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CHAPTER I 

 

INTRODUCTION 

 

Subject and its Importance 

Human dental structures, both natural and man-made, experience internal stresses 

which are of great interest to both practicing dentists and researchers. For example, stress 

resulting from regular chewing forces will not cause any damage to regular teeth, but 

once the teeth are damaged due to the loss of tooth tissue on a certain area, they are more 

sensitive to fracture due to stress concentrations in this area (Palamara et al., 2002; 

Topbasi et al., 2001). Restorations composed of various materials, thermal changes on 

restored teeth or the anomalous biting forces caused by hard food or anomalous chewing 

will also cause stress concentrations and make teeth more susceptible to fracture (Borcic 

et al., 2005; Ausiello et al., 2001; Toparli et al., 2003; Arola et al., 2001; Dejak et al., 

2003; Toparli and Sasaki, 2003; Lin et al., 2006). The stress distributions on teeth during 

complicated dental treatment procedures are also of great interest (Romeed et al., 2004; 

Tom and Eberhardt et al., 2003; Ochiai et al., 2003). Thus, understanding the way in 

which stresses are distributed in dental structures, and where the highest stresses are 

concentrated, is important for many types of dental treatments, including applying 

restorations, designing dental implants, etc. 
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Background 

For many years researchers have been trying to describe the stress state in the human 

tooth using both experimental and computational methods; there is a wealth of data 

available on the subject. However, there is no general, systematic means for describing 

the stress state under loading (e.g. chewing forces or orthodontic devices) for any shape 

tooth under any loading conditions; previous work gives a stress description only for a 

specific tooth under a specific loading.  

 

Stress analysis of the human tooth 

There are basically three different ways in which stress analysis can be performed: 

analytical, experimental and computational.   

Analytical denotes using closed-form mathematical equations to describe the stress 

state of a structure.  In general, biological systems are too complicated for analytical 

treatment: human teeth are a good example of the complexity of such systems: the 

geometry is extremely intricate, teeth are composed of 4 sophisticated materials (enamel, 

dentin, pulp, and the periodontium), and the force distribution due to chewing or dental 

work varies considerably from tooth to tooth and person to person. In short, there are no 

analytical stress descriptions of human teeth.   

There have been many experimental studies of stress in human dental systems.  For 

example, physical stresses can be measured on human teeth that have been extracted 

(Palamara et al., 2002).  Of course, no generalizations can be taken from these because 

these extractions are always for a specific pathology.  In addition, extracted teeth may 

not behave exactly the same way as teeth in vivo (due to dessication and other biological 
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changes once the tooth is no longer vital and the fact that the tooth is not being supported 

by the periodontium). There are other types of experimental methods for studying stress 

distribution, for example, photoelastic analysis (Topbasi et al., 2001; Ochiai et al., 2003; 

Wang et al., 2004). In this method, a tooth shape is cut out of a plastic material whose 

transparent luminosity properties change when stressed.  Thus, if a light is shone 

through this material as it is stressed, certain patterns appear showing the stress 

distribution and concentrations in the material.  This method is useful for obtaining very 

general information about stress distribution, but it cannot take into account the different 

tooth materials, nor the 3-dimensional nature of teeth. What's more, the experimental 

process is expensive and time consuming, and any experimental procedure provides a 

solution for only one particular tooth shape for each experiment and not a general method 

for describing the stress in any tooth. 

Stress analysis using computational methods would seem to be the most natural way 

to approach this problem. The experimental process can be simulated and repeated on the 

computer and be observed in virtual prototyping. It is convenient to change the material 

or shape properties and obtain the new results. Many researchers have used the computer 

to analyze dental structures, including human teeth. The primary computational method 

used for stress analysis today is finite element analysis (FEA). These adapt FEA 

techniques for studying various dental systems, e.g. the cause of cervical lesion (Tanaka 

et al., 2003), the shrinkage stress distribution after restoration (Versluis et al., 2004), the 

role of post rigidity restoration reliability (Lanza at el., 2005), the stresses in 

dowel-restored teeth (Asmussen at el. 2005), the stress distribution for customized 

composite post systems (Genovese, at el. 2005), and strains in the marginal ridge 
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(Palamara et al., 2002), etc. In this method a geometric model is developed and a "mesh" 

is created by subdividing the geometry into rectangular or brick-shaped elements. In all 

FEA studies there are four sets of parameters that completely define the model: geometry, 

material behavior, loading and boundary conditions (BC’s). Once the model is completely 

defined and meshed, a stress analysis is performed and stress distributions are obtained 

(usually in graphical form).   

The definition of the tooth geometry is the first and probably greatest challenge to 

the stress analyst. Once again, the complexity of the biological structure makes this 

difficult. Most researchers have developed models which can only be used to solve an 

individual problem (Borcic et al., 2005; Ausiello et al., 2001; Toparli et al., 2003; Arola et 

al., 2001; Dejak et al., 2003; Toparli and Sasaki, 2003; Lin et al., 2006; Romeed et al., 

2004; Tom and Eberhardt et al., 2003). For example, a FEA model for a mandibular 

premolar under four concentrated point forces was constructed to analyze the strain in the 

marginal ridge during chewing (Palamara et al., 2002). This model only gives results for 

the premolar under concentrated loads. It does not work for other types of teeth (e.g. 

molar, incisor, etc.) or loading (e.g. mastication, clenching, etc.). Also, to simplify the 

process, enamel, periodontal ligament, tooth bone, and tooth tissues are not included. In 

this case the results may be unaffected since only the stress distribution along the 

marginal ridge is investigated. However, a more general model that could be used for 

other purposes would be an improvement.  

There have been some procedural approaches recently introduced for biomechanical 

analysis of natural and restored teeth. Chang et al. (2003) developed an integrated method 

for generating any kind of human tooth geometry model based on the sectioning of a 
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tooth sample. Because of the complexity of the human tooth shape and structure, this 

approach involves a sequence of sophisticated techniques as well as special tools. Magne 

(2006) also developed a systematic method for the generation of finite element models of 

dental structures and restorations. It is also complex with expert knowledge required. The 

complicated and highly specialized techniques in these two studies preclude easily 

repeating them for different geometries, loads and BC’s, etc. Lin et al. (1999) developed a 

method for automatically meshing a 3D FE model for the maxillary second premolar; 

however, this is not an integrated approach for the whole CAD and FEA process. 

Some works create FEA geometry models directly in discretized form (Palamara, 

2002; Toparli et al., 2003; Arola et al., 2001; Dejak et al., 2003; Toparli and Sasaki, 2003; 

Lin et al., 2006; Romeed et al., 2004; Tom and Eberhardt et al., 2003). In this way, the 

geometry is neither smooth nor accurate. This may cause unreliable results or even no 

results because of mesh failure. For this reason, constructing a smooth and accurate CAD 

geometry model and then transferring it for finite element analysis is preferred (Borcic et 

al., 2005; Ausiello et al., 2001; Magne, 2006; Chang et al., 2003). An expert system (see 

below) will help the user to generate smooth CAD models using spline curves or 

surfaces.  

Generally, there are two types of data for generating the CAD model: 1) dimensions 

from measurement or literature (Ausiello et al., 2001; Toparli et al., 2003; Arola et al., 

2001; Dejak et al., 2003; Toparli and Sasaki, 2003; Romeed et al., 2004; Rubin et al., 

1982; Rubin et al., 1983; Topbasi etal., 2001) or 2) discrete points obtained based on 

sectioning the tooth sample (Palamara, 2002; Borcic et al., 2005; Lin et al., 2006; Toms 

and Eberhardt, 2003; Chang et al., 2003) or Micro-CT scanner and segmentation 
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techniques (Magne, 2006). In this thesis, the expert system will choose the first type of 

data, i.e. dimensions for model creation. First, a set of representative points will be 

created based on both the well established shape properties (Lin et al., 2006; Ash, 1984; 

Ash, 1993; Lindhe and Karring, 1989; Grine, 2005; Schwartz et al., 1996) and the 

provided dimensions; second, tooth geometry fitting the representative points will be 

generated. However, the expert system is also applicable for the second type of data input 

because discrete points can also be taken as the representative points. 

Of prime consideration in the development of the stress analysis expert system is the 

fact that CAD programs and FEA programs are not highly compatible (Magne, 2006; 

Chang et al., 2003; Rubin et al. 2002; Li and Rubin, 2004); the process of transferring 

data from CAD to FEA is very difficult and problem specific; for example, FEA doesn’t 

recognize all the entities, such as trimmed curve segments, created in CAD software. In 

fact, this incompatibility is the major challenge for the design and analysis process.  

 

Expert systems 

An expert system consists of computer software imbued with the capacity to behave 

like a human expert in a certain field of knowledge (Liebowitz, 1995).  Expert systems 

exist in many areas of engineering and CAD (Robinson et al., 2001; Chen et al., 2002; 

Myung and Han, 2001; Song and Im, 1999; Choi et al., 1998; Lee et al., 1998). For 

example, a system has been developed for determining stress concentrations due to holes 

in machine parts of various geometries (Robinson et al., 2001); the necessary intuition of 

an expert to ensure a quality design for a machine part has been incorporated into this 

program.  
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Generally, the components for an expert system include a graphical user interface 

(GUI) and a knowledge based system (Liebowitz, 1995). The GUI makes it possible for 

users to input information or communicate with the expert system. The knowledge based 

system is the critical component of the expert system (Lee et al., 1998). It contains the 

rules for solving the problem using expert knowledge.  

 

Objectives 

This thesis describes a project for the development of a computational "expert 

system" that will automatically perform stress analysis of the human tooth when 

prompted with sufficient information. Practicing dentists will be able to use this system to 

optimize treatment for individual patients, and researchers will be able to use it to 

examine the effects of varying parameters (such as tooth dimensions and chewing forces) 

on the stress distribution in teeth. 

