the temporal information computed from a sequence of frames. Various types

of object detection algorithms are summarized below.
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Point Detectors

Point detectors are used to find interest points in images which have an expressive texture in their

respective localities. A desirable quality of an interest point is its invariance to changes in illumi-

nation and camera viewpoint. Commonly used interest point detectors include Moravec’s interest

operator [102], Harris interest point detector [103], KLT detector, and SIFT detector [104].

Background Subtraction

Object detection, especially for moving objects, can be achieved by building a representation of the

scene called the background model and then finding deviations from the model for each incoming

frame via frame differencing. The pixels constituting the regions undergoing change are marked as

foreground for further processing. This process is referred to as the background subtraction. There

exist a number of challenges for the estimation of robust background models [97], including gradual

and sudden illumination changes, vacillating backgrounds, shadows, visual clutter, occlusion, etc.

In order to learn gradual changes over time, modeling the color of each pixel of a stationary

background with a single 3D Gaussian in YUV color space has been proposed [109]. The model

parameters are learned from the color observations over several consecutive frames. However, a single

Gaussian is not a good model for complex scenes, such as outdoor and urban environments [110],

since multiple colors can be observed at a certain location due to repetitive object motion, shadows,

or reflectance.

Further improvements in background modeling are achieved by using multimodal statistical mod-

els to describe per-pixel background color. A Kalman filter to track the changes in background

illumination for every pixel is used in [111]. A per-pixel adaptive parametric mixture model of three

Gaussian distributions is proposed in [112]. A kernel estimator for each pixel is proposed in [113]

with kernel exemplars from a moving window. Other techniques using high-level processing to assist

the background modeling have been proposed; for instance, the Wallflower tracker [97] which cir-

cumvents some of these problems using high-level processing rather than tackling the inadequacies of

the background model. An adaptive nonparametric Gaussian mixture model to address background

modeling challenges is done in [114]. In this method, a pixel in the current frame is checked against

the background model by comparing it with every Gaussian in the model until a matching Gaussian

is found. If a match is found, the mean and variance of the matched Gaussian is updated, otherwise

a new Gaussian with the mean equal to the current pixel color and some initial variance is introduced

into the mixture model. The algorithm in [115] proposes an adaptive background modeling method
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based on the framework in [114]. The main differences lie in the update equations, initialization

method and the introduction of a shadow detection algorithm. The motion detection algorithm that

we use in Chapter III is based on the adaptive background modeling method described in [115].

Image Segmentation

Image segmentation algorithms partition the image into perceptually similar regions. Every seg-

mentation algorithm addresses two problems, the criteria for a good partition and the method for

achieving efficient partitioning. Image segmentation algorithms include approaches such as (1) mean-

shift clustering to find clusters in the joint spatial-color ([l, u, v, x, y]) space [116], (2) graph-cuts,

where image segmentation is modeled as graph partitioning problem, and (3) active contours, where

segmentation is achieved by evolving a closed contour to the object’s boundary.

Supervised Learning

Object detection can be performed by learning to classify different object views automatically from a

set of examples using supervised learning mechanisms. Supervised learning methods usually require

a large collection of samples from each object class. Supervised learning algorithms commonly

used in object tracking include (1) adaptive boosting, where an accurate classifier is constructed

by combining a number of simple base classifiers, each of which may only be moderately accurate

[117, 118], and (2) support vector machines (SVM) to classify objects by finding the maximum

marginal hyperplane that separates one object class from another.

Object Tracking

The aim of an object tracker is to maintain and update the trajectory of an object and other desired

properties over time. The tasks of object detection and object association across time can either be

performed separately or jointly. In the first case, possible objects in every frame are obtained by

means of an object detection algorithm, and then the tracker associates the objects across frames.

In the latter case, called joint data association and tracking, the objects and associations are jointly

estimated by iteratively updating object state. Tracking algorithm strongly depends on the object

representation. Various object tracking approaches are described below.
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Point Tracking

When objects are represented as points, the association of the points is based on the previous object

state which can include object position and motion. The target tracking algorithm reviewed in

Section II are, in fact, point tracking approaches. For single object tracking, Kalman filter and

particle filters have been used extensively [46]. For multiple object tracking and data association,

Kalman filter and particle filters are used in conjunction with a data association algorithm that

associates the most likely measurement for an object to its state. The two widely used techniques

for data association are JPDAF [6] and MHT [39].

Kernel Tracking

Kernel refers to the object shape and appearance. Objects represented using shape and appearance

models are tracked by computing the motion of the kernel in consecutive frames. This motion is

usually in the form of a parametric transformation of the kernel, such as translation, rotation, and

affine. Kernel tracking can also be called model-based tracking, since the kernel is actually the

object model. Kernel tracking approaches are based on the templates and density-based appearance

models used for object representation.

Templates and density-based appearance models have been widely used because of their relative

simplicity and low computational cost. In kernel tracking, objects can be tracked individually or

jointly. For single targets, the most common approach is template matching. Usually image intensity

or color features are used to form the templates. Since image intensity is very sensitive to illumination

changes, image gradients [119] can also be used as features. A limitation of template matching is its

high computation cost due to the brute force search. Another approach, called mean-shift tracker

maximizes the appearance similarity iteratively by comparing the histograms of the object and the

window around the hypothesized object location. Histogram similarity is defined in terms of the

Bhattacharya coefficient [95,116].

In joint tracking of multiple objects, the interaction between objects is explicitly modeled allowing

the algorithm to handle partial of full occlusion of the objects. An object tracking method based

on modeling the whole image as a set of layers is proposed in [120]. This representation includes a

single background layer and one layer for each object. Each layer consists of shape priors (ellipse),

motion model (translation and rotation), and layer appearance, (intensity modeled using a single

Gaussian). Joint modeling of the background and foreground regions for tracking multiple objects is

proposed in Bramble [121]. The appearance of background and all foreground objects are modeled
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by mixture of Gaussian. The shapes of objects are modeled as cylinders. They assume the ground

plane is known, thus the 3D object positions can be computed. Tracking is achieved by using particle

filters where the state vector includes the 3D position, shape and the velocity of all objects in the

scene.

A color-based probabilistic tracking approach is presented in [122]. The tracking algorithm

uses global color reference models and endogenous initialization. They implemented the tracker

in a sequential Monte Carlo framework. They defined a color likelihood function based on color

histogram distances, the coupling of the color model with a dynamical state space model, and the

sequential approximation of the resulting posterior distribution with a particle filter. The use of a

sample-based filtering technique permits in particular the momentary tracking of multiple posterior

modes. This is the key to escape from background distraction and to recover after partial or complete

occlusions.

Silhouette Tracking

When objects are represented as silhouettes or contours, tracking is performed by either shape

matching or contour evolution [123]. Both of these methods can essentially be considered as object

segmentation applied in the temporal domain using the priors generated from the previous frames.

Shape matching approaches search for the object silhouette in the current frame. Contour tracking

approaches, on the other hand, evolve an initial contour to its new position in the current frame by

either using the state space models or direct minimization of some energy functional.

Tracking with Camera Network

According to the overview paper [124], smart cameras are evolving on three different evolutionary

paths. First, single smart cameras focus on integrating sensing with embedded on-camera processing

power to perform various vision tasks on-board and deliver abstracted data from the observed scene.

Second, distributed smart cameras (DSC) introduces distribution and collaboration of smart cameras

resulting in a network of cameras with distributed sensing and processing. The main motivations

for DSC are to (1) resolve occlusion, (2) mitigate single camera handicap, and (3) extend sensing

coverage. Finally, pervasive smart cameras (PSC) integrate adaptivity and autonomy to DSC.

According to the authors, the ultimate vision of PSC is to provide a service-oriented network which

is easy to deploy and operate, adapts to changes in the environment and provides various customized

services to users.
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All of the single camera tracking algorithms are applied in the (2D) image-plane. These (2D)

image-plane trackers often run into problems such as target scale selection, target rotation, occlusion,

view-dependence, and correspondence across views [125]. There are few 3D tracking approaches

[125,126] that fuse results from independent 2D trackers to obtain 3D trajectories. These approaches

employ decision-level fusion, wherein local decisions made by the node (i.e. 2D tracks) are fused to

achieve global decision (i.e. 3D tracks), while discarding the local information (i.e. images captured

at nodes). Because of the decision-level fusion, these approaches also suffer from all the problems

associated with 2D tracking.

Target Handoff

Another problem in 2D image-plane based trackers is the (re)initialization of a target when it

(re)enters a camera field-of-view. In current state-of-the-art approaches, (re)initialization is per-

formed by handing over target state to adjacent camera node which maintains the target state until

it hands over the state to some other camera node.

An autonomous multicamera tracking approach based on a fully decentralized handover mech-

anism between adjacent cameras in presented in [127]. The system automatically initiates a single

tracking instance for each target of interest. The instantiated tracker for each target follows the

target over the camera network, migrating the target state to the camera which observed the object.

This approach, however, utilizes data from only single camera node at any given time. The authors

do admit that the effectiveness of their handover mechanism introduces some requirements for the

tracker. First, the tracker must have short initialization time to build a target model. Second, the

tracker on the new camera node must be able to initialize itself from a previously saves state, or

handed-over state. Finally, the tracker must be robust with respect to the position and orientation

of a target such that it must be able to identify the same target on the next camera node. These

requirements need sophisticated and fine-tuned algorithms for 2D image-plane based tracker. On

the other hand, in 3D trackers, the target state and the target model are maintained in 3D space.

The target state and the target model are not tied to the camera network parameters, such as the

number of cameras, position and orientation of the cameras, etc. Once initialized, the target model

does not need to be re-initialize as it moves in the sensing region and enters, or re-enters a camera

field-of-view.
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3D Tracking using Ray Intersection

The classical and most naive approach for 3D collaborative target tracking is to combine the 2D

tracking results from individual camera nodes for 3D tracking. This can be done by projecting

rays from the camera center to the image affine coordinate in the world coordinate system and

finding the intersection of multiple such rays from multiple cameras. This approach requires each

camera node to maintain a 2D target model and a feature histogram. Hence the problems of scale

variation, rotation and occlusion are not alleviated. As soon as the target moves along the camera

principal axis, or rotates around its axis, the target model including the size and feature-histogram

would become invalid. A target model learning approach while target tracking can help mitigate

the problem but any sudden change which is faster than the model learning would cause the tracker

to loose the target.

Summary of Video Tracking

There has been a good deal of research on target modeling, making it as close to represent reality as

possible, sometimes at the expense of real-time performance. On the sensing and feature extraction

side, there has also been a lot of research, however, some features such as color, require a template

or prior information. This assumes feedback behavior, where fusion center informs the sensors the

template to expect. In HSNs, this might not be a reasonable expectation. It might be appropriate

to make the features and feature extraction model-free, i.e. no template or prior information is

required. Secondly, all feature-fusion (or cue integration) approaches take the grayscale images as

featuremap inputs. This is not suitable for HSNs because sensors cannot send grayscale images to

fusion center. Another way is needed to compress the features in a concise format so that they can

be communicated over wireless.

Multimodal Target Localization and Tracking

Multimodal sensor fusion and tracking refers to the case when more than a single sensing modality is

used to track targets. These modalities can complement each other in cases when one or some of the

modalities are compromised. For example in audio-video tracking, the modalities can complement

each other in the presence of high background noise that impairs the audio, or in the presence

of visual clutter that handicap the video. Additionally, tracking based on multimodal fusion can

improve the performance of tracking based on single modality alone. In some cases, some modalities

can provide cues for the other modality for actuation. For example, visual steering information
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from a video sensor may be used to steer an audio sensor array toward a moving target. Similarly,

information from the audio sensors can be used to steer a pan-tilt-zoom camera toward a speaker.

Multimodal sensor fusion and tracking have been applied to biometric speaker identification [128],

speech recognition [129], smart videoconferencing [130, 131], indoor tracking applications [50, 132,

133], and multimodal surveillance [12,134–136].

A speaker identification approach that combines face recognition and audio-visual speech-based

biometric identification is described in [128]. The temporal sequence of audio and visual observations

obtained from the acoustic speech and the shape of the mouth are modeled using a set of coupled

hidden Markov models (CHMM). An audio-visual speech recognition approach using geometric

features of lip movement and speech signals is described in [129]. For recognition, speech signals are

modeled by hidden Markov models (HMMs) which incorporate both audio and video speech feature

(i.e. lip geometric features).

A smart videoconferencing system based on a multimodal tracker using multiple cameras and

microphone arrays is proposed in [130]. The video data consist of pairs of image coordinates of

features on each tracked object, and the audio data consist of TDOA for each microphone pair in

the array. A particle filter is implemented for multimodal tracking.

An approach for audiovisual object tracking based on graphical models that combine the audio

and video data is proposed in [50]. The graphical model is designed for single target tracking

using a single camera and a microphone pair. The audio data consist of the signals received at

the microphones, and the video data consist of grayscale video frames. Generative models are

described for the audio-video data that explain the data in terms of the target state. An expectation-

maximization (EM) algorithm is described for parameter learning and tracking, which also enables

automatic calibration by learning the audio-video calibration parameters during each EM step. A

probabilistic framework for indoor multitarget tracking using audio and video data is described

in [132]. The video data consist of plan-view images of the foreground. Plan-view images are

projections of the images captured from different points-of-view to a 2D plane, usually the ground

plane where the targets are moving [137]. Acoustic beamforms for a fixed length signal are taken as

the audio data. A particle filter is implemented for tracking. An approach using Time-Delay Neural

Network (TDNN) to fuse audio and video data at the feature level for detecting a walking person

is proposed in [133]. The TDNN learns the relation between visual motion and step sounds of the

walking person for tracking.

A smart surveillance system named cassandra, aimed at detecting aggressive human behavior

in public environments is presented in [134]. cassandra exploits the complimentary nature of audio

49



and video sensing to disambiguate scene activity in real-life, noisy and dynamic environments. The

system is validated on a set of scenarios performed by professional actors at an actual train station

to ensure a realistic audio and video noise setting. A technology, called audio-assisted cameras

is proposed for multimodal surveillance in [135]. The audio-assisted cameras are PTZ cameras

augmented with an array of microphones. These cameras, rather than indiscriminate recording of

all activity, record the activity of interest by taking cue from microphone array. The ARL Multi-

Modal Sensor (MMS) is a research program at the U.S. Army Research Laboratory (ARL) for the

development of low cost sensing techniques for the urban environment [136]. The program objectives

were to develop a networked personnel detection sensor with the following major criteria: low cost in

volume production, support MOUT (Military Operations in Urban Terrain) operations, and employ

non-imaging sensor diversity techniques. The physical parameters sensed are seismic, acoustic, and

thermal using an accelerometer, microphone, and passive infrared (PIR) transducers, respectively.

A recent book on multimodal surveillance address a number of aspects of multimodal surveillance,

from front-end sensors to systems and environmental issues [138]. The book examines thermal,

vibration, video, and audio sensors in a broad context of civilian and military applications.
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CHAPTER III

AUDIO-VIDEO FUSION BASED TARGET TRACKING

This chapter presents a multimodal multisensor information fusion system for target tracking in an

urban environment using HSN consisting of audio and video sensors. We demonstrate the approach

utilizing an HSN of mote class devices equipped with microphone arrays as audio sensors and em-

bedded PCs equipped with web cameras as video sensors. We take two different approaches for

multisensor information fusion based on Sequential Bayesian Estimation (SBE) and Monte Carlo

Markov Chain Data Association (MCMCDA) algorithm. The targets to be tracked are moving ve-

hicles emitting engine noise. The system has many components including audio processing, video

processing, WSN middleware services, multimodal sensor fusion, and target tracking based on SBE

and MCMCDA.

Introduction

Heterogeneous sensor networks (HSNs) are gaining popularity in diverse fields, such as military

surveillance, equipment monitoring, and target tracking [4]. They are natural steps in the evolution

of wireless sensor networks (WSNs) driven by several factors. Increasingly, WSNs will need to

support multiple, although not necessarily concurrent, applications. Different applications may

require different resources. Some applications can make use of nodes with different capabilities. As

the technology matures, new types of nodes will become available and existing deployments will be

refreshed. Diverse nodes will need to coexist and support old and new applications.

Furthermore, as WSNs are deployed for applications that observe more complex phenomena,

multiple sensing modalities become necessary. Different sensors usually have different resource re-

quirements in terms of processing power, memory capacity, or communication bandwidth. Instead

of using a network of homogeneous devices supporting resource intensive sensors, an HSN can have

different nodes for different sensing tasks [36–38]. For example, at one end of the spectrum low

data-rate sensors measuring slowly changing physical parameters such as temperature, humidity or

light, require minimal resources; while on the other end even low resolution video sensors require

orders of magnitude more resources.

Tracking is one such application that can benefit from multiple sensing modalities [139]. If

the moving target emits sound signal then both audio and video sensors can be utilized. These

51



modalities can complement each other in the presence of high background noise that impairs the

audio, or in the presence of visual clutter that handicap the video. Additionally, tracking based on

the fusion of audio-video data can improve the performance of audio-only or video-only approaches.

Audio-video tracking can also provide cues for the other modality for actuation. For example,

visual steering information from a video sensor may be used to steer the audio sensor (microphone

array) toward a moving target. Similarly, information from the audio sensors can be used to steer a

pan-tilt-zoom camera toward a speaker. Although, audio-visual tracking has been applied to smart

videoconferencing applications [131], it does not use a wide-area distributed platform .

Multimodal sensor fusion and tracking pose a number of challenges. In multimodal multisensor

fusion, the data may be fused at a variety of levels including the raw data level, where the raw signals

are fused, a feature-level, where representative characteristics of the data are extracted and fused,

and a decision-level fusion wherein target estimates from each sensor are fused [59]. At successive

levels more information may be lost, but in collaborative applications, such as WSN applications, the

communication requirement of transmitting large amounts of data is reduced. Another significant

challenge is sensor conflict, when different sensors report conflicting data. When sensor conflict is

very high, fusion algorithms produce false or meaningless results [140]. Reasons for sensor conflict

may be sensor locality, different sensor modalities, or sensor faults. If a sensor node is far from a

target of interest then the data from that sensor will not be useful, and will have higher variance.

Different sensor modalities observe different physical phenomena. For example, audio and video

sensors observe sound sources and moving objects, respectively. If a sound source is stationary or a

moving target is silent, the two modalities might produce conflicting data. Also, different modalities

are affected by different types of background noise. Finally, poor calibration and sudden change in

local conditions can also cause conflicting sensor data.

Another classical problem in multitarget tracking is to find a track of each target from the noisy

data. If the association of sequence of data-points with each target is known, multitarget tracking

reduces to a set of state estimation problems. The data association problem is to find which data-

points are generated by which targets, or in other words, associate each data-point with either a

target or noise. Our system employs a Markov Chain Monte Carlo Data Association (MCMCDA)

algorithm for tracking. The MCMCDA algorithm is a data-oriented, combinatorial optimization

approach to the data association problem that avoids the enumeration of tracks. The MCMCDA

algorithm enables us to track an unknown number of targets in noisy urban environment

In this chapter, we describe our approach to multimodal target tracking in urban environments

utilizing an HSN of mote class devices equipped with microphone arrays as audio sensors and embed-
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ded PCs equipped with web cameras as video sensors. The targets to be tracked are moving vehicles

emitting engine noise. Our system has many components including audio processing, video process-

ing, WSN middleware services, multimodal sensor fusion, and target tracking based on sequential

Bayesian estimation and MCMCDA. While none of these is necessarily novel, their composition and

implementation on an actual HSN requires addressing a number of significant challenges.

Specifically, we have implemented audio beamforming on audio sensors utilizing an FPGA-based

sensor board and evaluated its performance as well its energy consumption. While we are using

a standard motion detection algorithm on video sensors, we have implemented post-processing fil-

ters that represent the video data in a similar format as the audio data, which enables seamless

audio-video data fusion. Furthermore, we have extended time synchronization techniques for HSNs

consisting of mote and PC networks. Finally, the main challenge we address is system integration

including making the system work on an actual platform in a realistic deployment. The chapter

provides results gathered in an uncontrolled urban environment and presents a thorough evaluation

including a comparison of different fusion and tracking approaches.

Comparison with Related Work

Classical target tracking approaches are based on decision-level fusion, and assume one-to-one asso-

ciation between target and measurements [5,6,39,44]. Our approach is feature-level fusion and allows

for target interaction, occlusion and mixed observations [9, 12, 14]. This is especially important in

cases where multiple targets are in close proximity of each other.

Most of the research in video tracking focus on multiple feature fusion on single camera system

[99, 100, 107]. Little work has been done in surveillance using camera network [127]. Even in

such camera networks, the individual cameras perform tracking without collaboration with other

cameras. Collaborative target tracking in camera network requires sharing of visual features with

multiple sensors. Our multimodal tracking system [10,12] uses a network of cameras that collaborate

with each other for feature-level fusion.

Multimodal sensor fusion has been used in applications such as intelligent/interactive terminals

[129], biometric identification [128], videoconferencing [130, 131], smart environment and indoor

surveillance [50,132,133]. These applications are designed for small sensing region, e.g. face, a desk,

or a room. Like multimodal surveillance approaches in [134–136], our approach is also targeted for

multimodal surveillance in urban environments [11,12], e.g. section of a road.
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Target 
Application

Intelligent/ interactive
term. [123],  biometric
ident. [122]

Videoconf. [124, 125],
smart/ interactive
envr. [50, 126, 127]

Surveil. and monitor.
[128, 129, 130]

Our approach for
tracking [11, 12]

Technique 
Used

face tr. , speech recog. speaker ident./ tr., indoor
tr., face tr.

target det., loc. and
tr.

target det., loc. 
and tr.