This project provides: 

a. a general procedure for generating CAD-FEA tooth models. Smooth and 

optimized geometry CAD models can be generated and then transferred to the 

FEA software automatically and seamlessly. 

b. GUIs for stress analysis of the human tooth for the use of non-technical dental 

researchers and practitioners. It is through this GUI that the user will describe 

the tooth of interest.  

c. a knowledge based system for generating CAD-FEA tooth model and perform 

stress analysis automatically and intelligently.  
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Tools 

The expert system will be implemented by customized software developed on the 

platforms provided by ProEngineer
1
 and Patran/Nastran

2
. 

 

Organization 

This dissertation includes 4 chapters. This chapter, Chapter I, describes the motivation and 

related background. It also reviews the previous work related to stress analysis of human 

teeth. Chapters II and III concentrate on the tooth analysis procedure and system 

development. Chapter II develops a process for generation of general CAD-FEA models 

and validates the models by comparison with several previous studies; it also discusses 

how the materials, geometry and loads affect the stress distribution and the difference 

between 2D and 3D models. Chapter III develops an expert CAD-FEA system for 

generating CAD-FEA models and performing stress analysis automatically; it also shows 

several applications of the system. Chapter IV presents the conclusions drawn from the 

work and suggests directions for future work. 

 

 

 

 

 

 

 

                                                        
1 Parametric Technology Company, Needham, MA, USA, 2006 
2 MSC.Software Corporation, CA, USA, 2006 
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CHAPTER II 

 

A GENERAL APPROACH FOR STRESS ANALYSIS OF HUMAN TEETH 

 

Introduction 

In this chapter a general model for describing the stress state under loading (e.g. 

chewing forces or orthodontic devices) for any shape tooth under any loading conditions 

is presented.  This approach is intended to lead to the implementation of computer aided 

design (CAD) and finite element analysis (FEA) customized codes for automating the 

stress analysis process.  These analyses will move seamlessly between CAD and FEA. 

The 2-dimensional model developed here is validated by comparison with several 

previous studies. ProEngineer
3
 and Patran/Nastran

4
 are used as the CAD and FEA 

software packages, respectively. 

The approach described in this chapter is the first part of a project whose goal is to 

create an expert system capable of conducting, interactively and automatically, all the 

tasks involved in the stress analysis of human teeth.  The methods developed here can 

be extended to create 3-dimensional models, and to interpret digital data obtained from 

image scanning of actual teeth.  Dental devices, such as implants, can also be treated 

with the techniques developed.     

 

 

 

                                                        
3 Parametric Technology Company, Needham, MA, USA 
4 MSC.Software Corporation, CA, USA 
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Methods 

Step 1. Construction of Parametric models 

Each tooth model is determined by the shape and size of the tooth. Tooth shapes are 

quite consistent for each particular type of tooth (including restorative teeth and tooth 

implants).  The size varies primarily only with the tooth dimensions. Thus, the 

cross-section parametric models for each tooth type, in a certain direction, can be built 

using only the tooth dimensions as parameters. This idea makes it possible to generate 

different types of tooth models automatically by only inputting the information for tooth 

type, dimensions and cross-section direction.  

There are different types of human teeth: central incisor, lateral incisor, canine, first 

premolar, second premolar, etc. Each type of tooth is composed of five main parts: 

enamel, dentine, pulp, periodontal ligament and tooth bone. The size and shape of each 

tooth type, and its component parts, are different. Also, for each tooth type, there are two 

defined cross-sectional directions: the parallel to proximal (mesial-distal) surface and the 

parallel to facial (labio-lingual or bucco-lingual) surface. The parametric models for 

mandibular premolar and lateral incisor in both mesial-distal and buccal-lingual 

directions and maxillary second molar in mesial-distal direction have been developed in 

this thesis. Figures 2. 1 and 2. 2 show cross-sections in both directions for the mandibular 

lateral incisor and first premolar. The methods presented here can be used to generate 2D 

parametric models for cross sections in either direction for any type of tooth.  
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          (a)          (b) 

Figure 2. 1. Cross-sections for manidular lateral incisor in: (a) mesial-distal direction; (b) 

labial-lingual direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      (a)          (b) 

Figure 2. 2. Cross-sections for premolar in: (a) mesial-distal direction; (b) buccal-lingual 

direction. 

 

 

If the size and shape for each tooth part is known, then the geometric model for the 

tooth is totally determined. Measurements which define tooth size and tooth form can be 

found in (Ash, 1984; Ash, 1993; Lindhe and Karring, 1989; Grine, 2005; Schwartz et al., 
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1996). Generally, there are eight measurements for defining the size of parts of the human 

tooth (Ash, 1984): length of crown, length of root, diameter of crown, diameter of cervix, 

thickness of the enamel, thickness of the periodontal ligament, length of bone and width 

of bone. These dimensions are shown in Figures 2. 3 and 4, in mesial-distal cross section 

view, for a mandibular first molar and a mandibular first premolar.  The form 

description defines where the tooth curves are convex, straight, sharp, flat, etc. For 

example, the lingual outline of the crown is convex for a mandibular first molar while it 

is almost straight for a mandibular first premolar (see Figs 2. 3 and 2. 4). 

Each part of the parametric model is generated separately and then all the parts are 

combined to obtain the model for the whole tooth. In the parametric model there are eight 

parameters corresponding to the eight measurements listed above. The tooth model is 

constructed based on the parameters and the description of tooth form. The following 

method is used for building each part:  

1) A sequence of representative points is calculated using the parameters and 

description of the tooth form for each part. The methods used for calculating the 

representative points of each tooth type are specific to that particular type. Generally, the 

more representative points calculated, the more accurate the tooth shape. 

2) The representative points are connected together using spline
5
 curves to form 

each tooth part.  

3) The whole tooth model is completed by combining all the parts. 

For example, the mandibular first molar (shown in Fig 2. 3) is used to describe the 

construction details for the parametric tooth model. The dimensional values used are 

averages of values found in the literature; they are listed in Table 2.1.  These values can 

                                                        
5 A piecewise polynomial (parametric) curve.  
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be modified for different tooth sizes. First, the outline of enamel is generated by: 1) 

calculating the coordinates of representative points A through H using the size parameters 

(length of crown, diameter of crown, diameter of cervix and thickness of enamel) and 

referring to the description of tooth form (i.e. convex or straight, flat or sharp for each 

side); 2) connecting the calculated points using smooth curves to generate enamel for the 

first mandibular molar. The emamel is composed of two curves: one connecting points 

A-B-C-D-E and another connecting points A-F-G-H-E. Similarly, dentine, pulp, 

periodontal ligaments and tooth bone are generated in turn.  

Note that another method for obtaining tooth dimensions could be directly from 

electronically scanned images.  The methods described in this chapter can also be 

applied to scanned image data. 

 

 

Table 2. 1. Measurements for mandibular first molar of average size. 

 Length  
of 

crown, 
LC 
[mm] 

Length 
 of  

root,  
LR 
[mm] 

Diameter  
of  

crown,  
DCr 
[mm] 

Diameter 
of  

cervix, 
DCv 
[mm] 

Maxi- 
Thickness  

of 
enamel, 
MTE 
[mm] 

Average 
thickness 

of 
periodontal 
ligament, 
TP 
[mm] 

Length 
of 

bone, 
LB  
[mm] 

Width  
of  

bone, 
WB 
[mm] 

Madibular 
first molar 

7.5 14.0 10.5 9.0 1.3 0.25 18. 8. 

Reference Ash, 
1984 

Ash, 
1984  

Ash, 
1984 

Ash, 
1984 

Grine, 
2005 

Lindhe, 
1989 

Ash, 
1984 

Ash, 
1984 
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Figure 2. 3. Parametric model of a normal madibular first molar in mesial-distal cross 

section view. 
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LC — Length of crown 

LR — Length of root 

LB—Length of bone 

DCr — Diameter of crown 

DCv — Diameter of cervix 

MTE— Maxima Thickness of enamel 

TP—Thickness of periodontal ligament 

WB- Width of bone 

Figure 2. 4. Parametric model of a normal madibular first premolar in mesial-distal cross 

section view. 
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Figure 2. 1 shows the parametric models created for mandibular lateral incisors and 

first premolars in mesial-distal cross section view. 

Step 2. Generation of CAD-FEA Compatible Models 

Two-dimensional CAD models of human teeth are generated based on the 

parametric models described above. The following are the requirements for creating a 

CAD - FEA compatible model: 

i. information from the CAD models, i.e., the entities required for performing 

FEA analysis, such as points, curves and surfaces, etc., must be easily transferable to 

the FEA software; 

ii. automatic meshing of the FEA geometry must be possible; this requires the 

geometry to be closed and smooth;  

iii. Patran/Nastran requires that the element nodes (generated by meshing) 

along the boundaries between two parts must overlap so that they can be merged by a 

process called equivalencing. In this way, the parts of the teeth are connected to form a 

single, continuous object on which stress analysis can be performed.  

In light of these requirements, a CAD-FEA compatible model is created as follows: 

i. create a new part file using ProEngineer CAD software; 

ii. generate each entity (e.g. enamel) that is required for FEA as a single sketch 

feature in the part file using ProEngineer. These sketch features are generated as 

described above in the section on construction of parametric models. The 

following entities must be defined for a 2D finite element model
6
: 

a. surfaces of the parts for meshing; 

                                                        
6 Any points, curves or surfaces in ProEngineer that will need to be referenced in Patran/Nastran must be 

defined as individual features in ProEngineer (i.e. they cannot be part of another feature or it will be 

impossible to have access to them in the FEA software).  
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b. datum points or curves for defining BC’s and other important locations. 

iii. save the part file as an IGES
7
 file using ProEngineer; 

iv. create a new database file using Patran/Nastran FEA software; 

v. using Patran/Nastran, import the IGES file to the database file as the FEA 

geometry; 

vi. test the FEA geometry to see if it is suitable for finite element analysis by using 

mesh and equivalence functions of Patran/Nastran. If it works, the CAD-to-FEA 

translation has been successfully completed and the analysis phase can proceed. 

If it fails (usually because the part boundaries do not precisely coincide), return 

to the second step to optimize the model.    

Figure 2. 5 shows a complete CAD model for a mandibular first premolar. This 

CAD model was then exported to the FEA software as described above and is shown in 

Fig 2. 6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. 5. CAD model for a mandibular first premolar. 

                                                        
7 Initial Graphics Exchange Specification 
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Figure 2. 6. FEA model for a mandibular first premolar after meshing and equavalencing. 

 

 

Step 3. Definition of the FEA models 

The geometries for FEA are ready for preprocessing when the IGES files for the 

CAD models are successfully imported to the FEA software. The remaining tasks for 

FEA are: 

i. Meshing and equavalencing: The FE model should be ready for meshing since 

it is imported from a FEA-compatible CAD model. A default element size and type 

can be used, or the user can customize these if desired. 

ii. Adding loads and BC’s: All loads on human teeth, whether from orthodontic 

forces, biting, etc., can be treated as either concentrated or distributed. For human 

tooth BC’s, completely general movements along any directions at any local area can 

be prescribed. Thus, the loads and BC’s for specific situations are easily added. 

iii. Defining element properties: The elements for the 2-D tooth models are 

defined as 2-D solid type, plane strain elements. The material properties (which can be 

isotropic or anisotropic), including elastic modulus and Poisson’s ratio, can be input as 

desired.  
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iv. Defining the necessary analysis parameters: Parameters that determine the 

analysis type and results output, e.g., linear or nonlinear, static or transient, and the 

output content and format, can be defined according to the specific requirements. 

 

Results-Model Validation 

In this section results obtained from analyses performed in Toms and Eberhardt 

(2003), Chang et al. (2003) and Motta (2006) are compared with similar analyses performed 

using the new general CAD-FEA modeling approach presented here. 

 

Comparison of results with Toms and Eberhardt (2003). 

A 2-D FEA (plane strain) model for a mandibular first premolar in mesial-distal 

view is generated in Toms and Eberhardt (2003). The model geometry is symmetric about a 

vertical axis; it includes dentine, bone and PDL (whose properties vary along the tooth 

roots). Enamel and pulp are not included in the solid model (the enamel and pulp areas 

are given the properties of dentine). A 1N equivalent load is added at the midpoint of the 

crown on the buccal side. The base of the tooth bone is fixed. The stress distribution 

along the PDL under different conditions is determined. The different cases treated 

include uniform/nonuniform PDL thickness, and linear/nonlinear elastic PDL under 

extrusive and tip loads. 

The case used for comparison with the present CAD-FEA model is a linear elastic 

tooth with uniform thickness and a PDL under extrusive loading.  The FEA model used 

is shown in Fig 2. 7. This model includes five basic parts: enamel, dentine, pulp, PDL and 

tooth bone. Table 2.2 includes the material properties used for the above parts. To 
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approximate the material properties used in Toms and Eberhardt (2003), the material 

properties for enamel and pulp are assigned the same values as those of dentine. The 

Young’s modulus for the PDL in Toms and Eberhardt (2003) varies along the tooth 

position. In the present study, the Young’s modulus for the PDL is taken as constant. The 

loads and BC’s are similar to Toms and Eberhardt (2003).  

 

 

 

 

 

 

 

 

 

 

Figure 2. 7. FEA model for a mandibular first premolar with concentrated extrusion 

loading and fixed base. 

 

Table 2. 2. Material properties for tooth parts in this chapter and Toms and Eberhardt 

(2003). 

Material Li, Rubin Toms and Eberhardt (2003) 

Young’s modulus (MPa) 19600 19600 enamel 

Poisson’s ratio 0.3 0.3 

Young’s modulus (MPa) 19600 19600 dentine 

Poisson’s ratio 0.3 0.3 

Young’s modulus (MPa) 19600 19600 pulp 

Poisson’s ratio 0.3 0.3 

MP1 0.303 

MP2 0.208 

MP3 0.143 

MP4 0.179 

Young’s modulus (MPa) 0.258 

MP5 0.25 

PDL 

Poisson’s ratio 0.45 0.45 

Young’s modulus (MPa) 13700 13700 Tooth bone 

Poisson’s ratio 0.3 0.3 

 

                                                        
8 In Toms and Eberhardt (2003) the Young's modulus for PDL is varied slightly along the root. In this 

thesis we assume it is a constant value of 0.25. 
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Figures 2. 8 and 2. 9 and Table 2. 3 present the stress distribution comparisons with 

Toms and Eberhardt (2003); the lines with squares show the results of the present study 

and the lines with diamonds show the comparable results from Toms and Eberhardt 

(2003).  It can be seen that there is general agreement for the stress distributions; the 

shapes of the plots are similar, i.e. the peak values for the stresses occur at the root apex, 

then the values decline on both sides of the root apex. The stresses are close to zero or 

below zero at the same positions along the root. Table 2. 3 shows that the magnitudes of 

the various stresses are of the same order. Some differences are to be expected because:  

i. The methods used for generating the geometries were different with Toms and 

Eberhardt (2003) using a symmetric tooth geometry; 

ii. The material properties for the PDL vary along the position of the root in Toms 

and Eberhardt (2003) (see Table 2.2) while they are constant in the CAD-FEA model.  

 

 

 

 

 

 

 

 

Figure 2. 8. Maximum principal stresses for mandibular premolar subject to extrusive 

orthodontic force.  
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Figure 2. 9.  Minimum principal stresses for mandibular premolar subject to extrusive 

orthodontic force. 

 

 

Table 2. 3. Average stress across the PDL from tooth to bone as predicted by FE models 

with uniform PDL thickness in this thesis and Toms and Eberhardt (2003). 

  Li, Rubin 

(kPa) 

Toms and Eberhardt 

 (2003), (kPa) 

Maximum Principal -3.99 -2.69 

Minimum Principal -7.35 -11.6 

Linguocervical 

 margin 

Von Mises 2.96 7.75 

Maximum Principal 26.6 36.95 

Minimum Principal 20.3 28.49 

Apex 

Von Mises 5.92 8.03 

Maximum Principal 5.68 13.2 

Minimum Principal 1.11 1.23 

Buccocervical  

margin 

Von Mises 6.00 10.46 

 

 

Comparison of results with Chang et al. (2003). 

The model generated in Chang et al. (2003) is a 3-D model of a human maxillary 

second molar.  Only two parts, dentine and enamel are generated, i.e. the pulp, PDL and 

bone are not included in the solid model (the pulp area is given dentine properties). A 

uniformly distributed vertical load of 170 N is applied to the top of the tooth model. The 
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part which is 2 mm below the enamel is totally fixed. The results for the sectional stress 

distribution are given in Figure 2. 10(a). 

Several CAD-FEA 2-D models of a human maxillary second molar were generated 

for comparison purposes (Table 2. 4 shows the material properties used in these 

analyses): 

1)  Case 1: a model as close to Chang et al. (2003) as possible, i.e. with dentine in place 

of pulp, and fixed BC’s around the tooth base instead of PDL and bone. The loading, 

BC’s, and resulting stress distribution for this model, are shown in Figure 2. 10(b).  The 

maximum stress is 17.3 MPa for the CAD-FEA model while it is 24 MPa for Chang’s 

model. This difference may be due to: 

i. the CAD-FEA model being 2-D while Chang's model is 3-D (see discussion below); 

ii. the authors were unable to determine exactly how the loads were distributed in 

Chang's paper, only that the top load was 170 N. 

2)  Case 2: a model with enamel, dentine and pulp, and fixed BC’s around the tooth 

base instead of PDL and bone.  The results are shown in Fig 2. 11(a) where the 

maximum stress is 35.2 MPa. 

3)  Case 3: a model with enamel, dentine, pulp, PDL and tooth bone.  The results are 

shown in Fig 2. 11(b) where the stress concentration is 22.1 MPa. 

4)  Case 4: another model, similar to the last one where the loads were applied in a 

different way (the loads are applied evenly to 100 nodes); this model better lends itself to 

automatic load application. The results are shown in Fig 2. 12 where the maximum stress 

is 25.1 MPa. 
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Table 2. 4. Material properties for tooth parts in this thesis and Chang et al. (2003). 

Li, Rubin Material 

Case 1 Case 2 Case 3 Case 4 

Chang et al. 

(2003) 

Young’s modulus 

(MPa) 

85000 85000 85000 85000 85000 enamel 

Poisson’s ratio 0.33 0.33 0.33 0.33 0.33 

Young’s modulus 

(MPa) 

19800 19800 19800 19800 19800 dentine 

Poisson’s ratio 0.31 0.31 0.31 0.31 0.31 

Young’s modulus 

(MPa) 

19800 2.07 2.07 2.07 -- pulp 

Poisson’s ratio 0.31 0.45 0.45 0.45 -- 

Young’s modulus 

(MPa) 

-- -- 50 50 -- PDL 

Poisson’s ratio -- -- 0.45 0.45 -- 

Young’s modulus 

(MPa) 

-- -- 13800 13800 -- Tooth bone 

Poisson’s ratio -- -- 0.3 0.3 -- 

 

For all of the above cases, stress concentrations of similar magnitude occur on both 

sides of the tooth. Thus the maximum stress may occur either on the right side (for the 

first three cases) or the left side (for the fourth case). 