Sensing 
Region

small/face medium/room road, busy public
places

section of road

Features 
Used

face-color, audio
spectrum, lip geometry 
and motion

face-color, motion, audio
signals

motion, acoustic,
seismic, and thermal 
signals

motion, acoustic
beamform, PSD

Fusion 
Level

signal-level signal-level signal-level (local),
decision-level 
(global)

feature-level

Hardware/ 
Platform

high-cost, centralized,
wired

high-cost, centralized,
wired

low-cost, distributed,
wireless

low-cost, 
distributed,
wireless

Figure 6: Comparison to Related Work.

The comparison to related work is shown in Figure 6, with the proposed work [11, 12] shown

in the last column. Most of these systems are either single sensors systems with multiple feature

fusion [100, 107, 128], or multiple sensors connected to the same hardware platform, e.g. a PTZ

camera connected with a microphone array [134, 135]. Ours is a distributed system, with multiple

audio and video sensors deployed over a large area and connected through wireless [11,12]. Tracking

algorithms on such single or multiple sensor systems employ signal-level fusion. The distributed

system in [136] uses decision-level fusion. Our system uses feature-level fusion, hence loses the least

amount of information [12,16].

Architecture

Figure 7 shows the system architecture. The audio sensors, consisting of micaz motes with acoustic

sensor boards equipped with a microphone array, form an IEEE 802.15.4 network. This network

does not need to be connected; it can consist of multiple connected components as long as each

of these component have a dedicated mote-PC gateway. The video sensors are based on Logitech

QuickCam Pro 4000 cameras attached to OpenBrick-E Linux embedded PCs. These video sensors,

along with the mote-PC gateways, the sensor fusion node and the reference broadcaster for time

synchronization (see Section III) are all PCs forming a peer-to-peer 802.11b wireless network. Figure

8 shows the conceptual layout of the sensor network.
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Figure 7: Architecture for the multimodal target tracking system. Here, τ denotes measurement
timestamps, λ denotes sensor measurements (also called detection functions that are described in
later sections), and t denotes time. The blocks shown inside the sensor fusion node are circular
buffers that store timestamped measurements.
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Figure 8: Conceptual layout of sensor network for multimodal target tracking. Circles represent the
audio sensors, camera silhouettes represent the video sensors and rectangles represent PCs.

The audio sensors perform beamforming, and transmit the audio detections to the corresponding

mote-PC gateway utilizing a multi-hop message routing service [141]. The routing service also

performs time translation of the detection timestamps. The video sensors run a motion detection

algorithm and compute timestamped video detection functions. Both audio and video detections are

routed to the central sensor fusion node. Time translation is also carried out in the 802.11b network
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utilizing an RBS-based time synchronization service. This approach ensures that sensor data arrives

at the sensor fusion node with timestamps in a common timescale. On the sensor fusion node, the

sensor measurements are stored in appropriate sensor buffers, one for each sensor. A sensor fusion

scheduler triggers periodically and generates a fusion timestamp. The trigger is used to retrieve

the sensor measurements from the sensor buffers with timestamps closest to the generated fusion

timestamp. The retrieved sensor measurements are then used for multimodal fusion and target

tracking. In this study, we developed and compared target tracking algorithms based on both

Sequential Bayesian Estimation (SBE) and MCMCDA. Note that the triggering mechanism of the

scheduler decouples the target tracking rate from the audio and video sensing rates, which allows us

to control the rate of the tracking application independently of the sensing rate.

Audio Beamforming

Beamforming is a signal processing algorithm for DOA estimation of a signal source. In a typical

beamforming array, each of the spatially separated microphones receive a time-delayed source signal.

The amount of time delay at each microphone in the array depends on the microphone arrangement

and the location of the source. A typical delay-and-sum single source beamformer discretizes the

sensing region into directions, or beams, and computes a beam energy for each of them. The beam

energies are collectively called the beamform. The beam with maximum energy indicates the direction

of the acoustic source.

Beamforming Algorithm

The data-flow diagram of our beamformer is shown in Fig. 9. The amplified microphone signal

is sampled at a high frequency (100 KHz) to provide high resolution for the time delay, which is

required for the closely placed microphones. The raw signals are filtered to remove unwanted noise

components. The signal is then fed to a tapped delay line (TDL), which has M different outputs to

provide the required delays for each of the M beams. The delays are set by taking into consideration

the exact relative positions of the microphones so that the resulting beams are steered to the beam

angles, θi = i 360
M degrees, for i = 0, 1, ...M − 1. The signal is downsampled and the M beams are

formed by adding the four delayed signals together. Data blocks are formed from the data streams

(with a typical block length of 5-20ms) and an FFT is computed for each block. The block power
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Figure 9: Data-flow diagram of the real-time beamforming sensor.

values, µ(θi), are smoothed by exponential averaging into the beam energy, λ(θi)

λt(θi) = αλt−1(θi) + (1− α)µ(θi) (22)

where α is an averaging factor.

Audio Hardware

In our application, the audio sensor is a micaz mote with an onboard Xilinx XC3S1000 FPGA chip

that is used to implement the beamformer [142]. The onboard Flash (4MB) and PSRAM (8MB)

modules allow storing raw samples of several acoustic events. The board supports four independent

analog channels, featuring an electret microphone each, sampled at up to 1 MS/s (million samples

per second). A small beamforming array of four microphones arranged in a 10cm × 6cm rectangle

is placed on the sensor node, as shown in Fig. 10(a). Since the distances between the microphones

are small compared to the possible distances of sources, the sensors perform far-field beamforming.

The sources are assumed to be on the same two-dimensional plane as the microphone array, thus

it is sufficient to perform planar beamforming by dissecting the angular space into M equal angles,

providing a resolution of 360/M degrees. In the experiments, the sensor boards are configured

to perform simple delay-and-sum-type beamforming in real time with M = 36, and an angular

resolution of 10 degrees. Finer resolution increases the communication requirements.

Evaluation

We test the beamformer node outdoors using recorded speech as the acoustic source. Measurements

are taken by placing the source at distances of 3, 5, 10, 25, 50, 75, 100, and 150 feet from the sensor,
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Sensor Node

10 cm

6 cm

Figure 10: (a) Sensor Node Showing the Microphones, (b) Beamform of acoustic source at a distance
of 50 feet and an angle of 120 degrees.

and at an angle from -180◦ to +180◦ in 5◦ increments. Figure 10(b) shows the beamforming result

for a single audio sensor when the source was at a distance of 50 feet. Mean DOA measurement

error for 1800 human speech experiments is shown in Figure 11. The smallest error was recorded

when the source was at a distance of 25 feet from the sensor. The error increases as the source moves

closer to the sensor. This is because the beamforming algorithm assumes a planar wavefront, which

holds for far-field sources but breaks down when the source is close to the sensor. However, as the

distance between the source and sensor grows, error begins accumulating again as the signal-to-noise

ratio decreases.
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Figure 11: Human speech DOA error for distances of 3, 5, 10, 25, 50, 75 feet between acoustic source
and beamformer node.

Messages containing the audio detection functions require 83 bytes, and include node ID, sequence

number, timestamps, and 72 bytes for 36 beam energies. These data are transmitted through the

network in a single message. The default TinyOS message size of 36 bytes was changed to 96 bytes
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to accommodate the entire audio message. The current implementation uses less than half of the

total resources (logic cells, RAM blocks) of the selected mid-range FPGA device. The application

runs at 20 MHz, which is relatively slow in this domain—the inherent parallel processing topology

allows this slow speed. Nonetheless, the FPGA approach has a significant impact on the power

budget, the sensor draws 130mA current (at 3.3 V) which is nearly a magnitude higher then typical

wireless sensor node power currents. Flash-based FPGAs and smart duty cycling techniques are

promising new directions in our research project for reducing the power requirements.

Video Tracking

Video tracking systems seek to automatically detect moving targets and track their movement in

a complex environment. Due to the inherent richness of the visual medium, video based tracking

typically requires a pre-processing step that focuses attention of the system on regions of interest

in order to reduce the complexity of data processing. This step is similar to the visual attention

mechanism in human observers. Since the region of interest is primarily characterized by regions

containing moving targets (in the context of target tracking), robust motion detection is the first

step in video tracking. A simple approach to motion detection from video data is via frame dif-

ferencing. It compares each incoming frame with a background model and classifies the pixels of

significant variation into the foreground. The foreground pixels are then processed for identification

and tracking. The success of frame differencing depends on the robust extraction and maintenance

of the background model. Performance of such techniques tends to degrade when there is significant

camera motion, or when the scene has significant amount of change.

Algorithm

The dataflow in Figure 12 shows the motion detection algorithm and its components used in our

tracking application. The first component is background-foreground segmentation of the currently

Bt

Gaussian bg/fg
segmentation

Median Filter
Detection 
Function

It Ft
Post-

processing 
Filters

Dt

Figure 12: Data-flow diagram of real-time motion detection algorithm

captured frame (It) from the camera. We use the algorithm described in [115]. This algorithm

uses an adaptive background mixture model for real-time background and foreground estimation.
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The mixture method models each background pixel as a mixture of K Gaussian distributions. The

algorithm provides multiple tunable parameters for desired performance. In order to reduce speckle

noise and smooth the estimated foreground (Ft), the foreground is passed through a median filter.

In our experiments, we use a median filter of size 3× 3.

Since our sensor fusion algorithm (Section III) utilizes only the angle of moving targets, it is

desirable and sufficient to represent the foreground in a simpler detection function. Similar to the

beam angle concept in audio beamforming (Section III), the field-of-view of the camera is divided

into M equally-spaced angles

θi = θmin + (i− 1)
θmax − θmin

M
: i = 1, 2, ...,M (23)

where θmin and θmax are the minimum and maximum field-of-view angles for the camera. The

detection function value for each angle is simply the number of foreground pixels in that direction.

Formally, the detection function for the video sensors can be defined as

λ(θi) =

W∑
j∈θi

H∑
k=1

F (j, k) : i = 1, 2, ...,M (24)

where F is the binary foreground image, H and W are the vertical and horizontal resolutions in

pixels, respectively and j ∈ θi indicates columns in the frame that fall within angle θi. Figure 13

shows a snapshot of motion detection.

H

W

Figure 13: Video detection. The frame on the left shows the input image, the frame in the middle
shows the foreground and the frame on the right shows the video detection function.

Video Post-processing

In our experiments, we gathered video data of vehicles from multiple sensors from an urban street

setting. The data contained a number of real-life artifacts such as vacillating backgrounds, shadows,
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sunlight reflections and glint. The algorithm described above is not able to filter out such artifacts

from the detections. We implemented two post-processing filters to improve the detection perfor-

mance. The first filter removes any undesirable persistent background. For this purpose we keep a

background of moving averages which was removed from each detection. The background update

and filter equations are

bt(θ) = αbt−1(θ) + (1− α)λt(θ) (25)

λt(θ) = λt(θ)− bt−1(θ) (26)

where bt(θ) is the moving average background, and λt(θ) is the detection function at time t. The

second filter removes any sharp spikes (typically caused by sunlight reflections and glint). For this we

convolved the detection function with a small linear kernel to add a blurring effect. This essentially

reduces the effect of any sharp spikes in detection function due to glints. The equation for this filter

is

λt(θ) = λt(θ) ∗ k (27)

where k is a 7× 1 vector of equal weights, and ∗ denotes convolution.

We implemented the motion detection algorithm using OpenCV (open source computer vision)

library. We use Linux PCs equipped with the QuickCam Pro 4000 as video sensors. The OpenBrick-

E has 533 MHz CPU, 128 MB RAM, and a 802.11b wireless adapter. The QuickCam Pro supports

up to 640× 480 pixel resolution and up to 30 frames-per-second frame rate. Our motion detection

algorithm implementation runs at 4 frames-per-second and 320× 240 pixel resolution. The number

of angles in Equation (23) is M = 160.

Time Synchronization

In order to seamlessly fuse time-dependent audio and video sensor data for tracking moving objects,

participating nodes must have a common notion of time. Although several microsecond-accurate

synchronization protocols have emerged for wireless sensor networks (e.g. [24, 143–145]), achieving

accurate synchronization in a heterogeneous sensor network is not a trivial task.

Attempting to synchronize the entire network using a single protocol will introduce a large

amount of error. Protocols such as TPSN [143], FTSP [144], and RITS [145] are designed to run on

the mote-class devices, whereas protocols such as Reference Broadcast Synchronization (RBS) [24]

is designed for networks where all nodes have access to a common network medium.
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In this work, we adopted the hybrid approach described in [141], which pairs a specific network

with the synchronization protocol that provides the most accuracy with the least amount of overhead.

Synchronize across the entire network is handled by several synchronization mechanisms running on

gateway nodes (i.e., nodes connecting multiple networks).

Multimodal Target Tracking

This section describes the tracking algorithm and the approach for fusing the audio and video data

based on sequential Bayesian estimation. We use following notation: Superscript t denotes discrete

time (t ∈ Z+), subscript k ∈ {1, ...,K} denotes the sensor index, where K is the total number of

sensors in the network, the target state at time t is denoted as x(t), and the sensor data at time t is

denoted as z(t).

Sequential Bayesian Estimation

We use sequential Bayesian estimation to estimate the target state x(t) at time t, similar to the

approach presented in [146]. In sequential Bayesian estimation, the target state is estimated by

computing the posterior probability density p(x(t+1)|z(t+1)) using a Bayesian filter described by

p(x(t+1)|z(t+1)) ∝ p(z(t+1)|x(t+1))

∫
p(x(t+1)|x(t))p(x(t)|z(t))dx(t) (28)

where p(x(t)|z(t)) is the prior density from the previous step, p(z(t+1)|x(t+1)) is the likelihood given

the target state, and p(x(t+1)|x(t)) is the prediction for the target state x(t+1) given the current

state x(t) according to a target motion model. Since we are tracking moving vehicles it is reasonable

to use a directional motion model based on the target velocity. The directional motion model is

described by

x(t+1) = x(t) + v + U [−δ,+δ] (29)

where x(t) is the target state time t, x(t+1) is the predicted state, v is the target velocity, and

U [−δ,+δ] is a uniform random variable.

Because the sensor models (described later in Subsection III) are nonlinear, the probability den-

sities cannot be represented in a closed form. It is, therefore, reasonable to use a nonparametric

representation for the probability densities. The nonparametric densities are represented as discrete

grids in 2D space, similar to [146]. For nonparametric representation, the integration term in Equa-

tion (28) becomes a convolution operation between the motion kernel and the prior distribution. The
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resolution of the grid representation is a trade-off between tracking resolution and computational

capacity.

Centralized Bayesian Estimation

Since we use resource constrained mote class sensors, centralized Bayesian estimation is a reasonable

approach because of its modest computational requirements. The likelihood function in Equation

(28) can be calculated either as a product or weighted summation of the individual likelihood func-

tions. We describe the two methods next.

Product of Likelihood functions Let pk(z(t)|x(t)) denote the likelihood function from sensor k.

If the sensor observations are mutually independent conditioned on the target state, the likelihood

functions from multiple sensors are combined as

p(z(t)|x(t)) =
∏

k=1,...,K

pk(z(t)|x(t)) (30)

Weighted-Sum of Likelihood functions An alternative approach to combine the likelihood

functions is to compute their weighted-sum. This approach allows us to give different weights to

different sensor data. These weights can be used to incorporate sensor reliability and quality of

sensor data. We define a quality index q
(t)
k for each sensor k as

q
(t)
k = rk max

θ
(λ

(t)
k (θ))

where rk is a measure of sensor reliability and λ
(t)
k (θ) is the sensor detection function. The combined

likelihood function is given by

p(z(t)|x(t)) =

∑
k=1,...,K q

(t)
k pk(z(t)|x(t))∑

k=1,...,K q
(t)
k

(31)

We experimented with both methods in our evaluation. The product method produces more

accurate results with low uncertainty in target state. The weighted-sum method performs better in

cases with high sensor conflict, though it suffers from high uncertainty. The results are presented in

the evaluation section.
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Hybrid Bayesian Estimation

In sensor fusion a big challenge is to account for conflicting sensor data. When sensor conflict is very

high, sensor fusion algorithms produce false or meaningless fusion results [140]. Reasons for sensor

conflict are sensor locality, different sensor modalities, and sensor faults. Selecting and clustering

the sensors in different groups based on locality or modality can mitigate poor performance due to

sensor conflict. For example, clustering the sensors close to the target and fusing the data from only

the sensors in the cluster would remove the conflict caused by distant sensors.

The sensor network deployment in this paper is small and the sensing region is comparable to the

sensing ranges of the audio and video sensors. For this reason, we do not use locality based clustering.

However, we have multimodal sensors that can report conflicting data. Hence, we developed a hybrid

Bayesian estimation framework [59] by clustering sensors based on modalities, and compare it with

the centralized approach. Figure 14 illustrates the framework. The likelihood function from each
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Sensor N

Detection & Likelihood
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Fusion (SBE)

Fusion (SBE)

Posterior 
Fusion

Detection & Likelihood
Function`

Detection & Likelihood
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Detection & Likelihood
Function` Sensor likelihood 

functions

Posterior 
distributions

Target 
state 

Figure 14: Hybrid Bayesian estimation framework.

sensor in a cluster is fused together using Equation (30) or (31). The combined likelihood is then

used in Equation (28) to calculate the posterior density for that cluster. The posterior densities

from all the clusters are then combined together to estimate the target state.

For hybrid Bayesian estimation with audio-video clustering, we compute the likelihood functions

using Equation (30) or (31). The audio posterior density is calculated using

paudio(x
(t+1)|z(t+1)) ∝ paudio(z(t+1)|x(t+1))

∫
p(x(t+1)|x(t))p(x(t)|z(t))dx(t)
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while the video posterior density is calculated as

pvideo(x
(t+1)|z(t+1)) ∝ pvideo(z(t+1)|x(t+1))

∫
p(x(t+1)|x(t))p(x(t)|z(t))dx(t)

The two posterior densities are combined either as (product fusion)

p(x(t+1)|z(t+1)) ∝ paudio(z(t+1)|x(t+1))pvideo(z
(t+1)|x(t+1))

or (weighted-sum fusion)

p(x(t+1)|z(t+1)) ∝ αpaudio(z(t+1)|x(t+1)) + (1− α)pvideo(z
(t+1)|x(t+1))

where α is a weighing factor.

Sensor Models

We use a nonparametric model for the audio sensors, while a parametric mixture-of-Gaussian model

for the video sensors is used to mitigate the effect of sensor conflict in object detection.

Audio Sensor Model

The nonparametric DOA sensor model for a single audio sensor is the piecewise linear interpolation

of the audio detection function

λ(θ) = wλ(θi−1) + (1− w)λ(θi), if θ ∈ [θi−1, θi]

where w = (θi − θ)/(θi − θi−1).

Video Sensor Model

The video detection algorithm captures the angle of one or more moving objects. The detection

function from Equation (24) can be parametrized as a mixture-of-Gaussian

λ(θ) =

n∑
i=1

aifi(θ)
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where n is the number of components, fi(θ) is the probability density, and ai is the mixing proportion

for component i. Each component is a Gaussian density given by fi(θ) = N (θ|µi, σ2
i ), where the

component parameters µi, σ
2
i and ai are calculated from the detection function.

Likelihood Function

The 2D search space is divided into N rectangular cells with center points at (xi, yi), for i = 1, 2, ..., N

as illustrated in Figure 15. The likelihood function value for kth sensor at ith cell is the average
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Figure 15: Computation of the likelihood value for kth sensor at ith cell, (xi, yi). The cell is centered
at P0 with vertices at P1, P2, P3, and P4. The angular interval subtended at the sensor due to the

ith cell is θ ∈ [ϕ
(k,i)
A , ϕ

(k,i)
B ], or θ ∈ [0, 2π] if the sensor is inside the cell.

value of the detection function in that cell, given by

pk(z|x) = pk(xi, yi) =
1

(ϕ
(k,i)
B − ϕ(k,i)

A )

∑
ϕ

(k,i)
A ≤θ≤ϕ(k,i)

B

λk(θ)

Multiple-Target Tracking

The essence of the multi-target tracking problem is to find a track of each object from noisy measure-

ments. If the sequence of measurements associated with each object is known, multi-target tracking

reduces to a set of state estimation problems for which many efficient algorithms are available. Un-

fortunately, the association between measurements and objects is unknown. The data association

problem is to work out which measurements were generated by which objects; more precisely, we

require a partition of measurements such that each element of a partition is a collection of measure-

ments generated by a single object or noise. Due to this data association problem, the complexity
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of the posterior distribution of the states of objects grows exponentially as time progresses. It is

well-known that the data association problem is NP-hard [147], so we do not expect to find efficient,

exact algorithms for solving this problem.

In order to handle highly nonlinear and non-Gaussian dynamics and observations, a number

of methods based on particle filters has recently been developed to track multiple objects in video

[42,43]. Although particle filters are highly effective in single-target tracking, it is reported that they

provide poor performance in multi-target tracking [42]. This is because a fixed number of particles

is insufficient to represent the posterior distribution with the exponentially increasing complexity

(due to the data association problem). As shown in [41,42], an efficient alternative is to use Markov

chain Monte Carlo (MCMC) to handle the data association problem in multi-target tracking.

For our problem, there is an additional complexity. We do not assume the number of objects

is known. A single-scan approach, which updates the posterior based only on the current scan of

measurements, can be used to track an unknown number of targets with the help of trans-dimensional

MCMC [41, 42] or a detection algorithm [43]. But a single-scan approach cannot maintain tracks

over long periods because it cannot revisit previous, possibly incorrect, association decisions in the

light of new evidence. This issue can be addressed by using a multi-scan approach, which updates

the posterior based on both current and past scans of measurements. The well-known multiple

hypothesis tracking (MHT) [39] is a multi-scan tracker, however, it is not widely used due to its high

computational complexity.