 

 

 

 

 

 

 

 

           (a)                             (b) 

Figure 2. 10. Minimum principal stress distribution for the maxillary second molar with 

dentine and enamel obtained from: (a) Chang et al. (2003); (b) Case 1 for the general 

CAD-FEA model. 
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     (a)           (b) 

Figure 2. 11. Minimum principal stress distribution for premolar: (a) Case 2, CAD-FEA 

model with dentine, enamel and pulp; (b) Case 3, CAD-FEA model with dentine, enamel, 

pulp, PDL and bone. 

 

 

 

 

 

 

 

 

 

 

Figure 2. 12. Minimum principal stress distribution for Case 4 of the CAD-FEA model, 

simulating the distributed loads by equivalent concentrated loads. 

 

Comparison of results with Motta (2006). 

Figure 2. 13(a) shows the results of a stress analysis for a mandibular lateral incisor 
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under a 45 degree load presented in Motta (2006). The PDL thickness is 0.3 mm and the 

tooth bone is much wider than for the premolar in Toms and Eberhardt (2003).  The 

material properties used for the model are shown in Table 2. 5. 

 

Table 2. 5. Material properties for tooth parts in this thesis and Reference 18. 

Material Li, Rubin Motta (2006) 

Young’s modulus (MPa) 80000 80000 enamel 

Poisson’s ratio 0.3 0.3 

Young’s modulus (MPa) 18600 18600 dentine 

Poisson’s ratio 0.31 0.31 

Young’s modulus (MPa) 2.07 2.07 pulp 

Poisson’s ratio 0.45 0.45 

Young’s modulus (MPa) 50 -- PDL 

Poisson’s ratio 0.49 -- 

Young’s modulus (MPa) 13800 13800 Tooth bone 

Poisson’s ratio 0.26 0.26 

 

 

Figure 2. 13(b) shows the resulting distribution of maximum principal stresses for a 

similar model created with the CAD-FEA model.  The results are in agreement with 

Motta (2006) (shown in Fig 2. 13(a).): 

1) The locations of the maximum stresses are similar, i.e. at the region under the load 

and in the cervical region of the lingual face; 

2) The stress distribution is similar; 

3) The values for the maximum principal stress are of the same order (between 100 and 

1000 MPa). 
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(a)                            (b) 

Figure 2. 13. Stress analysis for mandibular lateral incisor in (a) Motta (2006); (b) general 

CAD-FEA model. 

 

Discussion 

1. Comparing Chang et al. (2003) to the present analyses, it may be seen that the 

pulp, PDL and tooth bone dramatically affect the stress concentration. The pulp (Fig 2. 

10a) raises the stress, since pulp is less rigid than dentine and can’t carry as much stress. 

The PDL and bone (Fig 2. 10b) tend to carry some of the stress and therefore lower the 

maximum stress. Since these are opposite affects, they cancel each other to some degree, 

thus yielding a value close to the value that Chang obtained without the inclusion of pulp, 

PDL and bone.   

2. Using evenly distributed concentrated loads or distributed loads on element edges 

yielded similar results when compared to Chang et al. (2003).  Figure 2.14 shows the 

difference in the models for both cases.  The concentrated loads can be more easily 

incorporated into an automatic interface, but it can be seen that they require the mesh to 

be more refined and they all act in the same direction.  
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      (a)                                     (b) 

Figure 2. 14. Tooth loading: (a) concentrated loads evenly distributed on the nodes; (b) 

distributed loads along the edges of the elements. 

 

3. There are sharp corners at the two ends of the enamel (Fig 2. 15) due to the shape 

and structure of human teeth. Because of this, the mesh around this area is of poor quality. 

The maximum stress frequently occurs here (for example, in the maxillary second molar 

and lateral incisor models). Generally the maximum stress can’t be convergent here 

unless the mesh is refined around the local area. The convergence for the lateral incisor 

model and the maxillary second molar model will be described below.  In the case of the 

premolar model the stress comparison is along the PDL; since the PDL doesn't contain 

sharp corners, convergence is not a problem. 

The maximum principal stress for the incisor model in Motta (2006) occurs at the 

corner of the enamel and is convergent at 1.02E3 MPa. For this model, the mesh of both 

enamel and dentine around the corner of the enamel has been refined (See Fig 2. 15). The 

percent change for the maximum stress is less than 1% when the refined mesh size 

changes from 0.05mm to 0.025 mm. So the maximum principal stress is convergent at 

1.02E3 MPa for the incisor model.  Table 2.6 shows the convergence process for the 

maximum principal stress. 
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The minimum principal stress for the second maxillary molar Chang et al. (2003) 

also occurs at the corner of the enamel and is convergent at 22.1 MPa. The mesh is 

refined in the same way at the same location as the incisor model. Table 2.7 shows the 

convergence process for the minimum principal stress. 

 

 

 

 

 

 

 

(a)                                           (b) 

Figure 2. 15. The mesh around the corner of incisor: (a) without refinement; (b) with 

refinement. 

 

Table 2. 6. Convergence for the maximum principal stress for incisor (global element 

size=0.1mm) 

Refined mesh size (mm) Maximum principal stress (MPa) Percent change 

0.1 1.05E3  

0.05 1.03E3 1.9% 

0.025 1.02E3 0.97% 

 

Table 2. 7. Convergence for the minimum principal stress for second maxillary molar 

(global element size=0.1mm) 

Refined mesh size (mm) Maximum principal stress (MPa) Percent change 

0.1 22.4  

0.05 22.1 1.3% 

0.025 22.1 0% 

  

Enamel 

dentine 
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For the expert system (see Chapter III), the global or local mesh will be 

automatically refined further if the difference between the two consequent results is larger 

than 1%. 

4. The differences between 2-dimensional and 3-dimensional models. The 

comparison of the CAD-FEA model with Chang et al. (2003) brings up the issue of the 

difference between 2-D and 3-D models for this type of application.  Two simple models 

were created to investigate this issue: a 2-D square and a 3-D cube with the same 

cross-sectional dimensions and material properties. A thickness of 1mm and an equivalent 

distributed load of 200 N were applied to both. Table 2.8 shows the details for both 

models. 

 

Table 2. 8. Definitions for 2-D and 3-D models 

 

 Dimensions 

(mm) 

Total top 

loads (N) 

Load type BC’s Element type 

2D model 10*10 200 Distributed 

 loads 

Bottom 

 fixed 

2-D solid 

 (plane strain) 

3D model 10*10*1 200 pressure Bottom 

 fixed 

solid 

 

 

Figure 2. 16 shows the results for the minimum principal stresses (i.e. highest 

compressive stress) for the 2-D and 3-D analyses. The highest value is 29.6 MPa for the 

2-D model and 26.8 MPa for 3D model, i.e. the 2-D model yields ~10% higher stress 

than the 3-D model.  Some comments on this result: 
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i. The comparison with Chang et al. (2003) becomes slightly less good.  If we lower the 

highest stress in the first analysis by 10% we get 16.3 MPa as compared to 24 MPa.  

It should be remembered here, though, that Chang et al.’s (2003) model was a truly 

3-D model in shape, so the results would not be expected to be exactly the same.  

However, order-of-magnitude results are obtained, and the new CAD-FEA model has 

the advantage of also being able to include pulp, PDL and bone which are not 

included in Chang et al. (2003). 

ii. It is still desirable to develop a 3-D model in order to accurately model actual 3-D 

geometry and loading conditions out of the plane. 

 

 

 

 

 

 

 

 

  (a)             (b) 

Figure 2. 16. Minimum principal stress distribution for (a) 2-D model; (b) 3-D model. 

 

 

5. General discussion of CAD-FEA approach 

a. The CAD-FEA model described in this thesis is a general model that can 

simulate many situations and be used to perform many different tasks. 

1. The shape of any type of tooth can be accurately generated when given 
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enough parameters. There are basically eight parameters used here for 

defining the tooth shape. For more complicated tooth shapes, such as 

molars, more parameters may be needed for accurate construction.  

These parameters can be incorporated into future versions of the code. 

2. Both concentrated loads and distributed loads can be simulated at desired 

locations. For example, the premolar (Fig 2. 7) and incisor (Fig 2. 13) are 

subjected to concentrated loads while the second molar (Figs 2. 10-12) is 

subjected to distributed loading. 

3. The BC’s can be easily defined as needed. Several options will be 

available for the user to select in the expert system. For example, the 

bottom of the tooth bone can be fixed for the premolar and incisor (Fig 2.  

7 and Fig 2. 13(a) or the root below the enamel can be fixed for the 

second molar (Fig 2. 10). 

b. The analysis process is repeatable. The fact that we can easily vary PDL 

thickness and tooth bone width, etc., demonstrates the usefulness of the general 

model developed in the present work. Researchers can run parametric studies to 

compare the variation of the results as they modify the tooth size, load case, material 

properties and BC’s.  

c. The approach presented here is further developed so that the models are 

generated automatically. Both the ProEngineer and Patran/Nastran software provide 

platforms for developing codes package for performing the tasks automatically. A 

graphical user interface is constructed for users to input the necessary information; 

this will be part of the expert system described in Chapter III. 
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d. A problem with curve intersection occasionally occurs when the CAD model 

is created. Sometimes the curves which are generated to create a surface form more 

than one loop. This will prevent surface creation. The locations of the troublesome 

points need to be modified slightly so that automatic surface creation can proceed. 

This process is made automatic and incorporated into the expert system as described 

in Chapter III.  
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CHAPTER III 

 

AN EXPERT CAD-FEA SYSTEM FOR STRESS ANALYSIS OF HUMAN TEETH 

 

Introduction 

The concept of obtaining the stresses for specific teeth or for parametric studies in a 

rapid way has been a persistent goal in bioengineering. The previous chapter describes a 

new, general two-dimensional CAD/FEA tooth model. This chapter presents a 

computational tool for using that model; it permits dentists with no engineering expertise 

to obtain stress concentrations and distributions for various dental applications. Two 

applications are presented to show how the expert system works. The techniques and 

theories developed and applied here can be expanded to provide automatic stress analyses 

for many other applications as well.  
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The expert system 

 

Special problems 

In all FEA-to-CAD systems there are specific issues that must be dealt with that are 

unique to the particular application. Below are listed some of these problems. Although 

they apply specifically to the tooth analysis problem, they are typical of the issues that 

must be dealt with in developing any automated CAD-to-FEA process. 