A newly developed algorithm, called Markov chain Monte Carlo data association (MCMCDA),

provides a computationally desirable alternative to MHT [44]. The simulation study in [44] showed

that MCMCDA was computationally efficient compared to MHT with heuristics (i.e., pruning,

gating, clustering, N-scan-back logic and k-best hypotheses). In this chapter, we use the online

version of MCMCDA to track multiple objects in a 2-D plane. Due to the page limitation, we omit

the description of the algorithm in this paper and refer interested readers to [44].

Evaluation

In this section, we evaluate target tracking algorithms based on the sequential Bayesian estimation

and MCMCDA.
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Figure 16: Experimental setup

Table 7: Parameters used in experimental setup
Number of beams in audio beamforming, Maudio 36
Number of angles in video detection Mvideo 160
Sensing region (meters) 35× 20
Cell size (meters) 0.5× 0.5

Sequential Bayesian Estimation

The deployment of our multimodal target tracking system is shown in Figure 16. We employ 6

audio sensors and 3 video sensors deployed on either side of a road. The complex urban street

environment presents many challenges including gradual change of illumination, sunlight reflections

from windows, glints due to cars, high visual clutter due to swaying trees, high background acoustic

noise due to construction and acoustic multipath effects due to tall buildings. The objective of the

system is to detect and track vehicles using both audio and video under these conditions.

Sensor localization and calibration for both audio and video sensors are required. In our experi-

mental setup, the sensor nodes are manually placed at marked locations and orientations. The audio

sensors are placed on 1 meter high tripods to minimize audio clutter near the ground. An accurate

self-calibration technique, e.g. [148,149], is desirable for a target tracking system. Our experimental

setup consists of two wireless networks as described in Section III. The mote network is operating on

channel 26 (2.480 GHz) while the 802.11b network is operating on channel 6 (2.437 GHz). Both the

channels are non-overlapping and different from the infrastructure wireless network, which operates

on channel 11 (2.462 GHz). We choose these non-overlapping channels to minimize interference and

are able to achieve less than 2% packet loss.

We gather audio and video detection data for a total duration of 43 minutes. Table 7 presents

the parameter values that we use in our tracking system. We run our sensor fusion and tracking

68



system online using centralized sequential Bayesian estimation based on the product of likelihood

functions. We also collect all the audio and video detection data for offline evaluation. This way we

are able to experiment with different fusion approaches on the same data set. For offline evaluations,

we shortlist 10 vehicle tracks where there is only a single target in the sensing region. The average

duration of tracks is 4.25 sec with 3.0 sec minimum and 5.5 sec maximum. The tracked vehicles

are part of an uncontrolled experiment. The vehicles are traveling on road at a speed of 20-30 mph

speed.

Sequential Bayesian estimation requires a prior density of the target state. We initialize the

prior density using a simple detection algorithm based on audio data. If the maximum of the audio

detection functions exceeds a threshold, we initialize the prior density based on the audio detection.

In our simulations, we experiment with eight different approaches. We use audio-only, video-only

and audio-video sensor data for sensor fusion. For each of these data sets, the likelihood is computed

either as the weighted-sum or product of the likelihood function for the individual sensors. For the

audio-video data, we use centralized and hybrid fusion. Following is the list of different target

tracking approaches.

1. audio-only, weighted-sum (AS)

2. video-only, weighted-sum (VS)

3. audio-video, centralized, weighted-sum (AVCS)

4. audio-video, hybrid, weighted-sum (AVHS)

5. audio-only, likelihood product (AP)

6. video-only, likelihood product (VP)

7. audio-video, centralized, likelihood product (AVCP)

8. audio-video, hybrid, likelihood product (AVHP)

The ground truth is estimated post-facto based on the video recording by a separate camera.

The standalone ground truth camera is not part of any network, and have the sole responsibility of

recording ground truth video. For evaluation of tracking accuracy, the center of mass of the vehicle

is considered to be the true location.

Figure 17 shows the tracking error for a representative vehicle track. The tracking error when

audio data is used is consistently lower than the case when the video data is used. When we
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(a)

(b)

Figure 17: Tracking error (a) weighted sum, (b) product

use both audio and video data, the tracking error is lower than either of those considered alone.

Figure 18 shows the determinant of the covariance of the target state for the same vehicle track.

The covariance, which is an indicator of uncertainty in the target state is significantly lower for

product fusion than weighted-sum fusion. In general, covariance for audio-only tracking is higher

than video-only tracking, while using both modalities lowers the uncertainty.

Figure 19(a) shows the tracking error in the case of fusion based on weighted-sum. The tracking

error when using only video data shows a large value at time t = 1067 second. In this case, the video

data has false peaks not corresponding to the target. The audio fusion works fine for this track. As

expected, when we use both audio and video data together, the tracking error is decreased. Further,

Figure 19(a) shows the tracking error when using 6, 3 and 2 audio sensors for the centralized audio-

video fusion. Using as few as two audio sensors can assist video tracking to disambiguate and remove

false peaks. Similarly, when there is an ambiguity in the audio data, the video sensors can assist

and improve tracking performance. Figure 19(b) shows the tracking error for a track where audio

data is poor due to multiple sound sources. When fused with video data the tracking performance
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(a)

(b)

Figure 18: Tracking variance (a) weighted sum, (b) product

is improved. The figure shows tracking performance when using two and three video sensors for the

centralized and hybrid fusion.

Figure 20 shows average tracking errors for all ten vehicle tracks for all target tracking approaches

mentioned above. Figure 21(a) averages tracking errors for all the tracks to compare different

tracking approaches. Audio and video modalities are able to track vehicles successfully, though they

suffer from poor performance in the presence of high background noise and clutter. In general, audio

sensors are able to track vehicles with good accuracy, but they suffer from high uncertainty and poor

sensing range. Video tracking is not very robust in the presence of multiple targets and noise. As

expected, fusing the two modalities consistently gives better performance. There are some cases

where audio tracking performance is better than fusion. This is due to poor performance of video

tracking.

Fusion based on the product of likelihood functions gives better performance but it is more

vulnerable to sensor conflict and errors in sensor calibration. The weighted-sum approach is more

robust to conflicts and sensor errors, but it suffers from high uncertainty. The centralized estimation
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(a)

(b)

Figure 19: Tracking error (a) poor video tracking, (b) poor audio tracking

framework consistently performs better than the hybrid framework.

Figure 22 shows the determinant of the covariance for all tracks and all approaches. Figure

21(b) presents averages of covariance measure for all tracks to compare the performance of tracking

approaches. Among modalities, video sensors have lower uncertainty than audio sensors. Among

the fusion techniques, product fusion produces lower uncertainty, as expected. There was no definite

comparison between the centralized and hybrid approach, though the latter seems to produce lower

uncertainty in the case of weighted-sum fusion.

The average tracking error of 2 meters is reasonable considering the fact that a vehicle is not a

point source, and the cell size used in fusion is 0.5 meters.

MCMCDA

The audio and video data gathered for target tracking based on sequential Bayesian estimation is

reused to evaluate target tracking based on MCMCDA. For MCMCDA evaluation, we experiment

with six different approaches. We use audio-only (A), video-only (V) and audio-video (AV) sensor

72



0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

vehicle track

av
er

ag
e 

tr
ac

ki
n

g
 e

rr
o

r 
(m

)

AS

VS

AVHS

AVCS

(a)

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10

vehicle track

av
er

ag
e 

tr
ac

ki
n

g
 e

rr
o

r 
(m

)

AP

VP

AVHP

AVCP

(b)

Figure 20: Tracking errors (a) weighted sum, (b) product

data for sensor fusion. For each of these data sets, the likelihood is computed either as the weighted-

sum or product of the likelihood functions for individual sensors.

Single Target

We shortlist 9 vehicle tracks with a single target in the sensing region. The average duration of tracks

is 3.75 sec with 2.75 sec minimum and 4.5 sec maximum. Figure 23 shows the target tracking result

for two different representative vehicle tracks. The figure also shows the raw observations obtained

from the multimodal sensor fusion and peak detection algorithms. Figure 24 shows average tracking

errors for all vehicle tracks for the weighted-sum fusion and product fusion approaches. The missing

bars indicate that the data association algorithm is not able to successfully estimate a track for the

target. Figure 25 averages tracking errors for all the tracks to compare different tracking approaches.

The figure also shows the comparison of the performance of tracking based on sequential Bayesian

estimation to MCMCDA based tracking. The performance of MCMCDA is consistently better than
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Figure 21: (a) Average tracking errors and (b) average of determinant of covariance for all tracks

Table 8: Average tracking error and tracking success
Average error (m) Tracking success

Fusion
Summ 1.93 74%
Prod 1.58 59%

Modality
Audio 1.49 89%
Video 2.44 50%
AV 1.34 61%

sequential Bayesian estimation. Table 8 compares average tracking errors and tracking success across

likelihood fusion and sensor modality. Tracking success is defined as the percentage of correct tracks

that the algorithm is successfully able to estimate. Table 9 shows the reduction in tracking error

for audio-video fusion over audio-only and video-only approaches. For summation fusion, the audio-

video fusion is able to reduce tracking error by an average of 0.26 m and 1.04 m for audio and

video approaches, respectively. The audio-video fusion improves accuracy for 57% and 75% of the

tracks for audio and video approaches, respectively. For the rest of the tracks, the tracking error

either increased or remained same. Similar results are presented for product fusion in Table 9. In

general, audio-video fusion improves over either audio or video or both approaches. Video cameras
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Figure 22: Determinant of covariance (a) weighted sum, (b) product

Figure 23: Target Tracking (a) no missed detection (b) with missed detections

were placed at an angle along the road to maximize coverage of the road. This makes video tracking

very sensitive to camera calibration errors and camera placement. Also, an occasional obstruction
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Figure 24: Tracking errors (a) weighted sum fusion, and (b) product fusion
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Table 9: Average reduction in tracking error for AV over audio and video-only for all estimated
tracks

Summ Prod
Average er-
ror reduc-
tion (m)

Tracks
im-
proved

Average er-
ror reduc-
tion (m)

Tracks
im-
proved

Audio 0.26 57% 0.14 100%
Video 1.04 75% 0.90 67%

in front of a camera confused the tracking algorithm which took a while to recover. An accurate

self-calibration technique, e.g. [148, 149], is desirable for better performance of a target tracking

system.

Multiple Targets

Many tracks with multiple moving vehicles in the sensing region were recorded during the experiment.

Most of them have vehicles moving in the same direction. Only a few tracks include multiple vehicles

crossing each other. Figure 26 shows the multiple target tracking result for three vehicles where two

of them are crossing each other. Figure 26(a) shows the three tracks with the ground truth, while

Figure 26(b) shows the x-coordinate of the tracks with time. The average tracking errors for the three

tracks are 1.29m, 1.60m and 2.20m. Fig. 26 shows the result when only video data from the three

video sensors is used. Multiple target tracking with audio data could not distinguish between targets

when they cross each other. This is due to the fact that beamforming is done assuming acoustic

signals are generated from a single source. Acoustic beamforming methods exist for detecting and

estimating multiple targets [92].

Conclusions

We have developed a multimodal tracking system for an HSN consisting of audio and video sen-

sors. We presented various approaches for multimodal sensor fusion and two approaches for target

tracking, which are based on sequential Bayesian estimation and MCMCDA algorithm. We have

evaluated the performance of the tracking system using an HSN of six mote-based audio sensors

and three PC webcamera-based video sensors. We evaluated and compared the performance for

both the tracking approaches. Time synchronization across the HSN allows the fusion of the sensor

data. We have deployed the HSN and evaluated the performance by tracking moving vehicles in an

uncontrolled urban environment. We have shown that, in general, fusion of audio and video data can

improve the tracking performance. Currently, our system is not robust to multiple acoustic sources
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(a)

(b)

Figure 26: Multiple target tracking (a) XY plot (b) X-coordinate with time

or multiple moving targets. An accurate self-calibration technique and robust audio and video sens-

ing algorithms for multiple targets are required for better performance. A related challenge is sensor

conflict that can degrade the performance of any fusion method and needs to be carefully considered.

As in all sensor network applications, scalability is an important aspect that has to be considered

as well.
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CHAPTER IV

LOCALIZATION AND DISCRIMINATION OF MULTIPLE
WIDEBAND/HARMONIC ACOUSTIC SOURCES

Introduction

Acoustic source localization is an important problem in many diverse applications such as military

surveillance and reconnaissance, underwater acoustics, seismic remote sensing, and environmental

monitoring [2, 150, 151]. Recently, innovative applications such as smart video-conferencing [131],

audio-video sensor fusion and target tracking [9,50] have also been proposed to utilize source localiza-

tion. Traditional acoustic source localization methods were developed for wired sensor networks [70].

In Wireless Sensor Networks (WSNs), collaborative source localization is used to estimate the posi-

tions of multiple sources by fusion of observations from multiple sensors. There are two broad classes

of methods for collaborative source localization. The first class of approaches, where the estimation

is done by fusion of the raw sampled signals, is called signal-based or signal-level fusion. The second

class of approaches, where signal features are extracted from raw data at each sensor and the esti-

mation is done by fusion of the extracted features, is called feature-based or feature-level fusion. The

signal-level fusion methods are not suited for WSNs because they require transmission of the raw

signal, which is costly due to limited bandwidth and power. On the other hand, the feature-level

fusion methods are appropriate for WSNs due to their lower bandwidth and power requirements.

In this chapter, we present a feature-level fusion approach to collaborative localization and dis-

crimination for multiple harmonic sources in WSNs. Source discrimination involves spatial dis-

crimination where the goal is to separate the sources in space, and frequency discrimination where

the goal is to separate the sources in frequency. We use beamforms and Power Spectral Densities

(PSDs) as the signal features. The advantage of using the beamform over signal energy is that

the beamform captures the angular variation of signal energy, which results in better localization

resolution, and hence better spatial source discrimination. Assuming harmonic sources, the use of

PSD as another signal feature allows frequency discrimination. Advances in sensor network hard-

ware and FPGA integration has allowed us to implement real-time algorithms for computing such

features. Furthermore, the communication bandwidth available in WSNs is sufficient to support

wireless transmissions of such features [9].
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We use a graphical model to formulate the problem, and employ Maximum Likelihood (ML)

and Bayesian estimation for estimating the position of the sources as well as their fundamental and

dominant harmonic frequencies. Directed graphical models, which are generalization of Bayesian

networks, are directed graphs in which nodes represent random variables, the directed edges represent

causality between random variables, and the (lack of) edges capture conditional independence of

random variables [152]. We represent the unknown source locations and frequencies as hidden state

variables, and the acoustic features as observable variables (or observed data). In directed graphical

models, the edges are directed from the hidden state variables to the observed data. Directed

graphical models require generative models that describe the observed data in terms of the process

that generated them, and the hidden state variables. We present generative models for the beamform

and PSD data that describe them in terms of a generative process and the unknown source locations

and frequencies.

In our approach, the solution to the collaborative localization and discrimination problem is

divided into two steps as source separation and source localization. The idea is to separate the sources

in the frequency domain using the PSD data from the sensors, and then use the separated sources

for localization and discrimination. We analytically show that source separation is independent

of source localization, as long as the sources and the sensors are stationary. We develop a ML

estimation method for source separation and use Bayesian estimation for localization. We use Markov

Chain Monte Carlo (MCMC) methods, specifically Gibbs sampling and slice sampling [153] for

implementing both ML and Bayesian estimation. The advantages of the two step approach instead

of joint estimation are twofold. First, estimation in two steps has lower computational complexity

than joint estimation. Second, the variances of the likelihood functions for source separation and

source localization are significantly different. In context of Monte Carlo methods, joint estimation

may cause slower convergence, and require a large number of samples.

We present simulation results for multiple source localization in a grid sensor network. We

study three simulation scenarios where (1) we increase the number of sources, (2) we increase the

average source SNR of two sources present in the sensing region, and (3) we increase the separation

between the two sources. Our results show that as the separation between sources increases, the

algorithm is able to achieve higher localization accuracy, comparable to single source localization.

We present evaluation of the localization accuracy when the assumptions for the acoustic sources

are relaxed; specifically the harmonic and omnidirectional source assumptions. The localization

accuracy degrades gracefully when source harmonicity is decreased. We also present evaluation

of the localization accuracy with PSD data compression. As expected, the localization accuracy
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improves as more PSD data is available.

Finally, we implement the feature extraction algorithms on an FPGA chip onboard micaz sensor

nodes, and conduct outdoor experiments with real acoustic sources. Outdoor experimental results

reinforce the simulation results. For smaller source separations the average localization error remains

low but the algorithm is not able to disambiguate the two sources. For larger separations, the

localization error is decreased.

Comparison with Related Work

Signal-based methods for acoustic source localization typically make use of Time Delay of Arrival

(TDOA) and Direction of Arrival (DOA). An overview of theoretical aspects of TDOA-based acous-

tic source localization and beamforming is presented in [92], along with a localization algorithm

based on ML estimation. For multiple acoustic sources, an Approximate Maximum Likelihood

(AML) algorithm based on alternative projection method is also presented. An empirical study of

collaborative acoustic source localization based on an implementation of AML is shown in [151].

Among feature-based methods, Energy-Based Localization (EBL) methods utilize signal energy

as the features. Least-squares formulations for EBL have been presented in [83,85]. A ML formula-

tion with capability for multiple source localization is presented in [84]. They use a multiresolution

search algorithm and an expectation-maximization (EM) like iterative algorithm for estimation. We

use the beamform instead of the signal energy as the feature. The advantage is that the beamform

captures the angular variation of signal energy, which results in better localization resolution, and

hence better source discrimination.

The classical approaches to multiple target tracking include data association-based approaches

such as Multiple Hypothesis Tracking (MHT) [39] and data association filters [5, 6]. These ap-

proaches use a set of exclusive and exhaustive hypotheses either associating measurements with the

targets and clutter, called target-oriented methods, or associating targets with measurements, called

measurement-oriented methods. Probabilities are computed for each hypothesis and the most prob-

able hypotheses are used to compute target estimates. The number of hypotheses is combinatorial

in the number of targets and measurements, as well as in time.

In data association-based approaches, the measurements are noise-corrupted sensor readings

related to the state of a target, such as range and/or azimuth from a sensor, etc. The measurements

are usually not raw data points, but rather the outputs of signal processing and detection subsystems

[6]. The sensor model assumes that each measurement (or detection) corresponds to a single target
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(i.e. each measurement originated either due to a single target or due to noise). Also, each target

generates a single measurement and the measurement due to one target is not affected by the presence

of other targets. In other words, a measurement for a target would be same regardless the presence of

other targets in the scene. Due to these assumptions, the data-association based approaches are not

able to model target interaction and mixed measurements, which results in unresolved targets [154].

The problem of mixed measurements and unresolved targets is even more significant in acoustic

sensors because the acoustic source signals from multiple targets are additive.

Due to the fact that measurements are not raw data points, but the outputs of signal processing

and detection subsystems, the data association-based tracking can be categorized as high-level (or

decision-level) fusion. In high-level fusion, discriminating information is lost, especially for sensing

models where raw data is a mixture of the signals originating from multiple targets. Alternate

approaches can utilize low-level (or signal-level) fusion, or medium-level (or feature-level) fusion.

Signal-level fusion methods are not suitable for WSNs because they require transmission of the raw

signal, which is costly due to limited bandwidth and power. Feature-level fusion methods include

signal processing and feature extraction algorithms that extract informative features from the raw

data, which are communicated to the sensor fusion node. These methods require explicit target

interaction models and observation models that describe the generation of features. Feature-level

fusion methods are appropriate for WSNs due to their lower bandwidth and power requirements, at

the same time, they maintain sufficient discriminating information.

More recent approaches to multitarget tracking include joint tracking using Bayesian inference

where the quantity of interest is the joint multitarget state, which is the concatenation of individual

target states [45]. Joint Bayesian inference has the advantages of providing a recursive solution with

arbitrary target dynamic models and observation models. Several approaches based on Bayesian

estimation [48, 49] and graphical models [50, 51] have been also proposed. Sequential Monte Carlo

(SMC) implementations for Bayesian estimation and multitarget tracking are presented in [46,47]. A

Bayesian approach for tracking the DOA of multiple targets using a passive sensor array is presented

in [48]. A Bayesian approach for multiple target detection and tracking, and particle filter-based

algorithms are proposed in [49]. A graphical model based approach for audiovisual object tracking

that fuses audio and video data from a microphone pair and a camera is presented in [50]. A graphical

model formulation for self-localization of sensor networks using a technique called nonparametric

belief propagation is presented in [51]. The feature-based localization approach in this paper also

uses a graphical model that models multiple target interaction and mixed measurements through

generative models for the acoustic features. We use MCMC methods for source separation and
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localization, and we analytically show that source separation is independent of source localization.

Acoustic Source Localization & Discrimination

We consider a WSN of K acoustic sensors in planar field and M far-field stationary acoustic sources

coplanar with the sensor network. The objective is to estimate the 2D position of all the sources and

discriminate them, both in frequency and space, using the received acoustic signals at the sensors.

To localize the acoustic sources, we assume each sensor node is equipped with an array of Nmic

microphones. The acoustic wave front incident on the microphone array is assumed to be planar

for far-field sources. Each sensor receives an acoustic signal that is a combination of source signals.

The sensors run signal processing algorithms to compute the beamform and PSD features. In the

rest of the section, we describe the source assumptions, source model, signal propagation model and

signal processing algorithms for feature extraction.