1. Creating a general two-dimensional CAD geometry for any type of tooth in 

either cross-section direction. Tooth geometries are irregular and each type of 

tooth has a different shape. Accurate, user desired tooth geometries, must be 

generated once the tooth type, direction and dimensions are decided, through 

the use of GUIs. 

2. Optimizing the geometry to ensure that the CAD model is reasonable. Tooth 

parts are represented by 2D surfaces. The outline curves of the surfaces should 

form a single closed loop, i.e., there should be no intersection between the 

outline curves that form a tooth part. Otherwise, the surface that represents the 

tooth part can’t be generated. Curve intersections might occur at the sharp 

corners of the ends of tooth enamel, as illustrated in Figs 3. 1 (a) and (b). Then 

the outline curves for enamel will be muti-looped and it will not be possible to 

generate a surface for the enamel. In this case, the outline curves for enamel 

must be modified to avoid curve intersections.  
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     (a)          (b) 

Figure 3. 1. (a) Regular; (b) enlarged image for tooth geometry with intersection points 

 

 

3. Deciding the initial FEA mesh size and meshing the tooth geometry. A sufficient 

number of elements are required for FEA convergence. Also, models with 

different dimensions need different mesh sizes. Initial mesh size should be 

decided according to tooth geometry and an appropriate mesh type must be 

defined. 

4. Providing an automatic method for users to define the FEA model, including 

adding loads, BC’s and material properties. The input or modification of values 

Intersection point 
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and locations for each type of load and boundary condition should be 

convenient. Also, there are several typical applications for tooth stress analysis 

such as orthodontic and occlusion applications. Load types and BC’s for these, 

and other applications, should be available in a menu for selection by the user.  

5. Conducting mesh convergence testing. Mesh refinement and reanalysis must be 

available and the analysis results for each refined mesh at sensitive locations 

must be presented to be sure that convergence has been attained. Loads are 

usually applied to nodes and elements. The existing nodes and elements will 

disappear and new ones will be generated when refining the mesh for 

convergence testing. It is necessary to ensure that the loads are applied to the 

same location before and after mesh refinement.  

6. Displaying the results clearly. A variety of result data, such as stresses and 

displacements, must be easily accessible; this would include graphs showing 

stress contour fringes, or text reports. 

 

System configuration 

The developed system
9
 creates the CAD-FEA model and performs stress analysis 

on human teeth by hierarchically applying the rules stored in the knowledge-base; the 

system configuration is illustrated in Fig. 3. 2. The expert system was constructed of two 

modules each containing the tasks described below. 

CAD module: creates CAD geometry, optimizes geometry and exports geometry 

from CAD program (ProEngineer) 

                                                        
9 Refer to Appendix E for the software package created for the expert system. 
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FEA module: imports geometry to FEA software (PATRAN/NASTRAN), creates 

FEA model, analyzes the model, checks convergence and displays results. 

 

 

Figure 3. 2. Configuration of the expert system. 

 

 

Create CAD geometry 

Optimize geometry 

Export geometry from ProE 

Import geometry to Patran 

Create finite element model 

Analyze the model 

Display results 

 

Check convergence 

 

CAD 
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FEA 

module 

CAD library 

IGES file creation 

Geometry data retrieval 

IGES file importation 

Reference points creation 

Initial mesh size decision 

Convergence test 

Default BC’s set up 
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Knowledge base 

Create CAD geometry: The CAD tooth model is designed based on the geometry 

information input: tooth type, cross-section direction and dimensions. A CAD library has 

been constructed which includes parametric tooth models of several different tooth types 

(incisor, premolar, and maxillary second molar) in several directions (mesial-distal and 

labial-bucal cross sections).  The different tooth models with their default dimensions 

and cross-section directions are shown in Table 3.1. The system will generate a proper 

model when the geometry information is input. Five surfaces will be generated for 

representing five main tooth parts (enamel, dentine, pulp, PDL and bone). More 

specifically, when tooth type and direction information are input, the related parametric 

model for that type of tooth, in the desired direction, is selected from the CAD library to 

create the tooth geometry. First, the 2D closed curves that outline the tooth parts are 

generated; second, the system optimizes the geometry (see details in next paragraph); 

third, the 2D curves will be located in 3D space using a translation matrix; finally, the 

surface for each tooth part is generated by filling the closed curves. 

Optimize geometry: The system retrieves information on the created spline curves, 

expressing them as piece-wise parametric cubic curves
10

, and then checking if there is a 

curve intersection between them
11

. If an intersection exits, the model will be optimized. 

Intersections are removed by adding interpolation points to modify the local shape of the 

curves. 

 

                                                        
10 Refer to Appendix A for expressions for spline curve and Appendix F for an example of the retrieved 

data.  
11 Refer to Appendices B and C for the algorithms and Appendix F for an example of the calculated results.  
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Table 3. 1. Default dimensions for different tooth models (refer to ChapterII for more 

details). 

Tooth 
model 

Length 
of 

crown 
(mm) 

Length 
of root 

(mm) 

Diameter 
of crown 

(mm) 

Diameter 
of cervix 

(mm) 

Max- 

Thickness of 

enamel 
(mm) 

Thicknes
s of PDL 

(mm) 

Length 
of 

bone 
(mm) 

Width 
of bone 

(mm) 

Incisor in 
mesial- 

distal 
direction 

10.5 14.0 6.5 6.0 1.3 0.25 18.0 20.0 

Incisor in 

labial- 

lingual 
direction 

8.0 15.5 4.8 4.0 1.3 0.25 18.0 8.0 

First 
premolar 
in mesial- 

distal 

direction 

9.0 14.0 7.0 5.0 1.3 0.25 18.0 8.0 

First 
premolar 
in labial- 

lingual 
direction 

7.5 15.0 7.0 5.0 1.3 0.25 18.0 8.0 

Secondary 

molar in 
labial- 

lingual 
direction 

6.5 12.0 9.0 7.0 1.3 0.25 16.0 10.0 

 

Export and import geometry: The CAD model is exported from ProE by creating 

an IGES file and then is imported into Patran as a FEA geometry. 

Create FEA model: First, the initial mesh size is determined and then the mesh is 

created based on the FEA geometry. The system calculates the whole area of the tooth 

geometry, and then decides the initial global element size for the model. Table 3. 2 shows 

different area ranges and corresponding global mesh sizes. Second, load types, BC’s and 

element properties are defined. Third, to ensure that the loads are applied at the same 

location(s) before and after refining the mesh, reference points are generated and forces 
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are applied to the closest nodes around those points, or distributed loads are applied to the 

element edges between the points. The locations of the reference points along the outline 

of the enamel layer can be specified by the user through a parameter—the "space ratio"; 

this is the ratio of the two lengths which have been segmented by the reference point. 

Fourth, the types, values and locations of loads and BC’s can be defined through user 

GUIs.  Default BC’s are provided for typical applications. Fifth, material properties for 

each tooth part are defined by the user through GUIs (default values are also available, as 

shown in Table 3.3). For all the tooth parts, the element type is defined as a 2D solid, and 

a plain strain model is used. 

 

Table 3. 2. Global element size for different ranges of cross-section area. 

 

 

 

 

Table 3. 3. Default values for material properties of each tooth part. 

 

Analyze the FEA model and access the results: The completely defined FEA 

model is analyzed employing Nastran codes. The analysis results are then imported to 

Patran for display. 

Cross-section 

area (mm
2
) 

0-50 50-100 >100 

Global element 

size (mm) 

0.2 0.4 0.8 

 Enamel Dentine Pulp PDL Bone 

Young’s 

modulus 

(MPa) 

19600 19600 19600 0.25 13700 

Poisson’s 

ratio 

0.3 0.3 0.3 0.45 0.3 



 42 

Result display: After running the analysis, the stress results (Von mises, maximum 

principal and minimum principal) can be obtained in the form of fringe contours or a text 

report. X-y scatter graphs of the stresses along the PDL are automatically provided since 

the shape of the PDL is a long narrow belt making it difficult to observe the stress 

distribution from fringe graphs.  

Check convergence and refine the mesh: There are four steps for automatic user 

initiated convergence testing: first, the FEA model is remeshed with element edge length 

half the size of the previous mesh; second, load locations are redefined, since loads are 

applied to nodes and the nodes are changed during remeshing. Third, the model is 

analyzed and the results accessed as before; fourth, a “convergence.out” file is generated; 

this file shows the convergence of the stresses along the points where stress 

concentrations usually occur. Users can observe the results to see if further mesh 

refinement is necessary.  Since stresses at geometry points can’t be retrieved directly, the 

values of the stresses shown are average values for nodes near the geometry points. 

However, the process of locating the high stresses for convergence testing has not been 

automated in this work, i.e. presently users must determine the coordinates of the 

geometry points by observing the stress distribution on the stress fringe forms. 

 

Graphical User Interface 

Below is a detailed description of the GUI that a user will step through, including 

model creation, completing the stress analysis process and obtaining graphical output 

results for evaluation. 
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The user opens the ProEngineer software. The software modules developed as part of this 

project must be located in the CAD/FEA work directory (see Appendix D).  

CAD customization menu bar—“Tooth CAD”: This toolbar menu contains three 

menu selections, as illustrated in Fig. 3. 3, more GUIs will pop up when the menu buttons 

are clicked:  

 

 

 

 

Figure 3. 3. ProEngineer customized application main menu. 