Acoustic Source Model

The main assumptions made for the acoustic sources are: (1) omnidirectional and stationary point

sources, (2) emitting stationary signals, (3) the source signals are harmonic, and (4) the cross-

correlation between two source signals is negligible compared to the signal autocorrelations. Har-

monic signals have a fundamental frequency, also called the first harmonic, and other higher-order

harmonic frequencies that are multiples of the fundamental frequency. The energy of the signal is

contained in these harmonic frequencies only. The harmonic source assumption is satisfied by a wide

variety of acoustic sources [155]. In general, any acoustic signal originating due to the vibrations

from rotating machinery will have a harmonic structure. The state for the mth acoustic source is

given by: (1) the position x(m) =
[
x(m), y(m)

]T
, (2) the fundamental frequency ω

(m)
f , and (3) the

energies in the harmonic frequencies ψ(m) =
[
ψ

(m)
1 , ψ

(m)
2 , · · · , ψ(m)

H

]T
where H is the number of

harmonic frequencies.

In practice, some of the assumptions may not be always true. For example, the engine sound of

a vehicle may not be omnidirectional and will be biased toward the side closer to the engine. The

physical size of the acoustic source may be too large to be adequately modeled as a point source

for sensors very close to the source. In an outdoor environment, strong background noise, including

wind gusts, may be encountered during operation. Perhaps the most restrictive assumption is that

the source signals are harmonic. In addition to the harmonic components, the engine sound signal

may contain other frequency components, which when not accounted for, may cause localization to
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deteriorate. In Section IV, we present empirical evaluation of localization accuracy when the source

assumptions are relaxed, specifically the harmonic and omnidirectional sources assumptions, and it

is shown that the localization accuracy degrades gracefully.

Signal Propagation Model

The intensity of an acoustic signal emitted omni-directionally from a point sound source attenuates

at a rate that is inversely proportional to the distance from the source [84]. The discrete signal

received at the pth microphone on a particular microphone array is given by

rp[n] =

M∑
m=1

d0

‖ xp − x(m) ‖
s(m)[n− τ (m)

p ] + wp[n] (32)

for samples n = 1, · · · , L, where L is the length of the acoustic signal, M is the number of sources,

wp[n] is white Gaussian measurement noise such that wp[n] ∼ N (0, σ2
w), s(m)[n] is the intensity of

the mth source measured at a reference distance d0 from that source, τ
(m)
p is the propagation delay

of the acoustic signal from the mth source to the pth microphone, and xp denote the microphone

position. We define the multiplicative term in Equation (32) as the attenuation factor, λ
(m)
p , given

by

λ(m)
p =

d0

‖ xp − x(m) ‖
.

Acoustic Features

The two acoustic features used for feature-level fusion are beamform and PSD. The details of the

feature extraction algorithms are given below. Details related to an FPGA implementation are given

in Section IV.

Beamform

Beamforming is a signal processing algorithm for Direction-of-Arrival (DOA) estimation of a signal

source using an array of microphone [92]. In a typical delay-and-sum single source beamformer, the

2D sensing region is discretized into directions, or beams as α = i 2π
Q , where i = 0, · · · , Q− 1 and Q

is the number of beams. The beamformer computes the energy of the reconstructed signal at each

beam direction. This is achieved by delaying and summing the individual microphone signals. The
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delayed and summed signal is given by

r[n] =

Nmic∑
p=1

rp[n+ tpq(α)] (33)

where α is the beam angle, rp[·] is the received signal at the pth microphone, q is the index of a

reference microphone, Nmic is the number of microphones, and tpq(α) is the relative time delay for

the pth microphone with respect to the reference microphone q, given by

tpq(α) = dpqcos(α− βpq)fs/C

where dpq and βpq are the distance and angle between the pth and qth microphones, and fs and C

are signal sampling rate and speed of sound, respectively. The beam energy is given by

B(α) =

L∑
n=1

r[n]2 =

L∑
n=1

[
Nmic∑
p=1

rp[n+ tpq(α)]

]2

Beam energies are computed for each of the beams, and are collectively called the beamform. The

beam with maximum energy indicates the DOA of the acoustic source. In case of multiple sources,

there might be multiple peaks where the maximum peak would indicate the DOA of the highest

energy source. Figure 27(a) shows a beamform for two acoustic sources.
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Figure 27: (a) Acoustic Beamforms; The beamforms for single sources clearly show peaks at the
source location but the beamform when both sources are present does not show two peaks. (b)
Power spectral density (PSD); the highest PSD values are shown as empty circles. The PSD is
compactly represented as pairs of the highest PSD values and corresponding frequencies.
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Acoustic PSD

PSD estimation is a signal processing algorithm for estimating the spectrum of the received acoustic

signal, which describes how the power of the signal is distributed with frequency [156]. We compute

the PSD as the magnitude of the Discrete Fourier Transform (DFT) of the signal

P (ω) = Y (ω) · Y (ω)

where Y (ω) = FFT(r,NFFT ) is the DFT of the signal r[n], NFFT is the length of the transform,

and Y (ω) is the complex conjugate of the transform. For real-valued signals, the PSD is real and

symmetric; hence we need to store only half of the spectral density. In our implementation, we

compress the PSD data for wireless transmission by storing and sending the frequency-power pairs,

(ωj , ψj), for NPSD frequencies with the highest power values. Figure 27(b) shows an acoustic PSD

estimate for a received signal when two harmonic sources are present.

Graphical Model Overview

Probabilistic graphical models provide a systematic methodology to handle uncertainty and com-

plexity in real systems. They are playing an increasingly important role in the design and analysis

of machine learning, bio-informatics, audio processing and image processing algorithms [152, 157].

In a probabilistic graphical model, each node represents a random variable (or a group of random

variables), and the edges express probabilistic relationships between these variables. The lack of an

edge between nodes represents conditional independence. The graph structure captures the way in

which the joint distribution over all the random variables can be factorized into a product of local

function defined on nodes and their immediate neighbors (a subset of random variables). Hence,

problems involving computation of quantities related to the joint probability model can be prof-

itably cast within a graph theoretic framework. In particular, the underlying structure of the graph

is closely related to the underlying computational complexity of an inference problem [152].

The graphical models can be categorized as undirected and directed graphical models. Undirected

graphical models capture correlation between random variables, while directed graphical models

capture causality between variables. In directed graphical models, also called Bayesian networks,

the edges are directed from hidden variables to observed variables. The directed graphical models

require generative models that describe the observed data in terms of the process that generated

them, and the hidden variables.

86



The model shown in Figure 28 is an example of a directed graphical model. We use this graphi-

cal model to formulate the source separation and localization of multiple sources problem. We use

plate notation to represent the repetition of the random variables [158]. The plate index, M on the

upper plate represents repetition of the hidden variables for M sources, while the index, K on the

lower place represents repetition of the observed variables for K sensors. In the figure, the nodes

M

K

mψ

kPkB

m
kθ m

kλ

mx

K

m
fω

Figure 28: Graphical model for acoustic source localization.

with clear background denote hidden state variables; x(m), ω
(m)
f , ψ(m) denote source position, fun-

damental frequency and harmonic energies for the mth source, respectively. The nodes with shaded

backgrounds denote observed variables; Bk and Pk denote the beamform and the PSD received at kth

sensor, respectively. Finally, the nodes with dotted outlines denote functions of random variables,

or auxiliary random variables that capture the functional dependence of the observed variables on

the hidden variables. The two auxiliary variables shown in the graphical model are the angle θ
(m)
k

and the attenuation factor λ
(m)
k . These variables will be utilized in the generative models for the

observed variables.

We perform multiple source localization and discrimination in two steps. First, we use the

PSD data only to separate the sources, which in our problem, refers to separating the PSDs of

the sources. For harmonic sources, estimation of fundamental frequencies is sufficient for source

separation, because all the dominant frequencies in the signal are multiples of the fundamental

frequency. An ML estimation method is proposed in the next section for fundamental frequency

estimation. It is shown that the ML estimate is independent of the source location, which is intuitive

because the dominant frequencies in the source signal are independent of the source location, as long

as the source and the sensor are stationary. In the second step, we use the beamform data and the

separated source PSDs to localize all the sources.

We chose to perform multiple source localization in two steps instead of joint estimation because
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of the following two reasons. First, estimation in two steps has lower computational complexity

than joint estimation. In the context of Monte Carlo methods, let the number of samples needed

be exponential in state dimension, N ∝ Dα, where D ≥ 1 is the state dimension and α ≥ 1 is the

exponential factor. The joint estimation of two state variables with dimensionality D1 and D2 would

require Njoint ∝ (D1 +D2)α samples, while separate estimation would require Nseparate ∝ Dα
1 +Dα

2

samples. For D1, D2, α ≥ 1, one can show that Njoint ≥ Nseparate. Second, the variances of the

likelihood functions for source separation and localization are significantly different. In Monte Carlo

context, joint estimation may cause slower convergence, and require a large number of samples.

Moreover, as mentioned earlier, the ML estimate for source fundamental frequencies is independent

of the source locations, further supporting the two step process of source separation and source

localization.

Source Separation

In this section, we present the first step of our approach, which is source separation and frequency

discrimination. We use the PSD data only to separate the sources.We propose an ML estimation

method for source separation. In ML estimation, we need the data likelihood function for the PSD

data, which requires a generative model. We begin by presenting the generative model and the

likelihood function for the PSD data. We also present a result showing that the likelihood function

at the ML estimate of harmonic energies is independent of the source positions. Finally, we present

the ML estimate for source fundamental frequency.

Generative Model for PSD Data

For harmonic sources, the PSD can be given by

P (m)
s (ω) =

H∑
h=1

ψ
(m)
h δ(ω − hω(m)

f ) (34)

where m = 1, · · · ,M are source indices, ω is the frequency, ω
(m)
f is the fundamental frequency, ψ

(m)
h

is the energy in the hth harmonic, H is the number of harmonics, and δ(·) is the Dirac delta function.

Using Equation (34), we derive a generative model for the PSD data received at a sensor node. The

following proposition states the generative model for the PSD data.
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Proposition 1. For an arbitrary number of acoustic source signals, the power spectral density of

the signal received at a sensor is given by

P(ω) =

M∑
m=1

M∑
n=1

λ(m)λ(n)
(
P (m)
s (ω)P (n)

s (ω)
) 1

2

cos(Φ(m)(ω)− Φ(n)(ω))

(35)

where M is the number of sources, λ(m) is the attenuation factor, and Φ(m)(ω) is the phase spectral

density, which is given by

Φ(m)(ω) = φ(m)− ‖ x(m) − xs ‖ ω/C

where φ(m) is the phase of the source signal, x(m) and xs are the positions of the source and the

sensor, respectively.

Proof. Consider M sources emitting source signals sm[n], for m = 1, 2, · · · ,M . Using Equation (32),

the received signal at a microphone is given by

y[n] =

M∑
m=1

λmsm[n− τm] + w[n]

where τm is the propagation delay, and λm is the attenuation factor. Taking FFT of the received

signal, we have

Y (ω) = FFT
(
y[n]

)
= FFT

(
M∑
m=1

λmsm[n− τm] + w[n]

)

=

M∑
m=1

λmFFT
(
sm[n− τm]

)
+ FFT

(
w[n]

)
=

M∑
m=1

λmSm(ω) +W (ω)
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where Sm(ω) is the Fourier transform of mth source signal, and W (ω) is the Fourier transform of

noise. The power spectral density (PSD) of a signal is given by

P (ω) = Y (ω) · Y (ω)

=

(∑
m

λmSm(ω) +W (ω)

)
·

(∑
m

λmSm(ω) +W (ω)

)

=

(∑
m

λmSm(ω) +W (ω)

)
·

(∑
m

λmSm(ω) +W (ω)

)

=
∑
m

∑
n

λmλmSm(ω) · Sn(ω) +
∑
m

λmSm(ω) ·W (ω)

+
∑
m

λmSm(ω) ·W (ω) +W (ω) ·W (ω).

(36)

The Fourier transform S(ω) can also be written in terms of the PSD (P (ω)) and phase spectral

density (Φ(ω)), as

S(ω) = P (ω)1/2e+iΦ(ω)

which gives

Sm(ω) · Sn(ω) =
(
Pm(ω)Pn(ω)

)1/2
e+i(Φm(ω)−Φn(ω))

Sm(ω) ·W (ω) =
(
Pm(ω)Pη(ω)

)1/2
e+i(Φm(ω)−Φη(ω))

Sm(ω) ·W (ω) =
(
Pm(ω)Pη(ω)

)1/2
e−i(Φm(ω)−Φη(ω))

W (ω) ·W (ω) =
(
Pη(ω)Pη(ω)

)1/2
= Pη(ω)

where Pη(ω) and Φη(ω) are PSD and phase spectral density of the noise signal. Rewriting Equation

(36), we have

P (ω) =
∑
m

∑
n

λmλm
(
Pm(ω)Pn(ω)

)1/2
e+i(Φm(ω)−Φn(ω)) +

∑
m

λm
(
Pm(ω)Pη(ω)

)1/2
e+i(Φm(ω)−Φη(ω))

+
∑
m

λm
(
Pm(ω)Pη(ω)

)1/2
e−i(Φm(ω)−Φη(ω)) + Pη(ω).

Assuming that PSD for noise is negligible compared to actual source signals, we have

P (ω) =
∑
m

∑
n

λmλm
(
Pm(ω)Pn(ω)

)1/2
e+i(Φm(ω)−Φn(ω)). (37)
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We know that PSD of real-valued signals is real-symmetric, hence the imaginary component in

Equation (37) is zero. Hence, we have

P (ω) =
∑
m

∑
n

λmλm
(
Pm(ω)Pn(ω)

)1/2
cos (Φm(ω)− Φn(ω)).

The expression in Equation (35) can be approximated using the following observation. Since

we do not maintain the phase of the signal in the source model (see Section IV), we assume all

the phases to be normally distributed with equal mean. The expected value of the cosine of the

difference of two normally distributed angles is one, i.e. E[cos(Φi − Φj)] = 1. Therefore, Equation

(35) can be approximated as

P(ω) ≈

[
M∑
m=1

λ(m)
(
P (m)(ω)

)1/2
]2

(38)

Data Likelihood & ML Estimate

Using Equation (38), the negative log-likelihood for PSD data at the kth sensor is defined as

`k(Ωf ,Ψ,X) =
1

σ2
P

∫
ω

‖ Pk(ω)− Pk(ω) ‖2 dω (39)

where Pk(ω) is the observed PSD at the kth sensor, and

Ωf =
[
ω

(1)
f , · · · , ω(M)

f

]T
Ψ =

[
ψ(1), · · · ,ψ(M)

]T
ψ(m) =

[
ψ

(m)
1 , · · · , ψ(m)

H

]T
X =

[
x(1), · · · ,x(M)

]T
Assuming a discrete frequency variable, Equation (39) can be rewritten as

`k(Ωf ,Ψ,X) =
1

σ2
P

∑
ωj

‖ Pk(ωj)− Pk(ωj) ‖2

The likelihood function for the PSD data at the ML estimate of harmonic energies is independent

of the source positions, as stated in the following proposition.
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Proposition 2. The likelihood for the PSD data at the ML estimate of harmonic energies is the

likelihood that is given by

`k(Ωf ,Ψ
ML,X) = `′k(Ωf ,X) =

∑
ωj 6∈H(Ωf )

(Pk(ωj))
2

= `′k(Ωf ) (40)

where H is the set of all harmonic frequencies for all sources

H(Ωf ) =
⋃
m

[
ω

(m)
f , 2ω

(m)
f , · · ·

]T
and, the likelihood is a function of the source fundamental frequencies only, and is independent of

the source positions.

Proof. The maximum likelihood estimate of [Ωf ,Ψ,X]
T

can be obtained by minimizing `k(Ωf ,Ψ, X)

∂

∂ψ
(m)
h

`k(Ωf ,Ψ,X) = 0

which leads to the following

Pk(hω
(m)
f ) = Pk(hω

(m)
f ) =

 M∑
j

λ
(j)
k ψ

(j)
hj

1/2

2

(41)

where

ψ
(j)
hj

=

 > 0 if hj = hω
(m)
f /ω

(j)
f ∈ Z.

0 otherwise.

If the frequency hω
(m)
f is shared by M ′ sources (or the number of nonzero ψ

(j)
hj

is M ′), then Equation

(41) becomes

Pk(hω
(m)
f ) =

M ′∑
j

λ
(j)
k ψ

(j)
hj

1/2

2

If we assume the energy contribution of all the sources to be same, i.e. λ
(j)
k ψ

(j)
hj

1/2
= ψ̄h, for

j = 1, · · · ,M ′, we have

Pk(hω
(m)
f ) =

(
M ′ψ̄h

)2
= M ′

2
ψ̄h

2
= M ′

2
λ

(m)
k

2
ψ

(m)
hm

(42)
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rearranging Equation (42), we have

ˆ
ψ

(m)
h

ML

=
Pk(hω

(m)
f )

M ′2λ
(m)
k

2 . (43)

Substituting the ML estimate for the energies (Equation (43)) in the negative log-likelihood (Equa-

tion (40)), we have a modified negative log-likelihood

`k(Ωf , Ψ̂
ML,X) = `′k(Ωf ,X)

=
∑

ωj 6∈H(Ωf )

‖ P (ωj)− P(ωj) ‖2

+
∑

ωj∈H(Ωf )

‖ P (ωj)− P(ωj) ‖2 (44)

where H is the harmonic set, which is the set of all harmonic frequencies for all sources

H(Ωf ) =
⋃
m

[
ω

(m)
f , 2ω

(m)
f , · · ·

]T
The value of generative model P at the frequencies in the harmonic set is exactly equal to the

observed PSD, hence the second term in Equation (44) goes to zero. On the other hand, the value

of generative model P at the frequencies not in the harmonic set is zero, hence

`′k(Ωf ,X) =
∑

ωj 6∈H(Ωf )

‖ P (ωj)− P(ωj) ‖2 =
∑

ωj 6∈H(Ωf )

(Pk(ωj))
2
. (45)

Equation (45) is the negative log-likelihood with the constraint of Equation (43) imposed. Equation

(45) implies that the modified likelihood at the ML estimate of energies is independent of the source

locations

`k(Ωf ,Ψ
ML,X) = `′k(Ωf ,X) =

∑
ωj 6∈H(Ωf )

(Pk(ωj))
2

= `′k(Ωf )

Hence, according to Proposition 2, source separation can be performed independent of source

localization. The full negative log-likelihood for all sensors, `′(Ωf ) is defined as

`′(Ωf ) =
1

K

K∑
k=1

`′k(Ωf )
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Thus, the ML estimation of the fundamental frequencies can be obtained by minimizing `′(Ωf )

Ω̂ML
f = arg min

Ωf
`′(Ωf ) = arg min

Ωf

1

K

K∑
k=1

∑
ωj 6∈H(Ωf )

(Pk(ωj))
2

(46)

Note that Equation (46) is not an explicit expression for Ωf since the set H is a function of Ωf on the

righthand side of this equation. This motivates the use of an iterative method for ML estimation.

We use a Monte Carlo method described in Section IV.

Source Localization

Source localization is performed by Bayesian estimation in the graphical model shown in Figure

28, and taking the maximum a-posteriori (MAP) estimate of the source positions. The posterior,

p(X|B) of the source positions at the ML estimates for source fundamental frequencies and harmonic

energies given the beamform data

p(X|B) ∝
K∏
k=1

p(Bk|X, Ω̂ML
f , Ψ̂ML)p(X)

where p(Bk|X, Ω̂ML
f , Ψ̂ML) is the likelihood function for beamform data, X represent joint state

for all sources, and B represent the beamforms for all sensors. The likelihood function requires

a generative model for the beamform data. In this section, we present the generative model and

three intermediate results pertaining to the model. Finally, we present the likelihood and MAP

estimation.

Generative Model for Beamform

We start by developing a generative model for a beamform for a two-microphone array, single-

source case (Proposition 3). We will show that the beamform for an arbitrary microphone array

(Proposition 4) and an arbitrary number of sources (Proposition 5) can be composed from the simple

two-microphone array, single-source case.

Proposition 3. Consider a microphone pair separated by distance d and the angle between the x-

axis and the line joining the microphones is β. For an acoustic source at angle θ and range r with

power spectral density P (ω), the beamform B at the microphone pair is given by

B(α) = 2λ2(Rss(0) +Rss(κα)) + 2Rη(0) (47)
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where Rss(τ) = FFT−1(P (ω)) for τ ∈ [−∞,+∞] is the autocorrelation of the source signal, Rss(0)

is the signal energy, Rη(0) is the noise energy, λ is the attenuation factor, and κα = d(cos(α−β)−

cos(θ − β))fs/C, where α ∈ [0, 2π] is the beam angle, fs and C are sampling frequency and speed of

sound, respectively.

Proof. Consider a source present at an angle θ emitting a source signal s[n]. Using Equation (32),

the received signals at the microphones are given by

rp[n] = λps[n− τp] + wp[n]

for p = 1, 2, where τp is the propagation delay, and λp is the attenuation factor. For far-field case,

the distances between the source and the closely-spaced microphones will be approximately same

for all microphones, hence λ1 ≈ λ2 = λ.

Using Equation (33), the composite microphone signal for the beam angle α is given by

r[n] = r1[n] + r2[n+ t12(α)]

= λs[n− τ1] + λs[n+ t12(α)− τ2] + w1[n] + w2[n+ t12(α)]

where t12(α) = t2(α)− t1(α) = d cos(α− β)fs/C is relative sample delay. The beam energy is given

by

B(α) =
∑
n

r[n]2

=
∑
n

(λs[n− τ1] + λs[n+ t12 − τ2] + w1[n] + w2[n+ t12])
2

= λ2
∑
n

s[n− τ1]2 + λ2
∑
n

s[n+ t12 − τ2]2 +
∑
n

w1[n]2 +
∑
n

w2[n+ t12]2

+ 2λ2
∑
n

s[n− τ1]s[n+ t12 − τ2] + 2
∑
n

w1[n]w2[n+ t12]

+ 2λ
∑
n

(w1[n] + w2[n+ t12])(s[n− τ1] + s[n+ t12 − τ2]).
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Rewriting the above expression in terms of signal and noise autocorrelation and cross-correlation,

we have

B(α) = λ2Rss(0) + λ2Rss(0) +Rw1w1
(0) +Rw2w2

(0)

+ 2λ2Rss(t12 − τ2 + τ1) + 2Rw1w2
(t12) + 2λRw1s(−τ1) + 2λRw2s(t12 − τ1)

+ 2λRw1s(t12 − τ2) + 2λRw2s(τ2).

Now, assuming that the noises at the microphones are statistically same (i.e. Rw1w1(0) = Rw2w2(0) =

Rη(0)) and the noises are uncorrelated (i.e. Rw1w2
[m] = 0), and the noise and signal are also

uncorrelated (i.e. Rwks[m] = 0), we have

B(α) = 2λ2Rss(0) + 2Rη(0) + 2λ2Rss(t12 − τ12).

Denoting κα = t12 − τ12 = d(cos(α− β)− cos(θ − β))fs/C and rearranging, we have

B(α) = 2λ2
(
Rss(0) +Rss(κα)

)
+ 2Rη(0).

For an arbitrary microphone-array, the generative model can be extended as follows.

Proposition 4. For an arbitrary microphone-array of Nmic microphones, the beamform is expressed

in terms of pairwise beamforms as

B(α) =
∑

(i,j)∈pa

Bi,j(α)−Nmic(Nmic − 2)(Rη(0) + λ2Rss(0)) (48)

where pa is the set of all microphone pairs, Rss(0) is the signal energy, Rη(0) is the noise energy,

λ is the attenuation factor, and Bi,j is the beamform for the microphone pair (i, j) (Equation (47)).

Proof. Consider a source present at an angle θ emitting a source signal s[n]. Using Equation (32),

the received signals at the microphones are given by

rp[n] = λps[n− τp] + wp[n]
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for p = 1, 2, · · · , Nmic, where τp is the propagation delay, and λp is the attenuation factor. For far-

field case, the distances between the source and the closely-spaced microphones will be approximately

same for all microphones, hence λ1 ≈ λ2 ≈ · · · = λ.

Using Equation (33), the composite microphone signal for the beam angle α is given by

r[n] =

Nmic∑
p=1

rp[n+ t1p(α)]

=

Nmic∑
p=1

λs[n+ t1p(α)− τp] + wp[n+ t1p(α)]

where t1p(α) = tp(α) − t1(α) = d1p cos(α − β1p)fs/C is relative sample delay between the pth and

1st microphone. Let’s denote φp = n+ t1p(α)− τp and ψp = n+ t1p(α) for clarity and brevity. The

beam energy is given by

B(α) =
∑
n

r[n]2

=
∑
n

[∑
p

λs[φp] + wp[ψp]

]2

=
∑
n

(∑
p

λs[φp]

)2

+

(∑
p

wp[ψp]

)2

+ 2
∑
p

∑
q

λs[φp]wq[ψq]


=
∑
n

(∑
p

λs[φp]

)2

+
∑
n

(∑
p

wp[ψp]

)2

+ 2
∑
p

∑
q,q 6=p

∑
n

λs[φp]wq[ψq]︸ ︷︷ ︸
Rwqs(τ)=0

. (49)

The last term is signal-noise cross-correlation which is zero for uncorrelated signal and noise. The

first two term in Equation (49) are expanded to

∑
n

(∑
p

λs[φp]

)2

= λ2
∑
n

∑
p

s2[φp] + 2λ2
∑
n

∑
p

∑
q,q 6=p

s[φp]s[φq]

= λ2
∑
p

(∑
n

s2[φp]

)
︸ ︷︷ ︸

Rss(0)

+ 2λ2
∑
p

∑
q,q 6=p

(∑
n

s[φp]s[φq]

)
︸ ︷︷ ︸

Rss(φp−φq)

= λ2NmicRss(0) + 2λ2
∑

p,q,p6=q

Rss(φp − φq) (50)
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and

∑
n

(∑
p

wp[ψp]

)2

=
∑
n

∑
p

w2
p[ψp] + 2

∑∑
p

∑
q,q 6=p

wp[ψp]wq[ψq]

=
∑
p

(∑
n

w2
p[ψp]

)
︸ ︷︷ ︸

Rwpwp (0)

+ 2
∑
p

∑
q,q 6=p

(∑
n

wp[ψp]wq[ψq]

)
︸ ︷︷ ︸

Rwpwq [φp−φq ]=0

= NmicRη(0) (51)

The second term in Equation (51) is zero due to uncorrelated noises on different microphones.

Substituting Equation (50) and Equation (51) back into Equation (49), we have

B(α) = λ2NmicRss(0) + 2λ2
∑

p,q,p6=q

Rss(φq − φp) +NmicRη(0).

Rearranging the terms and denoting κpq = φq − φp = tpq(α)− τpq

B(α) = Nmic(λ
2Rss(0) +Rη(0)) + 2λ2

∑
p,q,p6=q

Rss(κpq). (52)

Adding and subtracting the term 2Nmic(Nmic−1)
2 (λ2Rss(0) +Rη(0)), we have

B(α) = Nmic(λ
2Rss(0) +Rη(0)) + 2λ2

∑
p,q,p6=q

Rss(κpq] + 2
Nmic(Nmic − 1)

2
(λ2Rss(0) +Rη(0))︸ ︷︷ ︸

− 2
Nmic(Nmic − 1)

2
(λ2Rss(0) +Rη(0))

=
∑

p,q,p6=q

2
(
λ2Rss(κpq) + λ2Rss(0) +Rη(0)

)︸ ︷︷ ︸
Bpq(α) from Proposition 3

−Nmic(Nmic − 2)(λ2Rss(0) +Rη(0))

=
∑

(p,q)∈P

Bpq(α)−Nmic(Nmic − 2)(λ2Rss(0) +Rη(0))

For an arbitrary number of acoustic sources, the generative model is given by the following

proposition.
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Proposition 5. For an arbitrary number of uncorrelated acoustic sources M , the beamform is

expressed in terms of single source beamforms as

B(α) =

M∑
m=1

Bm(α)−Nmic(M − 1)Rη(0) (53)

where Rη(0) is the noise energy and Bm is the beamform for mth acoustic source (Equation (48)).

Proof. Consider M sources present at angles θm emitting source signals sm[n], for m = 1, 2, · · · ,M .

Using Equation (32), the received signal at the pth microphone is given by

rp[n] =

M∑
m=1

λmpsm[n− τmp] + wp[n]

where p = 1, 2, · · · , Nmic, τmp is the propagation delay, and λmp is the attenuation factor. For far-

field case, the distances between a source and the closely-spaced microphones will be approximately

same for all microphones, hence λm1 ≈ λm2 ≈ · · · = λm.

Using Equation (33), the composite microphone signal for the beam angle α is given by

r[n] =

Nmic∑
p=1

rp[n+ t1p(α)]

=

Nmic∑
p=1

M∑
m=1

λmsm[n+ t1p(α)− τmp] + wp[n+ t1p(α)]

where t1p(α) = tp(α) − t1(α) = d1p cos(α − β1p)fs/C is relative sample delay between the pth and

1st microphone. Let’s denote φmp = n + t1p(α) − τmp and ψp = n + t1p(α) for clarity and brevity.
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The beam energy is given by

B(α) =
∑
n

r[n]2

=
∑
n

[∑
p

∑
m

λmsm[φmp] + wp[ψp]

]2

=
∑
n

(∑
p

∑
m

λmsm[φmp]

)2

+

(∑
p

wp[ψp]

)2

+ 2
∑
p

∑
q

∑
m

λmsm[φmp]wq[ψq]


=
∑
n

(∑
p

∑
m

λmsm[φmp]

)2

+
∑
n

(∑
p

wp[ψp]

)2

︸ ︷︷ ︸
NmicRη(0) using Equation (51).

+ 2
∑
p

∑
q

∑
m

∑
n

λmsm[φmp]wq[ψq]︸ ︷︷ ︸
Rwqsm (τ)=0

.

(54)

The first term in Equation (54) is expanded to

∑
n

(∑
p

∑
m

λmsm[φmp]

)2

=
∑
n

(∑
m

∑
p

λmsm[φmp]

)2

=
∑
n

∑
m

(∑
p

λmsm[φmp]

)2

+ 2
∑
m1

∑
m2

λm1
sm1

[φm1p]λm2
sm2

[φm2p]


=
∑
m

∑
n

(∑
p

λmsm[φmp]

)2
+ 2

∑
m1

∑
m2

∑
n

λm1
sm1

[φm1p]λm2
sm2

[φm2p]︸ ︷︷ ︸
Rsm1

sm2
(τ)=0

=
∑
m

∑
n

(∑
p

λmsm[φmp]

)2


︸ ︷︷ ︸
substitute from Equation (50)

=
∑
m

λ2
m

NmicRsmsm(0) +
∑

p,q,p6=q

Rsmsm(φmp − φmq)

 (55)

Denoting κmpq = φmq − φmp = tpq(α)− τmpq, and substituting Equation (55) in Equation (54), we

have

B(α) =
∑
m

λ2
m

NmicRm(0) +
∑

p,q,p6=q

Rm(κmpq)

+NmicRη(0)
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Adding and subtracting the term
∑
mNmicRη(0), we have

B(α) =
∑
m

λ2
m

NmicRm(0) +
∑

p,q,p6=q

Rm(κmpq)

+
∑
m

NmicRη(0)−
∑
m

NmicRη(0) +NmicRη(0)

=
∑
m

λ2
m

NmicRm(0) +
∑

p,q,p6=q

Rm[κpq]

+NmicRη(0)

︸ ︷︷ ︸
Bm(α), using Equation (52)

−MNmicRη(0) +NmicRη(0)

=
∑
m

Bm(α)−Nmic(M − 1)Rη(0)

Finally, the generative model for arbitrary microphone array and arbitrary number of sources

can be obtained by substituting Equations (47) and (48) into Equation (53), which gives

B(α) = 2

M∑
m=1

λ(m)2 ∑
(i,j)∈pa

R(m)
ss (κα) +Nmic

M∑
m=1

λ(m)2
R(m)
ss (0) +NmicRη(0) (56)

Data Likelihood & MAP Estimate

Using Equation (56), the negative log-likelihood for beamform data is given as

− ln p(Bk|X) = `k(X) =
1

σ2
B

∑
α

‖ Bk(α)− Bk(α) ‖2

The MAP estimate of the source positions is given by

X̂MAP = arg max
X

p(X|B) (57)

Since the generative model for beamform in non-linear, an exact method for state estimation in

Equation (57) is not possible and we use Monte Carlo method described in the next section for state

estimation.

Monte Carlo Estimation

Markov Chain Monte Carlo methods are a class of Monte Carlo methods for sampling complex

probability distributions based on constructing a Markov chain that has the desired distribution as
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its equilibrium distribution. MCMC approaches are so-named because they use the previous sample

values to randomly generate the next sample value, generating a Markov chain (as the transition

probabilities between sample values are only a function of the most recent sample value). The state

of the chain after a large number of steps is then used as a sample from the desired distribution. The

quality of the sample improves as a function of the number of steps. The MCMC methods are more

efficient, especially for problems with high-dimensional state-space, than sequential Monte Carlo

(SMC) methods, also called particle filters [46]. This is due to the fact that the samples in SMC

methods are drawn independently, while samples in MCMC are drawn from a Markov chain. If the

desired distribution is highly localized in a high-dimensional state space, most of the independent

samples drawn by SMC methods would have low probability. On the other hand, after a sufficient

number of steps, samples drawn by MCMC methods would, in fact, be from the desired distribution.

The Metropolis-Hastings (MH) algorithm is the earliest of the MCMC method [159]. The MH

algorithm generates a Markov chain using a proposal density which depends on the current sample.

The proposed samples are accepted as part of Markov chain according to a acceptance-rejection

rule. Another popular MCMC method called the Gibbs sampler is very widely applicable to a

broad class of Bayesian problems [160]. The Gibbs sampler is a special case of Metropolis-Hastings

sampling wherein the proposed sample is always accepted. This results in lesser rejected samples,

hence better efficiency. Gibbs sampling, however, requires that all the conditional distributions of

the target distribution can be sampled.

In this chapter, we use Gibbs sampling for estimation. Gibbs sampling algorithm works on the

idea that while the joint probability distribution is too complex to draw samples from directly, the

univariate conditional distributions – the distribution when all but one of the random variables are

assigned fixed values – are easier to sample. We denote the state vector asX =
[
x(1), x(2), · · · , x(D)

]t
,

where D is the number of state variables. The joint density p(Xt|Xt−1, Yt) is sampled using Gibbs

sampler by sequentially sampling univariate conditional densities given by

x
(k,j)
t ∼ p(x(j)|X(k,−j)

t , Xt−1, Yt) (58)

where k is the index of the sample, j = 1, · · · , n is the index of state variable currently being sampled,

and X
(k,−j)
t =

[
x

(k,1)
t , · · · , x(k,j−1)

t , x
(k−1,j+1)
t , · · · , x(k−1,D)

t

]t
is the set of all state variables except

x(j). In many cases, the univariate conditional distribution can be arbitrary and the choice of one-

dimensional sampling algorithm to sample from the univariate distribution determines the speed and

convergence of the Gibbs sampler. We select slice sampling for its robustness in parameters such as
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step size and applicability toward non-log-concave densities, which is the case in our problem due

to multimodal probability distributions [161].

The pseudo code in Algorithm 1 presents the Monte Carlo method for source separation and

localization using Gibbs sampling and slice sampling. At time t = 0 (line 1), the Gibbs sampling

algorithm is initialized with source fundamental frequencies and source locations. For each time

t > 0, we perform ML estimation for source separation (lines 3–10) and Bayesian estimation for

source localization (lines 11–19). The Gibbs sampler draws N samples (line 4 & 12) from the target

distribution by sequentially drawing from univariate conditional distributions (lines 5–7 & 13–16).

Note that slice sampling is used for univariate sampling (lines 6 & 14–15). Notation from Equation

(58) is used in lines 6 & 14–15. The state for kth sample is shown in lines 8 & 17. For ML estimation,

the sample with minimum negative-log-likelihood is selected as the estimate (line 10). For Bayesian

estimation, the sample with maximum a posteriori is selected as the state estimate (line 19).

Algorithm 1 Monte Carlo source separation and source localization algorithm

1: At t = 0, initialize Gibbs sampler (Ωf,0,X0)
2: for t > 0 do
3: %%% Source Separation (MC-ML Estimation)

4: for k = 1, · · · , N do
5: for m = 1, · · · ,M do

6: sample ω
(k,m)
f,t ∼ p(ω(m)

f |Ω(k,−m)
f,t ,Ωf,t−1, Pt)

7: Ω
(k)
f,t =

[
ω

(k,1)
f,t , · · · , ω(k,M)

f,t

]
8: ML estimate, Ω̂ML

f,t = arg min
Ω

(k)
f,t

`′(Ω
(k)
f,t )

9: %%% Source Localization (MC Bayesian Estimation)

10: for k = 1, · · · , N do
11: for m = 1, · · · ,M do

12: sample x
(k,m)
t ∼ p(x(m)|X(k,−m)

t ,Xt−1, Bt, Ω̂
ML
f,t )

13: sample y
(k,m)
t ∼ p(y(m)|X(k,−m)

t ,Xt−1, Bt, Ω̂
ML
f,t )

14: X
(k)
t =

[
x

(k,1)
t , y

(k,1)
t , · · · , x(k,M)

t , y
(k,M)
t

]
15: MAP estimate, X̂MAP

t = arg max
X

(k)
t
p(X

(k)
t |Xt−1,B)

Simulation Results

Typically, localization of an acoustic source in WSNs is performed by the sensors that are close to

the source because the signal-to-ratio (SNR) is lower for farther sensors. For this reason, we assume

that even in a large sensor network, a source will be surrounded by a small number of sensors that

will participate in the localization of that source.
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Setup and Parameters

In simulations, we consider a sensor network of 4 acoustic sensors arranged in a grid of size 10m×5m,

wherein each sensor can detect all the sources. We simulate the sources according to the acoustic

source model in Section IV, simulate the data according to the feature extraction algorithms in

Section IV, and finally compare the output of source localization against the ground truth. The

performance of the approach is measured in terms of the localization error, which is defined as the

root mean square (RMS) position error averaged over all the sources

E =
1

M

M∑
m=1

||x(m) − x̃(m)||

where M is the number of source, and x(m) and x̃(m) are the estimated and the ground truth

positions for the mth source, respectively. Table 10 shows the parameters used in the algorithm.

Table 10: Parameters used in simulations
Sampling frequency (fs) 100kHz
Speed of sound (C) 350 m/sec
Audio data length (time) 1 sec
Maximum harmonic frequency (ωmax) 1000Hz
SNR (dB) 25
Number of beams 36
Size of Fourier transform (NFFT ) 4000
Number of Gibbs samples 40

Frequency Discrimination

Figure 29(a) shows the PSD data likelihood for two sources. The data likelihood is highly multimodal

but localized. The data likelihood near the true fundamental frequency values is higher than the

likelihood for other frequencies. Figure 29(b) shows the localized nature of the PSD data likelihood.

The data likelihood is centered around the true fundamental frequency with a standard deviation

of less than 0.01 Hz. Due to this localized nature of the data likelihood, we can discriminate

fundamental frequencies as close as 0.1 Hz.

Localization and Spatial Discrimination

We study three simulation scenarios. In the first scenario, we increase the number of sources present

in the sensing region gradually to see the effect on localization accuracy. In the second scenario, we

increase the average source SNR of two sources present in the sensing region. In the third scenario,
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(a) (b)

Figure 29: Frequency discrimination results: (a) PSD data likelihood, (b) Frequency discrimination.

we increase the separation between two sources present in the sensing region to evaluate spatial

discrimination.

Figure 30(a) shows the localization error for the first scenario when the number of sources is

increased from 1 to 4. The localization error increases approximately exponentially with the number

of sources. Figure 30(b) shows the average localization error for the second scenario when source

SNR for the two sources is increased from 7dB to 52dB. As expected, the localization error decreases

with increasing SNR and remains approximately constant above 25dB. Figures 30(c) and 30(d) show

the localization error for the third scenario when the source separation between the two sources is

increased from 0.1m to 8m. For small source separations (0.1m and 0.2m), the localization error is

of the same order as the separation. This indicates that the two sources cannot be disambiguated

at such separation. For higher source separation (above 0.5m), the localization error is a small

fraction of the separation distance. This indicates that the two sources are successfully localized

and discriminated. In fact, for larger source separation (above 5m), the average localization error

for the two sources is the same as that of the single sources.

Relaxation of Source Assumptions

We evaluate the localization accuracy when the assumptions for the acoustic sources are relaxed;

specifically the harmonic and omnidirectional sources assumptions.
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Figure 30: Localization error with (a) Source density, (b) Source SNR, and (c) Source separation.
(d) Localization error as a percentage of source separation.

Harmonicity

Harmonicity of a signal represents the degree of acoustic periodicity in the signal. In this analysis,

we define signal harmonicity as the ratio of signal energy in the harmonic frequencies over the total

signal energy

~ =

∑
ω∈H P (ω)∑
ω P (ω)

(59)

Acoustic signals originating from rotating machinery will have high harmonicity close to unity, while

signals due wind or a white noise source will have low harmonicity. The localization accuracy of our

approach degrades gracefully when signal harmonicity is decreased. Figure 31(a) and 31(b) show

the localization error for single source and two sources, respectively, with signal harmonicity. The

localization error decreases as the signal harmonicity is increased. Hence, the signal harmonicity

computed using Equation (59) can be also used as an indicator of confidence in the localization
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result.

(a) (b)

Figure 31: Localization error with signal harmonicity for (a) Single Source, (b) Two Sources.

(a) (b)

Figure 32: Localization error with (a) Source directionality, (b) Amount of PSD data available.

Directivity

Directivity of an acoustic source is a measure of its directional characteristics. Directivity indicates

how much signal energy is directed toward a specific area compared to the total signal energy

being transmitted by the source. In this analysis, we express 2D source directivity in terms of

a directionality coefficient that governs the attenuation of the signal energy with the angle. The

directional signal attenuation is given by

λφ =

(
2 + cosφ

3

)β
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where β is the directionality coefficient and φ is the direction. The value of directionality coefficient is

zero (β = 0) for omnidirectional sources (i.e. the signal attenuates uniformly in all directions). Figure

32(a) shows the localization error for two sources when the directionality of the sources is increased.

The localization error for beamform-based localization is not affected for directionality coefficient

as high as 1.0, after which the error increases rapidly. As compared to energy-based localization,

beamform-based localization is able to cope with higher directionality. It is expected that if we

increase the number of sensors in beamform-based localization, the effect of source directionality

can be further reduced.

PSD Data Compression

We also present empirical analysis for the effect of PSD data compression to the localization accuracy

by increasing the NPSD parameter presented in Section IV. As expected, the localization accuracy

improves when more PSD data is available. Figure 32(b) shows the localization error for two sources

as a function of size of PSD data available to the fusion algorithm. As expected, the localization

error decreases as more PSD data is made available to the base station. The accuracy is poor and

degrades rapidly for smaller PSD data size.

Outdoor Experiments

We implemented the beamforming and PSD estimation algorithms described in Section IV on a

Xilinx XC3S1000 FPGA based micaz sensor motes (see Figure 33(a)). The outline of the overall

design is as follows. First, the FPGA collects samples of the signal received at the microphones in

FIFO buffers and performs beamforming and PSD estimation. Then the FPGA stores the results,

i.e. beamforming energies and NPSD highest values of the PSD, in registers easily accessible from the

micaz mote. Once these registers are read the mote transmits their value to the base station where

further processing and sensor fusion takes place. The block diagram of the FPGA design is shown

in Figure 33(b), where the upper half (above the dashed line) represents the beamforming- and the

bottom half shows the PSD estimation component. Beamforming component utilizes 166 msec of

audio data each cycle, while the PSD estimation component utilizes 1 sec of data with 75% overlap.