 

Step1-Create a template model: An initialized CAD model will be generated in 

this step. The initialized CAD model contains all the features (such as default front, back 

and top planes etc.) that are essential for constructing a CAD model. No windows will 

pop up when the button is selected since no input is required for this step. 

Step 2-Create a tooth model: Tooth type and dimensions will be defined and a 

tooth model will be generated in this step. Two or three GUIs will appear for defining the 

tooth geometry and naming the model, respectively: i) Tooth Geometry Information 

Input Window (Fig 3. 4(a)) will pop up once the menu button is selected. This window 

is used for selecting tooth type and tooth cross-section direction, inputting tooth 

dimensions, and then creating tooth geometry. The default values for tooth dimensions 

will be set and displayed once the tooth type and cross-section direction are decided. 
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Users can either accept or modify these values. The tooth geometry will be generated 

once the “ok” button is clicked. ii) Curve Intersection Information Window (Fig 3. 

4(b)) will appear if a curve intersection exists within a tooth part. The coordinates for the 

intersection point are displayed. The tooth geometry can be modified to avoid the curve 

intersection once the “ok” button is clicked.  iii) CAD model name input panel (Fig 3.  

4(c)) will appear when the CAD model is completely generated. A file extension of “.prt” 

will be added automatically to the input name. 

 

 

 

 

 

         (a) 

         (a) 

 

 

         

          (b) 

 

 

(c) 

Figure 3. 4. GUIs for CAD model creation: a) Tooth Geometry Information Input 

Window; b) Curve Intersection Information Window; c) CAD model name input panel. 
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Step 3-Export tooth for analysis: The tooth model will be exported as an IGES file 

in this step. Two GUIs will appear for selecting the directory and inputting the name for 

the IGES file: i) Select Directory dialogue box (Fig 3. 5(a)) ii) Export IGES file 

dialogue box (Fig3. 5(b)). The default CAD part file name will be taken as the IGES file 

name. Users can either accept or modify the current file name. 

 

 

 

 

 

 

(a)           (b) 

Figure 3. 5. GUIs for CAD model exportation: a) Select Directory dialogue box; b) 

Export IGES file dialogue box. 

 

 The user opens the PATRAN software. The PATRAN/NASTRAN modules 

developed as part of this project must be located in the CAD/FEA work directory (See 

Appendix D). 

FEA customization menu bar—“Tooth FEA”: This toolbar menu contains ten 

menu buttons, as illustrated in Fig 3. 6; more GUIs will pop up when the menu buttons 

are clicked: 
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Figure 3. 6. Patran customized application main menu. 

 

Step1-Import Geometry: The tooth geometry will be imported into the FEA 

software in this step. The Import Geometry Window (Fig 3. 7) will pop up when the 

menu button is clicked. This window is used for inputting the name of a new database 

file, selecting the IGES file and importing it into the FEA software. The Select File 

dialogue box will pop up when the Select File button is clicked. 

 

 

 

 

 

 

Figure 3. 7. GUIs for Step 1: Import Geometry Window and Select File dialogue box. 

 

Step 2-Generate Reference Points: The reference points for defining the loads and 

BC’s will be created in this step. The Generate Reference Points Window (Fig 3. 8) will 
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pop up when the menu button is clicked. This window is used for inputting the "space 

ratio" value- the ratio of the two lengths along the enamel outline which have been 

segmented by the reference point.  

 

 

 

 

Figure 3. 8. GUI for Step 2: Generate Reference Points Window. 

 

 

Step 3-Create Mesh: The FEA geometry will be meshed in this step. The system 

will decide the mesh size based on the whole area of the tooth geometry. No window will 

open when the menu button is clicked since no input information is required.  

Step 4-Add Loads: Loads will be added to the tooth model in this step. The Add 

Loads Window (Fig 3. 9(a)) will pop up when the menu button is clicked. This window 

is used for choosing load types: Concentrated Forces or Distributed Loads. The 

Create Force Form (Fig 3. 9(b)) or Create Distributed Loads Form will pop up when 

the load type is selected. The load values and locations can be input through these forms. 

Step 5-Define boundary conditions: BC’s will be defined in this step. The Define 

Boundary Conditions Window (Fig 3. 10(a)) will pop up when the menu button is 

clicked. This window is used for selecting boundary condition type: Constraints on 

Nodes (Fig 3. 10(b)), Constraints on Surface Edges, Default Orthodontic Constraints 

and Default Occlusion Constraints. The Create Constraints on Nodes Form or 
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Create Constraints on Edges Form will pop up when the first two types are selected. 

The constraints values and locations can be input through these forms. No inputs are 

required for the last two types since default BC’s will be automatically defined when they 

are selected.  

 

 

 

 

     (a)            (b) 

Figure 3. 9. GUIs for Step 4: (a) Add Loads Window; (b) Create Force Form. 

 

 

 

 

 

     (a)            (b) 

Figure 3. 10. GUIs for Step 5: (a) Define Boundary Conditions Window; (b) Create 

Constraints on Nodes Form. 

 

Step 6-Define Element Properties: Element types and material properties will be 

defined in this step. The Define Element Properties Window (Fig 3. 11(a)) will pop up 

when the menu button is selected. This window is used for selecting tooth parts: Enamel, 

Dentine, Pulp, PDL and Tooth Bone. The forms such as Input Properties for Enamel 
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(Fig 3. 11(b)), etc. will pop up when a tooth part is selected. These forms are used for 

inputting material properties such as elastic moduli and poisson’s ratios for a selected 

tooth part. Default values are provided. Users can either accept or modify them. No input 

is required for element type since the element type used for all tooth models is 2D solid. 

 

 

 

 

 

 

      

(a)               (b) 

Figure 3. 11. GUIs for Step 6: (a) Define Element Properties Window; (b) Properties for 

Enamel form 

 

Step 7-Analyze Model: The FEA model will be analyzed in this step. The Analyze 

Model Window (Fig 3. 12) will pop up when the menu button is clicked. This window is 

used for inputting a job name.  

Step 8-Access Results: The analysis results will be imported from Nastran to Patran 

in this step. No input is required. The system will search the results by referencing the 

above job name.  

Step 9-Display Results: Various options are provided for displaying the analysis 

results in this step. The Display Results Window (Fig 3. 13(a)) will pop up when the 
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menu button is selected. This window is used for selecting results type: Stress, 

Displacement or Constraint Forces. The Display Stress Window (Fig 3. 13(b)) will 

pop up when Stress is selected. Users can further define the result form (fringe, graph or 

report), and quantity (Von mises, maximum or minimum principal stress). 

 

 

 

 

Figure 3. 12. GUIs for step 7: Analyze Model Window. 

 

 

 

 

   

    

       

(a)           (b) 

Figure 3. 13. GUIs for Step 9: (a) Display Result Window; (b) Display Stress Window. 

 

 

Step 10-Test Convergence: The mesh will be refined and a convergence test will be 

performed in this step. The Test Convergence Window (Fig 3. 14) will pop up when the 

menu button is selected. The Window contains two buttons: Refine Mesh and Create 

Convergence File, which should be selected in turn. No input is required for these two 

sub-steps.   
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Figure 3. 14. GUIs for Step 10: Test Convergence Window. 

 

Applications 

Orthodontic application: The expert system is applied to a mandibular first 

premolar under an orthodontic extrusive force of 100 N.  In this application, the tooth 

model is generated and analyzed in the mesial-distal direction. 

1. CAD model creation 

The CAD model for a mandibular first premolar is shown in Fig 3. 15. The 

following are the input geometry data: 

Tooth type: mandibular first premolar 

Cross-section direction: mesial-distal direction 

Tooth dimensions: default dimensions for first premolar in mesial-distal direction 

(refer to Table 3. 1.) 
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Figure 3. 15. Two-dimensional CAD model for mandibular first premolar in mesial-distal 

direction. 

 

2. FEA model definition 

A reference point is generated for adding a concentrated force: point 11 with space 

ratio 3, as illustrated in Fig 3. 16(a).  

The initial global element size for the premolar is 0.8 since its whole area is about 

190 mm
2
; the mesh is illustrated in Fig 3. 16(b).  

The load type selected is "Force." A force of 100N is applied to the nodes closest to 

point 11, as illustrated in Fig 3. 16 (c).  

“Default orthodontic constraints” is selected as the boundary condition, as illustrated 

in Fig 3. 16(c). This fixes the bottom of the tooth bone.  

Default material properties are taken as the material properties, given in Table3. 3. 
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      (a)         (b)   `  (c) 

Figure 3. 16. Defining (a) reference points; (b) concentrated load; (c) boundary 

conditions for FEA model of madibular first premolar. 

 

3. Result display 

Figures 3. 17(a), (b) illustrate the Von mises stresses in fringe and graph formats. 

Figure 3. 17(c) illustrates the report file for all types of stresses. 

 

 

 

 

 

 

 

(a) (b) 

Figure 3. 17. (a) Fringe of Von mises stress; (b) graph of Von mises stress along PDL. 
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         (c) 

Figure 3. 17. (continued) (c) report file of stresses for all nodes. 