The angular resolution of beamforming is 10 degrees while frequency resolution of PSD estimation

is 1 Hz. The PSD estimation component returns 30 PSD values.

Beamforming Component. The entire FPGA application runs at 20 MHz and the Analog to

Digital Converters (ADCs) are sampling at 1 MSPS. The beamforming component uses all four
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Figure 33: (a) Acoustic sensor node with 4 microphone. (b) Block diagram of Beamforming- and
PSD estimation components realized on FPGA.

microphone channels. The 8-bit ADC values are first downsampled by a factor of 10 and stored in

a FIFO buffer. FIFO buffers are realized as circular buffers using 2-Kbyte embedded block RAMs

that store sample values from last 20 ms. Read access to the FIFO buffers and write access to

the Beamforming Energy (BE) registers are controlled by the Beamformer Control Logic (BCL).

Elements in the FIFOs are selected for read by a simple state machine that resides in the BCL. The

state machine iterates through 36 states each corresponding to a specific direction and accesses the

FIFO elements based on a look-up-table that contains the delay information for the different angles.

The accessed values of the four FIFOs are summed, squared and accumulated in the corresponding

BE register in one FPGA clock cycle for each direction. Once the energies for all the 36 directions

have been calculated, BCL waits for the next sample to arrive and starts this procedure over. This

procedure is repeated 214 times which takes approximately 160 ms and ensures that the 32-bit BE

registers do not overflow. After the last cycle, a trigger signal is generated for the PSD estimation

component and the beamforming component is halted.

PSD Estimation Component. The PSD estimation component uses the samples from only one

channel. The signal is first re-sampled at 4 kHz. For the decimation process, a 600-tap poly-phase

filter with 2 kHz cut-off frequency is used. The decimated 8-bit samples are then fed into a 4-Kbyte

FIFO buffer which allows to store up to 1 s sample history. In response to a trigger event received

from the beamforming component the FIFO content is loaded into the 4096 point FFT module.

Only the magnitude information of the first 2048 FFT results is forwarded to the Peak Sort (PS)
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module. The PS module then selects and stores 30 elements with largest magnitudes and their

corresponding indices. After all the FFT samples are processed an interrupt signal is generated for

the micaz mote, which in return reads all the register values through an I2C bus, transmits the

values through the radio and restarts the beamforming component. The PSD estimation time is

negligible compared to the I2C and radio transfers, which take approximately 90 ms together. The

beamforming process in conjunction with the PSD estimation and the data transfers takes roughly

250 ms, which results in an approximately 4 Hz update rate at the base station.

Resource Utilization. The resources used by the beamforming- and PSD estimation components

and the overall design (including all driver modules) are shown in Table 11. The utilization rates

of the different FPGA components compared to available resources found in the Xilinx XC3S1000

FPGA prove the feasibility of this application, but also points out its limitations. Since 75% of block

RAMs are already used, memory resources are likely to become a bottleneck when using larger data

sets (FIFO sizes).

Table 11: FPGA resource utilization of the Beamforming-, PSD Estimation modules and the overall
design in absolute numbers and relative to the available resources found in the Xilinx XC3S1000
FPGA.

Beamforming PSD Estimation Overall Design
Flip Flops 1,258 (8%) 2,018 (13%) 3,843 (8%)
4 input LUTs 1,398 (9%) 2,578 (16%) 6,860 (44%)
Block RAMs 8 (33%) 9 (38%) 18 (75%)
Hardware multipliers 1 (4%) 6 (25%) 7 (29%)

Experiments using an Outdoot Deployment We deployed a sensor network of 3 micaz-based

acoustic sensor nodes in an equilateral triangle of side length 9.144m (15ft). Figure 34(a) shows

the experimental setup and the location of the sources. We collected the sensor data and ran the

algorithm offline. Figure 34(b) shows the localization error with source separation. The results

follow the similar trend as that in Figure 30(c). For smaller source separations, the average error

remains low but the algorithm is not able to disambiguate the two sources. For larger separations,

the localization error decreases.

Conclusions

In this chapter, we proposed a feature-based fusion method for localization and discrimination of

multiple acoustic sources in WSNs. Our approach fused beamforms and PSD data from each sensor.

110



(a)

2 2.5 3 3.5 4 4.5
1

1.5

2

2.5

3

3.5

4

source separation (m)

av
er

ag
e 

R
M

S
 p

os
iti

on
 e

rr
or

 (
m

)

 

 

(b)

Figure 34: (a) Outdoor experimental setup. Source 1 is kept at the same location while source 2 is
placed at different locations. (b) Localization error with source separation.

The approach utilized a graphical model for estimating the source positions and the fundamental

frequencies. We subdivided the problem into source separation and source localization. We showed

in simulation and outdoor experiments that the approach can discriminate multiple sources using the

simple features collected from the resource-constrained sensor nodes. As part of an ongoing work,

we are working on target dynamics models to extend the approach for multiple source tracking. In

the future, the use of graphical models will allow us to extend the approach to multimodal sensors.
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CHAPTER V

COLLABORATIVE TARGET TRACKING USING MULTIPLE VISUAL
FEATURE IN SMART CAMERA NETWORK

With the evolution and fusion of technologies from sensor networks and embedded cameras, smart

camera networks are emerging as useful and powerful systems. In this chapter, we present an

approach for tracking multiple targets in 3D space using a wireless network of smart cameras.

Existing camera network approaches for target tracking either utilize target handover mechanism

between cameras for continuous tracking, or combine results from 2D trackers into 3D target state

[125–127]. Such approaches suffer from the drawbacks associated with 2D tracking, such as scale

selection, target rotation, and occlusion. In addition, target handover requires robust mechanisms

for target (re)initialization as a target (re)enters a camera field-of-view (FoV). On the other hand,

in 3D trackers where the target state and the target model are maintained in 3D space irrespective

of the camera network parameters, we do not need to do (re)initialization as the target (re)enters

a camera FoV. Employment of wireless networks, however, introduces new constraints of limited

bandwidth, limited computation and limited power.

In our approach, we use multi-view histograms in different feature-spaces to characterize targets

in 3D space. We employ color and texture as the visual features to model targets. The visual features

from each camera, along with the target models are used by a probabilistic tracker to estimate

the target state. We demonstrate the effectiveness of our proposed base tracker by comparing its

performance to a 3D tracker that fuses results of independent 2D trackers. We also present a

performance analysis of the base tracker and propose several variations that trade off Quality-of-

Service and Quality-of-Information.

Introduction

Smart cameras are evolving on three different evolutionary paths [124]. First, single smart cameras

focus on integrating sensing with embedded on-camera processing power to perform various vision

tasks on-board and deliver abstracted data from the observed scene. Second, distributed smart

cameras (DSC) introduce distribution and collaboration of smart cameras resulting in a network

of cameras with distributed sensing and processing. The main motivations for DSC are to (1)
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resolve occlusion, (2) mitigate the single camera handicap, and (3) extend sensing coverage. Finally,

pervasive smart cameras (PSC) integrate adaptivity and autonomy to DSC.

Single camera tracking algorithms are often applied in the image plane. These image-plane (or

2D) trackers often run into problems such as target scale selection, target rotation, occlusion, view-

dependence, and correspondence across views [125]. There are few 3D tracking approaches [125,126]

that fuse results from independent 2D trackers to obtain 3D trajectories. These approaches employ

decision-level fusion, wherein local decisions made by the node (i.e., 2D tracks) are fused to achieve

global decision (i.e., 3D tracks), while discarding the local information (i.e., images captured at

nodes). Because of the decision-level fusion, these approaches also suffer from all the problems

associated with 2D tracking.

Tracking applications based on distributed and embedded sensor networks are emerging today,

both in the fields of surveillance and industrial vision. The above-mentioned problems that are

inherent in the image-plane based trackers can be circumvented by employing a tracker in 3D space

using a network of smart cameras. Such smart camera networks can be employed using wireline or

wireless networks. Wireless networks seem more suited due to their easy deployment in complex

environments. In wireless networks, traditional centralized approaches have several drawbacks, due

to limited communication bandwidth, computational requirements, and thus limiting the spatial

camera resolution and the frame rate. The challenges for wireless smart camera networks include

robust target tracking against scale variation, rotation and occlusion, especially in the presence of

bandwidth constraints due to the wireless communication medium. We propose an approach for

collaborative target tracking in 3D space using a wireless network of smart cameras. Modeling the

target in 3D space circumvents the problems inherent in the 2D tracker, or a combination of 2D

trackers.

The contributions of this chapter are listed below.

1. We define a new target representation, including target state and target reference model, which

is suitable for 3D tracking. The target state consists of the position and orientation of the

target in 3D space. The target model consists of its multi-view feature histograms. Such a

model would correspond to the actual 3D target that does not change, and hence, unlike the

image-plane based trackers, the target model does not need to be updated or learned during

tracking. We also extend the definition of similarity measure for our proposed target model.

2. We develop a probabilistic 3D tracker based on our new target representation and implement

the tracker using sequential Monte Carlo algorithms.
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3. We develop and implement several variations of the base tracker that incur different compu-

tational and communication costs at each node, and produce different tracking accuracy. The

variations include optimizations such as the use of mixture models, in-network aggregation

and the use of image-plane based filtering where it is appropriate. We also present a quali-

tative comparison of the trackers according to their supported Quality-of-Service (QoS) and

Quality-of-Information (QoI).

4. We present quantitative evaluation of the trackers using synthetic targets in simulated camera

networks, as well as using real targets (objects and people) in real-world camera network

deployments. We also compare the proposed trackers with an implementation of a previous

approach for 3D tracking, which is based on 3D ray intersection. The simulation results show

robustness against target scale variation and rotation, while working within the bandwidth

constraints.

Background – Tracking with Single Camera

The two major components in a typical visual tracking system are the target representation and

the tracking algorithm. The target is characterized by a reference target model in a suitable feature

space. The reference target model is represented by its probability density function (pdf) in the

feature space. The tracking algorithm typically includes searching the current image frame against

the reference target model. Typically, the search is limited to a fixed-shape variable size window

(also called the target candidate) around the target location in the previous image frame. The target

candidate for which the pdf in the feature space closely matches that of the target model is declared

as the estimated target location.

Target Representation

The target is characterized by a reference target model in the feature space of interest. Typically,

reference target models are obtained by histogramming techniques in the feature space. For example,

the model can be chosen to be the color, texture or edge-orientation histogram of the target. In [95],

Red-Green-Blue (RGB) colorspace is taken as the feature space, while in [122], Hue-Saturation-

Value (HSV) colorspace is taken as the feature space in order to decouple chromatic information

from shading effects.
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Target Model Consider a target region defined as the set of pixel locations {xi}i=1···n in an

image I. Without loss of generality, consider that the region is centered at 0. We define the function

b : R2 → {1 · · ·m} that maps the pixel at location xi to the index b(xi) of its bin in the quantized

feature space.

Within this region, the target model is defined as, q = {qu}u=1···m, with

qu = C

n∑
i=1

k(‖ xi ‖2)δ[b(xi)− u] (60)

where δ is the Kronecker delta function, C is the normalization constant such that
∑m
u=1 qu = 1,

and k(x) is a weighting function. For example, in [95], this weighting function is an anisotropic

kernel, with a convex and monotonic decreasing kernel profile that assigns smaller weights to the

pixels farther from the center. If we set w ≡ 1, the target model is equivalent to the standard bin

counting.

Target Candidate A target candidate is defined similar to the definition of the target model

above. Consider a target candidate at y as the region which is a set of pixel locations {xi}i=1···n

centered at y in the current frame. Using the same weighting function, k(x) and feature space

mapping function, b(x), the target candidate is defined as, p(y) = {pu(y)}u=1···m, with

pu(y) = C

n∑
i=1

k(‖ y − xi ‖2)δ[b(xi)− u] (61)

where C is the normalization constant such that
∑m
u=1 pu(y) = 1.

Similarity Measure A similarity measure between a target model q and a target candidate

p(y) plays the role of data likelihood and its local maxima in the frame indicate the target state

estimate. Since both the target model and the target candidate are discrete distributions, the

standard similarity function is the Bhattacharya coefficient [116] defined as

ρ(y) ≡ ρ[p(y),q] =

m∑
u=1

√
pu(y)qu (62)

Tracking Algorithm

The two most common approaches for target tracking using a single camera are mean-shift tracking

and particle filter-based tracking.
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Mean-Shift Tracker In this tracker, the feature histogram-based target representations are reg-

ularized by spatial masking with an isotropic kernel [95]. The masking generates spatially-smooth

similarity functions. Finally, the target tracking problem is reformulated as finding the local maxima

on this spatially-smooth similarity function. The approach in [95] employs a metric derived from the

Bhattacharya coefficient as a similarity measure, and uses the mean-shift mode seeking algorithm

for maximization.

Particle Filter In the mean-shift tracker, the search for the current estimate is deterministic. A

deterministic search might encounter problems when the background close to the target contains

similar features, or when the target is partially, or completely occluded momentarily. Unlike the

deterministic search in mean-shift tracking, in probabilistic tracking the search is made probabilis-

tically within a sequential Monte Carlo framework [122]. This requires constructing a feature-space

likelihood model, which can be based on the similarity measure such as the Bhattacharya coefficient,

or any other similarity measure, for example, the Matusita metric [162]. In [122], the color likelihood

based on Bhattacharya distance is used with a dynamical state space model for sequential Bayesian

estimation using a particle filter.

Tracking with Camera Network

Since single camera tracking algorithms are applied in the image-plane, such image-plane (2D)

trackers often run into problems such as target scale selection, target rotation, occlusion, view-

dependence, and correspondence across views [125]. There are a few 3D tracking approaches [125,126]

that fuse results from independent 2D trackers to obtain 3D trajectories. These approaches employ

decision-level fusion, wherein local decisions made by the node (i.e. 2D tracks) are fused to achieve

global decision (i.e. 3D tracks), while discarding the local information (i.e. images captured at

nodes). Because of the decision-level fusion, these approaches also suffer from all the problems

associated with 2D tracking.

Target Hand-off

Another problem in 2D image-plane based trackers is the (re)initialization of a target when it

(re)enters a camera field-of-view. In current state-of-the-art approaches, (re)initialization is per-

formed by handing over target state to an adjacent camera node, which maintains the target state

until it hands over the state to some other camera node.

116



An autonomous multicamera tracking approach based on a fully decentralized handover mech-

anism between adjacent cameras is presented in [127]. The system automatically initiates a single

tracking instance for each target of interest. The instantiated tracker for each target follows the

target over the camera network, migrating the target state to the camera which observed the object.

This approach, however, utilizes data from only a single camera node at any given time. The authors

do admit that the effectiveness of their handover mechanism introduces some requirements for the

tracker. First, the tracker must have a short initialization time to build a target model. Second, the

tracker on the new camera node must be able to initialize itself from a previously saved state, or

handed-over state. Finally, the tracker must be robust with respect to the position and orientation

of a target such that it must be able to identify the same target on the next camera node. These

requirements need sophisticated and fine-tuned algorithms for 2D image-plane based tracker. On

the other hand, in 3D trackers, the target state and the target model are maintained in 3D space.

The target state and the target model are not tied to the camera network parameters, such as the

number of cameras, position and orientation of the cameras, etc. Once initialized, the target model

does not need to be re-initialized as it moves in the sensing region and enters, or re-enters a camera

field-of-view.

3D Tracking using Ray Intersection

The classical and most naive approach for 3D collaborative target tracking is to combine the 2D

tracking results from individual camera nodes for 3D tracking. This can be done by projecting rays

from the camera center to the image affine coordinate in the world coordinate system and finding

the intersection of multiple such rays from multiple cameras. This approach requires each camera

node to maintain a 2D target model and a feature histogram. Hence the problems of scale variation,

rotation and occlusion are not alleviated. As soon as the target moves along the camera principal

axis, or rotates around its axis, the target model including the size and feature-histogram would

become invalid. A target model learning algorithm during target tracking can help mitigate the

problem but any sudden change which is faster than the model learning would cause the tracker to

loose the target.

Visual Features for Tracking

The most desirable property of a visual feature, also called a visual cue, is its uniqueness and

discernibility, so that the targets can be easily distinguished in the feature space. Feature selection
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is closely related to target representation. For example, color is used as a feature for histogram-based

appearance representations, while for contour-based representation, object edges are usually used as

features.

Most of the visual tracking systems use a single visual feature and are often limited to a particular,

simple visual environment. In complex environments, due to frequent changes, it is likely that no

single visual feature will be robust and discriminant enough to successfully handle various scenes

in the real-world. In such scenarios, a tracking approch utlizing multiple features is desirable. The

visual features used by our approach are introduced below.

Color

The apparent color of an object is influenced primarily by two physical factors, (1) the characteristics

of the light source and (2) the surface reflectance properties of the object. In image processing, the

RGB colorspace is usually used to represent color. However, the RGB space is not a perceptually

uniform color space and is highly sensitive to illumination changes. HSV colorspace, on the other

hand, is approximately uniform in perception. The hue parameter in HSV space represents color

information, which is illumination invariant as long as the following two conditions hold, (1) the

light source color can be expected to be almost white, and (2) the saturation value of object color

is sufficiently large [98].

In our tracking algorithm, we use the color model developed in [122]. The color model is obtained

by histogramming techniques in the HSV color space in order to decouple chromatic information

from shading effects. Since the color information is only reliable when both the saturation and

the value are not too small, an HS histogram is populated with NhNs bins using only the pixels

with saturation and value larger than the hue and saturation thresholds. The remaining color-free

pixels can however retain a crucial information when tracked regions are mainly black and white.

Thus Nv additional value-only bins are populated with them. The resulting complete histogram is

thus composed of N = NhNs + Nv bins. The function bt(x) ∈ {1, · · · , N} denotes the bin index

associated with the color of the pixel at location x in the current frame. We used the default setting

Nh = Ns = Nv = 8 in all experiments.

Texture

Visual textures are the patterns in the intensity variations of a surface. The patterns can be the result

of physical surface properties such as roughness, or they could be the result of reflectance differences
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such as the color on a surface. Image texture is typically defined as a function of the spatial

variation in pixel intensities. In our tracking algorithm, we use the texture model based on Local

Binary Patterns (LBP) developed in [163]. The methodology has gained increasing attention and use,

especially in applied research due to its performance and real-time processing capability. According

to the authors, the most important property of the LBP operator in real-world applications is its

tolerance against illumination changes, and its computational simplicity, which makes it possible to

analyze images in real-time settings.

Probabilistic 3D Tracker

In this section, we present the details of our proposed probabilistic 3D tracker. First, we describe the

target representation including the target state and the target model. Then, we define the similarity

measure for target localization. We then present an algorithm to estimate target orientation, and

finally we present the details of the proposed tracker based on particle filtering.

Target Representation

A target is characterized by a state vector and a reference model. The target state consists of the

position, velocity and orientation of the target in 3D space. The reference target model, described

below, consists of the 3D shape attributes, and the multi-view histograms of the target object in

a suitable feature-space. Such a reference target model would correspond to the actual 3D target

which does not change with scale variation and rotation. Once learned during the initialization

phase, the model does not need to be updated or learned during tracking.

Target State

The state of a target is defined as

χ = [x,v,θ] (63)

where x ∈ R3 is the position, v ∈ R3 is the velocity, and θ is the orientation of the target in 3D space.

Specifically, we represent the target orientation as a unit quaternion, θ [164]. Target orientation

can also be represented using Direction Cosine Matrix (DCM), rotation vectors, or Euler angles.

Standard conversions between different representations are available. We chose unit quaternions

due to their intuitiveness, albegraic simplicity, and robustness. The target state evolution (the
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target dynamics) is given by

xt = xt−1 + vt−1 · dt+ wx

vt = vt−1 + wv (64)

θt ≡ θt−1 + wθ

where wx, wv, and wθ are the additive noise in target position, velocity and orientation, respectively.

Target Model

Since we want to model a 3D target, the definition of target model (see Equation (60)) as a single

histogram on an image-plane is not sufficient. We extend the definition of the target model to include

multiple histograms for a number of different viewpoints. This is called a multi-view histogram. Our

target model is based on multi-view histograms in different feature-spaces.

The 3D target is represented by an ellipsoid region in 3D space. Without loss of generality,

consider that the target is centered at x0 = [0 0 0]t, and the target axes are aligned with the world

coordinate frame. The size of the ellipsoid is represented by the matrix

A =


1/l2 0 0

0 1/w2 0

0 0 1/h2

 (65)

where l, w, h represent the length, width and height of the ellipsoid. A set S = {xi : xt
iAxi =

1; xi ∈ R3}, is defined as the set of 3D points on the surface of the target. A function b(xi) : S →

{1 · · ·m} maps the surface point at location xi to the index b(xi) of its bin in the quantized feature

space.