 

4. Convergence Testing 

Table 3. 4 shows the node IDs and coordinates for loads on the tooth models for 

different levels of mesh refinement. For this example, the original model is refined twice 

(each time approximately quadrupling the number of elements) to test its convergence 

(for a total of 3 analyses). Figure 3. 18(a) shows the contents of the “convergence.out” 

file, which contains the stresses (Von mises, Min principal and Max principal) for the 

three different levels of mesh refinement at a sequence of geometry points along the sides 

of the tooth bone where high stresses occur. Figure 3. 18(b) shows the position of the 

geometry points referenced in the file. For this example, the high stresses occur along the 

sides of bone, as illustrated in Fig 3. 17(a), thus the geometry points are created for 

convergence testing along the sides of the bone. The analysis results converge very well 

in locations of high stress. For example, the “convergence.out” file (Fig 3. 18(a)) shows 

that for all three cases, there is a Von mises stress concentration at point 4 on the left. This 

matches the Von mises fringe (Fig 3. 17. (a)) stresses perfectly, which shows that there is 

a stress concentration at the upper left side bone. At locations of lower stress, e.g. at the 
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right corner, left corner, etc., local refinement would be necessary if these are deemed to 

be locations of interest.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         (a)           

   

 

 

 

 

 

 

 

 

 

 

 

         (b) 

Figure 3. 18. (a) Convergence output file; (b) geometry points for convergence testing. 

 

Left corner 

Left point 9 

Left point 1 

…
…

 

Left point 10 

Right corner 

…
…

 

Right point 9 

Right point 2 

Right point 1 

Right point 10 

…
…

 

Left point 4 
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Table 3. 4. Stress evaluation locations for each analysis during convergence testing. 

Case  Node ID    X_Coord(mm) Y_Coord 

(mm) 

1 9 2.52 5.28 

2 16 2.49 5.39 

3 29 2.52 5.25 

 

Occlusal application: This example is for a maxillary second molar under occlusal 

loads of about 170N distributed along the top surface.  A CAD-FEA model in the 

buccal-lingual direction is generated and analyzed. 

1. CAD model creation 

The CAD model for a maxillary second molar is shown in Fig 3. 19. The following 

are the input geometry data: 

Tooth type: maxillary second molar 

Cross-section direction: labial-lingual 

Tooth dimension: default dimensions for maxillary second molar in labial-lingual 

direction (refer to Table 3. 1.). 
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Figure 3. 19. Two-dimensional CAD model for maxillary second molar in labial-lingual 

direction. 

 

 

2. FEA model definition 

Two reference points are generated for adding distributed loads: point 11 with a 

space ratio of 0.5 and point 12 with a space ratio of 2, as illustrated in Fig 3. 20(a).  

The load type selected is "distributed loads." The distributed load of 2 N/mm 

(vertical to the curve) is applied to the element edges along the enamel outline between 

points 11 and 12, as illustrated in Fig 3. 20(b). Then the total loading along the top of 

tooth is approximately 130N since the distance between point 11 and 12 is about 6.5 mm 

and the diameter of the tooth crown is about 10 mm.   

“Default occlusal constraints” is selected as the boundary condition, as illustrated in 

Fig 3. 20(c). This fixes the bottom of the tooth bone and prevents movement of the left 

and right sides of the tooth bone in the horizontal direction.  

The material properties used are shown in Table 3.5. 
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Table 3. 5. Material properties of the tooth model in this example. 

 

 

 

 

 

 

 

   (a)         (b)        (c) 

Figure 3. 20. Defining (a) reference points; (b) distributed loads; (c) boundary conditions 

for FEA model. 

 

3. Result display 

For this example, the minimum principal stress is important since the tooth model is 

under compression. Figures 3. 21 (a) and (b) show the fringes of Von mises and minimum 

principal stress distribution, respectively. Figure 3. 21 (c) shows the graph of minimum 

principal stress distribution along the PDL. Figure 3. 21(d) shows the report file 

containing all stresses for each node. 

 

 

 Enamel Dentine Pulp PDL Bone 

Young’s modulus 

(MPa) 

85000 19800 2.07 50 13800 

Poisson’s ratio 0.33 0.31 0.45 0.45 0.3 
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   (a)          (b)       

  

 

 

 

       

     

 

 

   

 

        (c) 

Figure 3. 21. (a) Fringe of Von mises stress; (b) fringe of minimum principal stress; (c) 

graph of minimum principal stress along PDL 
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        (d) 

Figure 3. 21. (continued) (d) report file of stresses for all nodes. 

 

4. Convergence testing 

Table 3. 6 shows the values for the distributed loads applied to the tooth model 

cross-sections for different levels of mesh refinement. For this example, the original 

model is refined three times to test its convergence (for a total of 4 analyses—each time 

approximately quadrupling the number of elements). Figure 3. 22 (a) shows the contents 

of the “convergence.out” file, which contains the stresses (Von mises, maximum principal 

and minimum principal) for four levels of mesh refinement at geometry points along the 

outline of enamel where high stresses occur, as illustrated in Figs 3. 21 (a),  (b). Figure 

3. 22 (b) shows the positions of geometry points 1-13 referenced in the file 

“convergence.out.”  The “convergence.out” file (Fig 3. 22 (a)) shows that stress 
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concentrations are consistently located around points 1, 7 and 13 although their values do 

not converge very well at these points. The stresses converge well at points 3-6 and 8-10. 

These results suggest that local mesh refinement is required around the corner of the 

enamel (points 1, 2 , 12, and 13); however, it is reasonable that the stresses don’t 

converge well at point 7 since point 7 is located at the center of the distributed loads 

where the load distribution changes a bit for different mesh refinement levels. The file 

also shows that the stress values at point 7 are getting smaller and smaller because during 

mesh refinement, the size of the element edges is getting smaller and smaller causing the 

loads to be distributed more and more evenly along the outline curve. Generally, the 

contents of the convergence file match the stress fringes shown in Figs 3. 21(a), (b).  

 

Table 3. 6. Load values in cross-section for each analysis from convergence tests. 

Case  Total loads (N) 

1 17.23 

2 17.30 

3 17.37 

4 17.21 
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(a)             (b) 

Figure 3. 22. (a) Convergence output file; (b) geometry points for convergence tests. 

 

 

Example of geometry optimization: the expert system is applied to the creation and 

optimization of the geometry for a mandibular labial incisor.  

The following are the input geometry data for the CAD model creation: 

Tooth type: mandibular labial incisor 

Cross-section direction: mesial-distal 

Tooth dimension: shown in Fig 3. 23 (a). 

The outline curves for enamel will intersect at point (-3.25, 1.55), as shown in 

Figure 3. 23(b). Figures 3. 23(c) and (d) show the created CAD model without and with 
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optimization, respectively. Figure 3. 1(b) shows the zoomed-in intersection without 

optimization, i.e. from Fig 3. 23(c). 

 

 

 

 

 

 

       

   

     (a)           (b) 

 

 

 

 

 

 

 

 

 

     

     (c)          (d) 

Figure 3. 23. (a) Geometry information input; (b) curve intersection information output; 

(c) Tooth geometry without optimization; (d) Tooth geometry with optimization. 

Intersection 

point 
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CHAPTER IV 

 

CONCLUSIONS 

 

The CAD-FEA model described in Chapter II is a general model that can simulate 

many situations and be used to perform many different tasks. The shape of any type of 

tooth can be accurately generated when given enough parameters. Both concentrated 

loads and distributed loads can be simulated at desired locations. The BC’s can be easily 

defined as needed. The fact that PDL thickness and tooth bone width, etc., can easily be 

varied demonstrates the usefulness of the general model developed in the present work. 

Dental practitioners can analyze specific cases and dental researchers can run parametric 

studies to compare variations when the tooth size, load case, material properties, BC’s, 

etc. are varied. This approach has been further developed with the creation of an expert 

system, so that the models can be generated automatically through a graphical user 

interface (GUI).   

The expert system:  

1. generates CAD-FEA models and performs general tooth stress analysis. By inputting 

necessary information through GUIs, the geometry of any type of tooth in each 

cross-section can be generated; both concentrated forces and distributed loads can be 

defined at any location; the boundary constraints can be defined at any location along 

any direction; values of material properties can be defined for each tooth part. 

2. creates a user friendly environment for researchers and dental practitioners having no 

background or knowledge of solid mechanics, CAD or FEA. Only geometry 
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information, loads/BC’s and material properties are required. Options such as 

reference points and default options and values for specific situations are provided for 

making the process of defining the FEA model as easy as possible. In addition, the 

system makes decisions for generating the tooth geometry, meshing, and performing 

the stress analysis automatically. For example, the CAD geometry is optimized and 

the mesh size is decided automatically; several types of resulting stresses can be 

displayed in different forms and convergence testing can be performed with results 

easily accessible for the user to analyze and compare outcomes. 

3. speeds up the CAD and FEA simulation process. The time-consuming process of 

geometry generation and FEA model definition can be completed in minutes by 

inputting information through GUIs and clicking various selection menus.  

4. makes it easy to repeat the CAD and FEA process so that parametric studies become 

feasible. That is, the values of one or several parameters such as material properties, 

dimensions, or loads/BC’s can be easily changed and then results can be observed as 

to how these factors affect stress distributions.   

Possible future work: 

1. Include more default options and decisions for the user. For example, when users 

input the information for loading conditions, the system can decide which 

cross-section to create and what BC’s to add. 

2. Add loads and BC’s more easily: automatically find the closest nodes to the reference 

points and then add the force to the nodes; automatically find the free edges of the 

elements between two reference points and then add the distributed loads. 
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3. Automatically locate the high stresses for convergence testing and perform local mesh 

refinement. The present system requires users to observe the stress concentrations in 

stress fringes and then define the locations for convergence testing. The present 

system cannot yet perform local mesh refinement automatically. 

4. Develop 3D tooth model geometries for expert CAD-FEA analysis. The 2D 

CAD-FEA model is only useful for solving problems which can be taken as 2D plane 

strain. For other problems a 3D CAD-FEA model is needed.  No new theory is 

necessary for this—only the 3D geometries need to be developed. 

5. More accurate CAD geometry for a specific tooth may be generated by using digital 

information obtaining from tooth image scanning. The current generated CAD 

geometries are general and approximate since they are based on measurements and 

shape descriptions from the literature. Specific real teeth can be analyzed with 

scanning technology where the digital information is used to create discrete points 

first and then generate a 3D CAD geometry.  

6. The program can be further developed for including the design of tooth implants and 

restorations. 
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Appendix A 

 

Analytic expressions for the outline curves 

The outlines of tooth parts can be represented analytically. Each outline of a tooth 

part is composed of several spline curves and each spline curve is composed of 

piece-wise cubic polynomials. The coordinates of the points along the ith segment of a 

spline points are
12

: 
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t’ is located in the ith spline segment: 
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12 Refer to Pro/Engineer Wildfire 3.0, Pro/Toolkit User’s Guide. 
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Appendix B 

 

Root-finding formula for cubic functions
13

 

Root-finding formula based on Cardano’s method. 
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13 The solution is based on Cardano’s method. Reference: Cardano, Gerolamo(1545). Ars Magna.  



 69 

).
3

- ,(t

 and

 ),
3

 ,(s

: define

3

3

θ
ρ

θ
ρ

=

=

               (B5) 

in both cases, the solutions are 

,)(
2

3

3
)(

2

1

,)(
2

3

3
)(

2

1

,
3

3

2

1

its
a

b
tsx

its
a

b
tsx

a

b
tsx

−−−+−=

−+−+−=

−+=

           (B6) 

 

 

 

 

 

 

 

 

 

 

 



 70 

Appendix C 

 

Solution for finding intersection points 

A numerical method is used for finding the intersection points between the outline 

curves of a tooth part. Suppose that there are two spline curves: curve1 and curve2. Both 

curves start from point A, where y equals to 0. We want to determine if there is an 

intersection point between the two curves when y varies from 0 to m. The solution is: as 

illustrated in Figure C. 1, from 0 to m, let the y value increase a small amount at each 

time step. For each y value, e.g., y=e, calculate the corresponding x1, x2 values for both 

curves. If x1 is not equal to x2(i.e. the absolute value of “x1-x2” is larger than 10e-6), 

increase the y value and continue; if x1 equals to x2(i.e. the absolute value of “x1-x2” is 

smaller than 10e-6), then an intersection point exists at coordinates (x1,m).  

Specifically, for our problem, when we suppose a y value on a spline curve, first, we 

can obtain a cubic equation of t using equation 1. Then we calculate t by solving the 

equation using root-finding methods; finally, we calculate the x value by repeating using 

equation1. 
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Figure C. 1. Numerical methods for finding intersection points between two curves 
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Appendix D 

 

Instructions for using the expert system 

1. ProToolkit application 

i. Save the application files to C:\HT\Tooth 

ii. Set ProE start in directory: 1) Right click ProEngineer;2) Click “properties” 3) 

Set the Pro/ Engineer start in as “C:\HT\Tooth”, as shown in Fig. D1 

iii. Open ProE, then “Tooth CAD” will appear on the main menu, as shown in Fig 3. 

3.  

iv. Click the menu button “Create a template model” under the main menu button 

“Tooth CAD”, and then a template model with datum planes and axes will be 

generated, as shown in Fig. D2. 

v. Click the menu button “create a tooth model” under the main menu button 

“Tooth CAD”, and then a tooth geometry information input window will appear, 

as shown in Fig 3. 4(a). Choose the tooth type (incisor, premolar or molar), 

cross-section direction (mesial-distal or labial-lingual), and input the dimensions. 

Then click “ok”. 

vi. A curve intersection information window will appear if the generated geometry 

is unreasonable, as shown in Figure 3. 4(b). Click “ok” for automatic geometry 

optimization.  



 73 

vii. Then a message will appear prompting the users to input the name for the 

model and save it as desired filename, as shown in Figure 3. 4(c). 

viii. Click the menu button “ Export tooth for analysis” under the main menu 

button “Tooth CAD”, a dialogue will appear prompting users to select directory 

for save the IGES file. Users can select a directory or use the default directory 

“c:\ht\tooth\parts”. Select “open”, then an input panel will appear prompting 

users to input file name for the IGES file. The IGES file will be created in the 

desired directory when the file name is input. 

 

 

 

 

 

 

 

Figure D. 1. Setting the start in directory 

 

2. Patran customization language application 

i. Save the application files to C:\Patran\tooth_pcl 

ii. Set Patran start in directory: 1) Right click Patran;2) Click “properties” 3) Set the 

Patran start in as “C:\HT\Tooth”, as shown in Fig. D3 
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iii. Open Patran, then “Tooth FEA” will appear on the main menu, as shown in 

Figure 3. 6. 

 

 

 

 

 

 

 

 

 

 

 

Figure D. 2. A template CAD model with datum plane and axes 

 

Click the menu buttons from “step1- Import Geometry” to “step 10 – Test Convergence” 

in turn and refer to “graphic user interface” section in Chapter III to perform FEA 

analysis step by step. 

 

 

 

 

 

 

Figure D. 3. Setting Patran start in directory 



 75 

Appendix E 

 

Contents of the codes packages 

 Main Files Main Functions in the Files Function Description 

user_initialize() Create main menu and buttons Toolkit.c 

toolkit_issue_new() generate a template part 

Tooth_CAD.c ProDemoSketchedCurveCreate
() 

Create an outline curves for a tooth part 

Matrix.c (PTC provided) ProUtilPointTrans() Transform a 2d point to a 3d point 

Ug3DSection.c UserSectionBuild() Create 3D section for each outline curve 

UserUIListImplement() Create GUIs for tooth geometry 
information input 

Tooth_classify() Classify the tooth types 

Inputpanel_DoubuleSet() Set default tooth dimensions from input 
panel 

Inputpanel_DoubuleGet() Get the tooth dimensions from input panel 

SectionDirectionAcitive() 
 

get the selected tooth direction 

list_selecteditemnameActive () get the selected tooth type 

List.c 

list_OKAction() Action function for the "OK" button 

DefaultSection.c PremolarDistalEnamel()etc. Generate spline curves for each tooth part 

FillSurface() Visit the curve feature for surface creation 

intersection_DoubuleSet Set the coordinates of the intersection 

points to GUIs 

t_Solution Calculate the t value for a given y value 

EnamelShapeCheck() Check if the intersection points exist 

SplineDataObtain() Retrieve the data of spline curve  

SurfaceCreate.c 

ProSurfaceFeatureCreate() Create surface feature for each tooth part 

UgInterfaceExport.c UserIGESGeomflagsExport() Export the current model to IGES 

CAD 

Filesaveas.c (PTC 
provided) 

FileSaveAs () Save the tooth model with desired name 

IMPORT_TOOTH.pcl IGES_IMPORT() Import the IGES file to Patran 

tooth_Interp_ui.cpp Interpolate_ui Generate GUI for inputting the information 
of  reference point 

Interp_pnt.pcl Interp_pnt() Create the reference points 

MESH_TOOTH.PCL MESH() Generate mesh for tooth geometry 

FEA 

apply_load_to_selected_
nodes.pcl 

apply_load_to_selected_nodes(
) 

Apply load to selected nodes 
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distribute_load_to_select
ed_elements.pcl 

distribute_load() Apply distributed loads to element edges 

apply_boundary_to_selec
ted_edges.pcl 

bound_to_edges() Apply BCs to curves 

apply_boundary_to_selec
ted_nodes.pcl 

apply_bound_to_selected_node
s() 

Apply BCs to nodes 

boundary_occlusion.pcl occlusion_default() Apply default BCs to occlusion case 

boundary_orthodontic.pcl orthodontic_default() Apply default BCs to orthodontic case 

force_form.cpp Force() Generate GUI for force creation 

DistribLoad_form.cpp DistribLoad() Generate GUI for adding distributed load 

boundary_ui.cpp boundary_ui() Generate GUI for adding boundary 
conditioins 

boundary_node.cpp NODE_FORM Generate GUI for adding movement 
restriction on nodes 

boundary_edge.cpp EDGE_FORM Generate GUI for adding movement 

restriction on Edges 

loads_ui.cpp  loads_ui Generate GUI for adding loads 

properties_tooth.pcl properties() Assign the material properties to tooth 
parts 

properties_ui.cpp properties_ui() Generate GUI for adding loads 

enamel_properties.cpp Enamel Generate GUI for input material properties 

for enamel 

dentine_properties.cpp Dentine Generate GUI for inputting material 
properties for dentine 

pulp_properties.cpp pulp Generate GUI for inputting material 
properties for pulp 

PDL_properties.cpp PDL Generate GUI for inputting material 

properties for PDL 

bone_properties.cpp 

 

BONE Generate GUI for inputting material 
properties for bone 

tooth_analysis.pcl Analysis Analyze the FE model 

tooth_analysis_ui.cpp analysis_ui Generate GUI for tooth model analysis 

tooth_read.pcl Read Read the results from Nastran to Patran 

select_file.cpp select_file Generate GUI for selecting file from 
desired path 

import_ui.cpp import_ui Generate GUI for importing tooth 
geometry 

Tooth_ResultDisplay_ui.
cpp 

Tooth_ResultDisplay_ui Generate GUI for displaying results 

Stress_ui.cpp Stress_ui Generate GUI for displaying results of 
stresses 

Fringe.pcl Fringe() Show stresses in fringe format 

Graph.pcl Graph() Show stresses in graph format 

 

Report.pcl report() Show stresses in report format 
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CONVERGENCE_UI.C
PP 

Convergence_ui Generate GUI for convergence test 

MESH_REFINE.PCL RefineMesh() 
 

Generate mesh 

Result_nodes_maxprin2() Retrieve results from database result_nodes_maxprin2.p
cl 

Result_convergence Perform convergence test 

 

TRAINING.PCL Training() Generate “tooth FEA” menu 
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Appendix F 

 

Log files 

The output file are as follows: 

a. Spline_curve_3D.txt – retrieved data information for spline curves 

 

 

 

 

 

 

b. shape_check.txt – records for the calculating process for intersection point 
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