Let {êj}j=1···N be the unit vectors pointing away from the target center. These unit vectors are

the viewpoints from where the target is viewed and the reference target model is defined in terms

of these viewpoints. Finally, the reference target model is defined as

Q = [qt
ê1
,qt

ê2
, · · ·qt

êN ] (66)
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where qêj is the feature-histogram for viewpoint êj , and N is the number of viewpoints. The feature

histogram from viewpoint êj is defined as qêj = {qêj ,u}u=1···m

qêj ,u = C
∑

xi∈R(êj)

κ
(
d(yi)

)
δ[b(xi)− u] (67)

where δ is the Kronecker delta function, C is the normalization constant such that
∑m
u=1 qêj ,u = 1,

κ(·) is a weighting function, and

R(êj) = {xi : xi ∈ S,xt
iAêj ≥ 0,∀i 6= j → yi 6= yj} (68)

is the set of points on the surface of the target that are visible from the viewpoint êj . In equation

(67), yi = Pêjxi denotes the pixel location corresponding to the point xi projected on the image

plane, where Pêj is the camera matrix for a hypothetical camera placed on vector êj with principal

axis along −êj . This camera matrix is defined as Pêj = K
[
R|t
]
, where R, t are the rotation and

translation given as

R = Rx(θ)Ry(φ)R0

θ = sin−1(êj,z)

φ = tan−1

(
êj,y
êj,x

)

R0 =


0 1 0

0 0 −1

−1 0 0


where Rx(.), Ry(.) are the basic rotation matrices along x− and y−axis, θ and φ are zenith and

azimuth angles, respectively, and R0 is the base rotation. The translation vector t is given as

t = −Rxp

xp = Lêj

where xp is the position of the hypothetical camera places on unit vector êj at a distance L from

the target. The function d(yi) in equation (67) computes pixel distance between pixel locations yi
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and y0 as

d(yi) =
(
yi − y0

)t
B
(
yi − y0

)
(69)

where B ∈ R2×2 is the representation of size of the ellipse-like shape when the target ellipsoid is

projected on the image plane, and y0 = Pêjx0.

Similarity Measure and Localization

Below, we describe the algorithm to compute the similarity measure between the reference target

model and a target candidate state using the camera images from a network of cameras.

Consider a camera network of N cameras, where the cameras are denoted as Cn. The camera

matrices are denoted as Pn = K
[
Rn|tn

]
, where K is the internal calibration matrix, Rn is the

camera rotation and tn is the camera translation. Consider an arbitrary target candidate state

χ = [x,v,θ], and let {In}n=1···N be the images taken at the cameras at current time-step.

For the target candidate state χ, the similarity measure between the target candidate and the

reference target model is computed based on the Bhattacharya Coefficient. The similarity measure

is defined as

ρ(χ) =

N∏
n=1

ρn
(
χ
)

=

N∏
n=1

ρ
(
pn(x),qên

)
(70)

where N is the number of cameras, pn(x) target candidate histogram at x from camera n, and

qên is the target model for the viewpoint ên, where ên is the viewpoint closest to camera Cn’s

point-of-view. This is computed as

ên = arg max
êj

êt
targetR(θ)êj (71)

where êtarget is the camera viewpoint towards the target, θ is the target orientation, and R(θ) is

the rotation matrix for the target orientation given as

R(θ) =


1− 2q2

2 − 2q3
2 2q1q2 − 2q3q4 2q1q3 + 2q2q4

2q1q2 + 2q3q4 1− 2q1
2 − 2q3

2 2q2q3 − 2q1q4

2q1q3 − 2q2q4 2q2q3 + 2q1q4 1− 2q1
2 − 2q2

2

 (72)
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where θ ≡ [q1, q2, q3, q4]
t

is the unit quaternion. The unit vector êtarget is given by

êtarget =
xn − x

‖ xn − x ‖
(73)

where xn is the camera position.

The target candidate histogram pn(x) in Equation (70), is computed in a similar way as that

for the target model histogram. The target candidate histogram for camera Cn is given by

pn(x) = {pn,u(x)}u=1···m (74)

where

pn,u(x) = C
∑

yi∈R(x)

κ
(
d(yi,y)

)
δ[bI(yi)− u] (75)

where C is the normalization constant such that
∑m
u=1 pn,u = 1, κ(.) is the weighting function, and

R(x) = {yi : yi ∈ I, (yi − y)tB(x)(yi − y) ≤ 1,∀i 6= j → yi 6= yj}

is the set of pixels in the region around y, defined as B(x). Here, y = Pnx is the projection of the

target position on the camera image plane. The function d(yi,y) computes pixel distance between

pixel locations yi and y as follows,

d(yi,y) =
(
yi − y

)t
B(x)

(
yi − y

)
(76)

where B(x) ∈ R2×2 is the representation of the size of the ellipse-like shape when the target ellipsoid

is projected on the camera image plane.

Estimation of Target Orientation

Target orientation is estimated separately from the target position. Below, we describe our algorithm

to estimate the target quaternion using the data from multiple cameras. In the first step, we estimate

the target quaternion at each camera separately. In the second step, the individual target quaternions

are fused together to get a global estimate of the target quaternion.
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In the first step, on each camera, we compute the similarity measure of the target candidate

histogram, pn(x), with each of the histograms in the target reference model (Equation (66))

ρ(χ) ≡
[
ρ1(χ), ρ2(χ), · · · ρN (χ)

]
ρj(χ) ≡ ρ

(
p(x),qêj

)
where ρ

(
p(x),qêj

)
is the Bhattacharya Coefficient. Now, we have viewpoints (ê1, ê2, · · · , êN ) and

similarity measures (ρ1, · · · , ρN ) along each viewpoint. We take the weighted average of all the

viewpoints to get the most probable direction of the camera with respect to the target

êavg =

∑
j ρj êj∑
j ρj

The unit vector −êavg is the estimate of the camera principal axis in the target’s frame of reference.

To estimate the target rotation vector, we need to compute the transformation between −êavg and

ẑcam, where ẑcam is the actual camera principal axis, and apply the same transformation to the

target axes, T ≡ I3×3, where I3×3 is the identity matrix of size 3.

The transformation between the two unit vectors can be computed as follows,

â =
−êavg × ẑcam
‖ êavg × ẑcam ‖

φ = cos−1
(
−êavg · ẑcam

)
where â is the Euler axis and φ is the rotation angle. Using this transformation, the transformed

target axes are

T ≡ Râ(φ) = [êt
x′ êt

y′ êt
z′ ] (77)

The target orientation on each node is computed using the following conversion from Euler axis and

rotation angle to quaternion

θ̂n =



an,xsin(φn/2)

an,ysin(φn/2)

an,zsin(φn/2)

cos(φn/2)


(78)

124



In the second step, after we have estimated the target quaternions on each of the cameras,

we fuse the quaternions together to get a global estimate of the target quaternion. Given target

quaternion estimates {θ̂n}n=1···N and weights {wn}n=1···N from N cameras, we estimate the global

target quaternion by taking the weighted average

θ̂all =

∑
n wnθ̂n

‖
∑
n wnθ̂n ‖

The current target orientation is updated using the global target orientation estimated from the

camera images as

θ̂ = αθ̂all + (1− α)θ̂prior

where θ̂prior is the prior target orientation and α is an update factor.

Tracking Algorithm

In this section, we discuss the implementation of our base tracker.

Base Tracker (T0)

Our probabilistic 3D tracker is based on sequential Bayesian estimation. In Bayesian estimation,

the target state is estimated by computing the posterior probability density p(xt+1|z0:t+1) using a

Bayesian filter described by

p(xt+1|z0:t+1) ∝ p(zt+1|xt+1)

∫
xt

p(xt+1|xt)p(xt|z0:t)dxt (79)

where p(xt|z0:t) is the prior density, p(zt+1|xt+1) is the likelihood given the target state, and

p(xt+1|xt) is the prediction for the target state xt+1 given the current state xt according to a

target state evolution model. Here z0:t ≡ (z0, · · · , zt)t denote all the measurements up until t.

In sequential Bayesian estimation, the target state estimate can be updated as the data is made

available using only the target state estimate from the previous step, unlike Bayesian estimation,

where the target state estimate is updated using all the data collected up until the current time-

step. In sequential Bayesian estimation, the target state is estimated by computing the posterior
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probability density p(xt+1|zt+1, xt) using a sequential Bayesian filter described by

p(xt+1|zt+1, xt) ∝ p(zt+1|xt+1)p(xt+1|xt)p(xt) (80)

where p(xt) is the prior density from the previous step, p(zt+1|xt+1) is the likelihood given the target

state, and p(xt+1|xt) is the prediction for the target state xt+1 given the current state xt according

to a target state evolution model.

In visual tracking problems the likelihood is non-linear and often multi-modal. As a result linear

filters such as the Kalman filter, and its approximations are usually not suitable. Our base tracker

is implemented using particle filters. Particle filters can handle multiple hypotheses and non-linear

systems. Our probabilistic base tracker is summarized in Algorithm 2.

Algorithm 2 Base tracker

1: Input: The reference target model Q (Equation (66)), and target state χ̂0 = [x̂0, v̂0, θ̂0] in
previous time-step.

2: On Each Camera Node: {Cn}n=1···N
3: target position estimation
4: Generate synchronized particle set for the target position, {x̃i}i=1···M ∼ N (x̂0 + v̂0,Σ),
5: For i = 1 · · ·M , compute target candidate histogram, pn(x̃i) according to Equation (74),
6: For i = 1 · · ·M , compute weights wn,i = ρn(x̃i) according to Equation (70),
7: target orientation estimation
8: Estimate target orientation θ̂n according to Equation (78)
9: On Base Station:

10: For i = 1 · · ·M , combine weights from each camera, wi =
∏
n wn,i,

11: Compute target position estimate, x̂
12: Compute target velocity estimate, v̂ using Kalman filter,
13: Estimate target orientation θ according to Equation (79).
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Figure 35: Proposed base tracker T0 for video tracking.

Figure 35 illustrates the base tracker operation for a single time-step. At each time step, each

camera node performs position estimation and orientation estimation separately. For position es-
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timation, we generate a set of synchronized particles for the predicted position. The synchronized

particle set is generated using a synchronized random number generator, which can be achieved by

seeding the random number generator on each node with the same seed. Then, target candidate

histograms are computed for each of the proposed particles. In our framework, we use color features,

specifically HS colorspace, and texture features, specifically LBP. After we compute the target can-

didate histograms in HS-space and LBP-space for each particle, we compute the weights according

to the following

ρ(x) = αhsρhs(x) + (1− αhs)ρlbp(x) (81)

where ρhs(x) and ρlbp(x) are the similarity measures for the target candidate histograms in HS-

and LBP-spaces, respectively (computed using Equation (70)), and 0 ≤ αhs ≤ 1 is the weighting

factor. Target orientation estimation is performed on each camera node according to the algorithm

described earlier in the section.

Then, the weights of the synchronized particle set from each of the camera nodes are sent to the

base-station, and are combined together. An MMSE, MLE or MAP estimate is estimated as

MMSE: x̂ =

∑
i wixi∑
i wi

(82)

MLE: x̂ = arg max
x

wi (83)

MAP: x̂ = arg max
x

wiN (xi|x0,Σ0) (84)

The target position estimate is then used in a N-scan Kalman smoother [165] to smooth the position

estimates, as well as to estimate the target velocity. Finally, target orientation esimates from each

camera node are combined according to Equation (79) to estimate global target orientation.

Computational Cost Each camera node generates a synchronized particle set of size M and

computes weights for each particle. Computation of weight for a single particle includes computing

the target candidate histogram and the Bhattacharya coefficient with the reference target model.

Hence, the total computational cost at each time-step on each camera node is O(Mmnp), where M

is the number of particles, m is the number of bins in the quantized feature-space, and np is the

number of pixels inside the target candidate region.
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Communication Cost The base tracker algorithm requires the base station to transmit the

current target state to each camera node. Each camera node then transmits the weights for the

synchronized particle set back to the base station, as well as the target orientation estimates. During

a single time-step, the total cost of communication can be computed as follows. Let the size of the

target state χ = {x,v,θ} be 24 + 24 + 32 = 80 bytes, and each particle weight be represented by a

8 byte double. Then, the total cost of communication during a single step is C = |χ| + MN |w| =

80 + 8MN bytes, where N is the number of cameras and M is the number of particles in the

synchronized particle filter. For example, if N = 4 and M = 1000, then the total cost is C = 32, 080

bytes, or approximately 32 kb-per-time-step. If the application is running at 4 Hz, then the total

bandwidth consumption would be around 128 kbps.

Tracker Variations

In this subsection, we introduce four variations to the base tracker. The approaches incur different

computational and communication costs on each node, and produce different tracking accuracies.

The computational and communication costs associated with a tracker directly affects the tracking

rate, network size, bandwidth consumption, latency, etc. In other words, different trackers support

different Quality-of-Service (QoS). Since the objective of a tracking algorithm is to effectively track

a target, which is the information that is desired from a tracking algorithm, we can say that differ-

ent trackers support different Quality-of-Information (QoI). After the description of all the tracker

variations, we will qualitatively classify the trackers according to their supported QoS and QoI.

Tracker T1: 3D Kernel Density Estimate

In the base tracker, the communication cost is very high because we send weights for the synchronized

particle set from each node to the base station. In this variation of the base tracker, instead of sending

all the weights, each node computes a 3D kernel density estimate, approximates the kernel density

estimate using a Gaussian Mixture Model (GMM), and sends only the mixture model parameters

to the base station, thereby reducing the communication cost by a large factor. Figure 36 shows the

tracker. In tracker T1, the main differences from tracker T0 are: 1) computation of the 3D kernel

density from the particle set, 2) GMM approximation of the kernel density, and 3) state estimation

at the base station using GMM parameters from all nodes.
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Figure 36: Tracker T1. The tracker uses 3D kernel density estimate.

The kernel density in 3D space is computed as follows

κ(x) =

N∑
i=1

k

(
‖ x− xi ‖2

h2

)
(85)

where k(x) = exp (−x/2) : [0,∞) → R is the kernel profile function. The 3D kernel density κ(x)

is approximated as a 3D-GMM of appropriate model-order (number of mixture components). A

model-order selection algorithm is used to select an optimal model-order that best matches the

kernel density. The best matching is done according to KL-divergence as follows

mopt = arg min
m≤mmax

KL
(
κ(x)||gm(x)

)
(86)

where gm(x) ≡ {αi, µi,Σi}i=1···m is the 3D-GMM of order m (estimated using the EM algorithm

[166]), KL(κ(x)||gm(x)) is the KL-divergence of gm(x) from κ(x), and mopt is the optimal model-

order. Finally, the state estimation is done at the base station by mode estimation on the combined

kernel density from all the nodes

x̂ = arg max
x

κ(x) ≡ arg max
x

mopt∑
i=1

αiN (x|µi,Σi) (87)

Tracker T2: In-Network Aggregation

Further improvements in terms of the communication cost can be made by in-network aggregation.

In this tracker, instead of each camera node sending the mixture model parameters to the base

station, in-nodes in the routing tree aggregate the mixture model parameters and forward a fewer

number of parameters.

Figure 37 shows the tracker. In-network aggregation is done in two-steps. In the first step, the
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Figure 37: Tracker T2 design. (a) Tracker T1 does not include in-network aggregation, whereas (b)
tracker T2 includes in-network aggregation.

GMMs from multiple camera nodes are combined by taking the product of the GMMs. In the second

step, we reduce the number of mixture components in the resulting GMM from the first step to fit

the size of a message of fixed size.

Step 1: Product of GMMs.

Let {κj(x)}j=1···N be the kernel densities available at a node from its children and itself. Then,

the combined kernel density is given by

κ(x) = κ1(x) · κ2(x) · · ·κN (x) (88)

Without loss of generality, we can perform successive pairwise product operations to obtain the

combined density. Lets consider the product of two GMMs, κ1(x) and κ2(x) given as

κ1(x) =

N1∑
i=1

αiN (µi, Vi)

κ2(x) =

N2∑
j=1

βjN (λj ,Wj)
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The product GMM is given by

κ(x) = κ1(x)κ2(x)

=

N1∑
i=1

N2∑
j=1

αiβjN (µi, Vi)N (λj ,Wj)

=

N1∑
i=1

N2∑
j=1

γijN (ξij ,Σij)

where,

Σij =
(
V −1
i +W−1

i

)−1

ξij = Σij
(
V −1
i µi +W−1

j λj
)

γij =

[
|Σij |
|Vi||Wj |

]1/2
exp(−zc/2)

(2π)D/2
αiβj

zc = µt
i V
−1
i µi + λtjW

−1
j λj − ξtijΣ−1

ij ξij

So, given two GMMs with N1 and N2 mixture components, the product will be a GMM with N1N2

mixture components.

Step 2: Model-Order Reduction.

To reduce the number of components in the product GMM such that the mixture model parameters

fit a communication message of fixed size is achieved by using a modified k-means algorithm. The

model-order reduction problem can be stated as follows. Given a GMM with N components, we

want to estimate parameters of a GMM with K components (K < N) such that the reduced-order

GMM faithfully represents the original GMM. In other words,

κ(x) =

N∑
i=1

αiN (µi, Vi) ≡
K∑
j=1

βjN (λj ,Wj) (89)

In the modified k-means algorithm, we want to cluster N points, which are the mixture model

components, in K clusters. In the description of the algorithm, we will interchangeably use the terms

points and mixture model components. The two key modifications in the standard k-means algorithm

are: 1) computation of the distance between points, and 2) the clusterhead update algorithm.

First, initialize the k-means algorithm using K random points,
(
β0
j , λ

0
j ,W

0
j

)
= (αi, µi, Vi), where

j = 1 · · ·K and i = random(N). Then, compute the modified distance of all the points, i = 1 · · ·N ,
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with the K clusterheads as

dij = (µi − λ0
j )

t(V −1
i +W 0

j
−1

)(µi − λ0
j ) (90)

and associate each point with the clusterhead closest to it, mi = arg minj dij , where mi is the index

of the clusterhead closest to the ith point. Then, move the clusterheads to the centroid of the cluster

(defined as the collection of all the points associated with the cluster). For j = 1 · · ·K, let Cj

represent the set of points in the jth cluster. Then, update the clusterheads according to

βj =
∑
i∈Cj

αi (91)

λj =
1

βj

∑
i∈Cj

αiµi (92)

Wj =
1

βj

∑
i∈Cj

αi(Vi + µt
i µi)− λtjλj (93)

Finally, the termination criteria is to stop when the clusterheads are converged,
∑
j ‖ βj − β0

j ‖≤ ε,

or the algorithm has exceeded a maximum number of iterations.

Tracker T3: Image-Plane Particle Filter & 3D Kernel Density

In trackers T1 and T2, we made improvements in terms of the communication cost by approximating

data likelihood by 3D kernel density estimate which is implemented and approximated as GMMs.

The computational cost of computing such a kernel density is still high because the particle filter is

run in 3D space. An improvement in terms of the computational cost can be made by employing a

2D particle filter (in the camera image-plane) and computing a 3D kernel density from it.

In this variation, instead of generating the particle set of 3D target positions, each camera node

generates a particle set of 2D pixel positions in the image-plane. Each camera then computes a 3D

kernel density from the image-plane particle set and proceeds as in the case of tracker T2. Figure

38 shows the tracker. The main differences of tracker T3 with tracker T2 are: 1) the 2D particle

filter, and 2) the algorithm to compute 3D kernel density using 2D particles. The algorithm for 2D

particle filter is described below.

The target candidate histogram pn(y), and hence the weights for image-plane particle filter are

computed a little differently from that in the case of the 3D particle filter. The target candidate
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Figure 38: Tracker T3 design. It includes the use if 2D particle filter, or image-plane filtering, and
& 3D kernel density estimate.

Algorithm 3 T3 tracker

1: Input: The reference target model Q (Equation (66)), and target state χ̂0 = [x̂0, v̂0, θ̂0] in
previous time-step.

2: On Each Camera Node: {Cn}n=1···N
3: target position estimation
4: Project target position on image plane, ŷ0 = Pn(x̂0 + v̂0).
5: Generate particle set for the target position (in pixel locations), {ỹi}i=1···M ∼ N (ŷ0,Σ),
6: For i = 1 · · ·M , compute target candidate histogram pn(ỹi) according to Equation (94),
7: For i = 1 · · ·M , compute weights wn,i = ρn(ỹi) according to Equation (98),
8: target orientation estimation
9: Estimate target orientation [θ̂n] according to Equation (78)

10: On Base Station:
11: Compute target position estimate x̂.
12: Compute target velocity estimate v̂ using Kalman filter,
13: Estimate target rotation vector θ according to Equation (79).

feature histogram for camera Cn is given by

pn(y) = {pn,u(y)}u=1···m (94)

where

pn,u(y) = C
∑

yi∈R(y)

κ
(
d(yi,y)

)
δ[bI(yi)− u] (95)

and C is the normalization constant such that
∑m
u=1 pn,u = 1, and

R(y) = {yi : yi ∈ I,yt
iB(y)yi ≤ 1,∀i 6= j → yi 6= yj} (96)
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is the set of pixels in the camera image I in the region defined by B(y) around the pixel location y.

The function d(yi,y) computes pixel distance between pixel locations yi and y as follows,

d(yi,y) =
(
yi − y

)t
B(y)

(
yi − y

)
(97)

where B(y) ∈ R2×2 is the representation of the size of the elliptical region on the image plane around

the pixel location y. Finally, the weights are computed as

wi,n = ρn(ỹi) = ρ(pn(ỹi),qên) (98)

where qên is the target model for the viewpoint ên (see Equation (71)) that is closest to camera

Cn’s point-of-view.

Tracker T4: Image-Plane Kernel Density

A different variation of tracker T3 is possible if, instead of computing the 3D kernel density from the

image-plane particle set, each camera node computes the image-plane (2D) kernel density. Then, on

the base-station, the target state is estimated using image-plane kernel densities from each camera

node. In this chapter, we call it image-plane filtering. Figure 39 shows the tracker. The main

differences from tracker T3 are: 1) computation of image-plane kernel density from the image-plane

particle set, and 2) target state estimate using image-plane kernel densities from multiple cameras.
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Figure 39: Tracker T4 design. It includes image-plane filtering, as well as mode-estimation using
the image-plane kernel densities.

The target state estimation using image-plane kernel densities is performed using a mode esti-

mation algorithm which is described below. First, let us denote x ∈ R4 as the target position in the

homogeneous 3D world coordinate and y ∈ R3 as the target position in the image affine coordinate

system. Then, it follows that y = Px, where P is the camera matrix. The posterior density for
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target position is given by

p(x) = p0(x|x0,Σ0)

N∏
i=1

γipi(x) (99)

where pi(x) is the likelihood density at camera node Ci, which is a mixture model given by

pi(x) =

Ki∑
j=1

αijpij(x) (100)

where pij(x) are mixture components given by the following Gaussian density

pij(x) =
1

(2π)D/2|Σij |D/2
exp

(
−1

2
(y†i − uij)

tΣ−1
ij (y†i − uij)

)
(101)

where y†i = Pix
pti3x is the target position in the image plane of camera node Ci. Rewriting the expression

for the above density, we have

pij(x) = Kijexp

(
−1

2

(Pix− uijp
t
i3x)t

pti3x
Σ−1
ij

(Pix− uijp
t
i3x)

pti3x

)
= Kijexp

(
−1

2
(Qijx)tΣ−1

ij (Qijx)

)
= Kijexp

(
−1

2
xtQt

ijΣ
−1
ij Qijx

)

where

Qij =
Pi − uijp

t
i3

pti3x

The MAP estimate can be obtained by maximizing the posterior density. Taking the derivative

of the posterior density, we get

∂

∂x
p(x) =

∂

∂x
p0(x)

N∏
i=1

γipi(x)

+ p(x)

N∑
i=1

1

pi(x)

∂

∂x
pi(x)

(102)
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where

∂

∂x
p0(x) = −p0(x)

[
(x− x0)tΣ−1

0

]
∂

∂x
pi(x) = −

Ki∑
j=1

αijpij(x)
[
xtQt

ijΣ
−1
0 Qij(I4 −

xpti3
pti3x

)
]

Simplifying the expression for ∂
∂xp(x) = 0, and substituting the following

βij = αijpij(x)

Rij = Qt
ijΣ
−1
ij Qij

(
I4 −

xpti3
pti3x

)
we have

∂

∂x
p(x) = −p0(x)

[
(x− x0)tΣ−1

0

] N∏
j=1

γipi(x)

− p0(x)

N∏
i=1

γipi(x)

N∑
i=1

1

pi(x)

Ki∑
j=1

βijx
tRij = 0

Further simplifying and substituting the following

Ri = γi

Ki∑
j=1

βijRij

we have

(x− x0)tΣ−1
0 +

N∑
i=1

xt Ri
pi(x)

= 0

Solving for xt, we have the approximate MAP estimate of the target location as

x̂t = xt
0Σ−1

0

[
Σ−1

0 +

N∑
i=1

Ri
pi(x0)

]−1

(103)

Comparison of all trackers

Table 12 provides a qualitative comparison of all the trackers. A quantitative comparison of the

trackers is included in the evaluation section. The table compares the trackers in terms of sup-

ported QoI, which includes the tracking accuracy, in terms of supported QoS, which includes the

computational and communication costs, and their robustness to the size of the target in pixels.
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Table 12: Qualitative comparison proposed video trackers.
Tracker Quality-of-

Information
(QoI)

Quality-of-Service (QoS) Robustness
to size in
pixels

tracking accuracy number of particles message size
(computational
cost)

(communication
cost)

Tracker P: poor low low no
(2D-to-3D)
Base Tracker T0: good high very high yes
(Sync3DPF)
Tracker T1: medium high medium yes
(3DPF & 3DKD)
Tracker T2: medium high low yes
(3DPF & 3DKD & NetAggr)
Tracker T3: good medium low no
(2DPF + 3DKD + NetAggr)
Tracker T4: good medium medium no
(2DPF & 2DKD)

Performance Evaluation

In this section, we evaluate the proposed base tracker, as well as trackers described earlier, and

compare them with the tracker based on 3D ray intersection method. We evaluate the trackers for

four different camera network setups; two simulated camera networks and two real-world camera

network deployments.

Simulated Camera Network

To demonstrate the effectiveness and efficiency of the proposed approaches, we performed experi-

ments on synthetic video data. The scenarios considered here involve a wireless network of smart

cameras arranged in a simulated topology. We consider two camera network topologies in this sec-

tion. Camera network setup A consists of 4 cameras in a topology illustrated in Figure 40, while

camera network setup B consists of 10 cameras in a topology shown in Figure 50. Setup B covers

a much larger area as compared to setup A. We will see later that the optimal tracking approach

depends on the camera topology, specifically tracker T3 performs better if the target is close to the

camera and occupies a significant number of pixels, while tracker T2 performs better if the target is

farther away from the camera and occupies a very small number of pixels. Figure 40(c) shows the

network routing tree for in-network aggregation as proposed in trackers T2 and T3.

Synthetic Target A synthetic target with multiple colors moves in the 3D space, moving in

and out of cameras field-of-view. Depending on the current target position and orientation, and

the camera network geometry, the target’s projection on each camera image plane is computed

and superimposed on a pre-recorded background video with visual clutter. The ellipsoid synthetic
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Figure 40: Camera network topology for setup A (a) 3D-view, (b) top-view, and (c) the routing
tree.

target is shown in Figure 41. As the target moves up and down a camera principle axis and rotates

Figure 41: Synthetic target.

around its axis, the correct target projection, with correct pixel color values are computed. Figure

42 shows the image captured by multiple cameras in setup A. For each setup, we generated two

types of simulated target trajectories, one when the target orientation is fixed and one when the

target is rotating. Below, we present target tracking results for the simulated target and present a
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Figure 42: Camera frames for a typical synthetic video.

quantitative comparison of various trackers.

Camera Network Setup A In Figure 43, 44, 45, and 46, we show camera frames with the

estimated target position superimposed as a blue ellipse for trackers P, T0, T2 and T3, respectively.

Qualitatively, trackers T1 and T2, and trackers T3 and T4 are similar except for the communication

cost they incur due to in-network aggregation in trackers T2 and T3. Figure 43 shows camera frames

at all four cameras at time-step 10, 20 and 30 during the execution of tracker P. The camera frames

for the first time-step with manual target initialization is shown in Figure 42. Figure 44 shows

Figure 43: Camera images with estimated target state as blue ellipse for tracker P.

camera frames at all four cameras at time-step 10, 20 and 30 during the execution of tracker T0.

The camera frames for the first time-step with manual target initialization are shown in Figure 42.
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Figure 44: Camera images with estimated target state as blue ellipse for tracker T0.

Figure 45 shows camera frames at all four cameras at time-step 10, 20 and 30 during the execution

of tracker T2. The camera frames for the first time-step with manual target initialization are shown

in Figure 42. Figure 46 shows camera frames at all four cameras at time-step 10, 20 and 30 during the

Figure 45: Camera images with estimated target state as blue ellipse for tracker T2.

execution of tracker T3. The camera frames for the first time-step with manual target initialization
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is shown in Figure 42.

Figure 46: Camera images with estimated target state as blue ellipse for tracker T3.

Figure 47(a) and 47(b) show the 3D tracking error and 2D pixel reprojection error for all the

trackers.

Tracker P suffers from poor performance when presented with significant target scale change

and rotation. The performance degradation will be clearer and more pronounced when we evaluate

camera network setup B. The performance of tracker P is poor because the target model consists of

a 2D position on the image plane, 2D shape description and a color feature histogram in the current

point-of-view. The proposed trackers T0, T2, T3 do not suffer from poor tracking performance

in such conditions because the target is modeled in 3D space. The proposed trackers T0 and T2,

however, require a greater number of particles than the tracker T3 because they sample the 3D space

directly, whereas T3 samples only the image-plane of each camera.

Figure 48 and Figure 49 show the quantitative evaluation of different trackers. Figure 48(a) shows

the average 3D tracking errors for a set of 10 simulated experiments for all trackers. Of these 10

experiments, the target orientation is fixed for the first 5 experiments whereas the target is rotating

for the next 5 experiments. Figure 48(b) shows the 3D tracking results for rotating and non-rotating

targets. Tracker P is outperformed by all other trackers. For almost all trackers, the performance

for a rotating target is poorer than that for a non-rotating target. Figures 49(a) and 49(b) show

the average 3D tracking error and average 2D pixel reprojection error for all the trackers over all
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(a)

(b)

Figure 47: Tracking error for a typical simulated trajectory (a) 3D tracking error, and (b) 2D pixel
reprojection error.

experiments. The trend is the same for both of them. Tracker P is outperformed by all other trackers.

The base tracker, T0 performs best followed by the trackers based in image-plane filtering, which

is followed by kernel-based filters. In-network aggregation does not have any significant bearing on

the image-plane based trackers (tracker T3 over T4), however in-network aggregation does improve

performance slightly for 3D particle filter based trackers (tracker T2 over T1). We will make few

more observations while evaluating results for camera network setup B.
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Figure 48: Quantitative comparison of all trackers for setup A, (a) average 3D tracking error for
10 experiments, and (b) average 3D tracking error for experiments with rotating and non-rotating
target.
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Figure 49: Quantitative comparison of all trackers for setup A, (a) average 3D tracking error over
10 experiments, and (b) average 2D pixel reprojection error over 10 experiments.
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Camera Network Setup B Figure 50 shows the simulated camera network setup B, which

consists of 10 cameras. This setup covers a much larger area as compared to setup A. Figure 50(c)

also shows the network routing tree for in-network aggregation as proposed in trackers T2 and T3.

(a) (b)

1

2 10

9 83 4

6 75

(c)

Figure 50: Camera network topology for setup B (a) 3D-view, (b) top-view, and (c) the routing tree.

Figure 51 shows the camera frames at all ten cameras at time-step 1, 10, 20 and 30 during

the execution of tracker T2. Similar to camera network setup A, target initialization is performed

manually at first time-step. The estimated target position is shown as a blue ellipse superimposed

on camera frames. Unlike setup A, the target size in the image-plane for setup B is much smaller

due to a much wider coverage. This results in a fewer number of pixels occupied by the target in

each camera frame. A larger setup also means that the target will not remain visible in any given
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Figure 51: Camera images with estimated target state as blue ellipse for tracker T2.

camera field-of-view for a large number of time-steps.

Figures 52(a), 52(b), 52(c), and 52(d) show the 3D tracking result for trackers P, T0, T2 and T3,

respectively (tracker T1 had similar performance as T2, while tracker T4 had similar performance as

T3). The figures show the tracking performance as a patch graph, where the blue edge of the patch

is the ground truth trajectory, while the red edge of the patch is the estimated target trajectory.

The filled patches between the two edges represent the 3D tracking error at each time-step. As the

target moves in the sensing region, it comes in and out of the fields-of-views of different cameras.

Figure 53(a) shows 3D tracking errors with the number of cameras that contain the target in their

camera field-of-view (called participating cameras). At the beginning of the experiment, there are 4

cameras that can see the target. It drops to a single camera at time-step 21, with one more camera

picking up the target at time-step 23. The top part of the figure shows the 3D tracking errors for

the four approaches. Both trackers T0 and T2 performed quite well till time-step 21, when both

of them started diverging because of a single participating camera. Unlike tracker T0, tracker T2

converged back to the ground truth as soon as there was one more participating camera. Trackers

P and T3 performed poorly, even in the presence of as many as six participating cameras. This is

explained in Figure 53(b), which shows the 3D tracking errors with the percentage of image pixels

occupied by the target averaged over the number of participating cameras. As we can see, almost at

all time-steps the percentage of image pixels is below 1% of the total pixels, i.e. the target occupied

less than 800 pixels in a QVGA (320×240) image (equivalent of a circular region of radius 16 pixels).

Since both trackers P and T3 are based on image-plane filterig, they fared poorly due to a fewer

number of usable pixels.

Figure 54(a) and Figure 54(b) show quantitative evaluation of different trackers for setup B over

a set of 15 simulated experiments. Of these 15 experiments, the target orientation is fixed for the
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Figure 52: Target tracking performance as a patch graph for (a) tracker P, (b) tracker T0, (c) tracker
T2, and (d) tracker T3.

first 10 experiments, whereas the target is rotating for the next 5 experiments. Figures 54(a) and

54(b) show the average 3D tracking errors and the average 2D pixel reprojection errors for all the

trackers. Figure 55(a) and 55(b) show the average 3D tracking errors and the average 2D pixel

reprojection errors for the rotating and non-rotating targets. It seems that target rotation does

decrease the performance in 3D tracking by a small amount, while it does not have any significant

bearing on the 2D pixel reprojection error.

Figures 56(a) and 56(b) show the average 3D tracking error and the average 2D pixel reprojection

error for all the trackers averaged over all experiments. The trend is the same for both of them.

Trackers based on 3D kernel density, namely trackers T1/T2 perform far better than any other

tracker followed by the base tracker T0. The trackers based on image-plane filtering, namely trackers

P/T3/T4 perform poorly for this setup, due to the reasons mentioned above. In-network aggregation

does not have any significant bearing on either 3D kernel density based trackers, or the image-plane
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(a)

(b)

Figure 53: 3D tracking errors for trackers P, T0, T2, and T3 with (a) number of participating
cameras, and (b) percentage of image pixels occupied by the target.

based trackers.
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(b)

Figure 54: Quantitative comparison of trackers for setup B over a set of 15 simulated experiments,
(a) average 3D tracking error, and (b) average 2D pixel reprojection error.
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(b)

Figure 55: Quantitative comparison of all trackers for setup B for rotating and non-rotating targets,
(a) average 3D tracking error, and (b) average 2D pixel reprojection error.
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(a)

(b)

Figure 56: Quantitative comparison of all trackers for setup B averaged over the set of 15 simulated
experiments, (a) average 3D tracking error, and (b) average 2D pixel reprojection error.
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LCR Experiments

In this section, we present results for a real camera network deployment inside a Large Conference

Room (LCR setup). The setup consists of 4 camera nodes in a topology as shown in Figure 57. A

real target, in this case a typical box, is moved in the 3D space, moving in and out of coverage of

cameras. Figure 57(c) also shows the network routing tree for in-network aggregation as proposed

in trackers T2 and T3.

(a) (b)

1

2 4

3

(c)

Figure 57: Camera network topology – LCR setup (a) 3D-view, (b) top-view, and (c) the routing
tree.

Figure 58 shows the camera frames at the four cameras at time-step 1, 15, 30, 50, 70 and 90

during the execution of tracker T3. Target initialization is performed manually at the first time-

step. The estimated target positions are shown as blue ellipses superimposed on the camera frames.

Figure 59 shows the 3D target trajectory as estimated by the tracker. In this experiment, as in all

other experiments for this setup, the moving target was in the fields-of-view of four cameras.

Figure 60 shows the percentage of image pixels occupied by the target averaged over the number

of participating cameras. As we can see, at all time-steps the percentage of image pixels is above

1% of the total pixels. This is perhaps the reason why tracker T3, which is based on image-plane

filtering, works fine.
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Figure 58: Video target tracking using tracker T3 for experiment#1 for LCR setup.
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Figure 59: Estimated target trajectory shown with camera network topology.

Figure 60: Average fraction of image pixels occupied by the target.
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FGH Experiments

In this section, we present results for a real camera network deployment inside our department

building (FGH). The setup consists of 6 camera nodes as shown in Figure 61. In this case, the

targets to be tracked are the people moving in the FGH atrium. Figure 61(c) also shows the

network routing tree for in-network aggregation as proposed in trackers T2 and T3.

(a) (b)

1

2 4

35 6

(c)

Figure 61: Camera network topology – FGH setup (a) 3D-view, (b) top-view, and (c) the routing
tree.

Figure 62 shows the camera frames at all six cameras at time-step 1, 31, 50, 75, 100, 150 and 175

during the execution of tracker T2 for experiment#1. As with other setups, target initialization is

performed manually at the first time-step. The estimated target positions are shown as blue ellipses

superimposed on the camera frames. This experiment demonstrates that even for an extended

number of frames (192 frames) the tracker is successfully able to follow the target. During the

length of this experiment, the target dramatically changes scale in camera images, and comes in

and out of different camera fields-of-view. This experiment demonstrates the effectiveness of a 3D

tracker over state-of-the-art 2D trackers by: 1) not having to learn or update the target model even

in case of dramatic scale change and target rotation, and 3) not having to reinitialize a target when

it (re-)enters a camera field-of-view.

Figure 63 shows the 3D target trajectory as estimated by the tracker. Since the sensing region

in this setup is large, the target invariably moves in and out of the camera fields-of-view. We have

also put a threshold on the size of the projection of the target on the camera image plane. If the
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Figure 62: Video target tracking using tracker T2 for experiment#1 for FGH setup.

pixels occupied by the target in a particular camera image is below the threshold, we deem that

frame unusable. Figure 64(a) shows the number of participating cameras at each time-step. At the

beginning of the experiment, there are 2 cameras that participate in tracking. It grows up to six

cameras for a single time-step before dropping to three participating cameras in the end. At all

time-steps, there are at least 3 cameras that contain the target in their fields-of-view, such that the

camera projection size exceeds the threshold. Figure 64(b) shows the percentage of image pixels

occupied by the target averaged over the number of participating cameras. As we can see, for most

of the time the percentage of image pixels is below 1% of the total pixels. The share of pixels for

the target grows above 1% when it is in the middle of the sesing region. Since both trackers P and
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Figure 63: Estimated target trajectory shown with camera network topology.

T3 are based on image-plane filtering, they fared poorly due to the fewer number of usable pixels.

This is why we only show the results for the best tracker in this setup, which is tracker T2.

(a)

(b)

Figure 64: Number of participating cameras, and average fraction of image pixels occupied by the
target.

Figure 65: Target tracking, FGH Setup, Experiment#1

We show tracking results for one more experiment in this dissertation. For more tracking results

and videos we encourage the reader to go online at http://sites.google.com/site/manishkushwaha79/

researchex/videos-for-target-tracking-experiments. Figure 66 shows the camera frames at all six

cameras at time-step 1, 31, 50, 75, 100, 150 and 175 during the execution of tracker T2 for experi-

ment#2. Again, target initialization is performed manually at the first time-step, and the estimated
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target positions are shown as blue ellipses superimposed on the camera frames. Along with other

points made in the analysis of the previous experiment, this experiment demonstrates robustness of

the tracker in the presence of target occlusion. As we can see between frame 41 and 46, the target is

occluded by another person. Since we are using discriminatory features, i.e. color and texture, and

we are performing tracking in 3D space, our tracker is successfully able to handle such occlusions.

Figure 66: Video target tracking using tracker T2 for experiment#2 for FGH setup.

Figure 67 shows the 3D target trajectory as estimated by the tracker. Similar to previous

experiment analyses, Figure 68(a) shows the number of participating cameras at each time-step. At

the beginning of the experiment, there are 3 cameras that participate in tracking, which grows to

5 participating cameras in the end. Figure 68(b) shows the percentage of image pixels occupied by
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Figure 67: Estimated target trajectory shown with camera network topology.

the target averaged over the number of participating cameras. At all time-steps, the percentage of

image pixels is below 1% of the total pixels.

(a)

(b)

Figure 68: Number of participating cameras, and average fraction of image pixels occupied by the
target.

Conclusion

In summary, we proposed a number of probabilistic approaches for collaborative target tracking in

3D space using a wireless network of smart cameras. We established that modeling the target in 3D

space circumvents the problems inherent in the 2D tracker, or combination of 2D trackers.
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CHAPTER VI

CONCLUSION

Target tracking is an important class of application in HSNs. With the proliferation of cost-effective

sensors and ubiquity of HSNs, target tracking and various surveillance systems will pervade our

environment. Classical target tracking approaches, such as those based on decision-level fusion, suffer

from poor discrimination and exponential complexity. In case of multiple targets, when they are

in close proximity and interacting with each other, the classical approaches have poor performance.

The alternatives to decision-level fusion are signal-level and feature-level fusion methods. However,

signal-level fusion methods are not feasible in HSNs due to limited communication bandwidth. The

feature-level fusion methods for tracking are much needed and they hold great promise to large-scale

target tracking and surveillance systems.

In summary, the contributions of this Ph.D. dissertation address some of these research chal-

lenges. The contribution lies in using the capabilities of HSNs to minimize or mitigate the handicap

of sensor and target models, due to violation of assumptions. This is achieved by redundant, comple-

mentary and cooperative sensor fusion. A WSN can have a number of sensors of different modalities

spatially distributed over the sensing environment. The advantage of HSNs is that when one sensor,

or a group of sensors are handicapped due to violation of some sensor or target assumption, other

sensors at different locations and of modalities, might be able to carry out tracking.

Along with handicap mitigation, we attempt to address the real-time processing requirements

and limited communication bandwidth. We use simple target models and simple features for fast

processing. We also focus on concise features for efficient communication. In addition, this research

proposal presents extensive related work in the area of general target tracking approaches, and

specific approaches for target localization and tracking using audio and video sensors.

The specific contributions of this dissertation are listed below,

1. To illustrate the approach, we have designed and implemented a multimodal multisensor in-

formation fusion system for target tracking in an urban environment using an HSN [9–13].

The HSN consists of mote class devices equipped with microphone arrays as audio sensors and

embedded PCs equipped with web cameras as video sensors. The system operates online in

real-time at 4Hz, thus addressing the real-time processing requirement. The audio and video
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sensors compute local features and communicate them with the fusion node, thus addressing

the limited communication bandwidth.

2. Further, we proposed a feature-based approach to collaborative source localization of multiple

acoustic sources in WSNs [14–16]. Acoustic beamform and power spectral density (PSD)

extracted from sensor nodes equipped with microphone array are used as acoustic features.

3. Finally, we propose an approach for collaborative target tracking in 3D space using a wireless

network of smart cameras. We model the targets in 3D space thus circumvent the problems

inherent in the tracker based on 2D target models. In addition, we use multiple visual features,

specifically, color and texture to model the target. We propose a number of probabilistic 3D

trackers and implement them using sequential Monte Carlo method. We evaluate the trackers

using synthetic targets in simulated camera networks, as well as using real targets (objects

and people) in real-world camera network deployments.
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